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Abstract

Electrical network maintenance inspections must be regularly executed, to provide

a continuous distribution of electricity. In forested countries, the electrical network is

mostly located within the forest. For this reason, during these inspections, it is also

necessary to assure that vegetation growing close to the power line does not potentially

endanger it, provoking forest fires or power outages.

Several remote sensing techniques have been studied in the last years to replace the

labor-intensive and costly traditional approaches, be it field based or airborne surveillance.

Besides the previously mentioned disadvantages, these approaches are also prone to

error, since they are dependent of a human operator’s interpretation. In recent years,

Unmanned Aerial Vehicle (UAV) platform applicability for this purpose has been under

debate, due to its flexibility and potential for customisation, as well as the fact it can fly

close to the power lines.

The present study proposes a vegetation management and power line monitoring

method, using a UAV platform. This method starts with the collection of point cloud data

in a forest environment composed of power line structures and vegetation growing close

to it. Following this process, multiple steps are taken, including: detection of objects in

the working environment; classification of said objects into their respective class labels

using a feature-based classifier, either vegetation or power line structures; optimisation

of the classification results using point cloud filtering or segmentation algorithms. The

method is tested using both synthetic and real data of forested areas containing power line

structures. The Overall Accuracy of the classification process is about 87% and 97-99%

for synthetic and real data, respectively. After the optimisation process, these values were

refined to 92% for synthetic data and nearly 100% for real data. A detailed comparison

and discussion of results is presented, providing the most important evaluation metrics

and a visual representations of the attained results.

Keywords: Vegetation Management, Power Line Mapping, Remote Sensing, UAV, Point

Cloud Classification, Point Cloud Filtering, Point Cloud Segmentation
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Resumo

Manutenções regulares da rede elétrica devem ser realizadas de forma a assegurar

uma distribuição contínua de eletricidade. Em países com elevada densidade florestal, a

rede elétrica encontra-se localizada maioritariamente no interior das florestas. Por isso,

durante estas inspeções, é necessário assegurar também que a vegetação próxima da rede

elétrica não a coloca em risco, provocando incêndios ou falhas elétricas.

Diversas técnicas de deteção remota foram estudadas nos últimos anos para substituir

as tradicionais abordagens dispendiosas com mão-de-obra intensiva, sejam elas através de

vigilância terrestre ou aérea. Além das desvantagens mencionadas anteriormente, estas

abordagens estão também sujeitas a erros, pois estão dependentes da interpretação de um

operador humano. Recentemente, a aplicabilidade de plataformas com Unmanned Aerial
Vehicles (UAV) tem sido debatida, devido à sua flexibilidade e potencial personalização,

assim como o facto de conseguirem voar mais próximas das linhas elétricas.

O presente estudo propõe um método para a gestão da vegetação e monitorização da

rede elétrica, utilizando uma plataforma UAV. Este método começa pela recolha de dados

point cloud num ambiente florestal composto por estruturas da rede elétrica e vegetação

em crescimento próximo da mesma. Em seguida, múltiplos passos são seguidos, incluindo:

deteção de objetos no ambiente; classificação destes objetos com as respetivas etiquetas

de classe através de um classificador baseado em features, vegetação ou estruturas da rede

elétrica; otimização dos resultados da classificação utilizando algoritmos de filtragem ou

segmentação de point cloud. Este método é testado usando dados sintéticos e reais de áreas

florestais com estruturas elétricas. A exatidão do processo de classificação é cerca de 87%

e 97-99% para os dados sintéticos e reais, respetivamente. Após o processo de otimização,

estes valores aumentam para 92% para os dados sintéticos e cerca de 100% para os dados

reais. Uma comparação e discussão de resultados é apresentada, fornecendo as métricas

de avaliação mais importantes e uma representação visual dos resultados obtidos.

Palavras-chave: Gestão de Vegetação, Mapeamento da Rede Elétrica, Deteção Remota,

UAV, Classificação de Point Cloud, Segmentação de Point Cloud, Filtragem de Point Cloud

ix





Contents

List of Figures xiii

List of Tables xv

Acronyms xix

1 Introduction 1

1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.6 Document Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 5

2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Laser Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Comparison of Approaches . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Synthetic Aperture Radar (SAR) Images . . . . . . . . . . . . . . . 12

2.2.2 Optical Satellite Images . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Optical Aerial Images . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.4 Thermal Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.5 Mobile Laser Scanning (MLS) . . . . . . . . . . . . . . . . . . . . . 18

2.2.6 Airborne Laser Scanning (ALS) . . . . . . . . . . . . . . . . . . . . 20

2.2.7 Unmanned Aerial Vehicle (UAV) . . . . . . . . . . . . . . . . . . . 25

2.2.8 Comparison of Approaches . . . . . . . . . . . . . . . . . . . . . . 27

3 Method 29

3.1 Concept Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Proposed Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 External Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

xi



CONTENTS

3.3.1 Robot Operating System (ROS) . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Point Cloud Library (PCL) . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.3 Aerial Informatics and Robotics Simulation (AirSim) . . . . . . . . 35

3.3.4 Octomap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.5 MeshLab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.6 Computational Geometry Algorithms Library (CGAL) . . . . . . . 36

3.4 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Point Cloud Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.1 Input Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.2 Feature Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.3 Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.4 Classification Functions . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6.1 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6.2 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Results 59

4.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Conclusions and Future Work 69

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Bibliography 75

xii



List of Figures

3.1 Diagrammatic representation of the Proposed Workflow. . . . . . . . . . . . . 32

3.2 Sequence diagram of Synthetic Data Acquisition process. . . . . . . . . . . . 38

3.3 Screenshot of the Synthetic Data simulated environment. . . . . . . . . . . . 39

3.4 Screenshot of the resulting Point Cloud Data (PCD) file after mapping the

simulated environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Close-ups of the real life LiDAR sample Dataset from Open.NRW. . . . . . . 42

4.1 Ground Truth Subset from sample real life Dataset. . . . . . . . . . . . . . . . 60

4.2 Resulting labelled data after Classification from sample real life Dataset. . . 61

4.3 Close-ups of the most prominent issues present in a sample real life Dataset

faced by the classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Optimisation results of a sample real life Dataset. . . . . . . . . . . . . . . . . 64

4.4 Optimisation results of a sample real life Dataset (cont.). . . . . . . . . . . . . 65

4.5 Comparison of Classification and Optimisation results of a sample real life

Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Comparison of Classification and Optimisation results of a sample real life

Dataset (cont.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xiii





List of Tables

2.1 Data Acquisition Comparison between Laser Scanning and Computer Vision

(Image-based). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Data Processing Comparison between Remote Sensing Data Sources. . . . . . 28

3.1 Detailed information of manually labelled point cloud datasets. . . . . . . . 42

4.1 Detailed information of manually labelled ground truth subsets. . . . . . . . 60

4.2 Detailed information of classification metrics. . . . . . . . . . . . . . . . . . . 61

4.3 Detailed information of optimisation metrics. . . . . . . . . . . . . . . . . . . 64

xv





List of Algorithms

1 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2 Progressive Morphological Filter . . . . . . . . . . . . . . . . . . . . . . . 56

3 Euclidean Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xvii





Acronyms

AirSim Aerial Informatics and Robotics Simulation

ALS Airborne Laser Scanning

ATV all-terrain vehicle

CGAL Computational Geometry Algorithms Library

CHM Canopy Height Model

CNN Convolutional Neural Network

DEM Digital Elevation Model

DSM Digital Surface Model

DTM Digital Terrain Model

EOL End of Life

FoV Field of View

GNSS Global Navigation Satellite System

GPS Global Positioning System

GPU Graphics Processing Unit

GSD Ground Sample Distance

HT Hough Transform

IMU Inertial Measurement Unit

LAI Leaf Area Index

LiDAR Light Detection And Ranging

mAcc mean Class Accuracy

MLP Multi-Layer Perceptron

MRF Markov Random Field

xix



ACRONYMS

nDSM normalized Digital Surface Model

NDVI Normalized Difference Vegetation Index

NED North-East-Down

NIR near infra-red

OA Overall Accuracy

OFF Object File Format

PCD Point Cloud Data

PCL Point Cloud Library

PCNN Pulse-Coupled Neural Network

PDE Partial Differential Equation

PLC Power Line Corridor

POS Position and Orientation System

RANSAC RANdom SAmple Consensus

ReLU Rectified Linear Unit

ROS Robot Operating System

SAR Synthetic Aperture Radar

SfM Structure from Motion

SVM Support Vector Machine

TPU Tensor Processing Unit

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle

VG Voxel Grid

VTOL vertical take-off and landing

xx



C
h
a
p
t
e
r

1
Introduction

The present chapter provides an introduction to the work that has been performed in

this dissertation. The scope of this work is first explained in section 1.1, followed by the

motivation that led to it in section 1.2. The most recurrent obstacles found in related

work in section 1.3, followed by the approach to solve them presented in section 1.4.

Next, the proposed method to achieve the goal of this work is introduced in section 1.5.

Finally, the document organisation is briefly explained in section 1.6.

1.1 Scope

Electricity is a basic need for the efficient functioning of contemporary societies. To

provide a reliable and continuous distribution of electricity to its customers, power dis-

tribution companies must realise regular inspections of the power line network [25, 52].

In forested countries, a huge part of the electrical network is located within the forest.

Power line maintenance not only involves the monitoring of power line components, but

of the surrounding objects as well, including buildings and vegetation [28].

Vegetation brings several contributions to the environment like providing habitat

for wild animals, certain aesthetic benefits and tree shades can also regulate tempera-

tures [52]. Nevertheless, it is important to manage vegetation growth, because overgrown

trees can interfere with power lines, which can, consequently, result in short circuits,

blackouts, or even worse, bushfires. Vegetation management aims to keep the healthy

low-growing plants while removing overgrown trees that can be potentially hazardous to

the power lines [21]. Falling trees, especially during natural disasters and poor weather

conditions, can damage the power line components and cause power outages. Tree crown

snow-load can make the trees bend and collide with power lines. Moreover, the power line

components naturally deteriorate, be it due to corrosion, insulator cracks or mechanical
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CHAPTER 1. INTRODUCTION

damage in the conductors. Therefore, it is important to not only monitor the vegetation

around the electrical network, but the power line corridors (PLCs) as well [25].

In addition, certain countries, like Portugal [36], can impose strict laws related to

fuel management in forest areas, and even enforce grave penalties when these laws are

not respected. Fuel management bands are defined by each countries’ legislation, with

widths proportional to the objects surrounding vegetation (i.e. buildings, power lines)

and taking into account the potential risk to cause a forest fire. In private lands this

responsibility lies on the landowners. However, in public areas the responsibility lies on

the entities operating the power lines. Any vegetation that can be ignited is considered

as fuel and can provoke a forest fire. Vegetation crossing a fuel management band is

considered as potentially dangerous and must be trimmed down, removed partially or

completely. The result of this procedure is called a fuel modification area.

1.2 Problem

Conventional approaches of power line monitoring include either field or airborne sur-

veys. Field-based monitoring can be done for longer periods of time, which, consequently,

increases the problem detection rate. Moreover, it can provide crucial information about

forest structures. However, this process is not only very labor-intensive and costly, but

it is also dependant of subjective human visual interpretation, which makes it prone to

error [2, 28, 32, 45, 48, 49]. Airborne monitoring, using, for example, a helicopter, has a

lower problem detection rate, since this method is limited by the helicopter’s speed and

the crew’s ability to detect problems at such high speeds. Furthermore, their long observa-

tion distance will, consequently, have negative impacts on the resolution of the retrieved

data. In addition, this method is also dependant on a human’s visual observations [8, 28].

1.3 Motivation

Many approaches have been studied in the last years aiming to refine the efficacy and

reduce the workload of power line monitoring subsequently eliminating the need for

power distribution companies to acquire and operate the monitoring equipment. These

approaches include: camera tracking systems to acquire data, line inspection robots, and

unmanned aerial monitoring. Moreover, new automated data processing algorithms have

emerged, for vegetation detection, canopy height assessment and feature extraction [31].

The usage of digital cameras and laser scanners for visual inspections has been vastly

studied in the last two decades, providing several benefits when compared to the tra-

ditional methods. The most important one being the fact that these approaches have

distinct data collection and analysis procedures, which, consequently, reduces data col-

lection costs substantially while improving data analysis. Nevertheless, data analysis is

still fundamentally a manual process [28].

2



1.4. SOLUTION

1.4 Solution

Remote sensing techniques can cover wide areas with low efforts, thus making it more

efficient than traditional techniques. Data processing is increasingly more an automated

process, using computer vision algorithms, making it independent of subjective human

visual interpretation [25]. Optical images, Synthetic Aperture Radar (SAR) images and

Airborne Laser Scanning (ALS) data are some of the approaches that have been most

commonly studied in the last few years. Optical and SAR images have been recently

used for PLC monitoring; however, these sensors are susceptible to occlusions. ALS has

been used to overcome this issue and provide a more efficient inspection, although it also

has its own disadvantages. The standard ALS platforms (i.e. helicopters and fixed-wing

aircraft) can be quite costly and inflexible [8, 32].

Unmanned Aerial Vehicles (UAVs) equipped with a Global Positioning System (GPS),

an Inertial Measurement Unit (IMU), laser scanners and optical cameras provide an ef-

ficient solution to traditional remote sensing platforms, with substantially lower costs.

Moreover, it presents close-range data acquisition, flexibility and potential for customisa-

tion, with reduced time cost and human resources, especially for inspections in difficult

terrains [8].

1.5 Proposed Method

This study will focus on the detection and classification of vegetation for power line moni-

toring using LiDAR-based point clouds, in other words, a collection of multi-dimensional

points, acquired with a UAV platform, as well as computer vision algorithms for data

processing. This procedure involves: LiDAR data acquisition, detection and classification

of vegetation and electrical structures, followed by a post-processing operation which

optimises the classification results.

1.6 Document Organisation

This document comprises the current introduction and four other chapters, and is struc-

tured as follows:

• Related Work - This chapter presents the state-of-the-art for vegetation manage-

ment and power line mapping using remote sensing techniques. A brief description

of these techniques is presented, including their advantages and disadvantages,

followed by a comparison of their performance;

• Method - In this chapter the proposed remote sensing method is described. Fur-

thermore, external resources to achieve the specified goal are also briefly explained.

In particular, the proposed method consists of a UAV-based approach, equipped

with a LiDAR and the support of computer vision algorithms. This method starts

3



CHAPTER 1. INTRODUCTION

with the data acquisition process, followed by the classification of objects into their

respective labels, power line structures or vegetation, otherwise known as semantic

segmentation. Lastly, optimisation algorithms are used to improve classification

results;

• Results - This chapter presents the visual results attained from the classification

process as well as the posterior optimisation, displaying the most important evalua-

tion metrics. A comparison of results and their analysis is also shown.

• Conclusions and future work - This chapter presents the conclusions attained from

the literary research and their importance during the development of this work,

followed by the conclusions of the proposed methodology including its benefits and

limitations and the objectives that have been accomplished. To conclude, possible

future work is presented, including objectives that were not fulfilled, and other

improvements to algorithms and methodologies that could be done, in order to

ameliorate the results obtained in this work.
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2
Related Work

The objective of this chapter is to introduce the concepts of point cloud data acquisition

and processing by presenting the most relevant related work found in literature. In the

first section, section 2.1, data collection methods using both laser scanning and computer

vision techniques will be presented, including their benefits and limitations, as well as

a brief comparison of both approaches. In the following section, section 2.2, several

methods of data analysis will be presented: Synthetic Aperture Radar (SAR) Images,

Optical Satellite Images, Optical Aerial Images, Thermal Images, Mobile Laser Scanning

(MLS), Airborne Laser Scanning (ALS) and Unmanned Aerial Vehicle (UAV) data. For

each technique, a brief explanation of how they work will be presented, followed by their

advantages and disadvantages, and, lastly, an exposition of the works found in literature

using said technique and a brief summary of what these works have achieved. To conclude

the section, a brief comparison of the different methods mentioned is also shown.

2.1 Data Collection

Two methodologies have been primarily used for data collection in power line monitor-

ing and vegetation management applications: (1) laser scanning and (2) computer vision

algorithms to process still camera imagery. Laser scanning is the process of computing

the return time of an emitted laser pulse when it intercepts certain object which can

consequently be used to calculate a range measurement and obtain a 3D point cloud.

Image-based point clouds, on the other hand, are generated with computer vision/pho-

togrammetry techniques [48]. Further explanation about how these methodologies work,

as well as their benefits and limitations, is presented in the upcoming subsections.

5
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2.1.1 Laser Scanning

Laser scanning (also known as Light Detection And Ranging, LiDAR) is an active remote

sensing technique whose potential for extraction of important vegetation properties at

both forest stand and individual tree level, as well as for power line mapping, has been

vastly explored in the last decades [41].

Laser scanners record the backscattered echoes of short pulses of electromagnetic ra-

diation (typically 4-10 ns), be it in the infrared or visible bands of the electromagnetic

spectrum, emitted at a high frequency (typically 50-150 kHz). When a surface intercepts

the laser pulse, part of its energy can be backscattered. The sensor captures the backscat-

tered signal and the distance between the laser scanner and the intercepted surface is

calculated taking into account the flight duration, as well as the velocity of the laser

pulses. Moreover, the angle of deflection for each pulse is also recorded, as well as the

intensity information which is quantified as the amount of backscattered energy [46]. A

synchronised Position and Orientation System (POS), which is typically formed by a GPS

system and an IMU, provides the position and orientation of the sensor system [46].

For each laser pulse emitted, laser scanning platforms can usually record up to four

return echoes (i.e. first echo returning from vegetation or the electric network and last

one from the terrain). Surface types affect the quantity of backscattered echoes as well as

their height differences, which can be used to interpret data [28].

