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Abstract 

 
Automating the process of building detection and outline regularisation is an active 

research topic in the field of photogrammetry and remote sensing. This is due to the 

need for large sets of accurate and detailed data in several applications such as 

generation and updating building maps and databases, urban planning, and urban 

monitoring. The quick and continuous development of sensor technologies including 

laser scanning, airborne and satellite imagery introduced big challenges in the 

automation process together with achieving the desired geometric accuracy of the 

building outlines. Although significant progress has been achieved through ongoing 

research, the automation level and accuracy is still limited by many factors such as 

complexity of building shape, separation of buildings from trees, especially those 

located in shadow regions. The ability to effectively address these factors is dependent 

on the success of the applied mathematical model for rectilinear and non-rectilinear 

building outlines. 

 

A comprehensive workflow for this task is proposed in this thesis. This workflow starts 

with detecting and cleaning outliers from laser-scanned point cloud data, then 

transforming this data into a regular gridded digital surface model (DSM). The digital 

terrain model (DTM) is extracted using a new algorithm. This algorithm utilises a 

generation of seed or network of ground points selected as minima within well-

distributed scanlines moving across the whole DSM image. The normalised DSM 

(nDSM) (containing above ground objects i.e. buildings and trees) is created by 

subtracting DTM from DSM. In order to separate building segments from trees, the 

nDSM, planarity measure and the Normalized Difference Vegetation Index (NDVI) 

are fused in a new approach. Next, boundary points for each single segment are 

identified to be used in the building outline generalisation and regularisation. 

 

For the generalisation task, an automatic procedure is proposed utilising a combination 

of data- and model-driven approaches to provide a robust solution. The core part of 

the method includes a novel data-driven approach to generate approximate building 

polygons from a list of given boundary points. The algorithm iteratively calculates and 
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stores likelihood values between an arbitrary starting boundary point and each of the 

following boundary points using a function derived from the geometrical properties of 

a building. The generated approximate building polygons usually have irregular shape 

and do not satisfy a best-fit with the input boundary points. Thus, a regularisation step 

is required. 

 

The regularisation aims to create regular polygons (i.e. rectangular or rectilinear) 

associated with achieving a best fit between each edge (in the polygon) and its 

corresponding boundary points. This step is largely solved in this thesis through the 

simultaneous implementation of constraints enforcing the orthogonality of all adjacent 

edges in the polygon and the best fit with the input boundary point using the Gauss-

Helmert Model adjustment. Non-rectilinear building polygons are modified using the 

Gauss-Markov Model adjustment. In the iterated least squares adjustment, updating 

the label/assignment of the boundary points to their correlated edges is required for 

further accuracy achievement. In this context, a novel labelling algorithm is proposed. 

The algorithm considers measuring and analysing distances and angles between the 

boundary points and the polygon edges. This labelling algorithm led to the proposing 

of a robust evaluation procedure to measure the absolute accuracy/similarity of 

corresponding polygons (i.e. extracted and its reference polygons). This evaluation 

procedure, denoted as Vertex to Model (V2M) evaluation, utilises the Root Mean 

Square Error (RMSE) as a standard topographic measure for assessment. 

 

Algorithm evaluation results are presented for two datasets characterised by a variety 

of building outline complexity, data sources, and resolution. The algorithm results 

achieved an average RMSE of sub-meter accuracy. 
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1 CHAPTER ONE INTRODUCTION  

 

1.1 Building detection and boundary regularisation  
 
Automating the process of building detection and boundary regularisation has been a 

topic of interest in Photogrammetry and Remote Sensing for over three decades. This 

process is required for several applications such as map production (Höhle, 2017) and 

updating (Awrangjeb, 2015), 3D building modelling (Vosselman & Maas, 2010), and 

real-estate databases (Awrangjeb, 2015). Due to increasing urbanisation globally, this 

has increased the demand for generating new and updating existing building footprints 

and databases within a reasonable time, cost, and accuracy (Bulatov et al., 2014). 

Therefore, automating this process is essential in order to meet these demands and 

requirements. 

 

The initial step for creating or updating building outline databases is the detection of 

building objects, followed by extracting the outline of the detected building. Numerous 

methods have been developed in the last decades for extracting building objects. These 

methods can be grouped in terms of the data sources, and whether they are being 

extracted from a single data source, or multiple data sources. For instance, there are 

approaches using single imagery data only (Huang & Zhang, 2011; Qin & Fang, 2014), 

Light Detection and Ranging (LiDAR)  data only (Awrangjeb, Lu, & Fraser, 2014), or 

combining multiple datasets (Awrangjeb, Ravanbakhsh, & Fraser, 2010; 

Rottensteiner, Trinder, Clode, & Kubik, 2007). However, elevation data, represented 

by digital surface models (DSMs) for example, is essential input in addition to imagery 

data in all cases.  

 

With the rapid development of sensor technology, very high-resolution imagery with 

high overlap has become accessible without additional cost. Alongside the 

development of dense image matching algorithms (e.g. semi-global matching (SGM) 

(Hirschmuller, 2008)), there is the possibility for accurate DSM generation. 

Occlusions (e.g. through the view angle in urban corridors or through trees along urban 
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streets), and shadow effects are the main limitations of imagery-based DSMs (Kwak, 

2013). LiDAR systems can overcome those limitations, and are therefore an important 

imaging source for acquisition of accurate DSMs. The disadvantages of LiDAR, 

however, are the costs for the data acquisition as well as difficulties for capturing 

semantic object information (Kwak, 2013) and data with high spatial density. 

 

Nevertheless, the majority of existing methods tend to combine multiple geospatial 

data sources. This usually leads to increased accuracy with respect to the building 

object identification and modelling (Habib, Ghanma, & Mitishita, 2004). This is 

because the limitations of certain datasets can be overcome by another, which leads to 

better objects classification and modelling results.  

1.2 Problem statement 

Building detection in terms of existing procedures starts with the extraction of a digital 

terrain model (DTM), which is the digital representation of the bare ground surface 

without man-made objects, from one or more DSMs (Bulatov et al., 2014; Mongus, 

Lukač, & Žalik, 2014). Algorithms for DTM extraction are based either on “raw” point 

cloud DSMs or on rasterised DSMs. In both cases, the following physical 

characteristics of terrain surface have been considered to identify points belonging to 

the terrain: (i) lowest elevation in a local area (if there are no outliers): (ii) slope angle; 

(iii) elevation difference; and (iv) surface homogeneity (Meng, Currit, & Zhao, 2010) 

. A central focus of this thesis is to discuss and analyse the strengths and drawbacks of 

the implemented parameters, which effect the estimation of the aforementioned 

physical characteristics. Slope in particular is the most sensitive parameter in the DTM 

extraction process (Zhang & Whitman, 2005). Furthermore, determining a slope 

threshold in terms of terrain information in the analysed scene is, somewhat, subjective 

(Zhang et al., 2003). Thus, further investigation and research to develop more efficient 

solution, especially considering increasingly dense data, is required. 

 

After DTM extraction the normalised DSM (nDSM), representing buildings, trees and 

other non-ground objects, can be created by subtracting the DTM from the DSM. It 

can be challenging delineating trees from the nDSM, especially those located in 

shadow regions, even with the availability of Near-Infrared images (Gerke and Xiao, 
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2014). To overcome this limitation, the planarity measure (West et al., 2004) within a 

robust data fusion procedure for differentiation of buildings from trees is possible. An 

alternative method of extracting buildings to the process described above is via image 

classification. More recently, significant progress has been made utilising machine 

learning approaches such as convolutional neural networks (CNNs) (Long, Shelhamer, 

& Darrell, 2015). Its advantage is in its effectiveness in image classification with pixel-

level accuracy. The main impediment to greater utilisation, however, lies in the 

expensive training effort required in order to be able to create the classifier. Further, 

results are presented in raster form, and usually need to be converted to a vector format 

for end-use, such as the updating of maps and databases, or the modelling of building. 

The linked problems of improving the classification training and vectorisation of raster 

data by this approach have received little research focus (Avbelj, 2015) and are another 

important focus of this thesis. 

 

The process of generating this vector data is also called the regularisation of building 

boundaries and is more precisely defined as the procedure for generating approximate 

building polygons and their refinement. Existing building outline regularisation 

algorithms can be grouped into three categories: (i) model-driven (Brédif, Tournaire, 

Vallet, & Champion, 2013; Sohn, Jwa, Jung, & Kim, 2012) ; (ii) data-driven (Pohl, 

Meidow, & Bulatov, 2017) : or (iii) a combination of model- and data-driven (He, 

Zhang, & Fraser, 2014).  

 

Model-driven approaches rely on several preselected parametric building models to be 

fitted with a given boundary-point dataset; they are therefore more robust against noise 

(Kwak, 2013). Such approaches are based on the orthogonality characteristics of 

building outlines (right-angled corners), which is true for most existing buildings but 

can be a challenge for complex buildings. Therefore, non-rectangular buildings can be 

incorrectly simplified or be represented by overly complex shapes (Avbelj, 2015).  

 

In contrast to the model-driven approaches, data-driven approaches do not require 

prior knowledge of the building shape; they therefore offer greater flexibility to model 

any building shape. Nevertheless, data-driven approaches still face difficulties in the 
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case of missing significant data (Sohn et al., 2012) and it is often difficult to formulate 

constraints imposing regularity (Kwak & Habib, 2014). Many existing data-driven 

approaches have utilised an initial solution based on the data-driven (Douglas-

Peucker (DP)) algorithm (He et al., 2014; Jwa, Sohn, Tao, & Cho, 2008; Maas & 

Vosselman, 1999; Sohn et al., 2012; Wang, Lodha, & Helmbold, 2006) because it is 

easy to implement and is able to maintain the original shape (Song & Miao, 2016). 

However, the efficiency of the DP algorithm decreases with increasing irregularity of 

the building boundary points. This is because the algorithm is inherently sensitive to 

both noise and the position of the starting point. In addition, building characteristics 

such as angle detection and area preservation are not considered in the processing. 

Therefore, a more robust data-driven approach is preferable. 

 

Following nDSM creation the building polygons must be derived. The approximate 

building polygons generated from model-driven approaches usually have regular 

shapes. Best-fitting of polygon edges to the input boundary points is required to 

enhance the planimetric accuracy of building outlines (Avbelj, 2015). Additionally, 

the dominant building direction of the approximate building polygon is not necessarily 

accurate (He et al., 2014). The approximate building polygons generated from a data-

driven approach mostly have irregular shapes. Thus, further improvement in terms of 

regularity and best-fitting is required. For instance, to refine the building polygons, the 

orthogonal distances between building edges should be measured and minimised in a 

least squares adjustment. Perpendicularity constraints of adjacent building edges must 

be considered in the adjustment if a building is rectilinear which is mostly the case. 

The challenge is to adjust all parameters simultaneously (Avbelj, 2015).  

 

1.3 Objective of the thesis 

This thesis aims to develop a fully automatic workflow for regularisation of building 

footprints, overcoming the problems highlighted previously. This work follows a 

typical process for 2D building mapping and consists of three crucial steps: extraction 

of the DTM from the DSM, the building segment detection, and boundary 

regularisation. Accordingly, the objectives of this thesis are: 
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(i) Review of existing DTM extraction algorithms to identify their 

shortcomings; and based on the findings,  

(ii) Develop a new DTM extraction algorithm for the processing of high-

resolution DSMs;  

(iii)  Design a data fusion approach to enhance the extraction of buildings. (This 

includes the generation and processing of a nDSM, a planarity map, and a 

Normalized Difference Vegetation Index (NDVI) map. These results will 

be fused in a pixel-wise classification procedure.); and 

(iv)  Combine the robustness of the model-driven approaches with the 

flexibility of the data-driven approaches in order to build a comprehensive 

strategy to deal with building regularisation problem more effectively. 

This includes: 

1. Developing a new data-driven approach to generate approximate 

polygons for rectilinear and non-rectilinear buildings. 

2. Solving boundary regularisation of rectilinear buildings by 

implementation of an orthogonality constraint and best fitting of 

boundary points w.r.t. their corresponding edges simultaneously in the 

adjustment process.  

3. proposing a new approach for automatic updating of the 

assignment/label of the boundary points to their corresponding edges 

during the adjustment. 

4. Introducing a new evaluation method for assessing corresponding 

polygons (i.e. extracted and its reference polygons) utilising the Root 

Mean Square Error (RMSE) as a standard topographic measure. 

 

1.4 Research methodology  

To achieve the objective of this research, a detailed literature review has been 

conducted in terms of DTM extraction, building detection and regularisation in order 

to highlight the shortcomings/limitations in existing methods. Then, a new 

methodology is proposed to overcome these identified limitations. Firstly, LiDAR 

point cloud data is cleaned to remove outliers, and then rasterised. Then a new DTM 

extraction algorithm is proposed to cope with shortcomings of existing methods and 
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create a high quality nDSM. Additionally, nDSM, Planarity map and NDVI are fused 

to define the building segment. Furthermore, approximate building polygons are 

created for these segments. This step includes a novel data-driven method for creating 

simplified polygons for rectilinear and non- rectilinear buildings. Finally, GMM and 

GHM adjustments are implemented to create the final building outlies.  

 

1.5 Significance of the research  

The automation of building detection and boundary regularisation procedure has 

several stages. Most current approaches have one or more limitations in the workflow. 

Significant limitations include: limitation of DTM extraction from very high resolution 

DSM; eliminating trees located in shadow regions; generation of approximate building 

polygons without considering building characteristics; estimating the dominant 

building orientation; and challenges in solving regularisation of rectilinear building 

outlines.  

 

The significance of this study is to provide a forthright workflow that overcomes these 

limitations for large scale areas, and at the same time achieving sub-metre accuracy 

level of building outlines. The workflow introduces a new and robust evaluation 

method to measure the absolute accuracy between a polygon and its reference utilising 

the RMSE as a standard assessment tool.  

 

Significant improvement has been achieved in term of objects classification. This work 

proposes and demonstrates a workflow that enables a faster but at the same time still 

precise method to extract building outlines from high resolution DSM data. The results 

contribute to the science of creating and updating vector datasets of building outlines 

and for the creation and updating of topographic maps in urban areas.  

 

1.6 Thesis organisation 

The thesis is divided into six chapters as follows: 

Chapter 2 explains the theoretical background and starts with a brief description of 

LiDAR systems, including the main mechanisms and properties. Then, the basics of 
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imagery data and their derived and relevant information are outlined. Data 

representation and processing including transformation of 3D point clouds to gridded 

form, planarity generation, and basic mathematical morphology operations are 

introduced. Physical characteristics of the ground surfaces are then discussed. The 

mathematical models for building polygons regularisation will be presented at the end 

of this chapter.    

 

Chapter 3 presents related works in terms of the data sources and processing strategies 

used, together with detailed review of deficiencies in the existing strategies.  

 

Chapter 4 describes the proposed workflow methodology in detail. The chapter starts 

with the pre-processing of laser scanned points, particularly identifying and removing 

of outliers as well as the transformation of those laser scanned points into a regular 

gridded DSM. The proposed DTM extraction algorithm is introduced followed by the 

proposed data fusion procedure for extracting building segment. A novel data-driven 

algorithm for creating approximate building polygons is then described. Finally, 

mathematical models for regularisation of the approximated building polygons are 

implemented using the concept of least squares adjustment. This step includes a newly 

developed algorithm for automatic updating the labelling of boundary points to their 

corresponding polygon edges in the iterated least squares.  

 

Chapter 5 presents the trial results utilising the proposed methodology for selected test 

areas as well as an accuracy evaluation and discussion.  

 

Chapter 6 provides a summary of the thesis conclusions achievements of the proposed 

methods, and recommendations for future work.
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2 Chapter two Background 

2.1 Overview    

This chapter introduces the theoretical background and characteristics of point clouds 

created from LiDAR and Remote Sensing (RS) relevant for building detection and 

outline regularisation algorithms. This introduction is required in order to be able to 

discuss the shortcomings of the existing building detection algorithms introduced in 

the next chapter.  

2.2 Point Cloud creation  

 LiDAR 

LiDAR scanners are active sensors emitting pulses of light that illuminate a spatial 

swath of interest, and discretely samples the range from the source to points in the field 

of view. The distance from objects in the field of view to the scanner is calculated 

based on the time that the laser light needs to return to the receiver. While the laser 

light is used to determine the distance of the Airborne Laser Scanner (Alsadik & 

Remondino) system to the object, the position of the scanner has to be known in order 

to derive three dimensional coordinates of the object in space. An ALS system consists 

therefore of the LiDAR system, Inertial Measurement Unit [IMU] and a Global 

Navigation Satellite System (GNSS) for positioning. Figure 2.1 illustrates the basic 

components of an ALS. Using the known position and rotation of the receiver together 

with the calculated time and the speed of light, the position of captured points is 

calculated. Positioning errors of the ALS system can therefore lead to inaccurate point 

clouds. Those effects are usually overcome in the post-processing stage, using methods 

to correct the errors such as strip adjustment (Abed, 2012). One common limitation 

inherent to LiDAR datasets are data “holes” which are usually caused by shiny planar 

surfaces which reflect the light away from the scanner, or light-absorbing surfaces 

which allows no light to be reflected. 
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Figure 2.1: Basic components of an ALS (Arefi, 2009). 

 

Two other types of errors can be found in the LiDAR measurements which are 

horizontal and vertical errors. The horizontal errors are mainly caused by the angular 

uncertainty of the IMU, which linear depends on the flying height, and reflection of 

light from sloped terrains (Hodgson & Bresnahan, 2004). Though the measured 

distance from a sensor to an inclined terrain is accurate, the planar error of such 

measured response leads to an obvious systematic error in the measured distance 

(Hodgson & Bresnahan, 2004). This error can lead to the same effects as relief 

displacement in optical images and it is demonstrated in boundaries of elevated objects 

(Avbelj, 2015). The vertical error is significantly lower than the horizontal error and it 

is mainly caused by the LiDAR sensor platform properties, e.g. determination of the 

return location in the pulse length, and the efficiency of GNSS/IMU (Hodgson & 

Bresnahan, 2004).  

 

The acquired 3D points can have inconsistent outlier observations. These outliers are 

points with unreliable elevations compared with the whole data or in particular, with 

their local neighbourhood (Arefi, 2009). Such outliers are usually removed based on 

the normal distribution of the data. Thus, the acquired 3D points may have irregularly-

spaced distribution after outlier point removal. 

 

One of the important characteristics of LiDAR systems is the ability to record multiple 

echo returns, i.e. when the laser returns to the receiver, not just the first returning echo 

but also all following returning echoes, or the full returned waveform can be recorded 
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(Abed, 2012). In areas of vegetation, due to the spot size of the laser and the ability to 

register more than one returning echo to the receiver, laser pulses that are reflected on 

the top of the tree crown are registered as first echo returns while the laser pulses that 

are reflected off the ground beneath the tree are registered as last returning echo. Laser 

pulses have an advantage related to the ability to penetrate a tree canopy, as shown in 

Figure 2.2. This characteristic can be used to identify vegetation (but incompletely) 

and, therefore, to remove those above-ground objects from the point cloud. Remaining 

elevated objects in the point cloud are man-made structures such as buildings next to 

ground points. However, it has been shown that vegetation cannot be well-

distinguished from man-made objects (i.e. buildings) using ALS data (Yoon, Shin, & 

Lee, 2008).  

 
Figure 2.2: Multiple reflection laser observation (Arefi, 2009). 

 

 Imagery  

Images are 2D data from a passive sensor and can be captured from satellites, airborne 

platforms, Unmanned Aerial Vehicle (UAV), or terrestrial (e.g. close range 

photogrammetry). If two or more overlapping images are taken from different 

positions, stereo-photogrammetric methods can be utilised to generate 3D 

measurements. This 3D information is necessary in order to create ortho-rectified 

images, which is one of main outcomes of the photogrammetric processing of images. 

Images captured from different remote sensing platforms will vary in terms of their 

geometric accuracy, spatial resolution (Ground Sample Distance, GSD) as well as 

types and number of bands captured. A higher resolution image usually allows denser 

and more detailed point clouds to be derived compared to low resolution imagery 
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(Hastedt & Luhmann, 2015). Larger image size are able to create higher accuracy for 

the projection and interior orientation parameters (Conte, Girelli, & Mandanici, 2018). 

Furthermore, the accuracy of estimating interior and exterior parameters of airborne 

cameras may generally be higher compared to UAV cameras due to lack of stability 

and long-term validity of the interior orientation parameters of the cameras used on 

UAV platforms (Hastedt & Luhmann, 2015). 

 

The wavelengths for bands, as well as number of bands can vary depending on the 

sensor. Table 2.1 illustrates names and centre wavelength of the most common spectral 

bands used. Blue, Green, and Red band present the visible light. Red edges (RE) and 

Near-infrared (NIR) bands are suitable to detect vegetation through computing of the 

Normalized Difference Vegetation Index (NDVI). The NDVI is calculated as follows.  

 

NDVI =
(NIR −  Red) 
(NIR +  Red)

 (2.1) 

Table 2.1: Names and centre wavelength of spectral band (MicaSense, 2017).  

Band Spectral Bands Centre Wavelength 

(nm) 

B1 Blue 475 

B2 Green 560 

B3 Red 668 

B4 Red edge 717 

B5 Near-infrared 840 

 

2.2.2.1 Image-based derived 3D point clouds 

Photogrammetric stereo-plotting and dense image matching are the most common 

methods of acquiring 3D point clouds from overlapping images. The interior and 

exterior orientation parameters must be estimated first. Several image matching 

algorithms have been developed in the last decades to find the correspondence points 

in the overlapped images with sub-pixel accuracy (Leberl et al., 2010). Image 

matching methods can be generally grouped into two groups: feature-based or area-
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based (Hong & Zhang, 2007). The feature-based image matching tends to automate 

the procedure of the relative information, while the area-based methods often need 

known interior and exterior camera calibration parameters. 

 

For wide baseline application, the most efficient feature-based matching algorithm, 

known as the Scale-Invariant Feature Transform (SIFT) (Lowe, 1999), is used due to 

its robustness against occlusion, variable illumination intensity, and scaling. This 

algorithm  does not need segmentation (Bastanlar, Temizel, & Yardimci, 2010; 

Mikolajczyk & Schmid, 2005). From available camera positions and image 

correspondences, points in space can be triangulated (Hartley & Zisserman, 

2000). However, even in the case for which the interior and exterior orientation 

parameters of camera are unknown, they can be computed within a system of equations 

followed by bundle adjustment (Hartley & Zisserman, 2000). However, in the absence 

of orientation parameters the result of this step is a sparse point cloud. However it is 

necessary to obtain a dense point cloud for the task of object detection (Bulatov, 

Wernerus, & Heipke, 2011), and ideally it should be every pixel in every image. The 

distance from the point to the camera principal plane is called depth and the depth map 

is the set of depth for all pixels. 

 

Computation of high quality depth maps is challenging mainly due to the occlusions, 

reflections, regions of homogeneous texture, repetitive patterns, and slanted surfaces 

(Bulatov et al., 2011). The technique Semi-Global-Matching (Hirschmuller, 2008) 

allows for a fast and accurate computation of depth or disparity. This method consists 

of two steps: firstly, a cost function can be computed by means of the Sum of Absolute 

Difference (Alsadik & Remondino), Sum of Squared Difference (SSD) or a robust 

matching cost against the radiometric distortions such as Mutual Information (MI) or 

Normalized Cross Correlation (NCC) (Bethmann & Luhmann, 2014). The second step 

required is the cost aggregation or Non-local optimization. The values of the cost 

function are estimated for each individual pixel and depth value via aggregated path 

costs. The paths run radially from the image border to the center. The individual cost 

for each running path is accumulated and the depth with minimum cost is selected. A 

minimum of eight paths are needed to provide satisfactory depth map (Hirschmuller, 



  Chapter 2 Background                                                                                                            13 

 

2008). Figure (1) shows an example of estimating disparity value from 16 aggregated 

paths from all direction towards the pixel under evaluation. 

 

Figure 1: cost aggregation in disparity space. Left to right: Minimum cost path and 

example of 16 paths from all direction (Hirschmuller, 2008) 

 

2.2.2.2 Orthophoto images 
 
Optical images suffer from relief displacement problems. The relief displacement is 

defined as a change in an object's location in an image caused by the object's altitude 

above/below the terrain and viewing direction of the sensor (Abed, 2012). The effect 

of this displacement increased with increasing angle to nadir , and increasing the 

object’s height (L. Chen, Zhao, Han, & Li, 2012).  A displacement of pixels, e.g. 

belonging to the top of a high building, can be also be visible in the ortho-images due 

to height errors in the underlying DSM used in the ortho-image production (see Figure 

2.4 a). Hence, those points may not represent the actual projected position on the map 

geometry (see Figure 2.3(a)). The production of ortho-images requires knowing the 

camera orientation parameters, and having a digital surface model (DSM). The DSM 

should have the same resolution as the image in hilly terrains (Passini & Jacobsen, 

2004). The orthogonal projection for each pixel in the image is computed using the 

collinearity equations.  

 

The use of ortho-images is demonstrated by the fusion with other data sources such as 

LiDAR, especially for building detection purposes however alignment of the 
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orthophoto with other data sources may still not be satisfactory (L. Chen et al., 2012). 

Consequently, false negative error due to the misalignment can occur in the building 

extraction result (Sohn & Dowman, 2007). Figure 2.3(a) and (b) illustrates an image 

before and after rectification, respectively. The rectified image (Figure 2.3(b)) might 

be well-aligned but some black holes caused by occlusion can be seen. 

 

Figure 2.3: Generation of orthophoto images. (a) raw image. (b) rectified image 

provided by the German Society for Photogrammetry, Remote Sensing and 

Geoinformation (DGPF) (Cramer, 2010). 

 

2.3 Discussion of Lidar versus image-based point clouds 

The quality of the generated image-based point clouds is highly dependent on the 

success of the image matching. For example, in shadow regions or occluded parts of 

buildings, it is very hard or impossible to find the correct position of corresponding 

pixels, leading to matching errors or gaps. Hence, gross errors can occur in the 

calculated point clouds due to the incorrect trigonometry (Bergsjö, 2016). In contrast, 

ALS systems outperforms photogrammetric based methods by overcoming the shadow 

effect, due to being non-passive and independent of solar illuminance (Abed, 2012) 

and lowering the influence of occlusions. However, laser-scanned points usually 

contain outliers. Two categories of outliers may exist, namely wide/low outliers and 
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broad/high outliers. The wide outliers are usually caused by refection of light from 

elements in an atmosphere, power lines, or birds, while broad outliers are mainly 

caused by multiple reflections (Arefi, 2009). The type of the target material plays an 

important role on light reflection, e.g. water bodies. Consequently, the reflected laser 

light can be too weak or never be observed by the receiver due to specular reflection 

from the target material, leading to holes (missing data). In image-matching outliers 

can also occur and are mainly caused by occlusion. This appears when a point is visible 

in one image only. The outliers can be either global or local. Global outliers are mainly 

caused by mismatching of corresponding points or insufficient camera calibration, 

while local outliers are persuaded by random deviations and uncertainties in the 

camera position and depth map approximation process (e.g., depth quantisation) 

(Stucker, Richard, Wegner, & Schindler, 2018). 

