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Abstract

Medical devices are safety-critical systems since their malfunctions can se-
riously compromise human safety. Correct operation of a medical device
depends upon the controlling software, whose development should adhere to
certification standards. However, these standards provide general descrip-
tions of common software engineering activities without any indication re-
garding particular methods and techniques to assure safety and reliability.

This paper discusses how to integrate the use of a formal approach into
the current normative for the medical software development. The rigorous
process is based on the Abstract State Machine (ASM) formal method, its
refinement principle, and model analysis approaches the method supports.
The hemodialysis machine case study is used to show how the ASM-based
design process covers most of the engineering activities required by the related
standards, and provides rigorous approaches for medical software validation
and verification.

Keywords: Abstract State Machines, medical device software, certification,
modeling, validation, verification, hemodialysis device

1. Introduction

Medical devices are increasingly becoming software intensive. This par-
adigm shift also impacts patients’ safety, as a software malfunctioning can
cause injuries or even death to patients [46]. Therefore, assuring medical
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software safety and reliability is mandatory, and methods and techniques for
medical software validation and verification are highly demanded.

Several standards for the validation of medical devices have been pro-
posed – as ISO 13485 [39], ISO 14971 [40], IEC 60601-1 [37], EU Directive
2007/47/EC [28] –, but they mainly consider hardware aspects of the phys-
ical components of a device, and do not mention the software component.
The only reference concerning regulation of medical software is the standard
IEC (International Electrotechnical Commission) 62304 [38]. This standard
provides a very general description of common life cycle activities of the soft-
ware development, without giving any indication regarding process models,
or methods and techniques to assure safety and reliability. The U.S. Food
and Drug Administration (FDA), the United States federal executive depart-
ment that is responsible for protecting and promoting public health through
the regulation and supervision of medical devices, although accepts the IEC
62304 standard, also pushes towards the application of rigorous approaches
for software validation. In [60], FDA defines several broad concepts that
can be used as guidance for software validation and verification, and requires
these activities to be conducted throughout the software development life
cycle. However, no particular technique or method is recommended.

Both IEC standard and FDA principles aim for more rigorous approaches
to certify software of medical devices [41, 44]. Potential methods should
allow writing well-defined models that can be used to guide the software
development, to prove that safety-critical properties hold, and to guarantee
conformance of running code to abstract specification of safe device operation
(since, most of the time, software for medical devices is not developed from
scratch). To be practical, potential methods should provide the tool support
for modeling and analysis.

The formal approach based on Abstract State Machines (ASMs) [21] pro-
poses an incremental life cycle model for software development based on
model refinement, includes the main software engineering activities (specifica-
tion, validation, verification, conformance checking), and is tool-supported [13].
Despite their rigorous mathematical foundation, ASMs can be viewed as
pseudo-code (or virtual machines) working over abstract data structures.
Therefore, ASMs are relatively easy to understand even by non-experts. The
method has been successfully applied to numerous case studies [21], also in
the context of medical software, as in [3, 15] for the rigorous development of
an optometric measurement device software, and in [4] for the specification
and verification of the Hemodialysis Machine Case Study (HMCS) [48].
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Although we believe that the rigor of a formal method can improve the
current normative and that ASMs have the required potential, evidence must
be given about a smooth possible integration of the method into the stan-
dards for medical software development. Additionally, it must be studied
how much the ASM process is compliant with the normative: which steps
and activities of the standard IEC are covered by using ASMs, and which
are not; which FDA principles are ensured, and to what extent.

In this paper, we take advantage of the results already presented in [4] for
the HMCS to make such a compliance analysis with the aim to understand
how far we are from proposing an ASM-based process for medical software
certification. The current work improves [4] in several aspects: (a) precise
analysis of the advantages and shortcomings of the ASM approach w.r.t. the
current normative for medical software development; (b) specification and
analysis of the HMCS performed at different levels of refinement to show how
validation and verification are continuous activities in the process; (c) model
visualization in terms of a graphical notation to provide better evidence of
the software operation; (d) encoding of a Java prototype of the software
controlling the hemodialysis device, in order to show the applicability of
conformance checking techniques, thus showing how we deal with the main
software engineering activities of the IEC 62304 standard in a formal way.

The paper is organized as follows. Sect. 2 introduces the current norma-
tive for medical software development. Sect. 3 briefly presents the ASM-based
development process. Sect. 4 discusses compliance of the ASM process w.r.t.
the normative: it shows how the steps and principles of the standards IEC
and FDA are fulfilled by the ASM-based process. Sect. 5 takes advantage of
the HMCS to show the application of the ASM process to a medical device
for which a certification could be required; it first presents the specification
of the HMCS by means of four levels of model refinement (at each level, all
possible results concerning requirements validation and property verification
are reported); then, it describes a Java prototype of the software controlling
the machine, and a technique for conformance checking. Sect. 6 compares
our approach with other formal approaches applied to the formalization of
medical software and, in particular, to the HMCS. Sect. 7 concludes the
paper.
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Figure 1: IEC 62304 development process

2. Normative for medical software

Currently, the main normative for development and analysis of medical
software is the standard IEC 62304 [38] and the “General Principles of Soft-
ware Validation” [60] established by the FDA. We here briefly recall such
regulations and their underlying principles since later we want to analyze
which activities can be covered by the use of the ASM-based design process.

2.1. IEC 62304 standard

The standard IEC 62304 classifies medical software in three classes on the
basis of the potential injuries caused by software malfunctions, and defines
the life cycle activities (points 5.1-5.8 of Sect. 5 in [38], also shown in Fig. 1)
that have to be performed and appropriately documented when developing
medical software. Each activity is split into tasks that are mandatory or
not depending on the software class. The standard does not prescribe a
specific life cycle model, nor it gives indications on methods and techniques
to apply. Users are responsible for mapping the adopted life cycle model to
the standard.

Step (5.1) essentially consists in defining a life cycle model, planning
procedures and deliverables, choosing standards, methods and tools, estab-
lishing which activity requires verification and how to achieve traceability
among system requirements, software requirements, software tests, and risks
control. Step (5.2) consists in defining and documenting functional and non-
functional software requirements. It also requires checking for traceability
between software requirements and system requirements, including risk con-
trol measures in the software requirements, and re-evaluating risk analysis on
the established software requirements. Step (5.3) regards the specification of
the software architecture from the software requirements. It requires to de-
scribe the software structure, identify software elements, specify functional
and performance requirements for the software elements, identify software
elements related to risk control, and verify the software architecture w.r.t.
the software requirements. Step (5.4) regards the refinement of the software
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architecture into software units. Steps (5.5 - 5.7) regard software implemen-
tation and testing at unit, integration, and system levels. Step (5.8) includes
the demonstration, by a device manufacturer, that software has been vali-
dated and verified.

2.2. FDA General Principles of Software Validation

FDA accepts the standard IEC 62304 for all levels of concerns and pushes
for an integration of software life cycle management and risk management
activities. The organization promotes the use of formal approaches for soft-
ware validation and verification (V&V), and establishes the following general
principles [60] as guidelines:

1. A documented software requirements specification should provide a
baseline for both V&V.

2. Developers should use a mixture of methods and techniques to prevent
and to detect software errors.

3. Software V&V should be planned early and conducted throughout the
software life cycle.

4. Software V&V should take place within the environment of an estab-
lished software life cycle.

5. Software V&V process should be defined and controlled through the
use of a plan.

6. Software V&V process should be executed through the use of proce-
dures.

7. Software V&V should be re-established upon any (software) change.
8. Validation coverage should be based on the software complexity and

safety risks.
9. V&V activities should be conducted using the quality assurance precept

of “independence of review.”
10. Device manufacturer has flexibility in choosing how to apply these V&V

principles, but retains ultimate responsibility for demonstrating that
the software has been validated.

