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Preface
This report proposes the Global Human Settlement Layer (GHSL) as a new way
to map, analyse, and monitor human settlements. It reflects the work of the entire
ISFEREA team over the last months. Although it has now reached some degree of
maturity, it should not be regarded as a finished project. Instead it is work in progress
that will be improved. This will include the technology needed to produce the layer
as well as the of spatial coverage of the GHSL itself.
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Chapter 1
Introduction

This report describes the first operational test of the JRC image information query
(I2Q) system to produce the first public release of the JRC global human settlement
layer (GHSL).

The information query included both detection and an initial characterisation of
built-up areas based on average size (scale) of built-up structures. These information
where derived from a set of optical remotely-sensed imagery, which were stored in
the JRC Community Image Data (CID) repository1, or were processed in third-party
servers.

In particular, this I2Q task involved the processing and evaluation of more than
15,000 satellite scenes having spatial resolutions in the range of 0.5–10 meters,
and covering parts of Europe, South America, Asia and Africa, see Fig. 1.1. These
image data were collected by a heterogeneous set of platforms including satellite
SPOT (2 and 5), CBERS-2B, RapidEye (2 and 4), WorldView (1 and 2), GeoEye-1,
QuickBird-2, IKONOS-2, and airborne sensors. The total surface mapped during
the test is of more than 24 millions of square kilometres, involving the processing,
indexing, and classification of around 4.07E+12 records (pixels) and their attributes
(features) (Table 1.1).

Fig. 1.1 Geographic distribution of the processed HR/VHR input images.

1 URL: http://cidportal.jrc.ec.europa.eu
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Table 1.1 Image datasets used in the experiment.

Platform Count of Sum of input Sum of input
name/version image ID surface (km2) data volume (pix)

Aerial 6 9.21E+04 3.68E+11
CBERS-2B 9762 1.08E+07 1.72E+12
GeoEye-1 496 8.70E+04 9.42E+10

IKONOS-2 1421 3.47E+05 9.08E+10
QuickBird-2 1299 5.84E+05 3.26E+11
RapidEye-1 30 1.88E+04 4.44E+08
RapidEye-2 20 1.25E+04 2.96E+08
RapidEye-4 100 6.25E+04 1.48E+09

SPOT-2 1 5.01E+03 5.01E+07
SPOT-5 3168 1.22E+07 1.33E+12

WorldView-1 27 7.83E+03 2.40E+10
WorldView-2 402 1.41E+05 1.07E+11
Grand Total 16732 2.43E+07 4.07E+12

The purpose of the test reported here is two-fold. First, to study the feasibility
and the system requirements necessary for the production of image-derived infor-
mation layers supporting crisis management in realistic scenarios [Pes+10]. Second,
to design and evaluate a specific image information retrieval task for the production
of globally consistent outputs.

The keywords here are realistic scenarios and globally consistent output. In our
definition, realistic scenarios include the presence of the following conditions:

1. data volume: large areas mapped (at least greater than half million of square
kilometres);

2. data complexity including

a. detail: high or very high spatial resolution image data input;
b. sensor heterogeneity: availability of heterogeneous and arbitrary set of sensors

varying both radiometric and spatial resolution of images;
c. quality heterogeneity: different levels of pre-processing from geolocated raw

data (level 2A) to pan sharpened ortho-rectified mosaics;
d. spatial inconsistency: expected input RMS absolute positional accuracy rang-

ing from 25 to 40 kilometres (CBERS-2B case);
e. seasonal arbitrariness: arbitrary and not controllable set of the image data

collection seasonality;

3. suitable response time: whole information retrieval efficiency of the order of
5,000 km2/hour/CPU;

4. low metadata quality: uncontrollable level of documentation of the available data
(including sensor characteristics, reflectance parameters, sun/satellite azimuth
and elevation, and applied pre-processing steps) that can be also completely miss-
ing.

The term ’globally consistent output’ refers to the capacity to produce standard-
ised, comparable information across the globe. While doing this, we measure the
consistency of the image information retrieval output against already existing global
information layers, and we implemented the capacity to optimise it during the infor-
mation production process.
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In 2011 a first test of the JRC GHSL was performed, partially reported in [POG12],
with the focus on the new multiscale morphological decomposition techniques ap-
plied during the workflow. The current experiment significantly improves the prece-
dent one regarding i) the capacity to handle a much larger input data complexity and
volume, ii) the capacity to measure the consistency with respect to available global
information layers, and iii) the capacity to validate the GHSL output.

Specific segments of the feature extraction and image classification steps in-
cluded in the current I2Q GHSL workflow were previously tested for automatic
recognition and analysis of built-up areas. In particular, we used the PanTex image
feature derived from anisotropic rotation-invariant grey level co-occurrence matrix
(GLCM) textural contrast measurements and the characteristic-saliency-level (CSL)
feature model [POG12]. The latter are based on Differential Morphological Pro-
files (DMP) [PB01] and derived morphological decomposition techniques [Dal+10;
GSP; OPS12; OS12].

The capacity to discriminate built-up (BU) from non-built-up (NBU) areas of
the PanTex features was previously assessed in a number of experiments including
multi-temporal SPOT panchromatic data [PGK08; GSP11], and a set of 56 globally-
representative VHR optical scenes covering large cities [Pes+11]. Strong correlation
between PanTex image features and local density of building footprints was proven
in [PHO11; OSP12] using cadastral data as reference. Similar techniques were also
tested successfully using radar data input [Gam+08]. Moreover, the capacity to de-
tect and describe the characteristics of the single built-up structures using DMP and
DMP-derived image features were also previously tested in a number of experi-
ments including optical data [Lu+12; BPK03; AA08], hyperspectral data [BPS05],
and radar data [Mar+11]. These techniques demonstrated also effectiveness in char-
acterisation of built-up areas as automatic detection of post-conflict damage assess-
ment [PP08; Gue+12] post-earthquake damage assessment, [Li+10; Guo+09], de-
stroyed buildings and rubble detection [OSP11] and more generally in image in-
formation mining tasks [Shy+06; GPS11]. The current experiment expands those
findings to a much more general scenario.

Similar techniques integrating morphological and textural image features were
also assessed in a first implementation of the JRC GHSL concept made in January
2011 that was using ENVISAT 75-m radar input imagery [TAP11b; TAP11a]. EN-
VISAT input datasets are not included in this test, because the realistic scenarios
require HR input imagery with spatial resolution better than 10 meters.

While both the I2Q system design and the GHSL outputs where under assessment
during the test reported here, the present paper will focus more on the description
of the GHSL production workflow and the GHSL results. Only some general basic
characteristics of the I2Q system and computational requirements will be shown.

This report is structured as follows. Chapter 2 presents the rationale of the GHSL
production including application scenarios. The technical specifications are pre-
sented in Chapter 3. Chapter 4 describes the input data, the workflow as well as the
system managing it. Pre-processing, feature extraction, and learning/classification
are detailed in chapters 5, 6, and 7 respectively. Quality control is described in
Chapter 8. Results are then discussed in Chapter 9. The report includes also two
case studies on the development of the GHSL for Europe and Brazil, respectively.
These are reported in the Chapters 10 and 11. The paper concludes in Chapter 12
with a summary, critical points, and the way forward.





Chapter 2
Rationale

The information on human settlements are crucial for a wide range of applica-
tions including emergency response, disaster risk reduction, population estima-
tion/analysis, and urban/regional planning. Urbanisation pressure has an environ-
mental impact, indicates population growth, and relates to risk and disaster vulner-
ability.

In 2011 the global population passed the mark of 7.0 billion and more than half
of the population is living in urban areas. Between 2011 and 2050, the world popula-
tion is expected to increase by 2.3 billion and the urban population to increase to 2.6
billion, passing from 3.6 billion in 2011 to 6.3 billion 2050 [UN 12]. The population
growth in urban areas will be concentrated in the cities and towns of the less devel-
oped countries. Asia, in particular, is projected to see its urban population increase
by 1.4 billion, Africa by 0.9 billion, and Latin America and the Caribbean by 0.2
billion. Population growth is therefore becoming largely an urban phenomenon con-
centrated in the developing world [Sat07]. The figures alone are alarming enough to
understand that we are facing major challenges to manage the urban development
in a sustainable way. A central issue in this respect is the availability of up-to-date
information on the extent and quality of the urban settlement. In particular in less de-
veloped countries such information is largely unavailable. Cities are often growing
at a pace that cannot be controlled by the local or regional mapping agencies.

Satellite imagery could provide information about the built environment world-
wide, due to advances in computational and storage capacity, as well as data avail-
ability and cost. As demographic pressure increases exponentially at global level,
our ability to monitor, quantify and characterise urbanisation processes around the
world is becoming paramount. Despite this potential of remote sensing technolo-
gies, there are few global data sets that can be used to map the human settlements.
Examples include the night-time lights of the world based on the DMSP-OLS sen-
sor [Elv+01], MODIS based land use/land cover classifications [BB05; SFP10] and
global population data sets like LandScan [Dob+00] or the gridded population of
the world [CI12]. An overview, comparison and analysis of eight global data sets is
provided in [Pot+09]. While these data sets are useful for global analysis, they have
the tendency to under-represent small, scattered rural settlements due to their low
spatial resolution between 500 and 2,000m. In addition, they represent a single snap-
shot in time that does not allow a regular monitoring. Or, if they are updated, like the
LandScan data set, they are not directly comparable due to changing input sources.
Although high resolution (HR, 1–10m spatial resolution) and even very high resolu-

5



6 2 Rationale

tion (VHR, ≤ 1 m) data with an almost global coverage are available with different
sensors (e.g., SPOT, CBERS, RapidEye, IKONOS, QuickBird, WorldView 1 and
2) no consistent global coverage of settlements derived from those datasets exists.
Mapping and monitoring of urban areas at HR and VHR scales is mostly limited in
terms of temporal and spatial coverage. They remain at the stage of case studies for
individual or few cities and/or provide only a single time-step [Bau+10; NLM08;
EB11]. The largest case study analyses 54 cities all around the world [Pes+11].

The lack of a consistent global layer with HR/VHR spatial resolution can be at-
tributed to mainly two reasons. Firstly, the data availability of HR/VHR satellite
data. Most HR/VHR satellite missions are operated on a commercial basis and con-
sequently a global coverage is costly. The only relevant exception is the CBERS-
2B platform releasing 2.5-m-resolution panchromatic data with a very open data
sharing policy in Brazil. Secondly, to date no system has demonstrated the capac-
ity to extract automatically global information layers about human settlement from
HR/VHR satellite data with the necessary accuracy, and consequently so far only
time-expensive manual or semi-automatic operational procedures were available.

The I2Q system design and GHSL production addresses the second point as the
most important reason for the absence of a global human settlement layer made
with HR/VHR spatial resolution imagery. Our vision is that an automatic image
information retrieval system should contribute to reduce the amount of unexploited,
but suitable image data stored in the archives of users and institutional stakeholders
and covering the majority of populated places on the Earth surface. Such a system, if
largely automatic, could be maintained by cost-effective budget not requiring large
investments and operating costs for visual image interpreters. Process-on-demand
services could be offered to users without image processing expertise to extract
information related to human settlements from their own image data. The services
could be linked to a collaborative environment, where the users agree on sharing
of image-derived information. Inside this vision, we can imagine an incremental
virtuous loop filling stepwise the gaps of a detailed digital representation of the
global human settlement [Goo+12]. The above mentioned reasoning is explaining
also some choices taken in the current experiment. For example, the emphasis on the
ability to work with heterogeneous input image data including satellite and aerial
sensors. This led to the decision to design an image information workflow robust
enough to avoid crashing in presence of very low quality image data and metadata
input. By tuning the system to this worst case input data/metadata scenario, we
were able to automatically process on demand unknown quality input data, which is
crucial in the light of the user scenarios of the system.

These scenarios are based to a large extend on the experience of the JRC in sup-
port to global crisis management. Since the aftermath of the Indian Ocean tsunami
in 2004, the JRC offered operational support to European Commission services en-
gaged in post-disaster damage and need assessment as well as disaster and crisis
prevention through exploitation of remotely-sensed data interpretation. The JRC ac-
tivities in the frame of the Instrument for Stability (IfS)1 and its predecessor the
Rapid Reaction Mechanism (RRM) included a number of disaster and crisis scenar-
ios all around the globe, which contributed to the development of use scenarios for
the GHSL. The GHSL concept and technical specifications were discussed also with
JRC partners having global information needs on human settlements. In particular,
intensive exchange of know-how regarding the possibility of automatic analysis of

1 URL: http://eeas.europa.eu/ifs/index_en.htm
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human settlement using remotely sensed data was done with International partners.
There is collaboration with the World Bank, which is interested in globally con-
sistent exposure mapping [Dei+11], with the Global Urban Observatory (GUO) of
UN-Habitat2, which monitoring of the Habitat Agenda and the Millennium Devel-
opment Goals and activities pertaining to the production of reliable and up-to-date
urban indicators at regional, country and city level, and with UNHCR’s Field In-
formation and Coordination Support Section (FICSS)3 for the estimation of popu-
lation in refugees and IDP camps [Cri99]. Use scenarios were also discussed with
the JRC Global Disaster Alert and Coordination System (GDACS)4, interested in
a more accurate exposure information layer to use for their automatic impact and
alert modelling. Finally, the broader societal impact of the GHSL concept both for
technical-scientific and day-to-day users point of views, which were discussed in
the frame of the new Digital Earth 2020 vision development [Goo+12; Cra+12].

