
Under consideration for publication in Formal Aspects of Computing

Laws of mission-based programming
Frank Zeyda and Ana Cavalcanti
Department of Computer Science, Deramore Lane, University of York, YO10 5GH, UK

Abstract. Safety-Critical Java (SCJ) is a recent technology that changes the execution and memory model
of Java in such a way that applications can be statically analysed and certified for their real-time prop-
erties and safe use of memory. Our interest is in the development of comprehensive and sound techniques
for the formal specification, refinement, design, and implementation of SCJ programs, using a correct-by-
construction approach. As part of this work, we present here an account of laws and patterns that are of
general use for the refinement of SCJ mission specifications into designs of parallel handlers, as they are used
in the SCJ programming paradigm. Our refinement notation is a combination of languages from the Circus
family, supporting state-rich reactive models with the addition of class objects and real-time properties.
Starting from a sequential and centralised Circus specification, our laws permit refinement into Circus models
of SCJ program designs. Automation and proof of the refinement laws is examined here, too. Our work is
an important step towards eliciting laws of programming for SCJ and fits into a refinement strategy that we
have developed previously to derive SCJ programs from specifications in a rigorous manner.

Keywords: SCJ; models; refinement; laws; patterns; automation; proof; Circus

1. Introduction

Java is indisputably one of the most popular programming languages nowadays. Despite this, its use in the
safety-critical industry has been modest due to Java’s generality and rich set of features. Significant issues are,
for example, the use of garbage collection and problems related to thread prioritisation [STR06, The11], which
render it inadequate for time-critical applications. Safety-Critical Java (SCJ) [HHL+09], a recent initiative,
addresses these issues by introducing a restricted version of Java; it is based on the Real-Time Specification
for Java (RTSJ) [Wel04], but further restricts RTSJ’s execution and memory model. SCJ requires programs
to conform with the SCJ execution paradigm, which is based on missions and handlers. This facilitates
the formal analysis of SCJ applications, and thereby enables the application of formal methods to satisfy
stringent criteria of certification standards like DO-178C [RTC11].

SCJ is organised in three levels (Levels 0 to 2), which define progressively more complex models of
execution. Our focus is SCJ Level 1, which roughly corresponds to the Ravenscar profile for Ada [Bur99].
At Level 1, applications are organised as a sequence of missions, and each mission consists of a set of
handlers that are executed in parallel. Missions and handlers are defined by application classes that either

Correspondence and offprint requests to: Frank Zeyda, Department of Computer Science, Deramore Lane, University of York,
Heslington, York, YO10 5GH, UK. Email: frank.zeyda@york.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/322321107?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:frank.zeyda@york.ac.uk

2 F. Zeyda and A. Cavalcanti

extend or implement an abstract or interface class of the SCJ API; that API is defined as part of the SCJ
technology [The11]. Handlers can either be periodic, which means they are released at regular time intervals,
or aperiodic implying that they are released by some external event or stimulus. When a handler is released,
its handleAsyncEvent() method is scheduled for execution by a priority-based scheduler that is part of a
specialised virtual machine for executing SCJ programs.

Our previous work focused on complementing the informal account of SCJ [The11] with a formal model of
SCJ’s mission-based execution paradigm [ZCW11] and memory model [CWW11a]. Our modelling notation
is a combination of languages from the Circus family [CSW03, CSW05, SCJS10], specifically tailored for
state-rich reactive systems with the addition of discrete time, object orientation, and object references.

We have also proposed a refinement strategy [CZW+13] to transform abstract specifications into models
that directly correspond to SCJ programs. Such a strategy simultaneously addresses a multitude of concerns.
Namely, we have to consider the preservation of real-time behaviour, the introduction of classes and object
references, the SCJ memory model, the SCJ execution model, and the SCJ application interface. Therefore,
it is not surprising that the existing work [CZW+13] only gives a broad description of the general approach;
details of the application of this strategy to a specific example are available in [ZCW+12].

Our primary contribution in this paper is to examine in detail the refinement of centralised and sequential
specifications of missions into parallel handler designs. In doing so, we elaborate and extend our account of
laws in our previous work [ZC13]. Our starting point for the refinement is a Circus process specification that
supports all constructs of Circus, including Z data operations, classes, and Timed CSP constructs, except for
parallel composition and interleaving. We show how decomposition of data operations, time budgets, and
process actions can be used to transform such a model into a uniform shape that determines the structure
and behaviour of handlers of a mission. Refinement laws directly reflect particular program designs that
encapsulate the way in which data is shared and safely accessed to avoid race conditions, how computational
work is divided between the handlers of a mission, and how handler execution is controlled.

Another contribution is an account on automating the application of the laws. In particular, we discuss
how different stages of the refinement may take advantage of automation and potential tactics for refinement,
and what level of expertise is required in each aspect of the refinement to guide the formal development. We
also present proofs of a few of the novel refinement laws, and thereby illustrate a strategy for validation of the
laws with respect to a denotational semantics of our language. That semantics has been recently formulated
in the context of Hoare and He’s Unifying Theories of Programming (UTP) [HJ98].

The principal motivation for our work is to pave the way for automated tool support for the verification
of SCJ programs. Due to the novelty of SCJ, there are not many tools currently available that support
the development of critical software in SCJ. The available tools mostly focus on isolated statically-checkable
properties [TPV10, DHS12, HL11], but do not address the combination of concerns that characterise the SCJ
paradigm. While we do address many concerns of SCJ simultaneously by using a highly expressive language,
the practicalities of performing actual refinements are largely an open problem. It is, clearly, unrealistic
to carry out such refinements entirely by hand, which is well illustrated by the complexity of the example
in [ZCW+12]. Some refinement steps are, however, inherently difficult to automate. Our work highlights
where automation is feasible, and where human guidance is indispensable to guide the refinement process.

The added contributions of this article with respect to our earlier account on refinement laws for SCJ
in [ZC13] can be summarised as follows.

1. We refine the notion of an SCJ program design by considering termination of missions (Section 3).

2. We present laws for two aspects of the refinement that have not been considered so far. The first one is
the introduction of cycle timings for periodic handlers (Section 4.1), and the second one is the design of
shared data access as well as explicit mechanisms for handler control (Section 4.5).

3. We discuss in detail opportunities and ramifications for automating the application of the laws (Section 6).

4. We present proofs for some of the laws and thus illustrate the feasibility of validating the proposed
refinement laws (Section 7). This is with respect to a UTP-based semantics of our language.

5. We elaborate our account of applying the refinement laws to our collision detector case study.

The results in this paper contribute towards elaborating the refinement strategy for SCJ in [CZW+13],
but they are also useful outside the context of that technique. Decomposition of centralised models is a
general issue in refinement-based techniques [CSW03], and the models we produce can, in principle, serve
as a starting point for any form of parallel implementation in languages other than SCJ. As the essence of

Laws of mission-based programming 3

Call to MissionSequencer::
getNextMission()

Mission

Execution

Create

Call to
Safelet::setUp()

Call to
Safelet::tearDown()

Call to
Mission::initialize()

Call to
Mission::cleanup()

Call to
(A)PeriodicEventHandler::handleAsyncEvent()

Safelet

Setup

Mission

Initialisation

Mission

Cleanup

Safelet

Termination

Execute next Mission

Event

Handlers

Release

Fig. 1. Life-cycle of a safelet during execution of a Level 1 application.

the SCJ paradigm (its mission-based execution model) can be captured independently of the Java language,
our account of mission decomposition is relevant for languages that adopt a similar execution model, too.

The structure of the article is as follows. In Section 2, we review preliminary material: Safety-Critical Java,
the Circus family of languages, and a refinement strategy for development or verification of SCJ. Section 3
presents the Circus model of an SCJ program design targeted by the refinement. Section 4 then discusses our
refinement laws by considering five independent design and verification aspects, and Section 5 presents an
example that illustrates the application of the laws: a collision detector for aircraft. Next, Section 6 considers
issues of automation, and in Section 7 we examine the proof of some of the laws. Finally, in Section 8, we
conclude, and discuss related and future work.

2. Preliminaries

We next discuss in more detail SCJ Level 1 (Section 2.1), the Circus family of notations (Section 2.2), and
our top-level refinement strategy (Section 2.3). We use a version of the collision detector for aircraft (CDx)
in [KHP+09] that has been adapted for SCJ Level 1 as a running example to explain the SCJ technology
and our formal notation, and later on also to demonstrate the refinement laws. The executable SCJ program
and additional documentation are available from http://www.cs.york.ac.uk/circus/hijac/cdx.html.

2.1. SCJ Level 1

Safety-Critical Java (SCJ) is a restriction of the standard Java language and JDK API. SCJ prohibits certain
features of Java that are difficult to analyse for program certification or otherwise deemed unsafe in a safety-
critical context, like garbage collection or unconstrained use of synchronized blocks. Moreover, SCJ requires
program designs to adhere to particular structures, and therefore includes its own API that provides classes
and interfaces that enable the user to write applications that conform to SCJ’s execution paradigm. In detail,
SCJ programs are distinguished by compliance with one of the three SCJ Levels 0, 1 and 2. These levels
define progressively more complex application architectures and underlying execution models, and are each
supported by a specific set of (abstract) classes and interfaces, provided by the SCJ technology [The11].

Level 0 applications define a set of sequential tasks that are periodically executed by a cyclic scheduler.
SCJ Level 1 adopts the more elaborate execution model based on missions and handlers. SCJ Level 2 relaxes
certain constraints on the use of synchronisation primitives in SCJ Level 1 and moreover supports nesting
of missions. Our focus in this article is SCJ Level 1. The execution model for SCJ Level 1 programs is
based on five primary conceptual entities: safelet, mission sequencer, missions, handlers and SCJ events.
They are realised by the following abstract classes and interfaces: Safelet, MissionSequencer, Mission,
PeriodicEventHandler, AperiodicEventHandler and AperiodicEvent. Concrete Level 1 programs imple-
ment these interfaces and classes and can then be executed by a specialised virtual machine for SCJ.

Figure 1 illustrates the life-cycle of a Level 1 safelet, the top-level entity of an SCJ application. The
SCJ infrastructure, that is, an SCJ-compliant virtual machine, first initialises the safelet. This is followed
by a series of mission executions, each involving the initialisation, execution and termination of a particular
mission of the safelet. Interaction of the infrastructure with the program to carry out these (and other) tasks

http://www.cs.york.ac.uk/circus/hijac/cdx.html

4 F. Zeyda and A. Cavalcanti

+setUp() : void

+tearDown() : void

+getSequencer() : MissionSequencer

«interface»

Safelet

CDxSafelet

CDxMissionSequencer

+getNextMission() : Mission

MissionSequencer

+initialize() : void

+initColls() : void

+recColls(in n : int) : void

+getColls() : int

CDxMission

+currentFrame : RawFrame

+state : StateTable

+work : Partition

+collisions : int

+control : DetectorControl

+initialize() : void

+cleanup() : void

+requestTermination() : void

+terminationPending() : boolean

+missionMemorySize() : long

Mission

+handleAsyncEvent() : void

+register() : void

PeriodicEventHandler

+handleAsyncEvent() : void

+register() : void

AperiodicEventHandler

OutputCollisionsHandlerInputFrameHandler

-reduce_event : AperiodicEvent

ReducerHandler

-detect_event : AperiodicEvent

DetectorHandler

1..*

Shared

Data

Releases

Releases

Releases

Fig. 2. Class diagram for an aircraft collision detector in Level 1 SCJ.

is done by method calls. Mission initialisation creates the mission’s event handlers, which are released either
periodically or by an external or SCJ event during mission execution. Whereas external events are raised
by the environment, SCJ events are fired in software (by a method call) and enable applications to exercise
explicit control over handler releases. SCJ events are modelled by instances of the AperiodicEvent class,
which is also part of the SCJ API. When there are no more missions to execute, the safelet terminates.

Figure 2 includes the UML class diagram for a particular SCJ application: the collision detector (CDx).
Whereas the original CDx [KHP+09] was designed for RTSJ, our version is a recast for SCJ Level 1 and
takes advantage of multiple handlers that parallelise the detection of collisions. Classes surrounded by a
blob belong to the SCJ API, and the remaining ones are application classes. The latter include CDxSafelet,
CDxMissionSequencer, CDxMission, InputFrameHandler, OutputCollisionsHandler, ReducerHandler
and DetectorHandler. We observe that they all implement an entity of the SCJ API.

An instance of the CDxSafelet class provides the safelet of the application and CDxMissionSequencer de-
fines the mission sequencer, which here specifies the execution of a single mission CDxMission that also holds
the data shared between the handlers. The remaining classes are handlers. InputFrameHandler is periodic
whereas ReducerHandler, DetectorHandler and OutputCollisionsHandler are aperiodic and released by
various SCJ events (of type AperiodicEvent). The purpose of InputFrameHandler is to periodically read
radar frames of aircraft positions from an external device. Afterwards, it releases ReducerHandler, which
reduces and divides the computational work using a spacial decomposition algorithm. The actual detection
of collisions is performed by four instances of the DetectorHandler class; these instances record their partial
results using the void recColls(int) method of the mission class. Once all detector handlers complete their
work, OutputCollisionsHandler is released to output the result to a warning system. (DetectorControl
is a utility class to control the release of OutputCollisionsHandler.) We note that the program depicted
in the UML diagram has been a priori constructed, but in Section 5 we verify it by showing how its design
emerges from the refinement laws that we discuss in Section 4.

In terms of the SCJ API, a class implementing Safelet has to provide the methods setUp() and
tearDown(), which are called by the SCJ infrastructure to initialise and shutdown the safelet. The method
getSequencer() (see Figure 2) is called on the safelet object to obtain the mission sequencer of the applica-
tion, which defines the sequence of missions to execute (here it returns an instance of CDxMissionSequencer).
In addition, various methods are called by the infrastructure on the mission sequencer, mission, and handler
objects during execution of the safelet. Most notably, those shown in Figure 2 are getNextMission() to ob-

Laws of mission-based programming 5

tain the next mission to execute, initialize() to create the handlers of a mission, and handleAsyncEvent()
when a handler is released. As mentioned before, an SCJ program must provide implementations of these
methods and thereby define the structure of the application in terms of missions and handlers. The code for
the CDxMission class is included in Appendix G and illustrates the creation of handlers, SCJ events and
shared data, as well as methods to safely access the shared data. We note that although the missions and
handlers of a safelet are generally determined at run-time, we shall assume that they are a priori fixed. This
simplifies the model, and all SCJ programs we encountered so far adhere to it!

When a mission terminates, cleanup() is called on the mission object to perform application-specific
cleanup tasks. The entire safelet terminates when there are no more missions to execute, signalled in the
program by getNextMission() returning a null reference instead of a mission object.

Memory in SCJ is organised in scoped areas where each scope has a predefined life-span with respect
to the safelet’s life-cycle. Scoped memory eradicates the need for garbage collection while access rules on
scopes alleviate problems of dangling references [PFHV04]. First, we have immortal memory, which is never
released and thus may contain objects shared between missions. Further, each mission has its own mission
memory area that remains valid for the duration of mission execution and is used for shared data between
the handlers of a mission. Finally, handler methods execute in their own private scope when a handler is
released; that scope is for temporary objects and reclaimed each time handleAsyncEvent() terminates.

In summary, the safelet and the mission sequencer are control components that orchestrate the execution
of the missions and their handlers. The missions and the handlers, on the other hand, are the key components
that implement the behaviour of the program, and the main focus of our work here. SCJ events are moreover
relevant for control mechanisms that release handlers explicitly in the program.

2.2. The Circus family

Circus [CSW03] is a language for specification and refinement of state-rich reactive systems. It combines
notations from Z [WD96], CSP [Ros97], and Morgan’s refinement calculus [Mor94]. As in CSP, the key
elements of Circus models are processes that can interact with their environment through channels. Unlike
CSP, Circus processes encapsulate a state that can be modified by actions and data operations of the process.
Circus has a denotational semantics [OCW09] defined using Hoare and He’s Unifying Theories (UTP) [HJ98].

An example of a Circus process is given in Figure 3. It is the specification of the CDx program introduced
in the previous section. As already noted, the collision detector exhibits a cyclic behaviour in which each
cycle entails reading aircraft positions from a radar device, computing the number of pairs of aircraft at risk
of colliding, and outputting the result to a warning system. The name of the process is CDxSpec, and its
state is defined by the CDxState Z schema, introducing the components posns and motions of type Frame.
They are respectively used to record the positions and trajectories of the aircraft currently in view of the
radar. The type Frame is introduced as the set of partial and finite functions from aircraft identifiers to 3d
vectors: Frame =̂ Aircraft 7 7→ Vector . The state invariant dom posns = dom motions ensures that we record
a motion trajectory for each visible aircraft. We note that in general, the state components of a process can
either have Z (schema) types as in CDxSpec, or OhCircus [CSW05] class types as we use them later on.

Next, we have a sequence of local action definitions for the actions Init , RecordFrame, CalcCollisions
and CDxCycle. The actual behaviour of the process is specified by its main action after the ‘•’ at the bottom
and, typically, makes use of the local actions. (Here, Init to initialise the state and CDxCycle to execute a
single detection cycle.) Actions may either be specified using Z operation schemas, as in Init , RecordFrame
and CalcCollisions, or using a mixture of CSP constructs and guarded commands, as in CDxCycle. We
also admit timed actions from Circus Time [SCJS10], which is based on a discrete-time version of Timed
CSP [RR88, Ros11]. Our formal modelling notation is, therefore, a combination of Circus, OhCircus and
Circus Time. The UTP enables us to give a sound semantic foundation to this combination of languages.

First, the Init action of CDxSpec initialises the state components to empty functions. This is by con-
straining primed state components only which, by convention, refer to their values after execution of an oper-
ation (unprimed variables refer to their initial values). We note that CDxState ′, ∆CDxState and ΞCDxState
in the declaration parts of the schema actions are all different ways of introducing primed state components.
Whereas CDxState ′ does not include initial (unprimed) variables, ∆CDxState enables us to refer to both,
initial (unprimed) and final (primed) values of state components in the predicate of the operation schema.
And ΞCDxState moreover incorporates an additional implicit constraint that the state components must
not be changed by the operation. For example, RecordFrame alters the value of the state components posns

6 F. Zeyda and A. Cavalcanti

process CDxSpec =̂ begin

state CDxState
posns : Frame; motions : Frame (where Frame =̂ Aircraft 7 7→Vector)

dom posns = dom motions

Init
CDxState ′

posns ′ = ∅ ∧ motions ′ = ∅

RecordFrame
∆CDxState; frame? : Frame

posns ′ = frame?
motions ′ = (λ a : dom posns ′ • if a ∈ dom posns then (posns ′ a)−V (posns a) else ZeroV)

CalcCollisions
ΞCDxState; colls! : N

∃ collset : F (Aircraft ×Aircraft) | collset = CollSet(posns,motions) • colls! = (# collset) div 2

CDxCycle =̂


next frame ? frame @ t1−→

RecordFrame;
wait w : 0 . . FRAME PERIOD −OUT DL− t1 •
var colls : N • CalcCollisions;(

output collisions ! colls @ t2−→
wait FRAME PERIOD − (t1 + w + t2)

)
� OUT DL



� INP DL

• Init ; (µX • CDxCycle ; X)

end

Fig. 3. Process example: specification of a collision detector.

and motions, and CalcCollisions implicitly leaves them unchanged. The decorations ‘?’ and ‘!’ are, as usual
in Z, used to identify inputs and outputs of an operation; for instance, frame? is an input parameter of
RecordFrame and colls! is an output of CalcCollisions.

The second action, RecordFrame, records a frame of aircraft positions, provided by the parameter frame?,
in the state of the process. In addition, it records aircraft motions by calculating the differences of the current
and previous aircraft positions. Where aircraft first appear on the radar, their motion is set to zero. The
third action, CalcCollisions, as noted above, does not alter the state, but instead outputs the number of
aircraft that are at risk of colliding as the distance between their predicted trajectories falls below a certain
threshold. It uses an auxiliary function CollSet to compute a set of pairs containing all such aircraft; we
divide its size by 2 to account for symmetry of the collset relation. The definition of CollSet is omitted here
for brevity, but can be found in [ZCW+12].

Whereas Z operations are useful to specify computations, we require CSP actions to specify interactions
with the environment as well as timing properties. As mentioned above, we introduce CDxCycle to define the
behaviour of a single detection cycle. This action makes use of two communication channels, next frame (of
type Frame) to read the next frame of aircraft positions from the radar device, and output collisions (of
type N) to output the number of collisions to a warning system. Generally, a prefixed action c−→A waits for
communication on a channel c before proceeding with A. Special kinds of prefixes are inputs and outputs: we
have that c ! e −→ A outputs a value e on the channel c while c ? x −→ A(x) reads and binds it to a local
identifier x . The parallel composition (c ! e −→ A1) J ns1 | {| c |} | ns2 K (c ? x −→ A2(x)), explained in more
detail in Section 3, thus results in a value being communicated from the left to the right parallel action.

The timed prefix next frame ? frame @ t −→ A is an input communication that binds frame to the value
read, and moreover assigns to t the amount of time the communication was offered before it actually took
place. The Circus Time action (. . .� INP DL) imposes a deadline on the communication to occur, reflecting
the assumption that an environment makes the data available within INP DL time units at the beginning of

Laws of mission-based programming 7

each cycle. INP DL is a constant, whose declaration is omitted in Figure 3 and whose value is left unspecified.
Whereas A � t , in general, is a deadline on some observable interaction of A with the environment, we
also have an alternative construct A � t , which is a deadline on A to terminate within t time units. For
clarification, we point out that all Circus Time constructs take relative times as their arguments.

After reading the frame, we next invoke RecordFrame to store the frame in the state of the process and
calculate motion trajectories. This is followed by a nondeterministic delay: in general, wait w : t1 . . t2 delays
execution between t1 and t2 time units. Similar to the timed prefix, it binds the actual amount of time
waited to a local variable, here w . If we are not interested in that time, we can use the plain and shortened
form wait t1 . . t2, which has the same effect but does not introduce w . Nondeterministic waits are typically
used to define time budgets for an implementation to carry out some computational task, which here is the
calculation of collisions via the CalcCollisions operation. The time budget allocated to CalcCollisions is the
frame period (FRAME PERIOD) less the maximum time it may take to output the collisions (OUT DL),
and less the time t1 already taken to read the radar frame. Fundamentally, data operations in Circus Time
are always instantaneous, hence all timing behaviour has to be specified explicitly by deadlines and delays.