3. ASM-based development process

Abstract State Machines (ASMs) are transition systems that extend Fi-
nite State Machines by replacing unstructured control states by algebraic
structures, i.e., domains of objects with functions and predicates defined on
them. A state represents the instantaneous configuration of the system and
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Figure 2: ASM-based development process

transition rules describe the state update. There is a limited but powerful set
of rule constructors : if-then for guarded actions, par for simultaneous par-
allel actions, choose for nondeterminism (existential quantification), forall
for unrestricted synchronous parallelism (universal quantification). A macro

rule is a “named” rule that can be invoked in any point of the model. A run
is a (finite or infinite) sequence of states s0, s1, . . . , sn, . . . , where each si is
obtained by applying the transition rules at si−1. Functions can be of differ-
ent types. In particular, controlled functions can be updated by transition
rules and represent the internal memory of the ASM; monitored functions,
instead, cannot be updated by transition rules, but only by the environment,
and represent inputs of the machine.

As shown in Fig. 2, the ASM-based development process is carried in
an iterative and incremental fashion. The ASMETA (ASM mETAmodeling)
framework1 [13] provides different formal activities supporting the process.

Requirements modeling is based on model refinement; it starts by devel-
oping a high-level ground model (ASM 0 in Fig. 2) that correctly captures
stakeholders requirements, and consistently (i.e., free from specification in-
consistencies) reflects the intended system behavior. However, it does not
need to be complete, i.e., it may not specify all stakeholder requirements.
ASM specifications can be edited by using a concrete syntax [33] in a textual
editor, and graphically visualized [5].

Starting from the ground model, through a sequence of refined models,

1http://asmeta.sourceforge.net/
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further functional requirements can be specified and a complete architecture
of the system is defined. At each refinement step, if a particular kind of refine-
ment (called stuttering refinement) has been applied, refinement correctness
can be automatically checked by the refinement prover [11]. Otherwise, a
hand-proof must be supplied. The refinement process can stop at any de-
sired level of detail, possibly providing a smooth transition from specification
to implementation, which can be seen as the last low-level refinement step.

At each level of refinement, different validation and verification (V&V)
activities can be performed. Model validation is possible by means of an
interactive simulator [33] and a validator [26] which allows to build and ex-
ecute scenarios of expected system behaviors. Automatic model review (a
form of static analysis) is also possible: it allows to check if a model has
sufficient quality attributes (i.e., minimality, completeness, and consistency).
Property verification of ASMs is possible by means of a model checker [6]
that verifies both Computation Tree Logic (CTL) and Linear Temporal Logic
(LTL) formulas.

Implementation can be either automatically derived from the model [19]
or externally provided. In the former case, the conformance w.r.t. the spec-
ification should be assured by the translator; in the latter case, conformance
checking must be executed. Both Model-Based Testing (MBT) and Runtime
Verification can be applied to check whether the implementation conforms
to its specification [10]. We support conformance checking w.r.t. Java code.
The MBT feature of ASMETA [32] can be used to automatically generate
tests from ASM models and, therefore, to check the conformance offline;
the support for runtime verification [8], instead, can be used to check the
conformance online.

4. ASM-based certification

The ASM-based process can be used for developing software of (dis-
tributed) medical devices whose (continuous) behaviour can be discretized in
a set of states and transitions between them. We are not able to deal with
continuous time, although a notion of reactive timed ASMs [56] has been
proposed.

We here discuss how compliant the ASM-based process is w.r.t. the ex-
isting normative in the field of medical software, which activities of the IEC
standard can be covered by the use of ASMs, which FDA principles are en-
sured by the use of ASMs, how the rigor of a formal method such as ASMs
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can improve the current normative, and what can not be captured by or is
out of the scope of ASMs. Aim of such analysis is to understand how far we
are from proposing an ASM-based process for medical software certification.

4.1. Compliance of the ASM process with the IEC standard

Regarding step (5.1) of the IEC 62304 standard, ASMs can supply a
precise iterative and incremental life cycle model based on model refinement.
Life cycle procedures are modeling, validation, verification, and conformance
checking, the last applicable also at the maintenance phase. Deliverables
are given in terms of a sequence of refined models, each one equipped with
validation and verification results. Traceability is given, at each refinement
step, by the conformance relation between abstract and refined models.

ASMs do not support activities peculiar to risk management, although
ASM formal verification can be used to check the absence of the risks identi-
fied by risk analysis. However, risk management sometimes requires to assess
the probability of risk occurrence: ASMs do not have yet a mature support
for such probabilistic analysis.

Once the ASM-based process is established as development model, the
subsequent life cycle activities (steps 5.2-5.7) prescribed by the standard
can be devised precisely. When a formal method is used, (software) system
requirements (step 5.2) and design (steps 5.3-5.4) are expressed in detail by
means of a mathematical model, carefully analyzed and checked before the
implementation development. When developing such a formal model, one
has to translate the informal requirements, which are expressed in natural
language, diagrams, and tables, into a mathematical language which has a
formally defined semantics [58]. Informal requirements are the results of the
requirements gathering activity (which is also required by step 5.2) which is
out of the scope of the ASM method, and thus complementary techniques
should be used to this purpose. An example of informal requirements is the
HMCS description in [48], that constitutes our input document to cover steps
5.2 to 5.4 for the case study.

There is a tight feedback loop between the informal requirements de-
scription and the formal specification. Indeed, one of the main benefits of
the formal specification is its ability to uncover problems and ambiguities in
the informal requirements. Note that the pseudo-code style and freedom of
abstraction in ASMs allow for capturing of requirements at a very high-level
of abstraction in a form that is understandable by the stakeholders. Further-
more, ASMs are particularly suitable for modeling functional requirements,
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while non-functional requirements cannot be easily handled.
Thanks to the model refinement mechanism, steps (5.2 - 5.4) are covered

by the continuous activity of modeling and verifying software requirements
along the ASM process till the desired level of refinement, possibly to code
level. For the HMCS, this is what is reported in Sects. 5.2, (till a Java
prototypical implementation of the case study – see Sect. 5.3). Already at
the ground level, software structure is captured, even if not completely, by
the model signature (i.e., domains and functions defined on them), while
software behavior is specified by means of transition rules. Model refinement
and decomposition can help manage the complexity of systems and move
from a global view of the system to a component (or unit) view. Design
decisions and architectural choices are added along model refinement. For
example, for the HMCS, different operation phases are introduced through
different levels of refinement, and patient treatments, error handling and
property verification are increasingly dealt with at each level. Risk control is
performed in terms of verification of required (functional) safety properties,
assurance of quality properties, and design of critical scenarios.

Steps (5.5 - 5.7) concern code and testing. Although in ASMs a code
prototype could be obtained through a translator as last model refinement
step, usually we expect code to be developed by a vendor and implemented
by the use of powerful programming techniques and languages. Thus, the
ASM process does not fully cover these development steps. However, hav-
ing executable models available, ASM techniques for conformance checking
(model-based testing and runtime verification) are applicable. This is shown
for the HMCS in Sect. 5.3 by using a prototypical Java implementation.

Regarding step (5.8), if a device manufacturer adopts the ASM process,
demonstration that software has been validated and verified is straightfor-
ward, since validation and verification are continuous activities along the
process, and conformance checking is possible on the subsequent released
versions of the software.

4.2. ASM process compliant with the FDA principles

By proposing the ASM process for medical software development, we
respond to the request of using formal approaches for software validation
and verification that the FDA organization promotes. Here, we discuss how
ASM V&V activities achieve the FDA principles. We still miss a way to
integrate software life cycle management and risk management.
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(1) Using ASMs, requirements are specified and documented by means
of a chain of models providing a rigorous baseline for both validation and
verification.

(2) Continuous defect prevention is supported. At each modeling level,
faults and unsafe situations can be checked. Safety properties are proved on
models, while software testing for conformance verification of the implemen-
tation is possible.