 

In a comparison study presented by (Leberl et al., 2010), the authors argue that 

innovative photogrammetric methods provide point clouds with comparable accuracy 

but higher density than ALS system. Regarding building outlines, the accuracy is 

highly depend on the density of the point cloud (Sampath & Shan, 2007). In terms of 

automation, LiDAR point clouds can be processed straight-forwardly while user 

interaction might be needed in stereo photogrammetry (Kwak, 2013). For more details, 

a comparison study between LiDAR and imagery point clouds was given in Leberl et 

al. (2010).  

 

2.4 Data rasterisation and processing 

 Transformation of 3D point clouds to gridded DSM 

In order to apply standard image processing methods such as filters for the detection 

of buildings, it is required to turn the 3D point cloud into a raster image (also called 

gridded DSM). The raw 3D laser scanned points are randomly distributed and need to 

be organised in such a way that information can be extracted from them (e.g. building 

detection). Therefore, interpolating them into gridded data is the preferable option 

(Ma, 2004). The process of transforming or interpolation of 3D point clouds into a 

gridded DSM or raster image is called data rasterisation. The output is an image where 



  Chapter 2 Background                                                                                                            16 

 

the value of each pixel corresponds to the elevation height of this grid. To convert 

point clouds to a raster image, a 2D transformation is applied from the object plane 

coordinate system (X, Y) to the image coordinated system (r, c). Here, X corresponds 

to c in the horizontal direction, while Y corresponds to r in vertical direction (see Figure 

2.4). The top left pixel (r, c) is the origin (0, 0) of the image coordinate system. If laser 

scanned points were captured diagonally, an internal rotation could be used to conserve 

space. 

 

Figure 2.4: Transformation from point clouds to gridded-DSM (Ma, 2004) 

  

The transformation from the 3D coordinate system (X, Y, Z) to the 2D image coordinate 

system (r, c) can be performed as follow: 

image(𝑟𝑟, 𝑐𝑐) = integer �
𝑌𝑌max − 𝑌𝑌
𝐺𝐺𝐺𝐺𝐺𝐺

,
𝑋𝑋 − 𝑋𝑋min
𝐺𝐺𝐺𝐺𝐺𝐺

�   (2.2) 

Each pixel (r, c) in the image has the Z value that corresponds to the X and Y that fall 

into the calculated position as in the equation above. GSD is the desirable ground 

sample distance for the gridded image. The minimum GSD can be estimated from the 

point cloud average density as 1/√𝑛𝑛 (Ma, 2004), where n is the average number of 

laser scanned points located in one metre square. When more than one point fall into 

a grid cell, usually the minimum value is considered assuming that the minimum value 

corresponds to the terrain (Ma, 2004). If there are no points located in a grid cell, 

interpolation methods such as linear interpolation can be applied. The rasterisation 
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process may introduce smoothing error depending on the selected GSD, but the effect 

is usually low (Hodgson & Bresnahan, 2004). 

 

 Planarity     

For further processing, such as when analysing the height differences of a point and 

its neighbours in a gridded DSM using a pre-defined window size, several local 

geometric measures can be obtained. One example is the planarity measure, which, 

essentially assesses how the neighbourhood of a point can be approximated by a plane 

(West et al., 2004). To describe the local 3D construction nearby a 3D point 𝑋𝑋 =  𝑋𝑋𝑜𝑜, 

the so-called structure tensor C is obtained from the set of neighbouring 3D points 

𝑋𝑋𝑖𝑖 with 

i = 1,…, n by considering the respective 3D covariance matrix as follows (Weinmann, 

Urban, Hinz, Jutzi, & Mallet, 2015): 

𝐶𝐶 =
1

𝑛𝑛 + 1
�(𝑋𝑋𝑖𝑖 − 𝑋𝑋 ) (𝑋𝑋𝑖𝑖 − 𝑋𝑋 )𝑇𝑇
𝑛𝑛

𝑖𝑖=0

 (2.3) 

𝑋𝑋 =
1

𝑛𝑛 + 1
�𝑋𝑋𝑖𝑖 
𝑛𝑛

𝑖𝑖=0

 (2.4) 

 

To compute the structure tensor, it is preferable to interpret the slightly smoothed DSM 

as a point cloud, and based on the cylinder-like extraction of neighbours proposed by 

Gross and Thoennessen (2006). The smoothing can be done using a median or 

Gaussian filter. Different measures can be obtained from the eigenvalues 

(λ1, λ2, and λ3) of the structure tensor C, where λ1, λ2, λ3 ∈ 𝑅𝑅 and λ1 ≥ λ2 ≥  λ3 ≥ 0. 

Accordingly, the planarity measure 𝑃𝑃𝜆𝜆 can be calculated as follows: 

𝑃𝑃𝜆𝜆 =  
λ2 − λ3
λ1

 (2.5) 

 

Then, the planarity map can be visualised as a float image, where each pixel value 

represents a planarity measure. An example is given in Figure 2.5 where the pixel 

values of the planarity measures are scaled from 0 to 1 and colour coded. It is clearly 

visible that the planarity measures of the terrain are very high (close to 1) followed by 
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the planarity measure of the roofs with a measure of approximately 0.8. In contrast the 

planarity measure of the trees and the building edges are very low with a value less 

than 0.2. Hence, a separation of planar man-made objects and the terrain compared to 

vegetation is possible. 

 

 
 

Figure 2.5: Planarity measure. Orthophoto, DSM, and the planarity map from left to 

right. 

 Mathematical Morphology   

When elevation data are represented as a greyscale image, the image processing tools, 

including morphologic operators using a structural element (SE) can be utilised. Such 

morphological operators are erosion and dilation (Haralick, Sternberg, & Zhuang, 

1987), which allow the extraction of terrain points, this is, points belonging to the 

digital terrain model.  

 

Searching for neighbouring pixels can be performed using filtering procedures within 

a predefined size SE. The SE can be described with respect to different shapes (e.g. 

disk or square) and with a pre-defined size. Dilation (𝛿𝛿𝑆𝑆𝑆𝑆 (X)) and erosion (𝜀𝜀𝑆𝑆𝑆𝑆(X)) of 

X (where X is defined as set of pixels having values of one) with a structure element 

SE are the principle morphological operators. Dilation means increasing an object area 

in all directions within a pre-defined size and shape of the SE. In other words, it is an 

extension of bright pixels (pixels having values equal to one in a binary image). In 

contrast, erosion means decreasing or shrinking an object area in an image. In a binary 

image, the mathematical description of dilation and erosion (Arefi, 2009) are: 
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𝛿𝛿𝑆𝑆𝑆𝑆 (X) = {𝑥𝑥|𝑆𝑆𝑆𝑆𝑥𝑥 ∩ 𝑋𝑋 ≠ ∅}       (2.6) 

𝜀𝜀𝑆𝑆𝑆𝑆(𝑋𝑋)  =  {𝑥𝑥|𝑆𝑆𝑆𝑆𝑥𝑥 ⊆ 𝑋𝑋}       (2.7) 

Equation (2.6) describes the dilation where the position of pixel x such that SE hits X 

when its centre overlaps with x. In contrast, equation (2.7) represents the erosion, 

where the position of pixels x such that SE is included in X when its centre is located 

at x. Figure 2.6 illustrates an example of dilation and erosion using a binary image. 

Very small objects could disappear completely if a large SE is applied. Accordingly, 

many other operators can be modified, such as opening and closing in binary and 

greyscale images (Arefi, 2009). Nevertheless, characteristics of an object including 

area, size, centroid, minor and major axis can be derived by analysing the connected 

component of the output image.   

 

 

Figure 2.6: Morphological operators. From left to right: binary image shows building 

segments, example of dilated image, and example of eroded image. Buildings are 

represented as white pixels; terrain is shown with black pixels.  

 

2.5 Ground Characteristics for DTM extraction 

Digital Terrain Models only include bare-ground regions without any man-made 

objects such buildings. With this definition, hills or cliffs should be part of the DTM. 

Extracting the DTM is the first step in the building detection procedure. In order to 

correctly identify pixels belonging to the terrain the physical characteristics of ground 

surface should be understood. These characteristics can be summarised as follows 

(Meng et al., 2010):  
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(i) Minimum elevation: ground pixels usually have lower elevation than non-

ground pixels in a local search. Several DTM extraction algorithms are based 

on this characteristic. 

(ii) Slope measure: the slope among ground pixels is commonly lower than the 

slope between ground and non-ground pixels (Zhang & Whitman, 2005). 

(iii) Height difference: adjacent ground pixels generally have lower height 

differences than the ground and non-ground pixels. Hence, pixels having 

higher height differences than a pre-defined threshold are commonly classified 

as non-ground pixels, such as buildings or trees. 

(iv)  Ground surface homogeneity could be also a possible option to distinguish 

ground from non-ground pixels, because the former are assumed to be 

continuous and smooth compared to the latter. 

(v) The off-terrain man-made objects usually have a limited size. This 

characteristic could be utilised for eliminating objects from the DTM as they 

usually have relatively small area. 

 

However, in some cases ground pixels may not fulfil such characteristics and 

misclassification errors may occur (Meng et al., 2010). For example, cliffs break with 

all the aforementioned rules. Another common object type that may incorrectly be 

classified as ground is bushes, because they have relatively low slope and height 

difference with their neighbouring ground pixels. Similarly, bridges may also cause 

misclassification errors since they are smoothly connected to the terrain (Meng et al., 

2010). 

 

2.6 Mathematical model for building polygons regularisation 

Building model regularisation requires the creation of approximated polygons 

representing building outlines. Those approximated polygons are usually created by 

model-driven, data-driven or hybrid methods (He et al., 2014).  Modelling of non-

rectilinear building polygons is a challenging task due to the difficulties for 

implementing a set of regularisation rules (Kwak, 2013). The majority of the building 

footprints can be well-presented by a rectangular shape (Chaudhuri & Samal, 2007) or 

a set of merged rectangles (Lafarge, Descombes, Zerubia, & Pierrot-Deseilligny, 
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2008). Thus, the rectilinearity assumption generally serves well for existing methods, 

while relatively few methods deal with non-rectilinear buildings i.e. (Pohl & 

Feldmann, 2016).  

 

For rectilinear building polygons, the essential problem of regularisation is how to 

enforce the orthogonality between the connected polygon edges as well as best fitting 

of those edges with their corresponding boundary points. Typically, this is should be 

done by minimising the orthogonal distances between the input boundary points and 

their corresponding polygon edges in concept of least squares adjustment. This 

adjustment aims to enhance the approximated building polygons by modelling regular 

shapes. If those approximated polygons are incorrectly estimated, the adjustment may 

not necessarily improve the regularisation output. Avbelj (2015) notes that many of 

the existing approaches skip this step due to the unwelcome additional complexity, 

and the belief that the possible improvement to the results would only be at a sub-pixel 

level.  

 

The mathematical model of the least squares adjustment can either be based on the 

Gauss-Helmert Model (GHM) or the Gauss-Markov Model (GMM) (Avbelj, 2015; 

Mikhail & Ackermann, 1976). Both models have been introduced for modelling 

rectilinear building polygons, while an adjustment procedure to deal with non-

rectilinear building polygons has not yet been proposed in literature. 

 

 Gauss-Markov Model 

The Gauss-Markov Model describes a mathematical model between observation 

equations and unknown parameters. The observation equations are assumed to be 

linearised initially. Because the functional model is assumed to be linearised, with the 

observations being a vector l, it has the form (Förstner & Wrobel, 2016): 

𝐹𝐹�𝑙𝑙� = 𝐹𝐹(𝑙𝑙) +  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 �
𝑙𝑙
�𝑙𝑙 − 𝑙𝑙�  = 0 (2.8) 
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The general form of the observation equations can be written in matrices forms as 

follows: 

 𝐴𝐴 𝛿𝛿 + 𝑤𝑤 = 𝑒𝑒 (2.9) 

with  𝑒𝑒 ~ (0, 𝜎𝜎02𝑃𝑃−1) (2.10) 

where, w is a vector of given linearised observation equations; A is the design matrix 

(also named as Jacobian matrix if partial derivatives are included) which has 

dimension of (number of observations by number of unknowns); 𝛿𝛿 is a vector of 

unknown parameters to provide correction to the approximated values; 𝑒𝑒 is a random 

vector of errors in the observations (which has zero anticipation and 𝜎𝜎02 𝑃𝑃−1 

dispersion). The term 𝜎𝜎02 is known as a prior variance component (constant). The 

matrix P represents the weight of the observation equations and is symmetric. The 

inverse of the observation matrix (P) is denoted by Q. The dispersion of e (D(e)) is 

based on the covariance matrix and represented by Σ (positive definite matrix). The 

relationship between the weight, dispersion, cofactor matrices of the unknown, and the 

random vector (e) can be written as: 

𝐷𝐷(𝑒𝑒) =  𝜎𝜎02 𝑃𝑃−1  = 𝜎𝜎02 𝑄𝑄 =  Σ (2.11) 

  

 Gauss-Helmert Model 

The GH model, also known as condition equations and parameters (Avbelj, 2015; 

Cothren, 2004), is frequently applied for several applications in photogrammetry and 

geodesy. While the GMM deals with the observation equation and parameters 

individually, the GHM combines both into a single model. The linearised functional 

model can be written as:  

𝐹𝐹�𝑢𝑢� , 𝑙𝑙� = 𝐹𝐹(𝑢𝑢𝑜𝑜 , 𝑙𝑙) +  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝑢𝑢𝑜𝑜,𝑙𝑙  (𝑢𝑢� − 𝑢𝑢𝑜𝑜) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 �  𝑢𝑢𝑜𝑜,𝑙𝑙 �𝑙𝑙 − 𝑙𝑙� = 0 (2.12) 

where 𝑢𝑢�  and 𝑙𝑙 are the unknowns and the observations respectively. The general form 

of the observation equations can be written in matrices forms as follows: 

𝑤𝑤 =  𝐴𝐴 𝛿𝛿 + 𝐵𝐵 𝑣𝑣 (2.13) 
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where A = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  is the design matrix of partial derivatives of the functional model with 

respect to the unknowns (fixed parameters) at the approximated values 𝑢𝑢𝑜𝑜; 𝛿𝛿 =

 (𝑢𝑢� − 𝑢𝑢𝑜𝑜) is the correction vector to the approximated values;  𝐵𝐵 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 is the design 

matrix of partial derivatives of functional model with respect to the random parameters 

in the observation equations and 𝑣𝑣 = �𝑙𝑙 − 𝑙𝑙� is the vector of residuals; 𝑤𝑤 = 𝐹𝐹(𝑢𝑢𝑜𝑜, 𝑙𝑙) 

is the misclosure vector. It is assumed that the observation vector is linearised, so that 

the v vector may be interpreted as the error vector of the observations. This linearised 

model was presented as the general case of least-squares adjustment by (Helmert, 

1872), which is therefore known as Gauss-Helmert Model (Koch, 1999). The 

stochastic model can then be described as: 

 

𝛴𝛴 =  𝜎𝜎02 𝐵𝐵 𝑃𝑃−1 𝐵𝐵𝑇𝑇 = 𝜎𝜎02 𝑄𝑄  (2.14) 
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3 Chapter three Literature review 

3.1 Overview  

In general, the building footprint extraction process consists of three major steps: DTM 

extraction, building segments detection, and regularisation. This chapter gives an 

overview of research literature related to each of these steps. 

 

3.2 DTM extraction 

Firstly, in order to generate a DTM the data gaps/holes caused by occlusion or 

mismatches in the DSM should be filled in advance. Such holes are often filled by an 

interpolation method (Arefi, 2009; Chaabouni-Chouayakh, Arnau, & Reinartz, 2013).  

 

Complex, data-intensive algorithms have been developed for extracting the DTM. 

Those algorithms either work on the raw point clouds (Axelsson, 2000; Zhang & 

Whitman, 2005), or on the gridded DSM (Wack & Wimmer, 2002). Point cloud based 

algorithms avoid interpolation errors and need less pre-processing. However, these 

algorithms can be problematic and time-consuming when searching for neighbouring 

points in margin areas, as illustrated by Meng, Wang, Silván-Cárdenas, and Currit 

(2009). In contrast, algorithms that work on a gridded DSM can be operated in a similar 

concept to DTM extraction methods from photogrammetric DSMs utilising image 

processing tools. These algorithms can overcome problems with neighbouring point 

searching in margin areas (Meng, Wang, Silván-Cárdenas, et al. (2009) as the 

neighbours are clearly defined. Additionally, algorithms based on a gridded DSM are 

computationally efficient to implement utilising available image processing tools. 

 

Established DTM extraction algorithms can be described as slope-based, linear 

prediction-based, shape-based methods relying on mathematical morphology (Liu, 

2008; Mongus et al., 2014; Sithole & Vosselman, 2004) and segment-based (Beumier 

& Idrissa, 2016).  Directional scanning filtering has also proven to be a promising 

approach for DTM extraction (Meng et al., 2010; Meng, Wang, Silván-Cárdenas, et 

al., 2009; Y. Mousa, Helmholz, & Belton, 2017; Perko, Raggam, Gutjahr, & Schardt, 
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2015). All of these methods are based on the physical ground characteristics 

introduced in Section 2.5. More recently, deep learning methods using the 

Conventional Neural Networks are also utilised for extracting DTM (Hu and Yuan, 

2016). 

 

Several slope-based methods have been developed (Axelsson, 2000; Shan & Sampath, 

2005; Sithole, 2001; Vosselman, 2000). Selecting a suitable slope threshold is critical 

because the terrain slope is not uniform even within the same scene depending on the 

terrain complexity. Procedures based on adaptive slope thresholds are therefore 

implemented (Sithole, 2001) to handle such limitation. Promising results can be 

achieved with these methods in flat areas, while their efficiency declines with 

increasing terrain slope (Liu, 2008; Mongus et al., 2014).    

 

The linear prediction or interpolation-based methods start by estimating an initial 

terrain model. Then, height differences or residuals between points and the estimated 

initial terrain are minimised by linear least-squares interpolation. Negative residuals 

are given higher weights than positive residuals, assuming that the estimated roughness 

is usually interpolated over the actual ground surface.  Many approaches have been 

modified based on this concept (Kraus & Pfeifer, 1998; Lee & Younan, 2003). Cubic 

spline surface minimisation can be also used because of its robustness against outliers 

(Bulatov et al., 2014; Bulatov & Lavery, 2010). Extraction of detailed terrain surfaces 

and small objects (not necessarily belonging to the terrain) might be troublesome by 

the such interpolation methods as noted by Mongus et al. (2014). 

 

Classical morphological filtering is  commonly implemented for DTM extraction 

(Kilian, Haala, & Englich, 1996; Zhang et al., 2003). The method is based on applying 

morphological operators (i.e. erosion and dilation) (Haralick et al., 1987) in grey-scale 

images using a structure element. The size of the SE is critical to eliminate buildings 

with diverse size, and therefore, Zhang et al. (2003) proposed a progressive filtering 

by gradually increasing the sizes of the SE. Local elevation difference and slope within 

the size of the SE were applied to identify ground points. Q. Chen, Gong, Baldocchi, 

and Xie (2007) applied a similar approach, but used an adaptive slope threshold. 
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Percentile rank filters (e.g. 5%, 10%, 20%, and 40%) were used to mitigate the outlier 

effects. More recently, Mongus et al. (2014) also applied a morphological filtering 

approach for building detection purposes. Firstly, laser scanned points were 

transformed into a gridded DSM. Then, the DSM was smoothed using a Gaussian filter 

as a pre-processing step. A roughly estimated DTM was then created based on 

morphological operators. Next, the input laser scanned points were classified as 

ground points based on their elevation differences from the initially estimated DTM 

and the slope gradient.  

 

Utilising LiDAR data Zhang and Whitman (2005) tested a slope-based approach, a 

progressive morphological approach, and a height-based approach using progressively 

changing window size on coastal and urban regions. The experimental results have 

shown that the three approaches perform well in urban sites while morphological 

approach yielded a better result in coastal area. The terrain slope is the most sensitive 

parameter in all these approaches. 

 

Arefi (2009) proposed a morphological DTM generation method named Geodesic 

Dilation based on a gridded DSM.  Two equal size images are required called mask 

(J) and marker image (I). The greyscale value of the marker image should be less than 

or equal to the greyscale value of the mask. In the first iteration, the mask image has 

the same value as the original DSM. The values of marker image are equal to the 

minimum value from the original DSM except for the border which is initialised with 

the same values as in the DSM. The algorithm works by performing four directional 

scanlines diagonally in two opposite ways. Elevation differences between the 

minimum and maximum height values within a 3 by 3 pixels sized window along the 

conducted scanline are calculated. A pixel is labelled as non-ground if its elevation 

exceeds a certain threshold. The chosen window size is critical for identifying pixels 

belonging to large buildings (Meng et al., 2010). Nevertheless, building objects located 

on the border might be classified incorrectly as ground regions in this approach 

because the height difference might be zero as the mask and marker have the same 

value (Mousa et al., 2017).  
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Morphological filtering is a method used to estimate initial terrain surface (Chen et al., 

2007) which is then used to identify ground points using elevation difference and slope 

thresholds. Chen et al. (2007) stated that keeping the terrains surface unchanged when 

using large SE size can prove difficult. Therefore, this approximating process as well 

as the smoothing step (Mongus et al. (2014)) can both be major sources for possible 

inaccuracies. In addition, it is anticipated to obtain an over smoothed DTM fluctuated 

up and/or down the actual terrain depending on the density of the area of interest, SE 

dimension, and the used percentiles (Mousa et al., 2017). 

 

Directional scanning filters have attracted attention in the literature. Meng, Wang, 

Silván-Cárdenas, et al. (2009) proposed a Multi-directional Ground Filtering (MGF) 

approach based on LiDAR DSM. The basic idea is to apply scan-lines filtering from 

left-to-right and from right-to-left within a moving window of pre-defined dimensions. 

Firstly, the pixel having the minimum elevation value within this window is 

determined to be a bare ground pixel. If the height difference between the pixel under 

examination and the minimum exceeds a pre-defined height threshold, the pixel is 

categorised as a non-terrain pixel. Otherwise, the slope between the current pixel and 

the following pixel in the considered scanline direction is calculated. If it is higher than 

a pre-selected slope threshold, it is also considered as a non-terrain pixel. If the slope 

is less than the slope threshold and positive, the pixel is given the label of the previous 

pixel. If the slope is non-positive, the distance to the nearby terrain pixel is used to 

decide a classification (e.g. terrain or non-terrain pixel). Meng, Wang, Silván-

Cárdenas, et al. (2009) conducted a comparative study with eight different algorithms. 

The results proved the robustness of their approach. 

 

Similar to (Meng, Wang, Silván-Cárdenas, et al., 2009), Perko et al. (2015) developed 

a directional scanning approach called the Multi-directional and Slope Dependent 

(MSD) method for DTM extraction from DSM derived from satellite imagery. Points 

are evaluated based on height differences and the slope from eight directional 

scanlines. The slopes of the current point under examination, and its neighbours within 

a 3 by 3 pixels sized window are calculated for each point. Unlike the MGF algorithm, 

the local terrain slope is considered in this algorithm. This is similar to the approach 
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proposed by Piltz, Bayer, and Poznanska (2016), but they generated an off-terrain 

mask including buildings and trees using a metric called Normalised Volume above 

Ground (NVAG) which is then used for DTM creation.  

 

Segment-based methods involve three main stages, including segmentation of laser 

scanned points or gridded DSM, labelling clustering segments into terrain and off-

terrain groups, and removing off-terrain segments and filling gaps by an interpolation 

technique (Beumier & Idrissa, 2016). This segmentation procedure aims to classify 

points having similar features into groups based on their homogeneity (Tóvári & 

Pfeifer, 2005),  such as roof facets as an example. Segmentation of raw laser scanned 

points may use profiles or region growing procedures while segmentation of the DSM 

is usually based on the slope calculation (Gevaert, Persello, Nex, & Vosselman, 2018). 

Region growing procedures usually utilise the geometric properties of a point in 

relation to its neighbours, such as elevation or slope (Tóvári & Pfeifer, 2005). 

 

 Sithole and Vosselman (2005) segmented laser scanned points based on the continuity 

charectersitics of the terrain. Profiles created by the scanline segmention procedure are 

examined in multiple directions. Points in those profiles were analysed in order to 

perform classification. For instance, points belonging to the terrain are assumed to be 

continous and smooth, and conversely, object points are assumed to be discontinuous. 

Tóvári and Pfeifer (2005) combined a segmentation procedure based on region-

growing of laser points with DSM filtering. For instance, the normal vector of each 

individual laser point is estimated using the k nearest neighbours. Then, points were 

grouped into segments according to the similarity between the estimated normals. The 

DSM was interpolated from the laser points using least squares to fit a first order 

polynomial. Finally, height differences between the interpolated DSM and the 

segmented points were analysed. For example, points having height differences in the 

range from -2 meters to +2 meters were assumed to be ground points. 

 

In relation to the segmentation of the DSM, Hingee, Caccetta, Caccetta, Wu, and 

Devereaux (2016) utilised the gradient direction, area, and slope parameters to identify 

candidate terrain segments. The DSM was then smoothed using a surface fitting 
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method. Similar to Tóvári and Pfeifer (2005), height differences between the smoothed 

DSM and the terrain segment candidates were analysed to improve the quality of those 

candidates by removing segments having elevation differences larger than a user-

defined threshold.  

  

Beumier and Idrissa (2016) proposed a segmentation procedure using a 

photogrammetric DSM. The input DSM was first smoothed using a mean-shift filter, 

then segmentation, followed by regions-filtering. The process is then repeated. This 

segmentation procedure was implemented to separate the DSM into regions based on 

analysis of the height information within a certain window. The region filtering was 

applied for rejection of locally higher parts, which usually related to off-terrain objects 

(such as buildings) depending on neighbourhood analysis. The remaining regions were 

normally matched to roads, large terrain surfaces, or fields. Finally, data holes resulting 

from rejecting non-ground objects in the previous step was then interpolated using a 

bilinear interpolation technique to generate the final DTM. 

 

In the same context, Yan, Blaschke, Liu, and Wu (2012) and  Hingee et al. (2016) 

proposed a segmentation procedure considering the slope measurement and 

neighbourhood analysis to distinguish between terrain segment and off-terrain 

segment. Over- or under-segmentation is the main limitation of such algorithms 

(Tóvári & Pfeifer, 2005). Difficulties in automation of the implemented parameters 

are noticeable (Pérez-García, Delgado, Cardenal, Colomo, & Ureña, 2012) due to the 

large variation of the terrain types. For instance, the slope values can significantly vary 

between adjacent points in flat terrain compared to those in sloped terrain.  

 

Machine learning approaches have also attracted attention using the convolutional 

neural networks (CNN) (Long et al., 2015). While, the main purpose is the image 

classification, i.e. buildings, trees, road et cetera  some methods are aimed at extracting 

the DTM (Hu & Yuan, 2016). The CNN method aims to implement a training system 

for the purpose of object classification in cooperation with a supervised classifier in 

an end-to-end procedure (Marcos, Volpi, Kellenberger, & Tuia, 2018). Accordingly, 

these deep learning methods have been applied to extract the DTM from imagery data 
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(Gevaert et al., 2018) or from LiDAR data (Hui et al., 2019). LiDAR data must be 

transformed into a raster format first as the CNN methods work based on image 

processing tools. Its advantage is in its effective image classification at pixel-level 

accuracy. The main disadvantage, however, is the expensive training effort required 

(Mousa et al., 2017). 

