1,109 research outputs found

    Evaluation of automatic building detection approaches combining high resolution images and LiDAR data

    Full text link
    In this paper, two main approaches for automatic building detection and localization using high spatial resolution imagery and LiDAR data are compared and evaluated: thresholding-based and object-based classification. The thresholding-based approach is founded on the establishment of two threshold values: one refers to the minimum height to be considered as building, defined using the LiDAR data, and the other refers to the presence of vegetation, which is defined according to the spectral response. The other approach follows the standard scheme of object-based image classification: segmentation, feature extraction and selection, and classification, here performed using decision trees. In addition, the effect of the inclusion in the building detection process of contextual relations with the shadows is evaluated. Quality assessment is performed at two different levels: area and object. Area-level evaluates the building delineation performance, whereas object-level assesses the accuracy in the spatial location of individual buildings. The results obtained show a high efficiency of the evaluated methods for building detection techniques, in particular the thresholding-based approach, when the parameters are properly adjusted and adapted to the type of urban landscape considered. © 2011 by the authors.The authors appreciate the financial support provided by the Spanish Ministry of Science and Innovation and FEDER in the framework of the projects CGL2009-14220 and CGL2010-19591/BTE, and the support of the Spanish Instituto Geografico Nacional (IGN).Hermosilla, T.; Ruiz FernĂĄndez, LÁ.; Recio Recio, JA.; Estornell Cremades, J. (2011). Evaluation of automatic building detection approaches combining high resolution images and LiDAR data. Remote Sensing. 3:1188-1210. https://doi.org/10.3390/rs3061188S118812103Mayer, H. (1999). Automatic Object Extraction from Aerial Imagery—A Survey Focusing on Buildings. Computer Vision and Image Understanding, 74(2), 138-149. doi:10.1006/cviu.1999.0750Kim, T., & Muller, J.-P. (1999). Development of a graph-based approach for building detection. Image and Vision Computing, 17(1), 3-14. doi:10.1016/s0262-8856(98)00092-4Irvin, R. B., & McKeown, D. M. (1989). Methods for exploiting the relationship between buildings and their shadows in aerial imagery. IEEE Transactions on Systems, Man, and Cybernetics, 19(6), 1564-1575. doi:10.1109/21.44071Lin, C., & Nevatia, R. (1998). Building Detection and Description from a Single Intensity Image. Computer Vision and Image Understanding, 72(2), 101-121. doi:10.1006/cviu.1998.0724Katartzis, A., & Sahli, H. (2008). A Stochastic Framework for the Identification of Building Rooftops Using a Single Remote Sensing Image. IEEE Transactions on Geoscience and Remote Sensing, 46(1), 259-271. doi:10.1109/tgrs.2007.904953Lee, D. S., Shan, J., & Bethel, J. S. (2003). Class-Guided Building Extraction from Ikonos Imagery. Photogrammetric Engineering & Remote Sensing, 69(2), 143-150. doi:10.14358/pers.69.2.143STASSOPOULOU, A., & CAELLI, T. (2000). BUILDING DETECTION USING BAYESIAN NETWORKS. International Journal of Pattern Recognition and Artificial Intelligence, 14(06), 715-733. doi:10.1142/s0218001400000477Jin, X., & Davis, C. H. (2005). Automated Building Extraction from High-Resolution Satellite Imagery in Urban Areas Using