From LiDAR data, three crucial models for vegetation management can be created:

(1) Digital Terrain Model (DTM), also called Digital Elevation Model (DEM) in certain

studies, which provides the elevation of the ground or the Earth’s surface, obtained by

isolating ground points; (2) Digital Surface Model (DSM) provides the surface top, which

includes the Earth’s surface, as well as treetops, power lines, or other objects; (3) Canopy

Height Model (CHM), also called a normalised Digital Surface Model (nDSM), is the

result of the interpolation of LiDAR data when the return heights are normalised to a

DTM [24]. In other words, it results from the subtraction of DSM and DTM and provides

the height of the referred objects.

CHMs can, when used on the tree level, facilitate the detection and delineation of indi-

vidual trees. Nevertheless, individual tree and crown extraction can still pose a challenge

to CHMs. Incorrect crown shapes could be a result of CHMs crown delineation, which

can overlap with other trees. Another reported issue is tree height underestimation, due

to incomplete LiDAR data or tree crowns’ permeability to LiDAR which can consequently

generate incorrect CHMs. Thirdly, CHM will usually present surface imperfections which

require correction using smoothing techniques, and will consequently have negative im-

pacts on the detection and delineation of individual trees. Lastly, treetop locations might

be moved in CHMs from their position in the raw point cloud due to rasterizing [24, 42].

PLC mapping with LiDAR data typically involves classification or segmentation of

points into distinct surfaces (i.e. vegetation, electric network or terrain), followed by the

modelling of wires strung between successive pylons. Since the return point number
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is far lower than the input point number a lot of approaches start with pylon detection

which consequently allow a quicker wire extraction since solely non-ground points have

to be processed. Nevertheless, in forest areas, due to the large amount of trees and their

shapes, they could exhibit similar characteristics as pylons thus making pylon detection

to support wire extraction counter-productive [2].

Power line extraction methods using LiDAR can be, essentially, divided into two types:

(1) supervised and (2) unsupervised [2, 32, 56]. Supervised classification uses classifiers

like Support Vector Machine (SVM), Random Forest algorithms and JointBoost based on

the geometrical properties of laser points [56]. It can be highly accurate for small areas,

but it requires a large training dataset which is generally difficult to obtain in forest areas,

since pylons are a minority compared to vegetation and even wires [2, 56]. Unsupervised

classification is based on statistical analysis or Hough Transform (HT) and clustering

algorithms [56]. It is usually based on the vertical and horizontal properties of power

lines [56]. Since wires linking consecutive pylons have linear properties, the non-linear

adjustment of catenary curves can be used to detect wire candidate points [56].

These methods can be further divided into two categories: (1) grid-based and (2) point-

based. Grid-based methods interpolate 3D point cloud data (height and laser intensity)

into a 2D grid space. Nevertheless, these methods will be prone to error when multiple

objects overlap each other vertically [2]. Point-based methods analyse and label all 3D

points individually thus overcoming the limitations of grid-based methods, but with

increased computational costs. These methods can be further divided into statistical

analysis, wire extraction based on line geometrical properties using HT, and RANdom

SAmple Consensus (RANSAC) algorithms [2].

2.1.2 Computer Vision

With the improvements of digital aerial cameras, it is now possible to acquire multi-

ple overlapping images in a less laborious way than before, with substantially reduced

costs, from the acquisition to the processing of these images. Vegetation management

can benefit from overlapping images, since it allows multi-view matching, which can

overcome certain canopy occlusions while improving geometric accuracy. Furthermore,

improvements in computer technology have reduced the complexity of image matching

algorithms. These improvements result in the generation of image-based point clouds

which can be very similar to ALS point clouds and provide more accurate and detailed

DSMs. Image-based point cloud and DSM require various overlapping airborne images

with high-spatial resolution, which is characterised by the Ground Sample Distance (GSD)

(in other words, the minimum identifiable object size) and is affected by the flying height

and sensor characteristics [53].

Stereophotogrammetry using image-based point clouds is a process similar to a hu-

man’s depth perception with normal binocular vision. It follows the principle of parallax,

in other words, the apparent relative position variation of a motionless object, due to
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a change in the angular viewpoint. Its principle is to identify common points in each

image, according to their radiometric and geometric similarities, thus creating a line of

sight (or ray) between the camera viewpoint and these points. When two rays intersect, it

is possible to obtain the three-dimensional position of said point using triangulation. The

same process applied to all the points corresponding to the object or surface of interest

can be used to generate a DSM [53].

There are two commonly used automated photogrammetric image matching methods:

(1) area-based and (2) feature-based. Area-based methods typically search for a match

between images using a reference window of pixels. Feature-based methods use basic

geometric shape matching, like lines and polygons. Image processing software programs

nowadays generally use both methods. A special case of area-based methods is Global

Image Matching, which tries to find a match for each pixel in one photograph, providing

more detailed and accurate results, but also very computationally intensive and slow.

Semi-Global Matching is a hybrid method that has emerged, combining both area-based

and Global Image Matching methods, which uses a cost function to evaluate the most

efficient method for each area of the image [53].

Multispectral imaging is a remote sensing technique which uses photographs in the

visible and infrared bands of the electromagnetic spectrum. However, this technique

has certain limitations, such as, it cannot differentiate certain vegetation elements (i.e.

branches, leaves, etc.) at different heights, and, the received signals are highly dependant

of the light conditions, as well as the geometric distribution of vegetation [46]. Moreover,

certain important tree parameters, such as leaf area index (LAI), may still require models

to be accurately characterised. Some of these limitations can be overcome by the appli-

cation of 3D imaging techniques instead, which allows the creation of certain models

that can separate ground surface from different vegetation layers. The most typically

used technique to retrieve 3D information is multi-image matching which finds common

points in several 2D images taken from different angular viewpoints [46].

Another computer vision technique is Structure from Motion (SfM), which allows

the possibility to generate high density 3D point cloud data from the reconstruction

of high resolution images, obtained from different angular viewpoints, like traditional

stereoscopic photogrammetry. Using image matching algorithms, it is possible to identify

certain features in these image sequences. These images can be obtained using inexpen-

sive Unmanned Aerial System (UAS) platforms, which can provide an alternative (or

complement) to ALS datasets [19].

Existing studies of power line inspection and monitoring using 2D image-based meth-

ods involve information like uniform brightness, straight line characteristics, geometric

shapes, among others. Several studies use HT for power line extraction from imagery.

Another line detection method is to analyse the uniformity of conductors in the full ex-

tent of the power line. Methods to three-dimensionally reconstruct the wires, from the

2D imagery, include stereo vision techniques used for pylon identification, line-segment

based pylon models and catenary curves, be it automated or semi-automated manners [8].
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2.1.3 Comparison of Approaches

Several studies have presented the production of important forest attributes, like height

and canopy dimensions, using both LiDAR-based and image-based point clouds [48]. One

example being Dandois and Ellis (2010) [19] who generated tree CHMs using image-based

point clouds, obtained via a DTM acquired from an existing LiDAR dataset.

Bohlin et al. (2012) [53] applied statistical analysis to an image-based DSM, with

heights normalised utilising a DTM, obtained with ALS data, to estimate tree height

and stem volume. The authors hypothesised that vegetation attributes obtained with

point clouds derived from imagery would be less accurate than the ones obtained with

ALS-based point cloud, since ALS can better penetrate the canopy. This study concludes

that lowering the flying altitude does not significantly ameliorate the accuracy of canopy

estimations.

Järnstedt et al. (2012) [53] make a comparison between forest parameter estimates

obtained from both ALS and image-based DSM. The authors concluded that ALS achieved

greater accuracies than imagery, for the estimated parameters (mean height, dominant

height, basal area, volume and diameter).

Dandois and Ellis (2013) [48] generated SfM-based terrain models which were posi-

tively comparable to LiDAR-based models. In this study, the authors concluded that, in

certain circumstances, image-based point clouds can capture a more detailed representa-

tion of the upper canopy than laser scanning. Nevertheless, imaging technology cannot

penetrate into the lower canopy layers like laser scanning, meaning it will not be able

to produce as relevant data about them and the terrain as laser scanning. Furthermore,

typically, imaging technology needs an externally generated DTM (i.e. LiDAR dataset),

since 3D location estimation requires visible ground terrain information from several

locations.

White et al. (2013) [53] compare ALS and image-based data for vegetation monitor-

ing using an area-based approach. This study concludes that the advantages of imagery

are: flight planning since ALS maximum flying altitude is limited by the power of laser

pulses. Imagery can achieve higher altitudes, thus increasing the field of view, which in

turn increases the spatial coverage; flying time and covered area, since image platforms

can fly higher and quicker than ALS, which, for an equal flying time, can cover a wider

area; resolution, since, for the same given cost, imagery can obtain much greater point

densities, as a function of the GSD and the number of independent 3D pixel matches. On

the other hand, the advantages of ALS point cloud are: flying conditions, since ALS is

insensitive to poor illumination conditions, it can fly for more hours per day. Poor light-

ing and angular viewpoints, as well as shadows and occlusion are a limitation of image

acquisition, which in turn impacts the accuracy of image matching algorithms; efficiency,

since it takes less time to acquire and process data. Nevertheless, with computer tech-

nology improvements, this gap is narrowing; Furthermore, there are certain important

parameters where both have their advantages and disadvantages, which are: outputs,
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since, from ALS data, it is possible to generate both a DSM and DTM, while image-based

data is only able to generate a DSM. However, it improves visual interpretation of species

and it provides other important parameters to forest inventories; accuracies, since both

techniques have achieved comparable results for well-defined surfaces.

Jensen and Mathews (2016) [19] present a comparison between SfM-based and LiDAR-

based DTMs, as well as an evaluation of the utility of the generated model for tree canopy

height estimation. In this study, the authors concluded that canopy height estimates

are independent of terrain model source data, with a high dispersion present in the

acquired data, which confirms the potential of imagery to characterise both the ground

and vegetation structure as an inexpensive replacement or complement to LiDAR data.

Wallace et al. (2016) [48] compare ALS and SfM point clouds captured with a small-

UAV platform to capture the structural properties of a forest with various canopy lay-

ers, providing the dissimilarities in data acquisition, processing and collection of forest

canopy structural information of each technique, as well as their advantages and disad-

vantages. In this study, the authors concluded that both SfM and ALS can accurately

represent the upper forest canopy layer. Both technologies were able to capture the prop-

erties of the lower canopy layers. However, ALS provides a more accurate estimation of

the vertical distribution of vegetation, since it can better penetrate into the lower canopy

layers. On the other hand, SfM cannot penetrate dense canopy parts, which means the

mid to lower canopy information is not as accurate.

Verma et al. (2016) [45] present a comparison between two remote sensing techniques

(airborne LiDAR and spaceborne multispectral imagery) to estimate 3D derivatives like

canopy volume. The LiDAR processing involved a CHM generation and respective seg-

mentation into individual tree canopies using representative features. The spaceborne

images were captured by the commercial satellite WorldView-2. Tree measurements were

performed either manually or with the use of the software ArcGIS version 10.

Table 2.1 summarises the most important benefits and limitations of each approach.

A detailed comparison between these methodologies can be found in the work of White

et al. (2013) [53].
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2.2 Data Analysis

As stated by Matikainen et al. (2016) [28], remotely sensed data sources for power line

monitoring and vegetation management include "Synthetic Aperture Radar (SAR) images,

optical satellite and aerial images, thermal images, Airborne Laser Scanning (ALS) data,

Mobile Laser Scanning (MLS) data and Unmanned Aerial Vehicle (UAV) data" [28]. A

brief explanation about the basic functioning principles of each data source will first be

presented, followed by a summary of the methodologies found in literature. Detailed

information and a comparison of data sources can be found in the previously mentioned

work.

2.2.1 Synthetic Aperture Radar (SAR) Images

Synthetic Aperture Radar (SAR) is an imaging radar, whose region of operation is the

microwave band of the electromagnetic spectrum, used to create 2D images or 3D recon-

struction of objects. This radar is usually attached to a mobile platform [28, 46].

A SAR platform creates a 2D image representation of an area by emitting successive

pulses of microwave radiation and recording the backscattered signal from the illumi-

nated target scene. SAR platforms range from compact aircraft to satellites. One of the

benefits of this remote sensing technique is that microwaves penetrate clouds, thus mak-

ing SAR images possible to acquire in all weather conditions, which makes it a very useful

technique for disaster monitoring, for example. Moreover, SAR images are independent

of flight altitude [28].

SAR image pixels can provide valuable information, such as: radar backscattering

intensity, backscattered signal phase and the distance between the sensor and the tar-

get. Typically, SAR data intensity information can be taken advantage of as amplitude

images since remote sensing software packages can effortlessly visualise it. SAR backscat-

tering intensity is influenced by certain parameters which will, consequently, affect its

images and are divided into system and target parameters. System parameters are: (1)

wavelength of the emitted signal, (2) signal polarisation and (3) image caption geometry.

Target parameters are: (1) surface irregularity and dampness, (2) vegetation composi-

tion. Information about the signal phase can be taken advantage of in SAR polarimetry

and interferometry. In SAR data processing, polarimetry is the area that deals with the

polarisation of emitted and received microwave radiation, which can be used in object

classification. Interferometry is a technique where pixel-to-pixel phase changes are con-

verted into terrain elevation changes from two images taken from slightly different angles

by satellites distanced from tens to hundreds of meters. Elevation data can also be ex-

tracted through SAR radargrammetry, related to the stereoscopic measurement of the

images, using both intensity and range values [28].

Despite SAR imagery high resolution, power line components have small features that

can still be unseen in these images. Furthermore, geometrical irregularities and multiple
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path scattering can difficult the identification of some complex objects, like certain pylons

or other power line structures, since SAR sensors have a side-looking geometry. Features

are much more visible when they are parallel to the azimuth direction of the sensor [28].

Typically, SAR image-based studies have focused on mapping power lines and pylons,

using airborne SAR imagery. Carande et al. (1998) [28] and Woods et al. (2004) [28] use

InSAR data for this purpose. Carande et al. (1998) present a method to identify power line

poles, using X band InSAR data. Woods et al. (2004) present a method to detect pylons

and transmission towers from a DSM, generated using InSAR data. Vertical obstruction

detection was done using morphological filters and statistical criteria. Candidate wire

points were identified based on the vertical obstructions forming a linear shape.

Yang et al. (2007) [28] and Xie et al. (2014) [28] use L band airborne data for transmis-

sion tower detection. Yang et al. (2007) utilise full polarimetric data and point-like object

detection. Xie et al. (2014) evaluate how certain parameters, like “linear polarisation

ratio” and “degree of linear polarisation”, can be used to detect transmission towers. The

results of this study show that transmission towers were clearly visible in the SAR images.

Deng et al. (2012) [28] and Lin et al. (2012) [28] use P band data for power line

detection. Deng et al. (2012) evaluated the proposed method with simulated and real

P band data. The authors concluded that the orientation of the power line affects the

results of the detection procedure. Lin et al. (2012) show several examinations with P

band data acquired with airborne circular SAR. The results of these experiments prove

the applicability of circular trajectory data to detect power lines.

Some studies have also discussed how high-resolution satellite SAR data can be used

for power line mapping. Schwarz et al. (2009) [28] and Yan et al. (2012) [28] use TerraSAR-

X satellite images. Schwarz et al. (2009) show how a power line pylon could be detected

from a time-frequency decomposition. Yan et al. (2012) besides X band SAR images from

TerraSAR, also use COSMO-Skymed satellites to study the scattering characteristics of

transmission towers and power lines. This study also concluded that the orientation of

power lines affects their visibility in SAR images.

Another study about the backscattering properties of power lines is presented in Sha

et al. (2014) [28]. This study concluded that scattering position changes are affected by air

temperature, which can be consequently related to variations in the sag of the conductors.

As previously mentioned, remote sensing using SAR data has potential to monitor

power lines due to natural disasters, like Jingnan (2010) [28] who used high-resolution

SAR images to study the backscattering characteristics of a transmission tower affected

by icing. With this study, the author concluded that it is possible to identify deformations

caused by extreme weather conditions.

A discussion about the potential usage of satellite SAR data to monitor transmission

towers and power lines after natural disasters was presented by Yan et al. (2011) [28]. In
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this study, height tower information, to detect collapsed or deformed towers, was utilised.

Few studies have concentrated on the potential of satellite SAR images to detect storm

damage in forest areas. Eriksson et al. (2012) [28] investigated the backscattering char-

acteristics of felled trees, caused by storm damage. This study concluded that TerraSAR

X band data backscattering increased, while ALOS PALSAR L band data decreased, both

using HH polarisations. Furthermore, when a DTM is known beforehand, 3D SAR tech-

niques can be used to estimate tree heights. Potentially, this information can also be

used to detect storm damage as well, when 3D data acquired before and after the natural

disaster occurrence is available [28].

2.2.2 Optical Satellite Images

Optical satellite images, captured in either the visible or near-infrared (NIR) bands of

the electromagnetic spectrum, are passive imaging sensors. In other words, only the

energy reflected from the surface in observation is captured, thus making these images

unobtainable in poor illumination conditions [28].

The distance between neighboring pixels on the ground is called ground sample dis-

tance (GSD). It corresponds to the spatial resolution of the sensor, and it ranges from low

(>= 30 m) to very high (< 1 m) resolutions. Weather conditions (i.e. cloud cover, fog, etc.),

as well as shadows and occlusion, will negatively impact optical image quality. Moreover,

very-high resolution imagery can be expensive, and multiple entities can compete for the

same imaging resources simultaneously [21, 28].

Multiple studies have used optical satellite images to monitor vegetation close to

power line corridors. Ahmad et al. (2013) [28] present a method based on multispectral

satellite stereo images to identify potentially dangerous vegetation encroachment onto

transmission lines.

Moeller (2006) [28] presents a method to detect vegetation that can potentially en-

danger power lines using multispectral and stereoscopic satellite imagery. Firstly, tall

vegetation is extracted from the Normalised Difference Vegetation Index (NVDI), fol-

lowed by vegetation height calculation, using the stereo images. Lastly, vegetation that

might present potential interferences are mapped.