 

There is general consensus in the literature that the slope is the most sensitive 

parameter in the processing of DTM generation. For instance, Mongus et al. (2014) 

mentioned that slope-based approaches have difficulties in sloped terrains (i.e. 

significant variations in heights). In addition, defining a slope threshold in terms of 

terrain information in the analysed scene is, to some extent, subjective (Zhang et al., 

2003). This problem becomes obvious in high-resolution DSMs because the slope 

value between the neighbouring pixels is considerable without transitioning from 

ground to non-ground, or vice versa (Mousa et al., 2017). Therefore, eliminating the 

slope parameter from the processing could help to improve the quality of the generated 

DTM. 

 

3.3 Building detection in terms of data sources 

Building detection relates to identifying building object regions, where they are 

located, and distinguishing them from other non-ground objects such as trees. There 

are numerous existing approaches which can be categorised into three groups in term 

of their respective data sources, including images, LiDAR data, and approaches that 

combine both images and LiDAR data.   

 

 Building detection from 2D image data only 

Approaches based on images only commonly implement segmentation and 

classification procedures. For example, Müller and Zaum (2005) proposed a 

segmentation procedure based on region-growing. Firstly, they used airborne colour 

images converted to grey scale and applied the linear regression classifier to create the 

initial segments/seeding areas. Then, the region-growing algorithm was applied to the 
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entire image utilising geometric (e.g. size, area), photometric (e.g. mean hue), and 

structural (e.g. neighbourhood and shadow) properties. Building segments were 

detected based on those properties. Demir (2013), claimed that this approach performs 

well with only red roof buildings.  

 

Using only imagery information is still problematic because of the similarity of 

spectral properties between buildings and other man-made structures like roads 

(Chaabouni-Chouayakh et al., 2013; Sirmacek, d’Angelo, & Reinartz, 2010; Tian, 

Chaabouni-Chouayakh, & Reinartz, 2011). In addition, the variety of the man-made 

objects and their occurrence mitigate the classification efficiency (Beumier & Idrissa, 

2016) especially with very high resolution images (Cheng, Gong, Chen, & Han, 2008). 

Therefore, and due to the success that has been achieved by approaches based on 

DSMs (Haala & Kada, 2010), integration of both inputs were considered in the most 

relevant studies. 

 

 Building detection from 2D and 3D image data 

Several methods have been developed to detect buildings from a combination of image 

data and DSMs. For example, a method that utilised a DSM with optical satellite 

imagery was proposed by Ozcan et al. (2013). Firstly, the Harris corner detection 

technique was applied to detect corner points located in the input images. Presence of 

such points is an indicator for building locations. These corners were then fused with 

the DSM data. Vector directions are generated from the extracted corners towards the 

building centre. Lastly, a kernel density map was generated which indicates the 

estimated building locations using a symmetric Gaussian probability density function. 

 

Tian and Reinartz (2013) used panchromatic and multispectral images obtained from 

the WorldView-2 sensor, in conjunction with a DSM. Firstly, a DTM was generated 

using morphological filtering, which was then subtracted from the DSM to create the 

nDSM. Trees were removed using an NDVI mask in order to estimate building 

locations. A Hough transformation is then applied on panchromatic images to extract 

building boundaries via line segments. In addition, a random forest (Breiman, 2001) 
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is applied on the multispectral images to extract the building locations. Finally, the 

estimated building locations and the panchromatic image segmentation results, as well 

as the random forest classification results, are fused together to extract the building 

outlines.  

 

Qin and Fang (2014) proposed a hierarchical approach using aerial images and 

photogrammetric generated DSM. The first step is to distinguished shadow regions 

using a morphological index in order to effectively perform calculation of NDVI. 

Initial building locations are estimated by a combination of morphology top-hat 

extraction of the DSM and the NDVI scheme. Finally, a graph cut optimization based 

on pixel segmentation was modified to integrate the DSM and the multispectral 

information to estimate building locations.  

 

More recently, the Convolutional Neural Networks (CNNs) (Long et al., 2015) have 

proved to provide effective methods for comprehensive image classification (.i.e. 

building, trees, grass, and bare ground). It works by building a parametric training 

system for identifying man-made objects jointly with a classifier (Marcos et al., 2018) 

in an end-to-end method. Its advantage is in its effectiveness of image classification at 

pixel-level accuracy. As mentioned previously, an expensive training process may be 

required. Nevertheless, depth data (i.e. nDSM) seems to be an essential input in the 

processing, which can be created after extracting the DTM (only). Many recently 

reported methods have combined depth information with CNNs (Griffiths & Boehm, 

2019; Marmanis et al., 2018; Piramanayagam, Saber, Schwartzkopf, & Koehler, 

2018). 

 

 Building detection from LiDAR data only 

LiDAR sensors offer highly reliable and accurate 3D surface measurements. However, 

the raw 3D point cloud data are randomly distributed and need to be organised in such 

a way that valuable information such as buildings can be extracted. Interpolating onto 

gridded data is the preferable option (Ma, 2004). Since LiDAR data is comprised of 

primarily position and height observations, all the existing algorithms are based on the 
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fact that buildings should have a significant height difference from their surrounding 

area. Hence, extracting a DTM is a key step for building detection (Mongus et al., 

2014), and it must be computed first (Bulatov et al., 2014).  

 

Within approaches that utilise the 3D point cloud data the segmentation approach is 

the most common. This segmentation aims to group points belonging to the same class 

based on analysis of the height and slope for a certain point with its neighbours. 

Generally, two common segmentation procedures can be found in the literature, 

region-growing (Awrangjeb et al., 2014; Sampath & Shan, 2007) and clustering in the 

attributes space (Filin & Pfeifer, 2006; Kwak & Habib, 2014; Lari, Habib, & Kwak, 

2011). 

  

The region growing procedures (Vosselman, Gorte, Sithole, & Rabbani, 2004) start 

with identifying seed points that belong to the terrain. Then, the algorithm starts 

collecting adjacent points based on pre-selected parameters, such as height differences 

and slope to distinguish ground from non-ground points. The same concept can be also 

applied on a LiDAR DSM (Chen, Teo, Shao, Lai, & Rau, 2004; Geibel & Stilla, 2000; 

Jarząbek-Rychard, 2012). Rule-based procedures (e.g. area and shape) were 

considered to distinguish between building and trees (Awrangjeb et al., 2014).   

  

The second category of approaches (i.e. clustering in the attributes space) starts with 

computing attributes, for example, position of the local normal projection on the 

derived best fitted surface for each laser scanned point (Lari et al., 2011). A clustering 

step is then performed in order to identify homogenous points according to these 

attributes. The clustered segments are analysed based on some criteria (i.e. slope 

discontinuity, area, and height difference) to classify whether a point belongs to a 

ground or non-ground segment. Rule-based approaches can be applied to remove trees 

(Kwak & Habib, 2014). The main difference between these two approaches is that the 

region growing is applied to the spatial domain, while the clustering approach is 

applied to the attributes space (Kwak & Habib, 2014). The quality of both procedures 

depends on the quality of the selected seed points and the computed attributes. The 
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main limitation of solely point cloud methods is of the inability to remove tress 

completely (Yoon et al., 2008). 

 

Some building detection methods utilised laser points with interpolated DSMs. For 

instance, Meng, Wang, and Currit (2009) identified man-made objects from ground 

objects by filtering LiDAR-DSM. Then, the multi return properties of the laser points 

were utilised for the purpose of removing trees, but the ground vegetation could not 

be identified in this method.   

 

Ma (2004) proposed a texture information method, based on analysing the height 

difference of a point and its neighbours in a predefined window size. The differences 

between points and the plane in this window are utilised. Pixels located in a non-plane 

surface are eliminated because they are most likely to belong to trees. Zhang, Yan, and 

Chen (2006) used a similar approach to eliminate trees. Both approaches were not able 

to remove all trees, hence, a rule based procedure with respect to area was applied to 

remove the remaining trees. 

 

Other attempts have also exploited the geometric properties of trees such as area, 

shape, and compactness (Awrangjeb et al., 2014; Meng, Wang, & Currit, 2009) or 

surface roughness (Pfeifer, Rutzinger, Rottensteiner, Muecke, & Hollaus, 2007). Such 

procedures are able to remove separated trees, however suppressing those trees 

touching buildings is problematic. Distinguishing buildings from trees is a challenging 

task even in the case that an Normalised Difference Vegetation Index image is 

available (Markus Gerke & Xiao, 2014), especially in shadow regions.   

 

 Fusion of LiDAR data with imagery-derived information 

There are two ways data fusion of LiDAR 3D point cloud and imagery data is 

commonly used. Firstly, the nDSM is generated from LiDAR data, while the NDVI 

imagery is used only for tree removal. This can lead to poor building planimetric 

accuracy (Awrangjeb et al., 2010). Alternatively, extra imagery information like line 

segments can be exploited to improve the geometric quality of the building footprints. 
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However, buildings or building-parts located in shadow area can be missed completely 

(Awrangjeb et al., 2010; Qin & Fang, 2014; Rottensteiner, Trinder, Clode, & Kubik, 

2005). 

 

Due to the fact that trees may be difficult to be eliminate using LiDAR data only, 

several algorithms have used an NDVI image for this purpose (Huang & Zhang, 2011; 

Rottensteiner et al., 2007; Sohn & Dowman, 2007). While there are different sources 

of fusion errors (e.g. misalignment and resampling data) (Meng, Wang, & Currit, 

2009), this option has been the trend for the majority of approaches. However, the 

inefficiently of distinguishing trees located in shadow regions is the main drawbacks 

of using the NDVI.   

 

In order to mitigate the uncertainty of the NDVI, Rottensteiner et al. (2005) and (2007) 

computed strength metrics of the surface roughness and directness based on the 

concept of Förstner (1994) as texture information from LiDAR-DSM. The strength 

means the consistency measure of polymorphic feature detection performed on the first 

derivatives of the DSM. It represents the smoothed squared sum of the second 

derivatives of the DSM inside a defined filter size. Strength and directness were 

utilised to detect trees assuming that trees have less homogeneous surface compared 

with buildings. The elevation difference between two DSMs generated from the first 

and last LiDAR pulse returns were also exploited as a measure for tree removal. 

 

Other challenges of image analysis relate to the diversity of tree colour, and density of 

leaves due to changes in seasons. Awrangjeb, Zhang, and Fraser (2012) combined 

texture information called entropy with NDVI to mitigate such problems. It has been 

suggested that the fusion of compactness and NDVI may mitigate these effects (Gerke 

& Xiao, 2014). However, this may not help for removing trees hugging buildings 

because both are merged in one segment. 

 

More recently, the International Society of Photogrammetry and Remote Sensing 

(ISPRS) has made available a benchmark dataset including airborne images, LiDAR 

data, DSMs, and orthophoto for two cites (Vaihingen in Germany and Toronto in 
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Canada) for the purpose of urban object detection (Cramer, 2010). Many participants 

developed and tested their methods on the data provided. Their results were presented 

and evaluated in (Rottensteiner et al., 2014). All the methods showed a satisfactory 

result dealing with buildings larger than 50 m2 in Vaihingen, while no method reported 

could detect all the larger buildings in Toronto. The authors expected that the reason 

might be related to those complex buildings having extremely diverse elevation levels, 

which lead to missing some buildings having relatively low heights. Detecting small 

buildings of less than 50 m2 proved difficult. Many of them were missed by all 

methods, especially in Toronto. In general, methods based on a LiDAR DSM and 

orthophoto have shown higher average area-based quality than those based on point 

clouds and original images (Rottensteiner et al., 2014).  

  

In spite of the numerous approaches developed for building detection, the problem has 

still not been fully solved yet, and more work has to be done. For instance, problems 

related to eliminate trees (Gerke & Xiao, 2014), others are related to the quality of the 

generated DTM as presented in Rottensteiner et al. (2005), or are related to the 

complexity of the building objects (Rottensteiner et al., 2014).  

 

3.4 Approximate building polygons generation and refinement 

The result from the previous step is either a building mask (e.g. a binary image), or 

segmented laser points. In both cases, a list of boundary points is required for further 

enhancement. Those boundary points can be identified, for instance, using the Moore 

contour-tracing algorithm (Gonzalez, Eddins, & Woods, 2004), convex-hull-based 

technique (Pohl et al., 2017), or alpha-shape method (Albers, Kada, & Wichmann, 

2016). This list of points represents a vector chain defining the building outline, 

usually appearing as a jagged structure, which needs to be regularised for applications 

such as 2D map generation and 3D city modelling. The number of the boundary points 

needs to be reduced to the minimum in such a way that the characteristics of the 

original building shape are preserved. This step is referred to as building footprint 

extraction, and is followed by a refinement (i.e. simplification) of the building outline. 

The result should be a polygon describing the same properties of the original building 

object with a significant reduction of the number of boundary points.  
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Building polygon generation can be done based on the detected building results (as 

discussed in 3.3), or utilising additional information such as cadastral maps (Henn, 

Gröger, Stroh, & Plümer, 2013; Kada & McKinley, 2009; Vallet, Pierrot-Deseilligny, 

Boldo, & Brédif, 2011). However, these are not always available or maybe not up-to-

date (Brédif et al., 2013; Pfeifer et al., 2007).  

Methods based on oblique images and video sequences for extracting 2D building 

outlines have been also attracted attention by researchers (Bulatov et al., 2014; Bulatov 

& Lavery, 2010). Line segment algorithms (e.g. Canny (1986)) are commonly applied 

on orthophoto images to enhance the planimetric accuracy of building outlines 

(Awrangjeb et al., 2010) where only line segments which are more than 3 meters in 

length are considered. However, generation of an orthophoto is either based on DSM 

or DTM (Rottensteiner et al., 2014) in order to mitigate the geometric errors caused 

by the relief displacement. These errors rise with increasing building height and 

therefore appropriate co-registration of image and DSM is needed to manage these 

errors (Gerke & Xiao, 2014).  

 

Since a DSM is the reference for creating the true orthophoto, edges or outlines 

obtained from LiDAR DSM may be more accurate compared to those obtained from 

ortho-photo depending on the point clouds density. The efficiency of image-based line 

segments reduces significantly in shadow regions. According to (Kwak, 2013), lines 

or edges extracted from images do not necessarily belong to the actual building outline 

because of shadow effects, noise, or non-relevant features close or on the top of the 

building. Therefore, an appropriate solution based only on DSM might be preferable 

in order to overcome the co-registration or alignment errors and to avoid the shadow 

problems. Generally, building 2D outlining can be grouped into model- and data-

driven methods (Tarsha-Kurdi, Landes, Grussenmeyer, & Koehl, 2007), or a hybrid 

model combining both methods (He et al., 2014). 

 

 Model-driven approaches 

The model-driven approaches provide regular approximated polygons where the data 

is required to perform a best-fit. The aim is to approximate a parametric model from 
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an existing library which comprises of basic building designs to be fitted to a given set 

of boundary points. These are robust and computationally effective approaches. In 

addition, the constraints and topological relationships between the polygon sides have 

to be fixed (Avbelj, 2015), which reflect the orthogonality and parallelism 

assumptions. Therefore, buildings having characteristics not represented in the library 

of models will be problematic.  

 

The majority of the existing model-driven approaches, (e.g. (Hammoudi & Dornaika, 

2010; Henn et al., 2013; Kada & McKinley, 2009) have been developed in terms of 

3D building model construction. In the context of the 2D model-driven approaches, 

the Minimum Bounding Rectangle (MBR) procedure is commonly implemented 

(Arefi, 2009; Avbelj, 2015; Dutter, 2007; M Gerke, Heipke, & Straub, 2001; Kwak & 

Habib, 2014). Overcoming the problem of noisy building data is the main advantage 

of this approach due to the prior assumption of the building shape. The main drawback 

is that only buildings with right angles can be modelled, which is often not the case for 

complex buildings. Accordingly, non-rectilinear buildings are erroneously simplified, 

or represented by overly complex polygons (Avbelj, 2015). 

 

The Minimum Bounding Rectangle can be estimated from given boundary of points 

(Figure 3.1(b)) representing a building segment (Figure 3.1(a)), which then, used as an 

initial solution (the red polygon in Figure 3.1(c)). The MBR is computed by rotating 

the original polygon around its centroid sequentially (Arefi, 2009). The bounding box 

with minimum area is the MBR, with consideration given to the main direction. If 

more details are required, the building segment is subtracted from the bounding 

rectangle, and a new rectangle is found from the remainder if it has a significant area, 

as can be seen in the black object in Figure 3.1 (d). The part represented by the green 

polygon (Figure 3.1 (f) should be eliminated from the MBR as shown by the red 

polygon (Figure 3.1 (g)). Nevertheless, sometimes, the orientation of the sub 

rectangles does not align with the orientation of the first MBR, depending on the shape 

of the obtained overlapped area (the black area in Figure 3.1(d). If the new rectangle 

has an overlapping region with the building segment, this overlapping region is added. 

The procedure of subtracting and adding rectangles is recursive and is repeated until 
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the deviation between the building mask and the rasterised polygon is smaller than a 

user-defined threshold. Thus, it is denoted as the Recursive MBR (RMBR). More 

details can be found in  Avbelj (2015) and  Kwak and Habib (2014). 

 

Figure 3.1: Procedure of generating RMBR. Raster image shows building segment (a). 

The extracted boundary points (black dots) are shown in (b). (c) shows the MBR 

created (red box). Non-overlapped area (black) resulting from the subtraction of the 

original building segment from the MBR is given in (d). (f) shows the new polygon 

(green) which should be extracted from the MBR. The final RMBR extracted is given 

in (g). 

 
Based only on a DSM, Lafarge et al. (2008) proposed a model-driven approach using 

Marked Point Process (MPP). The authors make the assumption that buildings can be 

described by multiple connected rectangles. Connected rectangles are delineated by 

enhancing the connection between the corresponding edge of the roof, and the 

neighbouring rectangles. The resulting footprints are then exploited in the 3D building 

reconstruction. A similar approach has been presented by (Brédif et al., 2013). 
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 Data-driven approaches 

In contrast to the model-driven approach, existing knowledge of the building model is 

not required in the data-driven methods. They are free for pre-existing constaints, and 

therefore offering more flexibility in formulating any building outline. However, data-

driven methods still face difficulties in the case of missing data to be recovered (Sohn 

et al., 2012). Additionally, it is often difficult to formulate constraints or a set of rules 

to implement the data-driven methods, making them more complex than the model-

driven ones (Kwak & Habib, 2014). 

 

The data-driven approaches commonly incorporate a combination of the Douglas-

Peucker (DP) algorithm (Douglas & Peucker, 1973), the Random Sampling Consensus 

(RANSAC) method (Fischler & Bolles, 1981), and the Hough transform (Hough, 

1962). A smaller number of reported studies are based on histogram analysis (Alharthy 

& Bethel, 2002; Pohl et al., 2017) or on the Sleeve line fitting algorithm (Zhiyuan Zhao 

& Saalfeld, 1997); Zongze Zhao, Duan, Zhang, and Cao (2016)). 

 

The Douglas-Peucker (DP) algorithm has been acknowledged by Jwa et al. (2008) as 

the most effective simplification algorithm of open and closed polygonal chains. 

Starting from an arbitrary point (the red triangle in Figure 3.2(a)), the algorithm 

connects a straight line (the blue line in the same figure), which divides the boundary 

points into two approximately equal sub-chains. Then, a new polygon vertex is 

determined (the green star indicated by the blue arrow in Figure 3.2(a)), which 

corresponds to a boundary point that has the maximum distance to the blue line. This 

is then utilised to obtain the new nominated edges represented by the blue line in Figure 

3.2(b). The procedure recursively extracts straight lines from the recently marked 

vertex, which has a distance to the determined edges larger than a pre-defined tolerance 

until returning to the start point. Figure 3.2(d) shows the final simplification result 

depicted by the green closed polygon.  
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Figure 3.2: Concept of the DP algorithm. (a) shows the first conducted line (blue) starts 

from the first vertex (red triangle) and divides the boundary points (black dots) into 

two sub-chains, while the red line nominates a new vertex corresponding to the farthest 

boundary points to the blue line. The algorithm iteratively creates straight lines from 

new nominated vertices that has farthest distance to the nominated edges until 

returning to the start point as shown in (b) and (c). (d) shows the final created polygon 

(green). 

 

The Hough transform method is also used to extract line segments identified by a 

parametric equation including boundary point coordinates, distances to the origin, and 

direction of the line normal (angle). Each boundary point is converted into a curve in 

the parameter space. Then, it uses an accumulator array to accumulate votes for the 

parameters of each line segment. The result is a set of non-connected and overlapped 

line segments corresponding to the most plausible lines that can be detected based on 

the parameters. Further post-processing is required to obtain a closed polygon, 

including merging, extending, and deleting. A number of studies are based on this 

algorithm (e.g. Albers et al. (2016), Guercke and Sester (2011),  Höhle (2017)) and 

(Widyaningrum, Gorte, & Lindenbergh, 2019). Line segments shorter than 1.5 metres 
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were not considered in Albers et al. (2016).  It is also useful to detect edges which are 

parallel or perpendicular to each other (Arefi, 2009), as well as to find the dominant 

building direction. The disadvantages of Hough transform is that it is computationally 

inefficient and sensitive to the fitting parameters (Mongus et al., 2014). 

 

The RANSAC algorithm is a robust line fitting algorithm that is often applied to data 

with a high level of outliers. A random number of points have to be selected first 

(minimum two points in the case of lines) to solve for the model (straight line). A 

distance threshold is utilised to identify points as inliers (points having a small distance 

to the fitted line), otherwise they considered as outliers. Compared to the DP algorithm, 

this distance threshold has a similar meaning as the tolerance threshold. If the number 

of inliers is higher than a certain defined value, the fitted line is stored and the inliers 

points belonging to it, are identified. A different set of random points are then chosen 

and the process is repeated. After a specific number of iterations, the model with the 

highest consensus group (largest number of inliers points) is determined and the model 

computation is repeated using all the inlier points to fit the line. The process is repeated 

until no further lines can be extracted. Similar to the Hough transform, the output is a 

set of disconnected line segments. Therefore, the adjacent line segments need to be 

connected, and then reoriented based on the rectilinearity assumption followed by an 

adjustment step (Jarząbek-Rychard, 2012; Neidhart & Sester, 2008; Sester & Neidhart, 

2008).  

 

The aim of the RANSAC and Hough algorithms is to detect line segments. This does 

not guarantee that enough lines with be detected in order to form a building outline. 

Therefore, further processing (e.g. extending, merging, deleting) is required in order 

to obtain a closed polygon that can be used as an initial approximation for a building 

footprint. If a significant part of the building is missing from the data, it is very difficult 

to recover it again. In addition, it has been shown that the so called multi-model 

RANSAC is very problematic as the number of the models needs to be  identified by 

the user (Toldo & Fusiello, 2008). Most of the existing data-driven approaches have 

been implemented so that they exploit an initial solution based on the DP algorithm 

(He et al., 2014; Jwa et al., 2008; Maas & Vosselman, 1999; Sohn et al., 2012; Wang 
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et al., 2006). This is because it can provide closed polygons directly without further 

processing. It has been empirically demonstrated that the DP is an accurate line 

segment algorithm (Shi & Cheung, 2006) that is able to maintain the original shape 

(Song & Miao, 2016). Thus, many existing methods have utilised it e.g. (Li, 

Rottensteiner, & Heipke, 2019) 

 

In terms of the model-driven approaches (e.g. RMBR), they are designed for the case 

where buildings are comprised of right angles only between lines. When dealing with 

a complex building structure, such assumption are not suitable (He et al., 2014). For 

modelling regular shapes with a low level of noise the DP model is often sufficient 

and generates acceptable results. However, the efficiency of the DP model declines 

when increasing the irregularity of the building boundary points, because it is 

inherently sensitive to the noise and to the position of the starting point (Mousa et al., 

2019).  

 

In data-driven approaches, building characteristics like angle detection and area 

preservation are not considered in the processing. This inherent flexibility of data-

driven approaches is considered preferable to solve the problem of modelling the more 

complex buildings. Further, even though the obtained polygons from model-driven 

methods (e.g. RMBR), are smoother (more regular) than those generated by data-

driven methods (e.g. the DP algorithm), refinement of both model-driven and data-

driven outputs are necessary. This refinement is most performed in terms of the least-

squares adjustment.  

 

 Refinement of building polygons 

The goal of refining the building polygons is to find the best-fit polygon edges to the 

given boundary points (in this context called observations) using optional weighting 

and constraints which enforce the geometric relationships between the polygon edges. 

Because the building footprints can usually be well represented by a rectangular shape 

or a set of joint rectangles, they are often assumed to be modelled by rectilinear 

polygons. Hence, the orthogonality and parallelism are the basic assumptions in all of 
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the existing methods. Since the adjacent polygon edges are orthogonal, the parameters 

of such edges can be estimated, and the mathematical model can be written as a slope 

function (Sampath & Shan, 2007), or normal function (Avbelj, 2015; Kwak & Habib, 

2014).  

 

For rectilinear polygons, constraints for the edge or line segment are required (e.g. 

location, rotation, height and width, or normal vector distances between each edge and 

the origin of the coordinate system), and the relation between the adjacent edges 

(Avbelj, 2015). In some studies, the longest edges are given more weight in the 

refinement adjustment (Sampath & Shan, 2007), or the weights are estimated from the 

spectral imagery properties (Avbelj, 2015). In comparison, others perform the 

adjustment without weighting (Awrangjeb et al., 2010; Kwak & Habib, 2014). Partovi, 

Bahmanyar, Krauß, and Reinartz (2017) claimed that giving different weights does not 

influence the accuracy of resulting polygons and therefore, the identity matrix was 

used. 

 

According to Avbelj (2015), while adjusting the detected line segments individually, 

the topological relationships of edges will be lost and therefore geometric constraints 

should be included in the adjustment by an extra set of Lagrangian multipliers or 

pseudo observations. For example, Arefi (2009) estimated the dominant building 

direction based on analysing line segments derived by Hough transform. Then, the 

other edges of the polygon were adjusted accordingly. While, Awrangjeb et al. (2010) 

and Awrangjeb (2016) assumed that the main building direction corresponds to the 

longest line segment which is then used as the basis to adjust the other building edges. 

Sampath and Shan (2007) considered that the longest line segment most likely 

corresponds to the main direction. Then, the extracted edges were grouped into two 

observation groups which were either parallel or perpendicular to the main direction 

to achieve the adjustment. Kwak and Habib (2014) defined the main direction from 

the derived MBR (with a significant overlap with the boundary points) after adjusting 

it. Such MBR with this condition is more reliable, but the method of how to estimate 

it was not defined. The subsequent rectangles were adjusted according to orientation 

of the first MBR. Another adjustment procedure proposed by Höhle (2017) constrains 
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the adjacent line segments to be orthogonal. Coordinates of corner points are estimated 

first. During adjustment, the positions of corners are updated until every two 

neighbouring line segments are orthogonal.  

 

Solving the adjustment of rectilinear polygons requires two steps. Firstly, solving the 

orthogonality problem as described above. The second step is to solve the best-fit of 

the polygon edges with their corresponding boundary points, which can be achieved 

by minimising the orthogonal distances between them. The majority of the existing 

methods exclude the second step. Nevertheless, these two steps must be solved 

simultaneously in order to achieve more accurate building polygons. 