(3)-(6) The ASM process allows preparation for software validation and
verification as early as possible, since V&V can start at ground level. These
activities are part of the process, can be planned at different abstract lev-
els, are documented, and supported by precise procedures, i.e., methods and
techniques.

(7) In case changes only regard the software implementation and do not
affect the model, our process requires to re-run conformance checking only;
in case a software change requires to review the specification at a certain
level, then refinement correctness must be re-proved and V&V re-executed
from the concerned level down to the implementation.

(8) Regarding validation coverage, by simulation and testing, we can col-
lect the coverage in terms of rules or code covered. This can be used by the
designer to estimate if the validation activity is commensurate with the risk
associated with the use of the software for the specified intended use.

(9) Since V&V are performed by exploiting unambiguous mathematical-
based techniques, they facilitate independent evaluation of software quality
assurance.

(10) The ASM process allows a device manufacturer to demonstrate that
the software has been validated and verified : if an implementation is obtained
as the last model refinement step, it is correct-by-construction due to the
proof of refinement correctness; if the code has been developed by a vendor,
conformance checking can guarantee correctness w.r.t. a verified model.

5. Hemodialysis device case study

In this section, we exemplify the application of the ASM-based develop-
ment process by providing a formal specification of the HMCS. In Sect. 5.1
we provide a brief description of the case study2. In Sect. 5.2 we show how

2Due to space limitation, we are not able to report the long list of requirements pre-
sented in [48]. The reader can access the document also from here: http://www.cdcc.
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the ASM method can be used to support (in a formal way) the activities re-
quired by steps 5.2-5.4 of the IEC 62304 standard, and in Sect. 5.3 to support
those required by steps 5.5-5.7. We also show how the FDA principles are
concretely fulfilled by the early and continuous V&V activities of the ASM
process.

5.1. Case study description

Hemodialysis is a medical treatment that uses a device to clean the blood.
The hemodialysis device transports the blood from and to the patient, filters
wastes and salts from the blood, and regulates the fluid level of the blood.
The connection between the patient and the device is surgically created by
means of a venous and an arterial access.

During the therapy, the device extracts the blood through the arterial
access. The dialyser separates the metabolic waste products from the blood.
At the end, the clean blood is pumped back to the patient. A therapy session
is divided into three phases: preparation, initiation, and ending.

The first operation executed in the preparation phase is an automatic test
to check all the device functionalities. After that, the concentrate for the ther-
apy is connected and a nurse sets all rinsing parameters. The tubing system
is connected to the machine and filled with saline solution. Afterwards, the
nurse prepares the heparin pump and inserts the treatment parameters. At
the end of the preparation phase, the dialyser is connected to the machine
and rinsed with the saline solution.

During the initiation phase, the patient is connected to the device through
the arterial access and the tubes are filled with blood until the venous red
detector (VRD) sensor detects that they are full. Subsequently, the patient
is connected venously and the therapy starts. During the therapy, the blood
is extracted by the blood pump (BP) and is cleaned by the dialyser using the
dialysing fluid (DF).

When the therapy is finished, the machine starts the ending phase. The
patient is disconnected arterially and the saline solution is infused venously.
When the solution is infused completely, the patient is disconnected also
venously. After that, the dialyser and the cartridge are emptied. Finally, an
overview of the therapy is shown on the device display.

faw.jku.at/ABZ2016/HD-CaseStudy.pdf.

11

http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf
http://www.cdcc.faw.jku.at/ABZ2016/HD-CaseStudy.pdf


refinement #monitored
functions

#controlled
functions

#derived
functions

#rule dec-
larations

#rule #properties

Ground model 0 1 8 5 11 0
1st - preparation phase 52 17 8 68 242 6
2nd - initiation phase 91 36 14 143 578 46
3rd - ending phase 101 39 15 159 648 52

Figure 3: Models data

5.2. Modeling by refinement

In modeling the HMCS, we proceeded through refinement. A peculiarity
of the case study [48] is that the device behavior is clearly divided in phases,
each characterized by the execution of activities (or sub-phases), as shown
in Table 1.

At the highest level of abstraction, the ground model gives the overall
abstract view of the whole device that goes through three phases: the PREP-

ARATION of the device, the execution (or INITIATION3) of the therapy, and
the termination (or ENDING) of the process. Then, we proceeded by refining
each of these phases. Each refinement step models all the (possible) activ-
ities – that lead the device to go through specific sub-phases – performed
in the phase and all the controls that are done, with related errors and
alarms. The deepest nesting is of four levels, since in phase INITIATION the
activity THERAPY RUNNING requires that the THERAPHY EXECution considers
subsequent operations on the arterialBolus. Fig. 3 reports some data of
the chain of the four models that form the complete specification.

While the ground model is rather simple and it has no monitored function
and no requirement property, all refinements add functions of all types, rules,
and properties, depending on the phase they refer to. Note that the second
refinement allows to prove the majority of requirements (40 more w.r.t. the
previous refinement), since it models the main part of the therapy.

5.2.1. Ground model

As said before, the ground model simply describes the transitions between
the phases constituting a hemodialysis treatment, without any additional
detail. Code 1 shows the ground model written using the ASMETA concrete
syntax. The main rule simply executes rule r run dialysis that, depending

3Note that we use INITIATION to denote this phase to be consistent with the case
study [48], although the term is misleading.
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Table 1: Hemodialysis device phases

phase

PREPARATION

prepPhase
AUTO TEST
CONNECT CONCENTRATE
SET RINSING PARAM

TUBING SYSTEM

tubingSystemPhase
CONNECT AV TUBES
CONNECT ALL COMP
SET SALINE LEVELS
INSERT BLOODLINES
PRIMING
CONNECT AV ENDS

PREPARE HEPARIN

SET TREAT PARAM

treatmentParam
BLOOD CONDUCTIVITY
BIC AC
BIC CONDUCTIVITY
DF TEMP
DF FLOW
UF VOLUME
THERAPY TIME
MIN UF RATE
MAX UF RATE
MAX AP
DELTA AP
PERC DELTA TMP
LIMITS TMP
MAX TMP
EXTENDED TMP
MAX BEP
STOP TIME H
BOLUS VOLUME H
RATE H
ACTIVATION H
SYRINGE TYPE

RINSE DIALYZER

rinsePhase
CONNECT DIALYZER
FILL ART CHAMBER
FILL VEN CHAMBER
FILL DIALYZER

INITIATION

initPhase

CONNECT PATIENT

patientPhase
CONN ART
START BP
BLOOD FLOW
FILL TUBING
CONN VEN
END CONN

THERAPY RUNNING

therapyPhase
START HEPARIN

THERAPY EXEC

arterialBolusPhase
WAIT SOLUTION
SET ARTERIAL BOLUS VOLUME
CONNECT SOLUTION
RUNNING SOLUTION

THERAPY END

ENDING

endingPhase

REINFUSION

reinfusionPhase
REMOVE ART
CONN SALINE
START SALINE INF
CHOOSE NEXT REINF STEP
RUN SALINE INF
START SALINE REIN
RUN SALINE REIN
REMOVE VEN

DRAIN DIALYZER
EMPTY CARTRIDGE
THERAPY OVERVIEW

13



asm HemodialysisGround

signature:
enum domain Phases = {PREPARATION | INITIATION | ENDING}
controlled phase: Phases

definitions:
macro rule r run preparation =
phase := INITIATION

macro rule r run initiation =
phase := ENDING

macro rule r run ending =
skip

’

macro rule r run dialysis =
par

if phase = PREPARATION then
r run preparation[]

endif
if phase = INITIATION then
r run initiation[]

endif
if phase = ENDING then
r run ending[]

endif
endpar

main rule r Main = r run dialysis[]

default init s0:
function phase = PREPARATION

Code 1: Ground model

(a) Basic visualization (b) Semantic visualization

Figure 4: Ground model visualization

on the current phase, executes the corresponding rule:
• r run preparation, refined in the first refinement step (see Sect. 5.2.2);
• r run initiation, refined in the second refinement step (see Sect. 5.2.3);
• r run ending, refined in the third refinement step (see Sect. 5.2.4).