Based on the above discussions, GHSL should be able to answer or contribute to
answering the following questions:

• Is the often reported statistics that only 3% of the land masses are occupied by
built up still valid?

• Shouldn’t this statistics be updated given today’s world population of 7 billion?
• What is the rate of sprawl/urbanisation in different regions of the world?
• How does the urbanisation process compare within a country and across coun-

tries?
• What are the new patterns of urban sprawl?
• How do the new urbanisation patterns change transport, energy consumption and

sustainability?
• How does city extent and urban sprawl affect disaster risk and crisis manage-

ment?
• Can we produce improved global fine scale physical exposure and population

datasets to support global early warning systems and disaster loss models?

2 URL: http://www.unhabitat.org/categories.asp?catid=646
3 URL: http://www.unhcr.org/pages/49c3646c4ca.html
4 URL: http://gdacs.org/





Chapter 3
GHSL definitions and specifications

3.1 GHSL definitions

The basic information contents of the current version of GHSL rely on the defini-
tion of built-up structures (buildings) and built-up areas: they are central for a quan-
titative description of human settlement based on HR and VHR remotely sensed
imagery [PE09]. In the context of the GHSL, ‘built-up areas’ are the spatial gener-
alisation of the notion of building and they are defined as follows:

Definition 1 A built-up area is any given area or geographical space where build-
ings can be found.

The size of the spatial domain used to generalise the buildings to built-up areas
is classically a function of the scale of representation of a given geo-information
product. The above definition can be translated directly in the visual reference data
collection protocol used to verify the quality of the GHSL products at different
scales.

In [ET12] the built-up area is defined as

‘... a discrete area measurement that records the presence of buildings and the space in
between buildings. The spaces in between buildings are defined by the spatial rule that
defines the distance from the building. That distance is either a 1) buffer built around the
building footprint or by 2) the grid cell size of the grid cell that intersect the buildings’.

The approach of [ET12] can be made more consistent by linking the above notion
of ‘spatial rule’ embedded in the built-up area to the concepts of scale of representa-
tion and spatial generalisation adopted in the cartographic representation of digital
geo-information layers. Be Cs (X) the cartographic representation of the informa-
tion X at the scale S and be X the set of built-up structures represented in digital
discrete entities at a given scale S, with s ⊂ S expressing the size of the smallest
spatial detail in Cs (X), and assuming that if s′ > s, then Cs′ (X) is the generalised
(broader scale) version of Cs (X). The Cs (X) can be generalised to Cs′ (X) with
s′ > s adopting three different approaches namely: ‘inclusive’, ‘exclusive’, and ‘by
sum’.

Be Ds any arbitrary spatial domain defined at the scale s of Cs (X). The ‘in-
clusive’ notion of built up area is based on the following question: ‘does the do-
main Ds hit the set X’?. This can be formalised as Cs (X) = {x | Ds ∩X �= �}
that is the formula of set dilation transform known in mathematical morphology

9
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[Ser82; Soi03]. The ‘exclusive’ notion of built up area is based on the follow-
ing question: ‘does the domain Ds fit the set X’?. This can be formalised as
Cs (X) = {x | Ds ⊆ X} that is the formula of the morphological erosion trans-
form. The ‘by sum’ notion of built-up area is based on the following question: ‘how
much the Ds overlaps the set X?’ that can be described as the convolution of X by
the Ds kernel such that Cs (X) = {x | Ds ∗X}. It is worth noting that only aggre-
gation or generalisation operations are allowed in this paradigm, starting from the
finest scale available in the input source. Specifically, in this study this parameter
is dictated by the spatial resolution of the input imagery used to collect the infor-
mation about the presence of built-up areas, and the image features used for image
information extraction and classification.

Independently from the strategy adopted for generalisation of built-up structures
to built-up areas, a definition of built-up structure should be provided: the working
definition of built-up structure (building) used in the frame of the GHSL production
is as follows:

Definition 2 GHSL Built-up structures are enclosed constructions above ground
which are intended or used for the shelter of humans, animals, things or for the
production of economic goods and that refer to any structure constructed or erected
on its site.

This working definition is adapted from the data specification on buildings delivered
by the Infrastructure for Spatial Information in Europe (INSPIRE)1 that is defined
as follows:

‘Buildings are enclosed constructions above and/or underground, which are intended or
used for the shelter of humans, animals, things or for the production of economic goods and
that refer to any structure permanently constructed or erected on its site.’

In the above definition, the text in bold differentiate the GHSL and the INSPIRE
specifications of the notion of building. The INSPIRE concept of ‘building’ was
adapted taking into account the specific GHSL constraints and user requirements.
In particular, by contrast to the INSPIRE definition, the GHSL definition does not
include underground building notion for obvious limitations of the considered input
data.

Moreover, GHSL notion does not impose the permanency of the built-up struc-
ture on the site as instead INSPIRE does, following the classical topographic map-
ping tradition. The GHSL notion of built-up structure is more inclusive, accept-
ing to describe also structures belonging to temporary human settlements as, for
example, refugee or internal displaced people (IDP) camps. In 2011, there were
an estimated 26.4 million people displaced internally by conflict2 and 15.2 mil-
lion refugees around the world, including 4.8 million Palestinian refugees3. These
numbers don’t include IDPs related to natural disasters and other forced migration

1 INSPIRE Infrastructure for Spatial Information in Europe, ‘D2.8.III.2 Data Specification
on Building - Draft Guidelines’, INSPIRE Thematic Working Group Building 2012 URL:
http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/
INSPIRE_DataSpecification_BU_v2.0.pdf
2 URL: http://www.internal-displacement.org/publications/
global-overview-2011
3 UNHCR Global Trends 2011, URL: http://www.unhcr.org/4fd6f87f9.html
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issues. The total number of refugees and IDPs was estimated in 2009 as 67 million
of people4.

Finally, in a different way than INSPIRE, the GHSL repository concept includes
also ’slum’ or informal settlement concepts: the area of a city characterised by sub-
standard housing and poverty and lacking access to water and sanitation as well as
security of tenure. These areas are often referred to as slums, shanty town, squat-
ter settlement, favelas, barrios, or similar. According to the United Nations, due to
rising population and the rise especially in urban populations, the number of slum
dwellers is rising. One billion people worldwide live in slums and the figure is pro-
jected to grow to 2 billion by 20305.

The study of temporary and informal human settlements are important for ad-
dressing risk and vulnerability issues related to crisis management and disaster mit-
igation operations. For these reasons they are included in the GHSL specifications.

It is worth noting that the GHSL definition is only partially fitting with other
similar available definitions already popular in the remote sensing community as
the USGS ‘urban or built-up areas’ 6, ‘Impervious Surfaces’ [LW06], ‘Urban Soil
Sealing’7, CORINE ‘Artificial Surfaces’8 and similar ones. Compared to these land-
use/land-cover (LULC) definitions, the GHSL classification schema is more general
not assuming any embedded urban/rural dichotomy (built-up structures are mapped
independently if they are falling in any ‘rural’ or ‘urban’ area definitions) and more
focused on quantitative support to crisis management, risk and disaster mitigation
activities requiring detailed mapping of buildings, population and their vulnerabili-
ties with a multi-scale approach. Furthermore, the GHSL classification schema in-
cluding the simplification and lowering down of the embedded abstraction was de-
signed in order to facilitate the semantic interoperability and then multi-disciplinary
across-application sharing of data and results. This includes the sharing of data be-
tween different agencies (UN, WB, EC) working in similar areas but not necessarily
sharing exactly the same abstract definitions[PE09].

3.2 GHSL technical specifications

This section includes a brief description of the GHSL technical specifications re-
garding format, scale, information production, and quality control. These specifica-
tions summarise the GHSL production guidelines.

4 World Savvy Monitor, 2009, URL: http://worldsavvy.org/monitor/index.php?
option=com_content&view=article&id=441&Itemid=847
5 ‘Slum Dwellers to double by 2030’, UN-HABITAT report, April 2007. URL: http:
//www.unhabitat.org/downloads/docs/4631_46759_GC%2021%20Slum%
20dwellers%20to%20double.pdf
6 URL: http://landcover.usgs.gov/urban/umap/htmls/defs.php
7 URL: http://www.eea.europa.eu/articles/urban-soil-sealing-in-europe
8 URL: http://www.eea.europa.eu/publications/COR0-landcover
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3.2.1 Format

The native storage format and structure of the GHSL information is tile-based: the
basic spatial unit is a surface tile that is the representation of a given portion of the
earth surface with a given size and projection. The tile entity is organised in a hierar-
chical multi-scale structure. The GHSL information is released trough standard pro-
tocols defined by the Open Geospatial Consortium (OGC). In particular, Web Map
Service (WMS) and Tile Map Service (TMS) platforms release the GHSL product
as output of a specific query to a spatial database (DB), including time and dynamic
information queries. While satellite-derived image features are stored and managed
in the local (UTM) metric projection, the global mosaic of the GHSL adopts a global
metric projection, the Spherical Mercator (EPSG:900913) with WGS84 Datum.

3.2.2 Scale

GHSL information is built and provided in three nominal scales of reference, namely
local, regional and global scales. They correspond to specific parameters
regarding the TMS zoom level, the spatial unit of reference and the tolerance admit-
ted in the geo-coding of the information. Table 3.1 describes the relation between
these parameters in the design of the GHSL product. The output and the evaluation
protocols are at this stage developed only at the regional and global scales, because
only a minority of datasets available is fitting the local-scale 1:10K quality specifi-
cations.

Table 3.1 GHSL scales, spatial units, and tolerances.

Nominal Scale Ratio TMS zoom Spatial Unit Spatial RMS
local 1:10K 14 10m 5m

regional 1:50K 11 50m 25m
global 1:500K 8 500m 250m

3.2.3 Information contents

The I2Q system extracts two basic information layers from the imagery: namely
the built up area presence BUarea and the built-up scale BUscale for a given GHSL
scale. The BUarea is a continuous value that is thresholded to provide binary infor-
mation on the presence of buildings. The BUscale provides a continuous value for
the average scale (size) of buildings inside the given pixel. From this information
the following GHSL variables are derived:

• BuiltUpSurface expressed in m2. It is the total surface of built-up area in the
specific spatial unit calculated as

∑
BUarea;

• BuiltUpPercent percent of built-up surface in the specific spatial unit. It is
calculated as

∑
BUarea/T ileSurface;
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• AverageSurfaceOfBuildings expressed in m2 —average size of buildings ex-
pressed as average surface of building footprints candidates in the specific spatial
unit—

∑
(BuiltUpPercent ∗BUscale);

• NumberOfBuildings n —number of built-up structures estimated in the specific
spatial unit—

∑
(BuiltUpSurface/AverageSurfaceOfBuildings).

It is worth noting that because of the hierarchical characteristics of the TMS
structure used to store the final geo-information layer, the information located in the
broader scales can be calculated from aggregation of the same information avail-
able in more detailed scales. For this information the general hierarchical relation∑

local ⇒ ∑
regional ⇒ global by aggregation (sum, average) is

valid. Moreover, the spatial hierarchy is not only reflected in the aggregation rule,
but also in the number of available descriptors. The number of abstract semantic
layers available is increasing by increasing level of spatial generalisation by passing
from local to global scales. Table 3.2 summarises the number of descriptors avail-
able in this version of the GHSL at the different scales.

3.2.4 Quality

For a system that is designed to work with a heterogeneous set of input data, qual-
ity control is essential. GHSL information layers are produced with various satel-
lite image data, having different sensor and platform characteristics, and different
pre-processing standards including different geo-coding and ortho-rectification pro-
tocols. Consequently, geo-coding quality of the input image data has to be checked
and the derived image information will feed the GHSL scale corresponding to the
assessed spatial tolerance. The input image spatial tolerance admitted is always less
than half of the GHSL spatial unit output.

The quality of the product is tested by applying a public and reproducible pro-
tocol including i) visual image reference data collection and ii) systematic statisti-
cal distance measurements with respect to known reference layers available in any
scale (local, regional, continental). The quality measures are embedded in the output
metadata.

Table 3.2 GHSL descriptors and scales.

Descriptor Local
1:10K

Regional
1:50K

Global
1:500K

TileSurface X X X
BuiltUpSurface X X X
BuiltUpPercent X X X

AverageSurfaceOfBuildings - X X
NumberOfBuildings - - X
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3.3 Computational requirements

The main workload in the production of the GHSL information layers is encoun-
tered at the level of feature extraction and in particular in the computation of build-
ing footprint candidates using the max-tree Differential Attribute Profile (mtDAP)
protocol and the Characteristic Saliency Level (CSL) model (see Sec. 6). This sec-
tion presents some statistics on their computation with reference to an experiment
on sample image tiles.

The experiment was implemented on two modules of a High Performance Com-
puting (HPC) machine with 128 GB of RAM and 4 quad-core Intel(R) Xeon(R)
CPUs, E7420 2.13 GHz. For each giga-pixel tile at its input and with data quantised
to 8 bits/pixel the system required:

• 38 sec. for building the two hierarchical image representation structures;
• 4 sec. for the structure polychotomy into two sets of 256 attribute-zones each;
• 16 sec. for the CSL model computation;
• 1 sec. for the output image generation.