  

Determining the dominant building direction is a challenging task, especially for 

rectilinear buildings. In the literature two approaches have been found when estimating 

an initial solution. The first approach  is the estimation of the main direction based on 

methods such as Hough transform (Arefi, 2009) or the longest line segment 

(Awrangjeb et al., 2010), where it is fixed and the other polygon edges are adjusted 

accordingly. The second assumption is the estimation of the dominant direction from 

the derived MBR (Avbelj, 2015; Kwak & Habib, 2014), which is then used to adjust 

the polygon accordingly. In both cases, the initial solution for the dominant direction 

is not necessarily accurate enough to provide an acceptable solution.  

 

Based on the initial solution, boundary points are labelled to belong to their 

corresponding polygon edges. However, none of the existing building outline 

regularisation methods proposes re-labelling of the boundary points to their 

corresponding rationalised edges during the adjustment. Consequently, the accuracy 

of the resulting building polygons is limited to the initial solution, and further 

improvement in the geometric accuracy may not be achieved. Therefore, a method for 

updating the assignment of the boundary points in the adjustment is recommended to 

enable greater regularisation accuracy.  
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4 Chapter four Methodology 

4.1 Overview 

This chapter details the proposed building footprint extraction methodology, as 

summarised in Figure 4.1. Initially the LiDAR point cloud data are cleaned from 

outliers, then rasterised as a pre-processing step. A new DTM extraction algorithm is 

then proposed to overcome shortcomings of the existing methods. Further, nDSM, 

NDVI, and the planarity map are generated and fused for the purpose of detecting 

building regions. The approximate building polygon is generated. This step includes a 

novel data-driven method to create approximate polygons for rectilinear and non-

rectilinear buildings. Boundary refinement based on the adjustment of a GMM and 

GHM is performed. A new algorithm is introduced for assigning boundary points to 

their corresponding polygon edges. Accordingly, a new procedure for calculating the 

absolute accuracy (similarity) between two polygons (i.e. extracted polygon and its 

reference) is explained utilising the RMSE measure.  

 

4.2 Pre-processing 

Points of a 3D LiDAR data are randomly distributed in space, meaning they are not 

ordered in a regular grid pattern due to the outliers. Transforming them into a regularly 

gridded DSM is needed for computationally efficient post-processing. To do so, outlier 

removal must be performed in advance of this process. The next two sections describe 

both processes. 
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Figure 4.1: Workflow of the proposed methodology. 
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 Outliers removal 

Laser scanned points commonly contain outliers. Two categories of outliers may exist, 

namely low outliers (e.g. negative elevation values) and high outliers (e.g. too high 

elevation). Low outliers are usually caused by reflection of light from elements in the 

atmosphere, power lines, or birds. High outliers are mainly caused by multiple 

reflections. The type of the target material plays an important role on light reflection, 

such as water bodies. Consequently, the reflected laser light can be too weak or never 

observed by the receiver leading to missing data.  

 

The most common statistical method for outliers detection is based on the normal 

distribution of the data, e.g. Grubbs’ Test (Grubbs, 1969). In this thesis, the procedure 

is applied based on the normal distribution as well as visual inspection. The first step 

is to visualise the normal distribution of elevation data (Z), as shown in Figure 4.2(a). 

In this example more than 99 % of the data is distributed between zero and 70 metres, 

even though there are isolated raw data points with elevations as low as negative 300 

m, and as high as 300 m. Thus, the low and upper limits LL and UL quantiles of Z are 

computed as: 

(𝐿𝐿𝐿𝐿,𝑈𝑈𝑈𝑈) =  quantile (𝑍𝑍, [ 𝑎𝑎, 𝑏𝑏]), (4.1) 

where 𝑎𝑎 and 𝑏𝑏 are the cumulative probability values e.g. [ 0.0001, 0.9999]. Points that 

have an elevation lower than LL or higher than UL are omitted.  

 

Figure 4.2: Normal distribution of data, (a) and (b) before and after outliers removal 
respectively. 
 
 
The outliers were removed in the first stage for all input point clouds in the case study 

area. Accordingly, the normal distribution of the data after removing the outliers is 

shown in Figure 4.2(b). However, if the data has many outliers (i.e. locally and 
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globally) this procedure may not be able to remove the outliers in an efficient manner. 

In this case data can be divided into smaller patches and the same process is then 

performed individually on all the patches as suggested by Carrilho, Galo, and Santos 

(2018). 

 

 Data rasterisation 

The 2D transformation of the laser points into a regular grid is performed according to 

equation (2.2), where the column and row in the gridded raster represent respectively 

its latitude and longitude. Each pixel has a value which represents the elevation. 

 

The rasterisation process often requires interpolation to partly cover for missing data 

(e.g. filling holes on planar surfaces such as roofs). There are many alternative 

interpolation techniques such as linear interpolation, nearest neighbour (NN) selection, 

and inverse distance weighting (IDW) interpolation. According to Arefi (2009), the 

NN introduces less interpolation error, especially at building edges. However, in low 

density point clouds, the linear interpolation performs better than the NN.  

 

In the Figure 4.3 example the red cross identifies a pixel which does not have a 

corresponding value in the point cloud. Indeed, this pixel belongs to a building as can 

be seen in the orthophoto, but due to reflection errors, there are no points available at 

or close to the location of the red cross in the point cloud data. Using linear 

interpolation, the pixel has been assigned an elevation equal to 20.4 m, approximately 

2 meters above ground, and coincides with the surrounding points. By assigning this 

value, it increases the possibility for correctly identifying the pixel as an off-terrain 

pixel. In contrast, this pixel has been assigned an elevation value equal to 18.56 m 

using the NN method, which can lead to misclassification error. The linear 

interpolation technique is utilised during rasterisation of point cloud data for this 

thesis. 

 

The linear interpolated elevation value Z of a pixel C (i.e. 𝑍𝑍𝐶𝐶) located between two 

known pixels A and B can computed as follows: 
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𝑍𝑍𝐶𝐶 =  
𝑑𝑑𝐶𝐶 𝐵𝐵�������⃗
𝑑𝑑

 𝑍𝑍𝐴𝐴  + 
 𝑑𝑑𝐶𝐶 𝐴𝐴�������⃗  
 𝑑𝑑  

 𝑍𝑍𝐵𝐵, (4.2) 

where 𝑑𝑑 is the interval distance between A and B; while 𝑑𝑑𝐶𝐶 𝐵𝐵�������⃗  and 𝑑𝑑𝐶𝐶 𝐴𝐴�������⃗   are the 

horizontal distance between C and the known points B and A respectively. 

 

Figure 4.3: Comparison between interpolation methods. Left to right: mask 

representing missing data/holes, orthophoto, DSM created using linear interpolation, 

and nearest neighbour interpolation. The red cross indicates missing data, by Linear 

interpolation method partially covered this missing data (DSM value = 20.4153 m), 

while by Nearest method, (DSM value = 18.56 m) the same as to the ground.  

 

4.3 DTM and nDSM extraction 

This section details the DSM refinement step then presents the proposed DTM 

extraction algorithm.  

 DSM refinement 

It is well-known that building outlines often appear jagged due to inadequate sampling 

of the point cloud data. Moreover, a DSM may still have outliers that were not detected 

and removed. Therefore, a refinement step for the DSM may be necessary, which is 

then used for creating the nDSM. The degree to which noise affects the building edges 

depends firstly on the density of the point cloud. In order to mitigate this problem, a 

median filter (MF) is applied. Small elevated objects may disappear in this step, but 

building outlines will be modelled more precisely as well as improving the DSM 

quality against outliers (Bulatov et al., 2014). Another advantage of DSM refinement 

is that the associated sharp edges can improve the accuracy of building geometries. In 

addition, the process of separating DTM from DSM can be performed more efficiently 
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because the height difference is the most effective and meaningful parameter in this 

context. The disadvantage if the filtering is too wide is that close adjacent buildings 

may merge into a single complex shape. This can lead to an increase percentage of 

false positives, and the regularisation result can then become less reliable. Therefore, 

the size of the median filter must be chosen carefully.  

 

Figure 4.4(a) shows an example DSM before median filtering. Refinement results for 

the described methodology are shown in Figure 4.4(b). Figure 4.4(c) presents the cross 

section profile taken over a building before (red line) and after (green line) applying 

the median filter. It can be seen that the noise at a building edge is suppressed when 

using the refined DSM.  

 

Figure 4.4: DSM refinement: (a) before and (b) after applied median filter. (c) 

illustrates cross section profiles taken over a building before (red line) and after (green 

line) applying the median filter. 

 

 The proposed DTM extraction algorithm 

Understanding the physical properties of the ground surface is the starting point to 

develop a DTM extraction algorithm. The main geometrical parameters for describing 

a ground point are the elevation in local area, slope measure, and elevation difference 

between adjacent points within a certain window size (see section (2.5)). The majority 

of the existing methods are developed according to these indicators. The proposed 

DTM extraction algorithm in this thesis is based on the directional scanning 
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algorithms. The directional scanning algorithm starts with determining the lowest 

elevation pixel in a scanline, and considers this as a terrain pixel (Perko et al., 2015). 

The scanline refers to a one directional line where there are a number of pixels located 

along the line within a certain filtering size for a gridded DSM. For instance, consider 

the grey pixels in Figure 4.5 as scanlines, the multi-directional and slope dependent 

method (MSD) (Perko et al., 2015) is presented in Figure 4.5(a), while (b) shows the 

proposed directional scanlines. The pixel under evaluation (e.g. to be determined if 

this pixel is a ground pixel or not) is the pixel positioned in the centre of the applied 

filter. If the height difference between the pixel under examination and the lowest pixel 

within the mask is more than a pre-defined height threshold, the pixel is categorised 

as an off-terrain pixel. Otherwise, the slope between the current pixel and the following 

pixel in the performed scanline direction will be calculated. Then, this pixel is 

classified as being off-terrain if it exceeds a pre-defined slope threshold.  

 

In general, the drawbacks of existing DTM extraction algorithms are due to either their 

sensitivity to the slope parameter, or the prior smoothing of DSM (or a combination 

of both). Regarding the directional scanning methods, other sources of errors can be 

introduced into the process as follows: 

 

(i) No ground points in scanlines. 

The determination of ground pixels that are located on the terrain is critical as 

pixels having the minimal elevation in the scanlines do not necessarily belong to 

the terrain. This depends on the complexity of the structure in the area of interest, 

that is, the density of the built-up area, size of the man-made objects, and the 

dimensions of the applied filter. If incorrect pixels are chosen as minima, 

misclassification results can occur. Extending the filter size and therefore the 

length of the scanlines is not an ultimate solution to the problem because it can 

lead to some raised terrain pixels being wrongly determined as being off-terrain 

pixels, especially in sloped regions. 

(ii) Selection of incorrect minima in sloped regions. 

Elevation difference between the pixel under examination (centre of the filter) 

and the minima can be considerable when dealing with sloped regions. In this 
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case the minima is often placed at the end of the filter due to the sloping terrain. 

This can lead to classification error because the local structure of the terrain is 

not considered. Perko et al. (2015) used ground slope fitting by applying a 2D 

Gaussian smoothing filter to overcome this limitation. However, such a pre-

smoothed DSM can lead to inaccuracies because of the level of smoothing 

applied to the input DSM. Consequently, misclassification may occur. 

 

(iii) Slope angle as a measure. 

The slope is the most sensitive parameter for all of the existing DTM extraction 

algorithms (Zhang et al., 2003; Zhang & Whitman, 2005). The problem is clearly 

demonstrated in very high resolution DSMs because the differences of slope 

values between the adjacent pixels are considerable without transitioning from 

terrain to off-terrain, or vice versa. More details can be found in (Mousa et al., 

2017). 

 

Figure 4.5: Directional scanlines for minimum point selection, (a) MSD approach and 

(b) the new proposed Network of Ground Points (NGPs) approach. 

 

Based on these drawbacks, a new method of filtering the DSM to establish DTM, 

described as a Network of Ground Points (NGPs) approach is proposed in this work. 

Three input parameters are required together with the ground sample distance (GSD) 

of the input DSM. These parameters are the dimensions of the filter (which should be 

larger than the maximum building width), a height threshold for judging the validity 

of ground points, and a parameter for extracting ground mask by analysing pixel 

heights in an initial nDSM. All thresholds are descriptive and can be set easily. The 

steps for the proposed method can be summarised as follows: 
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(i) Apply new NGPs filter structure (see Figure 4.5(b)) based on the MSD 

(Perko et al., 2015) (see Figure 4.5(a))- in such a way that well-distributed 

ground points can be determined.  

(ii) Checking the validity of the selected ground points by setting a height 

threshold. 

(iii) The accepted terrain points are then stored in their georeferenced position 

of the original DSM into a 2D grid (Figure 4.6(a)). 

(iv) Generating an initial DTM by filling gaps between the selected terrain points 

using an interpolation technique (Figure 4.6(b)).  

(v) Generating an initial nDSM.  

(vi) Identify pixels in the initial nDSM having less than a pre-defined threshold 

as terrain points, as in the equation (4.3). The other pixels are assumed to be 

off-terrain points and are to be removed (Figure 4.6(c) and (d)). 

(vii) Filling holes associated with removing the off-terrain points to generate the 

final DTM (Figure 4.6(e)). 
  

GroundMask = (abs (nDSM)) < threshold)) (4.3) 
 
The process of the minima selection of ground pixels in the eight scanlines (grey lines 

Figure 4.5(b)) is conducted within a pre-defined window size which is moved across 

the whole DSM raster. This process creates a Network/seeds of Ground Points; thus 

this algorithm is denoted by the name of NGPs algorithm. The intersection points 

between the crossed scanlines (pixels highlighted in orange in Figure 4.5(b)) are 

eliminated to avoid scanlines sharing the same pixel as minima. As the designed filter 

has eight scanlines (Figure 4.5(b)), eight ground points are selected together with their 

lowest elevation. The lowest point(s) from those eight are optionally omitted to avoid 

points from regions that are too low (below the ground). Then, height differences 

among the rest of the points are analysed. A point that has an extremely high elevation 

difference and exceeds a threshold should be omitted as well. This threshold is 

introduced in order to overcome the first drawback, that is, where no ground points 

can be found in a scanline. For instance, if all pixels in a scanline belonging to an off- 
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Figure 4.6: Steps for the DTM generation by the NGPs algorithm. Ground points 

(GPs) selected as minima on an artificial DSM (a), initial DTM (b), and vertical 

threshold limits (c), ground mask (d), and final DTM (e). 
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terrain area, then the minimum pixel in this scanline also belongs to an off-terrain area. 

Thus, it is anticipated that the height difference for this specific pixel in this scanline, 

compare to the minimum pixel value of all the eight scanlines, is higher than a pre-

defined threshold. This off-terrain pixel is then omitted. Figure 4.6 illustrates the steps 

of the method, using a 40 metre window size for the filter, which is moved by 20 metre 

intervals. The figure shows an example for one scanline. The filter is moved across the 

whole DSM raster, at the same time the selected ground points are stored with their 

georeferenced position of the original DSM into a 2D grid. In Figure 4.6(a), a number 

of ground points (black dots) are selected from the input DSM (blue line) 

automatically. Then, an initial DTM is created by filling gaps among the selected 

ground points by the inward interpolation technique. The pink line in Figure 4.6(c) 

represents the created initial DTM.  

 

Even though, the quality of the initial DTM is quite acceptable for many applications, 

two more steps (v and vi) are introduced, as presented in Figure 4.6(c) and (d), in order 

to obtain a more detailed DTM ( see Figure 4.6(e)). In these two steps, an initial nDSM 

is created. For the initial nDSM, pixels having an elevation within a limit (the green 

dashed lines) are identified to create a ground mask as in equation (4.3). Then, their 

corresponding pixels from the input DSM are classified as ground pixels (mask) (red 

dots in Figure 4.6(d)). The classification decision is made based on the height 

difference between each pixel in the initial DTM with its corresponding pixel from the 

input DSM. This means no comparison has been made with a pixel somewhere in the 

scanline (related to the second drawback), nor with its adjacent pixels considering a 

slope threshold (related to the third drawback). Therefore, the possible errors resulting 

from the second and third drawbacks are overcome. The final DTM is depicted by the 

dashed black line Figure 4.6(e). 

 

After a DTM is created, an nDSM describing buildings and trees can be generated by 

subtracting the DTM from DSM. 
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4.4 Building segments extraction 

The major objectives of this thesis are to identify building segments as well as their 

outlines. Thus, the focus is put on eliminating trees only which are the dominant non-

building object that interferes with building outline extraction. Comprehensive 

classification of non-building objects other than trees is outside of the scope of this 

work.  

 

In order to eliminate trees, the NDVI map is generated using equation (2.1). The NDVI 

values range from -1 to 1. Experimentally, pixels having NDVI values more than a 

pre-defined threshold (e.g. 0.15) are likely to belong to vegetation. This NDVI 

threshold (0.15) may differ from area to area, and is dependent on many factors such 

as season, density and geographic location. Non-vegetation pixels usually have low 

NDVI values (e.g. less than 0.15). However, if vegetation is located in regions of 

shadow the corresponding NDVI values are very low and may be missed. To overcome 

this limitation, the additional planarity measure is considered (see section 2.4.2). 

 

The planarity measure differentiates between planar areas such as terrain and flat roofs 

(values are close to 1), and areas with large variations in height. Areas of large height 

variation can be areas close to walls (values are close to 0, because there is a jump in 

elevation), trees (values are close to 0 except for the tree crown, which constitute 

smaller regions of higher than 0 values) and inclined roofs (which, depending on 

inclination angle, have an approximately constant value between 0 and 1).  
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Figure 4.7: Generation of the building mask. Orthophoto, DSM, and nDSM (across 

top), NDVI, Planarity Map, and Building Mask (across bottom). The red cross belongs 

to a tree in a shadow area. 

 
 
The overall decision rule using NDVI and planarity measure is given by:  

BuildingsMask = (nDSM > threshold) & ((NDVI < 0.1) | ( NDVI < 0.15 & planarity > 0.6)) (4.4) 

 

Pixels satisfying equation (4.4) are labelled as building pixels. The result is a binary 

image separating all building segments (value 1) from the background (value 0). In 

Figure 4.7, the marked point (denoted by the red cross) belongs to a tree in an area of 

shadow. Its NDVI value is 0.08, which is too low to be recognise as vegetation, for 

which the threshold is set to 0.15. However, its planarity measure is 0.22, and therefore 

lower than the required threshold of 0.6, indicating that this point does not belong to a 

building. Therefore, the point is correctly eliminated from the nDSM when forming 

the building mask. It is important to emphasize that the parameters in (4.4) were 

determined empirically. In addition, small objects (e.g. with an area of less than 10 m2) 
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are eliminated because firstly, they are likely associated with shadow tree crowns, 

vehicles, or just noise, and secondly, buildings and building parts with an area less 

than 10 m2 are too small and rarely exist. Finally, morphological filtering is performed 

to fill small holes in the building mask that may occur. 

4.5 Generation of approximate building polygons 

The next step includes extraction of approximate building polygons. As an initial step, 

a list of boundary points for each building should be extracted. Then, the proposed 

data- and model-driven approaches for the generation of approximate building 

polygons are applied. Lastly, the proposed labelling algorithm is used to label the 

boundary points to their corresponding polygon edges.  This section explains these 

steps in detail. 

 

 Extraction of boundary points to initialise building polygon 

The Moore contour-tracing algorithm (Gonzalez et al., 2004) can be efficiently utilised 

for the initial tracing of the building outlines. More specifically, the algorithm traces 

the boundary of a building in a binary image in which pixels having values of one 

belong to a building, and pixels with a value of zero represent the background. The 

positions (row and column) of those pixels having both the building object and the 

background as neighbouring pixels are then identified. This procedure is performed 

for each single building segment in a scene. In cases where a building segment has a 

‘hole’ of zero-valued pixels, it is flagged as a building with an inner polygon. The 

boundary points for this inner polygon are extracted using the same procedure. Figure 

4.8 presents building regions on the left and the extracted boundary points on the right.  
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Figure 4.8: Extraction of boundary points. Left to right: building segments and the 
extracted boundary points. 
 

 Data-driven approach for polygon simplification 

The goal of the building polygon simplification method is to find the minimum number 

of vertices through a list of boundary points that can represent a building outline 

similar to the original building shape. These vertices represent the corners of buildings, 

where the direction of the boundary points change locally. Connected lines between 

adjacent vertices are called line segments, representing the shape of a building as close 

as possible to the real object. In the context of polygons, polylines, and curve 

simplification, the Euclidean distances between the boundary points and their 

corresponding line segments is the only criterion considered to solve the simplification 

problem. The Douglas-Peucker (DP) algorithm considers the distance from the farthest 

boundary point to its corresponding line segment, which is why it is sensitive to noise. 

For instance, in a noisy building shape, some boundary points may be located far from 

their corresponding edges, which may cause the extraction of incorrect vertices 

depending on the distance/tolerance threshold used. Instead, the building 

characteristics have to be considered to achieve appropriate level of simplification. 

 

A list of boundary building points is given from the previous steps, and is ordered in 

any direction (i.e. clockwise or anti-clockwise). Let a building outline be denoted 

by 𝑃𝑃 =  {𝑝𝑝1,𝑝𝑝2, … 𝑝𝑝𝐼𝐼}, where 𝑝𝑝𝑖𝑖 =  {𝑥𝑥𝑖𝑖,  𝑦𝑦𝑖𝑖} is the geometric coordinates of point i 

located on the border. The goal is to find a simplified building polygon 𝑉𝑉 =
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 {𝑣𝑣1, 𝑣𝑣2, … 𝑣𝑣𝐽𝐽}, with v being the vertices, and V ⊂ P and 3≤ J ≤I, where J is the number 

of vertices, V is a closed circular sequence of J vertices (VJ+1 = V1 )  (Backes & Bruno, 

2013). In this context, the orthogonal distances (E) between each boundary point Pi  

and its corresponding line segment j are calculated as provided in equation (4.5). 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = arg min𝑗𝑗 (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑃𝑃𝑖𝑖 ,𝑉𝑉𝑗𝑗𝑉𝑉𝑗𝑗+1��������������⃗ )) (4.5) 

Figure 4.9 illustrates an example of a list of boundary points which need to be 

simplified. Starting from an arbitrary point (e.g. indicated by the black triangle V1 in 

Figure 4.9(a)), the goal is to find the most probable vertices that define the simplified 

building outline. Logically, points located at a building corner (e.g. point presented by 

orange triangle Figure 4.9(b)) should be nominated as vertex V2. However, automation 

of this process is a challenging task. To achieve this the following criteria are 

considered: 

 

1. Distance (D): V2 can be defined as the farthest point from V1 which must achieve 

three criteria: acceptable RMSE (within user defined value), preservation of 

building area, and the point V2 should be positioned as close as possible to the 

corner in order to reduce unnecessary boundary points. 

2. Error (E): The RMSE of the boundary points between V1 and V2 must be 

acceptable. 

3. Area (A): While reducing the unnecessary points between V1 and V2, the area 

enclosed by the remaining points should be as close to the original area as 

possible. 

4. Angle (Θ): V2 must not be located on a straight line considering the previous and 

subsequent points. This criterion is established for identifying building corners 

(vertices). The priority is given to angles close to 90 degrees.  

These four criteria are essential to solve the problem of building outline simplification 

from a list of given points. To enable automation, these criteria need to be expressed 

as a mathematical model that may be converted to computer code. 
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Figure 4.9: Polygonal simplification procedure from given boundary points (black dots). The 

first starting point (randomly selected) is shown by a black triangle, while the extracted 

vertices are depicted by orange triangles. The constructed lines, orthogonal distances, and 

polygon edges are depicted by blue, red, and green lines, respectively. Angles at the points 

under evaluation are depicted by pink lines. (a) shows constructed straight lines from the start 

point to the following points. (b) shows the orthogonal distances when the RMSE exceeds a 

threshold, alongside with the first selected vertex V2. In (c), the process is repeated starting 

from V2, and a new selected vertex V3 is shown in (d). similarly, (e), (f) and (g) shown the later 

selected vertices V4 and V5. (h) shows the final extracted polygon alongside with a new reorder 

of the selected vertices. 
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Based on the introduced building characteristics, the following equation is for 

evaluating the likelihood of a point being a vertex is proposed:  

𝑙𝑙(𝑖𝑖) = 𝐴𝐴 + 𝑎𝑎𝑎𝑎|sin (𝛩𝛩)| − 𝑏𝑏𝐸𝐸2 (4.6) 
 
The equation consists of three major parts emphasising the geometrical building 

criteria such as area preservation and corner detection. The first part presents the 

calculated area (A) after reducing redundant boundary points.  

 

The second term combines the distance (D) and the angle (Θ) between adjacent line 

segments. D is computed from the starting point to the point under evaluation (last 

point in the constructed straight line, such as the blue lines in Figure 4.9. Θ is the 

calculated angle between the line segments at the point under consideration. A higher 

weight for this term is suggested to make sure the distance between two adjacent 

vertices is maximised within an acceptable error range. A weight of a = 20 was 

determined by empirical testing. This fitting parameter is successful when the 

evaluated boundary point lies close to a building corner. Otherwise, more weight on 

the distance may not be preferable, especially if the evaluated point is located on a 

straight line. For this reason, the weight is multiplied by the absolute sine of the angle 

(Θ) at the point under evaluation. The angle is calculated by using the boundary points 

preceding and succeeding the current point. The number of these preceding and 

succeeding points are determined by a threshold called angle detection (AD) to make 

the two sides required for calculating this angle. Figure 4.9 displays these two sides 

depicted by two pink lines intersected at the point under evaluation. When the point 

under evaluation is located at a building corner as shown in Figure 4.9(b), the angle is 

approximately 90° (or close to 90° in noisy data). In contrast, when the point under 

evaluation is located on a straight line (e.g. Figure 4.9 (a)), the angle is close to 180o. 

Since |sin (90°)| = |sin (270°)| = 1 (maximum value), while |sin (180°)| = 0 (minimum 

value), the evaluated point collects more weight when it is located at a corner. In 

contrast, it collects zero weight when it is located on a straight line. Thus, multiplying 

by the sine of an angle increases the possibility for extracting or preserving building 

corners/vertices.   
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The last term (E) represents the MSE of the orthogonal distances (red lines in Figure 

4.9) when constructing straight lines (blue lines in Figure 4.9). The orthogonal distances 

for each boundary point and constructed line are calculated according to equation (4.5). 

The MSE of the values are then computed, squared, and multiplied by the weight factor 

b. This factor was set to b = 2 based on empirical testing and again can kept fixed.  

 

The process recursively constructs straight lines from the starting point to the next 

points as shown in Figure 4.9. At each recursion, a likelihood value is computed 

according to equation (4.6), and the value is indexed/stored. This process stops when 

reaching the maximum of the pre-defined RMSE threshold. Then, the boundary point 

with the highest likelihood value is taken as a vertex. The process is repeated, starting 

from the last vertex accepted, until returning to the first selected vertex V2. Thus, the 

algorithm is more robust against the effects of the starting point than the DP algorithm. 

Boundary points that achieved the highest likelihood value at each process iteration 

will be considered as the most likely vertices. 