The number of detected collisions is stored in a local variable colls, declared by var colls : N • . . . ; it is
initialised by the call to CalcCollisions. Subsequently, collisions are output on the channel output collisions,
via a timed output prefix that again records the amount of time that the communication was offered prior
to being taken. The deadline ensures that it must, however, take place within OUT DL time units, which
is an imposition on the environment to accept the output in a set interval. In addition to nondeterminis-
tic delays, we may also have simple (deterministic) delays wait t where t defines the duration. The final
wait FRAME PERIOD− (t1 + w + t2) delays execution so that each cycle takes exactly FRAME PERIOD
time units. For feasibility of the model, we moreover assume that INP DL+OUT DL < FRAME PERIOD
holds. This is formalised as part of the omitted loose specification of those three constants.

The overall behaviour of the CDx is specified by the main action at the bottom, and consists of initialising
the state (action Init) and then using a recursive action to repetitively invoke the cyclic behaviour specified
by CDxCycle. The operator µX • F (X) denotes the weakest fixed point (with respect to refinement) of a
function F on actions. It is used to define recursive actions since uses of X in F correspond to recursive
calls. We observe that this process is entirely sequential and does not use any form of parallel composition.
We shall return to it in Section 5 to illustrate the application of the laws we present in Section 4 in order to
transform CDxSpec into the Circus model of an SCJ program design.

2.3. Refinement strategy for SCJ

We next describe the SCJ refinement strategy, which can be used for development or verification of existing
programs. It is a refinement procedure, organised in three steps, where each step is carried out by the
application of refinement laws, some of which are the object of the work we present in this paper. Figure 4
presents the major models used in that refinement strategy. We refer to them as anchors in accordance
with [CWW+11b], where the term ‘anchor’ was first introduced for the intermediate target models of our
refinement strategy. A detailed discussion of each anchor can additionally be found in [CZW+13].

A anchor The A (abstract) anchor entails the abstract specification. In this model, nothing is said about
objects yet, and the language that we use is a combination of Circus and Circus Time. Parallelism at this
level is typically used to structure and conjoin requirements. Usually, models are expressed as a parallel
composition of behavioural and timing requirements BReqs J . . . KTReqs. Such parallel compositions are later
collapsed in the E anchor. We note that, for simplicity, we do not make use of parallel composition at all in
the specification of the CDx in Figure 3.

O anchor The O (object-oriented) anchor changes the way data is represented by introducing objects to
record the abstract data in the A anchor; it, therefore, additionally uses constructs from OhCircus (classes,
method calls, and so on). The refinement that is carried out in the construction of this anchor is a data
refinement with added steps that introduce OhCircus class objects for schema types. For example, the abstract
type Frame in the process in Figure 3 is later refined in the O anchor into the OhCircus classes RawFrame
and StateTable that are used to record aircraft positions and motions in the SCJ program. This aspect of the
verification is not a concern for the laws we discuss in this paper. The report [ZCW+12], however, includes
a detailed derivation of this anchor for the CDx .

8 F. Zeyda and A. Cavalcanti

SCJ Library

A anchor O anchor E anchor S anchor

P model

Application Model

Framework Model

Library Model

SCJ Program

SCJ JVM

Translation

Semantics

Data refinement Execution Architecture

(Missions & Handlers)

Verification

Executes

Refinement Laws presented here

Abstract Specification SCJ Program ModelSCJ Program DesignClasses + Objects

Circus Time Circus Time + OhCircus Circus Time + OhCircus SCJCircus

Circus Time + OhCircus

SCJ-compliant JDK library

Fig. 4. Refinement strategy for verifying SCJ programs.

E anchor The E (execution) anchor introduces the SCJ program design in terms of missions and handlers.
It is this step of the refinement strategy that the laws we present in Section 4 cater for, and the following
Section 3 makes the structure of this anchor more precise. While an E anchor captures the essence of the
mission-based execution paradigm and architecture, it is not the accurate model of an SCJ program yet and
hence cannot be directly translated into code. It is the next and final anchor that yields such a model.

S anchor The S (SCJ) anchor factors the E anchor into two independent and concurrent parts: an applica-
tion model that corresponds closely to an SCJ program and a predefined and fixed framework model that
encapsulates the generic behaviour of the SCJ virtual machine to execute the program. The language of the
S anchor is SCJCircus; it introduces special constructs that resemble the main entities of an SCJ program,
namely the safelet, mission sequencer, missions, handlers, and SCJ events. There is a direct correspondence
between S anchor models and SCJ programs, so that a translation can be performed automatically. The se-
mantics of the S anchor is defined in terms of the P model, which gives meaning to all SCJCircus constructs
and also determines the fixed Circus model of the SCJ framework.

While the S anchor is close to a concrete program, the E anchor concisely encapsulates the design of a
program in terms of the missions and handlers. Our interest here are laws that can produce such designs.
The subsequent refinement to the S anchor is challenging in its own right, but not particularly interesting
in terms of the execution paradigm, which already emerges in the E anchor. From the sound construction of
each anchor, we also obtain that the S anchor is a sound refinement of the A anchor, although the refinement
techniques used vary across anchors. This is due to a unified semantic notion of refinement in our languages.

3. Circus model of an SCJ program design

Figure 5 presents another Circus process; it illustrates the general form of an E anchor, and, as already
said, the laws we discuss in the next section transform (sequential) specifications of safelets into processes
of precisely that shape. The name of the process here is SCJDesign, and its state is defined by the IMState
schema, introducing the components ci of type Ti . (Inv is an optional state invariant.)

The state components here are used to represent data objects in immortal memory. We then have lo-
cal action definitions for Setup, Missioni , Initi , Handlersi , Handlerj , HdlTermCtrl , MAreai , Cleanupi and
Teardown. The Setup and Teardown actions correspond directly to the setUp() and tearDown() methods

Laws of mission-based programming 9

process SCJDesign =̂ begin

state IMState == [c1 : T1; c2 : T2; . . . ; cn : Tn | Inv (c1, c2, . . . , cn)]

Setup =̂ [IMState ′ | PInit(c
′
1, c
′
2, . . . , c

′
n)] ; . . .

Missioni =̂




Initi ; Handlersi

JIMState | {| termReq , termMsn |} | ∅K
HdlTermCtrl

 \ {| termReq , termMsn |};

Cleanupi


JIMState | cssh | ∅ K MAreai

 \ cssh

Initi = . . .

Handlersi =̂



Handler1
Jns1 | cs1 ∪ {| termMsn |} | ns2 ∪ . . . ∪ nshK
Handler2
Jns2 | cs2 ∪ {| termMsn |} | ns3 ∪ . . . ∪ nshK
. . .

Jnsh−1 | csh−1 ∪ {| termMsn |} | nshK
Handlerh


\ cs1 ∪ cs2 ∪ . . . ∪ csh−1

where Handlerj may be either defined as

Handlerj =̂ (for an aperiodic handler)µX •


 e (j ,1) ? v −→A(v) @

e (j ,2) ? v −→A(v) @
. . .

 ; X

@ termMsn −→ skip


 or

Handlerj =̂ (for a periodic handler)(
µX •

(
(A �T 9 wait T) ; X
@ termMsn −→ skip

))

HdlTermCtrl =̂ termReq −→ (µX • termReq −→X @ termMsn −→ skip)

Cleanupi = . . .

MAreai = var v1 : T1; v2 : T2; . . . ; vm : Tm • . . .
Teardown =̂ . . .

• Setup ; Mission1 ; Mission2 ; . . . ; Missionm ; Teardown

end

Fig. 5. Target for the refinement that produces the E anchor.

of the class implementing the Safelet interface. Likewise, Initi and Cleanupi model the initialize() and
cleanup() methods of concrete subclasses of the Mission class.

The behaviour of the process, as defined by its main action at the bottom, is first to invoke Setup, which
initialises the state and thereby all variables in immortal memory. The ‘. . .’ in the Setup action indicates that
we may carry out other application-specific interactions here too, for instance, to reset or enable external
devices. We then have a sequence of mission executions whose models are specified by the actions Missioni .
Lastly, Teardown is called to perform custom tasks, if applicable, for shutting down the safelet.

The model of a mission is in essence the parallel composition of its handlers. This composition is captured
by the action Handlersi for some mission i . It uses a mission-specific set of Handlerj actions that provide the
model for individual event handlers. In Circus, the parallel composition of two actions A1 and A2 is written
as A1 J ns1 | cs | ns2 K A2, where cs is a set of interface channels that require synchronisation of the actions,
and ns1 and ns2 are disjoint sets of variables that each action is allowed to modify. (We note that parallel
composition is right-associative.) Hence, all handlers of a mission write to mutually disjoint parts of the
state space, determined by the variable sets nsi . This ensures that all Circus constructs (including parallel
composition) are monotonic with respect to refinement by way of enforcing non-interference in shared data
access. Monotonicity is crucial for piecewise development to ensure, for instance, that process actions can be
refined individually to obtain a refinement of the process as a whole. We note that interleaving (A1 9 A2)

10 F. Zeyda and A. Cavalcanti

is a special case of parallel composition where the synchronisation set cs is empty. Termination in parallel
compositions and interleavings only occurs when both parallel actions have terminated.

The complete model of a mission, as described by the actions Missioni , composes in parallel a further
action HdlTermCtrl to incorporate a control mechanism for termination of the mission via the channels
termReq (for a termination request raised by one of the handlers) and termMsn (to terminate the handlers).
Termination requests can thus be issued asynchronously, whereas termination takes place synchronously.
This corresponds to the protocol defined for the requestTermination() method of the Mission class in
the SCJ technology specification [The11]. The Initi and Cleanupi actions are sequenced to perform mission
initialisation and cleanup tasks. In addition, we have a further parallel action MAreai for each mission i .
It encapsulates data that resides in mission memory and, therefore, is shared between the handlers. The
shared data objects are introduced by way of local variables in MAreai ; they are read and modified by virtue
of communications on a designated set of channels cssh . In terms of SCJ program design, MAreai defines
protocols to access shared data safely so that race conditions cannot occur.

We observe that the channels termReq and termMsn, as well as those in cssh , are hidden using the A\ cs
construct. Hidden channels cannot be observed by the environment anymore, and synchronisation on them
takes place internally and as soon as possible. Hence, the only channels that are exposed by SCJDesign are
those that correspond to external events releasing one of the aperiodic handlers, as explained next.

The handler models, captured by the actions Handlerj , take different shapes for aperiodic and periodic
handlers. Both, however, have the form of a recursion µX • (A ; X) @ termMsn −→ skip that repetitively
executes some action A and at the same time enables termination via a synchronisation on termMsn. The
event termMsn is raised by the control action HdlTermCtrl subsequent to a termination request, which can
be issued by any of the handlers at any time through synchronising on termReq . The operator A1 @ A2 is
external choice: its resolution is done by the environment. For instance, in (c −→ skip) @ (d −→ skip),
both communications c and d are offered. This is in contrast with a nondeterministic (or internal) choice
A1 u A2, where the environment has no control over the outcome of the choice. For example, the action
(c −→ skip) u (d −→ skip) can arbitrarily choose to offer to the environment the communication c or d .

Termination of a handler is indeed enforced since, as explained above, termMsn is hidden in the Missioni

actions and takes place immediately when enabled. Aperiodic handlers are modelled by an external choice
that synchronises on a set of channels e (j ,1), e (j ,2), and so on, which correspond to external or SCJ events
bound to the handler j and, therefore, cause its release. Potentially, each event provides an input v ; the
handler’s handleAsyncEvent() method is specified by A(v).

For handlers with a period T , the repetitive behaviour is determined by the action (A � T) 9 wait T .
The A � T operator imposes a termination deadline T on A, and wait T corresponds to a delay of T time
units. The interleaving with wait T prevents the action from terminating before T time units have elapsed.
Hence, we obtain a cyclic behaviour that executes A once every T time units.

The time t that is used in actions such as A � t and wait t is specification time: it abstractly captures
requirements related to deadlines and delays. For instance, A � t and A � t express the requirement that A
terminates or interacts within t time units, respectively. When translating A into code, worst-case execution
time (WCET) analysis is performed to verify that all deadlines are met, and only then do we consider the
particular timing characteristics of a concrete hardware and execution environment. This is following Hayes’
approach to refining real-time systems [HU01]. The main advantage of Hayes’ technique is that, during
refinement, we can ignore the real-time characteristics of an execution environment. WCET analysis can be
subtle depending on the target architecture, but techniques for it have been well studied and are supported
by various tools [W+08]. This is hence not an issue we focus on in this article.

While Section 2.2 illustrated the starting point, in this section we have formally defined the target of
our refinement technique and made precise the shape of models that we consider to be SCJ designs. The
latter retain a deliberate degree of abstraction in not restricting the shape of the handler and memory area
actions. Next, we discuss the refinement laws that enable the transformation between those two models.

4. Refinement Laws

Refinement laws are generally of the form A v B , where A is the refined action, and B the refining action
that replaces A when the law is applied. We also have equivalence laws A ≡ B , which imply refinement in
both directions: A v B and B v A. We consider five aspects of the verification of a mission implementation.
Each aspect is dealt with by a collection of specialised refinement laws that we discuss in detail. The first

Laws of mission-based programming 11

aspect is the introduction of cycle timings by way of interleavings with wait T statements (Section 4.1). The
second aspect is decomposition of data operations to introduce functional models of handlers (Section 4.2).
The third is distribution of time budgets between the handlers (Section 4.3). The fourth is parallelisation
of handlers to match the architecture of Level 1 SCJ, as formalised by the process in Figure 5; this also
addresses the design of data flow and control mechanisms via communications (Section 4.4). And the fifth
is the encapsulation of shared data and mechanisms to access it safely (Section 4.5). The Circus refinement
laws we present address each of these verification issues in isolation and independently of each other.

Although some of the laws have already been given in [Cav97] and [CSW03], the majority of the laws here
are novel. This includes, in particular, the Circus Time laws in Section 4.1 (Figure 7) and Section 4.3 (Fig-
ure 11), and the sharing laws in Section 4.5. The parallelisation laws in Figure 10 and Figure 15 are to our
knowledge novel, too. Automation and proof issues are not discussed here, but separately in Sections 6 and 7.

4.1. Introduction of cycle timings

An important aspect of an SCJ program are its cycle timings. These are needed to model periodic handlers,
as well as any handlers that have a cyclic behaviour constrained by deadlines and time budgets. This is a
commonly found scenario in control applications.

In our approach, cycle timings are defined by recursions of the form µX • (A �Tp 9wait Tp) ; X , where
A does not reference X , and Tp is the period of the cycle. We target the transformation of recursions to
obtain recursions of this form. We observe that actions of this shape resemble the model for periodic handlers
discussed in Section 3, though the body A here does not yet correspond to the model of a single handler, but
instead abstractly specifies some cyclic activity, which may also be implemented by a mission, for example.

The refinement laws discussed in this section are applicable to actions that somehow define a cyclic
behaviour with a fixed cycle length. We characterise the general form of such actions as given below, where
the action A specifies the behaviour of a single cycle and does not include recursive calls to X . We use the
notation A(B)1 to denote an action A that includes a single occurrence of an action B .

µX • A(wait Tp − tA)1 ; X (1)

The laws presented in this section are useful when the purpose of the wait statement is to fill the gap between
the termination of A and the start of the next cycle. In this context, Tp is a constant that determines the
cycle length, and tA an expression that yields the elapsed execution time of A.

We note that not all actions of the above shape exhibit a cyclic behaviour with a fixed cycle length.
For instance, there may be execution paths in A that do not execute the wait Tp − tA statement. In some
cases, control flow analysis can establish if this is so, but generally it is not statically checkable. This is
not a problem, though, since subsequent law applications fail if the targeted recursion does not have an
intrinsic fixed cycle length. In that case, a design via a periodic handler is not appropriate and this step of
the refinement strategy does not apply. The following steps, however, remain useful.

Our first goal is to transform such actions to the form µX • (A 9 wait Tp) ; X . For the subsequent
introduction of the termination deadline on A, one possibility is the use of the simple law A v A � T for
any T , yielding an action µX • (A � Tp 9 wait Tp) ; X as described above. As explained in Section 3, the
termination deadline Tp introduces an assumption for the worst-case execution time of A that has to be
discharged when A is translated into program code, hence the law itself does not require a proviso. However,
an issue already pointed out in [HU01] is the possibility of introducing so-called impossible deadlines, which
cannot be met by any implementation on any machine due to contradictory model constraints on timing.
Such deadlines do not affect the soundness of the technique, since the translation into code always catches
them in stride, but preferably we would like to detect them earlier on in the verification.

We hence equip the law for deadline introduction with a supplementary proviso.

Law 1. A ≡ A � t provided TakesAtMost(A) ≤ t

The function TakesAtMost(A) yields an approximation (upper bound) for the specified execution time of A;
it is defined in Figure 6 for all relevant action constructs. We note that the proviso is not concerned with
the actual execution time of A on a concrete machine, which is, as before, an issue for code generation. We
use TakesAtMost(A) as a conservative oracle for the specified execution time of A.

We have, for instance, that data operations Op and skip, the action that terminates immediately without
altering the state, take no time, but stop, the action that deadlocks, takes an infinite amount of time

12 F. Zeyda and A. Cavalcanti

Def 1. Calculation of an upper bound for the execution time of an action.

TakesAtMost : Action→ (TIME ∪ {∞})
∀A,A1,A2 : Action; d , t1, t2 : TIME ; ns1,ns2 : NameSet ; cs : ChannelSet •
TakesAtMost(Op) = 0
TakesAtMost(skip) = 0
TakesAtMost(stop) = ∞
TakesAtMost(wait d) = d
TakesAtMost(wait t1 . . t2) = t2
TakesAtMost(c −→A) = ∞ where the prefix is not embedded in a synchronisation deadline.
TakesAtMost((c −→A) � d) = d + TakesAtMost(A)
TakesAtMost(A � d) = min(TakesAtMost(A), d)
TakesAtMost(A1 ; A2) = TakesAtMost(A1) + TakesAtMost(A2)
TakesAtMost(A1 @ A2) = max (TakesAtMost(A1),TakesAtMost(A2))
TakesAtMost(A1 uA2) = max (TakesAtMost(A1),TakesAtMost(A2))
TakesAtMost(A1 9 A2) = max (TakesAtMost(A1),TakesAtMost(A2))
TakesAtMost(var v : T • A) = TakesAtMost(A)
TakesAtMost(A \ cs) = TakesAtMost(A)
TakesAtMost(µX • F (X)) = n ∗ TakesAtMost(F (skip))
where n is an upper bound for the number of recursive calls before the action terminates.

Fig. 6. Definition of a function TakesAtMost to determine (upper) execution time bounds.

as it never terminates. A time budget wait t1 . . t2 models the fact that there is the possibility that the
execution of an implementation may take between t1 and t2 time units, hence it takes at most t2 time units.
Communications c −→ A are assumed to take infinite time as the environment is at liberty to postpone
them. This is unless they are embedded in a synchronisation deadline; in that case, the deadline determines
the execution time of the communication. For a termination deadline A � d , we know that the action
cannot take longer than d time units, but A may finish before that, hence the minimum construction, using
TakesAtMost(A) as an oracle for the execution time of A. The composition operators consider all possible
execution paths using sums and maxima. For a recursive action µX • F (X), we require a means either to infer
or predict the maximum number of recursive calls. The result of TakesAtMost(A) is an overapproximation,
since we, in a pessimistic approach, take maxima over branching execution paths.

Another refinement law we require is used to introduce an interleaving of wait Tp − tA with skip.

Law 2. A ≡ skip 9 A

To do so, the action A in Law 2 above is matched against the wait Tp − tA when applying the law.
After the application of Law 2, the introduced interleaving is embedded in A as identified in (1). We next

use a collection of laws to extract it from A. These laws are summarised in Figure 7 and need to be applied
exhaustively. They are special distribution laws for interleaving with a time delay.

We note that the laws cannot extract such interleavings from arbitrarily-shaped actions. For instance,
we cannot extract the wait T construct from an action c−→ (A 9 wait T) unless we have some information
about the synchronisation time on c. Otherwise, c −→ (A 9 wait T) can take however much time c takes in
addition to at least T time units, and in contrast, in (c−→A)9wait T the waiting time is not added to the
synchronisation time. So, just in cases where we have some knowledge about the synchronisation time (via
an enclosing deadline), we can relate these actions, as it is captured by Law 4 in Figure 7.

Where extraction of the wait is not possible, it may be the case that the abstract model cannot be refined
into a design that uses periodic handlers. Yet, the refinement may produce alternative designs that realise
periodic activities, for instance, by way of aperiodic handlers that make use of explicit mechanisms for time
control. So, this is not a limitation on refinement per se but rather on design.

Law 3 relies on the fact that data operations Op are instantaneous. A weaker version of the law may
be specified in which Op is replaced by any action that (as a proviso) does not consume time. Law 4 deals
with timed prefixes. Here, the prefix is a simple synchronisation, but the law can be easily generalised to
input and output prefixes on the channel c. We observe that the argument of the wait statement in Law 4
needs to have a particular shape to enable application of the law. Moreover, the prefix has to be embedded

Laws of mission-based programming 13

Law 3. Op ; (A 9 wait t) ≡ (Op ; A) 9 wait t

Law 4. (c @ t −→ (A(t) 9 wait T − t)) � d ≡ (c @ t −→A(t)) � d 9 wait T provided d ≤ T

Law 5. wait t : t1 . . t2 • (A(t) 9 wait T − t) ≡ (wait t : t1 . . t2 • A(t)) 9 wait T provided t2 ≤ T

Law 6. (A 9 wait t) � d ≡ (A � d) 9 wait t

Law 7. (A 9 wait t) � d ≡ (A � d) 9 wait t provided t ≤ d

Law 8. (A1 9 wait t) u (A2 9 wait t) ≡ (A1 uA2) 9 wait t

Law 9. (A1 9 wait t) @ (A2 9 wait t) ≡ (A1 @ A2) 9 wait t

Law 10. (A 9 wait t) \ cs ≡ (A \ cs) 9 wait t

Law 11. var v : T • (A 9 wait t) ≡ (var v : T • A) 9 wait t

Fig. 7. Laws for extraction of wait statements for cycle timings.

in a synchronisation deadline. Where this, initially, is not the case, transformation laws can be applied that
distribute synchronisation deadlines through action operators; they are in Figure 24 in Appendix A.