This sums up to approximately 1 min./GB of data at 0.5m. spatial resolution. The
average memory requirement for each tile was approximately 30 times the input
size, i.e. 30 GB of RAM. The involved algorithms run concurrently and the code
pluralisation is a product of the High Performance Image Processing Algorithms
for Remote Sensing (HIPARS) collaboration between the JRC and Rijksuniversiteit
Groningen, Netherlands.



Chapter 4
Experimental setup

4.1 Input image data available

The IQ system is designed to be operational, as described in the introduction. The
satellite and airborne data used were acquired with optical sensors with a spatial res-
olution of 10m or smaller in order to allow detection of single buildings or groups
of buildings. The data are hosted in the Community Image Data Portal1 (CID). The
CID Portal is a web portal to search and access remote sensing data and derived
products hosted at JRC for a variety of applications. In this study, we use in total
11438 panchromatic and multi-spectral satellite data sets from SPOT-2 and SPOT-5,
RapidEye, CBERS-2B, QuickBird-2, GeoEye-1, WorldView-1 and WorldView-2.
In addition, airborne data sets covering for example entire Guatemala were avail-
able as RGB bands. The number of data sets per sensor and the area covered is de-
tailed in Table 1.1. The different data sets cover a wide range of spatial resolutions
from 15 cm airborne data sets to 10m of the SPOT-2 sensor. Radiometrically the
entire visible and near infrared part of the spectrum is covered with wide panchro-
matic bands and up to eight multispectral bands of WorldView-2. Fig. 4.1 depicts
the spatial/spectral distribution of sensors used in this study. In addition, some data
sets consist of pan-sharpened multispectral images with the spatial resolution of the
panchromatic band. It is important to note that this often changes the radiometry of
the data set, which has to be taken into account during further processing.

4.2 Ancillary information

Several additional data sets were used in the workflow as ancillary data in the pro-
cessing or for the validation of the processing output. For the orthorectification of
some of the satellite data we used the TerraColor2 as reference layer. This is an or-
thorectified global imagery base map at 15m spatial resolution built primarily from
Landsat 7 satellite imagery. The Open Street Map3 (OSM) data were used to extract
a high resolution land-sea border. During the processing two global data sets are

1 URL: http://cidportal.jrc.ec.europa.eu
2 URL: http://www.terracolor.net
3 URL: http://www.openstreetmap.org/
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Fig. 4.1 Spectral coverage of sensors used in the study. The satellites cover a wide spectral range
in the visible and NIR part of the spectrum. The spatial coverage includes various resolutions form
15 cm airborne to 10m panchromatic images of SPOT-2.

used to control the information extraction. The first one is the urban class of the
MODIS Land Cover Type product [SFP10]. The second is the LandScan (2008 &
2010)4 high resolution global population data sets were used.

4.3 General workflow

The main elements of the I2Q workflow characterising the GHSL experiment dis-
cussed here are four: the input image data, the reference data set, a pre-processing
module, and a processing module (Fig. 4.2). The input image represent the data to
be processed. The reference set has the crucial function to support the optimisation
of the spatial and thematic consistency during the GHSL production. Currently, it
consist of i) a global mosaic of Landsat image data ii) OSM vector data, iii) global
LandScan gridded population data (LSPOP) of 2010 at a resolution of circa 1km, iv)
global MODIS urban areas at resolution of circa 500meters, and v) a Built-Up Ref-
erence (BUREF) data layer containing the best estimation of presence of built-up
areas at the GHSL global scale. All these reference information layers are avail-
able for the pre-processing and the processing I2Q modules trough WMS and TMS
standard protocols.

Before the first run of the I2Q GHSL workflow, the BUREF layer was calcu-
lated by merging the most consistent information available globally: the LSPOP
and MODIS information layers. Independently from that initial choice, the whole
system is designed having an incrementally evolutionary approach: the output of
any given image information extraction run/experiment, if passing validation and
consistency check, will contribute to improve (thematic accuracy, spatial/temporal
completeness) the available BUREF layer. The expectation is that this retro-action

4 copyright by UT-Battelle, LLC, operator of Oak Ridge National Laboratory under Contract No.
DE-AC05-00OR22725 with the United States Department of Energy
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mechanism will contribute in enhancing stepwise the overall reliability and com-
pleteness of the GHSL output.

The pre-processing module basically performs two functions: i) checking and
optimisation of the spatial consistency of the input image data and ii) checking and
flagging of potential occlusions and no-data areas in the images. The spatial consis-
tency is optimised by using an available reference set with 15-m-spatial resolution
and an expected RMS spatial tolerance of around 20 meters, while the occlusions
and no-data areas are detected by an internal recognition mechanism. Details on
these steps are available in Section 5. Because of the characteristics of the spatial
reference layer available, the current GHSL production is not fitting with the 1:10K
local scale specifications, and consequently only the 1:50K regional and 1:500K
global will be delivered for the moment.

Note that no spectral calibration steps are implemented in the current workflow.
Thus all the subsequent processing steps work with spectrally un-calibrated satellite
image data input. This choice was dictated by the fact that an important part of the
input image data volume was not suitable for being radiometrically calibrated with
existing tools, requiring the availability of parameters for each scene to derive top-
of-atmosphere reflectance. Apart from some VHR optical sensors, in particular this
information was unavailable for pan-sharpened multispectral SPOT-5 image data
and for airborne/satellite mosaics that were instead playing an important role in the
current experiment, both as volume of data involved and interest of users in the
output.

The absence of radiometric calibration did not allow including spectral image
descriptors derived from multi-spectral band combinations such as the Normalised
Difference Vegetation Index (NDVI), that may significantly increase the BU/NBU
discrimination in case of availability of multispectral image data. New spectral cali-
bration methods able to process a more complete range of input data are under study
and will be applied in next I2Q GHSL workflow releases. Nevertheless, the capacity
to extract image information without using spectral band combinations can be seen
as a benefit for the applicability of the proposed workflow, allowing the processing
of mono-channel image data.

4.4 Image information query infrastructure

The I2Q System architecture relies on different components interacting between
each other to allow massive image elaboration and validation of the results (Fig. 4.2).
The I2Q System main modules are:

1. Web server;
2. Image server;
3. Application server;
4. Database server;
5. Elaboration core (computer cluster + image query scripts + image tiling + image

statistics)
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Fig. 4.2 The general I2Q GHSL processing workflow.

4.4.1 Web server

This component provides the access to the Graphical User Interface of the system
using a web browser. Through this interface, the user can interact with the system
and perform different operations like:

• Submission of image processing requests and monitoring of the elaboration sta-
tus;

• Visual inspection of the elaboration output and comparison with the reference
image or any other correspondent image/information layer present in the system;

• Implementation of the validation protocol;
• Query different image information layers available through WMS/TMS proto-

cols.

The user interface is composed of the following main areas:

• IQJobs: this is the area dedicated to the image processing. Users can submit jobs
and monitor their status;

• IQMaps: this section is dedicated to the visual inspection of the elaboration
output. Here it is possible to display the processed scenes and compare them
with the reference image or any other correspondent image/information layer
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present in the system. IQ Maps is also used for the visual interpretation during
the collection of reference data during the validation process;

• IQValidation: this area is dedicated to the validation protocol. Here it is possi-
ble to define which scenes are part of the validation process and the number of
statistical samples;

• IQServices: this part is dedicated to the image information layers provided
through WMS/TMS protocols. From the services area it is possible to query dif-
ferent types of information layers for computational purposes or use them as a
background for visual comparison.

4.4.2 Image server

This component optimises image delivery through the web server. Moreover it pro-
vides the possibility to perform advanced operations on the images like: i) Image
adjustment, reprojection and query, ii) Management and navigation of very large
image sets, iii) Advanced cartographic output and support of Open Geospatial Con-
sortium (OGC) standards.

4.4.3 Application server

This element provides an additional software layer between user requests and the
database server. This provides the following advantages: i) Centralised module for
implementing business logic of the system, ii) Increased security and performance
in data access and management, and iii) Optimisations in application development.

4.4.4 Database server

This component stores all the information needed for the functioning of the system
plus the information related to the datasets available, and in particular: i) Processing
information and status, ii) Statistical data and validation results, Area of Interest
(AOI) of the images and metadata.

4.4.5 Elaboration core

This part is in charge of executing the different types of processing required by the
users and those of the system. To fully exploit the computing power and the re-
sources available, a high-performance computing cluster has been implemented. In
line with the hardware also the software was implemented allowing parallel pro-
cessing (see details in Sec. 4.4.6. An important task of the elaboration core is the
image tiling (image subdivision by a regular grid). It is necessary in order to render
the images at different zoom levels without affecting the performance of the system.
The tiling is made by a specific script that is able to store the so called tiles directly
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on the file system or in a database. There are different technologies and philosophies
behind tiles generation and provisioning, the one adopted is to pre-generate the tiles
up to a certain zoom level, while the tiles generation for the next levels is done on
the fly.

4.4.6 Infrastructure

The IQ system infrastructure is heterogeneous and scalable. The project started with
a small number of blade servers and limited storage capacity that progressively in-
creased together with its processing power. Currently the I2Q system infrastructure
is composed as follows: nine blade servers (two of which are host for virtual ma-
chines); two workstations equipped with GPU; five virtual machines; two storage
systems for a total of 3 TB net capacity, for a total of 112 CPU cores and 296 GB of
RAM.
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Preprocessing

5.1 Positional accuracy

The positional accuracy of each input scene and the positional consistency between
any pair of overlapping scenes are fundamental quality measurements needed during
the generation of the GHSL layer and for any subsequent use. This is a challeng-
ing issue given the heterogeneity of the input data sets and the absence of global
reference layers matching the highest resolution of the input imagery (i.e., 50cm).
The best optical imagery reference layer with reported accuracy across the globe
and freely available is the Landsat 7 nearly global coverage [TGD04]. This freely
available imagery needs to be mosaiced to ease accuracy measurements of arbi-
trary HR/VHR images across the globe. Although we have developed a method for
mosaicing large data sets [Soi06; BS05] and have applied it at continental scale
for Europe with Landsat data [BGS08] and IRS LISSIII plus SPOT-4/SPOT-5 im-
agery [Soi08], at global level we currently use TerraColor as our imagery reference
layer.

5.1.1 Positional accuracy against TerraColor

Except for CBERS-2 HRC imagery (see next paragraph), we have assumed that
the geolocation of the input imagery as indicated by the image metadata is correct.
The positional accuracy is determined using normalised cross-correlation measure-
ments [BS72]. That is, given a square template cropped from the input image at a
given position, normalised cross-correlations are calculated between this template
and equivalent templates cropped in the reference image with the centre pixel falling
within a search window centred on the same position as that of the original template.
The vector separating this position from the position at which the maximum value
of the cross-correlation occurs is used as a local estimation of the translation vector
between the input and reference images at that position. If the normalised cross-
correlation is not circular enough or not high enough, the estimated translation vec-
tor is deemed unreliable and discarded. The mean, RMSE, and standard deviation of
the horizontal and vertical displacements are then reported. Subpixel measurements
are obtained thanks to a quadratic interpolation of the correlation function [TH86].
Because the spatial resolution of TerraColor is 15m, only errors above 1.5m (the

21
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theoretical smallest displacement that can be measured with subpixel measurement
using quadratic interpolation is a 10th of the resolution of the reference) are signif-
icant. This is enough for assessing the quality of the final GHSL layers of regional
and global scale, which are delivered at a maximum scale of 1/50,000.

For the special case of CBERS-2 HRC imagery, the geolocation of the input
imagery is unreliable with scene centre displaced by up to 40 kilometres [dCE04;
Cas+11]. In this case, we have used the procedure described above to automatically
find tie points necessary to correct the geolocation of the input CBERS imagery.
This is achieved by subsampling the CBERS images at the resolution of TerraColor.
Displacement vectors are then extracted by considering only those vectors as reli-
able that clearly cluster in well defined regions of the x-y space. The CBERS image
is then warped using the affine transformation model with least square estimation
of the transformation parameters given the final set of tie points. This procedure is
summarised in Fig. 5.1.

Fig. 5.1 CBERS-2 HRC geolocation using TerraColor as reference. The red cross on the zoom
images (bottom image row) indicates the same geolocation in all three images. Left column: origi-
nal CBERS scene. Middle column: TerraColor in the same domain as that specified by the original
CBERS scene (red channel). Right column: the CBERS scene warped to the TerraColor image.