Kobayashi et al. (2009) [21] developed a software program to identify trees that

can possibly interfere with power lines, from high resolution satellite imagery. Using

computer algorithms, trees that can potentially endanger power lines are identified. The

software framework is described by: data loading (multispectral stereo satellite images

and transmission tower); transmission and power line location estimation; calculation

of the danger zone; detection of healthy vegetation inside the danger zone; selection of

vegetation detection threshold; calculation of stereo matching for all pixels inside the

danger zone; 3D DSM generation; detection of potentially hazardous trees inside the
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danger zone.

Ahmad et al. (2011) [28] propose a method to monitor vegetation and detect po-

tential interferences. This method starts with a merging process, of both multispectral

and panchromatic images, followed by a process of vegetation detection from the NVDI.

Lastly, tree height measurements were calculated from stereo image matching.

2.2.3 Optical Aerial Images

Optical aerial images acquired from both helicopters and fixed-wing aircraft, in the visible

and NIR bands of the electromagnetic spectrum, have also been used in some studies

for vegetation management. In addition, airborne imagery can also provide valuable

information about power line components [28].

Helicopters are usually used to inspect power line components, since they can fly

closer to the electric network, while fixed-wing aircraft have been mostly used for vege-

tation monitoring. Helicopters have certain advantages, such as: they can provide sub-

centimeter GSDs, hover around an area of interest and easily map it, including routes

with sharp turns (i.e. power line corridors). Fixed-wing platforms, however, can fly faster,

which, consequently, means they can cover wider areas [28]. Furthermore, inexpensive

hobbyist aircraft, like remotely controlled fixed wing aircraft, helicopters, balloons and

kites, have seen an increase in low-altitude aerial photography usage, due to how simple

it is to install consumer-grade digital cameras on these platforms. Moreover, recent com-

puter vision algorithms, using SfM procedures, can easily generate 3D geometry from

multiple overlapping images, taken from consumer-grade digital cameras [10].

Just like optical satellite images, weather conditions and poor illumination are one of

the main obstacles of optical aerial imagery. In addition, the quality of the images taken

can be affected by vehicle motion and vibrations. The GSD of airborne imagery can be

less than 1 cm or greater than 1 m. The spatial resolution of aerial images is dependent

of the sensor resolution and optic quality, as well as the flight altitude [28].

Studies about vegetation monitoring in PLCs using airborne imagery have primarily

concentrated on tree extraction, segmentation and classification. Identifying their species

is important since it provides information about tree growth. Trees that cross a certain

height threshold could potentially endanger the PLCs. Sun et al. (2006), Yan et al. (2007)

and Zhang et al. (2007) [31] use stereo imagery to estimate the distance between the

conductors and the trees or the ground.

Zhang and Grün (2006) [46] propose a coarse-to-fine method and pattern matching

to obtain DSMs for forested areas. The main challenge to overcome, was shadow and

occlusion, which makes it harder to find matching points in the lower canopy layers. This

study concluded that multi-image matching techniques can provide valuable information

about the top canopy layers, but its usage is very limited for the lower canopy layers.

Li et al. (2009) [28] and Mills et al. (2010) [28, 31] present methods to automatically
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extract trees in PLCs, from multispectral imagery. Both studies use a Pulse-Coupled

Neural Network (PCNN), whose inputs were NIR and red band reflectance ratios, fol-

lowed by a morphological segmentation process to improve the output. In addition, both

studies used the same PLC as well, obtaining a good detection rate and accuracy overall.

However, these accuracies are negatively affected by under-segmentation. Mills et al.

(2010) discuss how accurate tree height estimation is, using stereo imagery and relative

horizontal position of vegetation in relation to the wires.

Using the same data as the previously mentioned studies, Li et al. (2011, 2012) [28]

presents a method for tree species classification. This method uses support vector ma-

chines (SVM) and feature comparison [28].

Dandois and Ellis (2010) [10] propose an inexpensive method for vegetation moni-

toring combining an inexpensive hobbyist aircraft platform (kite) and SfM. Firstly, the

aerial photographs are captured by the inexpensive hobbyist aircraft platform using an

off-the-shelf digital camera, then the vegetation mapping is performed using Bundler,

a software program which enables 3D reconstruction using multiple photographs from

different angular viewpoints, by extracting keypoints in the images. This new vegetation

monitoring technique is called “Ecosynth”. The point clouds generated by Bundler are

then geocorrected and a statistical outlier filter was used for outlier removal. A DTM

was generated using the software TerraScan, using LiDAR data (since the generation of

a DTM is one of the limitations of image-based point clouds), followed by the creation

of CHMs. Lastly, using the height metrics from both Ecosynth and the LiDAR CHM,

predictive models for aboveground biomass density were generated.

Given good illumination conditions and high enough resolution, it is possible to iden-

tify power line components using optical aerial images, and, in some cases, even monitor

their condition. This technique does have some limitations though, like poor illumina-

tion conditions, complex background and respective brightness, weather conditions and

features similar to power lines. The direction of the camera will also influence what is

captured by the images. Certain vertical components can be hard to identify from vertical

images, even for a human operator [28, 31]. To identify certain components then, oblique

images might be needed. Furthermore, it can be challenging to model conductors in 3D

because they have uniform intensity and do not exhibit any distinguishing properties in

airborne imagery, which makes it harder to find matching points in different images [28].

Some studies have focused on the extraction of power line conductors using optical

aerial images, following the same workflow. Firstly, candidate power line points are

identified, followed by line extraction from the candidates. This process can be improved

by gap filling and noise removal [28]. Ye et al. (2013) [28] use HT to obtain an initial seed

line, followed by particle filtering.

Li et al. (2010) [28] use template matching to identify conductors. Each image has an

expected number of conductors as input. Images with incorrect number of conductors

were manually checked. Besides conductor detection, spacers along the conductors were

16



2.2. DATA ANALYSIS

identified using Gabor filtering and a connected component labelling algorithm.

A few studies about pylon extraction from aerial images have also been done, focusing

mostly on poles and towers. Whitworth et al. (2001) [28] present an apparatus for the

surveillance of wood pole components, which consists of a steerable camera on-board

a helicopter. Golightly and Jones (2003) [28] present improved algorithms for pole and

cross arm smooth tracking. Jones et al. (2003) [28] used Gabor filters and Radon transform

to not only detect wood poles, but also the location of the base and top of the pole and

cross arm.

Sun et al. (2006) [28] used airborne imagery taken with a fixed-wing aircraft to

extract wood poles and cross arms or pole tops. Candidate pole and cross arm points

were identified using color and intensity information, then matched to one another to

locate poles in images.

Tilawat et al. (2010) [28] used information about the high concentration of wires in

tower positions to identify transmission line towers using aerial imagery. Image acquisi-

tion in both Jones et al. (2003) and Tilawat et al. (2010) was done using a helicopter.

Detection and monitoring of insulators using aerial images have also been studied,

mostly focusing on the insulators of high voltage power lines. Wu et al. (2012) [28] and

Wu and An (2014) [28] use active contour models to extract insulators. Oberweger et al.

(2014) [28] use learning and voting procedures, as well as circular descriptors, to detect

cap and pin insulators. Liao and An (2015) [28] use feature matching algorithms to detect

insulators.

2.2.4 Thermal Images

Thermal images detect infrared radiation from an object, based on its temperature, which

can be described by the Stefan-Boltzmann law. Typically, thermal imaging spectral range

goes from 3-5 µm (mid-wave infrared) to 8-14 µm (long-wave infrared), which is the

most commonly used atmospheric thermal window of thermal cameras. A special case of

thermal cameras are cooled cameras, which have better sensitivity and image quality, but

are also much more expensive than uncooled cameras. Airborne thermal images spatial

resolution can go up to 5 cm [28].

Not many studies have focused on power line monitoring using thermal imaging,

being mostly focused on the assessment of electric faults in the power line. Blazquez

(1994) [28] was able to detect faulty components due to unusual temperatures on high-

voltage transmission line using thermal imagery. Frate et al. (2000) [28] present a method

whose objective is to obtain the temperature of an overhead line and joint using thermal

imagery. Qin et al. (2000) [28] discuss the heat conduction of electric power lines.

Stockton and Tache (2006) [28] show that it is possible to detect relevant electrical
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faults in power lines. However, it is not possible to obtain accurate temperature readings,

even from short distances.

To conclude, it is possible to detect electric faults using airborne thermal images.

However, it is not possible to obtain accurate measurements of the temperature of the

components. Nevertheless, thermal imaging is generally used before an inspection, to

prevent expensive service interruptions [28].

2.2.5 Mobile Laser Scanning (MLS)

Mobile Laser Scanning (MLS) is an active remote sensing technique, where a mobile

mapping system, constituted by positioning, navigation and imaging acquisition sensors,

is deployed on a land-based mobile platform, like a car, all-terrain vehicles (ATVs) or even

a personal laser scanning system, which is basically a LiDAR deployed on a specialised

backpack [25, 28].

MLS data can be more or less accurate depending on certain aspects, such as vehicle

speed, platform configuration (i.e. number of sensors), the relative position between

the vehicle and the object in observation, the capability to record multiple echoes and

the season of the year when the data is acquired (tree leaf numbers are dependant of

season) [41].

MLS with dense point clouds is pertinent for PLC, and it can complement the conven-

tional ALS, or the contemporary UAV-based laser scanning. MLS can provide accurate

data about the PLC since it operates on the terrain, in close proximity to the electric

network, especially when it is covered by the forest canopy, and it also has high point

density. Moreover, it has a small footprint, which provides a detailed mapping of pylons

and other electric components [25].

MLS coverage has been mostly studied in urban areas where it is more difficult and

inefficient to fly with a UAV or a helicopter. However, data gaps appear everywhere,

especially in heavy forests. These areas can present some limitations to MLS however, like

terrain irregularities causing mobility restrictions and Global Navigation Satellite System

(GNSS) visibility, which makes the power line component extraction more challenging

outside the road network, reason why it has not been extensively studied yet [25].

Studies focused on vegetation management include Liang et al. (2014) [28] who

present a tree detection method, Puttonen et al. (2011) [28] who propose a tree species

classification, both using MLS data. An approach to extract urban trees using a combina-

tion of MLS and images was studied in Yang et al. (2012, 2015) [28].

Rutzinger et al. (2010) [41] presents an automated workflow to detect and reconstruct

individual trees using MLS point clouds, which can be summarised as a reduction of the

amount of data while keeping important shape information for tree modelling. Firstly,

using a connected components algorithm, individual trees are extracted. Then, using

a 3D alpha shape algorithm, it is possible to reduce the point cloud data substantially,
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by the simplification of tree shapes. From the alpha shape point clouds, the minimum

required tree model parameters can be extracted, like height, crown width and shape,

as well as, stem width and height. The generated models are, lastly, compared to tree

photographs and the original point cloud data.

Several studies have proposed power line component mapping using MLS data, how-

ever, most of them have been done on urban or road environments, including Lam et al.

(2010) [28] who propose a method to extract pylons using RANSAC, followed by power

line modelling, by extracting all points inside a box between two consecutive pylons.

An approach to monitor power lines in urban and suburban areas using digital

cameras deployed on a kinematic land-based vehicle was presented by Murthy et al.

(2011) [28]. Pole tracking was done using template matching, while broken insulators

were classified using a hidden Markov model.

Kim and Medioni (2011) [25, 28] proposed a method to extract power lines and poles

using both ALS and MLS data. Firstly, ground and building points are removed, then

linear points in the 3D space were extracted using tensor voting. Using a surface growing

algorithm, the wires and poles were extracted from the points with linear properties.

Linear points with their main component close to horizontal were used for power line

growing, while points close to vertical were used for pole growing.

A power line extraction and modelling method was proposed by Guan et al. (2016) [25,

28] and Cheng et al. (2014) [25, 28]. Using multiple filters, HT, segmentation and power

line clustering for power line extraction. For power line modelling, Guan et al. (2016)

used catenary curve fitting, while Cheng et al. (2014) used local line and parabola fitting.

Yadav and Chousalkar (2017) [25] propose a method for power line classification and

reconstruction using MLS data. Candidate power line point classification is achieved

according to the point’s vertical distance to the terrain surface, utilising 2D gridding.

Vegetation and building points are removed based on 2D point density. Horizontal lines

are extracted by the application of an HT. Lastly, single power lines are segmented,

followed by a second order curve fitting, for gap filling and 3D reconstruction.

Lehtomäki et al. (2019) [25] propose a method to automatically map the power lines

outside urban areas. Firstly, the feasibility of MLS outside the road environment is demon-

strated, then a novel algorithm is presented to automatically extract PLs from MLS data.

The proposed algorithm starts with power line horizontal location extraction. Power line

points are extracted as connected line segments. Pole extraction and power line candi-

date point classification follow the same principles as Kim and Medioni (2011), followed

by a voting-based approach to find horizontal lines from the candidate points, similar

to Cheng et. al (2014), Guan et. al (2016) and Yadav and Chousalkar (2017). Candi-

date point classification linearity measure follows the same method as Lehtomäki et al.

(2016) [25] and horizontal lines are identified using RANSAC, another voting method

to detect shapes from point cloud data, followed by a segmentation method to obtain

the connected power line segments. To remove false detections due to large gaps in the
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point cloud data, as well as to retrieve the power lines, a novel method was used, named

connected power line search.

2.2.6 Airborne Laser Scanning (ALS)

ALS is an active remote sensing technique constituted by an airborne platform and a

LiDAR system [28]. ALS platforms are defined by a small-footprint (< 1 m) and the

quantity of recorded return pulses (1 to 5 per laser pulse) and can achieve measurements

with sub-meter accuracy. For an area-based approach, a pulse density of "0.5-1 pulse per

square meter" [53] is usually sufficiently accurate. Dense forested areas or areas with

steep terrain, however, require greater pulse densities [53].

In addition, the point density in ALS is usually about tens of points per square meter,

which can go up to hundreds of points per square meter, using helicopters. ALS data

has an absolute planimetric accuracy of, approximately five to ten centimeters, while its

absolute height accuracy is, approximately, two to five centimeters, thus making it a viable

option for detailed mapping and monitoring of power lines, as well as to reconstruct 3D

conductors and vegetation. Like optical aerial images, helicopters are usually used to

inspect power line components [28].

The most common approaches to vegetation monitoring using ALS point cloud data

are either dependant on single tree delineation and classification or area-based measure-

ments of canopy metrics.

In the area-based approach, tree-level measures inside the region of interest are first

extracted from ground plots, then predictive models are created. From the clipped nor-

malised ALS point cloud, metrics are calculated. Then, the same metrics are calculated

for the entirety of the acquired ALS data, using the previously created predictive mod-

els [53]. An example of this approach is presented in Andersen et al. (2003) [50] who use

a group of regression functions to estimate vertical canopy structure.

Leeuwen et al. (2010) [24] proposed a method to generate a tree-level canopy model,

where forest canopy is described as a series of cones fitted to the raw data, correcting the

negative height bias, named the Parametric Height Model (PHM), which can delineate

tree crowns with geometric operations. The proposed method starts by separating ground

and non-ground points, followed by the generation of a gridded DTM. A CHM is then

obtained from the normalised non-ground point cloud, following Ferster et al. (2009) [24].

Using several height thresholds, of small variance, a binary image stack was generated

from the CHM, to locate the local maxima. Fitting cone-shaped objects at the local

maxima positions, using a modified HT, it was possible to detect individual shapes. Lastly,

the PHM was generated, from the optimisation of the fit.

Studies focused on individual tree detection and classification include Pyysalo and

Hyyppä (2002) [50, 51] who present a tree crown reconstruction method, based on the
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location and crown size of individual trees, by first extracting the raw points of the tree,

and, consequently, obtaining the tree height, as well as, the average radius and height of

the crown at dissimilar elevations.

Mosdorf et al. (2004) [26, 41, 54] present a method where individual tree detection

is performed using the k-means clustering algorithm. However, the seed points of the

presented clustering method are extracted from the LiDAR-based CHM, which means

this method is not entirely relying on point cloud data.

Popescu and Wynne (2004) [26] and Tiede et al. (2005) [26] propose local maximum

filtering techniques to detect and extract the most important parameters of individual

trees. Following the local maximum algorithm, Tiede et al. (2005) applied a region

growing algorithm to delineate tree crowns.

Chen et al. (2006) [26] propose a method to separate individual trees using "marker-

controlled watershed segmentation" [26], using the detected tree tops as markers to im-

prove accuracy. Koch et al. (2006) [26] proposed a "combination of a pouring algorithm,

knowledge-based assumptions of the shape of trees and crown-edge detection" [26] to

delineate individual tree crowns.

Wang et al. (2007) [51] present the first procedure to three-dimensionally reconstruct

individual trees, using the LiDAR raw point cloud. Reitberger et al. (2009) [54] present an

approach where the tree area is first subdivided into a voxel space, using a normalised-cut

segmentation approach, then individual trees are extracted from identified graphs.

Lee et al. (2010) [26, 54] and Tittmann et al. (2011) [54] propose a method for

individual tree crown segmentation. Lee et al. (2010) using an "adaptive clustering

method" [26, 54], while Tittmann et al. (2011) using a "RANSAC-based approach with

geometric model fitting" [54].

Li et al. (2012) [26, 54] present a "spacing-based tree segmentation algorithm" [26,

54]. Firstly, the ground and non-ground points were separated and the DTM generated.

Then, the individual tree segmentation is performed, by a "top-to-bottom region growing

approach, based on a spacing threshold, a minimum spacing rule and a horizontal profile

of the tree shape" [26, 54]. Under and over-segmentations can be reduced by adjusting

the spacing threshold.

Ko et al. (2012) [28] propose a method to identify trees endangering the power line

using high-density laser scanner data. Firstly, a tree species classification process was

performed, using a random forest classifier with geometric features as input data. This

classification process provides valuable information about tree growth. In other words,

it is possible to detect trees that surpass the minimum clearance distance to the power

lines.