Structural, Contextual, and Spectral Information. EURASIP Journal on Advances in Signal Processing, 2005(14). doi:10.1155/asp.2005.2196Kim, Z., & Nevatia, R. (1999). Uncertain Reasoning and Learning for Feature Grouping. Computer Vision and Image Understanding, 76(3), 278-288. doi:10.1006/cviu.1999.0803Dare, P. M. (2005). Shadow Analysis in High-Resolution Satellite Imagery of Urban Areas. Photogrammetric Engineering & Remote Sensing, 71(2), 169-177. doi:10.14358/pers.71.2.169Weidner, U., & Förstner, W. (1995). Towards automatic building extraction from high-resolution digital elevation models. ISPRS Journal of Photogrammetry and Remote Sensing, 50(4), 38-49. doi:10.1016/0924-2716(95)98236-sCord, M., & Declercq, D. (2001). Three-dimensional building detection and modeling using a statistical approach. IEEE Transactions on Image Processing, 10(5), 715-723. doi:10.1109/83.918565Ma, R. (2005). DEM Generation and Building Detection from Lidar Data. Photogrammetric Engineering & Remote Sensing, 71(7), 847-854. doi:10.14358/pers.71.7.847Miliaresis, G., & Kokkas, N. (2007). Segmentation and object-based classification for the extraction of the building class from LIDAR DEMs. Computers & Geosciences, 33(8), 1076-1087. doi:10.1016/j.cageo.2006.11.012Zhang, K., Yan, J., & Chen, S.-C. (2006). Automatic Construction of Building Footprints From Airborne LIDAR Data. IEEE Transactions on Geoscience and Remote Sensing, 44(9), 2523-2533. doi:10.1109/tgrs.2006.874137Lafarge, F., Descombes, X., Zerubia, J., & Pierrot-Deseilligny, M. (2008). Automatic building extraction from DEMs using an object approach and application to the 3D-city modeling. ISPRS Journal of Photogrammetry and Remote Sensing, 63(3), 365-381. doi:10.1016/j.isprsjprs.2007.09.003Yu, B., Liu, H., Wu, J., Hu, Y., & Zhang, L. (2010). Automated derivation of urban building density information using airborne LiDAR data and object-based method. Landscape and Urban Planning, 98(3-4), 210-219. doi:10.1016/j.landurbplan.2010.08.004Paparoditis, N., Cord, M., Jordan, M., & Cocquerez, J.-P. (1998). Building Detection and Reconstruction from Mid- and High-Resolution Aerial Imagery. Computer Vision and Image Understanding, 72(2), 122-142. doi:10.1006/cviu.1998.0722Estornell, J., Ruiz, L. A., VelĂĄzquez-MartĂ­, B., & Hermosilla, T. (2011). Analysis of the factors affecting LiDAR DTM accuracy in a steep shrub area. International Journal of Digital Earth, 4(6), 521-538. doi:10.1080/17538947.2010.533201Ruiz, L. A., Recio, J. A., FernĂĄndez-SarrĂ­a, A., & Hermosilla, T. (2011). A feature extraction software tool for agricultural object-based image analysis. Computers and Electronics in Agriculture, 76(2), 284-296. doi:10.1016/j.compag.2011.02.007Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6), 610-621. doi:10.1109/tsmc.1973.4309314Sutton, R. N., & Hall, E. L. (1972). Texture Measures for Automatic Classification of Pulmonary Disease. IEEE Transactions on Computers, C-21(7), 667-676. doi:10.1109/t-c.1972.223572Freund, Y. (1995). Boosting a Weak Learning Algorithm by Majority. Information and Computation, 121(2), 256-285. doi:10.1006/inco.1995.1136Shufelt, J. A. (1999). Performance evaluation and analysis of monocular building extraction from aerial imagery. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(4), 311-326. doi:10.1109/34.761262Shan, J., & Lee, S. D. (2005). Quality of Building Extraction from IKONOS Imagery. Journal of Surveying Engineering, 131(1), 27-32. doi:10.1061/(asce)0733-9453(2005)131:1(27