5.1.2 Relative positional accuracy (consistency)

The relative positional accuracy (i.e. consistency) between any pair of overlapping
images is calculated similarly to the positional accuracy. It is a consistency mea-
surement in the sense no reference is used but merely a comparison between two
data sets in their overlapping domain.
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5.2 Cloud detection

Precise cloud detection remains a difficult topic per se due to the absence of for-
mal definition of a cloud that can be translated into an image processing chain
with well defined parameter values. For instance, ’What is the threshold level to
declare whether there is a thin cloud or not?’ or ’Where is the precise location of
the boundary of a cumulus?’ are questions that will probably never be answered.
Nevertheless, cloud masks indicating the image areas most affected by clouds can
be generated by a wide variety of methods. For example, cloud detection in medium
resolution imagery with sensors offering a wide range of spectral bands including
thermal bands is usually based on the Automatic Cloud Cover Assessment (ACCA)
method [Iri+06]. This type of method requires not only a wide range of spectral
bands but also precise Top-Of-Atmosphere (TOA) reflectance values. The param-
eters necessary for TOA reflectance calculations, such as sensor gain and offset
parameters and solar irradiance at the given wavelengths, are not always precisely
known for HR/VHR satellite data. Experiments detailed in [Soi08, Chap. 3] have
shown that ACCA can be adapted for sensors with green, red, near infrared, and
short-wave infrared bands such as SPOT-4 HRVIR, SPOT-5 HRG, and IRS-LISS III
sensors. However, for VHR data that sometimes contain only 1 panchromatic chan-
nel, this path is not viable. Therefore, an ad hoc method for generating cloud masks
has been developed. More precisely, rather than relying on calibrated data, we have
developed a method that translates a visual definition of a cloud into an image pro-
cessing chain. There are actually two chains, the first for situations where only one
VHR band is available, the other for all other cases (i.e., multi-band HR/VHR data).

5.2.1 Panchromatic VHR data

This technique was originally developed for CBERS-2 HRC panchromatic images.
It exploits the fact that the cloud boundaries consist of a smooth transition from
bright to darker regions spanning over many pixels. Smooth transitions are de-
tected using point-wise arithmetic differences between thick morphological gradi-
ents [RSB93] of increasing size. The non-zero values of the resulting image delivers
a mask of the cloud boundaries. The holes of this mask are than filled by a morpho-
logical reconstruction by erosion called the fillhole transformation [Soi03]. Finally,
a dilation by a disk of fixed radius (15m) is applied to make sure that most pixels
corrupted by the detected clouds are indeed covered by the cloud mask. Figure 5.2
shows a CBERS-2 HRC image and its corresponding cloud mask.

5.2.2 Multispectral HR/VHR data

For multispectral HR/VHR data (typically four channels), the adaptation of the
ACCA method proposed in [Soi08, Chap. 3] did not provide satisfactory results
in many cases due to the unavailability of precise calibration parameters. For this
reason, we have developed a method taking into account the multispectral nature of
the input data relying on a visual characterisation translated into an image process-
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Fig. 5.2 Cloud detection from panchromatic data: example on a 2.5m CBERS-2 HRC scene over
Brazil.

ing chain. The method relies on fact that clouds appear has regional maxima [Soi03]
in all visible and infra-red channels of multispectral images. Therefore, the point-
wise intersection of the extended regional maxima obtained for each channel is used
at the basis of an image processing chain delivering a mask of potential clouds.

5.3 Land mask

A global land mask was generated using OpenStreetMap1 (OSM) data. The coast-
line data was downloaded from OSM services and converted into a Boolean layer.
It was then inserted into PostgreSQL-PostGIS database. Thanks to the image server
(MapServer), which provides all OGC standards with all authorised output formats,
it is possible to query the land mask layer through standard WMS with the desired
parameters such as those indicating the image extent, resolution, projection, and
output format. The resulting mask was used, for instance, during the positional ac-
curacy measurement to avoid calculating correlations in the sea or during learning
on textural features to discard regions covered by the sea.

1 URL: http://www.openstreetmap.org
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Feature extraction

This chapter gives an overview of the different types of features collected from the
available imagery as a basis for a medium level semantic layer describing the human
presence through the evidence of built-up.

6.1 Textural features

The textural image features used in this study are derived from grey level co-
occurrence matrix (GLCM) contrast textural measurements [RKI73]. The GLCM
matrix is a n × n matrix containing the relative frequencies with which two pixels
linked by a spatial relation (displacement vector) occur on a local domain of the im-
age, one with grey level i and the other with grey level j, with i, j ∈ [0, . . . , n− 1],
where n is the number of grey levels with which the image has been coded. The
contrast textural measurement is formalised as follow:

CON =

n∑
i=1

n∑
j=1

(i− j)
2 · Pi,j ,

where n is the number of grey levels present in the image, and Pi,j is the (i, j)th
entry of the co-occurrence matrix. The contrast textural measures calculated using
anisotropic displacement vectors are combined in a rotation-invariant image feature
called PanTex [PGK08] by using extrema operators. In [Pes+11], it was demon-
strated that PanTex is strongly correlated with the presence of buildings as well as
with their spatial density [PHO11]. The capacity of PanTex to discriminate BU/NBU
areas is mainly linked to the fact that it is a corner detector [GSP12]. In addition,
the built-up areas generate high spectral heterogeneity in the local domain due to
the heterogeneity of materials used and because of the fact that buildings are gen-
erally casting shadows. In this study, PanTex method was improved by adding i) an
a priori weighting mechanism substituting the usual standardisation step before the
integration of different displacement vectors and ii) the parametrisation of the radius
used for generating the displacement vector list.

The basic parameters necessary to calculate the PanTex feature are the window
size wsize and the list of displacement vectors d used for generating the GLCM.
wsize is analytically derived from the GHSL scale of the expected output that in

25
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this experiment is set at the 1:50K GHSL technical specifications. Consequently,
wsize = 50 meters that is corresponding to the spatial unit of the GHSL regional
scale. The wsize will be translated in corresponding number of image pixels by ratio
with the image spatial resolution information. In this study, the displacement vectors
are generated assuming a radius of 10 meters that corresponds with the maximum
size of the image pixel tested during the experiment, and fits well with a priori
knowledge regarding the expected size of the majority of the built-up structures.
Table 6.1 summarises the wsize and the number of displacement vectors d for the
most common image resolutions used in the study.

Table 6.1 PanTex parameters used in the study.

Image Number of Window size
resolution (m) displacement vectors (pixels)

10.0m 4 5
5.0m 6 10
2.5m 16 20
1.0m 28 50
0.5m 56 100

6.2 Morphological features

Radiometric and textural features describe material properties and object patterns,
respectively. They are used as indicators of human presence. For each given scene
the features are employed as markers to validate building footprint candidates. The
latter are summarised in a separate information layer that is a product of a multi-
scale morphological analysis protocol referred to as the “mtDAP” (max-tree Differ-
ential Attribute Profile).

The mtDAP protocol [OPS12] computes the Differential Attribute Profile (DAP)
vector field [Dal+10] from the input imagery. DAPs are non linear spatial signatures
that are used extensively in remote sensing optical image analysis in ways analogous
to spectral signatures. The DAP of a pixel is the concatenation of two response
vectors. The first registers intensity differences, i.e. contrast, within a top-hat scale-
scape of an anti-extensive attribute filter γ, and the second intensity differences on
the bottom-hat scale space of an extensive attribute filter φ. The pair (γ, φ) defines
an adjunction with γ typically being a connected attribute opening and φ being a
connected attribute closing.

The mtDAP can be configured with any morphological attribute filter but in this
case, simple area openings and closings prove to be sufficient. The area attribute
is used to order objects based on size and it is computed incrementally. The pro-
tocol consists of three core modules; the hierarchical image representation using a
Max-Tree and a Min-Tree structure [SOG98], the attribute zone tree-polychotomy
scheme and the spatial signature export module. A brief description of each module
follows.

Hierarchical image representation schemes [SN12] aim at organising the image
information content into meaningful structures or components and registering com-
ponent transitions through their nesting properties. Examples in morphological im-
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age analysis are the Max-Tree [SOG98], the Component-Tree [Jon97; Jon99], and
the Alpha-Tree [OS11; OS12]. This work makes use of the Max-Tree structure for
computing anti-extensive attribute filters on grey-scale images. The Max-Tree is a
rooted and uni-directed tree in which every node N corresponds to a single peak
component that associates to a set of flat zones [SS95]. A peak component at level
h is a connected component C, i.e. a connected set of maximal extent, of the binary
set given by thresholding the input image at level h. A flat zone is an image region
consisting of iso-tone and path-wise (or otherwise) connected image elements. If
the full extent of a peak component coincides with a single flat zone, the component
is referred to as a regional maximum. The leaves of a Max-Tree correspond to the
regional maxima of the input image and every node points to its parent P that corre-
sponds to the first superset CP of CN at level hP < hN . The root node corresponds
to the image background and points to itself.

(a) (b)

(c) (d)

Fig. 6.1 Example of DAP vector fields: (a) the input image; (b) the colour representation of the
DAP vector field using the CSL model; (c) the DAP vector field in colour-map projection in which
the two volumes correspond to the opening top-hat and closing bottom-hat scale space respectively;
(d) a cross section of the two.

The Max-Tree treats bright structures as foreground information with respect
to a darker background. The inverse is represented by a Min-Tree structure, i.e.
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foreground information are dark components resting against a brighter background.
The Min-Tree is equivalent to a Max-Tree on the inverted input image.

Computing both structures on the input image offers the possibility of evaluating
the significance or extent of the contribution of each connected component to the
structured image information content with respect to the nesting order. This the key
idea behind the DAP decomposition, which assumes size as the dominant criterion
for ordering components. To obtain the DAP vector field, i.e. the set of all DAPs
for a given image, the mtDAP protocol uses the Max-Tree to compute the top-hat
scale-space of an area opening and the Min-Tree to compute the bottom-hat scale-
space of an area closing. Instead of re-iterating the same operator configured with a
varying attribute threshold for each scale space, the mtDAP employs the “one-pass”
method [OPS12], which generates an area zone polychotomy of each respective
tree; each node is assigned a unique area zone identifier in a single pass through
each structure.

The DAP vector field can be visualised as a 3D set, in which every x − y plane,
corresponding to a particular scale of the decomposition, stores in each pixel po-
sition the pixel’s contrast computed in the respective top-hat or bottom-hat. An
example is shown in Fig. 6.1. The grey level image (a) is represented in a colour
coded CSL model showing the building footprint candidates (b, see next section
for details). Fig. 6.1 (c) and (d) show three dimensional visualisations of the DAP
vector field, in which the top volume set in Fig. 6.1 (c) corresponds to the top-hat
scale-space and the bottom volume set to the bottom-hat scale-space. Exporting the
DAP vector field requires a single pass through the image definition domain during
which, for each pixel visited, its node ID is retrieved. Visiting the respective node
gives access the area zone ID and contrast with respect to the zone’s highest attribute
boundary. The type of the tree is used to decide on which of the two volume sets the
pixel is be reported, the area zone ID to decide on which plane it belongs to and the
contrast to assign a value on the corresponding coordinates on that plane. A cross-
section through the two volume sets is shown in Fig. 6.1(c), where the scale-based
responses of a sample set of pixels are shown.

6.3 Feature compression and storage

The (scale) resolution of DAPs, i.e. λ vector length and the between-scale spacing,
is a critical parameter in their utilisation as feature descriptors. It is typically set
either empirically or based on the outcome of some statistical learning procedure.
Evidently, higher spatial input resolution offers a more detailed profile for each pixel
under study. A drawback in this case is that by increasing the vector length I the
number of DAP vector field planes (Fig. 6.1(c)) increases proportionally, i.e. 2 ×
(I − 1). When dealing with large data-sets this can be prohibitive. To counter the
resulting data explosion a compression model was devised to radically reduce the
dimensionality of the DAP descriptors. It is called the Characteristic-Saliency-Level
or CSL Model [POG12] and is a medium abstraction semantic layer that can be
projected on the HSV colour space for the visual exploration of built-up extracted
from VHR satellite imagery, see Fig. 6.1(b).

The CSL model is a non-linear mixture model consisting of three characteristic
parameters extracted from the DAP of each pixel. The Characteristic (C) is the min-
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imum scale at which the maximal contrast response is observed in the DAP. The
contrast value is the Saliency (S) and the level (L) is the highest peak component
level from which this value is computed. The model is computed directly from the
polychotomy of the two tree-based data structures and with no need for exporting
the DAP vector fields. It reduces radically the dimensionality of the DAP vector
field to a three-band representation in a statistical-model free approach, i.e. it avoids
clustering based on the statistical distribution of the DAP features of a given image.
It does not require manual tuning and its computation is independent of the length
of the DAP. This makes it suitable for automated, user-independent applications like
the GHSL.

The colour-mapped CSL model provides a pool of building footprint candidates
like in Fig. 6.1(b). Warmer colours indicate higher confidence that a particular struc-
ture is a building. The selection of candidates employs the thresholded PanTex built-
up indices as markers in order to draw the final high-level semantic layer containing
all targeted built-up.

Both the compressed multi-scale morphological (CSL) and textural (PanTex) im-
age descriptors are aggregated and stored with the spatial resolution corresponding
to the finest scale supported by the specific image information query, that in this
case is equal to a grid of 10 meters, corresponding to the GHSL 10K specs. They
are then ready to feed the subsequent image information queries and classification
with the maximum of spatial detail. With this schema, the heterogeneous set of in-
put sensor/platforms with different resolutions generates raw image features also
heterogeneous in spatial resolution but then they are spatially standardised to the
10-m nominal grid. In many cases also this operation of spatial aggregation will
introduce a compression of the data space with positive effects in the overall per-
formances of the system (storage, indexing, and retrieval). For example, an input
image feature generated with VHR image of 0.5-m-resolution, if aggregated to 10
meters will show a compression factor of 1:400.