Zhang et al. (2015) [54] propose novel algorithms for individual tree detection and

respective metric estimation, using LiDAR point clouds for urban forest inventory man-

agement. This study presents a detailed workflow for individual tree detection. Firstly,

a filtering process is done, to separate non-ground and ground points, which are then

used to create the DTM. Another filtering process is done, this time to the above-ground
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points, to separate non-vegetation and vegetation points, using the NDVI, obtained from

the hyperspectral data. Laser points touching the tree canopy surface are then sepa-

rated from the points that penetrate the canopy, in order to extract individual trees. To

identify the individual trees’ treetop, a treetop detection algorithm is used (tree climbing

method), followed by a tree boundary extraction algorithm ("donut expanding and sliding

method" [54]), to delineate individual trees. All the parameters extracted from individual

trees are then stored in a tree inventory database.

There are still a few studies which follow both area-based and individual tree ap-

proaches, like Wang et al. (2008) [41, 50, 51], using the LiDAR raw point clouds, present

a method for both individual tree detection and delineation, as well as vertical canopy

structure inspection. The vertical canopy structure provides valuable information, like

the number of major canopy layers, as well as their height range. The individual tree

modelling process is able to detect individual trees in the lower canopy layers, delineat-

ing the shapes and generating 3D models of the tree crowns. Firstly, a DTM is generated,

by normalising the raw point heights. A height distribution probability function is cre-

ated, using statistical analysis, to detect canopy layers. By extracting the 2D horizontal

projection images, the detection of individual tree crowns at different heights is possible,

as well as providing the voxel space of each layer. A morphological process of opening

and closing is used to obtain potential tree crown contours. This process is improved

by a simulation of pouring. Lastly, the 3D models of the tree crowns are obtained by

constructing the 3D prisms in each voxel space.

Tang et al. (2012) [42] present a region-based level set segmentation method to im-

plement the 3D surface reconstruction of forest canopies. Using multiple contours at

different tree canopy heights, it is possible to obtain important tree parameters, as well as,

to identify tree species, using the 3D reconstruction from LiDAR data, comparing it with

geometric models. Moreover, individual trees in a large contour can also be extracted

using the proposed method.

Several studies have also focused on power line monitoring using ALS data. Typically,

power line classification studies using ALS have focused on the development of auto-

mated classification and reconstruction methods. The most common procedure is to first

generate a DTM, followed by power line and vegetation point classification, then model

the individual conductors in 3D. Power line and vegetation point classification is usually

done with line detection or feature classification. The most commonly used features are

return pulse difference, height and intensity [28].

Axelsson (1999) [28, 56] and Melzer and Briese (2004) [28, 32, 56] propose power line

classification methods using HT. Axelsson (1999) utilised ALS data, based on parallel

and linear 2D structure matching, using the HT and 2D line equations for line extraction,

based on information about multiple echoes and intensity. Melzer and Briese (2004)

propose a method based on 2D HT and 3D catenary curve fitting to extract and model
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power lines from ALS data.

Clode and Rottensteiner (2005) [28] and Rottensteiner (2006) [56] propose tree and

power line detection methods using the first and last pulse return differences of the laser

scanner. Clode and Rottensteiner (2005) use intensity and height contrast between first

and last return pulses to separate power lines and trees, based on the assumption that

the elevation contrast between first and last return pulses is much greater for trees than

power lines. This classification method followed the Dempster-Shafer theory.

McLaughlin (2006) [28, 32] presents a method for electric network, vegetation and

other surfaces (like terrain and buildings) classification, using a Gaussian mixture model.

The point cloud was previously structured in ellipsoidal neighborhoods, using the covari-

ance matrix.

Liu et al. (2009) [2, 28, 56] use both the pulse return differences of the laser scanner

and HT. The authors propose a method based on the intensity of the laser return and an

improved HT to detect power lines in 2D grayscale images.

Recently, some machine learning algorithms, as well as a greater number of features,

have been used for the same purpose. Sohn et al. (2012) [2, 32, 56] propose a power

line and building classification method using a Markov Random Field (MRF) classifier

to outline the spatial context of certain features. Guo et al. (2015) [28, 32] discuss a

classification method using a JointBoost classifier and several features, followed by graph-

cut segmentation to improve results.

Jwa et al. (2009) [32, 56] and Cheng et al. (2014) [56] propose methods voxel-based

approaches to monitor power lines. Jwa et al. (2009) introduce a power line reconstruc-

tion method using a voxel-based piecewise line detector. Cheng et al. (2014) present an

approach to detect and group power lines together, which starts by the extraction of wire

points using a voxel-based method, followed by a clustering method and 3D power line

fitting.

Liang et al. (2011) [56], Kim and Sohn (2011) [56] and Wang et al. (2017) [32] follow

RANSAC-based approaches for power line classification. Liang et al. (2011) use RANSAC

to obtain the points belonging to the line. Kim and Sohn (2011) propose a combination of

RANSAC and feature extraction methods for detection of power lines, as well as a random

forest algorithm for classification. Wang et al. (2017) reconstruct PLC direction using the

HT with RANSAC algorithms and do power line classification using the SVM classifier

using a slanted cylindrical neighborhood.

Kim and Sohn (2013) [2, 28] present a conductor, pylon, vegetation and buildings

classification method. Firstly, power lines are extracted using HT, then classification is

done, using random forest classifiers and spatial distribution features of laser points,

obtained with spherical and cylindrical neighborhoods.

Zhu and Hyyppä (2014) [56] proposes a power line classification method in forest

areas, using statistical analysis. All potential power line point candidates are first se-

lected from the dense point cloud using statistical criteria (i.e. elevation criteria, density
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distribution and histogram thresholds), followed by an outlier removal procedure. These

candidate points are then conveyed to a binary image, where image processing algo-

rithms are used to remove noise and extract features. The 3D power lines are extracted

by transferring the 2D power line image to a binary image as well.

Wang et al. (2018) [49] present an unsupervised wire classification method for both

forest and urban areas. This method derives only linear and angular features from the

PLC direction and a local neighborhood to extract power lines. The first step is a rough

candidate wire point screening, by separating ground and non-ground points, followed

by a PLC direction detection obtained from a layered HT, connectivity evaluation and

Douglas-Peucker simplification algorithm, to remove the points that certainly do not

correspond to power lines. Then, wire context-based classification, by first constructing

the slant cylindrical local neighborhood of the screened point’s, followed by linear and

angular feature extraction, to determine if the points belong to the power lines.

Power line conductors between consecutive pylons have a catenary curve shape, so,

it is possible to detect power line points by the application of a catenary curve fitting

process [28]. Guo et al. (2016) [28] take advantage of consecutive pylons’ conductor

properties to improve power line reconstruction, based on the assumption that a group

of conductors is closely equidistant, with the same direction and sag.

Jwa and Sohn (2012) [28] present a piecewise catenary curve growing method. Firstly,

candidate power line points are separated using linear feature extraction. These points

are then used as seed points of the growing models.

Awrangjeb and Islam (2017) [2] started by separating non-ground points, then gen-

erating a power line mask to detect successive pylons. Pylon masks were also generated,

where pylons were not connected by wires, then, using a connected component algorithm

the candidate pylons were extracted. Trees can then be removed, by comparison with area,

shape and symmetry characteristics of pylons. Lastly, wires are extracted from the power

line masks, represented as long lines within it. Using parallelism property between these

lines and lines connecting any couple of candidate pylons, it is possible to remove trees

with similar characteristics as pylons.

Awrangjeb (2019) [2] proposes a method to extract PLCs, pylons and wires, respec-

tively. Firstly, from the input data, PLCs are extracted as a set of rectangular regions

connected to each other. Then, pylons are extracted from this new set of points. Lastly,

wires can be extracted, by separating the non-ground points between successive pylons.

Munir et al. (2019) [32] present a method to extract individual pylons, vegetation

and power lines from LiDAR point cloud data using both supervised and unsupervised

methods. The supervised method starts by separating ground and non-ground points.

The non-ground points can be further divided into vertical (i.e. pylons and trees) and

non-vertical (i.e. wires) points using the vertical profile features through the binary

SVM classifier. Using shape and area characteristics, independent pylons and trees are

extracted. Using the location of consecutive pylons, the span points between them are
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extracted, which can be further divided into independent power line points, using the

alignment properties of wires in a 3D voxel grid.

2.2.7 Unmanned Aerial Vehicle (UAV)

In recent years power line monitoring studies using UAVs have increased, since it can

fly closer to the power lines and is an inexpensive alternative to helicopters. Small sized

UAVs (less than 5 kg) provide an inexpensive alternative to airborne and spaceborne

systems, which can, when supplied by sensors, provide cost-effective data in restricted

areas [48].

In addition, technological improvements of UAV platform components and battery

technologies have increased its reliability for the specified purpose. Typically, maximum

flying time for a UAV ranges between half an hour and two hours, however, this time is

directly related to the platform characteristics and the payload weight [28].

UAV platforms used in power line monitoring studies can be categorised into two

types: fixed-wing UAVs, which are more appropriate for vegetation management due to

their ability to fly faster and higher; helicopters and multi-rotor UAVs, which are more

appropriate for power line surveys since they can hover closer to objects [28].

The approaches used in power line monitoring studies are similar to the previously

mentioned approaches using ALS. One example is Toth and Gilpin-Jackson (2010) [28]

who present a study about UAV applications for transmission line monitoring. These ap-

plications include structural inspection, vegetation monitoring and damage assessments

due to natural disasters or extreme weather conditions.

Most UAV data studies, however, have focused on line detection using optical aerial

images. ALS on-board a UAV platform has not been thoroughly studied yet. Katrašnik

et al. (2010) [28] present a study about the application of mobile robots, where UAVs

were included as flying robots, for power line inspections. Montambault et al. (2010) [28]

present a study about vertical take-off and landing (VTOL) UAVs for power line inspec-

tion. However, these studies focused primarily on UAV technical characteristics, instead

of specific methods.

Nevertheless, some studies present the methodologies used, such as Li et al. (2010) [28]

who propose a method to extract power lines using fixed-wing UAV images. Firstly, a

noise removal filter is applied (pulse coupled neural filter), followed by an HT to ex-

tract straight lines. Lastly, a segmentation process is done using knowledge-based line

clustering.

Cai and Walker (2010) [28] propose a method to estimate tree heights using a new

stereo image matching algorithm, applied to images acquired using UAVs and small

airplanes. Castelluci et al. (2013) [28] present a method based on computer vision algo-

rithms for pole and respective cross arm detection, using oblique colored images acquired
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with a UAV.

Laurrari et al. (2013) [28] present a novel system named “RELIFO” to autonomously

inspect power lines in real time, using UAV data. Using computer vision algorithms, the

system is able to detect power lines and calculate their distance to vegetation or buildings.

Sharma et al. (2014) [28] present an approach to extract power lines using fixed-wing

mini-UAV images. Firstly, power line points are separated, for different illumination

conditions, using adaptive thresholding. Candidate power line points are obtained using

a morphological operator. Lastly, power line detection is achieved using a heuristics-

based approach.

Martinez et al. (2014) [28] propose a real-time method for autonomous detection of

electric towers. Neural network classification was used to identify transmission towers

and real-time tracking was achieved using a hierarchical tracking method.

Jóźków et al. (2015) [28] propose a method for 3D power line modelling using UAV

images. Firstly, a point cloud is produced with dense image matching, then the conductors

are modelled with catenary curve fitting. Limitations to this method include the fact that

the UAV images need a high resolution and overlap, for appropriate image matching.

Studies using ALS on-board UAV include Ax et al. (2013) [28] who propose a method

for vegetation management at power lines using a laser scanner deployed on a UAV he-

licopter. Firstly, a 3D point cloud is generated, then imported to a model of the trans-

mission line. This model is then used to compute the distance between the trees and the

conductors.

Chen et al. (2018) [8] propose a method to automatically detect clearance anomalies,

based on LiDAR point cloud data acquired with a large-scale UAV platform. This method

presents the described workflow. Firstly, an extraction step, which starts by terrain filter-

ing or in other words, to separate terrain and non-terrain points using a two-step adaptive

terrain filter. From the non-ground point clouds, pylons are first detected and located

using a feature map approach, then point clouds are separated into spans. This step

ends with the extraction of wires, according to their geometrical distribution, followed

by their segmentation into clusters using conditional Euclidean clustering with linear

feature constraints. The second step, modelling, is achieved by the application of "cate-

nary curve fitting to the power line point clouds segments using two geometric shapes

in two 2D dimensions, a horizontal line and a vertical catenary curve" [8]. The last step

is to calculate clearance anomalies, by combining the previously constructed 3D power

line catenary, a DTM generated from the terrain point clouds, and points which do not

represent any power-facility objects, from the non-terrain point clouds. Trees within the

danger zone are considered clearance anomalies.
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2.2.8 Comparison of Approaches

LiDAR has been the leading remote sensing technique for vegetation management, using

3D information on forest vertical structure, as well as, power line monitoring. However,

recently there’s been an increase in the usage of passive remote sensing techniques to pro-

duce analogous information or to complement laser scanning data. This increase can be

explained by the needs to control cost, current regulatory requirements or to complement

the traditional vegetation inventory techniques. Likewise, some information can be hard

to acquire without imagery, like individual tree species composition, maturity and health

status [53]. Nevertheless, active remote sensing techniques can penetrate the vegetation

more easily, which makes them more suitable for vertical vegetation structure [46].

Further explanations about the most important benefits and limitations of each ap-

proach are summarised in Table 2.2. In addition, a detailed comparison between these

techniques can be seen in the work of Matikainen et al. (2016) [28].
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3
Method

This chapter first presents the proposed method and the most important concepts em-

ployed, including the external resources utilised during this work. In the first section,

section 3.1, a brief summary of the most commonly used methodologies and promis-

ing algorithms from the aforementioned work found in literature will be shown. In the

contiguous section, section 3.2, the proposed workflow will be presented, describing

each step in depth. To better illustrate this workflow, its diagrammatic representation

will be displayed. In the next section, section 3.3, the external resources and software

frameworks used during the development of this work will be briefly explained.

Further details about the proposed method, including its implementation, are then

presented. In section 3.4, the data acquisition process to obtain simulated data will be

thoroughly explained, as well as the reason behind the acquisition of simulated data

instead of data acquired in a real-life environment. Next, a brief explanation of the

process to mold the acquired simulated data will be presented, in order to be used as

real-life data would. To better illustrate the whole process, a sequence diagram is shown.

However, even though real-life data was not possible to be physically acquired, data

from an open repository was also utilised and will be thus described. In the subsequent

section, section 3.5, the data classification process is presented, starting with a brief

description of the input data structures, followed by the explanation of which features

are selected and how they are computed. Next, the classifier and classification functions

are exposed. Lastly, the evaluation metrics utilised to appraise the performance of the

classification model are presented. The last section, section 3.6, provides an explanation

of classification post-processing including the commonly used optimisation methods,

how they work and what their goal is, followed by the methods employed in this work.
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3.1 Concept Overview

The objective of this study, as briefly described in the first chapter, is to propose a vege-

tation detection and power line classification method using LiDAR-based point clouds,

acquired with a UAV platform, as well as computer vision algorithms for data processing.

To date, most UAV data studies have focused on line detection using optical aerial images.

Nevertheless, airborne imagery has certain limitations as previously stated, like poor

weather and illumination conditions, shadows and occlusion. ALS, due to the fact that it

is insensitive to these limitations, provides a reliable alternative/complement. Nonethe-

less, ALS on-board a UAV platform has not been thoroughly studied yet. However, works

found in literature validate its applicability for the specified purpose. Essentially, two

study areas are comprised in the proposed method: (1) vegetation management and (2)

power line mapping.

Vegetation management, in the context of this work, starts with the detection of vege-

tation growing close to the electric network, followed by a tree segmentation process, to

define the areas of interest. However, this process can also provide valuable information

about tree height and species. Then, the horizontal distance between the trees and the

power line is calculated based on the along-track position (parallel to the power line) and

cross-track distance (perpendicular to the power line). Along-track position considers

the line sway in irregular weather conditions. Cross-track distance is the horizontal dis-

tance between a tree’s position and the power line span. If the tree is directly beneath

the line, this distance is null. Lastly, the tree heights are estimated and compared to the

along-track fuel management band, to conclude whether the tree growth can potentially

endanger the electric network. Furthermore, identifying the tree species can also provide

valuable information about tree growth [31].

Power line mapping typically involves two steps: detection of power lines, followed by

power line reconstruction, where candidate power line points are extracted and modelled

in 3D. Detection is typically done by point cloud structure analysis, feature extraction

or straight line analysis. Reconstruction methods typically start by separating candidate

power line points, followed by geometric modelling of the power line. The objective is to

define and refine local models, then to obtain the complete catenary curve models [25].

• Vegetation Detection - Typical methods to detect vegetation using laser scanning

include the generation of a DTM, by separating ground and non-ground points,

followed by the generation of a CHM, from the interpolation of LiDAR data when

the return heights are normalised to the DTM.

On the other hand, methods related to image-based point clouds include software

to perform automated photogrammetric image matching, be it area-based (using a

reference window of pixels) and feature-based (using geometric shape matching).

SfM is another method which can generate high density 3D point cloud data from

the reconstruction of high resolution images;
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• Tree Segmentation - Extracting individual trees can be achieved using several algo-

rithms, including: k-means clustering algorithm; local maximum filtering; region

growing algorithms; voxel-based algorithms; RANSAC-based approaches.

Tree extraction methods from airborne imagery include: PCNN, from multispectral

imagery, whose inputs are the NIR and red band reflectance ratios; SVM and spectral

feature analysis;

• Power Line and Structure Detection - Generally, power line extraction from laser

scanning data is performed through supervised or unsupervised classifiers. SVM,

random forest algorithms and JointBoost are the most commonly used supervised

classifiers. On the other hand, statistical analysis or HT and clustering algorithms

like a voxel-based line detector are the most used unsupervised classifiers. Another

promising method is to use the first and last pulse return differences of the laser

scanner.