 

It is important to mention that in some cases, after reducing redundant boundary points, 

the calculated area A (the first term in equation (4.6)) is larger than the original area. 

This is typically occurring when the interior angles of a building are larger than 180°. 

In this case, the calculated area has to be penalised. For example, if the calculated area 

(𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) is more than the original area (𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) then term A must be reduced. 

Firstly, the difference is computed as: 

Difference  =  𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 – 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (4.7) 

Then, term A computed as:  

             A  =  𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 – Difference (4.8) 

 

 

 Model-driven approach for outlining rectangular buildings 

In this thesis, only the first level of detail for the Recursive Minimum Bounding 

Rectangle (RMBR) is implemented to estimate whether a building has a rectangular 

border. This approach is applied to deal with buildings which have high levels of noise 



  Chapter 4 Methodology                                                                                                        65 

 

at their border caused by inadequate data, or when occluding vegetation covers parts 

of building roof. Therefore, the data-driven approach may not always provide the 

appropriate approximate polygons for such buildings.  

 

The decision whether a building has a rectangular shape is made by thresholding the 

so-called similarity ratio (SR): 

𝑆𝑆𝑆𝑆 =  (𝐴𝐴𝑠𝑠 /𝐴𝐴𝑚𝑚), (4.9) 
where 𝐴𝐴𝑠𝑠 is the area of the building object (the yellow area surrounded by black 

boundary points in Figure 4.10(d)), and 𝐴𝐴𝑚𝑚 is the area of the derived MBR as presented 

by the red box of the same figure. This ratio was considered by Kwak and Habib (2014) 

to evaluate their building footprint reconstruction result. Figure 4.10 shows an example 

for a rectangular building represented by its reference yellow polygon in Figure 4.10(a) 

and DSM data in Figure 4.10(b) showing a very noisy border Figure 4.10(c). 

 

The SR value is always close to one when a building is rectangular, while it becomes 

smaller with decreasing probability of being a rectangular building. If this value is 

within the range of a user-defined threshold, a decision of being a rectangle will be 

made. For a building being estimated to be a rectangular, an approximate polygon with 

only four vertices depicted with black dots and connected by the green lines (Figure 

4.10(e)) is presented whereby all boundary points have been assigned with diverse 

colours according to their corresponding line segment. The vertices have been selected 

from the boundary points as they have minimum distance to the corners of the 

bounding box. Finally, Figure 4.10(f) shows the final building outlines presented as 

black solid lines associated with up-to-date labelling of the boundary. The advantages 

of the SR value, is that it can overcome the high level of noise in the boundary points 

more efficiently. However, the disadvantage is that small details in building outlines 

may disappear as shown in Figure 4.11. 
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Figure 4.10: Building simplification procedure based on the SR showing advantages. 

(a) showing a building with its reference (yellow polygon). DSM data (b). Building 

segment (c). MBR (d). Initial and final building outlines are shown in (e) and (f) 

respectively. 

 

 

Figure 4.11: Building simplification procedure based on the SR showing 

disadvantages. (a) showing a building with its reference (yellow polygon). DSM data 

(b). Building segment (c). MBR (d). Initial and final building outlines are shown in (e) 

and (f) respectively. 

 

4.6 Modelling and adjustment of building polygons 

This step aims to perform the best-fit to the boundary points in order to retrieve the 

regularised building polygon and to enhance the geometric accuracy and regularity of 
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the building footprints. The Gauss-Markov Model (GMM) and the Gauss-Helmert 

Model (GHM) are both introduced for modelling rectilinear buildings (Avbelj, 2015).  

 

In order to regularise rectilinear buildings, constraints enforcing rectilinearity have to 

be implemented. The GMM adjustment deals with observation equations formulating 

the building outlines. These observation equations can be: 1) orthogonal distances 

between the boundary points to their corresponding polygon edges; 2) cosine of angles 

of the building corners; and 3) differences between the estimated and corrected 

positions of the vertices as proposed by (Avbelj, 2015). The first set of the observations 

aim to perform the best-fit of the boundary points and their corresponding edges. The 

second set targeting the creation of right angles. The last set aims to minimise the given 

corrections to the estimated positions of the vertices. In this model, the orthogonality 

between the adjacent edges were introduced as pseudo-observations rather than as an 

extra constraints (Avbelj, 2015).  Empirically, it is not guaranteed to obtain exact right 

angles using GMM. Thus, relaxed polygons are obtained. This is because the model 

copes with three different problems: best-fit, rectilinearity, and minimising the 

correction values given to vertices positions. An additional constraint to enforce the 

rectilinearly was not applied. The rectilinearly of the building polygons output is 

highly dependent on the quality of approximated positions of the vertices. Thus, the 

GMM is modified to deal with non-rectilinear buildings since relaxed polygon line 

segments are obtained. 

 

For modelling of rectilinear buildings, the Gauss-Helmert Model (section 2.6.2) is 

combined with constraints to enforce rectilinearly. The model has been implemented 

by Avbelj (2015) but the method of how to implement the constraint in the adjustment 

was not determined.  

 

In this thesis, the model is solved as explained in the following sections. In order to 

perform the adjustment, labelling boundary points to their corresponding polygon side 

must be carried out in advance. Additionally, the positions of the building polygons 

are modified during the adjustment. Thus, updating the labels of the boundary points 

is required in order to improve the accuracy of the building outlines.    



  Chapter 4 Methodology                                                                                                        68 

 

 Algorithm for labelling/assigning boundary points 

A list of consecutive boundary points 𝑃𝑃𝑖𝑖 where i = 1,2,.. I boundary points, is given. 

Also given are the polygon’s vertices V (see section 4.5.2), which are the basis for the 

labelling process. Initially (before any boundary adjustment) V is a subset of P and in 

the same order clockwise or anticlockwise. However once adjustment begins this is 

not always the case, meaning that the coordinates of the approximated vertices are not 

generally from the given boundary points.  

 

An automatic labelling algorithm for updating the assignment of boundary points to 

their corresponding edges has not been implemented in the literature. To fill this, need 

a novel algorithm to perform this labelling is introduced to enable improved iterative 

building outline adjustment. Two ways are possible which are based on either a 

distance or an angle constraint. 

Distance-constraint: one possible approach for labelling the boundary points to their 

corresponding edges is by considering the orthogonal distances (red lines in Figure 

4.12) between boundary points to the polygon edges. A point is assigned to the edge 

that has the minimum orthogonal distance when compared to the other edges as 

follows in equation (4.5). 

An accurate labelling result can be achieved for rectangular polygons if the 

approximated vertices are close enough to the actual edges, as can be demonstrated in 

Figure 4.12(a). However, such an approach fails in some cases such as shown in Figure 

4.12(b). The figure shows four boundary points highlighted by the black circle, which 

are wrongly assigned to the algorithmic extension of the black edge due to their 

minimum distance to this edge. A similar labelling error is indicated by the blue circle. 

Thus, a more robust algorithm is needed. 
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Figure 4.12: Distance-constraint algorithm for labelling boundary points to 

corresponding edges. (a) shows a successful implementation while (b) shows its 

limitation where the black and blue circles demonstrate mislabelling errors.  

 
Angle-constraint: Alternatively, the assignment approach can be based on the angle 

measurements between vertices and boundary points. First, the closest vertex to the 

first boundary point in the list should be estimated.  Figure 4.13 shows that 𝑉𝑉3 is the 

closest vertex (orange triangle) to the starting point 𝑃𝑃𝑖𝑖 (black dot). Then, the angle 

between the line 𝑃𝑃𝚤𝚤𝑉𝑉3�������⃗  and the previous edge  𝑉𝑉3𝑉𝑉2��������⃗   or (j = 2), as indicated by the black 

line with double-sided arrows in Figure 4.13, is calculated. The angle between the 

line 𝑃𝑃𝚤𝚤𝑉𝑉3�������⃗  and the next edge (anti-clock wise order in this example) 𝑉𝑉3𝑉𝑉𝐽𝐽��������⃗   or (j = 3) is 

also calculated. A point is labelled according to the edge that yields a smaller angle. If 

the previous angle (PA) is larger than the next angle (NA), a point is labelled to the 

previous edge. Sometimes, a boundary point and a vertex are the same, which means 

the angle is undefined (NaN) or both angles are equal. Thus, the probability for 

labelling such point to both edges is equal. In the case that the previous angle (PA) is 

smaller than the next angle (NA), the current point under evaluation is labelled to the 

current edge j. The next boundary point will be evaluated by comparing the angles 

around the next vertex (V = V+1). The process is performed sequentially until returning 

to the starting point. When moving from the last vertex (V = J, which is equal to the 

number of polygon vertices) to the next vertex (J+1), the algorithm compares angles 

around the first vertex (V = j =1). Pseudocode for this algorithm is provided in 

Algorithm 1. 
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Figure 4.13: Angle-constraint algorithm for labelling boundary points to their 

corresponding edges.  

In complex cases, the angle-based method may also have difficulties. This is because 

the method needs correct estimations of the previous and following angles, which 

depends on the position of the closest vertex. For example, the closest vertex may 

belong to an edge from the other side of the polygon as indicated by red circle in Figure 

4.14. In this figure, the boundary point 𝑃𝑃𝑖𝑖 should be labelled to the first edge (j = 1). 

However, considering (𝑉𝑉𝑗𝑗−1) is the closest vertex, the previous and following angles 

are incorrectly identified. Thus, inaccurate labelling may occur. Therefore, distance- 

and angle-constraint methods are combined to provide one concrete solution that is 

able to solve the labelling problem completely.  
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Algorithm 1  The labelling / assigning boundary points to their corresponding edges 

1: Procedure  Label(point 𝑃𝑃𝑖𝑖) 

2:      for i = 1 to  I  do 

3:             j  = number of the closet vertex to 𝑃𝑃𝑖𝑖, V = j 

4:    if  j == 1,  𝑉𝑉𝑗𝑗−1 =  𝑉𝑉𝐽𝐽, end  if 

5: Compute the previous angle (PA) , angle 𝑃𝑃𝑖𝑖  𝑉𝑉𝑗𝑗  𝑉𝑉𝑗𝑗−1,  

7: Compute the next angle (NA) , angle 𝑃𝑃𝑖𝑖  𝑉𝑉𝑗𝑗 𝑉𝑉𝑗𝑗+1 

8:  if  PA <= NA & j == 1 

9:           𝐿𝐿𝑖𝑖 = J   (Label  𝑃𝑃𝑖𝑖  to the last edge J) 

10: else if  PA > NA  or  (PA == NaN  or NA == NaN) 

11:         𝐿𝐿𝑖𝑖 =  j   (Label  𝑃𝑃𝑖𝑖  to the edge j) 

13:    else if  PA <= NA & j > 1 

14:       𝐿𝐿𝑖𝑖 =  j -1    (Label  𝑃𝑃𝑖𝑖  to the previous edge ( j−1)) 

15: end if 

17:      return 

18: end procedure 

 
 

 

Figure 4.14: Problem of determination of the closest vertex. The figure shows that the 

closest vertex to the boundary point 𝑃𝑃𝑖𝑖 is (𝑉𝑉𝑗𝑗−1). This leads to incorrect identification 

of the previous and next angles. 
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Combined distance- and angle-constraint: for each boundary point, the method starts 

with finding its closest edge by calculating the orthogonal distance as in the equation 

(4.5). This orthogonal distance must be perpendicular on the edge, not on its extension. 

Next, the closest vertex to this boundary point is found. If the distance from this 

boundary point to the closest edge is less than the distance to the closest vertex, this 

boundary point is labelled as belonging to this closest edge. Otherwise, the angle-

constraint method is applied in order to make a decision.  

 

However, as mentioned previously, the minimum distance may belong to the extension 

on the edge, not to the edge itself as shown in Figure 4.12(b). To overcome this 

limitation, a condition for investigating which point belongs to an edge or to an 

extension of edge is introduced, as described in Figure 4.15.  Firstly, the orthogonal 

distance is calculated as in the equation and the intersection point E is found (the red 

square in Figure 4.15). If the distance from T to the furthest vertex in the edge (𝑉𝑉2 in 

this example) is larger than the length of the edge itself, this boundary point is 

determined as belonging to the extension. Sometimes, extended edge leading to the 

false off-set distance is difficult to identify(?). In this case, the angle-constraint method 

is considered. 

 

 
 

Figure 4.15: Boundary point (P) belonging to an extension of edge (𝑉𝑉1 𝑉𝑉2). 
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Algorithm 2  The labelling / assigning boundary points to their corresponding edges 

1: Procedure  Label(point 𝑃𝑃𝑖𝑖) 

2:      for i = 1 to  I  do 

3: for j = 1: J  do 

4:        𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗) = arg  (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑃𝑃𝑖𝑖  ,𝑉𝑉𝚥𝚥𝑉𝑉𝚥𝚥+1�����������⃗ )) 

5:     Find the coordinates of  T  ( intersection of i on the edge j) 

7:     Check  if  𝑋𝑋𝑇𝑇(𝑗𝑗) and 𝑌𝑌𝑇𝑇(𝑗𝑗)  located on the edge (j) 

8:                end 

9:                     Dist1= min(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗))  & (( 𝑋𝑋𝑇𝑇(𝑗𝑗) and 𝑌𝑌𝑇𝑇(𝑗𝑗) ) ⊂ edge (j)) 

10:                   K = j    (number of the closest edge ) 

11: for j = 1: J  do 

12:      𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑗𝑗)  =   ((𝑋𝑋𝑝𝑝(𝑖𝑖) − 𝑋𝑋𝑉𝑉(𝑗𝑗))2 + (𝑌𝑌𝑝𝑝(𝑖𝑖) − 𝑌𝑌𝑉𝑉(𝑗𝑗))2)0.5 

13:  end for 

14: Dist2 = min ( 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑗𝑗)) 

15:    R = j    (number of the closest vertex ) 

16  If  Dist1  ≤   Dist2    

17:       𝐿𝐿𝑖𝑖 =  k  (Label  𝑃𝑃𝑖𝑖  to the closest edge (k)) 

18:  elseif 

19:       Compute the previous angle (PA) , angle 𝑃𝑃𝑖𝑖  𝑉𝑉𝑅𝑅 𝑉𝑉𝑅𝑅−1, 

20       Compute the next angle (NA) , angle 𝑃𝑃𝑖𝑖  𝑉𝑉𝑅𝑅 𝑉𝑉𝑅𝑅+1, 

21        if  PA <= NA 

22            𝐿𝐿𝑖𝑖 =  R-1  (Label  𝑃𝑃𝑖𝑖  to the previous edge (R-1)) 

23        else 

24            𝐿𝐿𝑖𝑖 =  R  (Label  𝑃𝑃𝑖𝑖  to the previous edge (R)) 

25        end if 

26                end if 

27      return 

28: end procedure 
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 Refinement of non-rectilinear building polygons using GMM 

The Gauss-Markov Model (GMM) is used for the adjustment of observation equations. 

The functional model is assumed to be linearised as described in the equations (2.8) 

and (2.9). Accordingly, three categories of the observation equations were formulated: 

squared distances 𝑑𝑑2 between each boundary point and its relevant line segment of a 

polygon represented by 𝐹𝐹𝑑𝑑 as in equation (4.10), observation equations for the interior 

angles α indicated by 𝐹𝐹α, and observation equations for the polygon vertices named 

 𝐹𝐹v. As the coordinates of boundary points 𝑝𝑝𝑖𝑖 =  {𝑥𝑥𝑖𝑖 ,  𝑦𝑦𝑖𝑖} are the actual observations, 

the first set of 𝑑𝑑2 are derived observations, while both of the cosines of angles α and 

polygon vertices are pseudo-observations (Avbelj, 2015).   

𝑑𝑑2(𝑖𝑖, 𝑗𝑗) =

⎝

⎛�𝑌𝑌𝑗𝑗 − 𝑦𝑦𝑖𝑖� �𝑋𝑋𝑗𝑗+1 − 𝑋𝑋𝑗𝑗�  ± �𝑋𝑋𝑗𝑗 − 𝑥𝑥𝑖𝑖� �𝑌𝑌𝑗𝑗+1 − 𝑌𝑌𝑗𝑗� 

��𝑋𝑋𝑗𝑗+1 − 𝑋𝑋𝑗𝑗�
2

+ �𝑌𝑌𝑗𝑗+1 − 𝑌𝑌𝑗𝑗�
2

⎠

⎞ ^2 (4.10) 

 

 

The denominator of equation (4.10) represents the orthogonal distance between two 

adjacent vertices (𝑉𝑉𝑗𝑗 ,𝑉𝑉𝑗𝑗+1) and is positive and greater than zero since 𝑉𝑉𝑗𝑗 ≠ 𝑉𝑉𝑗𝑗+1. 

However, if a boundary point i has similar coordinates as a vertex V, the numerator of 

equation (4.10) becomes zero, and therefore the equation is not differentiable due to 
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the numerator being an absolute value. Hence, the first set of observation equations 𝐹𝐹𝑑𝑑 

is transformed to the squared distance 𝑑𝑑2 (Avbelj, 2015). 

 
Figure 4.16: Gauss-Markov functional model for adjustment of non-rectilinear 

building polygons. Boundary points 𝑝𝑝𝑖𝑖 which correspond to the adjusted polygon 

edges (black polygon) are specified (dots in different colours). Coordinates of vertices 

𝑉𝑉𝑗𝑗 (black squares) are the unknown parameters 𝑢𝑢. The vector of observations y 

comprises the squared distances between boundary points and polygon edges 𝑑𝑑2(𝑖𝑖, 𝑗𝑗) 

(derived observations), cosines of angles α𝑗𝑗  and vertices of the polygons 𝑉𝑉𝑗𝑗. 

 

The second set of the observation equations 𝐹𝐹α  represent the cosines of the interior 

angles, which are either 90o or 270o. Since 𝑐𝑐𝑐𝑐𝑐𝑐(𝜋𝜋
2

(2𝑘𝑘 + 1)) is always equal to zero for 

𝑘𝑘 ∈  𝕫𝕫, the cosine of an interior polygon angle can be computed as follow: 

𝐹𝐹α(𝑗𝑗) =  
�𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑗𝑗−1� �𝑋𝑋𝑗𝑗+1 − 𝑋𝑋𝑗𝑗� + �𝑌𝑌𝑗𝑗 − 𝑌𝑌𝑗𝑗−1� �𝑌𝑌𝑗𝑗+1 − 𝑌𝑌𝑗𝑗� 

��𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑗𝑗−1�
2

+ �𝑌𝑌𝑗𝑗 − 𝑌𝑌𝑗𝑗−1�
2
  ��𝑋𝑋𝑗𝑗+1 − 𝑋𝑋𝑗𝑗�

2
+ �𝑌𝑌𝑗𝑗+1 − 𝑌𝑌𝑗𝑗�

2
 (4.11) 

 

The polygon vertices coordinates (𝑋𝑋𝑗𝑗, 𝑌𝑌𝑗𝑗) are the last set of observation equations 

which are formulated as follow: 

𝐹𝐹𝑉𝑉𝑋𝑋(𝑗𝑗) =  𝑋𝑋𝑗𝑗 −  𝑋𝑋𝑗𝑗𝑜𝑜 (4.12) 
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𝐹𝐹𝑉𝑉𝑌𝑌(𝑗𝑗) =  𝑌𝑌𝑗𝑗 −  𝑌𝑌𝑗𝑗𝑜𝑜 (4.13) 

Since the polygon vertices coordinates (𝑋𝑋𝑗𝑗, 𝑌𝑌𝑗𝑗) are unknown, this part of equations 

could be eliminated from the functional model. But, the newly updated location of the 

vertices in the adjustment should be preserved near to their estimated positions, and 

their accuracy can be controlled via weightings (Avbelj, 2015).  

 

It can be seen that the functional model 𝐹𝐹 is non-linear. Therefore, the partial 

derivatives of 𝐹𝐹 with respect to the unknown parameters 𝑢𝑢 should be taken at the 

approximated values 𝑢𝑢o. The unknown parameters 𝑢𝑢 are the coordinates of the 

polygon’s vertices. The linearised functional model can be written as: 

 𝐴𝐴 (𝐼𝐼+3𝐽𝐽),𝑢𝑢 𝛿𝛿 𝑢𝑢,1 + 𝑤𝑤 (𝐼𝐼+3𝐽𝐽),1 =  𝑣𝑣 (𝐼𝐼+3𝐽𝐽),1 (4.14) 

where 𝐴𝐴 is the design or coefficient matrix 𝐴𝐴 =   𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

|𝑢𝑢𝑜𝑜; 𝛿𝛿 is a vector of corrections to 

the unknown parameters 𝑢𝑢 which has the dimension double the number of vertices 

(corrections to  X and Y coordinates of each vertex); and 𝑤𝑤 is the misclosure vector. 

Moreover, 𝑣𝑣 is a vector of residuals which has zero expectation (residuals equal to zero 

in perfect solution). 

 

Figure 4.17:  Schematic matrix illustration of the GMM equation (4.14) for rectilinear 

building polygons approximation (modified from (Avbelj, 2015)). Three categories of 

observation equations were formulated, for squared distances between the boundary 

points and the building polygon (light blue), for cosines of angles (yellow), and for 

polygon vertices (green). 
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The least squares adjustment tries to minimise the square sum of the residuals from 

the three different set of observation equations 𝐹𝐹𝑑𝑑 ,  𝐹𝐹α, and 𝐹𝐹𝑣𝑣. The first set aims to 

minimise the orthogonal distances between the boundary points and their 

corresponding polygon edge. The second set  𝐹𝐹α aims to minimise the cosines of the 

interior angles in such a way that the obtained angles are close to 90o or 270o. The last 

set 𝐹𝐹𝑣𝑣 minimises the correction values of the polygon vertices in such a way that the 

adjusted vertices location remain close to their initial locations.  

 

Figure 4.18: Covariance matrix Gauss-Markov Model. 
 
 
Since the building polygon is non-rectilinear, the goal is to best-fit the boundary points 

with their corresponding edges. In addition, if right angles exist, they should be 

optimised to be as close as possible to 90°. These requirements could be achieved 

through the weights given to the implemented sets of the observation equations. For 

the first set ( 𝐹𝐹𝑑𝑑), the orthogonal distance (d) of each boundary point (𝑖𝑖) to its 

corresponding line segment (𝑗𝑗) is assumed to be the standard deviation (𝜎𝜎𝑑𝑑(𝑖𝑖,𝑗𝑗)) and is 

calculated from equation (4.5). In other words, the variance for each boundary point P 

is calculated as 𝜎𝜎𝑑𝑑2  = 1/𝑑𝑑(𝑖𝑖,𝑗𝑗)
2 . The second set of the implemented observation 

equations ( 𝐹𝐹𝛼𝛼 ) involves the cosine of the polygon angles. The variance of each angle 

in the polygon is calculated as 𝜎𝜎𝛼𝛼2  = 1/cos(𝛼𝛼)
2 . The last set ( 𝐹𝐹𝑉𝑉 ) contains the spatial 

difference between the estimated and updated coordinates of building polygons 

(equations (4.12) and (4.13)). This particular set was designed to keep the adjusted 
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vertices coordinates close to the estimated values (Avbelj, 2015). Giving high weight 

to this set ( 𝐹𝐹𝑉𝑉 ) would impede their further enhancement towards the actual positions. 

Thus, the identity matrix is used to weight this particular set of observation equations 

so that the variance is 𝜎𝜎𝑉𝑉2  = 1. The covariance matrix Σ has (𝐼𝐼 + 3𝐽𝐽 ) × (𝐼𝐼 + 3𝐽𝐽) 

dimensions and is designed as shown in Figure 4.18.  

 Refinement of rectilinear building polygons using GHM 

For modelling rectilinear buildings, the orthogonality and/or parallelism assumptions 

of the building polygon must be implemented. In a mathematical sense, if a line 

segment j has a normal vector 𝑛𝑛𝑗𝑗 = (𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦), then the next line segment must have a 

perpendicular normal vector 𝑛𝑛𝑗𝑗+1 = (𝑛𝑛𝑦𝑦,−𝑛𝑛𝑥𝑥). All parallel polygon edges should 

have the same normal vector as depicted by the red arrows in (Figure 4.19). 

 

Figure 4.19: The orthogonality functional model: Boundary points (dots) coloured 

differently according to their corresponding edges. Red arrows indicate the direction 

of normal vectors (not to scale). The blue arrows are the vector distances C computed 

from the origin in the local building outline coordinate system. The black solid polygon 

is the final rectilinear polygon after the adjustment.  

 
The observation equations for a boundary point i which is expressed by its Cartesian 

coordinates (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) located on its corresponding line segment are given as follows: 

 𝐹𝐹(𝑗𝑗) =  𝑛𝑛𝑥𝑥𝑥𝑥𝑖𝑖  +  𝑛𝑛𝑦𝑦𝑦𝑦𝑖𝑖  −  𝐶𝐶𝑗𝑗 = 0 (4.15) 
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      𝐹𝐹(𝑗𝑗+1) =  𝑛𝑛𝑦𝑦𝑥𝑥𝑖𝑖  −   𝑛𝑛𝑥𝑥𝑦𝑦𝑖𝑖 −  𝐶𝐶𝑗𝑗+1 = 0, (4.16) 

where  𝐶𝐶𝑗𝑗 and  𝐶𝐶𝑗𝑗+1 are the distances from the centre of the coordinate system 

perpendicular to the extended line segment j, as shown with blue arrows in Figure 4.19. 

The unknown parameters (u) are 𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦 , and  𝐶𝐶1,..,𝐽𝐽, where J is the number of vertices 

or polygon edges. The normal 𝑛𝑛𝑥𝑥  and 𝑛𝑛𝑦𝑦 must have a length equal to one and satisfy 

the following constrain:. 

               𝑔𝑔 =   𝑛𝑛𝑥𝑥2 +  𝑛𝑛𝑦𝑦2 − 1 = 0 (4.17) 

Because the unknowns and observations for a point in the line segment observation 

equation cannot be separated, and each constraint contains more than one observation, 

the mixed model or GH model adjustment has to be applied (Skaloud & Lichti, 2006). 