Fig. 4 shows a graphical representation [5] of the ground model, in the two
ways supported by ASMETA, basic visualization and semantic visualization.
The basic visualization permits to show the syntactical structure of the ASM
in terms of a tree (similar to an AST); the notation is inspired by the classical
flowchart notation, using green rhombuses for guards and grey rectangles for
rules. The leaves of the tree are the update rules and the macro call rules. For
each macro rule in the model, there is a tree representing the definition of the
rule; double-clicking on a macro call rule shows the tree of the corresponding
macro rule. The basic visualization of the model of Code 1 (starting from
rule r run dialysis) is shown in Fig. 4a. The figure shows the visualization
provided by the tool when all the macro rules are shown (i.e., the user has
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double-clicked on all the call rules).
The semantic visualization provides a more advanced way of represent-

ing ASMs, trying to extrapolate part of the behavior from the model. As
observed before, some systems naturally evolve through phases (or modes),
called control states in [21], that are represented by a suitable function of
the model (called phase function). Phases and transitions between them can
sometimes be statically identified directly in the model. This visualization
tries to identify a phase function in the model and shows how the system
evolves through these phases by the execution of the transition rules. The
visualization consists in a graph where control states are shown using orange
ellipses. Note that a control state is not an ASM state, but an abstraction
of a set of ASM states having the same value for the phase function. The
semantic visualization of the ground model is shown in Fig. 4b. The sys-
tem starts in the PREPARATION phase and moves to the INITIATION phase
by executing rule r run preparation, from which it moves to the ENDING

phase by the execution of rule r run initiation. In the ENDING phase, rule
r run ending is executed, that, however, does not modify the phase. The
simple visual inspection was sufficient to give us confidence that the model
correctly evolves through the three top-level phases.

In the following refinement steps, we will only show the semantic visu-
alizations of the models. The complete textual specifications are available
online4.

5.2.2. First refinement: preparation phase

The first refinement extends the ground model by refining the PREPARA-

TION phase. As shown in Fig. 5a, the preparation consists in a sequence of
activities, specified by function prepPhase. For each value of prepPhase,
a given rule performs some actions related to the device preparation and
updates prepPhase to the next value. Examples of these activities are the
concentrate connection and the dialyzer rinsing. As shown in Table 1, some
phases are further divided in sub-phases. For example, Fig. 5b shows how
phase SET TREAT PARAM is specified by the treatment parameter (function
treatmentParam). Also in this case, the sub-phases are executed in sequence.

The correctness of each refinement step has been proved with the re-
finement prover integrated in ASMETA that checks a particular kind of

4Models are available at http://fmse.di.unimi.it/sw/SCP2017.zip
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(a) Preparation phase

(b) Treatment parameter

Figure 5: First refinement – Semantic visualization

refinement called stuttering refinement [11]. A model R is a correct stut-
tering refinement of a model A iff for each run ρR of R there is a run
ρA = S1, S2, . . . , Sn of A such that ρR can be split in sub-runs ρR1 , ρ

R
2 , . . . , ρ

R
n

where all the states of ρRi are conformant with Si (i = 1, . . . , n), according
to a given conformance relation ≡. As conformance relation, we usually use
the equality between some selected locations (called locations of interests) of
the two models.

The first refined model is a correct stuttering refinement of the ground
model, using as conformance relation the equality on the phase function.
Fig. 6 shows the correspondence of a refined run with an abstract run. We
can see that, in the run of the ground model (abstract run), the machine goes
from a state in which phase is PREPARATION to a state in which phase is IN-
ITIATION in one step. Instead, in the run of the refined model (refined run),
there is a sequence of intermediate states in which phase remains in PREP-

ARATION. These states are all conformant with the first abstract state. The
state in the refined run in which phase becomes INITIATION is conformant
with the second abstract state.
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Ground
model

. . . // phase =
PREPARATION

// phase =
INITIATION

// . . .

First
ref

. . . // phase =
PREPARATION

prepPhase =
AUTO TEST

...

≡

KS

// phase =
PREPARATION

prepPhase =
CONNECT CONCENTRATE

...

≡

ee

// . . .

≡

ii

// phase =
PREPARATION

prepPhase =
RINSE DIALYZER

...

≡

kk

// phase =
INITIATION
prepPhase =

RINSE DIALYZER
...

≡

KS

// . . .

Figure 6: Hemodialysis case study – Relation between a refined run and an abstract run

Validation and Verification. Starting from the first refinement, we applied
model review. Common vulnerabilities and defects that can be introduced
during ASM modeling are checked as violations of suitable meta-properties
(MPs, defined in [7] as CTL formulae). The violation of a meta-property
means that a quality attribute (minimality, completeness, consistency) is
not guaranteed, and it may indicate the presence of an actual fault (i.e., the
ASM is indeed faulty), or only of a stylistic defect (i.e., the ASM could be
written in a better way). In this model, we found that controlled function
machine state was initialized but never updated (violation of meta-property
MP7 that requires that every controlled location is updated and every loca-
tion is read). Although this is not a real fault of the model, it could make
the model less readable, since a reader may expect an update of the function
(since it is controlled). Declaring the function static made apparent that, in
this refinement step, the function is not updated.

When modeling other case studies [3, 12, 14], we extensively used in-
teractive simulation [33] that allowed us to observe some particular system
executions. In this case study, we could largely reduce the effort spent in
simulation, since by semantic visualization we could get a feedback regard-
ing the control flow similar to that provided by simulation. Fig. 7 shows
a simulation trace (two steps) of the current model: the values chosen by
the user for the monitored functions are shown in the monitored part of the
state, while the updates computed by the machine are shown in the controlled
part. Transitions between phases can be discovered also through simulation,
but in a less direct way than with semantic visualization (see Fig. 5a). A
further advantage of semantic visualization is that it also shows the rule that
changes a given phase. However, simulation shows ASM states, whereas se-
mantic visualization only shows control states given by the value of the phase
function. Therefore, if we are interested in observing the exact ASM runs,
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Insert a boolean constant for auto_test_end:

true

<State 0 (monitored)>

auto_test_end=true

</State 0 (monitored)>

<State 1 (controlled)>

alarm(DF_PREP)=false

alarm(SAD_ERR)=false

alarm(TEMP_HIGH)=false

dialyzer_connected_contr=false

error(DF_PREP)=false

error(SAD_ERR)=false

error(TEMP_HIGH)=false

phase=PREPARATION

prepPhase=CONNECT_CONCENTRATE

preparing_DF=false

signal_lamp=GREEN

</State 1 (controlled)>

Insert a boolean constant for conn_concentrate:

true

<State 1 (monitored)>

conn_concentrate=true

</State 1 (monitored)>

<State 2 (controlled)>

alarm(DF_PREP)=false

alarm(SAD_ERR)=false

alarm(TEMP_HIGH)=false

dialyzer_connected_contr=false

error(DF_PREP)=false

error(SAD_ERR)=false

error(TEMP_HIGH)=false

phase=PREPARATION

prepPhase=SET_RINSING_PARAM

preparing_DF=true

signal_lamp=GREEN

</State 2 (controlled)>

Figure 7: Simulation trace of first refinement model

we still have to use simulation. Instead, if we are only interested in knowing
how the machine evolves through its phases, the semantic visualization is
enough.