Power line and structure detection using imagery has a few limitations, such as,

certain vertical components can be hard to identify and reconstruct from vertical

images, even for a human operator, requiring oblique images. There are, how-

ever, certain methods used for this purpose, following a similar workflow to laser

scanning methods, including: feature matching algorithms; Gabor filtering; neural

network classification; connected component labelling algorithms;

• Power Line Reconstruction - Commonly used power line reconstruction methods

found in literature are: voxel-based and RANSAC-based; using a MRF; catenary

curve and linear fitting models; region growing algorithms; Douglas-Peucker line

simplification algorithm;

• Fuel Management Band Delineation - Following the reconstruction of the electri-

cal network and the vegetation surrounding it, the generated models can be im-

ported to an image processing software and used to delineate the fuel management

bands according to distances established in legislation;

• Potentially Dangerous Vegetation Identification - Succeeding the delineation of

the fuel management bands, it is possible to identify vegetation crossing them,

which can be potentially hazardous to the power lines.
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3.2 Proposed Workflow

Based on the concepts described before, the proposed workflow for this work was es-

tablished. A diagrammatic representation of this workflow is presented, in Figure 3.1,

followed by a detailed step-by-step explanation of said workflow.

Synthetic Data

Real Data

ClassifierFeature Analysis
and Computation

Classified Data Set

Data Set Label SetGround Truth Subsets

Filtering

Segmentation

Classification
Function

Data
Acquisition

Point Cloud
Classification

Post
Processing/
Optimisation

Figure 3.1: Diagrammatic representation of the Proposed Workflow.
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The step-by-step explanation, of the previously displayed diagrammatic representa-

tion of the proposed workflow, is described as follows:

• Data Acquisition: First and foremost it is necessary to gather point cloud data to

work with, whether it is captured personally or collected from an open repository.

Furthermore, this data can be real or synthetic. This work will emphasise on both,

providing a (relatively) simple method to produce synthetic point cloud data and

presenting a promising open data repository which provides point cloud data cap-

tured in real-life environments. Further information related to the data acquisition

process is provided in section 3.4;

• Point Cloud Classification: In this module the point cloud classification steps are

contained, elaborately discussed in section 3.5. This process starts by defining the

input data structures, followed by the analysis of certain predefined features using

said data structures. These features are then fed to a classifier that assigns objects

a class label based on the values of these features. Lastly, a classification function

can be utilised to regularise the classification results. A more detailed description

is given in the following bulleted list:

– Input Data Structures: The input data structures that are utilised in the pro-

posed classification method are: the previously acquired point cloud Dataset,

Ground Truth subsets obtained from labelling a portion of the input Dataset

and a Label Set which contains the respective labels of the objects in observa-

tion. More information about the input data structures is shown in subsection

3.5.1;

– Feature Analysis and Computation: The propounded classification method

is feature-based, thus it is necessary to first select adequate features to the data

in observation. This procedure is followed by the analysis and computation of

the selected features to the given Dataset. A detailed explanation is provided

in subsection 3.5.2;

– Classifier: An object to associate an input item to a specific class label is re-

quired. This object is the classifier. Labels are attributed based on the values of

the designated features for the input Dataset, when compared to the Ground

Truth subsets. Thorough information of the used classifier is displayed in sub-

section 3.5.3;

– Classification Function: The purpose of the classification function is to reg-

ularise the results provided by the classifier. Nevertheless, this process can

be computationally demanding meaning in some exceedingly large datasets

it might be better to perform raw classification, without regularisation. This

topic will be further discussed in subsection 3.5.4.
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• Post Processing: This module provides the post processing steps, explained in sec-

tion 3.6, to optimise the previously obtained classifications results. Optimization

can either be done manually, by increasing the ground truth information, or auto-

mated. This work will emphasise automated methods, namely:

– Filtering: The purpose of filtering is to analyse the incorrectly classified objects

and to remove undesired points from a specific class label. Further details

about this procedure are shown in subsection 3.6.1;

– Segmentation: The objective of segmentation is to partition the classified ob-

jects into homogeneous clusters, to separate dissimilar objects. This process is

discussed thoroughly in subsection 3.6.2.

3.3 External Resources

This section, as previously described, presents a brief description of the external libraries

and software frameworks used during the development of this work.

3.3.1 Robot Operating System (ROS)

Robot Operating System (ROS) is a compendium of frameworks for robotics software

development, providing several tools, libraries and services, designed to be hardware

independent, provide inter-process communication, provide low-level device control

and package management. The purpose of ROS is to provide an open-source collabo-

rative robot software development environment, encompassing expertise from different

research fields [39].

ROS-based processes, otherwise called nodes, perform computations in a graph archi-

tecture connected by edges called topics, like: sending or receiving sensorial information,

state estimation, controller interfaces - to name just the most important for this work [39].

Besides the core functionalities of ROS, several tools are also provided in the frame-

work. The most important used during the development of this work being tools to

visualise and record data, namely rviz and rosbag. Rviz is a highly configurable three-

dimensional visualisation tool for ROS where robots, their working environments and

sensorial data, can be visualised. Rosbag "is a command line tool used to record and

playback ROS message data" [39]. This tool has the capability to log ROS messages, by

subscribing to the topics whose messages the user intends to record, saving them in a

bag file, a rosbag specific format. The inverse operation is also available. In other words,

playing messages from a bag file like the original nodes would have produced, which can

be, for example, visualised using a visualisation tool like rviz [39].

ROS regularly releases a new distribution, which means older releases might not

be compatible with certain packages. In this work, the distribution used was ROS

Melodic Morenia, released on May 23, 2018, whose End of Life (EOL) date will be May

30, 2023 [39].
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3.3.2 Point Cloud Library (PCL)

The increasing demand for libraries to process point cloud data led to the creation of

Point Cloud Library.

The Point Cloud Library (PCL) is an open-source, cross-platform, library of algo-

rithms, written in the C++ programming language, for two and three-dimensional image

and point cloud processing. This library includes novel algorithms for "filtering, feature

estimation, surface reconstruction, registration, model fitting and segmentation. These

algorithms can be used, for example, to filter outliers from noisy data, stitch 3D point

clouds together, segment relevant parts of a scene, extract keypoints and compute descrip-

tors to recognize objects in the world based on their geometric appearance, and create

surfaces from point clouds and visualize them" [40].

3.3.3 Aerial Informatics and Robotics Simulation (AirSim)

AirSim is an open-source simulator for drones, cars and other vehicles, built on Epic

Games’ Unreal Engine, developed by Microsoft. The objective of this simulator is to

provide "a platform for AI research to experiment with deep learning, computer vision

and reinforcement learning algorithms for autonomous vehicles. For this purpose, AirSim

also exposes APIs to retrieve data and control vehicles in a platform independent way" [1].

Through the usage of said APIs, it is possible to have a complete scrutiny of what data to

collect and how to collect it, by interacting with the vehicle programmatically.

3.3.4 Octomap

Octomap is a 3D mapping framework with data structures and mapping algorithms.

The 3D mapping implementation utilises an octree, a tree data structure "often used to

partition a three-dimensional space by recursively subdividing it into eight octants" [30].

The map implementation provides the following advantages: it can generate a model

of the entire environment without any previous conjecture; it can be updated in real

time which means it can be used to map dynamically changing environments; the map

expands whenever it is required to do so, without previous knowledge of the proportions

of the environment; lastly, data is compressed, making it more practical and reducing

memory limitations [17].

3.3.5 MeshLab

MeshLab is an open-source software for 3D mesh processing, which provides several

other tools, like: "editing, cleaning, healing, inspecting, rendering, texturing and con-

verting meshes. It offers features for processing raw data produced by 3D digitization

tools/devices and for preparing models for 3D printing" [9].

The cleaning tools provided by this software comprise equivalent or unreferenced

vertice removal, erasure of null vertices, faces or edges. Remeshing tools include surface
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reconstruction algorithms based on ball-pivoting and Poisson reconstruction methods,

mesh simplification based on quadratic error measurements, as well as surface subparti-

tioning. Noise removal tools include smoothing filters and curvature and visualisation

analysis. Meshlab provides multiple range map registration based on the iterative closest

point algorithm [9].

There is also "an interactive direct paint-on-mesh system that allows users to interac-

tively change the color of a mesh, to define selections and to directly smooth out noise

and small features" [9].

3.3.6 Computational Geometry Algorithms Library (CGAL)

The Computational Geometry Algorithms Library (CGAL) "is an open source software

library of computational geometry algorithms" [37]. This library is fundamentally writ-

ten in C++, with some packages providing support to the Java and Python programming

languages as well. This project is the result of the work done by a consortium of aca-

demic institutions whose objective is to distribute efficient and effortless computational

geometry algorithms, to be used "in various areas needing geometric computation, such

as geographic information systems, computer aided design, molecular biology, medical

imaging, computer graphics, and robotics" [37].

This library provides several packages with geometric algorithms. However, the one

that was mainly used during the development work is the Classification package [13]. The

classification package, developed by Simon Giraudot and Florent Lafarge [13] provides

classification algorithms for different data kinds, which support several features and

labels. Furthermore, these algorithms are implemented to be flexible with local own

features defined by the users, as well as, custom input data with user defined labels.

3.4 Data Acquisition

In 3D computer graphics, three-dimensional data is generally represented as follows:

point cloud data, polygon meshes, volumetric representation or projected depth image

views [38]. A polygon mesh, in three-dimensional computer graphics, is a collection of

vertices, edges and faces which compose a three-dimensional object. Generally, theses

faces comprise triangles, quadrilaterals or other convex polygons. This representation

is particularly interesting since it provides surface irregularities which can be useful for

mesh analysis [16]. A voxel is a volumetric representation of a value within a regular grid

in space. In this representation, the position of voxels is obtained by inference in relation

to the position of other voxels [29]. The projected depth image views, or depth map, in

computer graphics, are images or channels which possess significant information about

the relative distance of a certain viewpoint to the surface of an object. Single or multi-

view depth maps can be retrieved with 3D scanners and utilised for the reconstruction of

3D shapes [27].
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The point cloud representation is a set of points in space representing a 3D shape,

usually obtained with a 3D scanner or the usage of photogrammetric techniques. This

representation is similar to raw sensor data. It is also canonical, or to put it another

way, point cloud data can be effortlessly obtained through the conversion of other rep-

resentations. Similarly, the opposite conversion is also possible, generally called surface

reconstruction. Generally point cloud data is converted before being fed to deep learning

procedures. However, recently, feature learning on raw, unordered point cloud data has

been studied [38]. This work will focus on instance and semantic segmentation (otherwise

known as classification) of raw point cloud data.

Furthermore, data, specifically point cloud data in this work, can be both real or

synthetic. Real data, as the name implies, is captured in a real life environment using

a 3D scanner. The raw data can then be processed with computer vision algorithms.

Synthetic data, on the other hand, is generated computationally with specific 3D graphic

software. "In theory, objects in the synthetic datasets are complete, without any occlusion

and background. In contrast, objects in the real-world datasets are occluded at different

levels and some objects are contaminated with background noise" [14]. Furthermore,

synthetic data is generally less expensive and the user has full scrutiny over what to

capture and how to do it. For these reasons, synthetic data can be very useful for algorithm

development and testing in simulated virtual environments. Nevertheless, translating

the results of said algorithms to real life data can, sometimes, be a non-trivial task and

produce undesired results so it is a good practice to assure the methods produced are

adequate to real life environments.

In this work, the proposed methods will be tested for both synthetic and real life data.

A detailed explanation of the data acquisition processes will be presented in the following

subsections.

3.4.1 Synthetic Data

Originally, the data was intended to be acquired using ALS on-board a UAV platform

in a real-life environment. However, due to the COVID-19 pandemic, academic institu-

tions had imposed on them strict public health and social measures which hindered this

process.

In order to solve this issue, a different approach was taken which consisted in the

usage of simulated LiDAR data in a virtual environment. The simulator used for this

purpose was AirSim. After collecting the simulated data, this data needs to be processed

in order to be used by the ROS Network. This processing is achieved with Octomap. A

sequence diagram illustrating the data acquisition process will be presented, in Figure

3.2, followed by a thorough explanation of the process.
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AirSim ROS Network Octomap

Rosbag record Bag file

Roslaunch AirSim ROS Wrapper

Play custom environment

Rosbag play Bag file

Save PCD file

Run Multirotor Trajectory Python API

Figure 3.2: Sequence diagram of Synthetic Data Acquisition process. First, LiDAR data is
captured using AirSim. Data is then published to the ROS network and, via sensor fusion,
mapped with Octomap to a point cloud data format.

AirSim provides support to multiple sensors. However, the one that will be primar-

ily focused is LiDAR. In order to be able to utilise the range of sensors available and

more accurately emulate a real sensor, in this particular situation Velodyne’s VLP-16

sensor, a JSON settings file must be configured. These settings include the number of

channels/number of lasers of the LiDAR, the number of points captured each second, the

number of rotations each second, the start and end horizontal Field of View (FoV), the

upper and lower vertical FoV, the position of the sensor in relation to the multirotor (in

North-East-Down (NED) coordinates), and the orientation of the LiDAR in relation to

the multirotor (in degrees, in relation to front vector +X). The values of these settings,

following Velodyne’s VLP-16 sensor datasheet [44] are presented in the following bulleted

list.

• Number of channels/lasers: 16;

• Points per second: 300.000;

• Rotations per second: 10;

• Horizontal FoV Start: 0;

• Horizontal FoV End: 359;

• Vertical FoV Upper: -15
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• Vertical FoV Lower: -45;

• Sensor position (in relation to the multirotor): X = 0, Y = 0, Z = -1;

• Sensor orientation (in relation to the multirotor): Roll = 0, Pitch = 0, Yaw = 0.

Despite the LiDAR setting configuration, there is still a concern: to acquire the LiDAR

data and publish it over the ROS network. For this purpose, there is an AirSim ROS Wrap-

per module which makes the integration between the simulator and the ROS network,

containing two ROS nodes: a wrapper over the simulator’s multirotor C++ library and

a proportional-derivative (PD) position controller. This way, it is possible to subscribe

to the topic publishing LiDAR data so it can be recorded using the rosbag package to be

posteriorly used by other applications.

As previously mentioned, the goal is to gather simulated LiDAR data in a simulated

environment. The simulator provides a few environments, however, it is also possible

to setup a custom environment. For this purpose, a simple environment consisting of

royalty-free assets of multiple trees of three different species (110 pine trees, 14 scots

pine trees and 24 fir trees) and a power line structure with 8 pylons whose insulators

are connected by 8 power lines was created using Epic Games’ Unreal Engine 4.24. A

screenshot of said environment is presented in the following figure, Figure 3.3.

Figure 3.3: Screenshot of the Synthetic Data simulated environment, captured in Unreal
Engine 4.

The multirotor traverses the simulated environment as close to the power line struc-

ture and the vegetation as possible, through a predefined scripted trajectory given by a

customised Python API. This API starts by establishing the connection to the simulator,

enabling the programmatic control over the multirotor. Then, it waits for a key press for
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takeoff and for each movement instruction. Lastly, after another key press, it returns to its

original state. Simultaneously, through the integration between the simulator and ROS,

using the previously mentioned ROS Wrapper module, the LiDAR captures the point

cloud data which is then published to a ROS topic and visualised using rviz.

LiDAR data is published over the ROS network. However, through sensor fusion and

mapping algorithms it is possible to obtain a state estimation, and, consequently, reshape

data to a more practical format. For this purpose, OctoMap was utilised.

Using the octomap_server package it is possible to progressively create the 3D map

of the environment, from incoming LiDAR data, and compress it to a ROS compatible

format that can be used by other nodes. In this particular situation, the format of interest

is the Point Cloud Data (PCD) file format. The PCD file format is the native file format in

PCL, which complements existing 3D point cloud data file formats. A PCD file is divided

in two segments: header and data.

The header contains the PCD file version; the dimensions/fields each point can have;

the dimension size in bytes and its type as a char, be it signed, unsigned or float type; each

dimension element count; the width of the dataset which can be the total number of points

or number of points in each row, for unorganised and organised datasets respectively; the

height of the dataset, which can specify the total number of rows or be set to 1, for

organised and unorganised datasets respectively; the viewpoint of the point cloud, which

provides information for future transforms and is described as a "translation (tx ty tz) +

quaternion (qw qx qy qz)" [40]; the total amount of points in the point cloud; and the

data type of the dataset, be it ascii or binary. Data, as the name suggests, contains the

Cartesian coordinates values of the point cloud data.

Despite being the native file format in PCL, this file format provides several advan-

tages over other file formats, the most important being: the different data types it sup-

ports; the capabilty to process organised point clouds; reading and writing data to disk is

faster; it provides n-D histograms for feature descriptors which can be very useful for 3D

perception [40].

The resulting PCD file from the mapping of the simulated environment using the

incoming LiDAR data is shown in the following figure, Figure 3.4.
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Figure 3.4: Screenshot of the resulting Point Cloud Data (PCD) file after mapping the
simulated environment.

3.4.2 Real Data

As previously mentioned, the COVID-19 pandemic negatively impacted the data acquisi-

tion process in a real life environment. Nonetheless, in the latest years several datasets

openly accessible to the public have been published in repositories (mostly by universities

and organisations) which further fostered point cloud processing researches [3, 14].

One of these repositories is Open.NRW, an open information and data platform from

the North Rhine-Westphalia state, in Germany. This platform provides federal govern-

ment and municipalities a technical infrastructure to publish open data [35].

The data provided encompasses several scientific and social-economic sectors, how-

ever, the major focus for this work is LiDAR data captured in this state. Hundreds of

files from both urban and non-urban environments are available, including environments

with the presence of several vegetation elements like small bushes or full-fledged trees

and electrical structures such as transmission towers and electrical wires.

The file format of these data files is the LAZ format which compresses large amounts

of LiDAR data in a, relatively, small file. Usually it results from the compression of the

most commonly used LAS format. "The LAS file format is a public file format for the

interchange of 3-dimensional point cloud data data between data users" [23]. This file

format was created as an alternative to proprietary file formats, which cannot be used

in certain working environments or systems, as well as ASCII file format, which, despite

being generic possesses certain performance and information loss limitations. The LAS

file format is not only generic, but it can also keep relevant LiDAR information while not

being too convoluted [23].