The model is linearised for the approximated values 𝑢𝑢𝑜𝑜 of the unknowns (u) and the 

observations (l), as in equation (2.12), and written in matrices form as: 

                       𝐴𝐴 𝐼𝐼,𝑢𝑢 𝛿𝛿 𝑢𝑢,1 + 𝐵𝐵 𝐼𝐼,2𝐼𝐼 𝑣𝑣 2𝐼𝐼,1 = 𝑤𝑤 𝐼𝐼,1 (4.18) 

where A = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  is the design matrix of partial derivatives of the observation equations 

with respect to the unknowns (u) at the approximated values 𝑢𝑢𝑜𝑜; 𝛿𝛿 =  (𝑢𝑢� − 𝑢𝑢𝑜𝑜) is the 

correction vector to the approximated values;  𝐵𝐵 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 is the design matrix of partial 

derivatives of observation equations with respect to the coordinates 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖; 𝑣𝑣 =

�𝑙𝑙 − 𝑙𝑙� is the vector of residuals calculated as the difference of the adjusted observation 

vector 𝑙𝑙 and the observation vector l; 𝑤𝑤 =  𝐹𝐹(𝑢𝑢� , 𝑙𝑙) is the misclosure vector, e.g. the 

equations (4.15 and (4.16) are evaluated at the current estimates of the unknown 

parameters and observations. The matrices A and B are designed as follows: 
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 𝑥𝑥1 𝑦𝑦1 −1 0 ⋯ 0  

 
   ⋯ ⋯ ⋯ ⋯ j = 1 

   −1 0 ⋯ 0  

 ⋮ ⋮ 0 −1 ⋯ 0  
 

   ⋯ ⋯ ⋯ ⋯ j = 2 (4.19) 
𝐴𝐴(𝐼𝐼 ×(2+𝐽𝐽)) =   0 −1 ⋯ 0  

 ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 

 𝑥𝑥I−1 𝑦𝑦I−1 0 0 ⋯ −1 j = J 

 𝑥𝑥I 𝑦𝑦I 0 0 ⋯ −1  

 

 
 𝑛𝑛𝑥𝑥 0 0 ⋯ 0 

 0 𝑛𝑛𝑦𝑦 0 ⋯ 0 

𝐵𝐵 (𝐼𝐼 × 2𝐼𝐼) =  0 0 ⋱ ⋯ 0 (4.20) 
    ⋮ ⋮ 0 𝑛𝑛𝑦𝑦 0 

 0 0 0 0 −𝑛𝑛𝑥𝑥 
 

The conditional equation (4.17)  is linearised as shown below, and applied as weighted 

unknown constraint: 

   𝐺𝐺 1,𝑢𝑢 𝛿𝛿 𝑢𝑢,1 +  𝑤𝑤𝑐𝑐 1,1 = 𝑣𝑣𝑐𝑐  1,1, (4.21) 

where 𝐺𝐺 =  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  is the matrix of partial derivatives of the conditional equation (4.17)  

with respect to the unknowns; 𝑤𝑤𝑐𝑐 = 𝑔𝑔(𝑛𝑛𝑥𝑥𝑜𝑜 ,𝑛𝑛𝑦𝑦𝑜𝑜  ) is the misclosure vector of the 

conditional equation (4.17) for the approximated values of  𝑛𝑛𝑥𝑥 and 𝑛𝑛𝑦𝑦; 𝑣𝑣𝑐𝑐 is the 

residual of the constraint. Matrix G is designed as follows: 

𝐺𝐺 (1 ×(2+𝐽𝐽)) = � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛𝑥𝑥

       𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛𝑦𝑦

     0     ⋯    0�                                      (4.22) 

 
Similar to the weight given to the first set of observation equations  𝐹𝐹𝑑𝑑 in the GMM, 

the variance of a boundary point (𝜎𝜎(𝑖𝑖)
2 ) is assumed to be the inverse of the squared 

orthogonal distance between this point i and its corresponding edge j, and computed 
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as 1/𝑑𝑑(𝑖𝑖,𝑗𝑗)
2 , where  𝑑𝑑(𝑖𝑖,𝑗𝑗) is calculated from equation 2.9. Accordingly, the covariance 

matrix C for the observations which has dimensions of (2𝐼𝐼 ) × (2𝐼𝐼) is designed as in 

the equation below.  

𝐶𝐶 (2𝐼𝐼 × 2𝐼𝐼) = 

 

(4.23) 

The weight matrix 𝑃𝑃𝑐𝑐 for the constraint must be over-weighted (e.g. given a high 

weight 𝑃𝑃𝑐𝑐 = 𝐼𝐼2) which has (1×1) dimensions. Otherwise, for 𝑛𝑛𝑛𝑛 and 𝑛𝑛𝑛𝑛, an infinite 

number of solutions are obtained because the scale of the vector distances C cannot be 

determined. Finally, the adjustment solution is formulated according to the least 

squares procedure considering the combined model as follows: 

 

𝛿𝛿 =   – [AT (BP-1BT)-1A + GT Pc G] [AT (BP-1BT)-1w + GT Pc wc] (4.24) 

 

 Initial solution and stopping criterion for the adjustment 

For a non-linear least squares adjustment, an initial solution of the unknown 

parameters is required. For the GMM, the unknowns are the vertices coordinates of 

the building polygons. Those coordinates are already given (see section 4.5.1). During 

the adjustment, those coordinates are given corrections, and consequently, their 

positions are iteratively updated. Therefore, the labelling of the boundary points 

requires updating too.  

 

Compared to the GMM, in the GHM the estimation of initial solution of the unknowns 

is more complex. The unknown parameters are the normal components  𝑛𝑛𝑥𝑥 and 𝑛𝑛𝑦𝑦, 



  Chapter 4 Methodology                                                                                                        82 

 

and the vector distances C from the origin to the extension of each of the input polygon 

line segments as shown in the Figure 4.19. Firstly, the input boundary points have to 

be labelled in accordance to the polygon line segments/edges as described in section 

4.6.1. Then, the longest segment is identified. This longest line is fitted with respect to 

its corresponding boundary points using line-fitting least squares procedure. Then, the 

normal values  𝑛𝑛𝑥𝑥 and 𝑛𝑛𝑦𝑦 are derived from the fitted line. After that, the vector 

distances C are estimated by applying the equations (4.15) and (4.16). In these two 

equations, the coordinates (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) must be given. In order to estimate the vector 

distance  𝐶𝐶𝑗𝑗, the mean of the boundary points belonging to this segment j was taken to 

find the coordinates (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖). In some cases, the longest line segment may not represent 

the actual dominant building direction, which may lead to fail the adjustment 

(diverging solution). Thus, the process of estimating the initial values is repeated 

considering the next longest segment (until the four longest segments are examined if 

needed).   

 

In both adjustment procedure (GHM and GMM), the adjustment is terminated when 

the correction values become insignificant (i.e. less than 0.5 pixel). The root mean 

square error of all boundary points to their adjusted polygon edges is then calculated. 

A decision to accept the adjusted polygon is made based on a user-defined threshold. 

The GHM provides a regular shape by enforcing the rectilinearity conditions. Thus, a 

large threshold is required if the proposed model-driven approach is used (i.e. three 

meters). 

 

4.7 RMSE as a measure for accuracy assessment of building polygons 

It is very important to assess the obtained polygons after adjustment by comparing 

them to ground truth data, or to a result from a different method or to the approximated 

polygons. Two essential factors have to be considered to perform a reliable evaluation 

procedure. Firstly, a suitable ground truth dataset has to be available. For evaluation 

process, this dataset should have a variety of different sizes, shapes, rectilinearly, and 

varying complexity to achieve a reasonable assessment. Secondly a suitable measure 

of consistency of the outline with respect to human perception must be established. 
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Several measures have been utilised for assessing the quality of the extracted building 

polygons similarity. For instance, the well-known RMSE, Hausdorff distance 

(Bulatov, 2011; Olson & Huttenlocher, 1997), and Polygon and Line Segments 

(PoLiS) (Avbelj, Müller, & Bamler, 2015).  

 

In this thesis, the RMSE parameter is utilised due to being extensively used as a 

standard measure in topographic mappings. Shortcomings of RMSE and how to avoid 

them is discussed first. Then, a new procedure for assessment is proposed to avoid any 

subjective evaluation process in the interpretation of the RMSE as a standard metric.  

 

Assume that a reference building polygon model R which contains a number of 

vertices (e.g. j = 1, …, J) and an extracted polygon indicated by E which contains a 

number of vertices (e.g. k = 1, …, K) are given. The ultimate goal is to assess how 

close the extracted polygon is to its reference model. The number of vertices in both 

models are not necessarily the same. Figure 4.20 shows a simulated example measured 

in pixels. The figure illustrates an extracted building with five vertices depicted by the 

green polygon, while its reference model (red polygon) has only four vertices.  

 

On the one hand, the RMSE has been calculated between the closest vertices in both 

models. Figure 4.20(a) shows 3.07 and 1.32 RMSE calculated from the extracted 

vertices to their closest vertices in the reference and vice versa respectively. We denote 

this as Vertex to Vertex evaluation (V2V). Considering the huge gap between the 

values e.g. (3.07 to 1.32), a question is raised about which one is more reliable to 

reflect the dissimilarity. In fact, this huge gap was caused by the redundant vertex 

indicated by the blue arrow in Figure 4.20(a). Skipping such a redundant vertex would 

provide an equivalent RMSE (1.32), but this option should be avoided for two reasons. 

Firstly, skipping undesirable vertices will lead to a subjective evaluation process. The 

procedure of vertex to vertex calculation has been considered in several existing 

studies, such as (Höhle, 2017). The second reason is that redundant vertices should be 

penalised in order to evaluate the applied algorithms and their results in reliable 

manner. On the other hand, when considering calculation of the RMSE from vertices 

to their corresponding edges. This option is not suitable due to some vertices actually 
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belonging to an extension of an edge and not the edge itself. For example, the two top 

extracted vertices (Figure 4.20(a) and (b)). Therefore, both strategies, Vertex to Vertex 

and Vertex to Edge, are not suitable tools for measuring the dissimilarity or 

correspondence between building extracted and reference polygons.    

 

 

Figure 4.20: Calculation of RMSE. Red polygon represents a building reference while 

an extracted building depicted by the green polygon. (a) shows a RMSE calculated 

from minimum distances measured from each vertex in the reference to the closest 

vertex in the extracted and vice versa. (b) considers minimum distances from each 

vertex to the closest edge or vertex.   

 
 
Therefore, it is proposed to calculate the RMSE utilising a combination of the two 

aforementioned models. For instance, if a vertex belongs to an extension, the distance 

to the closest vertex is considered. Otherwise, the minimum distance to the closest 

polygon edge should be applied. This should be performed between the extracted 

model and the reference model (and vice versa). This is denoted as Vertex to Model 

(V2M) evaluation. To do this each vertex in the reference polygon should be labelled 

to its corresponding edge in advance. Similarly, each vertex in the extracted polygon 

must be also labelled to its corresponding edge. Otherwise, the minimum distances to 

the closest edge may be wrongly measured. This labelling has been done in an earlier 

stage (see section 4.6.1 for more details). Figure 4.20(b) illustrates how those distances 

(blue and magenta) are considered, which result in RMSE values equal to 1.24 and 

0.75 from the extracted model to the reference and vice versa respectively, denoted as 
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vertex to model (V2M). Additionally, and to avoid any subjective evaluation process 

by considering one result (e.g. 0.75) rather than the other (1.24), the absolute RMSE 

between both models is calculated as follows:  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑅𝑅,𝐸𝐸)  =  � 
1

𝐽𝐽 + 𝐾𝐾  ��  
𝐽𝐽

1

�min �dst�𝐸𝐸,𝑅𝑅�������⃗ ���
2

+ �  
𝐾𝐾

1

�min �dst�𝑅𝑅,𝐸𝐸�������⃗ ���
2
�   �

0.5

 (4.25) 

where, J and K represent number of vertices in the extracted and reference polygons 

respectively. All observed distances from each vertex in E to its closest edge or vertex 

in R alongside with distances from each vertex in R to its closest edge or vertex in E 

are squared, accumulated, and the square root taken.  
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5 Chapter five Evaluation 

 
In this chapter, the details about the datasets used in the evaluation process are 

provided. Based on these datasets, the proposed DTM extraction algorithm is 

evaluated and compared with to another state-of-the-art method. Further, the fusion 

method for the building segment extraction, as proposed in section 4.4 is examined 

using the evaluation datasets. An assessment and sensitivity analysis of the proposed 

data-driven method for the generation of approximate building polygons is then 

presented. Finally, the regularisation results, including model assumptions and the 

adjustment (GMM and GHM) are quantitatively evaluated utilising the new procedure 

(as described in section 4.7) for calculating the RMSE.  

 

5.1 Study areas 

 Vaihingen datasets 

The dataset that is used the evaluation is of Vaihingen (Cramer, 2010). Specifically 

the Areas 1, 2, and 3, as illustrated in Figure 5.1 are used. It is an openly available 

dataset and commonly used for benchmarking. The sites contain 107 buildings with 

varying sizes and complexity. The three specific Areas of the Vaihingen dataset were 

chosen because they contain and represent different building characteristics within 

each Area, which makes them challenging for accurate building regularisation. In 

addition, the non-flat nature of the terrain, the presence of high raised buildings, and 

the inclusion of larger objects located on top of some of those buildings make the 

process of separating the DTM from the DSM challenging. The specifications of the 

dataset are:  

• LiDAR DSM with 25 cm GSD derived from point clouds data captured by a 

Leica ALS50 system with 6 points/m2 density average.  

• Airborne images (8 cm GSD) acquired by the Intergraph/ZI DMC platform 

with a 12 cm focal length (Cramer, 2010). The colour information consists of 

three bands: near infrared (NIR), red (R), and Green (G). The orthophoto image 

is also provided with the dataset.  
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Figure 5.1: Vaihingen study area including the three Areas 1, 2, and 3 (Cramer, 

2010). 
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 Melville datasets 

While the Vahingen datasets are of high complexity, the dimension of the test areaa 

are relatively small. To consider a large dataset, the City of Melville dataset is also 

utilised in this thesis for evaluation. The city is located to the south of Perth in Western 

Australia. The majority are residential buildings of one story and a height of 

approximately three metres. The building outlines are generally complex. 

Topographically, the terrain of the city area is hilly, with the elevation increasing from 

zero to nearly 60 metres with respect to the Australian Height Datum (AHD). An area 

with approximately 3.6 km2 was selected, as shown in Figure 5.2 (which includes 

nearly 2,200 buildings). Two types of collected data have been provided: 

• ALS data: The point cloud data were acquired using a Riegl VZ- 1000 3D laser 

scanner (Riegl, 2017). This data was captured at an average height of 457 

metres height, which yielded approximately 2 - 4 points / m2 spatial density 

and an accuracy of 0.1 meter. 

• Multispectral data: the multispectral imagery were acquired by an Unmanned 

Aerial Vehicle (UAV) platform via the MicaSense RedEdge camera 

(MicaSense, 2017). The sensor has a global shutter and a 47.2° field of view 

(FOV). It has five spectral bands: Blue (B), Green (G), Red (R), RedEdge (RE) 

and Near-infrared (NIR). 0.41 m GSD was achieved during the acquisition. 

The orthophoto was resampled to 0.5 metres, so as to have the same resolution 

as the derived DSM.  
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Figure 5.2: Melville study area. 
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The ALS data is first cleaned from outliers according to the procedure presented in 

section 4.2.1, and rasterised according to equation (2.2). This final rasterised DSM is 

shown in Figure 5.3. 

 

Figure 5.3: The created DSM for Melville dataset. The units of the elevation colour-

scale are in metres. 

 

5.2 Evaluation of the proposed DTM extraction algorithm 

The DTMs for the Vaihingen and the Melville datasets are created using the proposed 

Network of Ground Points (NGP) method outlined in section 4.3.2. Ground truth for 

terrain is not available for ether of the datasets. Instead, a reference classification map 

(layers including buildings, trees, grass, bare-ground, and cars) is provided. Thus the 

NGP method is applied to the photogrammetric DSM, while a DTM generated from 

the LiDAR data is adopted as the reference. For the Melville dataset, a 

photogrammetric DSM is not available, therefore, for the rest of this section evaluation 

of the DTM extraction algorithm, the Vaihingen dataset is used only. More 

specifically, Areas 1 and 2 of the Vahingen dataset are selected for this task.  
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The completeness and correctness are also calculated for extracted bare-ground 

compared to the reference bare-ground layer provided. Comparison is made with one 

of the most promising state-of-the-art DTM extraction methods, the Multi-directional 

and Slope Dependent (MSD) method (Perko et al., 2015) to evaluate the efficiency of 

the proposed method. It is true that the MSD method was developed to extract DTM 

from satellite-based DSM, but the method is effective and used by many researchers 

e.g. (Misra, Avtar, & Takeuchi, 2018). 

 

The reference DTM is created from LiDAR data using LAStools software, (version 

141017, academic), obtained from http://rapidlasso.com/LAStools. The completeness 

(Cm), correctness (Cr), and quality (Ql ) can be calculated as follow (Rottensteiner et 

al., 2014):  

𝐶𝐶𝑚𝑚 =   
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

(5.1) 

 

𝐶𝐶𝑟𝑟 =   
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

(5.2) 

 𝑄𝑄𝑙𝑙 =   
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 

(5.3) 

 

where TP (true positive) represents number of ground pixel identified correctly; FN 

(false negative) is number of missed ground pixels; FP is the false positive indicates 

number of non-ground pixels classified incorrectly as ground pixels. 

 

 Parameter settings for DTM extraction 

The parameters used for the state-of-the-art MSD approach are provided in Table 5.1, 

and for the novel NGPs approach in Table 5.2. The parameter values for the filtering 

window size are fixed to 53 m for both approaches and both datasets (Areas 1 and 2). 

Determining the filtering window size is dependent on the dimensions of the existing 

buildings in the scene. For the MSD approach, the height threshold is based on the 

absolute height difference between the ground and buildings. The MSD method is 

based on a comparison of height difference between a point under evaluation and the 

point have the lowest elevation in a scanline. This lowest point may belong to regions 

http://www.google.com/url?q=http%3A%2F%2Frapidlasso.com%2FLAStools&sa=D&sntz=1&usg=AFQjCNEL0UR9n3ZBckxgE8OghNZmDrocYw
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that are too low, which lead to misclassification. Thus, the height threshold parameter 

is sat to three meters. The slope parameter is based on the elevation difference between 

the pixel in the centre of the applied window and the next pixel in scanline direction.  

Table 5.1: Parameters’ values (MSD approach). 
  

Filter size  53 m 

Height threshold 3 m 

Slope threshold 30°  

 

Regarding the NGPs approach, the first vertical threshold is based on the height 

difference between the ground points selected as a minimum from different scanlines. 

The second vertical threshold is based on the vertical altitude difference between the 

initial DTM and the input DSM. Higher values of this parameter lead to capturing 

higher regions positioned between the terrain and off-terrain regions. For the 

generation of the nDSM mask for both methods and sites, a threshold of two meters 

was applied (i.e. only objects with a height of more than two meters are highlighted). 

Table 5.2: Parameter values (NGPs approach). 
 

Filter size  53 m 

Vertical threshold for accepting ground points 1.1 m 

Vertical threshold for detecting ground mask 0.4 m 
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 Qualitative evaluation  
 
Area 1:  Figure 5.4 displays DSM derived from ALS data (a) and a reference DTM 

(b), respectively.  

 
Figure 5.4: Area 1 DSM derived from ALS data (a) and reference DTM (b) (Mousa et 

al., 2017).  

 

The DTMs created using the MSD approach and the proposed NGPs algorithm are 

shown in Figure 5.5. The first row shows the input DSM derived from image matching 

(a) with 14 cm GSD, the selected ground points (b), and the initial DTM (c). The 

second row shows the extracted ground mask (d), DTM (e), and nDSM mask (f) using 

the MSD algorithm while the extracted ground mask (g), DTM (h), and nDSM mask 

(i) using the NGPs algorithm are shown in the third row. The extracted ground masks 

are represented by the white areas. The extracted MSD ground masks (Figure 5.5(d)) 

shows that details are lost using the MSD method, as highlighted with yellow circles. 

In contrast, these larger regions belonging to the bare-ground are successfully 

identified by the NGPs approach (Figure 5.5 (g)). The NGPs approach is able to 

segment buildings, high vegetation, and even some cars, and then exclude them from 

the ground mask. In the resulting DTMs of both methods, there is one area which 

causes problems for the MSD as well as the novel NGPs method. This area is 

highlighted by the red circles in Figure 5.5(e) and (h). For this area, there is no actually 

error in the generated DTM, but instead it is actually due to an error in the input DSM. 

The error could be caused by occlusion or mismatch in the DSM generation which can 



  Chapter 5 Evaluation                                                                                                               94 

 

be seen in Figure 5.5(a). At the same time, in the LiDAR DSM in Figure 5.4, ground 

regions within the highlighted area are clearly visible.  

 

In the extracted nDSM masks from both methods (MSD and the new NGPs method), 

the black regions in Figure 5.5(f) and (i) represent off-terrain pixels, i.e. buildings and 

high vegetation. The differences are clearly visible and are highlighted by the yellow 

circles, especially between Figure 5.5(d) and Figure 5.5(g). While many elevated bare-

ground regions were lost by the MSD approach leading to a cluttered nDSM mask (as 

shown in Figure 5.5(f)), the nDSM mask created by NGPs is more realistic with respect 

to finding the building locations, as seen in Figure 5.5(i). This is mainly due to the 

successful identification of the network ground pixels as can be observed in Figure 

5.5(b). 
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Figure 5.5: MSD versus NGPs DTM extraction for Area 1(Mousa et al., 2017). (Top) 

Common input:- DSM derived from image matching is shown in (a), with a 14 cm 

GSD, as well as the selected ground points (b), and the initial DTM (c). (Middle) MSD 

algorithm: - The extracted ground mask (d), DTM (e), and nDSM mask (f). (Bottom) 

NGP algorithm: - extracted ground mask (g), DTM (h), and nDSM mask (i). 

 

Area 2: The DSM derived from LiDAR data and the reference DTM are shown in 

Figure 5.6(a) and (b), respectively. In Figure 5.7, the results of the MSD and the novel 

NGPs algorithms are given. The difference in the created ground masks of the MSD 

approach (Figure 5.7(d)) to the NGPs approach (Figure 5.7(g)) is clearly noticeable. 

For instance, wide ground regions have been lost from the ground mask created by the 
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MSD approach and non-ground points are clustered together. In contrast, the proposed 

algorithm NGPs successfully identifies those areas as can be seen in Figure 5.7(g).  

 

 

Figure 5.6: Area 2 DSM derived from LiDAR data (a) and the reference DTM (b) 

(Mousa et al., 2017). 

 
The extracted DTMs created by the MSD and the NGPs are presented in Figure 5.7(e) 

and (h), respectively. Both DTMs seem to be similar except the areas highlighted by 

the red circles. It can be seen that the NGPs DTM values in this area are higher than 

the DTM created by MSD, and even higher than the LiDAR DTM, as highlighted in 

Figure 5.6(b). In fact, the true height values (the same values in the DSM because it is 

terrain area) for this ground area are higher than for all the created DTMs, as visible 

in the LiDAR DSM Figure 5.6(a). This means that the DTM created by NGP is the 

closest to the actual in this highlighted area.   

  

In spite of the significant improvements in the quality of the ground masks created by 

the NGPs approach, the created DTM masks from both methods look similar (Figure 

5.7(f) and (i)). This is because the topographic surface of Area 2 has an approximately 

constant slope. The one difference visible in the ground region is highlighted by the 

red circle. In this ground region, the height difference is up to 6 meters with a sudden 

change. Such a case is very difficult because large height changes are normally used 

to distinguish between terrain and off-terrain regions. However, a smaller part in this 
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area is incorrectly classified as non-ground region by NGP when compared to MSD 

(see Figure 5.6(i) and (f) respectively).  

 

Figure 5.7: DTM extraction for Area1(Mousa et al., 2017). It shows the input DSM 

derived from image matching techniques (a) with 14 cm GSD, the selected ground 

points (b), and the initial DTM (c). The second row presents the extracted ground mask 

(d), DTM (e), and nDSM mask (f) using the MSD algorithm. The extracted ground 

mask (g), DTM (h), and nDSM mask (i) using the NGPs algorithm are shown in the 

third row. 

 
This is possibly due to the procedure of comparison of the height difference between 

a point in the centre of a scanline and the point having the lowest elevation (located at 
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the end of the scanline because of its sloped area). This provides a high elevation 

difference while both the point in the centre and the lowest point belong to the terrain. 

Therefore, details were lost utilising the MSD method. This limitation was overcoming 

in the NGPs method through the creation of an initial DTM from the seeding of well-

distributed ground points. The elevation of each pixel in the initial DTM was then 

compared to the elevation of the same pixel in the DSM to make a classification 

decision considering the height differences. 

 

 Quantitative evaluation 

Area 1: The created reference DTM is subtracted from the DTMs created by the MSD 

and the NGP methods, and the resulting difference maps are shown in Figure 5.8(a) 

and (b) respectively.  For both difference maps, positive differences mean that the 

created DTM is higher than the reference DTM. In some spots, the height difference 

reaches up to five meters (red areas), which is quite considerable. However, the error 

inside of the areas highlighted by the red circles is related to the error in the original 

DSM as discussed earlier. The second error, which is marked by red arrows, is related 

to the interpolation technique used in both methods. While inward interpolation has 

been applied in the MSD and NGP methods, LAStools uses a standard linear 

interpolation on the DTM from LiDAR points. 
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Figure 5.8: Area 1 elevation difference maps of the LiDAR DTM compared to the 

MSD (a) and the NGPs (b) (Mousa et al., 2017). 

 
Huge negative height differences are highlighted by the black arrows and are presented 

in the DTM created by the MSD approach (in Figure 5.8(a)). Those differences are up 

to five meters and, compared with the two meters from the NGPs approach, have to be 

flagged as gross errors. The major reason for this is that the raised ground regions are 

lost from the ground mask due to the applied slope parameter. For instance, slight 

height differences between adjacent ground pixels within the 14 cm GSD lead to the 

wrong classification decision (see section 4.3.2), especially in raised terrain. Hence, 

those raised ground pixels are lost from the DTM created by the MSD approach and 

incorrectly classified as off-terrain pixels. Based on the difference of the DTMs and 

after excluding the gross errors, the mean-square error (MSE) and the standard division 

are computed and presented in Table 5.3.   
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Table 5.3: Area 1 statistics of Mean Square Error (MSE) and standard deviation (SD) 

of the height differences of MSD and NGPs compared with the LiDAR DTM as well 

as the time required to execute the algorithms. 

 
 

For further evaluation, the NGP algorithm was used with different numbers of 

directional scanlines applied: 4 (NGP 4d) and 8 (NGP 8d). While the NGP algorithm 

should be run with 8 directions, 4 were also used in this experiment in order to evaluate 

to what extent the NGP improves the results compared to the MSD approach by only 

using a different method of determining the ground initially. Hence, it can be analysed 

what the impact the method has on the success of detection ground points and their 

distribution. The mean squared error declines from the MSD to the NGP 4d, and then 

further to the NGPs 8d. Therefore, it can be concluded that the selection of the ground 

points improves the results. However, the introduction of additional scanlines seems 

to have a higher impact on the drop of the mean squared error. This conclusion is also 

verified when looking at the standard deviation. The computation time required to 

execute the NGP algorithm is significantly less than the MSD algorithm due to the 

reduced complexity as discussed previously. The used computer was a desktop 

machine (Processor: Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz and Installed 

Memory (RAM): 16.00 GB with 64-bit operation system). 

 

As mentioned previously, ground truth for the DTM was not available, instead a 

reference classification map (layers including buildings, trees, grass, bare-ground, and 

cars) was provided. The extracted DTMs were compared with the reference 

classification map bare-ground layer. To do this, an nDSM is created by subtracting 

the final DTM from the input DSM, with threshold set at 0.4 metre. The extracted bare-

ground mask is compared to the reference bare-ground layer. The grass layer contains 

regions belonging to bushes and short grass that can be consider as part of the terrain. 