Instead of interactive simulation, we mainly performed scenario-based
validation [26] that permits to automatize the simulation activity, so scenarios
can be re-run after specification modifications. In scenario-based validation
the designer writes a scenario specifying the expected behavior of the model;
scenarios are similar to test cases. The validator reads the scenario and
executes it using the simulator. The validator language provides constructs
to express scenarios as interaction sequences consisting of actions committed
by the user to set the environment (i.e., the values of monitored/shared
functions), to check the machine state, to ask for the execution of certain
transition rules, and to enforce the machine itself to make one step (or a
sequence of steps by command step until) as reaction to the user’s actions.
We wrote several scenarios for the different refinement steps. We discovered
that such scenarios had several common parts, since they had to perform the
same actions and same checks in different parts of their evolution. Therefore,
we extended the validator with the possibility to define blocks of actions that
can be reused in different scenarios: a block is a named sequence of commands
delimited by keywords begin and end. A command block can be defined in
any scenario and can be called by means of the command execblock in other
parts of the same scenario or in other scenarios. A block can also be nested
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scenario completeTherapyRef1

load HemodialysisRef1.asm

begin initStatePrep
check phase = PREPARATION;
check prepPhase = AUTO TEST;
check rinsingParam = FILLING BP RATE;
...

end

begin preparationPhase
begin automaticTest

set auto test end := true;
step

end

begin connectConcentrate
check prepPhase = CONNECT CONCENTRATE;
check signal lamp = GREEN;
set conn concentrate := true;
step

end
...

end

check phase = INITIATION;
check bp status = STOP;
check bp status der = STOP;
step

check phase = ENDING;
step

Code 2: Scenario for the first refinement

in another block.
Code 2 shows an example of scenario for the first refined model reproduc-

ing the whole therapy process. We defined the block initStatePrep, since
its instructions regarding the initial state will be reused in scenarios written
for other refinement steps. We also defined the block preparationPhase

containing instructions related to the PREPARATION phase. Such block is fur-
ther divided in sub-blocks (e.g., automaticTest); indeed, some scenarios will
reuse the whole block preparationPhase, while others will reuse only some
sub-blocks and redefine some others.

Once a modeler is confident enough that the model correctly reflects the
intended requirements, heavier techniques can be used for property verifi-
cation. The case study document [48] reports a list of safety requirements
(divided between general (S1-S11) and software (R1-R36) requirements) that
must be guaranteed. We have specified them as LTL properties and verified
using the integrated model checker [6] that translates ASM models to models
of the model checker NuSMV. Whenever a property is violated, the designer
can inspect the returned counterexample to understand whether the problem
is in the model that is actually faulty, or in the property that wrongly speci-
fies the requirement; since counterexamples are returned as ASM runs, such
task should be easy for the developer. Note that, thanks to meta-property
MP10 of the model reviewer, we are also able to detect whether a property
is vacuously satisfied, i.e., it is true regardless the truth value of some of its
sub-expressions.
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Since NuSMV works on finite state models, we have slightly modified our
models by abstracting all the infinite domains with finite ones. As future
work, we plan to support the translation to nuXmv [52] that allows the
verification of infinite state systems.

Each requirement has been proved as soon as possible in the chain of
refinements, i.e., in the model that describes the elements involved in the
requirement. At this refinement step, we were able to express only 13 of the
47 requirements; these are software requirements regarding the flow of bicar-
bonate concentration into the mixing chamber, the heating of the dialyzing
fluid, and the detection of safety air conditions.

For example, requirement R20 states that “if the machine is in the prepa-
ration phase and performs priming or rinsing or if the machine is in the initi-
ation phase and if the temperature exceeds the maximum temperature, then
the software shall disconnect the dialyzer from the DF and execute an alarm
signal.” The requirement has been formalized in LTL as follows.

//R20
g((phase = PREPARATION and dialyzer connected contr and prepPhase =

RINSE DIALYZER and not error(TEMP HIGH) and current temp = HIGH) implies x(
error(TEMP HIGH) and alarm(TEMP HIGH) and not dialyzer connected status))

Note that some requirements are strictly related and somehow redundant
and, therefore, can be verified together with only one property. This is the
case of requirements R18 and R19, and requirements R23-R32.

//R18−R19
g((phase = PREPARATION and prepPhase = RINSE DIALYZER and

dialyzer connected contr and not error(DF PREP) and preparing DF and not
detect bicarbonate) implies x(error(DF PREP) and alarm(DF PREP) and not
dialyzer connected status))

//R23−R32
g((phase = PREPARATION and prepPhase = TUBING SYSTEM and passed1Msec and

currentSAD != PERMITTED and current air vol != PERMITTED and not error(
SAD ERR)) implies x(error(SAD ERR) and alarm(SAD ERR)))

Requirements R20 and R23-R32 are related both to the preparation and
initiation phases; R23-R32 also consider the ending phase. At this level of re-
finement, the corresponding properties can only check the preparation phase;
they will be refined in the second refinement to take into consideration the
initiation phase (see Sect. 5.2.3), and in the third refinement for considering
the ending phase (see Sect. 5.2.4).
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(a) Patient phase

(b) Therapy phase

(c) Arterial bolus phase

Figure 8: Second refinement – Semantic visualization

5.2.3. Second refinement: initiation phase

The second refinement extends the first one by refining the INITIATION

phase. As shown in Table 1, the phase is further divided into two phases
(recorded by function initPhase): the connection of the patient (CONNECT -

PATIENT) and the running of the therapy (THERAPY RUNNING). As shown in
Fig. 8a, function patientPhase indicates in which step the patient is during
the connection. We can see that the patient is initially connected arterially;
then the blood pump is activated to extract the blood from the patient
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(in state BLOOD FLOW). In this state, rule r set blood flow can follow two
different paths:

• patientPhase is updated to FILL TUBING. Then, the operator sets the
blood flow and the blood pump stops when the blood fills the tubes be-
tween the patient and the dialyzer. After this, the patient is connected
venously and the blood pump is restarted to fill the tubes between the
dialyzer and the patient’s vein.

• patientPhase is updated to END CONN. Then, the therapy can start
(i.e., initPhase goes to THERAPY RUNNING).

Note that, in this case, the semantic visualization is not sufficient to
completely understand the model behavior, since the paths are taken in two
subsequent executions of the rule. This can only be discovered by simulation.

The therapy status is specified by function therapyPhase (see Fig. 8b).
When the therapy status is THERAPY EXEC, it is further specified by function
arterialBolusPhase, whose semantic visualization is shown in Fig. 8c. Such
sub-phase consists in the infusion of saline solution and it is activated by the
operator. arterialBolusPhase is initially in state WAIT SOLUTION until the
operator presses the start button. After that, the doctor sets the volume of
the saline solution, the solution is connected to the machine, and the infusion
starts. When the predefined volume is infused, the arterialBolusPhase

returns to WAIT SOLUTION state until the operator restarts again the saline
infusion. Also in this case, semantic visualization does not allow to fully
understand the machine behavior: the initial state of the graph in Fig. 8c
can only be discovered through simulation.

As required by our modeling process, before any further validation and
verification activity of the requirements, it is necessary to guarantee correct-
ness of the refinement step. This has been carried out, similarly to what
described at the end of Sect. 5.2.2, by means of the refinement prover.