In this work specifically, the data files are converted to a different file format, in order

to be processed by the previously mentioned tools. This process will be later explained

in this dissertation. One data file sample, containing vegetation, electrical structures and

ground points is presented in the next figure, Figure 3.5.
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(a) The top view where one can identify Ground and Vegetation points. Pylon and Line points are
also present in the figure, even though not as contrasting.

(b) The side view where Pylons and Lines are more visible. Vegetation and Ground points are
also visible, despite not being possible to discern from each other.

Figure 3.5: Close-ups of the real life LiDAR sample Dataset from Open.NRW.

3.4.3 Overview

For posterior processing, the datasets presented in the previous subsections were man-

ually labelled according to the classes of items in study. A thorough overview of the

aforementioned datasets is shown in the following table, Table 3.1, which includes the

total number of points and the number of points for each item class.

Table 3.1: Detailed information of manually labelled point cloud datasets, where syn-
thetic data is represented by S# and real data is represented by R#.

Sets Total #Points Ground Vegetation Pylons Lines

S1 135,651 104,623 24,225 4,500 2,303
R1 2,782,469 1,381,214 1,390,493 2,589 8,173
R2 5,799,533 2,946,336 2,841,415 2,272 9,510
R3 4,765,377 1,933,420 2,823,869 1,397 6,691
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3.5 Point Cloud Classification

In recent years, deep learning and its applications have been under scrutiny in many

researches related to computer vision and data processing, namely point cloud data. Sev-

eral methods have been proposed and datasets openly accessible to the public have been

published (mostly by universities and industries) which further fostered deep learning

for point cloud processing researches, including point cloud classification [3, 14]. A

more detailed exposition of the publicly available datasets and deep learning methods

for point cloud processing is available in the works of Guo et al. (2020) [14] and Bello et

al. (2020) [3].

Nevertheless, point cloud processing using deep learning still faces certain challenges,

like: datasets with small scales; irregularities in datasets, in other words, uneven sampling

of points among dissimilar objects/regions; unstructured and unorganised datasets [3,

14]. These issues can be particularly challenging for Convolutional Neural Networks

(CNNs), since CNNs perform convolutional operations which are negatively impacted by

unstructured and unordered data [3]. A comprehensive description of these challenges is

also provided in the aforementioned works, [14] and [3].

As mentioned in the previous chapter, this work utilises a synthetically generated

dataset and real life datasets from an open data repository. The next step in the proposed

method is to classify data according to their respective class labels. During the develop-

ment of this work, the CGAL classification package was utilised to perform point cloud

classification [13]. The next subsections will thoroughly explain this process.

3.5.1 Input Data Structures

As previously mentioned, CGAL was used to perform point cloud data classification. In

CGAL the classification algorithms require a few input data structures, namely: Input

Dataset, Label Set and Ground truth Subsets.

3.5.1.1 Input Dataset

The Input Dataset consists of two point cloud datasets, real and synthetic, previously

presented in the Data Acquisition section of the present chapter. However, before being

fed to the CGAL classification package, one last step must be taken into consideration:

converting the input data to a format the classifier can understand. In this case, this

format is the PLY polygon file format which describes a graphical object as an assembly of

polygons. "The PLY format describes an object as a collection of vertices, faces and other

elements, along with properties such as color and normal direction that can be attached

to these elements. A PLY file contains the description of exactly one object. Sources of

such objects include: hand-digitized objects, polygon objects from modeling programs,

range data, triangles from marching cubes (isosurfaces from volume data), terrain data,

radiosity models" [43]. This representation can be particularly useful since it can store
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information from range measurements with reduced complexity and it is an extensible

format. To put it another way, adding a label to a specified point pertaining to an object

is as simple as adding a new vertex whose value is the index of said label [13].

3.5.1.2 Label Set

The Label Set contains the user-defined set of labels of the objects present in the Input

Dataset. A label is no more than a representation of how an object should be classified.

In CGAL, labels contain several properties: a name, which is usually the name of the

object in common sense. A label set index, in other words the index of said label in an

array containing all labels. A standard index which contains the value that is attributed

to the appended vertex during the classification process. Lastly, a RGB color used for

visualisation purposes. Nevertheless, neither the name, the standard index or the color

are unique. What truly identifies a label is a label handler which is unique to the specified

label. The name of the label can, however, be used to deduce other information about said

label, when the label initialisation is done using only the label name [13]. In this work,

the defined labels, which correspond to the objects in interest, are: Vegetation, Pylons

and Electrical Wires.

3.5.1.3 Ground Truth Subset

The Ground Truth Subsets contain certain sets of labeled data which define an object

recognition model "including the count, location, and relationships of key features" [22].

Labelling data is a process that can be done manually through visual interpretation or

programmatically through data analysis, according to the intricacy of the problem [22].

"The collection of labels, such as interest points, corners, feature descriptors, shapes, and

histograms, form a model. A model may be trained using a variety of machine learning

methods. At run-time, the detected features are fed into a classifier to measure the corre-

spondence between detected features and modeled features" [22]. Further information

about Ground Truth Data is presented in the work of Krig (2014) [22]. For this work,

ground truth subsets were obtained through manual annotations, based on the visual

interpretation of the input datasets.

3.5.2 Feature Analysis

"In machine learning and pattern recognition, a feature is an individual measurable

property or characteristic of a phenomenon being observed" [7]. Generally, features are

represented by numerical values, however, in pattern recognition sometimes strings and

graphs are also used. Initially, the raw feature set can be too sizeable to manage and

may have expendable features. Consequently, two crucial preliminary steps are generally

performed when computing features in machine learning: feature selection and feature

extraction. This process can then be automated using feature learning [7].
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3.5.2.1 Feature Selection

Feature selection is a process of selecting descriptive, discerning and independent fea-

tures to be used in machine learning model construction. The importance of selecting rel-

evant features is that it facilitates the model interpretation of other researchers, it can sig-

nificantly reduce training duration, it is easier to analyse and organise high-dimensional

data, and it also decreases overfitting (to put it another way, when a model memorises a

large number of examples in lieu of learning from features). The focal point of this process

is to find and filter any redundant or irrelevant features present in data while minimising

the information loss. Redundancy and irrelevance are independent, since any given rele-

vant feature can be redundant when compared to another correlated relevant feature [11,

18]. As a separate assignment, feature selection can be supervised or unsupervised, or

a combination of both techniques. However, "some supervised algorithms already have

built-in feature selection, such as Regularized Regression and Random Forests" [11].

3.5.2.2 Feature Extraction

Feature extraction obtains relevant and non-redundant features from an initial set of mea-

sured data, generally used to describe large datasets. This process is similar to feature

selection, however, feature extraction creates a new subset of features while feature selec-

tion retains a subset of the original features. "As with feature selection, some algorithms

already have built-in feature extraction" [11]. Likewise, feature extraction can also be

supervised or unsupervised [11].

3.5.2.3 Feature Learning

Feature Learning is a process that supplants non-automatic feature engineering and it

consists of a collection of methods used to automatically perform feature detection or

classification. The motivation that leads to this process is that certain assignments, like

classification, generally need an input that is programmatically advantageous to pro-

cess. Feature learning, like feature selection and extraction, can also be supervised (with

labeled input data) or unsupervised (with unlabeled input data) [4].

3.5.2.4 Feature Computation

In CGAL, "features are defined as scalar fields that associate each input item with a spe-

cific value" [13]. Due to performance issues, namely memory consumption and processing

time, the scalar value of said features is a floating-point number (simply called a float

in computer science). Likewise, feature computation is done using a reduced number of

scales, in this particular work five different scales. Features are first computed then added

to a feature set. Furthermore, each feature is represented by a name and a feature handler.

CGAL supplies a set of predefined features which are generally inclusive, however, it
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is possible to define custom features, particularly if the input dataset contains certain

characteristics that were not foreseen by said predefined features [13].

In this work, the selected features for the classification process are:

• Eigenvalue: Computes one of the three eigenvalues in a local neighborhood. Eigen-

vectors and eigenvalues exist in pairs and determine the variance of certain data in

a specified direction. That direction is given by the eigenvector while the value of

data variance in that direction is given by a number, called eigenvalue [13];

• Distance to Plane: Calculates the distance between a point and a locally estimated

plane. This feature can be particularly interesting to characterise non-planar input

data, like Vegetation or Pylons [13];

• Vertical Dispersion: Estimates the vertical dispersion of a point set within a local Z-

cylinder around the points. In other words, how vertically noisy the specified point

set is. The environments under inspection can be deconstructed into groups of 2D

regions with dissimilar heights. For Pylons and Lines, these heights are constant,

however, for Vegetation these heights can be very unsteady [13];

• Elevation: Calculates the distance of a local neighborhood to an estimation of the

ground. This feature can be particularly helpful to differentiate ground points from

power line points [13];

• Height Below: Measures the distance between a specific point and the lowest point

in a local neighborhood. Similarly to the previous feature, this feature is also based

on the local elevation [13];

• Height Above: Identical to the previous feature. However, in this situation, the

distance between a specified point and the highest point in a local neighborhood is

calculated instead [13];

• Vertical Range: Yet another feature based on local elevation, which computes the

distance between the highest and lowest points in a local neighborhood [13].

As previously stated, in CGAL users can define their own features, however, the

algorithms are optimised to use the provided predefined features. In theory, the most

predefined features used, the better the results. For this reason, CGAL provides a module

which makes an estimation of minimum pertinent scale for the features used, creates the

required analysis structures and it utilises all the predefined features according to the

accessible property maps [13].
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3.5.3 Classifier

As previously described, classification using CGAL is achieved through feature computa-

tion and can be used to classify "point sets, surface meshes and clusters" [13].

"Classification relies on a classifier: this classifier is an object that, from the set of

values taken by the features at an input item, computes the probability that an input item

belongs to one label or another" [13].

A classifier model in CGAL receives the index of an input item and returns the proba-

bility of said item being contained in each label in the form of a vector. It then returns a

numerical value of one for a label and item pair if said item belongs to the specified label

or a numerical value of zero otherwise [13].

CGAL supplies different classifiers, however, the one that is mentioned to be the best

and advised by the developers, which is also the one that was utilised during this work,

is the ETHZ Random Forest classifier [47], "a classifier based on the Random Forest

Template Library developed by Stefan Walk at ETH Zurich" [13] provided under the MIT

license without further software installations (besides the respective CGAL distribution).

As previously mentioned, this classifier needs a ground truth training subset and the

training algorithm not only requires a large number of inliers, but it also consumes more

memory during runtime and has larger configuration files than the other classifiers pro-

vided. On the other hand, it is faster and produces remarkably better results, namely as

the number of labels increases [13].

3.5.3.1 Random Forest

Random forest algorithms are widely used in machine learning, namely in classification,

due to their simplicity and flexibility. Furthermore, these algorithms generally generate

reasonable results without hyper-parameter fine tuning [12].

Before explaining how the Random Forest model works, it is important to understand

its constitutive blocks: decision trees. A decision tree is composed of multiple nodes

which, based on certain features, fracture data under analysis in different groups, named

branches, as dissimilar to each other as possible but whose resulting members, called leaf

nodes, represent the same class label. Leaf nodes which do not have any children are

simply called leafs [12].

"Random forest is a supervised learning algorithm" [12] that, analogously to a real for-

est, is an ensemble of trees (in this situation however, decision trees). The presupposition

of the Random Forest algorithm is that creating compact decision-trees with a limited

set of features is computationally inexpensive [6]. The output of these decision trees is

then amalgamated to produce a more accurate prediction. It is called a Random Forest

because in lieu of splitting nodes using the most relevant feature found the algorithm

utilises the best feature from a random subset of features, typically resulting in a better

model [12]. An additional characteristic of this algorithm is the ability to compute the

relative relevance of each feature in a prediction. This information can be very valuable
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to decide which features do not provide a positive contribution to the predictions and can

be consequently excluded which in turn prevents the model from suffering overfitting, or

in other words, having an excessive number of features for the given data [12].

As stated, this algorithm outputs reasonable results without hyper-parameter tuning,

however, hyper-parameters can be used to improve prediction accuracy and the model

speed [12]. On the other hand, achieving better predictions is the result of expanding the

number of trees, which in turn slows the algorithm, thus meaning it might not be adequate

for real-time predictions. Furthermore, "Random Forest is a predictive modeling tool and

not a descriptive tool" [12]. In other words, it is not suitable to achieve a description of

relationships present in data.

In practice, this algorithm works as described:

1. For each decision tree select a bootstrap sample from the training set, "Bootstrap

Sampling is a method that involves drawing of sample data repeatedly with re-

placement from a data source to estimate a population parameter" [20]. Bootstrap

Sampling can be applied to ensemble machine learning algorithms, like Random

Forest, to circumvent overfitting issues and reduce computational expenses [20]. In

this case, the training set is the ground truth subset. The outcome of a decision tree

is then attained with a modified learning algorithm;

2. The modified learning algorithm works like so: a random subset of features, among

the total set of features, is firstly chosen. Then, each tree node is analysed for the

specified subset of features. The node is split based on the most relevant feature

from the random subset of features, instead of the initial set of features. Since this

random subset of features is significantly reduced when compared to the initial set

of features, it drastically decreases the learning time of the decision trees. "Deciding

on which feature to split is oftentimes the most computationally expensive aspect

of decision tree learning" [6].

For a better understanding of the implementation of this algorithm, its pseudocode is

displayed in Algorithm 1 which follows [6] meticulously.

As aforementioned, the Random Forest algorithm used during the development of this

work uses as a basis the ETH Zurich Random Forest Library. Furthermore, two important

parameters must be instantiated: the number of trees and the depth of the forest [13, 47].

• Number of trees: 25;

• Depth of the forest: 20.
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Algorithm 1 Random Forest [6]
Inputs:
Training Set, S
Feature Set, F
Number of Decision Trees in the Forest, N

1: procedure RandomForest(S, F, N)
2: H ←∅
3: for i ∈ 1, ...,N do
4: S i ← Bootstrap Sample from S
5: hi ← RandomizedTreeLearning(S i ,F)
6: H ←H ∪hi
7: end for
8: return H
9: end procedure

10: procedure RandomizedTreeLearning(S, F)
11: At each node:
12: f ← reduced subset of features from F
13: Split node according to the best feature in f
14: return LearntT ree
15: end procedure

3.5.4 Classification Functions

"Classification is performed by minimizing an energy over the input dataset that may

include regularization" [13]. CGAL supplies three different classification methods, with

differing speed and output quality:

• Raw Classification: This is the quicker of the methods provided, however, it presents

the noisiest results. This method minimises the energy over the input data by sum-

ming the itemwise energies obtained with the classifier, without regularisation [13];

• Local Regularisation: This method provides a compromise between speed and qual-

ity of the output results. It performs local regularisation by computing the energy

of all items in a local neighborhood, which outputs less noisy results. The quality

of the output results increases as the local neighborhood is expanded, however, it

also increases computation times [13];

• Global Regularisation: This is the slowest method but also the one that provides

the best results. "A graph cut based algorithm (alpha expansion) is used to quickly

reach an approximate solution close to the global optimum of this energy" [13]. This

method fractures the input data in piecewise constant clusters which enables the

correction of sizeable incorrectly classified clusters [13].

As stated in CGAL documentation, for "a point set of 3 millions of points, the first
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method takes about 4 seconds, the second about 40 seconds and the third about 2 min-

utes" [13]. In this work, the classification function utilised was Local Regularisation, since

it provides a reasonable trade-off between the output result quality and computational

resources consumed. Ideally, Global Regularisation should be used, to further improve

result quality, however, for sizeable environments (with millions of points), this method

can be computationally demanding.

3.5.5 Evaluation

In order to evaluate the performance of a machine learning model, certain metrics (named

evaluation metrics) are used. There are several kinds of evaluation metrics to test a model,

however, the ones that are oftenly used in 3D Classification are Precision and Recall.

Precision, for a specified class, is the "ratio of true positives over the total number

of detected positives" [13]. In other words, precision is the number of relevant items

retrieved. Its mathematical expression can be seen in the following equation, Equation

3.1.

P recision =
T P

T P +FP
(3.1)

where TP is the number of true positive samples and FP is the number of false positive

samples.

Recall, for a given class, is the "the ratio of true positives over the total number of

provided inliers of this label" [13]. To put it another way, recall is the quantity of relevant

items amidst all the retrieved items. The succeeding equation, Equation 3.2, presents its

mathematical expression.

Recall =
T P

T P +FN
(3.2)

where, once again, TP is the number of true positive samples and FN is the number

of false negative samples.

Another commonly used metric, to evaluate the overall performance of the classifier,

is the Overall Accuracy. This metric provides the probability of a singular object being

classified as belonging to its real class. The mathematical expression of this metric is

displayed in the next equation, Equation 3.3.

OverallAccuracy =
T P + TN

T
(3.3)

where TP is, once more, the number of true positive samples, TN is the number of

true negative samples and T is the total number of samples.
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3.6 Post-Processing

Regardless of the classifier utilised, it is never possible to achieve flawless results dur-

ing the classification process. For this reason, some post-processing operations might be

required to optimise the classification results. This process can be either manual or auto-

mated. Generally speaking, manual post-processing can be either done by successively

increasing the Ground Truth Subsets followed by a reclassification of the Input Dataset, or

by utilising specific software that can process and edit the labelled data. These methods

can be effective for smaller, similar, environments, but they can be very time consuming

for multiple, dissimilar, large environments. Furthermore, they require a human operator

to either manually label more data to increase the training set of the classifier or to manu-

ally correct the wrong classifications. For this reason, this work will focus on automated

post-processing methodologies which, in theory, should be more generalist and should

not be so time consuming.