    Vegetation Detection and Classification for Power Line Monitoring

    Get PDF
    Electrical network maintenance inspections must be regularly executed, to provide a continuous distribution of electricity. In forested countries, the electrical network is mostly located within the forest. For this reason, during these inspections, it is also necessary to assure that vegetation growing close to the power line does not potentially endanger it, provoking forest fires or power outages. Several remote sensing techniques have been studied in the last years to replace the labor-intensive and costly traditional approaches, be it field based or airborne surveillance. Besides the previously mentioned disadvantages, these approaches are also prone to error, since they are dependent of a human operator’s interpretation. In recent years, Unmanned Aerial Vehicle (UAV) platform applicability for this purpose has been under debate, due to its flexibility and potential for customisation, as well as the fact it can fly close to the power lines. The present study proposes a vegetation management and power line monitoring method, using a UAV platform. This method starts with the collection of point cloud data in a forest environment composed of power line structures and vegetation growing close to it. Following this process, multiple steps are taken, including: detection of objects in the working environment; classification of said objects into their respective class labels using a feature-based classifier, either vegetation or power line structures; optimisation of the classification results using point cloud filtering or segmentation algorithms. The method is tested using both synthetic and real data of forested areas containing power line structures. The Overall Accuracy of the classification process is about 87% and 97-99% for synthetic and real data, respectively. After the optimisation process, these values were refined to 92% for synthetic data and nearly 100% for real data. A detailed comparison and discussion of results is presented, providing the most important evaluation metrics and a visual representations of the attained results.ManutençÔes regulares da rede elĂ©trica devem ser realizadas de forma a assegurar uma distribuição contĂ­nua de eletricidade. Em paĂ­ses com elevada densidade florestal, a rede elĂ©trica encontra-se localizada maioritariamente no interior das florestas. Por isso, durante estas inspeçÔes, Ă© necessĂĄrio assegurar tambĂ©m que a vegetação prĂłxima da rede elĂ©trica nĂŁo a coloca em risco, provocando incĂȘndios ou falhas elĂ©tricas. Diversas tĂ©cnicas de deteção remota foram estudadas nos Ășltimos anos para substituir as tradicionais abordagens dispendiosas com mĂŁo-de-obra intensiva, sejam elas atravĂ©s de vigilĂąncia terrestre ou aĂ©rea. AlĂ©m das desvantagens mencionadas anteriormente, estas abordagens estĂŁo tambĂ©m sujeitas a erros, pois estĂŁo dependentes da interpretação de um operador humano. Recentemente, a aplicabilidade de plataformas com Unmanned Aerial Vehicles (UAV) tem sido debatida, devido Ă  sua flexibilidade e potencial personalização, assim como o facto de conseguirem voar mais prĂłximas das linhas elĂ©tricas. O presente estudo propĂ”e um mĂ©todo para a gestĂŁo da vegetação e monitorização da rede elĂ©trica, utilizando uma plataforma UAV. Este mĂ©todo começa pela recolha de dados point cloud num ambiente florestal composto por estruturas da rede elĂ©trica e vegetação em crescimento prĂłximo da mesma. Em seguida,mĂșltiplos passos sĂŁo seguidos, incluindo: deteção de objetos no ambiente; classificação destes objetos com as respetivas etiquetas de classe atravĂ©s de um classificador baseado em features, vegetação ou estruturas da rede elĂ©trica; otimização dos resultados da classificação utilizando algoritmos de filtragem ou segmentação de point cloud. Este mĂ©todo Ă© testado usando dados sintĂ©ticos e reais de ĂĄreas florestais com estruturas elĂ©tricas. A exatidĂŁo do processo de classificação Ă© cerca de 87% e 97-99% para os dados sintĂ©ticos e reais, respetivamente. ApĂłs o processo de otimização, estes valores aumentam para 92% para os dados sintĂ©ticos e cerca de 100% para os dados reais. Uma comparação e discussĂŁo de resultados Ă© apresentada, fornecendo as mĂ©tricas de avaliação mais importantes e uma representação visual dos resultados obtidos

    A Global Human Settlement Layer from optical high resolution imagery - Concept and first results

    Get PDF
    A general framework for processing of high and very-high resolution imagery for creating a Global Human Settlement Layer (GHSL) is presented together with a discussion on the results of the first operational test of the production workflow. The test involved the mapping of 24.3 millions of square kilometres of the Earth surface spread over four continents, corresponding to an estimated population of 1.3 billion of people in 2010. The resolution of the input image data ranges from 0.5 to 10 meters, collected by a heterogeneous set of platforms including satellite SPOT (2 and 5), CBERS-2B, RapidEye (2 and 4), WorldView (1 and 2), GeoEye-1, QuickBird-2, Ikonos-2, and airborne sensors. Several imaging modes were tested including panchromatic, multispectral and pan-sharpened images. A new fully automatic image information extraction, generalization and mosaic workflow is presented that is based on multiscale textural and morphological image features extraction. New image feature compression and optimization are introduced, together with new learning and classification techniques allowing for the processing of HR/VHR image data using low-resolution thematic layers as reference. A new systematic approach for quality control and validation allowing global spatial and thematic consistency checking is proposed and applied. The quality of the results are discussed by sensor, by band, by resolution, and eco-regions. Critical points, lessons learned and next steps are highlighted.JRC.G.2-Global security and crisis managemen