Validation and Verification. By model review, we found that some locations
were trivially updated (meta-property MP4), i.e., that the value of the loca-
tion before the update was always equal to the new value. This means that
the update is not necessary. Removing trivial updates is important because
the reader may have the feeling that the ASM is modifying its state when
it is not. The trivial updates were related to signal lamp when updated
to GREEN, and error(UF DIR) and error(UF RATE) when updated to true.
The update of signal lamp was indeed unnecessary and we removed it; the
updates of error(UF DIR) and error(UF RATE), instead, were not correct
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scenario completeTherapyRef2

load HemodialysisRef2.asm

begin initStateInit
execblock completeTherapyRef1.initStatePrep;

check patientPhase = CONN ART;
check arterialBolusPhase = WAIT SOLUTION;
...

end

execblock completeTherapyRef1.preparationPhase;

begin initiationPhase
begin patientConnection

check phase = INITIATION;
check initPhase = CONNECT PATIENT;
check patientPhase = CONN ART;
set art connected := true;
step
...

end
end

check phase = ENDING;
step

Code 3: Scenario for the second refinement

since the locations had to be updated to false and so we fixed the fault.
Moreover, we detected some violations of meta-property MP7 requiring

that every controlled location is updated and every location is read. We
found that functions bf err ap low, reset err pres ap low were never up-
dated: this was due to a wrong guard in a conditional rule. This shows that
model review is also useful in detecting behavioral faults. We found that also
locations error(ARTERIAL BOLUS END), error(UF BYPASS), and error(UF -

VOLUME ERR) were never updated. This is due to the fact that functions
error and alarm share the domain AlarmErrorType representing the differ-
ent alarms; for each alarm there is an error, except for ARTERIAL BOLUS -

END, UF BYPASS, and UF VOLUME ERR. Therefore, locations error(ARTERIAL -

BOLUS END), error(UF BYPASS), and error(UF VOLUME ERR) are actually
unnecessary. We could have declared two different domains for errors and
alarms, but we think that the specification would have been less clear and it
would have been more difficult to keep the values of errors and alarms con-
sistent. Therefore, we ignored the meta-property violation without changing
the model.

We also wrote some scenarios for this refinement step, as the one shown
in Code 3. We can see that the scenario reuses blocks initStatePrep and
preparationPhase defined in scenario completeTherapyRef1 for the first
refined model (see Code 2).

At this modeling level, we were able to prove 23 more safety requirements.
They concern patient connection, infusion of the saline solution when the
patient is connected to the extra-corporeal blood circuit, pressure during the
therapy, dialyzing fluid temperature, heparin infusion, air detected in the
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blood, and ultrafiltration process. Among these, we realized that some were
not correctly described in [48]. For example, S1 states that “arterial and
venous connectors of the EBC are connected to the patient simultaneously”.
The corresponding LTL property is as follows

g(art connected contr iff ven connected contr)

However, the property is false because the patient is connected before to the
arterial connector and then to the venous connector.

Other requirements are instead ambiguous and so we had problems in
formalizing them. For example, S5 states that “the patient cannot be con-
nected to the machine outside the initiation phase, e.g., during the prepa-
ration phase.” We did not know how to interpret “be connected”: as the
patient status of being attached to the machine, or as the atomic action
performed by the operator of connecting the patient to the machine? The
former interpretation would require to prove the following property:

g((art connected contr or ven connected contr) implies phase = INITIATION)

that, however, is false. Indeed, the patient can be attached to the ma-
chine also outside the INITIATION phase. The former interpretation, instead,
would require to prove the two following properties:

g((not art connected contr and x(art connected contr)) implies phase = INITIATION)
g((not ven connected contr and x(ven connected contr)) implies phase = INITIATION)

that are actually both true. It may be the case that this interpretation is
not correct; this is a clear example of ambiguous requirement that would
need a clarification from the stakeholders. Ambiguity also characterizes re-
quirements S2, S6, S7, and R16, for which we were not able to provide a
satisfactory formalization. For example, S6 requires that BP cannot be used
outside the INITIATION phase; however, Sect. 3.2 of [48] states that BP
must also be used in the ENDING phase: therefore, we were not sure how
to interpret and formalize such requirement.

In this refinement step, we could refine properties related to requirements
R20 and R23-R32 to take into consideration also the initiation phase.

//R20 updated
g(((phase = INITIATION and not error(TEMP HIGH) and current temp = HIGH) or (phase

= PREPARATION and dialyzer connected contr and prepPhase = RINSE DIALYZER
and not error(TEMP HIGH) and current temp = HIGH)) implies x(error(TEMP HIGH)
and alarm(TEMP HIGH) and not dialyzer connected status))

//R23−R32 updated
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(a) Ending phase

(b) Reinfusion phase

Figure 9: Third refinement – Semantic visualization

g((((phase = PREPARATION and prepPhase = TUBING SYSTEM) or (phase =
INITIATION and bp status der = START)) and (passed1Msec and currentSAD !=
PERMITTED and current air vol != PERMITTED and not error(SAD ERR))) implies x
(error(SAD ERR) and alarm(SAD ERR)))

5.2.4. Third refinement: ending phase

The third refinement extends the second one by refining the ENDING phase.
As shown in Fig. 9a, the ending consists in a sequence of activities (specified
by function endingPhase). When in REINFUSION, the phase is further refined
by reinfusionPhase, whose semantic visualization is shown in Fig. 9b. The
reinfusion consists in an initial sequence of activities for starting the infu-
sion of the saline solution, followed by a loop in which the doctor performs
the solution reinfusion. Rule r choose next reinf step is responsible for
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scenario installTubingTempHigh

load HemodialysisRef3.asm

execblock completeTherapyRef3.initStateEnd;

execblock completeTherapyRef1.automaticTest;
execblock completeTherapyRef1.connectConcentrate;
execblock completeTherapyRef1.setRinsingParam;
execblock completeTherapyRef1.installTubingSystem;
execblock completeTherapyRef1.prepareHeparin;
execblock completeTherapyRef1.setTreatmentParam;

check prepPhase = RINSE DIALYZER;
check syringe type contr = syringe type;
check rinsePhase = CONNECT DIALYZER;
check preparing DF = true;
set stop DF preparation := true;
step
check preparing DF = false;
set dialyzer connected := true;
...

execblock completeTherapyRef2.initiationPhase;
execblock completeTherapyRef3.endingPhase;

Code 4: Scenario for the third refinement – Triggering of error TEMP HIGH

deciding the loop termination: either going to START SALINE REIN (i.e., the
operator decides to continue the reinfusion) or to REMOVE VEN (i.e., the oper-
ator disconnects the patient).

To complete modeling at this level, the refinement prover was used to
prove that this model is a correct stuttering refinement of the second refine-
ment.

Validation and Verification. We applied model review also to this model, but
we did not find any meta-property violation.

We also wrote some new scenarios. In particular, we wrote scenarios for
reproducing the occurrence of some errors. Code 4 shows the scenario that
triggers error TEMP HIGH related to high temperature of the dialyzer fluid
during the preparation phase. We can see that in this scenario we reused
some sub-blocks of block preparationPhase defined in scenario complete-

TherapyRef1 (see Code 2) as, for example, automaticTest and connectCon-

centrate. We did not use the whole block because the instructions related
to the dialyzer rinsing had to be changed in order to trigger the error.

In this refinement step, we were able to prove three more requirements.
Moreover, we could refine the property related to requirements R23-R32 in
order to take into consideration also the ending phase.

//R23−R32 updated
g((((phase = PREPARATION and prepPhase = TUBING SYSTEM) or (phase =

INITIATION and bp status der = START) or (phase = ENDING and endingPhase =
REINFUSION and not error rein press and bp status der = START)) and (passed1Msec
and currentSAD != PERMITTED and current air vol != PERMITTED and not error(

SAD ERR))) implies x(error(SAD ERR) and alarm(SAD ERR)))
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Note that there are four requirements (S3, S8, S9, and S10) that we do
not consider in our work. They are all related to the blood flow rate; for
example, S8 requires that the “blood flow rate should be adjusted, taking
into consideration the AP” [48]. However, since continuous values have been
discretized for doing model checking, we are not able to express such require-
ments as temporal properties. As said before, as future work we plan to
provide a mapping from ASM to nuXmv [52] that allows the verification of
infinite states systems: in this way, we will also be able to verify such kind
of requirements.