Chapter 7
Learning and classification

7.1 Learning approach

We can distinguish three different modes of learning and classification implemented
in the current I2Q system: i) adaptive learning, ii) meta-learning, and iii) discovery.
The different learning approach are used in order to mitigate the drawbacks of ad-
mitting low-quality (low resolution, low accuracy) reference data driving the learn-
ing phase. There may be situations, where the learning form a too coarse or outdated
reference may lead to an omission of settlements that were detected correctly. This
capacity is crucial when processing multiple-scene image input data without manual
intervention in the input parameter set.

In the ‘adaptive learning’ mode, the system optimises the decision thresholds of
the input features using a given reference layer. The ‘meta-learning’ mode is used
to study the behaviour of these decision thresholds in a set of scene processed and
to detect regularities: for example typical thresholds for a given sensor in specific
regions. The output of the meta-learning is then exploited during the ‘discovery’
mode that can be activated in order recover image information lost due to errors
(incompleteness, inconsistencies) in the reference data, or due to different scales
of generalisation between the image-derived information and the reference data. In
practice, the adaptive learning optimises consistencies between the image informa-
tion and the reference data. The meta-learning and discovery modes allow detection
built-up in cases where reference data is not available with the necessary thematic
and/or spatial precision.

The typical workflow combining the three modalities will be as follows: i) run the
adaptive learning in all available scenes and classify the extracted features based on
the available reference data, ii) run meta-learning in the set of successfully classified
scenes with available reference data, and iii) run discovery mode in the set of scenes
under a given threshold of quality detected after the adaptive learning phase.

7.2 Adaptive learning on textural image features

The PanTex method [PGK08] (see also Sec. 6.1) provides measurements correlated
with built-up density, which however depends strongly on the specific image con-
trast and the sharpness of the input imagery. While the measure has a high dis-
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Fig. 7.1 Example of input image data (CBERS 2.5m), Brazil.

crimination power of BU/NBU area in a variety of conditions [PE09], the optimal
classification threshold is strongly dependent of the image characteristics and re-
quests manual interaction. In an attempt to automate this procedure, [PE09] tested a
normalisation of the image grey level distribution with a unique global classification
threshold, but the results were suboptimal.

As opposed to this signal-driven approach, we propose here the use of third party
sources of information to derive the optimal classification threshold for each image.
Since we are aiming at a fully automated process for a global coverage, also the ref-
erence data must be global, complete and consistent to support the adaptive learning.
The LandScan population density layer [Dob+00] and the MODIS500 [SFP10] ’Ur-
ban Areas’ layer were identified as a source of information fulfilling the previous
constraints and with a strong correlation with the BU areas. While LandScan layer
represents the density of people in cells with a spatial resolution of approximately
1km (30 arc second× 30 arc second), the MODIS500 layer represents the presence
of ‘Urban Areas’ estimated by classification of MODIS input data, with a resolution
of approximately 500x500 meters.

Accordingly, a method exploiting the 1km-resolution LandScan and 500m-
resolution MODIS500 layers for deriving the optimal classification threshold from
the 10m-resolution PanTex measurements is described.

7.2.1 PanTex Learning on LandScan

This section describes the learning of the best image-derived PanTex thresholds for
the discrimination of BU/NBU areas from the LandScan population density refer-
ence layer.

Let PanTex feature dataset be denoted by x and the raster layer with the LandScan
reference in the bounding box of x be denoted by y. Both datasets have different
resolutions, such that one pixel q of y encompasses several pixels qx = {ri} of
x. This is illustrated in Figs. 7.2 and 7.3. The PanTex features were extracted from
the input image shown in Fig. 7.1. While the spatial correlation is obvious, the links
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between the PanTex and the LandScan layers must be modelled carefully. In order to
cope with the uncertainty of the information in y which is fused into x, a statistical
model is employed.

Fig. 7.2 Unscaled PanTex features derived from the input image in Fig. 7.1.

Fig. 7.3 LandScan 2010 population layer corresponding to the image area in Fig. 7.1. This layer
is used for the adaptive training. Note the differences in the spatial resolution.

It can be assumed that the BU spatial density increases with the density of pop-
ulation until the BU density reaches a saturation s (i.e. an area is entirely built-up).
Additional increase in population density can only be accommodated in vertical
building growth, which however does not change the BU density anymore. This ob-
servation led to a model between the BU density πBU bounded by s and the density
of population in a cell q:

πBU (y(q) | λ, s) = s(1− e−y(q)/λ),
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where λ determines the saturation point. This break point λ depends on the geo-
graphic location (including cultural/economic setting), but it can be inferred from
the observations x and y.

By analysing the formation of the PanTex measurement, a statistical model of the
realisations of x is selected. Assuming that the grey levels of the input image follow
an identical Gaussian distribution, the differences (contrast) between pixels values
follow also a Gaussian distribution. The contrast textural measurement is a texture
dependent linear combination of the squared differences, such that it follows a χ2-
distribution or more generally a Gamma distribution. Finally, the PanTex is a non-
linear merge of those measurements, but does not allow a close distribution form.
Experimentally, the PanTex values are well approximated by a Gamma distribution
in pure BU or pure NBU areas. Thus, the distribution of the PanTex values can be
modelled as a mixture of Gamma distributions in an unknown environment:

p(x(r)) = PBUpΓ (x(r) | θBU ) + PNBUpΓ (x(r) | θNBU ),
where PBU + PNBU = 1 are the prior probabilities of BU and NBU, x(r)

is the PanTex measure at location r, and θBU , θNBU are the Gamma distribution
parameters in the BU and NBU areas. The prior PBU can be assimilated as a density
of BU, and it is approximated by πBU . By inserting the information of the density
of population, the probability distribution of the pixels qx = {ri} falling into q is
structured as follows:

p(x(ri) | y(q), λ, s, θqBU , θqNBU ) = πBU (y(q) | λ, s)pΓ (x(ri) | θqBU ) + (1 −
πBU (y(q) | λ, s))pΓ (x(r) | θqNBU ),

where the Gamma distribution parameters depend on the location q. In summary,
the joint probability of both observations x and y is structured and parametrised in
the following way:

p(x, y | λ, s, {θqBU , θqNBU}) =∏
q

p(y(q))
∏
r∈qx

p(x(r) | y(q), λ, s, θqBU , θqNBU ), (7.1)

where p(y(q)) is the distribution of the density population values, which can be
approximated by a histogram. The parameters λ, s, {θqBU}, {θqNBU} of this model
can be derived by expectation-maximisation [Moo96]. No spatial constraints are
imposed on this model, while the data seem to be spatially correlated. To gain in
robustness, the multi-dimensional image formed of the parameters θqBU , θ

q
NBU is

low-pass filtered at each iteration of the Expectation-Maximisation. This process
benefits from the context, giving higher confidence in the estimates. While the pa-
rameters model the link between both data x and y, it also embeds crucial infor-
mation for classifying the pixels of x into BU or NBU. In particular for a pixel r
belonging to a cell q, its classification is given by:

argmaxA∈{BU,NBU} πA(y(q) | λ, s)pΓ (x(r) | θqA).
Finally, this method allows using additional source of information, the density

of population, in order to derive location adaptive decision for detecting BU in un-
known environments. As the density of BU is not derived from the observation x
only, the algorithm does not fall in unwanted local maxima.
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Fig. 7.4 PanTex features of Fig. 7.2 rescaled with the LandScan2010 data (Fig. 7.3) as reference.

7.2.2 PanTex Learning on MODIS

Let the data of ‘Urban Areas’ be denoted by y and the PanTex feature existing in
the bounding box of y be denoted by x. Both datasets have different resolutions,
such that one pixel q of y encompasses several pixels qx = {ri} of x. Let x̄BU
and x̄NBU with x̄BU ≥ x̄NBU be the average of PanTex feature in spatial domain
defined by the urban areas and their complement, respectively, of the same scene
under processing, being the urban areas yBU �= ∅. Then the rescaling of the PanTex
measurements to the BU-NBU decision map is done by linear rescaling of x such
that x′ = (x− x̄NBU ) / (x̄BU − x̄NBU ) with x′ ∈ |0, 1|.

In addition to the learning with the LandScan data, we have implemented two
learning options using the MODIS ‘urban areas’ as reference (Figures 7.5). The
MODIS 500m map of global urban extent was generated by automatic classification
of MODIS multispectral data using regression tree techniques and dedicated models
fitting with specific characteristics of the different ecological regions [SFP10]. The
MODIS urban layer is the most detailed and the most consistent global information
layer available today being produced from the same sensor and the same methodol-
ogy. Moreover, some work on validation of this source was also reported in [SFP10].
Nevertheless, two main drawbacks were expected in using this source for training
of the HR, VHR image data used in this study: i) the resolution of the sensor and the
techniques used for image information extraction would presumably underestimate
the detection of scattered and/or vegetated settlement patterns, introducing a bias in
favour of non-vegetated compact and large settlements, ii) in some areas there is a
shift in the MODIS data with respect to the HR, VHR data available, which can be
larger than 2-3 times the MODIS pixel size.

The two options of PanTex learning from MODIS are ‘by area matching’ and
‘by ROC (Receiver Operating Characteristics) optimisation’, respectively. The op-
tion ‘by area matching’ (Fig. 7.6) minimises the difference between the total surface
of the BU areas estimated in the reference and in the pantex-derived layers, by ex-
ploring a range of thresholds in the PanTex image features. The option ‘by ROC
optimisation’ (Fig. 7.7) instead collects the PanTex threshold that minimises the
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Equal Error Rate (EER) estimated in the ROC analysis using the MODIS 500 as
reference (see Sec. 8.1.2 for a more detailed definition of the EER).

While the option ‘by area matching‘ requires only spatial consistency at level of
scene, the option ‘by ROC optimisation‘ would theoretically require spatial consis-
tency at least better than half of the reference pixel size, i.e. 250 meters in the case
of MODIS. In both cases the assumption is that the majority of the information in
the scene is correctly represented by the reference layer: nevertheless, the method is
robust against large deviations of the reference, empirically estimated in the order
of 30% of error admitted.

Fig. 7.5 MODIS ‘urban areas’ used for training in the same input image of Fig. 7.1.

Fig. 7.6 Thresholding of the PanTex feature (Fig. 7.2) using the ‘area matching’ option and
MODIS urban areas as reference (Fig. 7.5).
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Fig. 7.7 Thresholding of the PanTex feature (Fig. 7.2) using the ‘ROC optimisation’ option and
MODIS urban areas as reference (Fig. 7.5). This approach tends to be more conservative than the
learning ‘by area matching‘.

7.3 Adaptive learning on morphological image features

The morphological characteristics of the image information used in the workflow are
formalised through the C-Saliency-Level (CSL) model, which stores the multiscale
morphological image decomposition in a compact way.

The ’C’ or ‘characteristic‘ layer of CSL includes the scale and the (opening,
closing) domain of morphological response [POG12]. In other words: it contains
the best estimation of the size of the image structures and their behaviour (brighter,
darker) with respect to the relative background. It is a double scale-space decom-
position with respect to the original image and their inverse. This layer is invariant
to multiplicative and additive transformations of the input image data, and doesn’t
require any standardisation steps, even if used with non-calibrated, heterogeneous
image data input.

The ’S’ or ‘saliency’ layer of the CSL model instead reports about the amount of
contrast explained by the specific scale transformation collected by the characteristic
’C’ layer (Fig. 7.8). In other words, it is the amount of confidence —based on the
available contrast between the image structure and their background— that can be
given to the specific scale inferred by the CSL model for a given structure. From
another point of view, this saliency can be interpreted as a measure of the fitting of
the image structures with respect to a specific image information query defined by a
range of scales of the target structures. In this sense, the saliency plays an important
role in driving the integration between morphological descriptors and other image
features for optimisation of the image information discrimination.

The L or ‘levelling’ layer of the CSL model was designed in order to keep the
radiometric information of the image: the levelling stores the residual contrast of the
image not explained by the range of scales included in the morphological decompo-
sition. By composition of the levelling and the other two CSL layers, it is possible
to reconstruct an approximation of the original input image without having access
to the whole original multiscale decomposition. Being designed for exploitation of
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the radiometric image descriptors, the levelling is not used in this study, where for
the moment such descriptors are not exploited for discrimination of BU/NBU areas.

Fig. 7.8 ‘Saliency’ feature from the CSL multi-scale morphological decomposition model derived
from the input image in Fig. 7.1.

Since the saliency is linked to the contrast of the image (the levelling is not used
here), it is obviously very sensitive to multiplicative transforms of the input data.
Consequently, if calculated from non-calibrated heterogeneous image data input, the
saliency needs to be standardised before integration with the other information lay-
ers. This standardisation is achieved through the adaptive learning described here.
Several options are available in I2Q GHSL workflow parameter sets, which com-
bine available reference layers at different scales and extrapolated typical saliency
behaviours in BU and NBU reference areas. During this study those options were
not benchmarked and consequently they are not discussed here. In this study, the
adaptive learning of the saliency layer was performed by observing the average and
standard deviation values of the saliency in the image defined compared to the BU
reference areas, where available (Fig. 7.9). In the absence of reference information,
which is typically the case in the ‘discovery’ learning phase, the BU reference area
is inferred from the PanTex output that was calculated previously. In this case, an
internal retroactive mechanism between textural and morphological image informa-
tion descriptors was established, while in the other cases two independent, parallel
learning paths were maintained.