    Détection des bùtiments à partir des images multispectrales à trÚs haute résolution spatiale par la transformation Hit-or-Miss

    Get PDF
    RĂ©sumĂ© : La dĂ©tection des bĂątiments dans les images Ă  trĂšs haute rĂ©solution spatiale (THRS) a plusieurs applications pratiques et reprĂ©sente un domaine de recherche scientifique intensive ces derniĂšres annĂ©es. Elle fait face Ă  la complexitĂ© du milieu urbain et aux spĂ©cificitĂ©s des images provenant des diffĂ©rents capteurs. La performance des mĂ©thodes existantes pour l’extraction des bĂątiments n’est pas encore suffisante pour qu’elles soient gĂ©nĂ©ralisĂ©es Ă  grande Ă©chelle (diffĂ©rents types de tissus urbains et capteurs). Les opĂ©rateurs morphologiques se sont montrĂ©s efficaces pour la dĂ©tection des bĂątiments dans les images panchromatiques (images en niveaux de gris) Ă  trĂšs haute rĂ©solution spectrale (THRS). L’information spectrale issue des images multispectrales est jugĂ©e nĂ©cessaire pour l’amĂ©lioration de leur performance. L’extension des opĂ©rateurs morphologiques pour les images multispectrales exige l’adoption d’une stratĂ©gie qui permet le traitement des pixels sous forme de vecteurs, dont les composantes sont les valeurs dans les diffĂ©rentes bandes spectrales. Ce travail de recherche vise l’application de la transformation morphologique dite Hit-or-Miss (HMT) Ă  des images multispectrales Ă  THRS, afin de dĂ©tecter des bĂątiments. Pour rĂ©pondre Ă  la problĂ©matique de l’extension des opĂ©rateurs morphologiques pour les images multispectrales, nous proposons deux solutions. Comme une premiĂšre solution nous avons gĂ©nĂ©rĂ© des images en niveaux de gris Ă  partir les bandes multispectrales. Dans ces nouvelles images les bĂątiments potentiels sont rehaussĂ©s par rapport Ă  l’arriĂšre-plan. La HMT en niveaux de gris est alors appliquĂ©e Ă  ces images afin de dĂ©tecter les bĂątiments. Pour rehausser les bĂątiments nous avons proposĂ© un nouvel indice, que nous avons appelĂ© Spectral Similarity Ratio (SSR). Pour Ă©viter de dĂ©finir des configurations, des ensembles d’élĂ©ments structurants (ES), nĂ©cessaires pour l’application de la HMT, au prĂ©alable, nous avons utilisĂ© l’érosion et la dilatation floues et poursuivi la rĂ©ponse des pixels aux diffĂ©rentes valeurs des ES. La mĂ©thode est testĂ©e sur des extraits d’images reprĂ©sentant des quartiers de type rĂ©sidentiel. Le taux moyen de reconnaissance obtenu pour les deux capteurs Ikonos et GeoEye est de 85 % et de 80 %, respectivement. Le taux moyen de bonne identification, quant Ă  lui, est de 85 % et 84 % pour les images Ikonos et GeoEye, respectivement. AprĂšs certaines amĂ©liorations, la mĂ©thode a Ă©tĂ© appliquĂ©e sur des larges scĂšnes Ikonos et WorldView-2, couvrant diffĂ©rents tissus urbains. Le taux moyen des bĂątiments reconnus est de 82 %. Pour sa part, le taux de bonne identification est de 81 %. Dans la deuxiĂšme solution, nous adoptons une stratĂ©gie vectorielle pour appliquer la HMT directement sur les images multispectrales. La taille des ES de cette transformation morphologique est dĂ©finie en utilisant la transformation dite chapeau haut-de-forme par reconstruction. Une Ă©tape de post-traitement inclut le filtrage de la vĂ©gĂ©tation par l’indice de la vĂ©gĂ©tation NDVI et la validation de la localisation des bĂątiments par l’information d’ombre. La mĂ©thode est appliquĂ©e sur un espace urbain de type rĂ©sidentiel. Des extraits d’images provenant des capteurs satellitaires Ikonos, GeoEye et WorldView 2 ont Ă©tĂ© traitĂ©s. Le taux des bĂątiments reconnus est relativement Ă©levĂ© pour tous les extraits - entre 85 % et 97 %. Le taux de bonne identification dĂ©montre des rĂ©sultats entre 74 % et 88 %. Les rĂ©sultats obtenus nous permettent de conclure que les objectifs de ce travail de recherche, Ă  savoir, la proposition d’une technique pour