5.3. Conformance checking

We do not have access to the implementation of the hemodialysis device.
Therefore, we have built a prototypical implementation in Java of the he-
modialysis device software, in order to show the last part of the ASM-based
process, i.e., the conformance checking between the implementation and the
specification) and how the process can help perform the activities required
by steps 5.5-5.7 of the IEC 62304 standard, as well as step 5.8 on subsequent
releases of medical software. Techniques of conformance checking are also
useful for validation coverage and re-verification of software upon changes,
as required by the FDA principles.

The implementation faithfully reflects (or, at least, it should) the case
study requirements; however, some components (e.g., the connection with
the hardware) have not been implemented and so they have been substituted
with mock objects. Part of the Java implementation is shown in Code 5.
Note that the implementation has many details that are not present in the
specification, as the graphical user interface (shown in Fig. 10) that allows
to visualize the output of the device. The top part of the GUI shows the
current state of the device, the bottom left part displays the status of alarms
and errors (red means that there is an alarm/error, while green means that
the component is working properly), and the bottom right part reports the
configuration of the parameters.

The implementation has been developed by two authors who were only
partially involved in the writing of the specification; in this way, we aimed
at reproducing a setting in which the system designers (also responsible for
model-based testing) are different from the developers.

Conformance checking can be done offline (i.e., before the deployment)
by MBT or online (i.e., after the deployment) by runtime verification. We
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import org.asmeta.monitoring.∗;

@Asm(asmFile = ”models/HemodialysisRef3.asm”)
public class HemodialysisMachine {

HemodialysisMachinePanel dialog;

@FieldToFunction(func = ”phase”)
Phases phase = Phases.PREPARATION;
@FieldToFunction(func = ”preparing DF”)
boolean preparing DF = false;
@FieldToFunction(func = ”initPhase”)
InitPhase initPhase = InitPhase.CONNECT PATIENT;
...
@Monitored(func = ”interrupt dialysis”)
boolean interrupt dialysis = false;
@Monitored(func = ”error heparin resolve”)
boolean error heparin resolve = false;
@Monitored(func = ”blood conductivity”)
int blood conductivity = HIGH;
...

public HemodialysisMachine() {
dialog = new HemodialysisMachinePanel(this);
dialog.setDefaultCloseOperation(JDialog.DISPOSE ON CLOSE);
dialog.setVisible(true);

}

@RunStep
public void execDialysis() {

if (phase == Phases.PREPARATION) {
...

...
dialog.updateGUI();

}

@MethodToFunction(func=”error”)
public boolean error(AlarmErrorType aet){

return error[aet.ordinal()];
}

}

Code 5: Java implementation of the HMCS

Figure 10: Hemodialysis device program GUI

here show the application of the former approach to the case study and we
refer the reader to [8, 12] for examples of applications of the latter approach.

In MBT [35, 61], abstract test sequences are derived from the specification;
such sequences are then concretized in tests for the implementation. In order
to generate abstract test sequences, we use the MBT feature of ASMETA [32]
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that first derives from the specification some test goals (called test predicates)
according to some coverage criteria [31], and then generates sequences for
covering these goals. For example, the update rule coverage criterion requires
that each update rule is executed at least once in a test sequence and the
update is not trivial (i.e., the new value is different from the current value
of the location). A classical approach based on model checking is used for
generating tests: the ASM model is translated in the language of a model
checker, and each test goal is expressed as a temporal property (called trap
property); if the trap property is proved false, the returned counterexample
is the abstract test sequence covering the test goal (and possibly also other
test goals). For this work, we extended the ASMETA MBT component in
order to work with the model checker NuSMV.

For the case study, we used the structural coverage criteria presented
in [32]. Since the test generation approach is based on model checking, we
used the same models we obtained to perform formal verification (having
only finite domains). 980 test predicates have been built and 183 tests have
been generated for covering them (in around 2 hours on a Linux PC with
Intel(R) Core(TM) i7 CPU, 8 GB of RAM). Note that each generated test
can cover more than one test predicate and we avoid generating tests for
already covered test predicates. An example of test predicate for the update
rule coverage criterion is:

phase = INITIATION and initPhase = THERAPY RUNNING and therapyPhase =
THERAPY EXEC and interrupt dialysis and therapyPhase != THERAPY END

requiring to observe a state in which the update rule of therapyPhase to
THERAPY END fires and therapyPhase is not already equal to THERAPY END.
Note that a sequence covering this test predicate is guaranteed to exist if the
specification has been previously checked with model review and no violation
of MP4 (requiring that all the update rules are not always trivial) occurred.

The sequence covering the predicate is shown in Fig. 11. We can see that
the test predicate holds in the last state of the sequence.

In order to concretize the abstract test sequences into tests for the im-
plementation, we need to provide a linking between the specification and the
implementation. In [8], we proposed a technique to do the linking using Java
annotations. We defined different annotations to:

• associate a Java class with the corresponding ASM model (@Asm);
• associate the ASM state with the Java state:

– @FieldToFunction connects a Java field with an ASM controlled
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- State 1 -

phase = PREPARATION

initPhase = CONNECT_PATIENT

therapyPhase = START_HEPARIN

interrupt_dialysis = FALSE

...

...

- State 46 -

phase = INITIATION

initPhase = CONNECT_PATIENT

therapyPhase = START_HEPARIN

interrupt_dialysis = FALSE

...

...

- State 53 -

phase = INITIATION

initPhase = CONNECT_PATIENT

therapyPhase = START_HEPARIN

interrupt_dialysis = FALSE

...

- State 54 -

phase = INITIATION

initPhase = THERAPY_RUNNING

therapyPhase = START_HEPARIN

interrupt_dialysis = FALSE

...

- State 55 -

phase = INITIATION

initPhase = THERAPY_RUNNING

therapyPhase = THERAPY_EXEC

interrupt_dialysis = TRUE

...

Figure 11: Abstract test sequence

@Test
public void test() {

HemodialysisMachine sut = new HemodialysisMachine();
// check conformance
assertEquals(Phases.PREPARATION, sut.phase);
assertEquals(InitPhase.CONNECT PATIENT, sut.initPhase);
assertEquals(TherapyPhase.START HEPARIN, sut.therapyPhase);
...
// set monitored
sut.interrupt dialysis = false;
...
// perform step
sut.execDialysis();
...

sut.execDialysis();
// check conformance
assertEquals(Phases.INITIATION, sut.phase);
assertEquals(InitPhase.THERAPY RUNNING, sut.initPhase);
assertEquals(TherapyPhase.THERAPY EXEC, sut.therapyPhase);
...
// set monitored
sut.interrupt dialysis = true;
// perform step
sut.execDialysis();

}

Code 6: JUnit test

function;
– @MethodToFunction connects a Java pure (i.e., returning a value

but not modifying the object state) method with an ASM con-
trolled function;

– @Monitored connects a Java field with an ASM monitored func-
tion; such fields represent the inputs of the Java class that take
their value from the environment (as monitored functions in ASMs).

• associate the ASM behavior with the Java object behavior; @RunStep
is used to annotate methods whose execution corresponds to a step of
the ASM model.

Given the mapping provided by the Java annotations, we translated ab-
stract test sequences in JUnit tests following the technique described in [9].
For example, Code 6 shows the JUnit test corresponding to the sequence
shown in Fig. 11. Each test is built by creating the initialization of the Java
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(a) JUnit failures (b) Code coverage

Figure 12: JUnit testing results

class and then, for each state of the corresponding abstract test sequence,
• updating the fields annotated with @Monitored to the values of the cor-

responding ASM functions. In the example, field interrupt dialysis

is updated to the value of the homonymous ASM function.
• invoking the method annotated with @RunStep. In the example, method
execDialysis() (see Code 5) is executed.