Law 5 extracts an interleaving with wait T − t from a time budget. Here, t is introduced by the budget
to refer to the actual time waited. The remaining Laws 6–10 are straightforward distribution laws. Notably,
Law 8 and Law 9 for internal and external choice require the delay to be the same in both actions. Again,
supplementary transformations may be applied to rewrite actions into a shape that enables the application
of these laws; the laws we discuss later on in Section 4.3 are useful for this purpose too.

To illustrate the use of the laws, we apply them to the recursive action given below.

µX • (c ? x @ t −→Op(x) ; wait 10− t) � 5 ; X

This action (sequentially) describes a cyclic behaviour that repeats every 10 time units. An input commu-
nication on a channel c occurs within the first 5 times units, and is followed by a data operation Op(x)
that makes use of the input. For the refinement, we first identify that wait 10− t fills the time gap between
cycles, and we apply Law 2 to introduce an interleaving with skip there.

≡ “introduction of interleaving with skip (Law 2)”

µX • (c ? x @ t −→Op(x) ; (skip 9 wait 10− t)) � 5 ; X

We proceed by applying the laws in Figure 7, as well as some trivial simplifications.

≡ “extraction of interleaving with a time delay from a sequence (Law 3)”

µX • (c ? x @ t −→ ((Op(x) ; skip) 9 wait 10− t)) � 5 ; X

≡ “simplification: A ; skip ≡ A”

µX • (c ? x @ t −→ (Op(x) 9 wait 10− t)) � 5 ; X

≡ “extraction of interleaving with a time delay from a prefix (Law 4)”

µX • (c ? x @ t −→Op(x) � 5 9 wait 10) ; X

The application of Law 4 above raises a proviso 5 ≤ 10, which is trivially discharged. We complete the
refinement by applying Law 1 to introduce the termination deadline on the body of the recursion.

≡ “simplification: c @ t −→A ≡ c −→A if A does not mention t”

µX • (c ? x −→Op(x) � 5 9 wait 10) ; X

≡ “introduction of termination deadline (Law 1)”

µX • ((c ? x −→Op(x) � 5) � 10 9 wait 10) ; X

This raises a proviso TakesAtMost(c ? x −→ Op(x) � 5) ≤ 10. Applying the definition of TakesAtMost in
Figure 6, we calculate that TakesAtMost(c ? x −→Op(x)� 5) = 5 + TakesAtMost(Op(x)) = 5 + 0 = 5 which
discharges the proviso. We next examine laws for decomposition of data operations.

14 F. Zeyda and A. Cavalcanti

Law 12. Let State == [x : T1; y : T2 | I1(x) ∧ I2(y)]. Then,

Op
∆ State

P(x , x ′, y) ∧ Q(y , y ′)
≡

Op1

∆ [x : T1 | I1(x)]
Ξ [y : T2 | I2(y)]

P(x , x ′, y)

#

Op2

Ξ [x : T1 | I1(x)]
∆ [y : T2 | I2(y)]

Q(y , y ′)

Fig. 8. Sequential decomposition of independent data operations.

Law 13. Let State == [x : T1; y : T2 | I1(x) ∧ I2(x , y)]. Then,

Op
∆ State

P(x , x ′, y) ∧ Q(x ′, y , y ′)
≡

Op1

∆ [x : T1 | I1(x)]
Ξ [y : T2]

I2(x , y) ∧
P(x , x ′, y)

#

Op2

Ξ [x : T1 | I1(x)]
∆ [y : T2]

I2(x ′, y ′) ∧
Q(x , y , y ′)

Fig. 9. Sequential decomposition of dependent data operations.

4.2. Decomposition of data operations

Here we target data operations that specify the behaviour of a mission. We note that we do not generally
assume that the specification of a mission involves a single data operation. For missions with simple interac-
tion patterns, such as reading an input, performing a computation, and writing an output, it is possible to
capture the functional aspects of the mission in a single data operation. In the general case, however, where
inputs and outputs may occur sporadically during mission execution, a functional mission model may be split
into more than one data operation. We assume, on the other hand, that all data operations specify mission
behaviour at a suitably high level of abstraction: this means they are centralised models of functionality, and
hence do not already encapsulate any form of computational or algorithmic design.

Our goal is to decompose data operations so that the (functional) specifications of individual handlers
emerge. We employ schema composition to model sequential execution of handlers, and schema conjunction
to model parallel execution of handlers. All refinement is carried out at the level of Z. The Z Refinement
Calculus (ZRC) [Cav97, CW98], whose laws are valid in Circus [OCW09], provides the foundation for our
laws here. The laws we present are, therefore, applicable and relevant for Z refinement in general.

Though [Cav97, Gro02], for example, present a collection of laws that address issues of decomposition
too, it is well understood that decomposition of data operations is overall difficult to automate. We propose
a number of specialised laws that cover a broad spectrum of mission designs. Each law encapsulates either
a sequential or parallel design that carries out a centralised computation by two or more handlers.

Laws for sequential decomposition of data operations We distinguish two fundamental cases. The first
one assumes no dependency between the data operations in terms of the computed results. The corresponding
law is presented in Figure 8. The State schema that specifies the state on which the operations act is
partitioned into two disjoint lists of variables, x and y , which are respectively constrained by the invariants
I1(x) and I2(y). The law decomposes Op into a sequence Op1 # Op2, where Op1 only modifies the components
in x , and Op2 only modifies those in y and does not depend on x . Application of this law entails transforming
the predicate of an operation schema into a form P(x , x ′, y) ∧ Q(y , y ′).

The second case is where there exists a data dependency between the operations, that is, the second
operation uses data that is computed by the first one. Here, we have the general law in Figure 9. The crucial
difference is in the shape of the predicate of the refined operation Op, where Q(x ′, y , y ′) refers to the final
value of x . The state invariant is decomposed as well, namely into a conjunct I1(x) that only considers
constraints on x , and another conjunct I2(x , y) that relates x and y .

Laws of mission-based programming 15

Law 14. Let State == [x : T1; r : T2 | I1(x) ∧ I2(x , r)]. Then,

Op
Ξ [x : T1 | I1(x)]
∆ [r : T2 | I2(x , r)]

∃ r1, . . . , rn : T2 | Q(r1, 1, x) ∧
Q(r2, 2, x) ∧
. . .
Q(rn ,n, x)

 •
r ′ = r1 op r2 op . . . op rn

≡


var r1, . . . , rn : T2 •
(∃ i? : Z • POp[r1/r !] ∧ i? = 1) ∧
(∃ i? : Z • POp[r2/r !] ∧ i? = 2) ∧
. . .
(∃ i? : Z • POp[rn/r !] ∧ i? = n);
MOp([[r1, . . . , rn]])



where

POp
Ξ [x : T1 | I1(x)]
r ! : T2

i? : 1 . . n

Q(r !, i?, x)

and

MOp
Ξ [x : T1 | I1(x)]
∆ [r : T2 | I2(x , r)]
rb? : bag T2

∃ s : seq T2 | rb? = items s • r ′ = fold op zero s

provided that op is an associative and commutative binary infix operator. The function fold is the standard
folding operation over a sequence of values and zero a zero for op, hence zero op x = x .

Fig. 10. Parallel decomposition of dependent data operations.

The decomposition and propagation of invariants proves to be especially important to facilitate further
decomposition and later algorithmic refinement. Invariant decomposition involves the transformation of
a single invariant I (x , y) into the conjunction I1(x) ∧ I2(x , y) so that all relevant knowledge about the
components in x is encoded by I1(x).

We have defined several variations of the previous two laws that moreover deal with inputs and outputs
of operations. We omit their discussion as they are straightforward generalisations. They can, however, be
found in [CZW+13]. Next, we take a look at parallel decomposition.

Laws for parallel decomposition of data operations As before, we have a pair of laws that consider the
case of independent and dependent data operations. Dependency here means that the operations cumulatively
participate in the computation of some result. For independent data operations, the law is similar to that
in Figure 8 with a small modification of the right-hand side: firstly, the sequence Op1 # Op2 is replaced by
a conjunction Op1 ∧ Op2, and secondly, we remove the Ξ schemas in the declaration part of Op1 and Op2.
The fact that both laws have the same left-hand side illustrates that there is often more than one possible
handler design, giving rise to different degrees of parallelisation.

A more interesting parallelisation law is presented in Figure 10. There, we have n handlers participating
in the computation of the result r and using the components x . The behaviour of the handlers is specified
by the predicate Q(ri , i , x) for 1 ≤ i ≤ n. Decomposition here yields a conjunction that includes a conjunct
POp for each handler, as well as a merge operation MOp that collects the partial results ri to compute the
overall result of the refined operation. Following the Z convention, the symbols ‘?’ and ‘!’ in the declaration
part of the schemas POp and MOp are used to identify input and output parameters. We use renamings
POp[ri/r !] in the right-hand side of the law to replace in POp the schema component r ! by the local variables
ri to which the partial results are assigned. The existential quantifications (∃ i? : Z • POp[. . .] ∧ i? = n) are
necessary to define the input i? of POp accordingly for a particular invocation of POp. The merge operation
is parametrised by a bag to enforce syntactically that the order in which the results are delivered is irrelevant.
The notation [[e1, e2, . . .]] is used to construct a bag for a given set of elements and items converts a sequence
into a bag. We moreover require that the binary operation used in the merge is associative and commutative;
the merge then basically consists of folding this operation over the list of partial results.

16 F. Zeyda and A. Cavalcanti

Law 15. wait 0 . . t ≡ wait 0 . . t1 ; wait 0 . . t2 provided t = t1 + t2
Law 16. wait 0 . . t1 v wait 0 . . t2 provided t2 ≤ t1
Law 17. Assuming Op is a data operation and P is a Circus process, we have
P(wait t1 . . t2 ; Op) ≡ P(Op ; wait t1 . . t2)

Fig. 11. Laws for decomposition, narrowing and distribution of time budgets.

4.3. Distribution of time budgets

Data operations in Circus are atomic and instantaneous. Hence, all timing behaviour has to be specified
explicitly using timed action operators. Time budgets specify the permissible amount of time that an imple-
mentation may take to execute a data operation; in Circus, they can be captured by nondeterministic wait
statements of the form wait 0 . . t that precede or follow a data operation. The laws in this section are hence
essentially about wait statements modelling time budgets, and, therefore, are useful in any context where
we want to reason about the timing of Z data operations in Circus Time.

Our general assumption is that the specification of mission behaviour may utilise wait statements in
arbitrary places. The laws in this section decompose and distribute those wait statements in order to attach
them to the data operations emerging from the decomposition in the previous step. Using these laws, we
can equip each decomposed data operation Op with an operation-specific time budget wait 0 . .OpTB , where
OpTB determines the amount of time the operation may take to execute in an SCJ program.

The refinement laws needed can be divided into two classes. In the first class, we have two key laws given
in Figure 11 for the decomposition and narrowing of time budgets. Law 15 replaces a single time budget by a
sequence of two time budgets, and Law 16 reduces nondeterminism to narrow a time budget. Decomposition
may be applied iteratively, so that a single budget can be split into several budgets.

The second class of laws addresses the issue of moving the decomposed time budgets to suitable locations
in order to attach them to their respective data operations. For this, we first transform all Z schema com-
positions (Op1 # Op2) into Circus action sequences (Op1 ; Op2). The distinction between these two operators
for composition is mostly technical. Intuitively, they both capture the notion of sequential execution, namely
of data operations via relational composition of schema predicates in Z, and actions within the UTP-based
semantics of Circus. The Z schema composition, however, implicitly constrains nondeterminism in the first
data operation to satisfy the precondition of the second data operation. This angelic behaviour is not present
in the sequential composition of actions. The standard law for rewriting schema compositions is in [Cav97].
The motivation for this transformation is to enable the subsequent steps, which can only be carried out at
the level of actions but not data operations, due to the latter not supporting timed constructs.

We further require the specialised distribution Law 17 in Figure 11. This law is in fact noncompositional: it
is a law about processes rather than actions. Hence, it only holds if the underlying action wait t1 . . t2 ; Op is
embedded in a process P . The justification for the law comes from the structure and semantics of processes
that prevents observation of the precise time at which an (internal) state change takes place. A proof of this
law may, for example, proceed by induction over the structure of processes.

We note that no distribution laws exist to move time budgets across prefixes, since such transformations
would not be correct as they alter the observable behaviour. Consider, for example, c −→ (wait t ; A).
Refining this action by wait t ; c −→ A would be unsound since the refining action refuses communication
on the channel c for t time units, whereas the refined action offers it immediately. Some general laws for
Circus refinement in [Oli05] are useful, too; namely to distribute time budgets into and out of internal and
external choice. Lastly, we have a fusion law for nondeterministic choice of time budgets:

Law 18. wait t1 . . t2 u wait t ′1 . . t ′2 ≡ wait min(t1, t
′
1) . .max(t2, t

′
2)

This law is useful as it enables the combination of two budgets, in addition to their decomposition.
The laws we present here are evidently complete for mission specifications in which each abstract data

operation is already associated with an (abstract) time budget. An overall caveat for the transformation is
that we cannot distribute time budgets between parallel data operations that are represented by Z schema
conjunctions. This is because the conjunction operator only applies to schemas and not to actions, and the
schema calculus, as already noted, does not support timing constructs such as wait t1 . .t2. Distribution of the
budgets of parallel operations can, therefore, only be done after the Circus parallel operators are introduced.

Laws of mission-based programming 17

Law 19. Let A1 and A2 be actions and c a fresh typeless channel. Then,

A1 ; A2 ≡ ((A1 ; c −→ skip) J wrt(A1) | {| c |} | wrt(A2) K (c −→A2)) \ {| c |}
provided wrt(A1) ∩ wrt(A2) = ∅ and wrt(A1) ∩ used(A2) = ∅

Fig. 12. Parallelisation of independent sequential data operations.

Law 20. Let A1 and A2 be actions and c a fresh channel. Then,
A1 ; A2 ≡ ((A1 ; c ! x −→ skip) J wrt(A1) | {| c |} | wrt(A2) K (c ? x −→A2)) \ {| c |}
provided wrt(A1) ∩ wrt(A2) = ∅ and wrt(A1) ∩ used(A2) = {x}

Fig. 13. Parallelisation of dependent sequential data operations.

The next section examines the refinement of sequential actions and schema conjunctions, as they emerge
from the laws discussed so far, into parallel actions.

4.4. Introduction of parallel handler actions

In Section 4.2, we have presented laws to parallelise data operations using schema conjunction, but considered
no laws to parallelise actions. The laws we discuss next can be used to parallelise mission actions. Like in
Section 4.2, we divide the necessary laws into two classes: those that account for sequential designs and those
that cater for parallel designs. In the sequel, we discuss both classes of laws.

Laws for sequential handler designs The parallelisations achieved by the first class of laws given in
Figures 12 and 13 are to align the model with the SCJ paradigm and architecture. In other words, they do
not parallelise the computations of the respective handlers, which are still performed in sequence here. This
reflects that sequential execution in an SCJ design needs to be explicitly enforced, while parallel execution (of
handlers) is the default. The first law assumes that there exists no data dependency between the sequential
handler actions A1 and A2, hence we have the proviso wrt(A1) ∩ used(A2) = ∅, which states that the state
components written by A1 are disjoint from those read by A2. A fresh typeless channel c is introduced to
control the order of execution of the parallel actions: they both have to synchronise on it, so that the right
parallel action c −→ A2 blocks until the left parallel action is ready to execute the prefix c −→ skip. The
channel c models an SCJ event that is bound to the second handler and fired by the first handler.

The second law (Figure 13) assumes that there is a data dependency between the sequential handlers.
In that case, the channel c is parametrised by the type of the data that is passed between A1 and A2.
Multiple data items can be passed by using product types, and, as mentioned earlier, OhCircus class types
are permissible. An interesting observation at this point is that the channel c fulfils a dual purpose: it controls
both the order of execution of handlers and makes available shared data. Further refinement is hence required
to untangle these concerns, namely by way of encapsulating the shared data independently of the control
aspect. This is a separate and independent design issue that we address in Section 4.5.

Laws for parallel handler designs A key law for transforming parallel data operations modelled by
conjunctions into parallel actions is presented in Figure 14. It applies to data operations Op1 and Op2 that
write to disjoint sets of variables, which is what we usually expect from a parallelism at that level.

Law 22 (Figure 15) applies to the result of the earlier parallelisation Law 14 for data operations, and,
beyond parallelisation into actions, also caters for further decomposition of time budgets. This shows in the
time budgets POpTB , RecTB and MergeTB replacing the global time budget OpTB . We hence have a proviso
POpTB + n ∗ RecTB + MergeTB ≤ OpTB that considers the time allowance of the parallelised operations

Law 21. Op1 ∧ Op2 ≡ Op1 J wrt(Op1) | ∅ | wrt(Op2) K Op2

provided wrt(Op1) ∩ wrt(Op2) = ∅

Fig. 14. Low-level law for refining parallel data operations into actions.

18 F. Zeyda and A. Cavalcanti

Law 22. wait 0 . .OpTB ; RHS of Law 14 v

 (var r1 : T • wait 0 . . POpTB ; (∃ i? : Z • POp[r1/r !] ∧ i? = 1) ; rec ! r1 −→ skip) ‖
(var r2 : T • wait 0 . . POpTB ; (∃ i? : Z • POp[r2/r !] ∧ i? = 2) ; rec ! r2 −→ skip) ‖
. . .
(var rn : T • wait 0 . . POpTB ; (∃ i? : Z • POp[rn/r !] ∧ i? = n) ; rec ! rn −→ skip)


J∅ | {| rec |} | {r}K
var r1, r2, . . . , rn : T • (rec ? x −→wait 0 . . RecTB ; r1 := x);

(rec ? x −→wait 0 . . RecTB ; r2 := x);
. . .
(rec ? x −→wait 0 . . RecTB ; rn := x)

 ;

wait 0 . .MergeTB ; MOp([[r1, r2, . . . , rn]])




provided POpTB + n ∗ RecTB + MergeTB ≤ OpTB

Fig. 15. High-level law for refining parallel data operations into actions.

to compute the partial results, the time to record them, and the time needed to merge them. The concrete
values of these freshly introduced budgets do not have to be specified when applying the law, and are not
an issue for the refinement since later schedulability analysis can determine them as part of translating the
S anchor into a program for a concrete SCJ execution platform with known timing characteristics.

A design artifact of Law 22 is that it introduces a fresh typed channel rec that is used to communicate
the partial results to a parallel operation that receives and merges them into the final result. From this, a
control action emerges (the right-hand parallel action of the law) that is later refined into shared data that
aggregates the partial results as they arrive. Its refinement is treated separately, in the next section, and
entails the design of the storage and processing of the partial results.

To conclude this aspect of the refinement, we observe that we can either tackle it by way of applying the
more general Law 21, or by using specialised high-level laws like Law 22 that encapsulate particular designs.

4.5. Encapsulation of shared data

The purpose of the laws we discuss last is to isolate control mechanisms and shared data access, so that all
control is modelled by designated, typeless channels, which may later be refined into models of SCJ events.
Similarly, designated channels are introduced and used for shared data access, namely to read and modify
shared data in a safe way, so that no data races occur; those channels model calls to synchronized methods.

The verification here relies on a set of highly specialised laws that encapsulate shared data into a separate
action MArea (see Section 3). We show that shared data may not only arise from input and output com-
munications as in Law 20, but also as a consequence of refining more sophisticated mechanisms of control,
such as barrier synchronisations, or the control fragment emerging from high-level parallelisation laws like
Law 22 above. We provide laws for each of those three cases and discuss them separately in the sequel.

Laws for channel communications The first law we discuss is Law 23 in Figure 16. It is a general channel
decomposition law that, throughout some action A, replaces all occurrences of input and output prefixes
involving a communication on a local channel c by a sequence of communications: two for control, namely
on fresh typeless channels csync and cpivot , and another one to read or write to a shared variable introduced
to hold the data communicated through c. Reading and writing of the shared variable is via a pair of new
channels cread and cwrite of the same type as c. To read from the shared variable, we use an input prefix
cread ? x −→A(x), and to write a value e to it, an output prefix cwrite ! e −→ skip.

To model the shared variable, the right recursive action of the parallel composition in Law 23 synchronises
on these channels while the block (var v : T • . . .) introduces a local variable v of type T to hold the shared
data. Another channel cterm is introduced to control termination of the recursive action, when it is no longer
needed. This ensures that the parallel composition in Law 23 altogether terminates when the action on the
left-hand side of the law does so (after synchronising on cterm).

Laws of mission-based programming 19

Law 23. Extraction of shared data communicated through a typed channel.

A \ {| c |} v


ChanDecomp(c)(A) \ {| csync , cpivot |} ; cterm −→ skip

Jwrt(A) | {| cread , cwrite , cterm |} | ∅K var v : T •

µX •

(
(cread ! v −→X) @
(cwrite ? x −→ v := x ; X) @
(cterm −→ skip)

) 

 \ {| cwrite , cread , cterm |}

provided {cread , cwrite , cterm , csync , cpivot} ∩ usedC(A) = ∅ and WWConfFree(c)(A)

Fig. 16. Sharing law for encapsulation of data passed through a channel.

Whereas communications on the channels cread and cwrite model nonblocking variable access, the purpose
of the channels csync and cpivot is to ensure synchroneity and the absence of race conditions. The law also
makes use of a function ChanDecomp(c)(A), parametrised by the channel c (to be decomposed) and an
action A to be transformed. The formal definition of this function is sketched below.

Def 2. Action transformation function for channel decomposition used by Law 23 (Figure 16).

ChanDecomp : Channel →Action→Action

∀A,A1,A2 : Action; c, d : Channel ; cs : ChannelSet ; e : Expr ; v : Var | c 6= d •
ChanDecomp(c)(c ! e −→A) = csync −→ skip ; cwrite ! e −→ cpivot −→ ChanDecomp(c)(A)
ChanDecomp(c)(c ? v −→A) = csync −→ skip ; cpivot −→ cread ? v −→ ChanDecomp(c)(A)
ChanDecomp(c)(d ! e −→A) = d ! e −→ ChanDecomp(c)(A) (for channels other than c)
ChanDecomp(c)(d ? v −→A) = d ? v −→ ChanDecomp(c)(A) (for channels other than c)
ChanDecomp(c)(A \ cs) = (if c ∈ cs then A else ChanDecomp(c)(A)) \ cs
ChanDecomp(c)(A1 J ns1 | cs | ns2 K A2) = ChanDecomp(c)(A1) J ns1 | csr | ns2 K ChanDecomp(c)(A2)
where csr =̂ if c ∈ cs then (cs − {| c |}) ∪ {| csync , cpivot |} else cs
ChanDecomp(c)(A1 @ A2) = ChanDecomp(c)(A1) @ ChanDecomp(c)(A2)
ChanDecomp(c)(A1 ; A2) = . . .