l’estimation de la similaritĂ© spectrale entre les pixels formant le toit d’un bĂątiment, l’intĂ©gration de l’information multispectrale dans la HMT dans le but de dĂ©tecter les bĂątiments, et la proposition d’une technique qui permet la dĂ©finition semi-automatique des configurations bĂątiment/voisinage dans les images multispectrales, ont Ă©tĂ© atteints. // Abstract : Detection of buildings in very high spatial resolution images (THRS) has various practical applications and is recently a subject of intensive scientific research. It faces the complexity of the urban environment and the variety of image characteristics depending on the type of the sensor. The performance of existing building extraction methods is not yet sufficient to be generalized to a large scale (different urban patterns and sensors). Morphological operators have been proven effective for the detection of buildings in panchromatic (greyscale) very high spectral resolution (VHSR) images. The spectral information of multispectral images is jugged efficient to improve the results of the detection. The extension of morphological operators to multispectral images is not straightforward. As pixels of multispectral images are pixels vectors the components of which are the intensity values in the different bands, a strategy to order vectors must be adopted. This research thesis focuses on the application of the morphological transformation called Hit-or-Miss (HMT) on multispectral VHSR images in order to detect buildings. To address the issue of the extension of morphological operators to multispectral images we have proposed two solutions. The first one employs generation of greyscale images from multispectral bands, where potential buildings are enhanced. The grayscale HMT is then applied to these images in order to detect buildings. To enhance potential building locations we have proposed the use of Spectral Similarity Ratio (SSR). To avoid the need to set multiple configurations of structuring elements (SE) necessary for the implementation of the HMT, we have used fuzzy erosion and fuzzy dilation and examined the pixel response to different values of SE. The method has been tested on image subsets taken over residential areas. The average rate of recognition for the two sensors, Ikonos and GeoEye, is 85% and 80%, respectively. The average rate of correct identification is 85% and 84%, for Ikonos and GeoEye subsets, respectively. Having made some improvements, we then applied the method to large scenes from Ikonos and WorldView-2 images covering different urban patterns. The average rate of recognized buildings is 82%. The rate of correct identification is 81%. As a second solution, we have proposed a new vector based strategy which allows the multispectral information to be integrated into the percent occupancy HMT (POHMT). Thus, the POHMT has been directly applied on multispectral images. The parameters for the POHMT have been defined using the morphological transformation dubbed top hat by reconstruction. A post-processing step included filtering the vegetation and validating building locations by proximity to shadow. The method has been applied to urban residential areas. Image subsets from Ikonos, GeoEye and WorldView2 have been processed. The rate of recognized buildings is relatively high for all subsets - between 85% and 97%. The rate of correct identification is between 74 % and 88 %. The results allow us to conclude that the objectives of this research, namely, suggesting a technique for estimating the spectral similarity between the pixels forming the roof of a building, the integration of multispectral information in the HMT in order to detect buildings and the proposition of a semiautomatic technique for the definition of the configurations building/neighbourhood in multispectral images, have been achieved