7.4 Information fusion

In the previous sections we have described how we optimised the output from the
textural and morphological analysis through the different learning approaches. The
next step is the combination of both layers in order to maximise the information
content and the quality. This is obtained through information fusion of the Pan-
Tex and the saliency layer of the CSL model. Only the saliency layer is used, be-
cause it can be interpreted as a confidence measure that the structures detected are
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Fig. 7.9 ‘Saliency’ feature of Fig. 7.8 rescaled after adaptive learning.

buildings. For the image fusion, three options were tested: i) intersection by clos-
ing, ii) intersection by reconstruction, and iii) simple intersection. Be the ptx, sal
the PanTex and CSL saliency layers, respectively after the learning step optimis-
ing the BU/NBU recognition with a target resolution fitting the 1:10K GHSL specs,
and be SE ∈ [10, 50, 500] the structuring element with a scale corresponding to
the spatial displacement admitted in the GHSL technical specs for the local, re-
gional and global scales, respectively. The ‘intersection by closing’ is calculated
as y = φ50(ptx) ∩ slc, while the intersection by reconstruction is calculated as
y = recon(slc,marker = ptx). The ‘direct intersection’ option is given by
pointwise function y = ptx ∩ slc.

Figure 7.10 shows an example of input image, while Figs. 7.11 and 7.12 show
the image-derived information about presence of built-up areas using, respectively,
morphological and textural features after the adaptive learning phase. Figures 7.13,
7.14, and 7.15 show the output of the fusion adopting the ‘direct intersection’, the
‘intersection by reconstruction’ and the ‘intersection by closing’ methods. The vi-
sual comparison of the fusion results highlight the different characteristics of the
approaches. The most conservative approach is the point-based direct intersection.
However, this approach tends to underestimate the larger industrial buildings present
in the example. This is mitigated by using the morphological operators ‘by closing‘
and ‘by reconstruction‘. The intersection by reconstruction has the tendency to re-
construct also other features such as road segments.

7.5 Multi-scale generalisation protocol

The multi-scale generalisation protocol is used by the I2Q system to manage the
trade-off between the precision and the computational cost of the multi-scale in-
formation representation, from local to global spatial units. While the most accu-
rate way to summarise from local to global scales is often an aggregation based
on local statistics (mean, stdv), this may have a prohibitive computational cost, if
applied to global high-resolution datasets managed by standard WMS/TMS tech-
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Fig. 7.10 Example of input image data (CBERS 2.5m).

Fig. 7.11 BU areas described by morphological image information: rescaling of CSL ‘saliency’
image feature after the learning process. Area is identical with Fig. 7.10.

Fig. 7.12 BU areas according to textural image information: rescaling of the PanTex image feature
after the learning process. Area is identical with Fig. 7.10.
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Fig. 7.13 Fusion of the textural (Fig. 7.12) and morphological (Fig. 7.11) image information using
the ‘direct intersection’ method.

Fig. 7.14 Fusion of the textural (Fig. 7.12) and morphological (Fig. 7.11) image information using
the ‘intersection by reconstruction’ method.

nologies and protocols. In order to maintain the interactivity of the system, the out-
put geo-information at the local scale is prepared already at different successive
generalisation scales compacted in the same layer by the means of the multi-scale
generalisation protocol. In this way, the compact layer can be spatially queried at
different scales, by using fast computational resampling algorithms as for example
the ‘nearest neighbour’ algorithm. This will provide a fast approximation of com-
putationally more expensive and more precise aggregation options. Three options
are implemented in the IQ system for handling spatial generalisation i) by dilation,
ii) by closing, and iii) by a hybrid approach. If IQBU10K is the result of the im-
age information query with a target resolution fitting the 1:10K GHSL specs, and
SE ∈ [10, 50, 500] is the structuring element with a scale corresponding to the
spatial displacement admitted in the GHSL technical specifications for the local,
regional and global scales, the options can be formalised as follows:

• by dilation:
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Fig. 7.15 Fusion of the textural (Fig. 7.12) and morphological (Fig. 7.11) image information using
the ‘intersection by closing’ method.

IQBU50K = δSE(50K)(IQBU10K),
IQBU500K = δSE(500K)(IQBU10K);

• by closing:
IQBU50K = φSE(50K)(IQBU10K),
IQBU500K = φSE(500K)(IQBU10K);

• by hybrid approach:
IQBU50K = δSE(50K)(IQBU10K),
IQBU500K = φSE(500K)(IQBU50K).

In Fig.7.16 we show an example for the city of Sanaa, Yemen, used to test the
generalisation and multi-scale composition options discussed here.

In Fig.7.17, we demonstrate the effect of the different generalisation and multi-
scale composition options on the global representation. Fig.7.17.a) shows the ’best’
representation of the city of Sanaa, by aggregating building footprints from local
to global scale using local average operator. Fig.7.17.b) shows the global scale by
using nearest neighbour resampling of the building footprints at scale 1:10K. Note
how information is degraded especially in the small and scattered built-up structures
and urban fringes. Fig.7.17c,d) show the same global-scale representation of Sanaa,
generated by nearest neighbour resampling of the building footprints processed with
the proposed multi-scale generalisation protocol. Note how these representations
match better the ”reference” made by local average (Fig.7.17.a), while using much
faster spatial resampling techniques.

Based on the above observations the hybrid approach was used, because it is
providing the best compromise for regional and global scales. Because of the needs
of compression of the output mosaic and simplification of the WMS infrastructure
delivering the final information during the prototype design, the three GHSL scales
are fused in one only layer. The fusion is performed by the summing the three scales
so that BUout = BU10K +BU50K +BU500K .
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Fig. 7.16 Test of the generalisation and multi-scale composition options in the city of Sanaa,
Yemen. From left to right: a) in white building footprints at 1:10K scale, generalisation by b) dila-
tion, c) closing, and d) hybrid approach. White, pink and green, respectively, show the contribution
of the ’local’, ’regional’, and ’global’ scales to the final GHSL product.
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Fig. 7.17 Test of the effect in the global representation of the different generalisation and multi-
scale composition options of the GHSL outputs in the city of Sanaa, Yemen. From left to right: a)
building footprints from cadastral maps 1:10K aggregated to the global GHSL scale using local av-
erage; b) the same using fast ”nearest neighbour” resampling algorithm, c) using ”by dilation”, d)
”by opening” and e) ”hybrid” generalisation options and also fast ”nearest neighbour” resampling
algorithm.



Chapter 8
Quality control and validation

This chapter describes the quality control and validation approach adopted in the
context of the GHSL. The approach relies on the combination of visual collection
of a limited number of reference data and globally available reference data sets.
Section 8.1 describes the visual collection of reference data and the quality measures
used, while section 8.2 describes the quality measurements and section 8.3 presents
their assessment.

8.1 Visual validation protocol and quality measurements

The validation comprises the collection of reference data by visual interpretation
and the quality assessment using well defined quality measures.

8.1.1 Visual reference data collection

In line with the focus of this study, the visual reference data collection provides
dichotomic information on the presence/absence of buildings for the GHSL 50K
scale. The reference data collection includes the following steps [Ehr+12]: i) collec-
tion of spatial samples by a systematic grid procedure and ii) interpretation of each
sample by visual inspection of the corresponding part of the image. The collection
of samples uses TMS level 17 to locate the samples. The samples are referred herein
as sample blocks and outline the area on the image that will be photo-interpreted.
TMS-Level 17 grid cell covers approximately 300 x 300m of the Earth’s surface.
Sample blocks are selected from the TMS level 17 grids using a stratified system-
atic sampling strategy [Gal05]. Within every sample block, 16 photo-interpretation
cells are selected at TMS Level 19 (approx. 75 by 75m) for photointerpretation.
Fig. 8.1 provides an example of a sampling block with the interpretation cells.
Given the adopted dichotomic protocol, the interpreter is asked to check, if the spe-
cific sub-sample was intersecting a visible building in the image with four possible
coded answers: yes, no, I’m not sure, and no data available. Cross-
comparisons of parallel validation campaigns done by different operators on the
same set of images were used in order to control the consistency and reliability of
the human interpretation task.

45
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Fig. 8.1 Typical sample block with the 16 photo-interpretation cells. In this example 9 out of 16
cells have been marked as built-up. The reference data collection workflow is fully integrated in
the web-based IQ system.

8.1.2 Quality Measurements

The quality measurements are used to provide standardised, automated descriptors
of the quality of the processing output compared to a reference. Given the continu-
ous measurements {xi} and the classes }, yi ∈ {NBU,BU} that the measurements
should predict, their classification power is best captured by the Receiver Opera-
tional Characteristics (ROC) [Kul68]. The ROC analysis was developed in signal
detection theory. It is a graphical plot which illustrates the performance of a binary
classifier system. It is created by plotting the fraction of true positives out of the
positives against the fraction of false positives out of the negatives. In other words
the ROC curve represents the probabilities of missed detection and false alarm for
various classification thresholds:

pmd(T ) =

∑
i 1(xi < T )1(yi = BU)∑

i 1(yi = BU)
(8.1)

pfa(T ) =

∑
i 1(xi ≥ T )1(yi = NBU)∑

i 1(yi = NBU)
(8.2)
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The ROC curve is the convex parametric function (pmd(T ), pfa(T )), ∀T . In order
to compare two types of measurement producing two ROC curves, the metrics of
the Area Under the Curve (AUC), the Equal Error Rate (EER), and the Minimal
Error Rate (MER) are proposed and can be interpreted as quality statistics:

AUC =

∫ 1

0

pfadpmd (8.3)

EER = pmd(Te) = pfa(Te)∃Te (8.4)
MER = min [pmd(Te) + pfa(Te)] , ∃Te (8.5)

The smaller these quality metrics are, the better is the classification or discrimination
performance of the type of measurement.

8.2 Global quality measurements

While a visual validation protocol is highly accurate, it lacks completeness. With
the adopted protocol, the complete collection of for each satellite scene used in the
experiment would require several years of visual reference data collection for an
image interpreter, which is totally unrealistic with respect to the available allocated
resources. Despite this fact, a systematic evaluation of the results of the automatic
image information retrieval is needed in order to control the consistency of the out-
put having multiple heterogeneous input scenes. This is crucial in particular for the
generation of the final mosaic, for which partially overlapping scenes with possibly
different quality outputs have to be managed in order to maximise the quality the
final mosaic.

To alleviate this issue, we propose the consideration of a global/complete layer
representing the presence of ‘built-up’ at 1 km resolution (BUref). This layer is de-
rived by the combination of available global information layers reporting about the
presence of buildings. In the specific case we adopted a combination of MODIS
and LandScan. This combination is obtained by reclassification of LandScan us-
ing MODIS as training set, with a spatial learning kernel of 500 kilometres. As
this reference is coarser than the visual reference derived in the GHSL 50K vali-
dation protocol, the errors are two-fold: they are either true or they are due to the
mismatch of spatial resolution. Because of these effects the average accuracy com-
puted with respect to this reference is less reliable. Nevertheless, we use this quality
metric because it can be computed globally. Various communities faced the prob-
lem of validating automatically any result of a processing flow. As an example, the
JPEG/JPEG2000 community introduced objective quality metrics of compressed
images, which are the best correlated to subjective quality metrics obtained from
feedback from a pool of persons [Wan+04]. Similarly, we propose to link the global
quality assessments with the with the visual ones. In the next section we analyse
the relationship between the visual reference data and the global reference data sets,
which will provide an insight in the linkages of the different data sets, which is
important to evaluate properly the results of the cross-comparison between GHSL
output and the global data sets.



48 8 Quality control and validation

8.3 Assessment of quality measures

In this section, we investigate two issues: 1) what is the appropriate quality measure
for evaluating the accuracy of the GHSL output against available reference data?,
and 2) admitting that human-based visual interpretation is an expensive process,
could a performance assessment that is based on reference data provided by MODIS
500-m and LandScan exhibit high confidence and reliability?

For the needs of this assessment a total of approximately 95,000 BU and 700,000
BNU samples were visually collected as described above. The samples were col-
lected mainly from 2.5m resolution, pansharpened SPOT-5 and 0.5m resolution
aerial RGB imagery. The total extent covered by this visual interpretation protocol
was over 700,000km2.

To provide an answer for the first question, we deploy a ranking schema based on
regression analysis as explained below: First, we calculate the ROC-derived quality
measures of equations (8.3), (8.4) and (8.5) for each of the following pairs: GHSL
outcome against BUref, GHSL outcome against MODIS, PanTex against BUref,
PanTex against MODIS. This results in 3 × 4 = 12 quality measures. We include
also PanTex in this assessment in order to check if the, theoretically information
enriched, GHSL outcome remains in practice more informative than PanTex.