Method MSE (m) SD (m) Computation time 

MSD 0.8560 0.3660 556.06 s 

NGPs 4d 0.4574 0.2666 50.19 s 

NGPs 8d 0.3814 0.2492 52.60 s 
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Thus, it is excluded from the extracted bare-ground mask. For this reference DTM the 

calculated completeness and correctness are 66% and 94% for the evaluation result 

presented in Figure 5.9(a). The yellow parts represent bare-ground areas that are 

correctly detected. The regions belonging to the roads are detected correctly most of 

the time as shown in Figure 5.9. The red parts indicate false positive errors due to those 

off-terrain regions being incorrectly classified as ground regions. The blue areas 

indicate false negative errors due to missing parts from terrain. Some parts actually 

belong to off-terrain regions, but they were incorrectly classified in the reference 

provided, as shown in Figure 5.9(d). The red plus signs in Figure 5.9(d) belong to the 

building layer as it has a height of 5.864 metres in the nDSM. Other missing parts are 

very difficult to detect due to a sudden change in elevation. Figure 5.9(b) presented an 

example, in which the DSM (red line in the profile) has a sudden changed of nearly 

six metres height (from 274 metres to 285 metres) in a horizontal distance of less than 

1 metre. Alongside, the DTM (blue line in the profile) was smoothed, thus parts from 

ground regions have been lost from the extracted ground regions. Even considering 

this, the NGP method showed a good performance in which the majority of cars were 

successfully eliminated from the terrain, as can be seen in Figure 5.9(c). 
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Figure 5.9: The DTM evaluation result and analysis for NGPs method. The evaluation 

result is depicted in (a), where the true positive, false negative, and false positive are 

showed in yellow, blue, and red respectively. Analysis of some misclassification are 

presented in (b) and (d), while (c) shows removed cars from terrain. In the reference 

map, buildings, trees, grass, bare-ground, and cars, are depicted in dark blue, green, 

cyan, white, and yellow, respectively.  
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Area 2: The elevation difference maps of the MSD method (Figure 5.10(a)) and the 

NGP method (Figure 5.10(b)) reference DTM compared to the are both significantly 

better than the DTMs created of Area 1. This is mainly because the topographic surface 

is less undulating and because there are no noticeable errors in the input DSM. The 

regions highlighted with the red circle in Figure 5.10(a) indicates large negative errors 

up to two metres in the MSD extracted DTM. The MSD approach is still facing the 

same challenge as highlighted and discussed previously based on the outcomes. In 

contrast, the maximum negative error (Area 2) in the DTM created by the NGP method 

is smaller by approximately 0.5 metre. While there are no significant lower sections in 

the NGP, there is one higher area by nearly 2.5 m, as surrounded by red circle Figure 

5.10(b). This area is also highlighted previously in Figure 5.6(a). In fact, the correct 

value for this area is higher than what the NGP approach determines. Consequently, 

NGPs shows significantly better performance and therefore the DTM values are the 

closest to the true values. 

 

Figure 5.10: Area 2 height differences maps of the created DTMs with LiDAR DTM. 

MSD (a) and NGPs (b). 

 
The calculated Mean Squared Error (MSE) and standard deviation (SD) of the height 

differences are presented in Table 5.4. The MSE and SD equal to 0.1942 metres and 

0.1079 metres for the DTM created by MSD, 0.1488 metres and 0.0873 metres for 

(NGPs 4d), and 0.1348 metres and 0.0879 metres for (NGPs 8d) respectively. 
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Accordingly, the quality of the created DTM by the NGP method is slightly improved 

in Area 2 compared to Area 1 due to the fact that Area 2 is rather flat. However, the 

better quality achieved indicates that the NGP algorithm successfully overcomes the 

negative impact of implementation of the slope parameter in a high resolution DSM. 

Similar to Area 1, NGPs algorithm requires significantly less time as concluded 

previously. 

 

Table 5.4: Area 2 statistics of Mean Square Error (MSE) and standard deviation (SD) 

of height differences between MSD and NGPs compared with the LiDAR DTM and 

time required to execute the algorithms. 

 
 
Similar to Area 1, in Area 2 the nDSM also uses a threshold at 0.4 metres to extract 

the ground regions. The calculated completeness and correctness are 87% and 77%, 

wherein the evaluation results are presented in Figure 5.11(a). The false positive error 

(red parts) is noticeably more than in Area 1. Many of them are related to tree borders 

where the nDSM provides a height value less than the applied threshold (0.4 metres). 

For instance, the black circle in Figure 5.11(b) shows the nDSM is about negative 

0.003 metres, therefore is classified as being a ground region. Thus, it flagged as a 

misclassification. In Figure 5.11(c), false negative errors occurred caused by a sudden 

elevation change similar to Area 1 (Figure 5.9(b)).    

 

Method MSE (m) SD (m) Computation time (s) 

MSD 0.1942 0.1079 5480.5 

NGP 4d 0.1488 0.0873 319.47 

NGP 8d 0.1348 0.0879 327.16 
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Figure 5.11: The DTM evaluation result and analysis for NGPs method. The evaluation 

result is depicted in (a), where the true positive, false negative, and false positive are 

showed in yellow, blue, and red respectively. Examples of some false positive and 

false negative are presented in (b) and (c). In the reference, buildings, trees, grass, 

bare-ground, and cars, are depicted in dark blue, green, cyan, white, and yellow, 

respectively. 
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5.3 Building segments extraction and evaluation 

Building segments were extracted based on the proposed fusion method in section 4.4. 

Based on the literature, various evaluation methods have been carried out to assess 

classification results. Pixel or area-based methods, as well as object-based methods 

(Rottensteiner et al., 2014; Rutzinger, Rottensteiner, & Pfeifer, 2009) are used to 

calculate completeness, correctness, and quality. Object-based evaluation was 

performed two times; one test considering that the smallest existing building of interest 

has an area of at least 10 m2, while the second test assumes the smallest building to be 

50 m2. 

 

The proposed data fusing method (section 4.4) is evaluated firstly using the 

benchmarked Areas 1, 2, and 3 in Vaihingen. The proposed method is also evaluated 

using the Melville dataset utilising 126 buildings which were manually digitised as 

ground truth data. 

  

Vaihingen dataset: The calculated completeness (Cm), correctness (Cr), and quality 

(Ql) are shown in Table 5.5. The performance of this approach is depicted in Figure 

5.12.  

Table 5.5: Area-based and object-based evaluations of building outline extraction 
output. Cm = completeness, Cr = correctness, Ql = quality. 
 

Area Area/ pixel-based (%) 
Object-based 

>10 m2 >50 m2 

 Cm Cr Ql Cm Cr Ql Cm Cr Ql 
1 92.70 96.50 89.70 93.80 100.00 93.80 100 100 100 
2 95.20 94.80 90.50 91.70 91.70 90.00 100 100 100 
3 87.10 97.40 85.10 87.50 100.00 87.50 97.4 100 97.4 

Avg. 91.67 96.23 88.43 91.00 97.23 90.43 99.13 100 99.13 
 

Concerning the area-based evaluation, the proposed method shows satisfactory results 

with a high average correctness of 96.23%, and an average quality of 88.43% (Table 

5.5). Considering the minimum area of building objects which exist in the scene is 

larger than 50 m2, the average quality rate is 99.13%. The performance of the proposed 
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fusion method for the three Vaihingen sites is visualised in Figure 5.12. The red circles 

in Figure 5.12(c2) indicates a building with inadequate laser point data, while the 

gridded DSM presented better 2.5D information. This specific building was missed by 

several methods based on point clouds segmentation (Rottensteiner et al., 2014) due 

to insufficient information. Working on a gridded DSM can overcome this problem 

more proficiently, as shown by this building having been successfully identified, as 

highlighted by the black dashed circle in Figure 5.12(c).   

 

Generally, there are two types of errors: false positives (red) and false negatives (blue). 

The false positive errors represent those objects identified as buildings, but are actually 

not buildings in the ground truth (e.g. trees or vehicles). It can be seen that the false 

positive errors are insignificant and mainly caused by misalignment errors. The false 

negative errors are buildings which were not detected. Only two low buildings were 

missing (i.e. in Area 3 Figure 5.12(c)). The misalignment of the fused data could also 

yield false negative alarms. Thus, it can be concluded that the proposed data fusion 

(see equation (4.4) has been successfully applied and, therefore, buildings are well-

distinguished from trees, even those located in shadow regions. Thus, the robustness 

of the approach - that nDSM, NDVI, and planarity are sufficient to remove trees – is 

proven because few changes happen by modifying these thresholds by around 10%. 

 

In addition, there are some challenging cases in which the proposed procedure 

struggles in its performance, which result in false negative errors. For example, those 

missing buildings in Figure 5.12(a1), Figure 5.12(b), Figure 5.12(c1), and Figure 

5.12(c3). The problem is due to the relative elevation between those buildings and the 

DTM being too small. There are two reasons for this, either buildings are too low (i.e. 

building in Figure 5.12(b)) or the DTM (blue dashed line) spuriously too high (i.e. 

building in Figure 5.12(c3)).  Profiles to explain this issue are depicted in Figure 

5.12(b2), Figure 5.12(c1), and Figure 5.12(c4).  
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Figure 5.12: Building detection results in Vaihingen (Mousa et al., 2019): (a) Area 1, 

(b) Area 2, and (c) Area 3. True positives, false negatives, and false positives are 

depicted in yellow, blue, and red respectively.  

 
In comparison with the results presented in Rottensteiner et al. (2014), the proposed 

method shows a quite good performance for the area-based evaluation with an average 
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quality of 88.43%. It is also positioned within the highest level in terms of correctness, 

with an average of 96.23%. Compared with the methods based on morphological 

filtering by (i) (Mongus et al., 2014) and (ii) (Zongze Zhao et al., 2016), the proposed 

method shows a higher average quality by 2.6% and 3.4%, respectively, over the three 

sites, but a lower completeness in Area 3 by 1.8% and 0.6%, respectively. In addition, 

the proposed method shows a significantly higher area-based quality rate for Area 1 

by 4.8% and 6.2% over sources (i) and (ii), respectively. This is an indicator that 

morphological filters show a worse performance in sloped terrain. In comparison with 

the lidar data-fusion method (Du et al., 2017), the proposed method shows a lower 

average area-based quality by 1%, but a higher average correctness by 1.36% in the 

three areas.  

 

Compared to point-cloud-based approaches such as Awrangjeb et al. (2014), the 

proposed method performed significantly better in area-based correctness and quality 

(96.23% versus 91%, and 88.43% versus 80.7%, respectively). Only Area 3 showed a 

lower completeness rate by approximately 0.6% compared to Awrangjeb et al. (2014). 

However, while that work assumed the DEM was available, this paper has presented 

a fully automatic workflow. In terms of geometrical analysis, the proposed method 

yielded a higher accuracy by 0.17m (0.75m versus 0.87 m). 

 
Melville dataset: A ground truth for Melville dataset including 125 buildings was 

manually created by digitising outlines based on the ALS data and the orthophoto. 

Those 125 buildings are considered as reference and are used for the evaluation of the 

building detection and regularisation results. The calculated completeness, 

correctness, and quality for those 125 buildings are 94%, 95%, and 90%, respectively. 

The results are visualised in Figure 5.13. The findings highlighted in Vaihingen dataset 

are also demonstrated here. For example, false negative errors occurred in the building 

shown in Figure 5.13(d). This is mainly due to the low height difference problem, as 

shown in the nDSM in Figure 5.13(d) in which the elevation difference is nearly 1.7 

metres. Also, the misalignment errors can also be seen in this data. The misalignment 

error is the main limitation of procedure based on fusion data from multiple sources 

and it is highly depending on how the orthophoto image was created.  
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Figure 5.13: Building detection in Melville. (a) represents the result for 126 buildings. 

(b) enlarged section, while (c) and (d) shows one segment building and its nDSM. 
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It is important to mention that a shapefile with the building outlines for Melville from 

2012 was available however the existing dataset was captured in 2016. Therefore, it is 

reasonable to investigate whether buildings were still existing, demolished or had been 

extended since 2012. To do so, the shapefile involving the building outlines from 2012 

was rasterised first as shown in Figure 5.14(b), and denoted as an “old map” (i.e. out-

of-date map). Then, the extracted building map from the existing data (2016) (see 

Figure 5.14 (c)) was overlaid with the old map generating an additional raster map 

(Figure 5.14(d) which indicates changes). Buildings in Figure 5.14(d) are categorised 

into three groups: unchanged (brown), new building segments (yellow), and 

demolished buildings (magenta). The unchanged buildings are those existing in both 

the old and new map without significant alterations. The new buildings are those 

existing in the new building map, but not in the old map. In contrast, the demolished 

buildings exist in the old map, but no longer existing in the new map. Further, for the 

new and demolished buildings, it also important to investigate whether those buildings 

have been changed in part or in whole. For instance, new buildings segments should 

be separated further into two groups: wholly new and partially new. Similarly, 

demolished buildings should be also separated into wholly and partially demolished. 

 

 
Figure 5.14: Procedure for updating buildings map. Orthophoto, old, and new 

buildings are shown in (a), (b) and (c), while the overlaid old and new map is presented 

in (d). The DSM is shown in (e). The new and demolished building segments are 

shown in (f) and (g). The final updated map is shown in (h). 
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Smaller segments having an area of less than 10 m2 were removed. This is because 

buildings smaller than this are rare and those segments are most likely due to being 

noise. Moreover, misalignment errors between the two datasets can yield a false 

indication. Additionally, the width and length of a building should be at least three 

metres (Vosselman, Kessels, & Gorte, 2005). Thus, small segments not achieving 

these requirements are eliminated by analysing the connected components, the area, as 

well as the major and minor axis of each single segment. Figure 5.14(d) shows some 

examples of those small and misaligned segment to be removed as indicated by the 

orange arrows. The new and demolished building segments are presented in Figure 

5.14(f) and (g) respectively. In order to differentiate between completely and partially 

changed buildings, a simple and efficient procedure is proposed. First, each individual 

new and demolished building segment is dilated by one pixel. Then, a new building 

segment is classified as building-part if an existing overlap between its border (the 

dilated pixels) with a building in the old map Figure 5.14(b), otherwise it is classified 

as a completely new as indicated by white arrows as in Figure 5.14. While, a 

demolished building segment is classified as demolished-part if its border overlaps 

with a building in the new map as in Figure 5.14(c), otherwise it is classified as 

completely demolished as can be seen in Figure 5.14(f). 
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Figure 5.15: Final updated building map for the Melville study area. Unchanged, new, 

new part, demolished, and demolished-parts buildings are presented in brown, dark 

blue, light blue, orange, and light green respectively. 

 

The final updated building map for the Melville dataset is presented in Figure 5.15. It 

can be seen in this figure that the updated map has several changes, i.e. many new and 

extended buildings, completely demolished ones, etc. By visual inspection of many of 

these changes, it can be seen that the majority of the proposed changes are correct. 

However, in some cases, there is missing data from the input DSM which leads to false 

errors of demolished buildings and building-parts. Moreover, wholly new buildings 

are sometimes classified incorrectly as new building-parts. This is because the new 

building is connected to its neighbours making them appeared to be connected as 

shown Figure 5.16 (new map). The buildings coloured in magenta in the final resulting 

map (Figure 5.16) demonstrate such incorrect classification. This classification error 

could be analysed further by considering a rule-based procedure. For example, by 
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analysis of the intersecting region, which is very small compared to the actual building 

outlines, can be used to identify joined building outlines which should be separated. 

However, this is not the focus of this thesis and therefore, is not pursued here. 

 

Figure 5.16: Example of a complete new building classified incorrectly as a new 

building-part. The old map, new map, and their overlapping values are shown in the 

top row. The DSM, Orthophoto, and the result for the updated map from left to right 

are presented in the bottom row.   

 

5.4 Evaluation of the proposed data-driven approach for building polygon 

generalisation 

This section aims to evaluate the performance of the proposed simplification algorithm 

for the generation of approximated building polygons (see section 4.5.2). To do so, a 

comparison with the Douglas-Peucker (DP) method is conducted. Sensitivity analysis 

on algorithm parameters is also presented.  
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 Comparison to the Douglas-Peucker (DP) algorithm  

The DP algorithm was chosen as a comparison because it is the most common 

simplification algorithm in the literature as discussed previously. In order to provide a 

fair comparison, the parameters of both algorithms were adjusted, so that the same 

number of vertices and line segments were acquired. As the number of line segments 

is identical, the standard deviation (SD) of the orthogonal distances between the input 

boundary points and their corresponding line segment is a reasonable measure to 

compare the success of both methods during the evaluation process.  An algorithm that 

achieves a lower number of vertices associated with a smaller SD or RMSE value 

indicates a better performance. This is because simplifying a shape with less vertices 

or edges, alongside with best fitting those edges with the input boundary points, will 

consequentially achieve a smaller RMSE. 

 

First, it is highlighted that the DP algorithm is very sensitive to the position of the 

starting point. Figure 5.17 illustrates the results of the building generalisation 

depending on the start point location (black triangles indicated by the orange arrows) 

for both methods. In this figure, boundary points are shown by coloured dots assigned 

to their corresponding edges. The top row presents the DP algorithm results and the 

bottom row presents the results of the proposed method. While the DP algorithm 

produces significantly different type of outputs regarding the shape and number of 

obtained vertices (despite of a fixed tolerance threshold value (T) with value of 10 

pixels, with a pixel = 0.25 m), the proposed method shows a more stable performance. 

The same number of vertices is obtained with a fixed value of the RMSE threshold 

(RT) equal to 7 pixels. Hence, where possible, it is desirable to fix the number of 

vertices. However, this is not possible using the DP algorithm. The main reason is that 

the tolerance threshold (T) corresponds to the farthest boundary point to its assigned 

edges. This farthest point is not always located at a building corner, which is the only 

way to detect vertices in the processing of the DP. In contrast, corner preservation has 

been implemented in the new simplification approach through the proposed likelihood 

equation (see section 4.5.2). The proposed method utilises the RMSE value as a 

threshold, which is more robust against outliers than the DP method because the 

outliers can be hidden in the calculated RMSE value. 
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Figure 5.17: The sensitivity to a change of the starting point for the DP algorithm (top 

row) and the proposed method (bottom row) (Mousa et al., 2019).  

In the DP-based algorithm, the final number of vertices changes from 6 to 9 to 4 and 

finally 6 (from left to right) even with one fixed tolerance threshold (10 pixels). The 

proposed algorithm seems more stable as the same number of vertices (6) has been 

obtained using one RMSE threshold value equal to 7 pixels. 

 
Figure 5.18 presents the results for comparison utilising different building shapes 

processed by the proposed algorithm and the DP-based method, applying different 

parameters for both algorithms.  

 

The parameters are:  

• for DP, the tolerance threshold (T) (defining the distance from the 

furthest boundary point to its related line segment); and  

• for proposed algorithm, the RMSE threshold (RT) (defining the RMSE 

of all distances between boundary points belonging to their 

corresponding line segment).  

• the standard deviation values for both algorithms.  

Examples 1 and 2 shows the same input building boundary points that should be 

represented by 6 vertices and 6 edges to achieve the best fit. However, the best possible 

DP simplification output is 7 vertices with a SD value of 2.2 pixels. Reducing the 
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vertices number to 6 by changing the value for T (from 16 to 19 pixels), it diverges the 

shape away from the optimal solution and produces a SD value of 3.8 pixels. In 

contrast, the proposed algorithm achieves 6 vertices and a SD value of 0.89 pixels. 

Other performance issues are related to the ad hoc tuning parameters of both 

algorithms when dealing with buildings of different complexity. For instance, simple 

building structures like the third example in Figure 5.18 requires a minimum T value 

of 8 pixels to produce 4 vertices while more complex shapes (example 6 in the figure) 

requires a T ≥ 11 pixels. 

  

(example 6 in in Figure 5.18) requires a T ≥ 11. In addition, for other types of buildings 

(e.g. example 7 and 8) it is a long iterative process to determine the T value yielding 

the best outcome. In contrast, the proposed algorithm requires significantly less 

empirical tuning for the RT value; a RT value of 4 pixels is suitable for all types of 

buildings presented in Figure 5.18. Overcoming such issues is essential for automation 

of building regularisation, especially if buildings with different complexity levels exist 

in a scene. 

 

 



  Chapter 5 Evaluation                                                                                                               118 

 

 

Figure 5.18: Comparison of simplification results generated by the DP algorithm and 

the proposed algorithm (Mousa et al., 2019). Triangles denote the starting boundary 

point. T is the tolerance threshold for DP. V is the number of vertices (●), SD is the 

calculated standard deviation. Note the RMSE threshold is used in the proposed 

algorithm. 
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 Parameters setting and analysis for building generalisation 

The goal of this section is to find reasonable ranges for the following parameters: 

nDSM threshold (NT), Median filter (MF), RMSE threshold (RT), Angle detector 

(AD), and Similarity Ratio (SR). For the sensitivity analysis, five different values for 

each of the applied parameters were used, i.e.   

• nDSM threshold (NT): 1.5, 2, 2.5, 3, and 3.5 metres.  

• Median filter (MF): 0, 0.5, 1, 1.5, and 2 metres.  

• RMSE threshold (RT): 0.4, 0.8, 1.2, 1.6, and 2 metres.  

• Angle detector (AD): 1, 1.5, 2, 2.5, and 3 metres.  

• Similarity Ratio (SR): 100, 90, 80, 70, and 60%.  

 

While the nDSM threshold NT affects the results of the building detection, it has no 

significant impact on the regularisation algorithm results. Typically, the optimum 

selection of the nDSM threshold varies in the range of two to three metres depending 

on the minimum height of man-made buildings in the scene. Figure 5.19 shows that 

increasing the NT threshold leads to an increase in the correctness measure and a 

reduction of the completeness measure. This is expected because small buildings and 

building parts are remaining undetected.  

 

In the regularisation step, a sensitivity analysis was performed for the proposed 

approach. The RMSE of the extracted vertices is calculated to estimate the planimetric 

accuracy of the regularisation results. In Figure 5.19(b), the numbers 1–5 along the x-

axis indicate the set values for each of the five parameters. The y-axis shows the 

calculated RMSE of the extracted vertices. When one of the parameters was changed, 

the other parameters were held at their standard values as follows: MF = 1 m, RT = 1 

m, AD = 2 m, and SR = 90%. 

 

Overall, the RT parameter was found to be the most sensitive. Choosing a suitable 

value is highly dependent on the complexity of buildings in the scene and on the 

desired degree of simplification. For example, Area 2 (Figure 5.20) has complex 

buildings with many small edges (sometimes less than two metres in length) which 

required a strict RT value of 0.75 m (Table 5.6) to preserve these details. The utilised 
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RT was set higher (1.1 m Table 5.6) for Area 2 compare to Area 3. Therefore, some 

small details have been lost (Figure 5.20(c)). Such small details can be retained with a 

tighter RT threshold (similar to Area 2), but the regularisation goal is to obtain the 

highest reduction in number of boundary points, while at the same time the original 

building shape should be maintained as much as possible.  

 

The MF and AD parameters show less sensitivity in the behaviour and both can be 

fixed to default values of 1m and 2 m respectively (see Table 5.6). Similarly, the SR 

shows a more robust behaviour and only at a value of 60% did the calculated RMSE 

increased from 0.75 to 0.83 metres. At 60% the chance for a building to be 

oversimplified and modelled as a rectangular is too high. 

 

 

Figure 5.19: Sensitivity analysis of the parameters (Mousa et al., 2019). (a) sensitivity 

analysis of NT threshold. (b) sensitivity analysis of median filter (MF), RMSE 

threshold (RT), angle detector (AD), and similarity ratio (SR). 

 

The optimal selection of applied parameters depends on the input data resolution, 

minimum height of the buildings, the desired level of details and the degree of the 

simplification. Table 5.6 summarised the parameters used for all study areas. Some 

parameters are invariant between data sets (i.e. the angle detection parameter AD), 

while some are not applied (i.e. the median filter in the Melville dataset because of its 

low resolution).  

 

The Melville dataset was found to contain buildings placed quite close to each other, 

and applying the median filter was found to merge adjacent buildings to a single 

complex shaped building, causing the regularisation result to become less reliable 
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(Mousa et al., 2019). Instead, a post-processing step involving morphological filtering 

(erosion followed by dilation) with a kernel of three pixels was used on the extracted 

building segments to enhance the outlines. After the generalising of the approximate 

building polygons according to these parameters, the next step regularised or enhanced 

the approximated polygons through applying the GMM and GHM adjustment.   

Table 5.6: Parameters setup for building regularisation. 

 MF (m) NT (m) RT (m) AD (m) SR % 

Area 1  1 2.3 1.4 1.75 75 

Area 2 1 2.7 0.75 2 ~ 

Area 3 0.75 2 1.1 2 68 

Melville ~ 2 0.9 2 85 
 
 

5.5 Buildings Regularisation Results and evaluation 

Those polygons are either processed by GMM or GHM. Rectilinear building polygons 

are processed by GHM while non-rectilinear ones are processed by GMM (see sections 

4.6.2 and 4.6.3). It is important to mention that the GHM processes only polygons 

having an even number of vertices. Thus, if a rectilinear building introduced to the 

adjustment with an odd number of vertices, the GHM cannot be applied, and therefore, 

GMM is used.  

 

In this section, the regularised building outlines after adjustment using GMM or GHM 

(as applicable) are presented and assessed. The modelling assumptions applied to 

rectilinear and non- rectilinear buildings are also evaluated. Finally, an investigation 

of how the GMM and GHM adjustment improves the geometric accuracy of building 

outlines is performed. 

 

 Quantitative evaluation of buildings regularisation  

Building regularisation results for the Vaihingen (Areas 1, 2, and 3) and the Melville 

datasets are presented in Figure 5.20 and Figure 5.21 respectively. The calculated 

RMSE values for the evaluation (see section 4.7) requires two corresponding 
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polygons. These two polygons are the extracted and regularised building outline, and 

its reference. Hence, if two adjacent buildings are extracted as a single (merged) 

outlines, the calculated RMSE becomes meaningless and does not reflect the absolute 

similarity between the extracted polygons and its reference polygons. This issue is 

demonstrated in the Vaihingen dataset where many adjacent buildings are merged 

together into a single segment. Hence, the quality of the building outlines in Vaihingen 

are assessed by a tool provided by ISPRS used in Rottensteiner et al. (2014). In this 

tool, the perpendicular distances between each vertex of an extracted building polygon 

and the nearest boundary points from the reference is calculated. Distances greater 

than a pre-defined threshold of three metres are excluded (Rottensteiner et al., 2014). 

Accordingly, the RMSE of the extracted vertices and the RMSE of building object 

centroids as well as the processing time, are presented in Table 5.7. Additionally, 

building polygons are rasterised, and then the completeness (Cm), correctness (Cr), and 

quality (Ql) are also calculated. The rasterisation process may introduce errors, but it 

provides a robust outcome (Potůčková & Hofman, 2016) 

Table 5.7: Evaluation results of building reconstruction: area-based completeness 

(Cm), correctness (Cr), and quality (Ql), RMSE of the extracted vertices and RMSE of 

centroids of building objects as well as the processing time in seconds. 

 

Area 
Area or pixel based (%) RMSE of 

vertices 
(m) 

RMSE of 
centroids 

(m) 

processing 
time in sec Cm Cr Ql 

1 88.7 95.6 85.3 0.93 0.80 97.69 
2 93.4 95.3 89.3 0.75 0.57 67.71 
3 84.1 96.1 81.4 1.04 0.70 94.05 

Avg. 88.73 95.67 85.33 0.91 0.69   
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Figure 5.20: Building regularisation result in Vaihingen dataset (Mousa et al., 2019). 

Areas 1, 2, and 3 from left to right. Building colours are randomly assigned for better 

visualisation. 