    Advanced Techniques based on Mathematical Morphology for the Analysis of Remote Sensing Images

    Get PDF
    Remote sensing optical images of very high geometrical resolution can provide a precise and detailed representation of the surveyed scene. Thus, the spatial information contained in these images is fundamental for any application requiring the analysis of the image. However, modeling the spatial information is not a trivial task. We addressed this problem by using operators defined in the mathematical morphology framework in order to extract spatial features from the image. In this thesis novel techniques based on mathematical morphology are presented and investigated for the analysis of remote sensing optical images addressing different applications. Attribute Profiles (APs) are proposed as a novel generalization based on attribute filters of the Morphological Profile operator. Attribute filters are connected operators which can process an image by removing flat zones according to a given criterion. They are flexible operators since they can transform an image according to many different attributes (e.g., geometrical, textural and spectral). Furthermore, Extended Attribute Profiles (EAPs), a generalization of APs, are presented for the analysis of hyperspectral images. The EAPs are employed for including spatial features in the thematic classification of hyperspectral images. Two techniques dealing with EAPs and dimensionality reduction transformations are proposed and applied in image classification. In greater detail, one of the techniques is based on Independent Component Analysis and the other one deals with feature extraction techniques. Moreover, a technique based on APs for extracting features for the detection of buildings in a scene is investigated. Approaches that process an image by considering both bright and dark components of a scene are investigated. In particular, the effect of applying attribute filters in an alternating sequential setting is investigated. Furthermore, the concept of Self-Dual Attribute Profile (SDAP) is introduced. SDAPs are APs built on an inclusion tree instead of a min- and max-tree, providing an operator that performs a multilevel filtering of both the bright and dark components of an image. Techniques developed for applications different from image classification are also considered. In greater detail, a general approach for image simplification based on attribute filters is proposed. Finally, two change detection techniques are developed. The experimental analysis performed with the novel techniques developed in this thesis demonstrates an improvement in terms of accuracies in different fields of application when compared to other state of the art methods

    Automated Building Information Extraction and Evaluation from High-resolution Remotely Sensed Data

    Get PDF
    The two-dimensional (2D) footprints and three-dimensional (3D) structures of buildings are of great importance to city planning, natural disaster management, and virtual environmental simulation. As traditional manual methodologies for collecting 2D and 3D building information are often both time consuming and costly, automated methods are required for efficient large area mapping. It is challenging to extract building information from remotely sensed data, considering the complex nature of urban environments and their associated intricate building structures. Most 2D evaluation methods are focused on classification accuracy, while other dimensions of extraction accuracy are ignored. To assess 2D building extraction methods, a multi-criteria evaluation system has been designed. The proposed system consists of matched rate, shape similarity, and positional accuracy. Experimentation with four methods demonstrates that the proposed multi-criteria system is more comprehensive and effective, in comparison with traditional accuracy assessment metrics. Building height is critical for building 3D structure extraction. As data sources for height estimation, digital surface models (DSMs) that are derived from stereo images using existing software typically provide low accuracy results in terms of rooftop elevations. Therefore, a new image matching method is proposed by adding building footprint maps as constraints. Validation demonstrates that the proposed matching method can estimate building rooftop elevation with one third of the error encountered when using current commercial software. With an ideal input DSM, building height can be estimated by the elevation contrast inside and outside a building footprint. However, occlusions and shadows cause indistinct building edges in the DSMs generated from stereo images. Therefore, a “building-ground elevation difference model” (EDM) has been designed, which describes the trend of the elevation difference between a building and its neighbours, in order to find elevation values at bare ground. Experiments using this novel approach report that estimated building height with 1.5m residual, which out-performs conventional filtering methods. Finally, 3D buildings are digitally reconstructed and evaluated. Current 3D evaluation methods did not present the difference between 2D and 3D evaluation methods well; traditionally, wall accuracy is ignored. To address these problems, this thesis designs an evaluation system with three components: volume, surface, and point. As such, the resultant multi-criteria system provides an improved evaluation method for building reconstruction