Next, by seeking correlations among the 12 quality measures and the three qual-
ity measures of equations (8.3), (8.4) and (8.5) calculated on the pair GHSL outcome
against results by visual interpretation, we apply polynomial curve fitting of various
degrees in a least squares sense. As goodness-of-fit, for each curve we compute (at
95% confidence interval):

(a) the correlation coefficient R,
(b) the coefficient of determination: R2 = 1− RSS

TSS ,
(c) the adjusted R2

adj = 1− (n−1)RSS
(n−k−1)TSS ,

(d) the Mean Squared Error: MSE = 1
nRSS, and

(e) the Bayesian Information Criterion: BIC = n ln
(

RSS
n−k−1

)
+ k ln (n)

where RSS =
n∑
i=1

(yi − ŷi)
2, TSS =

n∑
i=1

(yi − ȳ)
2, n is the total number of ob-

servations, k is the number of model parameters, y are the values of the 12 quality
measures described in the previous step, ȳ is the average value of ys for each of
the quality measures, and ŷ denotes the fitting values (the response of the regres-
sion models). The regressors are the three quality measures (8.3), (8.4) and (8.5)
calculated on the pair GHSL outcome against results by visual interpretation. When
comparing multiple models, big values of the criteria (a), (b) and (c) are better, while
the opposite holds for the criteria (d) and (e), i.e. the smaller the better.

In the general case, it is possible to experiment with p1 numbers of parametri-
sation x p2 quality measures x p3 pairs of system outputs against reference data x
p2 quality measures x p4 pairs of system output against visual interpretation x p5
number of regression models.

In our study, we experiment with polynomials of the form y (x) = c0x
k−1 +

c1x
k−2 + . . . + ck−1x + ck, where the integer k takes values in the range [2, 11].

In addition to keeping k = 2 we made tests with generalised non-linear models
like exponential, logarithmic and power law models. This results in 13 models x 32

quality measures x 4 pairs of variables = 468 figures. Due to the fact that we tested
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and applied three different parameter sets, our regression analysis was based in total
on 1, 404 figures.

At the final stage, we decided to rank the regression models in ascending order of
both MSE and BIC. The MSE criterion describes for the accuracy between the ex-
pected and the true value by quantifying their difference; the BIC criterion is used to
prevent that the model is overfitting by penalising the increase on the number of pa-
rameters in the model. According to these criteria, the best ranking is the polynomial
model of 2nd order that fits the MER of GHSL outcome against visual interpretation
and the MER of GHSL outcome against BUref. It results in the MSE = 0.3892
and the BIC = −170.6723.

In Fig. 8.2 we display the curves fitting with respect to the three quality measures
AUC, EER and MER that achieve the best adaptation according to the defined
goodness-of-fit criteria. The first one plots the AUC between the outcome of GHSL
and visual reference against the EER between the outcome of GHSL and BUref
(BUfinal.visual.AreaUnderCurve against BUfinal.ROC|BUref.equalErrorRate)
giving R = 0.460, R2 = 0.212, R2

adj = 0.208, MSE = 0.784 and BIC =
−35.500. The middle one plots the EER between the outcome of GHSL and visual
reference against the EER between the outcome of GHSL and BUref
(BUfinal.visual.equalErrorRate against BUfinal.ROC|BUref.equalErrorRate)
giving R = 0.376, R2 = 0.245, R2

adj = 0.233, MSE = 0.750 and BIC =
−31.562. The third one plots the MER between the outcome of GHSL and visual
reference against the MER between the outcome of GHSL and BUref
(BUfinal.visual.minimalErrorRate against BUfinal.ROC|BUref.minimalErrorRate)
giving R = 0.745, R2 = 0.608, R2

adj = 0.604, MSE = 0.389 and BIC =
−170.672. The code word “BUfinal” employed in the names of the previous vari-
ables denotes the GHSL outcome.

Figure 8.3 displays instances of the layers under discussion (from left to right and
from first row to the second one): visual interpretation (sparse sampling via GHSL
50K protocol), MODIS 500-m, BUref and GHSL outcome.
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(1)

(2)

(3)

Fig. 8.2 Representative plots created through regression analysis. From the first to the third, they
display the best result according to the chosen fitting criteria for the three quality measures AUC,
EER and MER respectively. In all three cases, the better fitting was observed in the couple GHSL
outcome against visual interpretation combined with GHSL outcome against BUref.

The described ranking schema leads us to observe that there is a high positive
correlation (almost linear) between the Minimal Error Rate calculated over the
pair GHSL outcome with visual interpretation, and the one computed over GHSL
outcome and BUref layer. This provides a significant evidence that this particular
quality measure is consistent in relation to reference data derived either by human
visual inspection, or by layers of type MODIS 500-m or BUref. Following ROC
curve analysis to assess the classification performance, MER provides an informa-



8.3 Assessment of quality measures 51

Fig. 8.3 The background image is a pansharpened SPOT-5 image with 2.5×2.5m pixel size (Jele-
nia Gora, Poland). From left to right and from first row to the second one, the white overlays derive
from: visual interpretation (sparse sampling via GHSL 50K protocol), MODIS 500-m, BUref and
GHSL outcome. All images are resized in 10m resolution.

tive means to compare a BU/NBU layer originated by HR/VHR imagery with low-
resolution global reference data.

Concerning the second issue posed at the beginning of this section, we test the
following hypothesis: by inverting the relationship between response and regressors
in the dominant polynomial model and inserting as input the MER calculated over
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GHSL outcome and BUref layer (for a total surface of extent more than 24 mil-
lions km2), could the extrapolated values of MER over GHSL outcome and visual
interpretation layer be within acceptable confidence intervals?

The execution of a two-sample Kolmogorov-Smirnov test showed that the dis-
tribution of extrapolated values and the sampling distribution of MER over GHSL
outcome and visual interpretation are not the same continuous distribution. This
seems to be logical since the size of the sampling distribution and the size of the
extrapolation is very asymmetric in favour of the latter. Nevertheless, both distri-
butions can be approximated well by the exponential distribution giving means and
standard deviation 1.5 ± 0.21 (sampling) and 1.4774 ± 0.30 (extrapolated). The
sampling distribution encompasses greater variance, probably due to its relatively
limited size; until we have expanded more the validated cases provided by human
inspection, it will remain questionable whether a quality measure such as MER that
is based on low-resolution global reference data could potentially replace quality
measures calculated over the results of visual interpretation.



Chapter 9
Global results

This chapter describes the results of the processing starting with the qualitative as-
sessment in the next section. It is followed by a quantitative analysis, first against the
visual reference data and, second, against global data sets addressing different as-
pects such as quality by sensor, spectral bands, spatial resolution and by ecoregions
of the world.

9.1 Qualitative analysis

Figure 9.1 illustrates a typical example of the GHSL output extracted from the
remote-sensing images . For the same area also the MODIS500 and the LandScan
population is illustrated that are used as a reference for visual comparison. The
top-left image shows the ’presence of buildings’ layer of the GHSL over the city
of Brasilia. It is produced from image data of the CBERS-2B sensor. The output
image is shown at a 1:50K ’regional’ scale. The pixel brightness is proportional
to the percentage of built-up presence in the specific spatial units. The dark-green
polygonal contours correspond to the footprints of satellite scenes that were avail-
able as input for the final mosaic. Only the best information extracted from all the
available processed scenes is used for each spatial unit. The top-right image shows
a zoom into the central region of the city. The image shows the ’average building
size’ GHSL information layer at a 1:10K ’local’ scale . The colour-coding follows
the blue-green-yellow-red order on increasing size of the built-up structures.

Comparing the output of the GHSL produced from HR image data against the
other two low resolution layers, a noticeable gain is observed with respect to the
detail of the extracted information. Moreover, the quality of the GHSL scenes offers
the option of addressing the internal characterisation of built-up areas by automatic
analysis of the morphological characteristics of the built-up structures. Recognition
and characterisation of single built-up structures is evidently not possible using low-
resolution input images.

Figures 9.2, 9.3, and 9.4 show image data, GHSL output and MODIS output, re-
spectively, in the region around the town of Tongeren, Belgium, showing scattered
medium-size settlement patches. The strong underestimation of these kind of pat-
terns in the low-resolution MODIS urban layer is evident. In this area, the GHSL
information was produced using 2.5-m resolution pan-sharpened SPOT image data.

53
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Fig. 9.1 City of Brasilia. Top-left: the ’presence of buildings’ GHSL layer represented at 1:50K
scale with the footprints of input scenes (CBERS-2B) in dark-green; top-right: a zoom into the
city centre. The image shows the ’average building size’ GHSL layer at 1:10K scale. Increasing
built-up size is mapped on the blue-green-yellow-red colour map; bottom-left and right: the same
city represented by the MODIS500 urban layer and BUref respectively.

Figures 9.5, 9.6, and 9.7 show image data, GHSL output and MODIS output,
respectively, in the region around the Gaza strip that is one of the highest density
population areas of the world. The input images used for the GHSL production
in this areas are produced by a mixture of different sensors ranging from 0.5 to 2.5
meter of spatial resolution. In Fig. 9.6 the colour encodes the estimated size (surface)
of built-up structures in the range of 10–15,000 square meters from blue (small)
to red (large). Also in this case, the strong bias introduced by the low-resolution
MODIS sensor in detecting medium and small size settlement patches is noticeable.

Figures 9.8 , 9.9, and 9.10 show the city of London (UK) at three different scales,
namely 1:500K, 1:200K and 1:100K. They represent the GHSL output reporting the
estimated size (surface) of built-up structures. The colour encodes the size infor-
mation in the range of 10–15,000 square meters from blue (small) to red (large). It
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Fig. 9.2 Image data (mosaic of Landsat ETM) collected over the region around the city of Ton-
geren (Belgium).

is interesting to explore the relations between different colour patches in this car-
tographic representation and in the geographical domain. Visual checks reveal that
there is an evident spatial correlation between the presence of ‘red’ patches and
the presence of industrial/commercial buildings as opposed to residential areas ap-
pearing mostly as bluish patterns. Yellow-orange patterns are instead correlated to
central areas. These observations remain only at the qualitative level and indicate the
potential use of GHSL image-derived measurements for internal settlement pattern
characterisation. More systematic assessment would need the collection of suitable
reference data and the definition of a formalised validation protocol that is not in-
cluded in the current report.
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Fig. 9.3 GHSL output over the same area of Fig. 9.2. In the image the colour encodes the estimated
size (surface) of built-up structures in the range of 10–15,000 square meters from blue (small) to
red (large).

9.2 Quantitative analysis with visual reference data

The quantitative assessment of the quality of the GHSL output against visual ref-
erence data relies on a total of approximately 95,000 and 700,000 samples of BU
and NBU classes respectively, which were collected using the GHSL reference data
collection protocol (see Sec. 8.1.1. The samples were collected mainly from 2.5m
resolution, pansharpened SPOT-5, CBERS-2B, and 0.5m resolution aerial RGB im-
agery. The total ground surface processed employing this visual interpretation pro-
tocol was over 700,000 km2. The results of the quantitative analysis over a subset
of image data, for which visual reference information was available, are presented
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Fig. 9.4 Comparison of the GHSL and of the MODIS500 outputs in the same area of Fig. 9.2. In
white the information coming from the MODIS urban areas.

in Table 9.1. The error rates are listed with respect to three different parameter sets
benchmarked during this study: namely 142, 145, and 146. Each relates to a set of
options activated in the learning and classification steps, and is briefly introduced in
the following.

• Learning in option 142 employs the expectation-maximisation strategy using the
LandScan 1km-resolution population layer as reference;

• Learning in options 145 and 146 both uses the MODIS 500m-resolution urban ar-
eas as reference following two different strategies: cumulative histogram match-
ing (145) and minimisation of the EER (146).
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Fig. 9.5 Image data representing the region around Gaza strip (mosaic of Landsat ETM)

The adopted visual validation protocol shows an estimated EER and MER of the
final GHSL built-up layer of approximately 17% and 9% respectively. This corre-
sponds to a total accuracy of more than 90%, i.e. (1 −MER). All three learning-
and-classification options evaluated using the proposed protocol appear to be con-
sistent and have only minor differences in performance. Option 142 ranks best with
respect to the EER metric (17.26%), and option 145 performs best with respect to
the MER metric (8.57%). Option 146 has the lowest rank in both metrics.

In order to allow an assessment of the feasibility to use the global reference
layers for the quality assessment, the two quality metrics were also computed for
the MODIS 500m-resolution and the BUref data sets taking into account only the
areas, where also visual reference information is available. for the same satellite
input imagery and using the same visual validation protocol. The results are listed
in Table 9.2.

Despite minor differences that are being investigated further, two main observa-
tions are made: i) the quality metrics computed using the visual protocol and using
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Fig. 9.6 GHSL mosaic output over the same area of Fig. 9.5 using a composition of input images
ranging from 0.5 to 2.5 meters of spatial resolution. In the image the colour encodes the estimated
size (surface) of built-up structures in the range of 10–15,000 square meters from blue (small) to
red (large).

.

the low-resolution reference layers appear to be substantially consistent and ii) there
is an almost systematic overestimation of the average error in both error metrics us-
ing the low-resolution references, if compared against the corresponding metrics
using the visual references, which we assume to be more reliable than the low-
resolution reference. The first observation supports the use of global, low-resolution
reference layers for an automatic evaluation and ranking of the automatic image
information extraction output. This is backed by obtaining almost the same rank-
ing, if benchmarking the three learning-and-classification options on low-resolution
reference layers, or if using the much more expensive visually-collected reference
data.