The only action constructs that are affected are input and output prefixes on c, channel hiding, and parallel
composition. The dots in the last line of the definition above indicate that ChanDecomp(c) distributes
through all other action operands, applying itself recursively. For communications on channels other than c,
the transformation carried out by ChanDecomp(c) simply distributes through the prefix. It also distributes
through parallel actions, while replacing c in the synchronisation sets of parallel actions if present, namely
by {| csync , cpivot |}. If c is captured by a hiding A \ cs such that c ∈ cs, the scope of the transformation ends.

Output prefixes c ! e −→ A are replaced by three synchronisations: the first one on csync initiates the
communication and thereby captures its control aspect, since both the transformed input and output prefix
synchronise on it initially. The second one, cwrite ! e, records the data that is communicated through the
channel in a shared variable. And the third one on cpivot is needed to avoid race conditions: it prevents
progress of the reading action(s) prior to the data having been written by the writing action. (We note that
the three communications could equivalently be specified in ChanDecomp as a single chain of prefixed actions
csync −→ cwrite ! e −→ cpivot −→ . . . because of the law (c −→ skip ; A) ≡ c −→A; choosing one or the other
form is a question of style.) Similarly, input prefixes c ? v −→A(v) are translated into a sequence where the
first action, as before, synchronises on csync , the second action waits for the acknowledgement cpivot raised
after the data has been written to the shared variable, and the third prefix performs a (nonblocking) read
access to the shared variable to obtain the data sent through the channel c in the original communication.
We note that this channel replacement principle is only valid if the replaced channel is hidden as indicated
in the left-hand side of Law 23, chiefly as we cannot alter the way that the environment interacts with A.

Typically, we have matching input and output prefixes in parallel actions: this means that for every
input prefix on a channel c, a communication that outputs on c is performed when the input is reached. To
illustrate the validity of the law under this assumption, we consider the simple communication below.

((c ! e −→A1) J wrt(A1) | cs | wrt(A2) K (c ? x −→A2(x))) \ {| c |}
where c ∈ cs and c 6∈usedC(A1)∪usedC(A2). Thus, we assume the channel c is not used by A1 and A2. The

20 F. Zeyda and A. Cavalcanti

left-hand parallel action outputs a value on c, defined by the expression e, and the right-hand parallel action
inputs that value. Hence, the above is equivalent to (A1 J wrt(A1) | cs | wrt(A2) K A2(e)) \ {| c |}. Formally,
this can be proved using step laws for parallel actions. (Since A1 and A2 do not use the channel c, this can
indeed be further simplified to A1 J wrt(A1) | cs − {| c |} | wrt(A2) K A2(e).)

Applying Law 23 to the above action, we obtain the following refined action.

 (csync −→ skip ; cwrite ! e −→ cpivot −→A1)

Jwrt(A1) | (cs − {| c |}) ∪ {| csync , cpivot |} | wrt(A2)K

(csync −→ skip ; cpivot −→ cread ? x −→A2(x))

\ {| csync , cpivot |} ; . . .

Jwrt(A1) ∪ wrt(A2) | {| cread , cwrite , cterm |} | ∅K var v : T •

µX •
(

(cread ! v −→X) @
(cwrite ? x −→ v := x ; X) @ . . .

) 


\ {| cwrite , cread , cterm |}

Intuitively, the prefix csync −→ skip in the left-hand parallel composition of actions captures the original
synchronisation on c, albeit without considering the communication of data (we note that csync is in the
interface of that composition). Data communication is achieved in a separate step, by using the channels
cread , cwrite and cpivot . Whereas cwrite writes the data communicated through c into the shared variable v ,
the channel cpivot inhibits progress of the right (inner) parallel action until the data has been written by the
left (inner) parallel action. In this way, cpivot avoids a potential race condition: it ensures that reads cannot
overtake writes of matching inputs and outputs. Because the channels cread and cwrite are hidden, and the
corresponding synchronisations are never blocked by the action that models the shared data, the original
behaviour of the data communication on the typed channel c is retained. Formally, this can be proved, as
before, using step laws. We can also easily convince ourselves that the law remains valid when multiple
actions simultaneously input on the channel c — in that case we have multiple communications on cread .

In the above example, we assumed that A1 and A2 do not use the channel c. But generally, it does
not invalidate the law if they do. To illustrate this, we consider two outputs on the channel c being per-
formed in sequence. We thus alter the previously refined action by replacing the left parallel action with
c ! e1 −→ c ! e2 −→A1 and the right parallel action with c ? x −→ c ? y −→A2(x , y). This yields the following
action fragment after application of the law (we omit the parallel composition with the shared data).

(csync −→ skip ; cwrite ! e1 −→ cpivot −→ (csync −→ skip ; cwrite ! e2 −→ cpivot −→A1))

Jwrt(A1) | (cs − {| c |}) ∪ {| csync , cpivot |} | wrt(A2)K

(csync −→ skip ; cpivot −→ cread ? x −→ (csync −→ skip ; cpivot −→ cread ? y −→A2(x , y)))

 \ . . .
We observe that the boxed csync event arising from the second output c ! e2 −→A1 can only occur once the
cread ? x −→ . . . communication (boxed) of the first input has taken place. This ensures that the value of the
shared variable is kept as long as there are pending reads. The initial synchronisation on csync in this way
ensures that subsequent writes cannot overtake pending reads. This example moreover elucidates the need
for two control channels as cpivot alone turns out to be insufficient to avoid this kind of race condition.

Another case arises when we have one (or more) inputs, but no matching output in the refined action. In
that case, either the initial or last value written to the shared variable is implicitly communicated. For the
validity of the law, this is again not a problem. The reason for this is that in an action (c ? x −→A(x))\{| c |},
we have a nondeterminism as to what value is input on the channel. So, we are at liberty to refine such a
prefix by communicating any value we like.

An issue arises though due to write conflicts. To illustrate this, we consider the action

A =̂ (c ! 1−→ skip J ∅ | {| c |} | ∅ K c ! 2−→ skip) \ {| c |} (2)

where c is a channel of type N. This action is equivalent to the deadlocked action stop since the output

Laws of mission-based programming 21

communications do not agree on the value output on the channel. Applying Law 23 here yields the action

 (csync −→ skip ; cwrite ! 1−→ cpivot −→ skip)

J∅ | {| csync , cpivot |} | ∅K

(csync −→ skip ; cwrite ! 2−→ cpivot −→ skip)

 \ {| csync , cpivot |} ; cterm −→ skip

J∅ | {| cread , cwrite , cterm |} | ∅K var v : N •

µX •

(
(cread ! v −→X) @
(cwrite ? x −→ v := x ; X) @
(cterm −→ skip

) 


\ {| . . . |}

which can be proved equivalent to skip by unfolding the recursion and collapsing the parallel actions using
step laws. Hence, we cannot apply the law to actions that contain conflicting outputs on the channel c.

To determine that such outputs potentially cannot arise, we make use of the predicate WWConfFree(c)(A)
in the proviso of the law. An extract of its definition is included in Figure 17. As specified by the first conjunct,
we can trivially infer the absence of write conflicts if A does not mention the channel c. This, for instance,
enables us to infer WWConfFree(c)(skip) and WWConfFree(c)(wait t), among other cases. For most other
operators (of which some are omitted for brevity), WWConfFree(c)(A) merely has to be shown for their
constituent action operands. The three notable exceptions to this are channel hiding, recursion and parallel
actions. We discuss them in more detail as they require special treatment.

To establish the absence of write conflicts in a channel hiding A \ cs, we consider two cases. If c ∈ cs,
there are no conflicts since the channel c is captured by the hiding. Otherwise, we have to show the absence
of write conflicts in the action A. For a recursion µX • F (X), we show the absence of write conflicts in F (X)
under the assumption that there are no write conflicts in X .

For actions involving parallel compositions, we require further defining rules (not included in Figure 17)
in order to evaluate WWConfFree(c)(A). They are summarised below.

Def 3. Definition of WWConfFree for actions involving parallel composition.

WWConfFree : Channel →Action→ B

. . . c ∈ cs ⇒
WWConfFree(c)(A1 ‖ A2 ‖ . . . ‖ An)⇔ (∀ i , j : 1 . . n | i 6= j •WWConfFree(c)(Ai ‖ Aj))
WWConfFree(c)((c ! e −→A1 ; A2) J ns1 | cs | ns2 K (c ? x −→A3 ; A4))⇔

WWConfFree(c)((A1 ; A2) J ns1 | cs | ns2 K (A3 ; A4))
WWConfFree(c)((c ! e −→A1 ; A2) J ns1 | cs | ns2 K (c ! f −→A3 ; A4))⇔ false
WWConfFree(c)((A1 ; A2) J ns1 | cs | ns2 K A3)⇔

WWConfFree(c)(A2 J ns1 | cs | ns2 K A3) provided c 6∈ usedC(A1)
WWConfFree(c)((A1 @ A2) J ns1 | cs | ns2 K A3)⇔

WWConfFree(c)(A1 J ns1 | cs | ns2 K A3) ∧WWConfFree(c)(A2 J ns1 | cs | ns2 K A3)
. . .

The first conjunct deals with multiple parallel actions. To establish absence of write conflicts there, it is
enough to show that pairwise parallel actions are free of such conflicts. The remaining cases address parallel
compositions where the parallel actions have various shapes. Notable are the laws for prefixes: they are step
deductions that allow us to remove a prefix from both sides of a parallel composition if there is no clash
between two output communications (if there is, the result is false as we would expect). For the remaining
operators, like external choice above, WWConfFree(c)((A1opA2)J . . .KA3) distributes through the operator.

To illustrate the use of WWConfFree, we apply it to the action used in the counterexample above (2).
Using the definition of WWConfFree(c), we obtain that

WWConfFree(c)(c ! 1−→ skip J ∅ | {| c |} | ∅ K c ! 2−→ skip)⇔ false

which violates the proviso of the sharing law.
The pattern that is used to model the shared variable in the right-hand side of Law 23 via a local variable

and recursion is well-known from languages like CSP. In an SCJ program, it is implemented using plain get
and set methods, and calls to those methods correspond to synchronisations on the read and write channels.

22 F. Zeyda and A. Cavalcanti

Def 4. The predicate WWConfFree is used to infer the absence of write conflicts.

WWConfFree : Channel →Action→ B

∀A,A1,A2 : Action; c, d : Channel ; cs : ChannelSet ; e, f : Expr ; x : Var •
c 6∈ usedC(A)⇒WWConfFree(c)(A)
WWConfFree(c)(d [! e] [? x]−→A)⇔WWConfFree(c)(A)
WWConfFree(c)(A1 ; A2)⇔WWConfFree(c)(A1) ∧WWConfFree(c)(A2)
WWConfFree(c)(A1 @ A2)⇔WWConfFree(c)(A1) ∧WWConfFree(c)(A2)
WWConfFree(c)(A1 uA2)⇔WWConfFree(c)(A1) ∧WWConfFree(c)(A2)
WWConfFree(c)(A1 9 A2)⇔WWConfFree(c)(A1) ∧WWConfFree(c)(A2)
WWConfFree(c)(A \ cs)⇔ (c 6∈ cs ⇒WWConfFree(c)(A))
WWConfFree(c)(µX • F (X))⇔ (WWConfFree(c)(X)⇒WWConfFree(c)(F (X)))
. . .

Fig. 17. Extract of the definition of WWConfFree used in Law 23.

As already explained, we also provide a mechanism that caters for termination of this action after termination
of A, using the channel cterm ; otherwise, the parallel action would deadlock even when A terminates.

We conclude by pointing out that Law 23 is very general and its application only requires the developer
to identify typed channels for which shared data components have to be introduced. The parallel action that
arises in the right-hand of the law directly contributes to the MArea action in Figure 5, which encapsulates
all shared data of an SCJ design. In cases where we can show that the action A never terminates, a simpler
version of the law can be used that does not require the channel cterm .

Synchronisation barrier refinement As mentioned earlier on, shared data can also arise from refining
control mechanisms. A common control mechanism is a synchronisation barrier: a number of processes
suspend execution until all processes have reached the barrier. At an abstract level, this is typically modelled
by multiple actions synchronising on a channel cbsync , which models the barrier. To illustrate the refinement
of this control mechanism, we consider actions of the following shape.

Abarrier =̂



(µX • cstart −→A1 ; cbsync −→ skip ; X)

Jns1 | cs1 | ns2 ∪ . . . ∪ nsnK

(µX • cstart −→A2 ; cbsync −→ skip ; X)

Jns2 | cs2 | ns3 ∪ . . .nsnK

. . .

Jnsn−1 | csn−1 | nsnK

(µX • cstart −→An ; cbsync −→ skip ; X)


(3)

where {| cstart , cbsync |} ⊆ csi and {| cstart , cbsync |} ∩ usedC (Ai) = ∅ for 1 ≤ i ≤ n so that all parallel actions
are recursions whose bodies start synchronously as determined by the channel cstart and end synchronously
as ensured by the synchronisation on the channel cbsync . The channel cstart models an SCJ event that is
bound to several handlers (modelled by the parallel actions) and concurrently releases them. In each handler
action, Ai defines the behaviour before the barrier is reached. We assume that the Ai do not mention cstart

and cbsync , so that cbsync is used only once per cycle. Moreover, the synchronisation on cbsync has to be the
last action before the handlers repeat their cycle (recurse into X).

It is important to note that in the context where Abarrier occurs, other (handler) actions may synchronise
on the channel cbsync too, without being conceptually part of the barrier. For instance, in another handler
action, cbsync may be used to trigger the release of that handler, and, in that context, we think of it rather
as modelling an SCJ event that is fired in response to the barrier having been reached by all actions. The
problem of deciding which actions are part of a barrier in general requires human insight. The objective
of the refinement here is thus not to remove cbsync from the model, but to eradicate it from the handler
parallelism that uses it as a barrier. This is done by replacing it with a mechanism that does not require
synchronisation between the handler actions, and is realised by shared data.

Laws of mission-based programming 23

Law 24. Design law for a synchronisation barrier.

Abarrier (3) v



(µX • cstart −→A1 ; cnotify ! 1−→ skip ; X)

Jns1 | cs1 − {| cbsync |} | ns2 ∪ . . . ∪ nsnK

(µX • cstart −→A2 ; cnotify ! 2−→ skip ; X)

Jns2 | cs2 − {| cbsync |} | ns3 ∪ . . . ∪ nsnK

. . .

Jnsn−1 | csn−1 − {| cbsync |} | nsnK

(µX • cstart −→An ; cnotify ! n −→ skip ; X)


Jns1 ∪ . . . ∪ nsn | {| cstart , cnotify |} | ∅K



var active : P (1 . . n) •

µX •


(creset −→ active := 1 . . n ; X)

@ cnotify ? x −→

 active := active − {x};
if active = ∅−→ cbsync −→ skip
8¬ active = ∅−→ skip
fi

 ; X






J∅ | {| creset , cstart |} | ∅ K (µX • creset −→ cstart −→X)




\ {| creset , cnotify |}

provided {| cstart , cbsync |} ⊆ csi ∧ {| cstart , cbsync |} ∩ usedC(Ai) = ∅ for 1 ≤ i ≤ n

and creset and cnotify are fresh channels where creset is typeless and cnotify is of type N.

Fig. 18. Design law for a synchronisation barrier.

Law 24 in Figure 18 replaces the synchronisations on cbsync by outputs of the form cnotify ! i −→ skip
where i identifies the handler. The cnotify channel of type N is introduced to signal that a handler has reached
the barrier. The purpose of the shared data here is to record the handlers i that have not reached the barrier
yet; once all handlers have reached it, a communication on cbsync is raised. The model for the shared data
fragment that becomes part of MArea is recaptured below from Law 24.

var active : P (1 . . n) •

µX •


(creset −→ active := 1 . . n ; X)

@ cnotify ? x −→

 active := active − {x};
if active = ∅−→ cbsync −→ skip
8¬ active = ∅−→ skip
fi

 ; X






The shared variable active holds a set of handler identifiers and determines the handlers that have not
reached the barrier yet. A synchronisation on creset establishes its initial value 1 . . n, which corresponds to
the set {1, 2, . . . ,n}. Synchronisation on notify ? x causes x to be removed from active, and when there are
no more elements in active, the event cbsync is raised. In an SCJ program, creset and cnotify are typically
implemented by synchronized methods, reflecting their atomic execution in the model. The shared variable
active, of abstract type P(N), has to be further refined into a data structure that is directly available in SCJ
like a List or an array. The latter is an independent verification issue that requires further design laws.

A salient aspect of Law 24 is the parallel control fragment µX • creset −→ cstart −→ X . Its purpose is
to raise the creset event in order to initialise the shared data. In an SCJ program design, there are usually
multiple possibilities where this initialisation could be performed. We require the developer to eliminate this

24 F. Zeyda and A. Cavalcanti

parallel action in a separate step. This is achieved by collapsing the action with a handler that is identified
to perform the initialisation, using parallel step laws, and gives rise to further design decisions.

In summary, Law 24 replaces the common synchronisation on cbsync between the handlers by interleaved
synchronisations on cnotify between individual handler actions and the shared data model. Although the
handlers do not block when raising their cnotify event, correctness of the refinement is guaranteed by lock-
step progress due to the initial synchronisation on cstart . The channel cbsync fulfils a different purpose after
the refinement: it is turned into the model of an SCJ event that, in the underlying SCJ program, is fired by
the method that implements notify and controls those handler actions that synchronise on cbsync , but are
conceptually not part of the barrier. The barrier sharing law is clearly more specialised than the previous
sharing Law 23. It, nevertheless, retains abstraction in two ways: firstly, in terms of the representation of
the shared data, and secondly, as to where the shared data is initialised.

Refinement of control actions The last class of laws we discuss refine the way that shared data is realised
rather than introducing it from scratch. For instance, Law 22 introduces shared data via a control action

Acontrol =̂


var r1, r2, . . . , rn : T • (rec ? x −→wait 0 . . RecTB ; r1 := x);

(rec ? x −→wait 0 . . RecTB ; r2 := x);
. . .
(rec ? x −→wait 0 . . RecTB ; rn := x)

 ;

wait 0 . .MergeTB ; MOp([[r1, r2, . . . , rn]])


that constitutes the right-hand action of the resulting parallel composition. Above, we have a local variable
ri for each partial result communicated by a parallel handler action, and the computation of r via MOp takes
place only when all ri have been received. Law 25 permits the refinement of this action into an action that
only uses a single variable r , namely to assimilate the results communicated by the concurrent computations
as they arrive. The refined shared data design may, for instance, be preferable in situations where limited
resources for storage are available. It is conceivable that control actions of a similar shape as above arise
from other parallelisation laws too; hence Law 25 is likely to be useful beyond earlier application of Law 22.

For Law 25 to be applicable, the control fragment Acontrol has to be embedded into an action

var r : T • (µX • start −→ (wait 0 . . InitTB ; InitOp ; Acontrol ; out ! r −→ skip) ; lockstep −→X)

We first have a local block (var r : T • . . .) that introduces the variable r of type T that holds the result of
the merge operation. The body of the recursion synchronises on a channel start and then performs a data
operation to initialise the local variable r . This is followed by execution of the control action Acontrol which
updates the value of r using MOp, and a finalising synchronisation on lockstep. The channel start is needed
to determine when Acontrol should start, and lockstep signals termination of Acontrol after which the recursive
behaviour repeats and thus Acontrol may be used again.

An important proviso of Law 25 is that the merge operation MOp must distribute through bag union,
namely MOp(b1]b2) = MOp(b1); MOp(b2). This establishes that the combination of partial results, which is
done in one shot by the call MOp([[r1, r2, . . . , rn]]) in Acontrol , can be decomposed into multiple incremental
merge operations MOp([[ri]]). Each incremental merge operation takes into account the current value of r ,
whilst combining it with the next partial result ri . The action modelling the shared data in the right-hand
side of Law 25 (left parallel action) here supports three interactions: init to initialise the value of the shared
data, output rec ? x to record a partial result, and input out ? y to read the aggregated result so far.

We notice that the law introduces a control fragment of its own, which is recaptured below. µX • start −→ init −→

 (rec ? y −→ skip) 9
(rec ? y −→ skip) 9
. . .

(rec ? y −→ skip)

 ; out ? y −→ skip ; lockstep −→X


The purpose of this control action is to determine the order of interactions with the shared data. This is
essential to ensure the validity of the law because the parallel action that models the shared data per se does
not constrain that order, whereas the refined action clearly does. Essentially, we have a communication on
init , followed by n communications on rec, and a communication on out and lockstep to finalise the cycle.
Here, we are not concerned with the actual values communicated on the channels rec and out as y is not
used. We recall that the interleaving does not cause synchronisation between the rec ? y−→skip actions and

Laws of mission-based programming 25

Law 25. Design law for refining shared data arising during parallelisation.

var r : T •

µX • start −→



wait 0 . . InitTB ; InitOp;
var r1, r2, . . . , rn : T • (rec ? x −→wait 0 . . RecTB ; r1 := x);

(rec ? x −→wait 0 . . RecTB ; r2 := x);
. . .

(rec ? x −→wait 0 . . RecTB ; rn := x)

 ;

wait 0 . .MergeTB ; MOp([[r1, r2, . . . , rn]]);
out ! r −→ skip


; lockstep −→X


v




var r : T •

µX •


(init −→wait 0 . . InitTB ; InitOp ; X)

@
(rec ? x −→wait 0 . . RecTB ; MOp([[x]]) ; X)

@
(out ! r −→X)




J∅ | {| init , rec, out |} | ∅K µX • start −→ init −→

 (rec ? y −→ skip) 9
(rec ? y −→ skip) 9
. . .