 
In Figure 5.20, it can be seen that the majority of the complex buildings have been 

modelled accurately, especially in Area 2 (Figure 5.20(b)). In Area 2, the achieved 

RMSE values are 0.75 metre for the extracted vertices and 0.57 metre for centroids of 

building objects. A high rate of correctness and a high rate of completeness have been 

achieved for all three sites with an average of 95.67% and 88.73%, respectively. The 

average RMSE of the geometric accuracy is 0.91 metre and the RMSE of the building 

centroids is 0.69 metre in all areas. The RMSE seems to be slightly higher in Areas 1 

and 3. However, it is anticipated that the RMSE increases with a higher degree of 

generalisation and vice versa. For instance, adding more polygon vertices or edges 

usually leads to a lower RMSE. However, this is not the goal of the simplification 

process. 

 

In regard to the Melville dataset, the proposed methodology was applied to the whole 

study area, including approximately 2200 buildings as presented in Figure 5.21. 

However, the 125 buildings manually digitised and used for the purpose of building 

segments evaluation are utilised only for the regularisation assessment. One of these 

125 buildings has an inner polygon and thus, gives 126 polygons in total to be 

evaluated.  
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Figure 5.21: Building regularisation result in the Melville dataset. Building colours are 

randomly assigned for better visualisation. 

 
The absolute RMSE of each extracted polygon and its reference is calculated in pixels 

(see equation (4.25)). Additionally, the centroids shift between all the extracted 

polygons and their references are calculated. The average RMSE of the extracted 

polygons before and after the adjustment are 2.03 pixels and 1.83 pixels respectively. 

The comparison of the RMSE for each building before and after the adjustment is 

presented in Figure 5.22. This comparison is represented as percentage improvement 

in Figure 5.23. Accordingly, the adjustment has achieved approximately 9.7% 

improvement in the calculated RMSE. It can be seen in Figure 5.23 that the accuracy 

of majority of those building polygons has been significantly improved. There are 

some polygons were decreased accuracy were presented caused by introducing 

inaccurate approximate polygons to the adjustment. Analysis and details will be 
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provided in the next sections including the model assumption evaluation and the 

assessment of the applied GMM and GHM. 

 

 
 

Figure 5.22: The calculated RMSE in pixels of the extracted polygons before and after 

the adjustment – Melville dataset. 

 

 
 

Figure 5.23: Improvement of the RMSE after the adjustment – Melville dataset. 
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 Model assumption evaluation 

For the evaluation, the Melville dataset was chosen for two reasons. Firstly, the low 

resolution DSM and the orthophoto both had a 0.5 metre ground sample distance 

(GSD). Secondly, the dataset includes rectilinear and non-rectilinear buildings with 

very complex outlines. Both of these factors presented the proposed methodology with 

a number of challenges. The ground truth involved 87 rectilinear buildings and 39 non-

rectilinear buildings, giving 126 buildings in total.  

 

Rectilinear and non-rectilinear buildings are assumed to be modelled using the GHM 

and GMM adjustments, respectively. The accuracy of this assumption is evaluated in 

Table 5.8.  This evaluation shows that only 29 out of 39 non-rectilinear buildings have 

been processed by the GMM adjustment. In addition, less than half of the rectilinear 

buildings were processed by the GHM adjustment. In the next sections, the reasons 

some buildings were processed inaccurately are discussed.     

 

Table 5.8: Model assumption evaluation – Melville dataset 

 No. of 

buildings in 

the reference 

No. of building 

modelled by 

GMM 

No. of building 

modelled by 

GHM 

Comp. 

% 

Corr. 

% 

Non-

rectilinear 

buildings 

39 29 10 74 39 

Rectilinear 
buildings 

87 45 42 48 81 

 

 Assessment of the GMM adjustment 

As mentioned earlier, the GMM is designed to process non-rectilinear building 

polygons. It is important to mention that, for rectilinear buildings, if the approximated 

polygon is introduced to the adjustment with odd number of vertices, GHM cannot be 

applied. Therefore, such rectilinear buildings are modelled using GMM. This is 

because the GMM is free of constraints, which make it flexible for processing any 
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building shape (i.e. rectilinear or non-rectilinear). This section is divided into two 

subsections includes rectilinear and non-rectilinear buildings processed by the GMM. 

 

5.5.3.1 Rectilinear buildings processed by GMM adjustment 

As described in Table 5.8, 45 rectilinear buildings were processed by GMM. The 

majority of those building polygons have been significantly improved as shown in  

Figure 5.24(a) and (b). The GMM method does struggle for modelling some complex 

building polygons which were inaccurately approximated by the proposed data-driven 

method (section 4.5.2). For instance, if the positions of the estimated vertices were not 

close enough to the actual locations or missing vertex\vertices (especially building 

with too small edges i.e. less than one metre), an improvement might not be achieved 

in the adjustment.     

 
Figure 5.24: Assessment of rectilinear building polygons processed by GMM – 

Melville dataset (a) shows the RMSE of the approximated and adjusted polygons. (b) 

presents the percentage improvement of the RMSE planimetric accuracy. 
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        Before adjustment             After adjustment 

Figure 5.25: Examples show improving planimetric accuracy of rectilinear buildings 

processed by GMM. First column (a), (d) and (g) depict the approximated polygons 

(green) and the reference (red polygons) before adjustment. Second column (b), (e) 

and (h) represent the final extracted polygons after adjustment (green) along with 

references. The third column present nDSM and binary image. 

 

Figure 5.25 illustrates three different examples for rectilinear buildings processed by 

the GMM adjustment taken from the Melville dataset. The first example (top row) 

presents a complex building with some short edges less than one metre. Such small 

details are very hard to extract with a low-resolution DSM (0.5 metres). Moreover, 

nDSM shows that this building is connected to its neighbour, resulting in a noisy 

border as shown in Figure 5.25(c) . The middle row show a less complicated building, 

but there was an undetected vertex (as indicated by the blue arrow Figure 5.25(d)) due 

to it being located at nearly a straight line (not corner), as shown in the input building 

segment (Figure 5.25 (f)). It has been highlighted that any missing vertices in the 
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generalisation process can lead to a decreased building area in the final adjustment 

result.  

 

Similarly, the third example (third row) presents a building with very small edges (less 

than a metre). While for buildings with odd number of vertices, GHM adjustment 

cannot be applied, the applied GMM adjustment performs very well in terms of the 

best fitting of polygon edges with the input boundary points as indicated by the black 

arrows on Figure 5.25(d) and (e). In terms of creating right angles, the GMM 

adjustment also performs very well, as indicated by the green arrows in the same two 

figures. The planimetric accuracy improved by nearly 42% after the adjustment.  

Similar to the first example, the third example (third row) presents a building with very 

small edges (less that metre). Also in this case, the GMM adjustment has achieved a 

significant improvement. 

 

In Figure 5.26, two examples of rectilinear buildings processed by GMM are presented 

in which the RMSE has enlarged after adjustment. In the top row, the nDSM shows a 

different shape compared to the reference due to an installed shade cloth next to the 

building. The dark green shade cloths is clearly visible in the image taken from Google 

Maps (Figure 5.26(a1)). Analysing the angles, GMM is able to create approximately 

right angles, especially when the input boundary points are approximately right angles. 

For instance, as indicated by the blue arrow in Figure 5.26(b), this right angle was 

correctly modelled even though the initial approximated angle in Figure 5.26(a) was 

not a right angle. This lead to this vertex moving further away from the reference, 

which resulted in a larger RMSE of the adjusted polygon compared to the 

approximated polygon. Overall, the main reason for the larger RMSE after adjustment 

is due to a non-building feature which is not in the reference, but which has been 

identified by the proposed method successfully.  

 

The second example in the second row of Figure 5.26 ((c) and (d)) presents another 

complex building outline with very short edges. Many of those short edges have been 

lost due to the necessary threshold decisions. The extracted building segment (Figure 

5.26(c1)) shows that these short edges are part of the initial solution, but have been 
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merged in the approximated polygon. While the approximated polygon could achieve 

a RMSE value equal to 1.66 pixel, the adjusted polygon’s RMSE value increased by 

nearly 17%.   

Next to eliminated short edges, another contributing factor to an increase in RMSE 

after adjustment is that one vertex moved away from its reference (indicated by the 

blue arrow in Figure 5.26(d)), while its original approximated location was closer to 

the ground-truth. This is because the GMM adjustment tends to improve the best fit of 

edges rather than keeping the adjusted vertices close to the initial solution. Compared 

to the edges, the weight of the vertex locations (observation equation of vertices) is the 

identity matrix. Additionally, it can be seen in Figure 5.26(d) that one vertex is missing 

just to the right of the blue arrow. The adjustment is unable to recover the 

missing/inaccurate input data. 
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Before adjustment                                       After adjustment 

Figure 5.26: Examples show the declining planimetric accuracy of rectilinear buildings 

processed by GMM. First column (a) and (c) depict the approximated polygons (green) 

and the reference (red polygons) before adjustment. Second column (b) and (d) 

represent the final extracted polygons after adjustment (green) along with references 

(red). (a1) and (d1) are images taken from Google Maps while (c1) is the input building 

segment as extracted from the nDSM.  
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5.5.3.2 Non-rectilinear buildings processed by GMM adjustment 

The aforementioned evaluation concerned on rectilinear buildings processed by the 

GMM adjustment. In this section, the performance of the GMM will be assessed as 

applied to non-rectilinear buildings, where it performs best. Table 5.8 shows that 74% 

of non-rectilinear buildings have been processed correctly by the GMM adjustment. 

The planimetric accuracy of the majority of those buildings improved after adjustment 

as can be seen in Figure 5.27. The only cases where deterioration was observed related 

to inaccurate input data (i.e. DSM or inaccurately approximated polygon). 

 

 
Figure 5.27: Assessment of non-rectilinear building polygons processed by GMM 

presenting the percentage of the improvement of the RMSE planimetric accuracy. 

 

Figure 5.28 illustrates three different non-rectilinear buildings where the RMSE has 

significantly decreased which means the geometric accuracy is improved. For 

instance, Figure 5.28 (a) shows that the initial polygon (green) has a higher RMSE 

value compared to the adjusted result in Figure 5.28 (b) (also green). This is mainly 

due to the significant movement of the vertices positions toward their actual positions, 

especially the vertex indicated by the blue arrow, where the movement was close to 

five pixels (which is equivalent to 2.5 metres). After the adjustment this distance has 

been reduced to nearly one pixel. The update of boundary point labels to their 

corresponding edges in the least squares adjustment is the main contributing factor for 

this significant improvement. Indeed, this improvement cannot be achieved without 

the updating process.  
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Before adjustment                         After adjustment 

Figure 5.28: Examples show improving planimetric accuracy of non-rectilinear 

buildings processed by GMM. First column (a), (c) and (f) depict the approximated 

polygons (green) and the reference (red polygons) before adjustment. (b), (d) and (f) 

represent the final extracted polygons after adjustment (green) along with references. 

Images taken from Google Maps are also presented. 
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For instance, because the GMM adjustment minimises the orthogonal distances 

between the boundary points and their edge, the labels of points in the blue circle in 

Figure 5.28 (a1) change from the blue edge to the black edge. In contrast, a further 

displacement of the vertex indicated by the blue arrow in Figure 5.28 (b) cannot be 

obtained. Moreover, the resulting best-fit polygon (green lines in Figure 5.28 (b)) 

achieves a high level of accuracy also because the three right angles indicated by the 

green arrows have been created correctly.  

 

Another example is presented in Figure 5.28 (c) and (d), in which the improvement 

percentage is more than 22%. It is highlighted by the blue arrows that redundant 

vertices are part of the final solution (green polygon) compared to the reference (red 

polygon). The last row displays a very complex non-rectilinear building Figure 5.28 

(e) and (f), where an improvement in planimetric accuracy can be achieved. 

Nevertheless, the purple arrows in Figure 5.28 (e) indicate that the solution (green 

outline) is missing vertices compared to the reference (red outline). The reason for the 

missing vertices is the level of noise in the input data, together with the applied RMSE 

threshold (RT) in the data-driven algorithm for generating the approximated building 

polygons. The RT was set to 0.9 m (see Table 5.6). Those missing vertices are able to 

be detected with more strict RT threshold (e.g. 0.75 m), but consequentially, more 

redundant vertices will also be obtained, such as those indicated by the blue arrows 

(Figure 5.28 (c)). Thus, it is a challenge to optimise the RT parameter for noisy data 

and/or complex of building outlines. 

 

Figure 5.29 shows two non-rectilinear buildings in which the RMSE has been 

increased slightly after the adjustment. In the first row, the nDSM displays an object 

(most likely a window overhang) in touch with the building (as highlighted by the 

black circle), which caused an extra vertex to be created, leading to a higher RMSE 

value. In contrast, the second row shows an area highlighted by the orange circle in 

Figure 5.29(d) that has nDSM values less than the nDSM threshold (NT) (two metres, 

see Table 5.6). Therefore, this area has been lost from the extracted building segment 

as highlighted by the orange circle in Figure 5.29(e). Thus, the inaccurate boundary 

points had a negative impact on the quality of the adjusted polygon. 
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Before adjustment                    After adjustment 

Figure 5.29: Examples show declining planimetric accuracy of two non-rectilinear 

buildings processed by GMM. Image taken from Google Map (a1), nDSMs, and 

building segment are also shown.  

 

 Assessment of the GHM adjustment 

5.5.4.1 Non-Rectilinear buildings processed by GHM adjustment 

Table 5.8 shows ten non-rectilinear buildings processed using the GHM adjustment. 

All of those buildings have a nearly rectilinear shape. Figure 5.30(a) illustrates the 

calculated RMSE for building polygons before and after the adjustment, while the 

percentage of the improvement is presented in (b). It can be seen that the planimetric 

accuracy of 70% for the buildings has been improved by nearly 20%. In contrast, the 

buildings with decreasing RMSE values is due to over-generalisation. For example, 
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the GHM adjustment tend to produce a regular shape (rectangular or rectilinear), even 

though the approximated solution (irregular shape) was closer to the reference.  

 

 
Figure 5.30: Assessment of non-rectilinear building polygons processed using the 

GHM adjustment. (a) shows the RMSE of the approximated and the adjusted polygons. 

(b) presents the percentage of the improvement of the RMSE planimetric accuracy.  

 

Figure 5.31 illustrates examples of two non-rectilinear buildings, in which the 

planimetric accuracy improved by approximately 23% indicating that the GHM 
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adjustment is able to enhance the geometrical accuracy for some non rectilinear 

buildings, along with enhancing the regularity. 

 

 
Before adjustment                                    After adjustment 

Figure 5.31: Examples show improving planimetric accuracy of two non-rectilinear 

buildings processed by GHM. (a) and (c) represent the approximated polygons (green) 

and the reference polygon (red) before adjustment. (b) and (d) represent the final 

extracted polygons after adjustment (green) along with references polygon (red).  

 
 
The planimetric accuracy of 3 out of 10 non-rectilinear buildings outlines declined. 

Figure 5.32 presents the two buildings with the most noticeable increase in RMSE 
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(approximately 29%). The approximated polygon of the first building has five vertices 

in Figure 5.32(a) while the final extracted polygon in Figure 5.32(b) shows only four 

vertices. The approach over-generalised the shape of the building due to the similarity 

ratio SR of the model-driven method achieving a value of more than 85% (see Table 

5.6). Thus, this building has been modelled by a rectangular shape. In contrast, the 

extracted polygon of second building is more regular in Figure 5.32(d) because the 

approximated polygon shown in Figure 5.32(c) follows the reference more closely.  

 

                            Before adjustment                               After adjustment 

Figure 5.32: Examples with declining planimetric accuracy of non-rectilinear 

buildings processed using the GHM adjustment. First column (a) and (c) show the 

approximated polygons (green) and the reference polygons (red) before adjustment. 

Second column (b) and (d) represent the final extracted polygons after adjustment 

(green) along with references (red). 
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5.5.4.2 Rectilinear buildings processed by GHM adjustment 

In this subsection, the planimetric accuracy of the 42 rectilinear buildings processed 

using the GHM adjustment (Table 5.8) is evaluated. The planimetric accuracy of most 

of the adjusted polygons have significantly improved by nearly 20% compared to the 

initial approximated polygons as shown Figure 5.33. Some building polygons have 

been slightly improved, which indicates that the approximated polygons are very close 

to their actual positions. In contrast, the RMSE of some building polygons after 

adjustment have decreased significantly, as can be seen for the two buildings presented 

in Figure 5.34.  

 

 
Figure 5.33: Percentage of the improvement of the planimetric accuracy of rectilinear 

building polygons processed using the GHM adjustment. 

 
The approximated polygon for the building in Figure 5.34 (a) shows two redundant 

vertices (on the top left and half way down on the right) due to noise. Indeed, the 

buildings in Figure 5.34(a) and (f) have been modelled as rectangular buildings 

because their similarity ratio (SR) value was assessed by the applied threshold of 85% 

(see Table 5.6). It is correct that the approximated polygons (green polygon in Figure 

5.34(a)) are closer to the reference (red polygon in Figure 5.34(a)), and therefore the 

RMSE before the adjustment is smaller than after the adjustment. However, the initial 

polygon solution of the building (Figure 5.34(a)) has more redundant vertices and a 

generalisation to a rectangle building (Figure 5.34(b) and (c)) is possible depending on 
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the user-defined thresholds. Similarly, the adjusted polygon in Figure 5.34(g) (shown 

in green) has a higher RMSE compared to the approximated polygon in Figure 5.34(f) 

(also shown in green). Depending on the resolution, the building could also be 

represented by a rectangle. Images taken from Google Maps are given in Figure 

5.34(f1), while the building outline overlaid with the nDSM is given in Figure 

5.34(g1).  

 
Before adjustment                              After adjustment 

Figure 5.34: Rectilinear buildings processed using the GHM adjustment. The first 

example showing a building presented in (a), (b), and (c) showing the building before 

the adjustment, after the adjustment and overlaid with the orthophoto respectively. The 

reference is always shown as a red polygon. The second example is a building 
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presented in (f) and (g) before and after the adjustment, respectively. The reference is 

shown in red. The building polygons are overlaid with images taken from Google 

Maps (f1) and the nDSM (g1). 

 
Figure 5.35 presents polygons of building outlines where significant improvement of 

the geometric accuracy have been achieved by the GHM adjustment. More specifically 

Figure 5.35 shows examples of three rectilinear buildings in which a high level of 

improvement in terms of best-fit, orientation, and creation of right angles have been 

obtained after the adjustment compared to the initial approximation. Due to the points 

representing the extracted building segments in the initial approximation being very 

noisy (Figure 5.35(a1) and (c1)), the subsequent approximated solutions (green 

polygons in Figure 5.35(a) and (c)) have some inaccurate vertex positions (blue 

arrows). Nevertheless, the adjusted polygons (green polygons in Figure 5.35(b) and 

(d) and (f)) fit the input boundary points and are very similar to the reference polygons. 

In addition, angles with exactly 90 degrees are always extracted correctly due to the 

applied constraints in the GHM adjustment. Thus, the final RMSE value of some 

buildings have scored sub-pixel accuracy level (i.e. Figure 5.35(b) and (f)).  

 

Concerning the dominant building direction, no constraints on the longest polygon 

edge are required for the proposed method. In contrast, this constraint exists in 

previous work published by others related to building outline extraction i.e. 

(Awrangjeb, 2016)  and (Höhle, 2017). The problem encountered in work by others is 

that the longest line segment in a building polygon is not necessarily close enough to 

the actual building orientation or may be incorrectly estimated. Consequently, this 

error could contribute to alignment errors in all other line segments in the building 

polygon and could lead to failing the adjustment. In this thesis, the main direction is 

estimated from the longest four line-segments in the initial solution. In the subsequent 

adjustment the dominant building direction is determined automatically after the 

convergence of iterative least squares adjustment. This is done by a simultaneous 

minimisation of the orthogonal distances between the polygon edges to their 

corresponding input boundary points and considering the orthogonality condition in 

the applied GHM adjustment. Accordingly, the normal components (𝑛𝑛𝑥𝑥 and 𝑛𝑛𝑦𝑦) 

representing the dominant building direction are determined.   
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                        Before adjustment                                    After adjustment 

Figure 5.35: Three rectilinear buildings with improved planimetric accuracy processed 

using the GHM adjustment. The extracted building segments (a), (c),(e) before 

adjustment; and approximated polygons (b), (d),(f) The reference dataset is shown in 

red. 
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6 Conclusions and future work 

6.1 Conclusions  

The goal of the presented research was to develop an automatic framework for building 

outline regularisation from 3D laser points while images were used to support the 

module for removing trees. The newly proposed framework can be summarised as 

followed: firstly, an accurate DTM is extracted which is then used to calculate an 

nDSM. In this nDSM building segments are extracted, on which basis polygons 

representing those buildings are extracted and optimised. Improvement in each of these 

steps compared to existing approaches have been made and it has been shown that 

some of their shortcomings can be overcome. These shortcomings have been explained 

and discussed in the theoretical background and the literature review sections of this 

thesis.  

 

The first objective of this work was to create an accurate nDSM. This could be 

achieved by firstly, cleaning the input DSM laser points from outliers followed by 

transform into a regular DSM. The proposed DTM extraction algorithm is based on 

selection of seeds or network of ground points as minima, thus denoted as a Network 

of Ground Points (NGPs). It solves the problem of the local slope structure in a more 

reliable way and with less complexity using well-distributed scanlines directions. 

Moreover, the algorithm does not need the slope parameter nor smoothing of the DSM. 

It relies predominantly on the height difference parameter which turned out to be the 

most meaningful indicator for DTM creation as well as building detection.  

 

The second objective was to introduce a new fusion method for the robust extraction 

of building segments. The challenge was the differentiation between building 

segments and non-building segments such as trees. While cars, low vegetation and 

vegetation visible in NIR images can be easily removed, and this has been done 

successfully in previous work, the trees located in shadow regions are challenging. 

This is because their NDVI values are very low and cannot be used to remove these 

regions from consideration, without significantly degrading the correctness measure. 

This limitation was overcome through the successful fusion of the planarity map, 
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NDVI, and nDSM. Further, it is highlighted that a gridded DSM has the potential of 

covering missing laser data, at least, partially. Thus, false positive errors are mitigated. 

The third and major objective of this work was focused on the extraction of polygons 

representing buildings and their regularisation, especially for complex building 

structures. This was achieved by combining the robustness of model-driven 

approaches with the flexibility of data-driven techniques in one comprehensive 

strategy consisting of three sub-steps: 

 

• A novel data-driven algorithm for creating an accurate approximate building 

polygon was proposed. In this algorithm, the geometrical characteristics of 

buildings have been addressed by methodologies such as detection of nearly 

right angles and area preservation, resulting in a likelihood function. It is 

proved that this likelihood-based method outperforms the widely used DP 

algorithm. 

• In term of refining rectilinear building polygons, the adjustment procedure has 

been largely solved. Firstly, the orthogonality constraints of adjacent building 

edges are integrated into the functional model. Secondly, the best fitting of 

these edges with their corresponding boundary points is solved by minimising 

the orthogonal distances between them. In this study, both requirements are 

simultaneously solved by modifying the Gauss-Helmert Model (GHM) 

adjustment. 

• Estimating an accurate position of building vertices is a challenging task due 

to several factors such as level of noise in the input boundary points and the 

complexity of building shapes. To improve the regularisation of the initial 

building outline solution a method of updating the assignment of boundary 

points to edges has been introduced. The method is based on measuring and 

analysing angles and distances between boundary points and building edges 

and vertices.  

 

Together with aforementioned labelling update method, a new evaluation procedure is 

proposed considering the RMSE of boundary points relative to building edges as a 

standard building outline measure. The RMSE is utilised through a combination of the 
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vertex to vertex distance analysis and vertex to edge RMSE distance analysis.  Vertex 

to Model evaluation (V2M). Without labelling of vertices to their corresponding edges, 

this calculation of the RMSE cannot be conducted. Because, vertices must be assigned 

to their corresponding edge in advance, then, distances to closest edge or vertex are 

measured. 

 

Overall the introduced framework can achieve a satisfactory accuracy level. For 

instance, the proposed DTM extraction algorithm was demonstrated to out-perform 

one of the-state-of-the-art method in terms of the complexity, execution time, and 

quality of the extracted ground regions. For the extracted building segments, as an 

area-based evaluation, the proposed method showed a high average correctness of 

96.23% and an average quality of 88.43% (Table 5.5) in the Vaihingen dataset. In the 

Melville dataset, the calculated completeness, correctness, and quality for those 125 

buildings are 94%, 95%, and 90%, respectively. In term of building outlines 

regularisation, the achieved RMSE values were 0.91 meter and 1.83 pixels (0.915 

meter) in the Vaihingen and the Melville dataset respectively. This sub-meter accuracy 

level proved the practical efficiency of the proposed workflow associated with a high 

level of automation. 

 

This study presents a comprehensive workflow for the generation of building outlines 

in a vector format. The practical efficiency of this proposed workflow on a large scale 

area has been demonstrated. Further, sub-metre level geometric accuracy of the 

building polygons has been demonstrated as required for the quality of the generated 

topographic mapping. The proposed assessment tool is unbiased, free of subjectivity, 

and which is denoted as Vertex to Model (V2M) evaluation.  

 

This research supports the need for land and urban planners to map building structure, 

and enables a more automatic approach to map creation and updating over time with a 

high level of accuracy. Furthermore, the proposed 2D building outlining algorithm can 

be extended to the application of 3D building model construction. Many of existing 

3D modelling assume that 2D plane data are given e.g. (Park & Guldmann, 2019) and 
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(Xiong, Elberink, & Vosselman, 2016), while such data are not always available or 

they are not up-to-data. 

 

6.2 Future work 

Topics for further improvement in 2D building footprint creation can be outlined here. 

The proposed DTM extraction method was based on three parameters including, the 

window filter size and two height thresholds for analysing ground points validation. It 

is recommended that the filter size should be larger than the maximum width of 

existing buildings in the scene. Therefore, large buildings required a larger filtering 

size in order to be excluded from the terrain. Consequently, non-terrain and terrain 

points are difficult to extracted accurately. A possible option to mitigate this limitation 

is the implementation of adaptive filtering sizes. The filtering size could be adopted 

based on image analysis results performed on the input image.  

  

In terms of generation of approximate building polygons, the proposed method showed 

promising results for the estimation of building vertices. However, detecting accurate 

vertex positions in very complex buildings shapes, especially those having short edges 

(i.e. one meter or shorter) is still a challenging task. While, the proposed RMSE 

threshold method for detecting polygon edges is more robust and efficient compared 

to the DP algorithm, it is still sensitive to noise. Thus, some corners or short edges of 

buildings can be lost. Although the proposed likelihood equation was applied with 

fixed weight factors in all tests, it could be further improved through an optimisation 

of its weight factors.   

 

Additionally, this proposed data-driven method can be made more robust against 

outliers in combination with the RANSAC procedure. The idea is to categorise 

boundary points into two groups (inlier and outlier) by measuring their orthogonal 

distances to the conducted line segment and considering distance threshold. Then, 

outliers will be removing before calculating the RMSE of the boundary points to be 

then compare to the user-defined RMSE threshold. This procedure leads to a modelling 

efficient data-driven algorithm for creating accurate building polygons.      
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