• adding JUnit assert commands that check that the Java state is con-
formant with the ASM state; they check that the values of the fields
annotated with @FieldToFunction and the values returned by the
methods annotated with @MethodToFunction are equal to the values
of the corresponding ASM functions. In the example, fields phase,
initPhase, therapyPhase, . . . are linked with @FieldToFunction and
checked during conformance checking.

We run all the 183 tests (divided in multiple JUnit files) and we actually
found some conformance violations (i.e., some tests failed. See Fig. 12a).
We analyzed the failing tests and we discovered that the authors writing the
implementation misunderstood some requirements. Consequently, the errors
were fixed. The coverage obtained by the tests is shown in Fig. 12b: our tests
were able to cover more than 90% of the Java code. Although the obtained
coverage is already high, we found that some parts of the code are not covered,
since the structure of the code in some parts is different from the structure
of the specification and using structural coverage criteria for test generation
may not guarantee the full coverage. We plan to study other criteria (like
MCDC (Modified Condition Decision Coverage) or property-based) in order
to improve the coverage.
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6. Related work and comparison with other approaches

The use of rigorous methods is escalating for the engineering of medical
device software in recent times. A systematic review of the use of formal
methods for medical software is presented in [20]; we here report those works
that are more related to the approach presented in this paper.

In the past, formal methods have been applied to a variety of medical
devices. Osaiweran et al. [54] use the formal Analytical Software Design
(ASD) [23] approach for the development of a power control service of an
interventional X-ray system. Jiang et al. [42] present a methodology based
on timed automata to extract timing properties of heart that can be used
for the verification and validation of implantable cardiac devices. Méry et
al. [51] and Macedo et al. [47] present a pacemaker model in Event-B [1] and
VDM [43] methods, respectively.

One of the medical devices relatively close to hemodialysis machines is the
infusion pump. It is primarily responsible for delivering fluids, such as nutri-
ents and medications, into a patient’s body in controlled amounts. Arney et
al. [16] present a reference model of PCA (Patient Control Analgesia) infusion
pumps and test the model for structural and safety properties. Campos et
al. [25] present a formal model in MAL (Modal Action Logic) [24] that helps
compare different infusion devices and their provided functionalities. Bowen
et al. [22] use the ProZ model checker [55] to test various safety properties
of infusion pumps.

Considering the HMCS, Hoang et. al. [36] present an Event-B [1] in-
spired solution. The main difference of the approach is the usage of a multi-
formal development paradigm where the requirements are modeled using the
UML-like notation iUML-B [57] and then subsequently verified in the formal
framework of Event-B using the deductive theorem proving and model check-
ing. The approach also lets the specification be validated using animation
and Domain Specific Visualizations (DSVs). A similar Event-B based solu-
tion is also presented in [49, 50]. In this work, the requirements are specified
using a refinement-based modeling approach, and are then checked for consis-
tency and conformance using the standard theorem proving, model checking,
and animation techniques. The resulted formal requirements model is fed
to a code generator that transforms the formal model into a sequential pro-
gramming language code that runs on the given hardware. The translation
process is semi-automatic and requires post-processing of the generated code
before the final deployment. The main limitation of the approach is that the
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supported tool only translates a limited subset of the B syntax during the
automatic translation process. Moreover, a formal proof that the translation
process preserves the safety properties of the model is missing.

The solution presented by Banach [17] is based on Hybrid Event-B [18],
an extension of the Event-B framework to explicitly focus on continuously
varying state evolution, along with the usual discrete state transitions. The
main difference of this approach comes from its ability to explicitly distin-
guish between discrete and continuous elements of hemodialysis machines.
The resulted specification consists of two types of state transitions: the nat-
ural discrete changes of state and continuously varying state changes. The
model takes the individual discrete events of the model and interleaves them
with continuous events. This allows to specify the complete behavior of he-
modialysis machines considering both discrete as well as continuous elements.
The drawback of the approach is the limited tool support. Hybrid Event-B
relies on the Rodin platform [2] for specification and proving. However, not
all features of Hybrid Event-B are supported by the Rodin platform, e.g., how
to specify (and consequently prove) events capturing continuously changing
behaviors (also known as pliant events), or single- and multi-machine systems
in general.

The solution presented by Fayolle et. al. [29] is based on a combination
of Algebraic State-Transition Diagrams (ASTD) [30] and Event-B. ASTD
use a graphical notation to model problems as a combination of state transi-
tion diagrams and classical process algebra operators like sequence, iteration,
parallel composition, quantified choice, and quantified synchronization. The
main difference of this solution comes from a multi-formal approach and the
way how the sequencing order of the machine is described. Due to the use of
a graphical notation, the model is easy to follow and validate. For verification
purposes, the model relies on the strength of the Event-B platform that stems
from theorem proving and model checking. However, this means that the ap-
proach also suffers from the limitations associated with the Event-B method
and its toolset. Some of these limitations are: lack of sophisticated tools
and elaborated guidelines for managing the complexity of growing models by
decomposition, lack of an implicit notion of time (this will be necessary for
an elegant expression of timing properties which play a critical role in med-
ical devices), and failure of ProB [45] (at the detailed level of refinements)
to prove temporal properties of the system due to state space enumeration
and explosion problems. In our opinion, a standard and more natural way
is required to specify and prove that temporal properties of the system are
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preserved by Event-B refinements. Finally, a tool that is able to automati-
cally generate ready-to-deploy machine code from Event-B formal models is
also missing; currently available tools require manual post-processing of the
generated code.

The solution presented by Gomes et. al. [34] is based on Circus [53], a
fusion of the formal notation Z [59] and Communicating Sequential Processes
(CSP). The main difference of this solution model is the use of a well-defined
theory of process algebra to specify the concurrent and parallel aspects of
the system and explicit focus on timing properties. The main limitation of
the approach is that no tool currently exists that directly supports the con-
sistency and conformance checking of a Circus specification. In the current
development, the Circus model is translated into a machine-readable CSP
which is then model checked for verification purposes. The lack of automatic
code generation from Circus models is another limitation.

Explicitly regarding the problem of software certification, there exist few
attempts addressing this problem, like the CHI+MED project [27] which
presents a formal methodology for certification and assurance of medical de-
vices. More in general, Jetley et. al. [41] advocate the use of formal methods
for medical software quality assessment. However, there is no standardized
mapping between formal method processes and certification activities and
this paper tries to contribute in establishing one.

The main novelty of our work, in relation to the comparative dialysis
models and other applications of formal methods to medical device software,
comes from its rigorous approach to quality assurance and easy to under-
stand formal notation. A comprehensive model analysis approach based on
simulation, model review, model checking, and conformance checking, gives
a grasp on the notion of correctness far better than the approaches which
are comprised of only a subset of the employed analysis techniques in this
work. Additionally, ASM method’s ease of use, understandability and notion
of refinement also help manage the complexity of the development process.
The limitation of the approach is that no tool is currently available that is
capable of automatically transforming an ASM model into a programming
language code. However, a tool translating ASM models to C++ for the
Arduino platform has been developed [19].
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7. Conclusions

Different certification standards have been proposed for the development
of medical device software. However, these standards provide general in-
dications regarding the typical software engineering activities that must be
performed, but do not prescribe the use of any particular method, technique,
or life cycle model. In the paper, we have shown how a development pro-
cess based on the Abstract State Machine formal method can be used for
assuring safety and reliability in the development of medical device software.
The process consists in an iterative and incremental life cycle model based on
model refinement: through a sequence of refined models, all the requirements
of the system are considered. Different validation and verification (visualiza-
tion, simulation, model review, model checking) activities can be performed
on each model, and each refinement step can be automatically proved cor-
rect. The implementation can be seen as the last refinement step, and its
conformance with the formal specification can be checked by model-based
testing and/or by runtime verification. We have described how the ASM-
based process captures most of the activities required by the standards, and
have shown the application of the ASM-based process to the hemodialysis
machine case study.
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