(rec ? y −→ skip)

 ; out ? y −→ skip ; lockstep −→X




\ {| init |}

provided InitOp and MOp are data operations and

wrt(InitOp) = wrt(MOp) = {r} and MOp(b1] b2) = MOp(b1) ; MOp(b2)

Fig. 19. Design law for a control action.

terminates only when the environment has communicated n times on rec. Further refinement is needed to
eliminate this control action by decomposing and distributing it into the handlers.

The refinement of shared data is perhaps the most novel and interesting part of the verification laws.
Our experience shows that we can define specialised laws that deal with common design patterns, such
as inputs and outputs, barrier synchronisations, and control fragments. The main challenges here are to
identify the channels or actions that ought to be refined using a particular sharing law, and to eliminate
emerging control fragments. The latter may be achieved by further laws (or tactics) that decompose and
distribute those control fragments into handlers, subject to guidance by the developer. We next look at the
CDx example in order to demonstrate the refinement for a realistic and non-trivial SCJ program.

5. Refinement of the CDx

To illustrate the refinement laws, we consider the refinement of the CDx specification in Figure 3. This
corresponds to an O anchor. The structure of this section mirrors that of Section 4, discussing the application
of the laws for each of the five verification aspects in a separate section. A more detailed account of the
refinement, including all elementary steps, can be found in [ZCW+12] and the complete SCJ program code
is available on http://www.cs.york.ac.uk/circus/hijac/cdx.html for inspection.

5.1. Introduction of cycle timings

Our starting point is the recursion in the main action of the process CDxSpec in Figure 3. It is recaptured
below after applying the copy rule to eliminate the reference to CDxCycle. (The copy rule for actions permits

http://www.cs.york.ac.uk/circus/hijac/cdx.html

26 F. Zeyda and A. Cavalcanti

us to replace the invocation of a local action by its definition within a process.)

µX •


next frame ? frame @ t1−→

RecordFrame;
wait w : 0 . . FRAME PERIOD −OUT DL− t1 •
var colls : N • CalcCollisions;(

output collisions ! colls @ t2−→
wait FRAME PERIOD − (t1 + w + t2)

)
� OUT DL



� INP DL ; X

We begin by introducing cycle timings into the model. For that, we first identify that in the above recursion,
wait FRAME PERIOD − (t1 + w + t2) fills the time gap between cycles. We then apply Law 2 in order
to introduce an interleaving with skip there. The extraction laws we require to move the wait action
to the outside of the body of the recursion are, specifically, Law 3 – 5 and Law 11. The application of
Law 3 and Law 4 raises proof obligations. For instance, Law 4 generates a proof obligation to show that
OUT DL ≤ FRAME PERIOD − (t1 + w). We can prove it by making use of local assumptions about the
value of w . Generally, for actions wait w : t1 . . t2 • A(w), a valid inference is to introduce an assumption
t1 ≤ w ≤ t2 into A (a similar law exists for timed prefixes embedded in a synchronisation deadline). In
the above case, the local assumption implies that w ≤ FRAME PERIOD − OUT DL − t1, which can be
rewritten into the proviso using elementary laws of arithmetic.

The result of the interleaving extraction is given by the action below.

µX •




next frame ? frame @ t1−→ RecordFrame;

wait 0 . . FRAME PERIOD −OUT DL− t1;
var colls : N • CalcCollisions;
(output collisions ! colls −→ skip) � OUT DL


� INP DL

9 wait FRAME PERIOD

 ; X

At this point, we apply a further refinement to narrow the time budget specified by the nondeterministic
delay wait 0 . .FRAME PERIOD−OUT DL− t1 • . . . using Law 16. Above, this budget, in theory, enables
us to make use of additional time gained when an environment synchronises on next frame sooner than the
deadline INP DL; more precisely, we then gain INP DL− t1 time units. In practice, however, we cannot rely
on the environment acting in a benevolent manner, hence that additional time is difficult (if not impossible)
to utilise by an implementation. The motivation for narrowing the time budget is to remove the reference to
t1 so that we can subsequently remove the timed prefix on next frame. We thus refine the budget into

wait 0 . . FRAME PERIOD −OUT DL− INP DL

whereby we ignore the value of t1. Finally, we also use the auxiliary distribution laws in Figure 24 (Ap-
pendix A) to localise the outer synchronisation deadline (. . .) � INP DL to the relevant prefix. We conclude
the introduction of cycle timings by introducing a termination deadline (. . .) � FRAME PERIOD on the
body of the recursion. Below we have the action that results from the aforementioned refinement steps.

µX •


 (next frame ? frame −→ RecordFrame) � INP DL;

wait 0 . . FRAME PERIOD −OUT DL− INP DL;
var colls : N • CalcCollisions;
(output collisions ! colls −→ skip) � OUT DL

 � FRAME PERIOD

9 wait FRAME PERIOD

 ; X

The introduction of the termination deadline raises a proof obligation TakesAtMost(B) ≤ FRAME PERIOD
where B is the interleaving above in the body of the recursion. This is to show that B does not overrun the
cycle time. Appendix B contains the calculation proving that TakesAtMost(B) = FRAME PERIOD .

Laws of mission-based programming 27

RecordFrame
∆ [currentFrame : RawFrame; state : StateTable; work : Partition; collisions : Z]
frame? : Frame

∃ posns, posns ′,motions,motions ′ : Frame |
dom posns = dom motions ∧ dom posns ′ = dom motions ′ •
∃ voxel map : HashMap[Vector2d ,List [Motion]] | voxel map 6= null •

posns ′ = frame? ∧
motions ′ = (λ a : dom posns ′ • if a ∈ dom posns then (posns ′ a)−V (posns a) else ZeroV) ∧
posns = F (currentFrame) ∧ motions = G(currentFrame, state) ∧
posns ′ = F (currentFrame ′) ∧ motions ′ = G(currentFrame ′, state ′) ∧
∀ a1, a2 : Aircraft | {a1, a2} ⊆ dom posns ′ •
(a1, a2) ∈ CollSet(posns ′,motions ′)⇒(∃ l : List [Motion] | l ∈ voxel map.values().elems() •

MkMotion(a1, posns ′ a1 −V motions ′ a1, posns ′ a1) ∈ l .elems() ∧
MkMotion(a2, posns ′ a2 −V motions ′ a2, posns ′ a2) ∈ l .elems()

)
 ∧

voxel map.values().elems() =
⋃
{i : 1 . . 4 • work ′.getDetectorWork(i).elems()} ∧

∃ collset : F (Aircraft ×Aircraft) | collset = CollSet(posns ′,motions ′) •
(# collset = 0 ∧ collisions ′ = 0) ∨ (# collset > 0 ∧ collisions ′ ≥ (# collset) div 2)


Fig. 20. Refined Z operation specifying the cyclic mission behaviour of the CDx .

5.2. Decomposition of data operations

The next aspect of the verification consists of data refinement. This alters the state and data operations of
the CDxSpec process. The laws for data refinement in Z [WD96, Cav97] and Circus [CSW03, Oli05] have been
explored elsewhere and thus are not subject of this paper; we hence only present the relevant results. That
is, in particular, the refined RecordFrame operation, given in Figure 20. A detailed account of the refinement
steps is discussed in [ZCW+12], and the article [CZW+13] describes the overall strategy that is used here.
We emphasise that data refinement is inherently a non-trivial activity that, in many cases, requires human
ingenuity. It is a classical problem that has been extensively studied.

We observe that in Figure 20, the state components posns and motions of the abstract CDx specification
CDxSpec have been replaced by the concrete data objects currentFrame and state, which are, respectively, in-
stances of the OhCircus classes RawFrame and StateTable. Their class definitions can be found in [ZCW+12].
Whereas currentFrame stores the current frame of aircraft positions by virtue of arrays, state records their
previous positions in a Java Map; from this, it is possible to reconstruct the motion information. We note that
the functions F () and G(,) are abstraction functions mapping concrete to abstract states. For instance,
given an object currentFrame, the function F calculates the corresponding value of posns based on the fields
of the underlying RawFrame class that encodes aircraft positions by multiple arrays of type float . We omit
the definitions of F and G for brevity, but likewise they can be found in the report [ZCW+12].

A further state component work of class type Partition (defined in Appendix C) is introduced: it records
partitions of the computational work for collision detection, calculated by a voxel-based reduction algorithm.
The local variable voxel map models a Java HashMap that maps voxels — volumetric elements that subdivide
the 3d space — to Lists of aircraft in that voxel. Finally, the collision component records the result of the
detection. Hence, after the data refinement, RecordFrame not only records aircraft positions, but, also detects
collisions, so that the refined CalcCollisions operation, in contrast to the abstract one in Figure 3, merely
has to output the value of the collisions component.

We start by decomposing RecordFrame into sequences and conjunctions of data operations. This is done
by applying Law 13 three times, followed by an application of Law 14. The refinement here is not trivial,
since the RecordFrame operation contains further existentially-quantified variables that either correspond
to abstract model variables (posns and motions) arising from earlier data refinement, or local variables like
voxel map (here capturing the result of the voxel-hashing algorithm). These quantifiers either have to be
eliminated using the one-point rule, or localised to predicates corresponding to single handlers. In particular,

28 F. Zeyda and A. Cavalcanti

voxel map can be localised to the inner predicate that models the handler for voxel-hashing.

∃ voxel map : HashMap[Vector2d ,List [Motion]] | voxel map 6= null •


∀ a1, a2 : Aircraft | {a1, a2} ⊆ dom posns ′ •
(a1, a2) ∈ CollSet(posns ′,motions ′)⇒(∃ l : List [Motion] | l ∈ voxel map.values().elems() •

MkMotion(a1, posns ′ a1 −V motions ′ a1, posns ′ a1) ∈ l .elems() ∧
MkMotion(a2, posns ′ a2 −V motions ′ a2, posns ′ a2) ∈ l .elems()

)
 ∧

voxel map.values().elems() =
⋃
{i : 1 . . 4 • work ′.getDetectorWork(i).elems()}


Another issue that needs to be addressed is that the flow of data is not always explicit in abstract oper-
ations specifying missions. In our SCJ program (see Figure 2), for example, data is transmitted between
the ReducerHandler (captured by the predicate above) that carries out the voxel-hashing, and the detector
handlers that perform the detection. That is, the reducer handler writes to the component work , which
records information of how the computational work is split, and this variable is also read by the detector
handlers. In the data-refined RecordFrame operation in Figure 20, the last existential conjunct

∃ collset : F(Aircraft ×Aircraft) | collset = CollSet(posns ′,motions ′) •
(# collset = 0 ∧ collisions ′ = 0) ∨ (# collset > 0 ∧ collisions ′ ≥ (# collset) div 2)

specifies the behaviour of the detector handlers, and we notice that the new value of collisions is determined
by the function CollSet(posns ′,motions ′) in terms of the abstract model variables. To reformulate it in
terms of work , as it is needed to align the model to the data flow in the SCJ design that is verified, we
require further rewriting that appears to necessitate essential human guidance. We skip further details of
the refinement of RecordFrame and just present the result of the decomposition using Law 12 in Figure 8.

µX •





 next frame ? frame −→(
StoreFrame #
PartitionWork #
DetectCollisions

) � INP DL;

wait 0 . . FRAME PERIOD −OUT DL− INP DL;
var colls : N • CalcCollisions;
(output collisions ! colls −→ skip) � OUT DL

 � FRAME PERIOD

9 wait FRAME PERIOD


; X

We observe that the RecordFrame operation has been replaced by a sequence of three data operations: that
is, StoreFrame # PartitionWork # DetectCollisions. Law 13 has therefore been applied three times. The
definition of StoreFrame and PartitionWork is in Appendix D. The report [ZCW+12] discusses in more
detail the transformation of the refined RecordFrame operation that enables the application of the laws. We
omit a further discussion of their application here as this is not the most interesting aspect of the refinement.

The DetectCollisions operation is further decomposed into a conjunction, using Law 14. Its definition at
this stage of the refinement is included in Figure 21. The local variables collset1, collset2, and so on, have
been subsequently introduced in auxiliary rewriting steps to prepare the application of the law; this again
relies on human expertise. After application of Law 14, DetectCollision in Figure 21 is refined into the action

DetectCollisions =̂
var colls1, colls2, colls3, colls4 : Z • (∃ i? : Z • CalcPartCollisions[colls1/pcolls!] ∧ i? = 1) ∧

(∃ i? : Z • CalcPartCollisions[colls2/pcolls!] ∧ i? = 2) ∧
(∃ i? : Z • CalcPartCollisions[colls3/pcolls!] ∧ i? = 3) ∧
(∃ i? : Z • CalcPartCollisions[colls4/pcolls!] ∧ i? = 4)

 ;

SetCollisionsFromParts([[colls1, colls2, colls3, colls4]])


where the decomposed Z operations CalcPartCollisions and SetCollisionsFromParts can also be found in
Appendix D. This completes the decomposition of data operations. Each data operation at this stage can
be traced to one of the seven handlers of the design that we verify. Table 1 in Appendix D illustrates the
relationship between the data operations and handlers of the SCJ program.

Laws of mission-based programming 29

DetectCollisions
work ,work ′ : Partition; collisions, collisions ′ : int

work ′ = work ∧
∃ collset1, collset2, collset3, collset4 : F (Aircraft ×Aircraft) |

collset1 =


a1, a2 : Aircraft |(

∃ l : List [Motion] | l ∈ work . getDetectorWork(1) . elems() •
“Predicate that states that (a1, a2) collide and are in l”

) ∧
collset2 =


a1, a2 : Aircraft |(

∃ l : List [Motion] | l ∈ work . getDetectorWork(2) . elems() •
“Predicate that states that (a1, a2) collide and are in l”

) ∧
collset3 = . . . ∧ collset4 = . . . •
collisions ′ = (# collset1 div 2) + (# collset2 div 2) + #(collset3 div 2) + (# collset4 div 2)

Fig. 21. Shape of DetectCollisions before applying the decomposition law.

5.3. Distribution of time budgets

We proceed with the decomposition and distribution of time budget between the newly introduced sequential
operations. For this, we introduce the handler-specific time budgets StoreFrameTB , PartitionWorkTB and
DetectCollisionsTB . Multiple applications of Law 15 in Figure 11 to the abstract time budget

wait 0 . . FRAME PERIOD −OUT DL− INP DL

produces the following action where the above budget has been split twice.

µX •





 next frame ? frame −→(
StoreFrame #
PartitionWork #
DetectCollisions

) � INP DL;

wait 0 . . StoreFrameTB ;
wait 0 . . PartitionWorkTB ;
wait 0 . .DetectCollisionsTB ;
. . .


� FRAME PERIOD

9 wait FRAME PERIOD


; X

The law applications raise provisos that, in conjunction, require us to establish that

StoreFrameTB + PartitionWorkTB + DetectCollisionsTB ≤ FRAME PERIOD −OUT DL− INP DL

As we introduce the new budgets as abstract constants whose precise definition is deferred until we carry
out the translation into code, we add the above as an axiomatic constraint to our Circus model.

Next, the time budgets are moved backwards through the sequence of data operations. Trivial elementary
refinement steps are applied to distribute the prefix with an input via next frame through the sequence and
localise the deadline (. . .)� INP DL. The localisation of time budgets to the relevant Z operations essentially
makes use of Law 17 in Figure 11. A related issue that arises is that Z compositions (Op1 # Op2) have to
be turned into Circus action compositions (Op1 ; Op2). Law scompC in [Cav97] achieves this. The result of
localising budgets is illustrated by the action below.

µX •




(

next frame ? frame −→
wait 0 . . StoreFrameTB ; StoreFrame

)
� INP DL;

wait 0 . . PartitionWorkTB ; PartitionWork ;
wait 0 . .DetectCollisionsTB ; DetectCollisions;
. . .

 � FRAME PERIOD

9 wait FRAME PERIOD

 ; X

This last refinement step completes the allocation and distribution of time budgets. We note that further

30 F. Zeyda and A. Cavalcanti

decomposition and distribution of the time budget DetectCollisionsTB takes place implicitly during the
subsequent parallelisation of actions. The reason we cannot perform this decomposition here is due to the fact
that time budgets cannot be moved into schema conjunctions as present in the definition of DetectCollisions.
Moreover, there is no obvious way to turn those conjunctions into actions at this stage as this would involve
design via parallelisation laws, which is an orthogonal aspect of the verification, and discussed next.

5.4. Introduction of parallel handler actions

The parallelisation into handler actions relies on Law 20 (Figure 13) and Law 22 (Figure 22). First, Law 20
is applied three times to parallelise the sequential actions above, and then Law 22 is used to parallelise the
conjunction in DetectCollisions. To illustrate the application of Law 20, we consider the sequential fragment

(
next frame ? frame −→
wait 0 . . StoreFrameTB ; StoreFrame

)
� INP DL;(

wait 0 . . PartitionWorkTB ; PartitionWork ;
wait 0 . .DetectCollisionsTB ; DetectCollisions;
. . .

)


Application of Law 20 transforms this into the action

 (
next frame ? frame −→
wait 0 . . StoreFrameTB ; StoreFrame

)
� INP DL;

reduce ! (currentFrame, state)−→ skip


J{currentFrame, state} | {| reduce |} | {work , collisions}K reduce ? (currentFrame, state)−→(

wait 0 . . PartitionWorkTB ; PartitionWork ;
wait 0 . .DetectCollisionsTB ; DetectCollisions;
. . .

) 


\ {| reduce |}

A new channel reduce of type RawFrame × StateTable is introduced by the law. It communicates the rele-
vant shared data between the handler that inputs the next radar frame and records current and previous
aircraft positions (StoreFrame), and the handler that performs the voxel hashing and partitioning of the
computational work (PartitionWork). The channel moreover enforces sequential execution of the handlers.

Before proceeding with applying the law again, namely to parallelise the sequence between PartitionWork
and DetectCollisions, a few elementary refinement steps are needed. These are to extract the hiding on reduce
to the outer level of the recursion, and to distribute the prefix in the right-hand parallel action.

µX •





(. . .)

J{currentFrame, state} | {| reduce |} | {work , collisions}K
(

reduce ? (currentFrame, state)−→
wait 0 . . PartitionWorkTB ; PartitionWork

)
;(

wait 0 . .DetectCollisionsTB ; DetectCollisions;
. . .

)



� . . .

9 wait FRAME PERIOD


; X


\ {| reduce |}

We omit a detailed discussion here of the two pending applications of Law 20 as this does not add anything
new. Instead, we consider the parallelisation of DetectCollisions via Law 22. After the parallelisation of
sequential actions, the action that carries out the detection of collisions has the following shape.(

detect ? work −→
wait 0 . .DetectCollisionsTB ; DetectCollisions;
output ! collisions −→ skip

)
The channels detect and output have been introduced by two further applications of Law 20 and, as be-
fore, encapsulate the communication of shared data. For instance, detect propagates the shared data that

Laws of mission-based programming 31

determines voxel partitions from the reducer handler to the detector handlers, and output propagates the
shared data used to hold the detection result to the handler that outputs it. Expanding the definition of
DetectCollisions using the copy rule yields the following action.

detect ? work −→
wait 0 . .DetectCollisionsTB ;

var colls1, colls2, colls3, colls4 : Z • (∃ i? : Z • CalcPartCollisions[colls1/pcolls!] ∧ i? = 1) ∧
(∃ i? : Z • CalcPartCollisions[colls2/pcolls!] ∧ i? = 2) ∧
(∃ i? : Z • CalcPartCollisions[colls3/pcolls!] ∧ i? = 3) ∧
(∃ i? : Z • CalcPartCollisions[colls4/pcolls!] ∧ i? = 4)

 ;

SetCollisionsFromParts([[colls1, colls2, colls3, colls4]])

 ;

output ! collisions −→ skip


Application of Law 22 refines it into the action below.

detect ? work −→



(
var colls1 : Z • wait 0 . . CPCTB ;
(∃ i? : Z • CalcPartCollisions[colls1/pcolls!] ∧ i? = 1);
rec ! colls1 −→ skip

)
‖(
var colls2 : Z • wait 0 . . CPCTB ;
(∃ i? : Z • CalcPartCollisions[colls2/pcolls!] ∧ i? = 2);
rec ! colls2 −→ skip

)
‖(
var colls3 : Z • wait 0 . . CPCTB ;
(∃ i? : Z • CalcPartCollisions[colls3/pcolls!] ∧ i? = 3);
rec ! colls3 −→ skip

)
‖(
var colls4 : Z • wait 0 . . CPCTB ;
(∃ i? : Z • CalcPartCollisions[colls4/pcolls!] ∧ i? = 4);
rec ! colls4 −→ skip

)


J∅ | {| rec |} | {colls}K
var colls1, colls2, colls3, colls4 : Z • (rec ? x −→wait 0 . . RecTB ; colls1 := x);

(rec ? x −→wait 0 . . RecTB ; colls2 := x);
(rec ? x −→wait 0 . . RecTB ; colls3 := x);
(rec ? x −→wait 0 . . RecTB ; colls4 := x)

 ;

wait 0 . . SCFPTB ; SetCollisionsFromParts([[colls1, colls2, colls3, colls4]])





;

output ! collisions −→ skip


The result here illustrates that we require additional elementary law applications to turn this into a parallel
composition for four detector handlers. In particular, the initial synchronisation on detect and the final
synchronisation on output have to be moved into each detector handler and the auxiliary control action. For
this, all detector handlers and the control action have to synchronise on detect and output . Whereas the
synchronisation on detect is later refined into an SCJ event that releases multiple (detector) handlers, the
synchronisation on output is a barrier mechanism that requires further refinement as shown below. After the
aforementioned finalising steps each detector handler now has the following shape. detect ? work −→(

var collsk : Z • wait 0 . . CPCTB ;
(∃ i? : Z • CalcPartCollisions[collsk/pcolls!] ∧ i? = k);
rec ! collsk −→ skip

)
; output ? y −→ skip

where k : 1 . . 4

As noted earlier on, the refinement has resulted in further decomposition of a time budget. Namely, the
budget DetectCollisionsTB has been split into two budgets, CPCTB and SCFPTB , which encapsulate the
time allowances for the parallel detectors as well as the operation that merges the results.

32 F. Zeyda and A. Cavalcanti

5.5. Encapsulation of shared data

The last verification issue is the refinement of shared data. First of all, the application of the parallelisation
law for sequential actions (Law 20) has introduced three typed channels: reduce, detect and output . Each
of these channels is decomposed now using the sharing Law 35 in Appendix A, after introducing a channel
lockstep to ensure lock-step progress of the recursive handler actions. It is a specialisation of Law 23 presented
in Section 4.5 that considers unidirectional communication between handlers that execute sequentially and
do not terminate. Unlike Law 23, this law does not introduce the channel csync due to the particular structure
of actions, and thus yields a simplified refinement result.