In order to automate the optimisation of the classification results, it is first neces-

sary to identify the issues faced by the classifier. To summarise, the following incorrect

predictions can be expected to be done by the classifier:

• Ground points being incorrectly classified as other object classes. It is possible

to tackle this issue following the assumption that ground points possess similar

characteristics to a planar surface while the other objects in observation do not;

• Low Vegetation incorrectly classified as Lines or Pylons. In the first case, this issue

should be particularly straightforward, taking into account the objects in observa-

tion have dissimilar elevations. However, in the second case, depending on the

distance between the Vegetation and the Pylons, this could be the most challenging

issue to overcome. When the distance is sizeable enough, it should be possible to

separate different objects using a segmentation algorithm. Troubles arise when this

distance is not significant to the segmentation algorithm. In certain situations this

issue could even be troublesome for manual corrections;

• Tall Vegetation misclassified as Lines or Pylons. Similar to the previous topic, the

difficulty to overcome this issue is intrinsically related to the distance between said

objects. Furthermore, in this situation, it is not possible to separate Vegetation from

Lines based on elevation criteria (like the previous solution for Low Vegetation);

• Line spans being wrongly classified as Pylons. The least problematic kind of in-

correct predictions, since the main focus is to separate Vegetation from Lines and

Pylons. Nevertheless, one possible solution for this issue is to use a model fitting

algorithm, namely line/catenary curve fitting.

To perform automated classification post-processing, essentially two kinds of proce-

dures were executed: filtering and segmentation. These procedures will be thoroughly

explained in the following subsections.
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3.6.1 Filtering

Point cloud filtering, as the name implies, is a process to remove undesired points from

data. Generally, filtering is performed to pre-process point cloud data, which "inevitably

suffers from noise contamination and contains outliers, due to the limitations of sen-

sors, the inherent noise of the acquisition device, the lighting or reflective nature of the

surface or artifact in the scene" [15]. Nevertheless, filtering can be similarly done after

classification, in order to optimise results by rectifying incorrect predictions.

Filtering algorithms are usually separated into seven categories: statistical-based,

neighborhood-based, projection-based, signal processing based, Partial Differential Equa-

tions (PDEs), hybrid techniques and other methods not framed in these categories [15].

Statistical-based filtering techniques make use of different statistical concepts, de-

pending on the most suitable approach for the point cloud data at hand. These statistical

concepts can be probability distributions, likelihood functions, least squares, sparse ma-

trices - to name a few [15].

Neighborhood-base filtering techniques utilise similarity criteria to ascertain the po-

sition of a filtered point in relation to its neighborhood. The similarity criteria can be

determined by the regions the points are contained in, their positions or normal val-

ues [15].

Projection-based filtering techniques "adjust the position of each point in a point cloud

via different projection strategies to filter point cloud [15]".

Signal processing based methods make use of different signal processing concepts,

like Laplacian operators, Fourier transforms, Wiener filters, for example [15].

Partial Differential Equations (PDEs) are widely used in computer vision and have

been proven to accomplish mesh and image denoising with favorable results. This tech-

nique can be extensively used to filter point cloud data as well. However, these techniques

can take a lot of time to process point clouds [15].

Hybrid filtering techniques combine multiple point cloud filtering techniques to filter

the raw data [15].

Besides these methods there are other methods not framed in these categories. A more

detailed explanation of all of these methods as well as a succinct comparison of their

performance, benefits and limitations can be found in the work of Han et al. (2017) [15].

In particular, the objective of the filtering process in this work, as mentioned before,

is to optimise classification results. This goal was achieved using the PCL outlier removal

and noise filtering library. The filtering techniques utilised in this work were passthrough

filters [40].

Passthrough filters can be efficient to isolate different groups of points with dissimilar

coordinates in a specified axis. It can be used to separate low Vegetation points from Line

points, for example. In order to implement the passthrough filters, using PCL [40], the

subsequent steps are necessary:

52



3.6. POST-PROCESSING

1. Define the filter field name, which coordinate axis contains the points that are

intended to be filtered;

2. Delineate the filter limit, the interval of accepted values within the previously spec-

ified coordinate axis;

3. Alternatively, the filter limit indicated before can also be the interval of rejected

values by performing the negation of the filter limits.

3.6.2 Segmentation

Point cloud segmentation, on the other hand, is a point cloud classification procedure that

partitions data into several homogeneous regions, otherwise called clusters, according to

certain similarities [33]. However, point cloud segmentation can be challenging. "The

point cloud data are usually noisy, sparse, and unorganised. The sampling density of

points is also typically uneven due to varying linear and angular rates of the scanner. In

addition, the surface shape can be arbitrary with sharp features and there is no statistical

distribution pattern in the data. Moreover, due to the limitations of the 3D sensors, the

foreground is often highly entangled with the background" [33].

Point cloud segmentation methods are commonly divided into five different categories:

"edge based methods, region based methods, attribute based methods, model based meth-

ods, and graph based methods" [33].

Edge based methods segment point cloud data according to object shape. Clusters are

obtained from the analysis of the boundaries of several regions extracted from the point

cloud data. One of the advantages of these methods is how fast the segmentation process

can be, however, these methods are very susceptible to noisy data and uneven density of

point cloud data, which are general occurrences when capturing data [33].

Region based methods utilise information from neighboring points with comparable

characteristics to extract clusters. Consequentially, clusters with dissimilar characteristics

are also identified and grouped in different clusters. These methods are more insensitive

to noise than edge based methods. However, they present issues of over and under seg-

mentation when a single object is perceived as different objects or when different objects

are perceived as the same object, respectively [33, 34].

Attribute based methods segment point cloud data based on certain clustering at-

tributes, however, the performance of these methods is dependent of the quality of the

clustering attributes [33].

Model based methods cluster points based on their geometric primitive shapes, for

example, a sphere, a cube, a pyramid, a plane, and so forth. The major advantage of these

methods are their swiftness and robustness with outliers. On the other hand, multiple

point cloud sources can present accuracy issues [33].

Graph based methods assume point cloud data like a graph. In this kind of method,

vertexes are represented as points from data and the edges connect specific pairs of
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neighboring points. In comparison to the other methods presented, graph based methods

are more accurate when clustering complex scenes, including noisy data and data with

uneven density. On the other hand, generally these methods cannot run in real time,

which means, they might require offline training or specialised hardware [33].

Thorough descriptions of the previously mentioned methods are shown in the work

of Nguyen and Le (2013) [33]. This work also presents a comparison of different segmen-

tation methods, including their advantages and disadvantages.

In practice, the purpose of the segmentation process is to correct wrong predictions

(from the classifier) by trying to separate objects with dissimilar characteristics in dif-

ferent clusters. A Progressive Morphological Filter is first used to isolate ground and

non-ground points. An Euclidean Clustering algorithm was used to separate Vegetation

points from Line and Pylon points. However, as mentioned before, when the distance

between Vegetation and the other objects in observation is reduced the algorithm might

not be able to discern individual objects correctly.

As stated previously, a progressive morphological filter is utilised to perform the

segmentation of Ground points. "Mathematical morphology composes operations based

on set theory to extract features from an image. Two fundamental operations, dilation

and erosion, are commonly employed to enlarge (dilate) or reduce (erode) the size of

features in binary images" [55]. The combination of these operations results in opening

and closing operations. These mathematical concepts can be expanded to LiDAR data

analysis, namely of continuous surfaces. Morphological filters can be used to segment

Pylons and trees from LiDAR data, however, it can be challenging to segment all non-

ground objects of dissimilar proportions with a fixed filtering window size. A progressive

morphological filter overcomes this issue by moderately expanding the filtering window

size [55].

How the progressive morphological filter works will be thoroughly explained in the

next steps, meticulously following [55]:

1. Load input dataset and construct a minimum surface grid by determining the mini-

mum elevation for every grid cell. These grid cells will contain point coordinates.

However, if any given cell does not contain any measurements, it is allocated the

value of the closest point;

2. An opening operation is employed to the surface grid. The inputs of the filter, dur-

ing the first iteration, are the minimum elevation surface and a starting filtering

window size. For the succeeding iterations, the inputs are the filtered surface from

the prior iteration and an incremented window size from the following step. This

step outputs the "further smoothed surface from the morphological filter" [55] and

"the detected non-ground points based on the elevation difference threshold" [55].
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There are essentially two methods to select the window size of this algorithm, lin-

early or exponentially. The window size can be increased linearly following the next

equation, Equation 3.4:

wk = 2kb+ 1 (3.4)

where wk is the window size, k is a constant value which can range from 1 to M, and

b is the starting window size. The maximum window size is given by 2Mb+ 1. This

method "guarantees that the filter window is symmetric around the central point so

that the programming of the opening operation is simplified" [55]. It also conserves

topographic features, at the cost of a high processing time for areas with few ground

points (in comparison to non-ground points).

On the other hand, the window size can be exponentially increased according to

Equation 3.5:

wk = 2bk + 1 (3.5)

where, once again, wk is the window size, k is still a constant ranging from 1 to M,

but b is now the base of an exponential function. The maximum window size is

now given by 2bM + 1;

3. The filtering window size is incremented and "the elevation difference threshold is

calculated" [55]. The previous step and this one are replicated "until the size of the

filter window is greater than a predefined maximum value. This value is usually set

to be slightly larger than the maximum building size." [55]

A progressive morphological filter can be either one or two-dimensional based on

the shape of the filtering window. A two-dimensional filter has a geometric shaped win-

dow, such as a rectangle or a circle. Meanwhile, a one-dimensional filter has a window

stipulated by a segment of a line, for example. Nevertheless, the algorithm for both a

one and two-dimensional filter is analogous. For clarity, without loss of generality, the

one-dimensional filter algorithm will be presented in Algorithm 2 scrupulously follow-

ing [55].
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Algorithm 2 Progressive Morphological Filter [55]
Inputs:
Point Cloud Data, P
Cell size, c
Incremental window size parameter, from (3.4) or (3.5), b
Maximum window wize, wM

Terrain slope, s
Initial Elevation difference threshold, dh0
Maximum Elevation difference, dhmax

Output:
Two classified point sets containing ground and non-ground points

1: procedure ProgressiveMorphologicalFilter(P, c, b, wM , s, dh0, dhmax)
2: Calculate minimum and maximum x and y values
3: Calculate number of rows (m) and columns (n) according to m = f loor[(max(y)−

min(y))/c] + 1 and n = f loor[(max(x)−min(x))/c] + 1
4: Create 2D array A[m, n] to save data points. The cell these points belong to is

decided by their x and y coordinates. If multiple points belong to same cell, point
with minimum elevation is chosen

5: Interpolate elevation of cells without points from A using nearest neighbor
method. Set value of x and y coordinates to zero. Copy A to B. Initialise elements of
array flag[m,n] with 0.

6: Ascertain series of wk according to (3.4) or (3.5), where wk 6 wM

7: dhT = dh0
8: for each window size ∈ wk do
9: for i = 1 ∈ m do

10: P = A[i; ] . A[i; ] is row of points at row i in A and P is a 1D array
11: Z← Pi . Pi elevation values saved in 1D array Z
12: Zf = erosion(Z;wk)
13: Zf = dilation(Zf ;wk)
14: Pi ← Zf . z values from Pi replaced with Zf

15: A[i; ] = P . filtered row of points Pi back to row i of array A
16: for j = 1 ∈ n do
17: if Z[j]−Zf [j] > dhT then
18: f lag[i, j] = wk

19: end if
20: end for
21: end for
22: if dhT > dhmax then
23: dhT = dhmax

24: else
25: dhT = s(wk −wk−1)c+ dh0
26: end if
27: end for
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28: for i = 1 ∈ m do
29: for j = 1 ∈ n do
30: if B[i, j](x) > 0andB[i, j](y) > 0 then
31: if f lag[i, j] = 0 then
32: B[i, j] is a ground point
33: else
34: B[i, j] is a non-ground point
35: end if
36: end if
37: end for
38: end for
39: end procedure
40:

41: procedure Erosion(Z, wk)
42: for j = 1 ∈ n do
43: Zf [j] = minj−[wk/2]≤l≤j+[wk/2](Z[l])
44: end for
45: return Zf

46: end procedure
47:

48: procedure Dilation(Z; wk)
49: for j = 1 ∈ n do
50: Zf [j] = maxj−[wk/2]≤l≤j+[wk/2](Z[l])
51: end for
52: return Zf

53: end procedure

In the context of point cloud segmentation, Euclidean clustering is a method based

on the Euclidean distance between neighboring points according to a specified distance

threshold, as seen in Equation 3.6.

d(p,q) =
√

(p1 − q1)2 + (p2 − q2)2 + (p3 − q3)2 (3.6)

where p and q are the points whose distance is being calculated, d(p, q). If this

distance is lower than the specified threshold the points are considered to belong to the

same cluster, otherwise they are considered to belong to different clusters [34, 40].

An important consideration about this method is how neighboring points are ob-

tained. In this particular situation, a k-d tree was utilised. A k-d tree (otherwise named

k-dimensional tree) "is a space-partitioning data structure for organising points in a k-

dimensional space" [5]. In this kind of binary search trees, each leaf node corresponds

to a k-dimensional point. Non-leaf nodes partition space into two halves, named half-

spaces [5].

The implementation of the Euclidean clustering algorithm is achieved using PCL,

according to the following steps [40]:
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1. Generate a k-d tree structure for the incoming point cloud data;

2. Create an empty list for the different clusters and a queue for the points to be

analysed;

3. For each point in the queue search the neighboring points and confirm whether

that neighboring point has already been analysed or not. If not, add it to the queue.

Once all the points inside the queue have been analysed, said queue is appended to

the cluster list and reset;

4. Once the entire point cloud data has been processed and all clusters have been

extracted, the algorithm terminates;

5. At the end of the clustering process, the clusters are saved in the disk as separate

files for later analysis.

For a better interpretation of the algorithm implementation, the pseudocode for the

said algorithm can be found in Algorithm 3, closely following [40].

Algorithm 3 Euclidean Clustering
Inputs:
Point Cloud Data, P
Distance Threshold, dth

Initialise:
List of Clusters, C← ∅
Queue, Q← ∅
Point has NOT been processed, notproc← 1

1: procedure EuclideanClustering(P, dth, C, Q, notproc)
2: for pi ∈ P do
3: Q← pi
4: for pi ∈ Q do
5: search for the point set P k

i of neighbors of pi in a sphere of radius r < dth
6: for pki ∈ P

k
i do

7: if point has already been processed then
8: notproc = 0
9: end if

10: if notproc = 1 then
11: Q← pi
12: end if
13: end for
14: end for
15: C←Q
16: Q←∅
17: end for
18: end procedure
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4
Results

In this chapter, the experimental results from the classification step are presented, fol-

lowed by an analysis of said results. In the first section, section 4.1, the classification

results are shown, presenting the respective evaluation metrics for both real and synthetic

data. A brief description of the challenges faced during the classification process are also

displayed. In the second section, section 4.2, the optimisation of the aforementioned

classification results are shown.

4.1 Classification

As previously described, two types of data were used during the development of this

work: real and synthetic data. The synthetic Dataset was captured with AirSim [1], by

recording simulated LiDAR data through a predefined trajectory in a virtual environment.

On the other hand, the real Datasets were captured in the North Rhine-Westphalia state,

in Germany, and openly published by Open.NRW [35]. Ground truth subsets, as referred

in the previous chapter, are manually labelled with the corresponding item class. The

classes, also according to the previous chapter, are: Ground, Vegetation, Pylons and Lines.

Thorough information of said ground truth subsets is provided in Table 4.1. This infor-

mation includes the number of total points these subsets contain, the number of points

comprised in each item class and the percentage of the dataset these points correspond

to. In other words, the amount of points from the original dataset that were utilised to

train the classifier. The higher this number, the more information the classifier attains

during the training process and, consequently, the better the results. However, providing

too much information defeats the purpose of using a classifier. For this reason, it is neces-

sary to find a trade-off between the number of points that are used for training and the

classification results.
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Table 4.1: Detailed information of manually labelled ground truth subsets, where syn-
thetic data is represented by S# and real data is represented by R#.

Sets #Points Ground Vegetation Pylons Lines %Dataset

S1 2,499 1,275 579 503 142 1.842
R1 9,550 3,093 5,657 421 379 0.343
R2 54,396 21,579 31,710 493 614 0.937
R3 74.961 15,815 58,317 449 380 1.573

For a better comprehension of the previous information a visual representation is

provided in Figure 4.1. In particular, an illustration of the ground points from the

Dataset R3, with different class labels represented by dissimilar colors for clarity (the

color code itself is explained in the caption of the figure).

Figure 4.1: Ground Truth Subset from real life Dataset R3. Pylons are represented by the
orange color, Lines are blue, Vegetation is green and Ground points are grey.

Once more, the classifier utilised in this work was the ETHZ Random Forest Classi-

fier [47] and the classification function was Local Regularisation. One important note

worth mentioning is that ground points were not taken into account for classification

results. The reason for this being, for the problem this work intends to address, ground

points do not provide valuable information, since the objective is to identify vegetation

and electrical structures. Nevertheless, ground points were useful for the classification

process due to the feature information these points provide. To test the robustness of the

classifier, the evaluation metrics described in the previous chapter, Precision and Recall,

were calculated for the datasets in study. From these metrics it was possible to calculate
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the Overall Accuracy of the classifier. These metrics were obtained from the comparison

of the manually labelled datasets and the classification results attained. The succeeding

table, Table 4.2 presents their percentiles.

Table 4.2: Detailed information of classification metrics, where synthetic data is repre-
sented by S# and real data is represented by R#.

Sets
Vegetation Pylons Lines Total

Precision Recall Precision Recall Precision Recall Overall Accuracy

S1 99.57 86.58 59.398 100 81.651 75.163 87.757
R1 99.982 99.54 23.613 90.421 100 85.66 99.442
R2 100 97.704 5.021 100 23.938 79.968 97.647
R3 100 98.653 4.331 100 46.532 96.458 98.648

To provide a better understanding of the preceding results, a visual representation

of one of the resulting datasets after the classifier labelling is now displayed, the sample

Dataset R3, in Figure 4.2. For clarity, the different classes are represented by dissimilar

colors.