    Building Footprint Extraction from LiDAR Data and Imagery Information

    Get PDF
    This study presents an automatic method for regularisation of building outlines. Initially, building segments are extracted using a new fusion method. Data- and model-driven approaches are then combined to generate approximate building polygons. The core part of the method includes a novel data-driven algorithm based on likelihood equation derived from the geometrical properties of a building. Finally, the Gauss-Helmert and Gauss-Markov models adjustment are implemented and modified for regularisation of building outlines considering orthogonality constraints

    Using an anisotropic diffusion scale-space for the detection and delineation of shacks in informal settlement imagery

    Get PDF
    PhD, Faculty of Engineering and the Built Environment, University of the Witwatersrand, 2010Informal settlements are a growing world-wide phenomenon. Up-to-date spatial information mapping settlements is essential for a variety of end-user applications from planning settlement upgrading to monitoring expansion and infill. One method of gathering this information is through the analysis of nadir-view aerial imagery and the automated or semi-automated extraction of individual shacks. The problem of shack detection and delineation in, particularly South African, informal settlements is a unique and difficult one. This is primarily due to the inhomogeneous appearance of shack roofs, which are constructed from a variety of disparate materials, and the density of shacks. Previous research has focused mostly on the use of height data in conjunction with optical images to perform automated or semi-automated shack extraction. In this thesis, a novel approach to automating shack extraction is presented and prototyped, in which the appearance of shack roofs is homogenised, facilitating their detection. The main features of this strategy are: construction of an anisotropic scale-space from a single source image and detection of hypotheses at multiple scales; simplification of hypotheses' boundaries through discrete curve evolution and regularisation of boundaries in accordance with an assumed shack model - a 4-6 sided, compact, rectilinear shape; selection of hypotheses competing across scales using fuzzy rules; grouping of hypotheses based on their support for one another, and localisation and re-regularisation of boundaries through the incorporation of image edges. The prototype's performance is evaluated in terms of standard metrics and is analysed for four different images, having three different sets of imaging conditions, and containing well over a hundred shacks. Detection rates in terms of building counts vary from 83% to 100% and, in terms of roof area coverage, from 55% to 84%. These results, each derived from a single source image, compare favourably with those of existing shack detection systems, especially automated ones which make use of richer source data. Integrating this scale-space approach with height data offers the promise of even better results

    Automatic detection of geospatial objects using multiple hierarchical segmentations

    Get PDF
    Cataloged from PDF version of article.The object-based analysis of remotely sensed imagery provides valuable spatial and structural information that is complementary to pixel-based spectral information in classi- fication. In this paper, we present novel methods for automatic object detection in high-resolution images by combining spectral information with structural information exploited by using image segmentation. The proposed segmentation algorithm uses morphological operations applied to individual spectral bands using structuring elements in increasing sizes. These operations produce a set of connected components forming a hierarchy of segments for each band. A generic algorithm is designed to select meaningful segments that maximize a measure consisting of spectral homogeneity and neighborhood connectivity. Given the observation that different structures appear more clearly at different scales in different spectral bands, we describe a new algorithm for unsupervised grouping of candidate segments belonging to multiple hierarchical segmentations to find coherent sets of segments that correspond to actual objects. The segments are modeled by using their spectral and textural content, and the grouping problem is solved by using the probabilistic latent semantic analysis algorithm that builds object models by learning the object-conditional probability distributions. The automatic labeling of a segment is done by computing the similarity of its feature distribution to the distribution of the learned object models using the Kullback–Leibler divergence. The performances of the unsupervised segmentation and object detection algorithms are evaluated qualitatively and quantitatively using three different data sets with comparative experiments, and the results show that the proposed methods are able to automatically detect, group, and label segments belonging to the same object classes

    Remote Sensing

    Get PDF
    This dual conception of remote sensing brought us to the idea of preparing two different books; in addition to the first book which displays recent advances in remote sensing applications, this book is devoted to new techniques for data processing, sensors and platforms. We do not intend this book to cover all aspects of remote sensing techniques and platforms, since it would be an impossible task for a single volume. Instead, we have collected a number of high-quality, original and representative contributions in those areas
    • 

    corecore