To illustrate the application of Law 35, we consider the parallel action

 µX •

 (
next frame ? frame −→
wait 0 . . StoreFrameTB ; StoreFrame

)
� INP DL;

reduce ! (currentFrame, state)−→ skip

 ; lockstep −→X


J{currentFrame, state} | {| reduce, lockstep |} | {voxel map,work}K(
µX •

(
reduce ? (currentFrame, state)−→
wait 0 . . PartitionWorkTB ; PartitionWork ;
detect ! work −→ skip

)
; lockstep −→X

)
J{voxel map,work} | {| detect , lockstep |} | ∅K

. . .


This corresponds to the result of applying Law 20 on page 30 after exhaustive application of the parallelisation
laws. The application of Law 35 (Appendix A) refines this into the action fragment below



 µX •

 (
next frame ? frame −→
wait 0 . . StoreFrameTB ; StoreFrame

)
� INP DL;

reducewrite ! (currentFrame, state)−→ reducepivot −→ skip

 ;

lockstep −→X


J{currentFrame, state} | {| reducepivot , lockstep |} | {voxel map,work}K µX •

(
reducepivot −→ reduceread ? (currentFrame, state)−→
wait 0 . . PartitionWorkTB ; PartitionWork ;
detect ! work −→ skip

)
;

lockstep −→X




\ {| reducepivot |}

J{currentFrame, state,work , collisions} | {| reduceread , reducewrite |} | ∅K var v : RawFrame × StateTable •

µX •
(

(reduceread ! v −→ skip) @
(reducewrite ? x −→ v := x)

)
; X




\ {| reduceread , reducewrite |}

where the third parallel action encapsulates the shared data and thus corresponds to (a part of) MArea in
our target model in Figure 5. The typeless channel reducepivot is freshly introduced and models an SCJ event
that in the CDx program releases ReducerHandler. The channels reduceread and reducewrite model variable
accesses to write to the shared variables currentFrame and state in the CDxMission class. To emphasise
their rôle, we can, of course, subsequently rename these channels. Here, in particular, it is sensible to rename
them to getCurrentFrameState and setCurrentFrameState, and also reducepivot to reducefire .

As mentioned before, the sharing law for channel decomposition is applied two more times, which gives
rise to two more parallel actions that contribute to MArea. For reasons of space, we omit a discussion of the
application of the barrier law (Law 24) and parallel design law (Law 25) though both are needed for the CDx

refinement too. For a detailed account, we refer again to [ZCW+12]. Applying those laws produces a Circus
process whose shape corresponds precisely to SCJDesign in Figure 5. The refinement here produces a model
that reflects the design of the CDx program that we introduced in Section 2.1. The aim of the refinement
was indeed to establish this correspondence in order to verify an a priori given SCJ program. If no program
is given, we are at liberty to apply the laws based on preference whenever alternative design choices emerge.

Laws of mission-based programming 33

Having examined the application of the laws in the context of a specific example, in the next section, we
look more generally at the possibility of automating the law applications and refinement.

6. Automation

In this section, we discuss ways of automating the application of the refinement laws. Again, we look at each
of the five verification issues as they were described in Sections 4.1 to 4.5, and examine how the laws for
that aspect may be automated by tactics and decision procedures. Our objective is to determine the parts of
the verification that do not require expert knowledge in refinement techniques and, in relation to this, what
guidance has to be provided by a (non-expert) user of our technique to enable the automation of those parts.
This is based on our experience with automation of refinement in Circus [OZC11, ZOC12] using theorem
provers and an embedding of Circus and its semantics.

6.1. Introduction of cycle timings

Human guidance is required to identify recursions that model cyclic activities, as well as wait statements
inside those recursions that fill the time gap between cycles. Once this is done, the application of Law 2 (to
introduce an interleaving with skip) and the extraction laws in Figure 7 can be automated, subject to
automating simple transformations that align the shape of time expressions in wait statements to facilitate
the matching of laws such as Law 4 and Law 5 in Figure 7.

Some of the extraction laws have provisos whose proofs, in most cases, merely require arithmetic rewriting
and laws for solving inequalities. Ample work has been done elsewhere on automating such proofs [Nor03].
In some cases, it turns out that we also require local assumptions about bound variables introduced by timed
prefixes and nondeterministic delays. For example, in (c @ t −→ A(t) ; . . .) � d we have a local assumption
in A that t ≤ d . Likewise, in wait t : t1 . . t2 • A(t) we can assume that t1 ≤ t ≤ t2 in A. The propagation
of such assumptions can be automated by a proof tool in a fairly straightforward manner.

An automatic procedure can decide when the wait statement has been fully extracted from the body of
the recursion, as this terminates the application of the extraction laws. Where automation cannot proceed
due to no extraction law being applicable, assistance is required either to perform elementary refinement
steps to enable further application of extraction laws, or to concede that the cycle length of the recursive
action is not fixed and thus not a valid target for the refinement.

The finalising application of Law 1 for the introduction of a termination deadline raises a proviso
TakesAtMost(A) ≤ T where A is the body of the recursion and T its cycle. We expect that this proviso can
be discharged automatically after rewriting the application of TakesAtMost using the rules in Figure 6. This
is again contingent on support for solving arithmetic inequalities and simplifying arithmetic expressions.

Overall, we conclude that the prospect of automating this part of the verification is altogether posi-
tive: with special tactics for solving arithmetic inequalities there ought to be no need for manual refinement.
The only potential obstacle for automation is that TakesAtMost(A) may yield too coarse an approximation
of the execution time of A, and as a consequence the proviso of Law 1 becomes unprovable. This is not neces-
sarily a show-stopper as we can introduce the termination deadline anyway, though it may render the model
unimplementable. So far, we have not encountered specifications where we had to resort to this solution.

6.2. Decomposition of data operations

From our experience gained working on the CDx case study, decomposition of data operations seems amongst
the most difficult aspects of the refinement and presumably the most challenging to automate. This is not
surprising; research in refinement techniques [AH07] identifies decomposition as being inherently a difficult
problem. Furthermore, the shape of the operations that we target in this aspect of the verification is largely
influenced by earlier data refinement, hence we can make little to no assumptions about the actual structure
of models that we target with our laws in this aspect of the verification.

For automation, the main challenge is to conduct preliminary transformations that enable the application
of one of the decomposition laws. For simple laws such as Laws 12 and 13, tailored refinement tactics could
perhaps be used to decompose schema predicates and invariants automatically, so that the laws can be

34 F. Zeyda and A. Cavalcanti

directly applied. Those tactics are expected to apply logic rewrites to isolate predicates that reference certain
components of a schema, and guidance as to what components to isolate is likely to be needed.

For more complex patterns such as parallel decomposition via Law 13, the developer needs to determine
the target of each law application, that is, the schema predicates on the right-hand side of the law. With
that, a verification condition can be generated to establish that the predicate of the schema being refined can
be written in the form required by the application of the law. Specialised proof tactics may again be useful
in trying to discharge those verification conditions. The advantage of this approach is that less expertise
is needed because the developer just needs to postulate the result of the law application rather than carry
out the refinement. If the automatic tactic fails to prove the verification condition, we envisage that the
refinement verification requires more expertise and perhaps involvement of a domain expert.

We can in any case profit from a large body of existing work on decomposition. The main issue of the
intermediate refinements here is to make the data flow in the program explicit in the predicates of operation
schemas. Usually, the developer will have an understanding of how data is used in the SCJ program to be
designed; this already determines which laws need to be applied.

6.3. Distribution of time budgets

This aspect involves two conceptual designs: the decomposition (splitting) of time budgets and the localisa-
tion of budgets to their respective actions. Both of these aspects require guidance from the developer, but the
refinement itself is easy to automate. In a first step, the developer has to identify time budgets wait 0 . .TB
in actions that have to be split. For this, it is convenient to specify a number of constants TB1, TB2, and so
on, that constitute the split budgets where (Σi : 1 . . n • TBi) ≤ TB . We can then automate the sequenced
application of the Laws 15 and 16 in order to refine the original budget into an action sequence

wait 0 . . TB1 ; wait 0 . . TB1 ; . . . ; wait 0 . . TBn .

Further automation of the refinement can be envisaged by annotating each data operation with the intended
time budget TBi , and using tactics to mechanically perform the localisation of the budgets to the respective
data operations. Such tactics merely have to decide whether a budget needs to be moved forward or backward
through a sequence, and depending on this, either to use Law 17 directly or its symmetric version.

More difficult to automate is the intentional reduction of time budgets using Law 16 in order to ob-
tain a more tractable model for further refinement. This is illustrated in Section 5.1, where the budget
wait w : FRAME PERIOD −OUT DL− t1 is narrowed to simplify the shape of the cycle action. As with
splitting budgets, the developer has to determine the narrowed budget as this is a design issue.

To conclude, we observe that the splitting and narrowing laws (Law 15 and Law 16) for budgets give rise
to provisos that have to be discharged. The technique for doing so is similar to the one described earlier on
in proving the provisos for cycle-timing laws. After application of the narrowing law, it is sensible to assume
that all budgets are determined by plain constants rather than complex time expressions. The only notable
proof effort is hence to discharge the proviso of Law 16. Overall, this verification issue appears to be the
easiest to automate, subject to the developer providing the above information.

6.4. Introduction of parallel handler actions

The shapes we target here are the ones produced by earlier decomposition of data operations; this facilitates
automation of this aspect of the verification. We observe, for instance, that the first parallelisation Law 19
targets precisely the shape of models generated by earlier applications of Law 12 (Figure 8). Similarly, the
second parallelisation Law 20 targets the shape of models generated by earlier applications of Law 13 (Fig-
ure 9), subsequent to replacing Z compositions by action sequences (which is done collaterally as part of
the distribution of time budgets). It is hence possible to suggest applicable laws automatically so that the
developer merely has to make a choice of which law to apply if there is more than one.

As with the decomposition of data operations, there turn out to be situations where intermediate refine-
ment steps are required between the law applications, as we illustrated in Section 5. Here, however, those
steps are much more straightforward and susceptible to automation, although it is still an open issue how a
collection of tactics can be defined. Heuristics are deemed to be useful in that context to normalise actions
into shapes that make subsequent law applications more likely to be feasible.

Laws of mission-based programming 35

6.5. Encapsulation of shared data

The encapsulation of shared data requires a more diverse set of strategies for automation. As already men-
tioned, we have three classes of laws here: firstly, laws for channel decomposition; secondly, laws for high-level
control mechanisms such as a barrier; and thirdly, laws for the refinement of residual control actions that
emerge during refinement and are expected to (mostly) disappear. Regarding the first class, we have the
generic decomposition Law 23 that can be applied to arbitrary actions to decompose a channel c hidden
in the model. Here, we merely require the developer to identify channels to be decomposed. These are typ-
ically channels that arise from earlier applications of Law 35 for sequential transfer of data. Although the
definition of WWConfFree is on the whole elaborate in having to deal with a lot of cases, fundamentally its
evaluation can be automated in a straightforward manner. Establishing the proviso WWConfFree(c)(A) is
therefore trivial where information flow is static. Manual proof effort may only be required in cases where
more sophisticated mechanisms determine the direction in which information flows.

We also require some intermediate refinements that, as before, are mostly concerned with reordering
parallel actions and extracting channel hidings to tease out the MArea action; this is because the parallel
fragments contributing to MArea are typically embedded inside the parallel handler actions after application
of sharing laws like Law 23 and Law 35. These manipulations are not a significant challenge for automation.
The channel replacement principle defined by ChanDecomp(c)(A) is automatable, too.

For the second class of laws, the refinement is a simple matching of control design laws, modulo some
preliminary transformations for reordering parallel actions and extraction of channel hidings; a refinement
tool can make suggestions here, giving the developer a set of choices.

More interesting is the third class of laws. We recall that both the parallelisation Law 22 and sharing
Law 24 give rise to an auxiliary control action. To complete the refinement, those control actions have to
be eliminated so that we are left with only a parallel composition of handlers. The elimination proceeds
by sometimes decomposing the control fragments further into parallel actions, and then collapsing those
parallel actions with existing handler actions. This can give rise to further design, namely when the control
fragments do not entirely disappear. We envisage that an engineer merely has to provide information about
which actions ought to be collapsed, causing the relevant step laws to be applied automatically.

To conclude our account on automation, we observe that the refinement of time-related designs is the
easiest to automate. Most difficult to tackle is the decomposition of data operations, but, as mentioned
earlier, we can take advantage of extensive previous work on this subject. The parallelisation and sharing
laws pose a twofold challenge in that they require more subtle guidance by the user as well as preliminary
refinements that, however, seem feasible to be carried out by automatic tactics. If the laws can be determined
a priori, the fundamental proof effort can be factored into verification conditions.

7. Proofs of Laws

In this section, we examine the proofs of a few of the laws in Section 4. In particular, we look at the novel
Circus Time laws in Figure 11. We first present the Unifying Theories of Programming framework (UTP)
which is our semantic framework, next give a brief account of the semantics of Circus Time in UTP, and
afterwards present two examples of proofs. Further proofs can be found in [ZCW+12].

7.1. Unifying Theories of Programming

The UTP, at the core, is an algebra of relations described by alphabetised predicates. The latter are
pairs formed by an alphabet of variables and a predicate over these variables. The alphabet of a predi-
cate P is obtained by αP . Alphabets include observable quantities of interest, such as program variables
or special (auxiliary) variables that capture particular aspects of a model of computation. Alphabetised
predicates describe the observations we can make about program behaviour. For instance, the predicate
ok ∧ y 6= 0 ⇒ ok ′ ∧ z ′ = x/y specifies a computation that, if started in a state where y 6= 0, assigns to
the program variable z the quotient of the program variables x and y . The variables ok and ok ′ (of boolean
type) capture the observations that the program has started and terminated. Primed variables, as in Z, are
used to refer to final (or sometimes intermediate) observations, and unprimed variables to initial ones.

More generally, the predicate ok ∧ P ⇒ ok ′ ∧ Q encodes a computation that, if started in a state where

36 F. Zeyda and A. Cavalcanti

its precondition P holds, terminates in a state where its postcondition Q holds. In UTP, this form is called
a ‘design’ and the notation P ` Q is used to abbreviate it.

UTP theories are sets of predicates over predefined alphabets. However, not every predicate describes a
valid model of a computation. To delineate predicates that do from those that are meaningless, each theory
defines a set of healthiness conditions. These are expressed as idempotent and monotonic functions. Valid
models of computation in a UTP theory are the cumulative fixed points of those functions. For instance, for
designs we have a healthiness condition H1(P) = ok ⇒ P whose fixed points are the predicates that are
equivalent to true when ¬ ok . This rules out any assumption about program behaviour before the program
has started. Further healthiness conditions (H2-H4) for designs can be found in [HJ98].

Each UTP theory defines a collection of operators under which the predicates of the theory have to be
closed. Certain operators have a uniform characterisation across theories. These operators are:

1. Sequential composition, which is modelled by relational composition.

2. Nondeterminism P uQ , which is modelled by disjunction: P uQ =̂ P ∨ Q .

3. Parallel composition, which is modelled by a form of conjunction (parallel by merge).

4. The conditional P / b .Q , which is defined by (b ∧ P) ∨ (¬ b ∧ Q).

5. Refinement, which is modelled by (universal) reverse implication: P v Q =̂ [P ⇐Q].

Above, [P] denotes the universal closure over the variables in αP .
The definition of sequential composition as a predicate is recaptured below.

Def 5. P ; Q =̂ ∃ v ′′ • P [v ′ \ v ′′] ∧ Q [v \ v ′′] provided out(αP) = in(αQ)′

Above, v are the variables at the interface of P and Q . We note that the operator in yields the undashed (in-
put) variables, and out the dashed (output) variables of an alphabet. The proviso establishes that the pred-
icates are composable: the output variables of P have to correspond to the input variables of Q .

UTP designs taken by themselves are sufficient to model sequential programs, but they are not powerful
enough to capture reactive and timing behaviour. For this, we next discuss the UTP theory of Circus Time.

7.2. Circus Time

The UTP theory of Circus Time is a derivative of the theory of reactive processes [OCW09]. It includes four
auxiliary variables ok , wait , tr and state, as well as their dashed counterparts. The variables ok and ok ′

of boolean type record the observation that the predecessor or current action is in a stable state, and thus
has not diverged. We note that this is different from the theory of designs where ok and ok ′ model program
termination. Program termination here is captured by the boolean variables wait and wait ′. Specifically,
wait records that the predecessor has terminated, and wait ′ records termination of the current action.

While termination is one possible observation of a reactive process, we may also observe interactions (prior

to termination) with the environment. The variables tr and tr ′ of type seq
+

(seq Event×PEvent) record time
traces of interactions. In detail, tr records the interactions that have already taken place when execution
starts, and tr ′ additionally includes the interactions of the current action, extending tr . Each element of the
outer (non-empty) sequence represents an observation in one time unit. These observations are pairs where
the first component of the pair is a sequence of events that have occurred within the time unit, and the
second component is a refusal set containing the events that are refused at the end of the time unit. Lastly,
the variables state and state ′ are used to record the initial and subsequent values of program variables.

The healthiness conditions of Circus Time are a recast of the healthiness conditions for reactive processes;
Figure 22 summarises their definitions. R1A(A) establishes that an action A cannot alter the previous
history of interactions; the binary operator ≤A here is a specialised prefix operator for time traces, defined
in Appendix E. R2A(A) enforces insensitivity of A to interactions that took place before it started. Namely,
we can replace tr by a trace with no interactions, and tr ′ by the difference tr ′ −A tr without changing
the behaviour of A. Again, −A is a specialised sequence subtraction for time traces (also in Appendix E).
R3A(A) masks out any behaviours of A until the predecessor action has terminated (wait is true). We note
that in R3A, IIA (also called skip) corresponds to the relational identity on the alphabet A; where II does
not have a subscript, it is the identity on the theory alphabet.

We define RA as the composition R1A ◦R2A ◦R3A. The form RA(P ` Q) is called a reactive design. It

Laws of mission-based programming 37

Healthiness condition Definition Caveat

R1A R1A(A) =̂ A ∧ tr ≤A tr ′

R2A R2A(A) =̂ A[〈(〈〉, last(tr).2)〉, tr ′ −A tr) / tr , tr ′] tr ≤A tr ′

R3A
R3A(A) =̂ IIA / wait .A where

IIA =̂ (¬ ok ∧ tr ≤A tr ′) ∨ (ok ′ ∧ II{wait,tr ,state})

CSP1A CSP1A(A) =̂ A ∨ (¬ ok ∧ tr ≤A tr ′)

CSP2A CSP2A(A) =̂ A ; JA where JA =̂ (ok ⇒ ok ′) ∧ II{wait,tr ,state}

Fig. 22. Healthiness conditions for the theory of Circus Time actions.

can be shown that all predicates of the theory of Circus Time can be expressed in this form. This represen-
tation allows us to reduce proofs about Circus Time actions to (simpler) proofs about designs. In particular,
since RA is monotonic, P1 ` Q1 v P2 ` Q2 establishes that RA(P1 ` Q1) v RA(P2 ` Q2), and the former
can be further reduced to (P1 ⇒ P2) ∧ (Q2 ∧ P1 ⇒ Q1); that is, proofs about pre- and postconditions. This
yields an effective strategy for proving our refinement laws.

The additional healthiness conditions CSP1 and CSP2 in Figure 22 are recast from the UTP theory of
CSP: CSP1 requires that upon divergence of an action, no assumptions can be made other than that the
trace is extended. And CSP2 captures that we cannot require a program to diverge.

We next present the definitions of several action constructs that are used later on in the proofs. For a
complete account, the reader is referred to [Woo13]. The first definition is for a simple delay.

Def 6. wait t =̂ RA(true ` delay(t) ∧ trace(tr ′)− trace(tr) = 〈〉)

Above, delay(t) =̂ (wait ′ ∧ # tr ′−# tr < t) ∨ (¬ wait ′ ∧ # tr ′−# tr = t ∧ state = state ′) and the function
trace converts a time trace into a conventional trace by concatenating the sequences of events in each time
unit. For example, trace(〈(〈a, b〉, r1), (〈c〉, r2)〉) = 〈a, b, c〉. The refusal sets r1, r2, and so on, are discarded
by the trace function. While the true precondition of the reactive design implies the absence of divergence,
the postcondition captures two essential behaviours: before t time units have elapsed (# tr ′ −# tr < t), we
are in an intermediate (waiting) state. After t time units (# tr ′ −# tr = t), the action terminates (¬ wait ′

holds) while leaving the state unchanged (state ′ = state). The conjunct trace(tr ′) − trace(tr) = 〈〉 in the
definition captures that while wait t executes, no interaction with the environment takes place.

The definition of a time budget wait t1 . . t2 is a nondeterministic choice of simple wait statements.

Def 7. wait S =̂
d

t : S • wait t

Here, we make use of the generalised choice
d

x : S • P(x), which is a nondeterminism of all behaviours
P(x) where x ranges over some set S . It is defined in UTP as follows:

d
x : S • P(x) =̂ ∃ x : S • P(x).

Having briefly introduced the semantics of Circus Time, we next present two examples of proofs of laws
from Section 4 involving Circus Time actions.

7.3. Laws: example proofs

We present the proofs of two laws: Law 16 for narrowing budgets and Law 15 for splitting budgets.

7.3.1. Proof of the budget narrowing law

The first law we prove is Law 16 for narrowing a time budget. We recapture it below.

wait 0 . . t1 v wait 0 . . t2 provided t2 ≤ t1 (Law 16)

The proof of this law is facilitated by a more general lemma about generalised nondeterminism.

Lemma 1.
d

x : S • P(x) v
d

x : T • P(x) provided T ⊆ S

38 F. Zeyda and A. Cavalcanti

Law 26. Decomposition of simple time delays.

wait t ≡ wait t1 ; wait t2 provided t = t1 + t2

Fig. 23. Circus Time law for the decomposition of simple delays.