Figure 4.2: Resulting labelled data after Classification of the real life Dataset R3. Once
more, Pylons are represented by the orange color, Lines are blue, Vegetation is green and
Ground points are grey.

From the analysis of the previously provided figures, supported by the prior evalua-

tion metrics, a few conclusions can be reached:

• While the Overall Accuracy values are generally good, it is important to note that

it might not be an indication that all classes present good results. In other words,

due to the overwhelming number of Vegetation points, when compared to Pylons

and Lines, the Vegetation results will have a much bigger impact on the Overall

Accuracy than the other two classes. Nevertheless, it is still a valuable metric to

evaluate the classifier;
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• In general, the number of relevant selected items by the classifier for each class label

is positive, as observed from the Recall values, presenting nearly optimal values

for Vegetation and Pylons. On the other hand, overall, the classifier shows some

complications when selecting relevant Line points;

• Nevertheless, it is also possible to observe, from the Precision values, that being

able to select relevant items is not intrinsically related to all the selected items being

relevant. To put it another way, even though all the items from a specific class label

can be categorised with the correct class label (thus achieving high Recall values),

it does not necessarily mean items from different class labels are not incorrectly

classified as the specified label (thus resulting in low Precision values). This issue

is specially noticeable in Pylon and Line classification;

• Interpreting the visual representation of the classification results, it is possible to

discern the most troublesome obstacles for the classifier used. The aforementioned

issues are exemplified in Figure 4.3 and they are:

– Low Vegetation (i.e. tall grass or bushes) being incorrectly classified as Pylons

or Lines. The first case is often true for Vegetation close or even in contact

with the bases of the Pylons. The second scenario generally happens with

Vegetation directly beneath the Lines;

– Tall Vegetation, with geometric characteristics similar to Pylons, being mis-

classified as Pylons. This issue can occur in Vegetation close or far from the

Pylons;

– Line spans, namely connected to Pylon insulators, being mistakenly classified

as Pylons.

(a) Low Vegetation misclas-
sified as Pylons or Lines.

(b) Tall Vegetation incor-
rectly classified as Pylons.

(c) Line spans mistakenly
classified as Pylons.

Figure 4.3: Close-ups of the most prominent issues present in the real life Dataset R3
faced by the classifier using the previous color code.

Despite the reasonable results achieved by the classifier there are still some chal-

lenges to overcome, as previously mentioned. The next subsection will emphasise on

the classification post-processing results, including the methods used and the respective

improvements.
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4.2 Optimisation

This section will focus on the resolution of the previously stated issues of the classification

process. These issues can be summed up as: Ground points wrongly classified as either

Vegetation, Lines or Pylons; Vegetation being incorrectly classified as either Lines and

Pylons; Line spans misclassified as Pylons. The proposed solutions (or suggested solutions

in situations where it was not possible to optimise results) for the previously mentioned

issues will be thoroughly explained, followed by the results obtained.

The solution for the first issue described, Ground Points incorrectly classified as other

classes was to utilise a Progressive Morphological Filter. As explained before, this filter

performs the segmentation of ground and non-ground returns based on morphological

operations like erosion and dilation. Despite Ground points not being relevant to achieve

the goal of this work, thus not being considered for evaluation purposes, it is still impor-

tant to effectively separate them from points belonging to other classes.

The second issue mentioned, Low Vegetation being classified as Lines or Pylons, will

actually be split in two, respectively. To tackle the first situation, a Passthrough Filter

is utilised. Assuming that all Line points will have a minimum elevation, taking into

account important parameters like the sag of the lines, every point below that elevation

threshold can be filtered as a non-Line point. The second case, however, can be a lot more

challenging. The proposed solution for this issue is an Euclidean Clustering algorithm,

which segments objects into different clusters according to the euclidean distance between

points and their own neighborhood. If this distance falls between a certain threshold, the

points are categorised as the same object. The problem is when points from dissimilar

objects fall within this distance threshold. For example, Vegetation points who are too

close or even in contact with the base of pylons.

The next issue disclosed, Tall Vegetation being classified as Pylons, can also be either

solved with ease or be a hurdle to overcome. Similarly to the last issue debated, the

approach taken was to use an Euclidean Clustering Algorithm. This algorithm is able

to effectively separate Tall Vegetation from Pylons when the distance between them is

bigger than the defined distance threshold. On the other hand, for Tall Vegetation in close

proximity with the Pylons this algorithm can be inaccurate. It is important to mention

that a situation like this could be seriously hazardous were it to happen in real life, so it

does not happen very often, but it is a situation that should be addressed and taken into

consideration.

The last issue presented, Line spans incorrectly classified as Pylons, despite being the

least problematic of the mentioned issues, could still be necessary to address in certain

situations. Nevertheless, this issue can be hard to tackle when these Line spans are in

close proximity or even in contact with Pylons or Pylon insulators. Even though it was not

tested, one suggested solution is to use a catenary curve fitting algorithm in an attempt

to isolate Line points from Pylon points.
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In summary, the optimisation methods proposed are essentially filtering and seg-

mentation algorithms. In particular, a Progressive Morphological Filter and Euclidean

Clustering algorithms. Once more, the same evaluation metrics (Precision, Recall and

Overall Accuracy) are utilised, in order to be able to compare the post-processing re-

sults with the prior classification results. The following table, Table 4.3, provides the

percentiles of these metrics.

Table 4.3: Detailed information of optimisation metrics, where synthetic data is repre-
sented by S# and real data is represented by R#.

Sets
Vegetation Pylons Lines Total

Precision Recall Precision Recall Precision Recall Overall Accuracy

S1 100 92.625 66.924 100 100 75.163 92.385
R1 100 99.764 36.959 100 100 86.088 99.685
R2 100 99.89 32.7 100 100 83.502 99.835
R3 100 99.976 61.272 100 100 97.011 99.969

For a better comprehension of the results now obtained, a visual representation of one

of the attained datasets following the optimisation process is shown, once more the real

life Dataset R3, in Figure 4.4. To make observations clearer dissimilar object classes are

displayed in different sub figures, followed by a composition with all object classes for a

general overview of the working environment after post-processing (using the same color

scheme as before).

(a) Resulting Ground points after optimisation

(b) Resulting Line points after optimisation

(c) Resulting Pylon points after optimisation

Figure 4.4: Optimisation results of the real life Dataset R3. Yet again, Pylons are repre-
sented by the orange color, Lines are blue, Vegetation is green and Ground points are
grey.
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(d) Resulting Vegetation Points after optimisation

(e) General overview of the environment after optimisation

Figure 4.4: Optimisation results of the real life Dataset R3 (cont.).

To further illustrate the improvements attained with the optimisation process a graph-

ical comparison of results is provided in Figure 4.5. This comparison presents a general

overview of the real life Dataset R3 before and after the optimisation process.

(a) Classification results of the real life Dataset R3.

Figure 4.5: Comparison of Classification and Optimisation results of the real life Dataset
R3 utilising the aforementioned color code. Pylons are orange, Lines are blue, Vegetation
is green and Ground is grey.

65



CHAPTER 4. RESULTS

(b) Optimisation results of the real life Dataset R3.

Figure 4.5: Comparison of Classification and Optimisation results of the real life Dataset
R3 (cont.).

From the observation of the figure displayed before and the evaluation metrics of the

respective optimisation results, in agreeance with the former classification results, a few

conclusions can be made:

• Generally speaking, the usage of a Progressive Morphological Filter to isolate Ground

and non-Ground points yielded positive results, as can be observed in the previous

figure. Nevertheless, it is important to refer that, besides a few irregularities, the

terrains in observation are relatively flat. For some rugged environments, it might

be necessary to first normalise point cloud data. On the other hand, this might not

always be a trivial task for large environments;

• Vegetation reaches notable values of Precision and Recall, meaning in general the

post-processing algorithms were able to separate Vegetation points from points

belonging to other object classes.

Passthrough filters proved effective to separate Low Vegetation points misclassified

as Lines, under the assumption that Lines, even taking into account sag, should

always have a higher elevation than Low Vegetation.

The same logic cannot be applied to Low Vegetation wrongly classified as Pylons.

From the observation of the preceding figure it is possible to notice that Low Veg-

etation which is close or in contact with the bases of the Pylons are still a concern.

This issue could be more or less aggravating, depending on the Vegetation species.

To put it another way, whether it really is just Low Vegetation like bushes or small

grass which will not grow much further, or if it is indeed a growing tree that could

possibly endanger the integrity of the electrical structure. However, Low Vegetation

farther from the Pylons was, in general, correctly optimised.

Furthermore, Tall Vegetation incorrectly classified as Lines, despite not happening

very often, is still a concern. While the Euclidean Clustering algorithm works

reasonably well when the distance between Lines and Vegetation is sizeable enough,
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there is still not a coherent method to fix this issue when the distance threshold is

surpassed.

Similarly, isolating Pylons from Tall Vegetation presents the same issue as sepa-

rating the latter from Lines. However, this issue is more concerning since it hap-

pens more often due to certain Vegetation species having similar geometric char-

acteristics as Pylons. Nevertheless, once again, when the distance threshold is not

breached, the Euclidean Clustering algorithm is a reliable solution.

• An important observation about the Pylon optimisation results, which is intrinsi-

cally related to the issues that have been mentioned in the last topic, is that there

is still a lot of room for improvement. Despite the notable Recall values, meaning

relevant Pylon points are successfully extracted, the Precision values are mediocre

which means there are still many Vegetation and Line points incorrectly classified

as Pylons.

• On the other hand, Line points present good Precision values, meaning the post-

processing methods to isolate Line points are effective, but the Recall values are only

decent which is to say there are still relevant Line points which are being considered

as, mostly, Pylons.

Notwithstanding the significant improvements achieved after post-processing the

classified results, as mentioned during the previous result analysis, there are still more

improvements to be made and there are still some issues to confront. Further details are

provided in the following chapter, which will address the future work to be done, in order

to complement this work, and the most important conclusions during the development

of this work.
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5
Conclusions and Future Work

In this chapter, the conclusions attained during the development of this work are intro-

duced in section 5.1, followed by the exposition of some guidelines for potential future

researches in section 5.2.

5.1 Conclusions

Vegetation Management and Power Line Mapping using remote sensing techniques have

been under scrutiny in many studies in recent years. The major reason behind this is:

power line inspections must be regularly realised to assure a continuous distribution of

electricity and most of the time this process is still manually done by field inspections,

which can be very time consuming and labor-intensive.

From the previously presented state of the art analysis, based on different studies

using different remote sensing techniques, a few conclusions have been reached:

• The described remote sensing techniques are situational. Some techniques can bet-

ter monitor vegetation due to their ability to acquire precise information of the

lower canopy layers, even in dense forest areas, while others are more suited for

power line mapping, namely high resolution imagery which can provide valuable

information about electric components. There are still remote sensing techniques,

which, while not particularly good for vegetation management and power line mon-

itoring, can be useful to assess damaged electric components;

• Similar to remote sensing techniques, the processing algorithms are also situational.

While certain algorithms can present high accuracies for some specific tree species,

they might not be as accurate as other algorithms for different tree species. Dense

forest areas might also require different algorithms than rural areas or areas with
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low density of vegetation. As such, in order to achieve accurate results, it is impor-

tant to carefully select the most appropriate algorithm for the area over scrutiny;

• Despite the improvements of novel remote sensing techniques and algorithms, data

processing is still essentially a manual procedure. Attempts to automate this process

have been made. However, as explained in the previous points, each study area

needs to be carefully analysed separately;

• Some remote sensing techniques have not been thoroughly studied for vegetation

management and/or power line monitoring. One example being UAV-based studies,

which have focused mostly on the specifications of UAV platforms instead of the

methodology used. Existing studies have followed methods similar to ALS. Nev-

ertheless, the applicability of UAV platforms for the referred purposes has been

proven in literature. Furthermore, the number of studies in this area has increased

in the latest years.

In this work, a UAV platform equipped with a LiDAR and the support of computer

vision algorithms which were utilised to acquire and process point cloud data. Data was

first submitted to a feature-based classifier in order to cluster different objects present in

the working environment into their respective class labels (vegetation, pylons and lines).

These results were later evaluated based on their Precision, Recall and Overall Accuracy.

Some positive remarks can be attained from this classification process:

• Generally speaking the Recall values are acceptable, the lowest value being approxi-

mately 75% for Line points within the synthetic Dataset. Nevertheless, these values

can be very positive for Vegetation and Pylon points, nearing 100% for the latter

in most environments. What these values mean, in practice, is that the classifier

can accurately retrieve relevant items from a specific class label out of all the items

present in the environment;

• On the other hand, Precision values can be very unstable ranging from as low as 4%

for Pylon points in one of the real life environments to nearly 100% for Vegetation

and Lines in certain environments. What can be concluded with these results is that

the classifier oftenly mistakes Vegetation or Line points for Pylon points;

• Despite the aforementioned issues, the Overall Accuracy of the classifier is still

good, the lowest value being close to 87% for the synthetic Dataset and the highest

value around 99% for the real life environments. The reason behind these values

is the overwhelming number of Vegetation points which have very high Precision

values when compared to other object classes.

Despite the overall positive results obtained with the classifier, there were still im-

provements to be made, namely to optimise Pylon results. The next step was to utilise

segmentation and filtering techniques to improve said results. From this optimisation

process a few conclusions can also be made:
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• Recall values had few improvements, seeing that their values were already accept-

able, one of them suffered no changes even. The reason behind this are some Line

points being too close to Pylons sometimes making them hard to discern from Pylon

insulators, for example;

• Precision values were severally improved, specially Line points which now round

100% for every environment. Pylon points were also refined but there’s still a

lot of room for improvement, since the values still range from about 33% to 67%.

Nevertheless, the vast majority of the incorrect points are low Vegetation points in

close proximity, or even in contact, with Pylons;

• Overall Accuracy values saw small improvements, since these values were already

considerably high, the lowest value being nearly 92% for the synthetic Dataset while

the values of the real life environments all round 99%.

Nevertheless, remote sensing techniques still present a few limitations before they

can completely replace the traditional methods. During the development, of this work,

the following challenges were met:

• Working with data collected from a real life environment does not always provide

as good results as synthetic data, since simulated data allows a complete scrutiny

over what data to collect and how to collect it, which might not always be possible

in real life;

• Intrinsically related with the previous topic, LiDAR data in a real life environment

will always present issues, like noise artifacts, the presence of outliers, sensor oc-

clusion - to name a few. These issues might be more or less aggravating, based

on the characteristics of the sensor, but they will always persist, which means, the

classification models and the post-processing algorithms will have to be adaptive to

overcome these issues, they cannot rely on the quality of the data available;

• Furthermore, despite the increase of available LiDAR data in recent years, the num-

ber of open LiDAR data repositories is still limited. In addition, finding an adequate

dataset with specific characteristics for certain studies can be even more challeng-

ing;

• In spite of the apparent advantages the proposed method provides, in comparison

with traditional methods, it still requires some work from a human operator, namely

to generate the training sets of the classifier object and to tune important parameters

of the post-processing algorithms;

• In general, however, the classification results were positive which means the method-

ology utilised is validated, even though these results are highly dependant on the

quality of the training set. Moreover, the post-processing techniques that were used
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were able to further improve these results to some extent, meaning these techniques

are viable to overcome the respective issues described before. Nevertheless, there is

still room for improvement as there are still concerning issues, namely when objects

are in close proximity, or even connected, to each other.

5.2 Future Work

Despite the work done in this dissertation, there is still a lot of future work to do, namely

further investigation which includes:

• Supplementary literary research is still required, particularly UAV-based studies,

since some novel promising algorithms can be found, while some others can poten-

tially be further validated;

• To complement the additional literary research, it is a good practice to benchmark

the performance of the methods proposed in literature against a standard which is

in accordance with the objective of the work in development.

Albeit the reasonable results attained with the proposed solution, some improvements

can be made and additional work is needed to reach greater objectives.

• To further validate the proposed solution, and to get a better understanding of its

limitations, it is necessary to test it using other, dissimilar, datasets. In particular,

real datasets retrieved in a real-life environment;

• As seen previously, the used features are relevant and sufficient for the sample

datasets tested in this work. However, other datasets could have different charac-

teristics from the ones that were used. For example, certain datasets could present

vegetation elements that have geometric shapes and measurements resembling py-

lons. For this reason, it is important to try different relevant features which could

improve the classification results and possibly reduce the feature and training sets

of the classifier;

• Furthermore, testing other classifiers, either supervised (like the Random Forest

classifier) or unsupervised, could yield different results. In certain situations, the

results can even be worse but have other advantages. For example, not requiring a

human operator to define the feature set or create the training set;

• Similarly to the previous topic, testing different classification functions can also

change the outcome of the classification process. Generally speaking global regular-

isation provides better results, but it is more computationally intensive in compari-

son to the other functions that were mentioned;
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• Intrinsically related to the last points extracting more evaluation metrics can be

extremely beneficial, not only to evaluate the classification results but also to assess

the performance of certain method in comparison to a different method;

• For certain environments, specially when the terrain is rugged and has a wide range

of elevation, it is more efficient to first normalise the input data and to generate a

DTM, thus separating ground and non-ground points more accurately. However,

it is important to take into account the computational resources expended during

this process;

• In general, the post-processing results were positive but there is still a lot to improve.

As previously mentioned, some Vegetation points in close proximity to Pylons are

still wrongly classified. Further algorithm testing is required to find a more accurate

solution. In addition, certain Line spans being mistakenly classified as Pylons is also

another issue yet to overcome. One possible solution is to use line/catenary curve

fitting models, but further investigation and testing is required. Following these

corrections, it is possible to reconstruct electric structures, namely power lines;

• Taking into account all the previous improvements it is then possible to export the

obtained results to an image processing software and to delineate fuel management

bands, according to the respective legislation. Moreover, vegetation that could

possibly endanger or compromise the electrical network can then be identified and

measures can be taken by the respective entity who is responsible for electrical

structure maintenance.
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