This law is easily shown by rewriting the definition of
d

x : S • P(x) and using elementary logic deductions.
d

x : S • P(x) v
d

x : T • P(x)

≡ “unfolding definition of generalised choice”

(∃ x : S • P(x)) v (∃ x : T • P(x))

≡ “unfolding definition of refinement”

[∃ x : S • P(x)] ⇐ [∃ x : T • P(x)]

W “elementary logic”

T ⊆ S �

Because of 0 . . t1 ⊆ 0 . . t2 under the assumption t2 ≤ t1, we immediately obtain a proof of Law 16 after
unfolding the time budgets by virtue of Def. 7 and subsequent application of Lemma 1.

7.3.2. Proof of the budget splitting law

More challenging is the proof of Law 15 for time budget splitting. For this, we have to show that

wait 0 . . t ≡ wait 0 . . t1 ; wait 0 . . t2 provided t = t1 + t2 (Law 15)

To prove this law, we first establish the validity of an analogous property for simple delays formulated by
Law 26 in Figure 23. To prove it, we start by rewriting the right-hand side of that law:

wait t1 ; wait t2

≡ “unfolding definition of wait statements (Def. 6)”

RA(true ` delay(t1) ∧ trace(tr ′)− trace(tr) = 〈〉) ; RA(true ` delay(t2) ∧ trace(tr ′)− trace(tr) = 〈〉)
In order to proceed, we require a specialised law for sequential composition of reactive designs. Two relevant
laws for this are included in Appendix F. Law 36 is a general law for sequential composition of arbitrary
Circus Time reactive designs and proved in [Woo13]; here, we use its specialisation given by Law 37, which
applies to terminating designs only, but produces a simpler result with a true precondition.

≡ “application of Law 37 for reactive design composition”

RA

(
true `

R1A(delay(t1) ∧ trace(tr ′)− trace(tr) = 〈〉) ;

R1A(II / wait .R2A(delay(t2) ∧ trace(tr ′)− trace(tr) = 〈〉))

)
≡ “unfolding definition of R1A (Figure 22)”

RA

(
true `

(delay(t1) ∧ trace(tr ′)− trace(tr) = 〈〉 ∧ tr ≤A tr ′) ;

(II / wait .R2A(delay(t2) ∧ trace(tr ′)− trace(tr) = 〈〉)) ∧ tr ≤A tr ′

)
≡ “unfolding definition of delay and removal of the application of R2A (Figure 22)”

RA


true `

 (
(wait ′ ∧ # tr ′ −# tr < t1) ∨
(¬ wait ′ ∧ # tr ′ −# tr = t1 ∧ state = state ′)

)
∧

trace(tr ′)− trace(tr) = 〈〉 ∧ tr ≤A tr ′

 ;

 II / wait .

 (
(wait ′ ∧ # tr ′ −# tr < t2) ∨
(¬ wait ′ ∧ # tr ′ −# tr = t2 ∧ state = state ′)

)
∧

trace(tr ′)− trace(tr) = 〈〉

  ∧ tr ≤A tr ′



Laws of mission-based programming 39

The removal of the application of R2A(. . .) above is justified by a property of substitution. We first note
that we can express the predicate delay(t2) ∧ trace(tr ′)− trace(tr) = 〈〉 as a function of the trace difference
tr ′−A tr ; we omit details of this for brevity. For a predicate of the form P(tr ′−A tr), it is easy to show that
application of R2A(. . .) has no effect: R2A(P(tr ′ −A tr)) ≡ P((tr ′ −A tr)−A 〈〉) ≡ P(tr ′ −A tr).
We next unfold the definition of II and sequential composition. This yields the following predicate.

≡ “unfolding definition of II and sequential composition (Def. 5)”

RA


true `



∃ ok ′′; wait ′′; tr ′′; state ′′ • (
(wait ′′ ∧ # tr ′′ −# tr < t1) ∨
(¬ wait ′′ ∧ # tr ′′ −# tr = t1 ∧ state = state ′′)

)
∧

trace(tr ′′)− trace(tr) = 〈〉 ∧ tr ≤A tr ′′

 ∧


(ok ′ = ok ′′ ∧ wait ′ = wait ′′ ∧ tr ′ = tr ′′ ∧ state ′ = state ′′)
/wait ′′ . (

(wait ′ ∧ # tr ′ −# tr ′′ < t2) ∨
(¬ wait ′ ∧ # tr ′ −# tr ′′ = t2 ∧ state ′′ = state ′)

)
∧

trace(tr ′)− trace(tr ′′) = 〈〉


 ∧

tr ′′ ≤A tr ′




(4)

To proceed with the proof, our aim is to eliminate wait ′′ from the existential quantifier by splitting the
predicate into two disjuncts: one where wait ′′ = true and one where wait ′′ = false. For conciseness,
we abbreviate the above reactive design by RA(true ` ∃wait ′′ • Q). By elementary logic, we then ob-
tain RA(true ` ∃wait ′′ • Q) ≡ RA(true ` Q [wait ′′ \ true] ∨ Q [wait ′′ \ false]). We next provide lemmas that
evaluate and simplify Q [wait ′′ \ true] and Q [wait ′′ \ false], respectively.

Lemma 2. Evaluation of postcondition Q where wait ′′ = true.

Q [wait ′′ \ true] ≡ (wait ′ ∧ # tr ′ −# tr < t1 ∧ trace(tr ′)− trace(tr) = 〈〉 ∧ tr ≤A tr ′)

The above lemma is proved by a few elementary steps shown below.

Q [wait ′′ \ true]

≡ “definition of Q and substitution of wait ′′” ∃ ok ′′; tr ′′; state ′′ •
(# tr ′′ −# tr < t1 ∧ trace(tr ′′)− trace(tr) = 〈〉 ∧ tr ≤A tr ′′) ∧
(ok ′ = ok ′′ ∧ wait ′ ∧ tr ′ = tr ′′ ∧ state ′ = state ′′) ∧ tr ′′ ≤A tr ′


≡ “application of the one-point rule for existential quantifiers”

(wait ′ ∧ # tr ′ −# tr < t1 ∧ trace(tr ′)− trace(tr) = 〈〉 ∧ tr ≤A tr ′) ∧ tr ′ ≤A tr ′

≡ “reflexivity of ≤A”

(wait ′ ∧ # tr ′ −# tr < t1 ∧ trace(tr ′)− trace(tr) = 〈〉 ∧ tr ≤A tr ′) �

An analogue lemma is provided next for the case where wait ′′ does not hold.

Lemma 3. Evaluation of postcondition Q where wait ′′ = false.

Q [wait ′′ \ false] ≡((
(wait ′ ∧ t1 ≤ # tr ′ −# tr < t1 + t2) ∨
(¬ wait ′ ∧ # tr ′ −# tr = t1 + t2 ∧ state = state ′)

)
∧ trace(tr ′)− trace(tr) = 〈〉 ∧ tr ≤A tr ′

)
The proof is slightly more elaborate here and presented in the sequel.

Q [wait ′′ \ false]

≡ “definition of Q and substitution of wait ′′”

40 F. Zeyda and A. Cavalcanti


∃ ok ′′; tr ′′; state ′′ •
(# tr ′′ −# tr = t1 ∧ state = state ′′ ∧ trace(tr ′′)− trace(tr) = 〈〉 ∧ tr ≤A tr ′′) ∧ (

(wait ′ ∧ # tr ′ −# tr ′′ < t2) ∨
(¬ wait ′ ∧ # tr ′ −# tr ′′ = t2 ∧ state ′′ = state ′)

)
∧

trace(tr ′)− trace(tr ′′) = 〈〉 ∧ tr ′′ ≤A tr ′




≡ “application of the one-point rule and removing the unused ok ′′”
∃ tr ′′ •
(# tr ′′ −# tr = t1 ∧ trace(tr ′′)− trace(tr) = 〈〉 ∧ tr ≤A tr ′′) ∧ (

(wait ′ ∧ # tr ′ −# tr ′′ < t2) ∨
(¬ wait ′ ∧ # tr ′ −# tr ′′ = t2 ∧ state = state ′)

)
∧

trace(tr ′)− trace(tr ′′) = 〈〉 ∧ tr ′′ ≤A tr ′




≡ “reordering of conjuncts for readability”

∃ tr ′′ • (tr ≤A tr ′′ ∧ tr ′′ ≤A tr ′) ∧
(trace(tr ′′)− trace(tr) = 〈〉 ∧ trace(tr ′)− trace(tr ′′) = 〈〉) ∧
(# tr ′′ −# tr = t1) ∧(

(wait ′ ∧ # tr ′ −# tr ′′ < t2) ∨
(¬ wait ′ ∧ # tr ′ −# tr ′′ = t2 ∧ state = state ′)

)


We next remove the existential quantification over tr ′′. Here, however, this is not so easy as we cannot apply
the one-point rule. Instead, we use the trivial law (∃ x • P(x)) ≡ Q for some Q that does not mention x ,
and where we can show that Q ⇔ (∃ x • P(x)). The most difficult part of this step is to find the correct Q
as well as the witness x in proving the forward implication. We omit the details of finding Q and proving
the proviso, but just present the result of applying this deduction.

≡ “removing existential quantification ∃ tr ′ • P(tr ′)”(
(wait ′ ∧ t1 ≤ # tr ′ −# tr < t1 + t2) ∨
(¬ wait ′ ∧ # tr ′ −# tr = t1 + t2 ∧ state = state ′)

)
∧ trace(tr ′)− trace(tr) = 〈〉 ∧ tr ≤A tr ′

We next put the two disjuncts resulting from the Lemmas 2 and 3 together to obtain the overall result of
the elimination of wait ′′ from (4), and continue the proof of the law from there onwards.

(4) ≡ “splitting existential quantifier over wait ′′ via Lemma 2 and Lemma 3”

RA

 true `


(wait ′ ∧ # tr ′ −# tr < t1 ∧ trace(tr ′)− trace(tr) = 〈〉 ∧ tr ≤A tr ′)
∨ (

(wait ′ ∧ t1 ≤ # tr ′ −# tr < t1 + t2) ∨
(¬ wait ′ ∧ # tr ′ −# tr = t1 + t2 ∧ state = state ′)

)
∧

trace(tr ′)− trace(tr) = 〈〉 ∧ tr ≤A tr ′





≡ “application of distributivity laws to merge disjuncts”

RA

 true `

 (
(wait ′ ∧ # tr ′ −# tr < t1 + t2) ∨
(¬ wait ′ ∧ # tr ′ −# tr = t1 + t2 ∧ state = state ′)

)
∧

trace(tr ′)− trace(tr) = 〈〉 ∧ tr ≤A tr ′


≡ “exploiting the assumption tr ≤A tr ′ in A; this holds due to application of R1A via RA”

RA

(
true `

(
(wait ′ ∧ # tr ′ −# tr < t1 + t2) ∨
(¬ wait ′ ∧ # tr ′ −# tr = t1 + t2 ∧ state = state ′)

)
∧ trace(tr ′)− trace(tr) = 〈〉

)
≡ “folding definition of delay and wait (Def. 6)”

wait t1 + t2 �

Laws of mission-based programming 41

With Law 26 being proved, we finally tackle the proof of the budget splitting law (Law 15) that our initial
goal was to verify. Starting from the left-hand side wait 0 . . t of the law, we obtain

wait 0 . . t

≡ “unfolding definition of time budget, nondeterminism, and wait (Def. 6 and Def. 7)”

∃ d : 0 . . t • RA(true ` delay(d) ∧ trace ′ = 〈〉)
≡ “lemma: (∃ d : 0 . . t • P(d))⇔ (∃ d1 : 0 . . t1 • ∃ d2 : 0 . . t2 • P(d1 + d2))”

∃ d1 : 0 . . t1 • ∃ d2 : 0 . . t2 • RA(true ` delay(d1 + d2) ∧ trace ′ = 〈〉)
≡ “folding definition of wait (Def. 6)”

∃ d1 : 0 . . t1 • ∃ d2 : 0 . . t2 • wait t1 + t2

≡ “application of the Law 26 for splitting a simple delay”

∃ d1 : 0 . . t1 • ∃ d2 : 0 . . t2 • wait d1 ; wait d2

≡ “distribution law: (∃ x • A1 ; A2)⇔ A1 ; (∃ x • A2) if A1 does not reference x”

∃ d1 : 0 . . t1 • wait d1 ; (∃ d2 : 0 . . t2 • wait d2)

≡ “distribution law: (∃ x • A1 ; A2)⇔ (∃ x • A1) ; A2 if A2 does not reference x”

(∃ d1 : 0 . . t1 • wait d1) ; (∃ d2 : 0 . . t2 • wait d2)

≡ “folding definition of generalised nondeterminism and time budget (Def. 7)”

wait 0 . . t1 ; wait 0 . . t2 �

The two proofs we discussed in this section are primarily meant to illustrate the possibility and the general
approach to proving the laws that we presented earlier on. Additional examples that illustrate the use of
algebraic strategies are available in [ZCW+12].

8. Conclusion

We have presented a collection of Circus refinement laws that can be used to refine sequential specifications of
SCJ mission behaviour into parallel designs that match the SCJ Level 1 programming model. We have also
highlighted challenges for automation: they are, primarily, in the decomposition of sequential and parallel
data operations, and to provide a repository of parallelisation and sharing laws that deal with a wide spectrum
of recurring program designs. Due to the novelty of SCJ, there are still open issues related to the designs
that ought to be supported, and hence we do not claim completeness at this stage. On the other hand, our
results showed that the introduction of cycle timings and the decomposition of time budgets can largely be
automated, and so can (the intermediate steps in) the refinement of data operations into parallel handler
actions and encapsulation of shared data; this ultimately creates a positive outlook.

Like in SCJ, our model and strategy supports data sharing between missions, and novel refinement laws
have been presented that encapsulate shared data to refine communication patterns while accounting for
sequential data flow, parallel computations, and control mechanisms by virtue of SCJ events. The soundness
of the laws guarantees the absence of race conditions in the emerging SCJ program model.

Though we have focused on handler architectures, the mission design in fact emerges where sequential
actions of an abstract centralised model are retained during refinement. In terms of sharing, sequential
composition is not an issue. Accordingly, data shared between missions is kept as state components of the
process in Figure 5 that defines the refinement target. Data shared between handlers must, however, be
encapsulated and accessed through communications, as Circus parallel composition prohibits data sharing as
to retain monotonicity of that operator with respect to refinement, which is crucial for compositionality.

In practical terms, we propose to facilitate the decomposition of data operations, the more difficult aspect
of a refinement, by asking the developer to identify intermediate target models that permit the application
of one of the decomposition laws. Each intermediate model generates a refinement proof obligation which
can be tackled in isolation, and, as we hope, its resolution will be able to take some advantage of automatic

42 F. Zeyda and A. Cavalcanti

refinement tactics. The development of useful tactics is still ongoing work, however, their mechanisation may
use a tool like [ZOC12] interacting with a prover to ensure soundness of refinements and laws alike.

In terms of the laws, it is still an open issue how the application of more specialised laws like Law 22,
Law 25 and Law 35 (in Appendix A) can be automated. There may again be scope for using heuristics
and tactics, but more experience needs to be gained to ascertain this. Furthermore, we observe that the
decomposition (Section 4.2), parallelisation (Section 4.4) and sharing (Section 4.5) laws are defined so that
they can be applied in succession: each law for a later stage targets the result of the application of another
law from an earlier stage. An interesting opportunity is to consider the fusion of matching laws. While this
offers the potential to increase automation by reducing the number of law applications, it has the downside
of reducing modularity and thereby the design space of realisable SCJ program designs. We thus observe a
trade-off and delicate balance to be struck between flexibility of the approach and ease of its use. A lesson
learned here is that parallel control fragments can provide genericity in laws as they enable us to postpone
certain aspects of the refinement and support the definition of laws whose application requires less context.

For validation, we have presented the proofs for two key Circus Time laws. In [ZCW+12], we moreover
sketch a proof of Law 22 which uses a few novel and interesting elementary laws. That proof, however, uses
existing Circus laws rather than the UTP-based semantics of Circus Time we recaptured in Section 7.2. We
note that standard Circus laws like those in [CSW03, CCO11] remain valid in Circus Time.

Related work includes action systems and their refinement [Bac89, BKS83]. Action systems combine
state and behaviour by way of atomic guarded actions that operate on the state and that can be executed
concurrently if there are no write conflicts to variables. Like Circus, action systems come with an extensive
refinement calculus, supporting the refinement of centralised sequential specifications into distributed imple-
mentations [Bac89, BvW03]. The execution model is typically a priori fixed, nondeterministically choosing
an action whose guard is enabled, and performing the respective state update. Expressivity is constrained
by the fact that any form of synchronisation has to be achieved through guards and the only way of com-
municating data is via shared variables. While the semantics of the guarded command language is simpler
than that of Circus and CSP, it is not obvious how the mission-based execution paradigm can be expressed
in terms of (one of) the common execution models for action systems.

Event-B [Abr10] is a practically-oriented formalism closely-related to action systems; it has been suc-
cessfully used in the formal development of distributed systems in academia and industry. Research has
been prompted to overcome initial restrictions of the method to deal with decomposition [But09] and
time [CMR06]. Fundamentally, however, the same restrictions as for action systems apply: that is the lack of
synchronisation and communication primitives. Some effort has been made to combine B with CSP to reap
the benefits of both worlds [ST05, STW10]. It would thus be interesting to examine whether Event-B and
its combination with CSP are indeed expressive enough for SCJ handler models, and whether the refinement
laws we propose can be formulated and validated in that setting.

To overcome the issue of complexity of our refinement strategy for SCJ, a first important future work is
to develop a semi-automatic refinement tool to facilitate the application of that strategy. This is to make
the strategy amenable to use by engineers without expert knowledge in Z or Circus. The tool will provide an
extendible collection of laws and tactics for each anchor, and, in particular, adopt the ideas for automation
discussed earlier on in Section 6. Rather than applying laws one by one, we envisage that the developer will
be able to select high-level patterns to decompose an abstract operation or orchestrate handler execution.
Such patterns will be verified independently outside the tool, and the integration with a theorem prover
based on the LCF principle is envisaged to guarantee that all laws and patterns are sound.

An automatic translator from SCJ Level 1 into the P model (Figure 4) [ZLCW13] is already available to
pave the way for the verification of existing programs, and we are currently addressing translation into the
opposite direction to cater for program development by virtue of the laws. The translation between the P
model and S anchor is pending work but technically not as challenging; we are also looking at this issue.

Further work is required to integrate the semantics of Circus Time with that of OhCircus. And importantly,
we require a proof that the laws from either language (OhCircus and Circus Time) hold within the combined
language. The UTP being the common semantic foundation for all Circus dialects ought to facilitate such a
proof. It is an issue that is high on our agenda of research.

SCJ is still a very new technology, and, as far as we know, this is the first work that looks at refinement
more specifically in the context of the SCJ programming model. Our results though contribute to a wider
objective of proposing and proving refinement laws for all aspects of the verification of SCJ programs.
These are, among others, data refinements in Circus Time and the introduction of class objects, the use of
object references, SCJ libraries, and the transformation of models into SCJCircus, a new language sufficiently

Laws of mission-based programming 43

concrete to be directly translatable into code. They are all immediate areas for future work, each bringing
its own set of challenges for refinement and automation.

Acknowledgements We first would like to thank the anonymous reviewers for their careful reading and
many useful suggestions. We are also grateful to Andy Wellings for helping us to clarify numerous subtleties
surrounding SCJ. This work was funded by the EPSRC grant EP/H017461/1.

References

[Abr10] J. R. Abrial. Modeling in Event-B. Cambridge University Press, Cambridge, CB2 8BS, UK, May 2010.
[AH07] J.-R. Abrial and S. Hallerstede. Refinement, Decomposition, and Instantiation of Discrete Models: Application to

Event-B. Fundamenta Informaticae, 77(1-2):1–28, May 2007.
[Bac89] R. J. R. Back. Refinement Calculus, Part II: Parallel and Reactive Programs. In Stepwise Refinement of Distributed

Systems Models, Formalisms, Correctness, volume 430 of LNCS, pages 67–93. Springer, May 1989.
[BKS83] R. J. R. Back and R. Kurki-Suonio. Decentralization of Process Nets with Centralized Control. In Proceedings of

PODC ’83, Second ACM Symposium on Principles of Distributed Computing, pages 131–142. ACM, August 1983.
[Bur99] A. Burns. The Ravenscar Profile. ACM SIGAda Ada Letters, XIX(4):49–52, 1999.
[But09] M. Butler. Decomposition Structures for Event-B. In Proceedings of IFM 2009, Integrated Formal Methods, volume

5423 of LNCS, pages 20–38. Springer, February 2009.
[BvW03] R. J. R. Back and J. von Wright. Compositional Action System Refinement. Formal Aspects of Computing,

15(2-3):103–117, November 2003.
[Cav97] A. Cavalcanti. A Refinement Calculus for Z. PhD thesis, University of Oxford, Oxford, OX1 3QD, UK, 1997.
[CCO11] A. Cavalcanti, P. Clayton, and C. O’Halloran. From control law diagrams to Ada via Circus. Formal Aspects of

Computing, 23(4):465–512, July 2011.
[CMR06] D. Cansell, D. Méry, and J. Rehm. Time Constraint Patterns for Event B Development. In Proceedings of B

2007: Formal Specification and Development in B, volume 4355 of LNCS, pages 140–154. Springer, January 2006.
[CSW03] A. Cavalcanti, A. Sampaio, and J. Woodcock. A Refinement Strategy for Circus. Formal Aspects of Computing,

15(2-3):146–181, November 2003.
[CSW05] A. Cavalcanti, A. Sampaio, and J. Woodcock. Unifying classes and processes. Software and Systems Modeling,

4(3):277–296, July 2005.
[CW98] A. Cavalcanti and J. Woodcock. ZRC — A Refinement Calculus for Z. Formal Aspects of Computing, 10(3):267–

289, March 1998.
[CWW11a] A. Cavalcanti, A. Wellings, and J. Woodcock. The Safety-Critical Java Memory Model: A Formal Account. In

Proceedings of FM 2011: Formal Methods, volume 6664 of LNCS, pages 246–261. Springer, June 2011.
[CWW+11b]A. Cavalcanti, A. Wellings, J. Woodcock, K. Wei, and F. Zeyda. Safety-Critical Java in Circus. In Proceedings

of JTRES 2011, 9th International Workshop on Java Technologies for Real-Time and Embedded Systems, pages
20–29. ACM, September 2011.

[CZW+13] A. Cavalcanti, F. Zeyda, A. Wellings, J. Woodcock, and K. Wei. Safety-Critical Java programs from Circus models.
Real-time Systems, 49:614–667, September 2013.

[DHS12] A. E. Dalsgaard, R. R. Hansen, and M. Schoeberl. Private Memory Allocation Analysis for Safety-Critical Java.
In Proceedings of JTRES 2012, 10th International Workshop on Java Technologies for Real-time and Embedded
Systems, pages 9–17. ACM, 2012.

[Gro02] L. Groves. Refinement and the Z Schema Calculus. In Proceedings of REFINE 2002: The BCS FACS Refinement
Workshop, ENTCS, volume 70(3), pages 70–93, November 2002.

[HHL+09] T. Henties, J. J. Hunt, D. Locke, K. Nilsen, M. Schoeberl, and J. Vitek. Java for Safety-Critical Applications. In
Proceedings of SafeCert 2009, pages 1–11, March 2009.

[HJ98] C. A. R. Hoare and H. Jifeng. Unifying Theories of Programming. Prentice Hall Series in Computer Science.
Prentice Hall, Upper Saddle River, NJ, USA, 1998.

[HL11] G. Haddad and G. T. Leavens. Specifying Subtypes in SCJ Programs. In Proceedings of JTRES 2011, 9th
International Workshop on Java Technologies for Real-Time and Embedded Systems, pages 40–46. ACM, 2011.

[HU01] I. J. Hayes and M. Utting. A sequential real-time refinement calculus. Acta Informatica, 37(6):385–448, 2001.
[KHP+09] T. Kalibera, J. Hagelberg, F. Pizlo, A. Plsek, B. Titzer, and J. Vitek. CDx : A Family of Real-time Java Benchmarks.

In Proceedings of JTRES 2009, 7th International Workshop on Java Technologies for Real-Time and Embedded
Systems, pages 41–50. ACM, September 2009.

[Mor94] C. C. Morgan. Programming from Specifications. Prentice Hall International Series in Computer Science. Prentice
Hall, Upper Saddle River, NJ, USA, January 1994.

[Nor03] M. Norrish. Complete Integer Decision Procedures as Derived Rules in HOL. In Proceedings of TPHOLs 2003,
Theorem Proving in Higher Order Logics, volume 2758 of LNCS, pages 71–86. Springer, September 2003.

[OCW09] M. Oliveira, A. Cavalcanti, and J. Woodcock. A UTP semantics for Circus. Formal Aspects of Computing, 21(1-
2):3–32, February 2009.

[Oli05] M. Oliveira. Formal Derivation of State-Rich Reactive Programs using Circus. PhD thesis, University of York,
York, YO10 5GH, UK, 2005.

[OZC11] M. Oliveira, F. Zeyda, and A. Cavalcanti. A tactic language for refinement of state-rich concurrent specifications.
Science of Computer Programming, 76(9):792–833, September 2011.

44 F. Zeyda and A. Cavalcanti

[PFHV04] F. Pizlo, J. M. Fox, D. Holmes, and J. Vitek. Real-time Java Scoped Memory: Design Patterns and Semantics. In
Proceedings of the Seventh IEEE International Symposium on Object-Oriented Real-Time Distributed Computing,
pages 101–110. IEEE, May 2004.

[Ros97] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall Series in Computer Science. Prentice Hall,
Upper Saddle River, NJ, USA, November 1997.

[Ros11] A. W. Roscoe. Understanding Concurrent Systems. Texts in Computer Science. Springer, 2011.
[RR88] G. M. Reed and A. W. Roscoe. A timed model for communicating sequential processes. Theoretical Computer

Science, 58(1-3):249–261, June 1988.
[RTC11] RTCA/EUROCAE joint committee. Software Considerations in Airborne Systems and Equipment Certification.

Technical Report DO-178C, RTCA Inc., Washington, DC, USA, December 2011.
[SCJS10] A. Sherif, A. Cavalcanti, H. Jifeng, and A. Sampaio. A process algebraic framework for specification and validation

of real-time systems. Formal Aspects of Computing, 22(2):153–191, March 2010.
[ST05] S. Schneider and H. Treharne. CSP theorems for communicating B machines. Formal Aspects of Computing,

17(4):390–422, December 2005.
[STR06] H. Søndergaard, B. Thomsen, and A. P. Ravn. A Ravenscar-Java Profile Implementation. In Proceedings of JTRES

2006, 4th International Workshop on Java Technologies for Real-time and Embedded Systems, pages 38–47. ACM,
2006.

[STW10] S. Schneider, H. Treharne, and H. Wehrheim. A CSP Approach to Control in Event-B. In Proceedings of IFM
2010, Integrated Formal Methods, volume 6396 of LNCS, pages 260–274. Springer, October 2010.

[The11] The Open Group. Safety Critical Java Technology Specification — Version 0.94. Technical Report JSR-302, Java
Community Process, January 2011. Available from http://jcp.org/en/jsr/detail?id=302.

[TPV10] D. Tang, A. Plsek, and J. Vitek. Static Checking of Safety Critical Java Annotations. In Proceedings of JTRES
2010, 8th International Workshop on Java Technologies for Real-Time and Embedded Systems, pages 148–154.
ACM, August 2010.

[W+08] R. Wilhelm et al. The Worst-Case Execution-Time Problem — Overview of Methods and Survey of Tools. ACM
Transactions on Embedded Computing Systems (TECS), 7(3):36:1–36:53, April 2008.

[WD96] J. Woodcock and J. Davies. Using Z: Specification, Refinement and Proof. Prentice Hall International Series in
Computer Science. Prentice Hall, Upper Saddle River, NJ, USA, July 1996.

[Wel04] A. Wellings. Concurrent and Real-Time Programming in Java. Wiley, West Sussex, PO19 8SQ, UK, 2004.
[Woo13] J. Woodcock. CML definition 4. Technical Report COMPASS Deliverable 23.5, Seventh Framework Pro-

gramme: Comprehensive Modelling for Advanced Systems of Systems, Grant Agreement 287829, 2013. Available
from http://www.compass-research.eu/deliverables.html.

[ZC13] F. Zeyda and A. Cavalcanti. Refining SCJ Mission Specifications into Parallel Handler Designs. In Proceedings of
REFINE 2013: 16th BCS FACS Refinement Workshop, EPTCS, volume 115, pages 52–67, May 2013.

[ZCW11] F. Zeyda, A. Cavalcanti, and A. Wellings. The Safety-Critical Java Mission Model: A Formal Account. In Pro-
ceedings of ICFEM 2011, 13th International Conference on Formal Engineering Methods, volume 6991 of LNCS,
pages 49–65. Springer, October 2011.

[ZCW+12] F. Zeyda, A. Cavalcanti, A. Wellings, J. Woodcock, and K. Wei. Refinement of the Parallel CDx . Technical
report, University of York, York, YO10 5GH, UK, July 2012. Available from http://www.cs.york.ac.uk/circus/
publications/techreports/.

[ZLCW13] F. Zeyda, L. Lalkhumsanga, A. Cavalcanti, and A. Wellings. Circus Models for Safety-Critical Java Programs. The
Computer Journal, 57(7):1046–1091, July 2013.

[ZOC12] F. Zeyda, M. Oliveira, and A. Cavalcanti. Mechanised support for sound refinement tactics. Formal Aspects of
Computing, 24(1):127–160, January 2012.

http://jcp.org/en/jsr/detail?id=302
http://www.compass-research.eu/deliverables.html
http://www.cs.york.ac.uk/circus/publications/techreports/
http://www.cs.york.ac.uk/circus/publications/techreports/

Laws of mission-based programming 45

A. Supplementary Refinement Laws

Law 27. (c −→A1 ; A2) � d ≡ (c −→A1) � d ; A2

Law 28. (Op ; A2) � d ≡ Op ; (A2 � d)

Law 29. (wait t ; A2) � d ≡ wait t ; (A2 � d − t) provided t ≤ d

Law 30. (A1 uA2) � d ≡ (A1� d) u (A2� d)

Law 31. (A1 @ A2) � d ≡ (A1� d) @ (A2� d)

Law 32. (A1 J ns1 | cs | ns2 K A2) � d ≡ (A1 � d) J ns1 | cs | ns2 K A2 provided usedC(A2) = ∅

Law 33. (A � d1) � d2 ≡ A � min(d1, d2)

Law 34. (A � d1) � d2 ≡ (A � d2) � d1

Fig. 24. Distribution laws for synchronisation deadlines.

Law 35. Specialised sharing law for unidirectional communication between sequential handlers. (µX • A1 ; c ! x −→ skip ; lockstep −→X)

Jns1 | cs | ns2K

(µX • c ? x −→A2(x) ; lockstep −→X)

 \ {| c |}
≡

 (µX • A1 ; cwrite ! x −→ skip ; cpivot −→ skip ; lockstep −→X)

Jns1 | (cs − {| c |}) ∪ {| cpivot |} | ns2K

(µX • cpivot −→ skip ; cread ? x −→A2(x) ; lockstep −→X)

 \ {| cpivot |}

Jns1 ∪ ns2 | {| cread , cwrite |} | ∅ K var v : T •

µX •
(

(cread ! v −→ skip) @
(cwrite ? x −→ v := x)

)
; X




\ {| cread , cwrite |}

provided {| c, lockstep |} ⊆ cs and {| c, lockstep |} ∩ (usedC(A1) ∪ usedC(A2)) = ∅ and
cread , cwrite and cpivot are fresh channels.

Fig. 25. Specialised sharing law for unidirectional communication between sequential handlers.

B. Evaluation of TakesAtMost in the CDx example

TakesAtMost

 (next frame ? frame −→ RecordFrame) � INP DL;
wait 0 . . FRAME PERIOD −OUT DL− INP DL;
var colls : N • CalcCollisions;
(output collisions ! colls −→ skip) � OUT DL


= “definition of TakesAtMost(A1 ; A2) in Figure 6” TakesAtMost((next frame ? frame −→ RecordFrame) � INP DL) +

TakesAtMost(wait 0 . . FRAME PERIOD −OUT DL− INP DL) +
TakesAtMost(var colls : N • CalcCollisions) +
TakesAtMost((output collisions ! colls −→ skip) � OUT DL)



46 F. Zeyda and A. Cavalcanti

= “definition of TakesAtMost((c −→A) � d) in Figure 6” TakesAtMost(RecordFrame) + INP DL +
TakesAtMost(wait 0 . . FRAME PERIOD −OUT DL− INP DL) +
TakesAtMost(var colls : N • CalcCollisions) +
TakesAtMost(skip) + OUT DL


= “definition of TakesAtMost(wait t1 . . t2) in Figure 6” TakesAtMost(RecordFrame) + INP DL +

FRAME PERIOD −OUT DL− INP DL +
TakesAtMost(var colls : N • CalcCollisions) +
TakesAtMost(skip) + OUT DL


= “definition of TakesAtMost(var v : T • A) in Figure 6” TakesAtMost(RecordFrame) + INP DL +

FRAME PERIOD −OUT DL− INP DL +
TakesAtMost(CalcCollisions) +
TakesAtMost(skip) + OUT DL


= “definition of TakesAtMost(skip) and TakesAtMost(Op) in Figure 6”

0 + INP DL + FRAME PERIOD −OUT DL− INP DL + 0 + 0 + OUT DL

= “arithmetic simplification”

FRAME PERIOD �

C. Class definition for the Parition class

The Partition class is used in the CDx program to record partitions of the voxel space that define the
computational work for the parallel detector handlers. The aircraft in one voxel are encoded by a List of
Motion objects. The class constructor (initial paragraph) receives the number of work partitions.

class Partition =̂ begin

state PartitionState
private parts : Array [List [VoxelMotions]] (where VoxelMotions abbreviates List [Motion])
private counter : int

parts 6= null ∧ 0 ≤ counter < parts.length

initial Init =̂ val n : int •
parts := newM Array [List [VoxelMotions]](n);(

for index = 0 to parts.length − 1 •
parts.setArray(index ,newM LinkedList [Motion]())

)
;

counter := 0


public sync clear =̂ (

for index = 0 to parts.length − 1 •
parts.clear())

)
;

counter := 0


public sync recordVoxelMotions(motions : VoxelMotions]) =̂(

parts.getArray(counter).add(motions);
counter := (counter + 1) mod parts.length

)
public sync getDetectorWork =̂ val detector : int ; res ret : List [VoxelMotions] •

ret := parts.getArray(detector − 1)

end

Laws of mission-based programming 47

D. Decomposed data operations of the CDx example

Z data operation Handle class in the SCJ program Description

StoreFrame InputFrameHandler read frame and calculate motions

PartitionWork ReducerHandler voxel-hashing and partitioning voxels

CalcPartCollisions DetectorHandler (4 instances) compute collisions for each voxel partition

SetCollisionsFromParts OutputCollisionsHandler obtain and output collisions result

Table 1. Mapping between Z operations and handlers in the verified CDx program design.

StoreFrame
∆ [currentFrame : RawFrame; state : StateTable; work : Partition; collisions : Z]
frame? : Frame

∃ posns, posns ′ : Frame; motions,motions ′ : Frame |
dom posns = dom motions ∧ dom posns ′ = dom motions ′ • posns ′ = frame? ∧
motions ′ = (λ a : dom posns ′ • if a ∈ dom posns then (posns ′ a)−V (posns a) else ZeroV) ∧
posns = F (currentFrame) ∧ motions = G(currentFrame, state) ∧
posns ′ = F (currentFrame ′) ∧ motions ′ = G(currentFrame ′, state ′)


PartitionWork
∆ [currentFrame : RawFrame; state : StateTable; work : Partition; collisions : Z]

currentFrame ′ = currentFrame ∧ state ′ = state
∃ posns : Frame; motions : Frame | dom posns = dom motions •

posns = F (currentFrame) ∧ motions = G(currentFrame, state) ∧
∃ voxel map : HashMap[Vector2d ,List [Motion]] | voxel map 6= null •
∀ a1, a2 : Aircraft | {a1, a2} ⊆ dom posns •
(a1, a2) ∈ CollSet(posns,motions)⇒(∃ l : List [Motion] | l ∈ voxel map′.values().elems() •

MkMotion(a1, posns a1 −V motions a1, posns a1) ∈ l .elems() ∧
MkMotion(a2, posns a2 −V motions a2, posns a2) ∈ l .elems()

)



CalcPartCollisions
Ξ [currentFrame : RawFrame; state : StateTable; work : Partition; collisions : Z]
i? : 1 . . 4
pcolls! : Z

pcolls! = #


a1 : Aircraft ; a2 : Aircraft | ∃ l : work .getDetectorWork(i?).elems() • ∃ v1, v2 : Vector ; w1,w2 : Vector •

MkMotion(a1, v1,w1) ∈ l .elems () ∧
MkMotion(a2, v2,w2) ∈ l .elems () ∧
collide((v1,w1 −V v1), (v2,w2 −V v2))


 div 2

SetCollisionsFromParts
∆ [currentFrame : RawFrame; state : StateTable; work : Partition; collisions : Z]
collsbag? : bag int

currentFrame ′ = currentFrame ∧ state ′ = state ∧ work ′ = work
∃ s : seq int | collsbag? = items s • collisions ′ = Σseq s (Σseq yields the sum of sequence elements)

48 F. Zeyda and A. Cavalcanti

E. Circus Time UTP model

Def 8. Definition of prefix and subtraction for time traces in Circus Time.

tr1 ≤A tr2 =̂ front(tr1) < tr2 ∧ last(tr1).1 ≤ head(tr2 − front(tr1)).1

tr1 −A tr2 =̂ 〈(head(t2 − front(tr1)).1− last(tr1).1, head(tr2 − front(tr1)).2)〉a tail(tr2 − front(tr1))

where ≤ and < are the standard prefix operators on sequences, and − is (standard) sequence subtraction.
The notations c.1 and c.2 are used for pair selection, and head , tail , front and last have their usual meanings.

F. Circus Time UTP Laws

Law 36. Law for sequential composition of reactive designs in Circus Time.

RA(P1 ` Q1) ; RA(P2 ` Q2) ≡

RA

(¬ (R1A(¬ P1) ; R1A(true)) ∧ ¬ (R1A(Q1) ; R1A(¬ wait ∧ R2A(¬ P2)))
`
R1A(Q1) ; R1A(II / wait .R2A(Q2))

)

Fig. 26. Sequential composition of reactive designs in Circus Time.

Law 37. Law for sequential composition of terminating reactive designs in Circus Time.

RA(true ` Q1) ; RA(true ` Q2) ≡ RA(true ` R1A(Q1) ; R1A(II / wait .R2A(Q2)))

Proof. RA(true ` Q1) ; RA(true ` Q2)

≡ “application of Law 36”

RA

(¬ (R1A(¬ true) ; R1A(true)) ∧ ¬ (R1A(Q1) ; R1A(¬ wait ∧ R2A(¬ true)))
`
R1A(Q1) ; R1A(II / wait .R2A(Q2))

)
≡ “logic simplification”

RA

(¬ (R1A(false) ; R1A(true)) ∧ ¬ (R1A(Q1) ; R1A(¬ wait ∧ R2A(false)))
`
R1A(Q1) ; R1A(II / wait .R2A(Q2))

)
≡ “unfolding definitions of R1A and R2A in precondition”

RA

(¬ ((false ∧ tr ≤A tr ′) ; (true ∧ tr ≤A tr ′)) ∧ ¬ ((Q1 ∧ tr ≤A tr ′) ; (¬ wait ∧ false))
`
R1A(Q1) ; R1A(II / wait .R2A(Q2))

)
≡ “logic simplification”

RA

(¬ (false ; tr ≤A tr ′) ∧ ¬ ((Q1 ∧ tr ≤A tr ′) ; false)
`
R1A(Q1) ; R1A(II / wait .R2A(Q2))

)
≡ “composition with empty relation: (false ; P) ≡ false ≡ (P ; false)”

RA(¬ false ∧ ¬ false ` R1A(Q1) ; R1A(II / wait .R2A(Q2)))

≡ “logic simplification”

RA(true ` R1A(Q1) ; R1A(II / wait .R2A(Q2))) �

Fig. 27. Sequential composition of terminating reactive designs in Circus Time.

Laws of mission-based programming 49

G. Mission class of the Level 1 CDx

import javax.safetycritical.Mission;

public class CDxMission extends Mission {
/* Records the current radar frame of aircraft positions. */
public RawFrame currentFrame;

/* Holds previous aircraft positions; it is used to predict their motions. */
public StateTable state;

/* Records the computational work for the detector handlers. */
public Partition work;

/* Accumulates the number of collisions calculated during detection. */
public int collisions;

/* Control object that is used to orchestrate handler execution. */
public DetectorControl control;

public CDxMission() {
/* Here we create shared data objects in mission memory. */
currentFrame = new RawFrame();
state = new StateTable();
work = new Partition(4);
collisions = 0;

}

public @Override void initialize() {
/* SCJ event that releases ReducerHandler. */
AperiodicEvent reduce = new AperiodicEvent();

/* SCJ event that releases all four DetectorHandlers. */
AperiodicEvent detect = new AperiodicEvent();

/* SCJ event that releases OutputCollisionsHandler. */
AperiodicEvent output = new AperiodicEvent();

/* Control object that fires the output event when detection is completed. */
control = new DetectorControl(output, 4);

/* InputFrameHandler reads radar frames; the only periodic handler. */
InputFrameHandler h1 = new InputFrameHandler(this, reduce);

/* ReducerHandler performs voxel-hashing and then subdivides the work. */
ReducerHandler h2 = new ReducerHandler(this, detect, control, reduce);

/* Four DetectorHandler instances perform the actual detection work. */
DetectorHandler h3 = new DetectorHandler(this, control, 1, detect);
DetectorHandler h4 = new DetectorHandler(this, control, 2, detect);
DetectorHandler h5 = new DetectorHandler(this, control, 3, detect);
DetectorHandler h6 = new DetectorHandler(this, control, 4, detect);

/* OutputCollisionsHandler outputs the collisions results. */
OutputCollisionsHandler h7 = new OutputCollisionsHandler(this, output);

50 F. Zeyda and A. Cavalcanti

/* Below we register all handlers with the mission. */
h1.register(); h2.register(); h3.register(); h4.register();
h5.register(); h6.register(); h7.register();

}

/* SCJ method that specifies the amount of mission memory required. */
public @Override long missionMemorySize() {
return Constants.MISSION_MEMORY_SIZE;

}

/* Method to get the current frame of aircraft positions. */
public synchronized RawFrame getFrame() {
return currentFrame;

}

/* Method to set the current frame of aircraft positions. */
public synchronized void setFrame(RawFrame frame) {
currentFrame = frame;

}

/* Method to get previous aircraft positions. */
public synchronized StateTable getState() {
return state;

}

/* Method to set previous aircraft positions. */
public synchronized void setState(StateTable state) {
this.state = state;

}

/* Method to get the shared work variable. */
public synchronized Partition getWork() {
return work;

}

/* Method to set the shared work variable. */
public synchronized void setWork(Partition work) {
this.work = work;

}

/* Resets the number of detected collisions. Called by ReducerHandler. */
public synchronized void initColls() {
collisions = 0;

}

/* Records a partial collisions result. Called by the DetectorHandlers. */
public synchronized void recColls(int n) {
collisions += n;

}

/* Returns the cumulative collisions. Called by OutputCollisionsHandler. */
public synchronized int getColls() {
return collisions;

}
}

	Introduction
	Preliminaries
	SCJ Level 1
	The Circus family
	Refinement strategy for SCJ

	Circus model of an SCJ program design
	Refinement Laws
	Introduction of cycle timings
	Decomposition of data operations
	Distribution of time budgets
	Introduction of parallel handler actions
	Encapsulation of shared data

	Refinement of the CDx
	Introduction of cycle timings
	Decomposition of data operations
	Distribution of time budgets
	Introduction of parallel handler actions
	Encapsulation of shared data

	Automation
	Introduction of cycle timings
	Decomposition of data operations
	Distribution of time budgets
	Introduction of parallel handler actions
	Encapsulation of shared data

	Proofs of Laws
	Unifying Theories of Programming
	Circus Time
	Laws: example proofs

	Conclusion
	References
	Supplementary Refinement Laws
	Evaluation of TakesAtMost in the CDx example
	Class definition for the Partition class
	Decomposed data operations of the CDx example
	Circus Time UTP model
	Circus Time UTP Laws
	Mission class of the Level 1 CDx