The second observation refers to a general issue when using low-resolution ref-
erence layers for evaluating HR and VHR classification outputs. There is an error
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Fig. 9.7 Comparison of the GHSL and of the MODIS500 outputs in the same area of Fig. 9.5. In
white the information coming from the MODIS urban areas.

due to a mismatch of the data sets that can be due to: i) true errors; e.g. BU/NBU
wrongly falling in the complementary class and correctly recognised in the low-
resolution reference, and ii) false errors; e.g. BU/NBU correctly recognised at the
HR, VHR output, but not found in the low-resolution reference. This second type
of mismatch can be deemed ’added value’ of the HR, VHR automatic recognition
procedure with respect to the available low-resolution information layers.

These observations lead to two different findings: i) a positive one that stems
from the fact that we can expect a substantial underestimation of the final accu-
racy of the GHSL layers using the low-resolution reference, meaning that the whole
GHSL quality assessment can be considered as globally very conservative, and ii) a
negative one that can be linked to the risk of discarding GHSL outputs showing low
quality metrics, but in fact providing a dominant ’added value’ with respect to the
low-resolution references. In the ’discovery’ phase of the learning and classification
processing chain we try to mitigate this risk in the cases, where low-resolution refer-
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Fig. 9.8 GHSL output in the region around London city (UK) represented at the nominal scale of
1:500K. In the image the colour encodes the estimated size (surface) of built-up structures in the
range of 10–15,000 square meters from blue (small) to red (large).

ences show clearly unreliable behaviour; typically in cases of low-density scattered
settlements, which cannot be detected with low resolution sensors such as MODIS.
The problem remains open and needs to be addressed in the next release of the
learning-and-classification workflow.
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Fig. 9.9 GHSL output in the London city (UK) represented at the nominal scale of 1:200K. In
the image the colour encodes the estimated size (surface) of built-up structures in the range of
10–15,000 square meters from blue (small) to red (large).

9.3 Quantitative analysis with global data sets

This section provides the estimated average quality of the whole GHSL output us-
ing the MER measure and the 1km-resolution BUref layer as reference. This is
the quality metric that showed the best matching with the visual validation pro-
tocol figures. The following sections describe the analysis of the results ordered
by the type of sensor, by band, and by sensor resolution, respectively. The qual-
ity metric reported in these tables is defined as the inverse of the error metric:
Q(x) = 1−MERBUref (x). In all three tables the results are listed by decreasing
values of the Q(x) metric; best ranks appear at the top of each list. Both average
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Fig. 9.10 Zoom of the GHSL output in the London city (UK) represented at the nominal scale of
1:100K. In the image the colour encodes the estimated size (surface) of built-up structures in the
range of 10–15,000 square meters from blue (small) to red (large).

and standard deviation (StdDev) of the Q(x) metric are shown. All values of the
Q(x) metric presented in these tables represent the average computed between all
the available adaptive learning-classification options.

9.3.1 Quality by input sensor

The analysis of the results by sensor (Table 9.3) shows a cluster of sensors provid-
ing good BUref fitting performances with Q(x) ≥ 90%. These include RapidEye
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Table 9.1 Error rates (EER and MER) for the GHSL output (BUfinal) and the visual reference data
for each parameter set. The first rows describe the surface and the number of available reference
data sets. Due to some errors in the processing of the parameter sets, there is a difference on the
number of samples per set.

Parameter script ID
Grand

Data 142 145 146 Total
Sum of input surface 733,560 727,348 731,181 2,192,089

(km2)
Sum of BUfinal 96,064 95,515 95,758 287,337

(visual) number of
positive samples
Sum of BUfinal 701,030 688,692 693,165 2,082,887

(visual) number of
negative samples

Average of BUfinal 17.26% 17.42% 18.43% 17.70%
(visual) EER

Average of BUfinal 9.15% 8.57% 9.74% 9.15%
(visual) MER

Table 9.2 Error rates (EER and MER) for the GHSL output (BUfinal) and the global reference
data for each parameter set.

Parameter script ID
Grand

Data 142 145 146 Total
Average of BUfinal 29.84% 36.57% 37.06% 34.48%

ROCrefBU EER
Average of BUfinal 28.64% 30.08% 31.32% 30.01%

ROCMODIS EER
Average of PanTex 34.23% 38.91% 38.92% 37.34%

ROCrefBU EER
Average of PanTex 33.04% 33.03% 33.03% 33.03%

ROCMODIS EER
Average of BUfinal 7.93% 13.37% 13.61% 11.63%

ROCrefBU MER
Average of BUfinal 8.94% 9.02% 9.19% 9.05%

ROCMODIS MER
Average of PanTex 8.17% 13.78% 13.72% 11.88%

ROCrefBU MER
Average of PanTex 9.26% 9.24% 9.24% 9.25%
ROCMODIS MER

1 and 5, aerial, CBERS-2B and SPOT-5. A medium-performance cluster of sensors
with Q(x) between 85% and 90% includes the SPOT-2, IKONOS-2, and RapidEye-
2 sensors. A lower performing cluster of sensors, i.e. with Q(x) between 80% and
85%, includes the WorldView 2 and 1, QuickBird 2, and GeoEye 1 sensors. Ta-
ble 9.3 provides an interesting observation. The cluster of best-performing sensors,
if VHR aerial image data is excluded, includes traditional HR platforms such as
CBERS and SPOT and even the 5m resolution RapidEye sensors, while the VHR
platforms, such as WorldView, QuickBird and GeoEye, rank lower. But the resolu-
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tion cannot explain sufficiently the low ranking of the new VHR satellite platforms,
because the aerial imagery, which was processed at 0.5m resolution, ranks second
best. Evidently the proposed workflow for automatic image information retrieval is
influenced by other data characteristics that remain to be further investigated for
improving the overall performance. It is also important to remember that there is a
strong emphasis on the HR sensors, both in terms of amount of data sets and in terms
of visual reference data collection. This may well influence the quality assessments
also in the lowing sections.

Table 9.3 Average quality by sensor.

Values
Average of StdDev of

Sensor Q(x) Q(x)

RapidEye-4 97.94% 2.27%
Aerial 95.66% 3.69%

CBERS-2B 94.37% 7.59%
SPOT-5 93.26% 7.33%

RapidEye-1 90.26% 10.10%
SPOT-2 88.21% 3.10%

IKONOS-2 86.63% 12.67%
RapidEye-2 86.38% 10.36%

WorldView-2 84.37% 10.52%
QuickBird-2 83.58% 13.04%

GeoEye-1 80.98% 11.58%
WorldView-1 80.03% 14.28%
Grand Total 91.50% 10.08%

9.3.2 Quality by input bands

Anacin the results with respect to the estimated output Q(x) in relation to the dif-
ferent spectral bands used as input (Table 9.4), three main clusters with distinct
behaviour are observed: i) a top ranking cluster with Q(x) ≥ 90% including the
PAN and GREEN, RED and NIR bands in pan-sharpening imaging mode (PSH);
ii) a medium ranking cluster with Q(x) ranging from 85% to 90% that includes all
listed bands in multispectral imaging mode (MUL), and iii) and a low-ranking clus-
ter with Q(x) ranging from 75% to 80% that includes VHR bands in PSH mode. It
is interesting to note that except for the BLUE band all other bands in the lowest-
ranking cluster are the new bands of the WorldView-2 satellite. This behaviour of
the sensor needs to be analysed in more detail. Possible explanations could be linked
to the fact that there only a limited number of 20 scenes was processed that might be
influenced by other characteristics. Another source of error might be linked to the
pan-sharpening of these new bands. Some algorithms are not providing good results
for this new band constellation.
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Table 9.4 Average quality by imaging type and band.

Values
Image type Average of StdDev of
and band Q(x) Q(x)

PSH GREEN 93.56% 7.53%
PSH RED 93.54% 7.56%
PSH NIR 93.53% 7.78%
PAN PAN 93.30% 8.76%

MUL SWIR 91.33% 8.57%
MUL REDEDGE 90.18% 10.25%

MUL GREEN 86.51% 12.00%
MUL RED 86.49% 12.06%

MUL COASTAL 86.33% 9.72%
MUL NIR 86.31% 12.44%

MUL YELLOW 86.16% 9.89%
MUL BLUE 85.45% 12.42%
MUL NIR2 85.17% 11.09%

PSH REDEDGE 80.03% 5.04%
PSH COASTAL 79.93% 2.35%
PSH YELLOW 79.80% 2.37%

PSH NIR2 78.08% 3.16%
PSH BLUE 75.90% 11.26%
Grand Total 91.51% 10.07%

9.3.3 Quality by input spatial resolution

The ranking of the Q(x) obtained by different classes of input image spatial resolu-
tion (Table 9.5) shows a top performance of the class C ranging from 1 to 2.5 meter
of spatial resolution with Q(x) equal to 92.9%±8.8%. Class C consists of SPOT-
5 and CBERS-2B data and all the multispectral data from the VHR sensors. The
second best is class E with spatial resolution ranging from 5 to 10m. and achiev-
ing Q(x) = 92.13%±8.12%. Class E consists of SPOT 1,2 P data and multispectral
SPOT-5 and RapidEye data. Interestingly, the worst ranking achieved according to
the Q metric, is class A containing all VHR data, i.e. with image resolution of 0.5m.
or better. Fine-level of details seems to decrease of the signal/noise ratio that can
be observed. The reliability of the GHSL automatic image information extraction
workflow under test is maximised for resolutions in the range of 1 to 2.5m and
based on this observation future releases of the workflow will be configured with
a standard resolution of input imagery to approximately 2.5m. before any feature
extraction.

9.3.4 Quality by ecoregions

Apart from the analysis of the GHSL output quality with respect to the data char-
acteristic (sensor, spectral band and spatial resolution), also the landscapes mapped
may have an impact on the processing quality. It can be assumed that similar land-
scapes as for example described by global ecoregions [Ols+01], may introduce simi-
larities in the behaviour of any given automatic image information recognition strat-
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Table 9.5 Average quality by class of resolution.

Values
Average of StdDev of

Resolution Q(x) Q(x)

C : {1 < x ≤ 2.5} 92.90% 8.87%
E : {5 < x ≤ 10} 92.13% 8.12%
D : {2.5 < x ≤ 5} 86.83% 12.59%
B : {0.5 < x ≤ 1} 83.46% 13.27%

A : {x ≤ 0.5} 81.97% 11.27%
Grand Total 91.51% 10.07%

egy. In other words, they can introduce a dominant characteristic of the background
of the image, but they can also probably contribute in the explanation of the specific
materials and patterns used to make human settlements. Consequently, it is of inter-
est to test the robustness of a specific global automatic image information retrieval
task, against a bias introduced by dominant landscape patterns available at a local
scale. On the other side, under given constraints it could be possible to extrapolate
the performances of a given automatic image information extraction task to images
representing the same landscape.

Figure 9.11 shows the average Q(x) obtained by the current I2Q GHSL work-
flow after extrapolation to the WWF ecoregions1. According to this analysis, Brazil,
Europe and China are well placed in the high confidence area with Q(x) ≥ 80%
together with large parts of the Sub-Saharan and Southern Africa.

Middle East, Sahara and North African areas apparently show systematic prob-
lems with the current image information extraction strategy, producing average
Q(x) in the range 70% to 80%. One of the probable reasons behind these poor per-
formances is the presence of scattered vegetation and very bright soil background
that might create false alarms in the textural image feature and/or miss detection
in the morphological image query. Similar issues were already addressed in the
same areas by a method applying morphological filtering before the image textu-
ral analysis. It demonstrated a drastic increase of the performance of the automatic
recognition of built-up structures in arid areas having as background bright soil and
scattered vegetation [PG11]. This method was not implemented in the current work-
flow. The latter is focused more on general-purpose processes of morphological and
textural features, without chaining them deductively prior to the learning phase. It is
expected however that such type of observations can lead to “regionally-adaptive”
image information extraction workflows taking into consideration the local and re-
gional landscape and background conditions for each scene to be processed. This is
currently under investigation.

Red regions in Fig. 9.11 correspond to areas with major inconsistencies between
the current GHSL outputs and the available reference layers. Such outputs are re-
jected during the first iteration of the I2Q GHSL workflow and are ignored in the
compilation of the final GHSL mosaic. They account for a small fraction of the
available scenes, yet they are dealt with great delicacy. The reason for this is that
the mean Q(x) computed over such regions and extrapolated to the whole ecoregion
might be influenced by a single or just a few images and result in poor performance

1 URL: http://assets.worldwildlife.org/publications/15/files/
original/official_teow.zip?1349272619
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due to the erratic and possibly arbitrary conditions of the input data. Note that in-
consistency with the available global BUref doesn’t necessarily imply bad quality
output.

Figure 9.12 shows an example of a single image with data leading to a poor
performance of the Q metric when generalised to the whole available ecoregion in
Bangladesh. The image is a SPOT Panchromatic scene covering the city of Dhaka
and its northern-eastern surroundings. The top-left image shows the GHSL at 1:50K
output overlapping (50% transparency) with the low-resolution BUref that was used
to derive automatically the Q(x) metric. The observed mismatch between the two
sets justifies the low Q(x) scores. During the first iteration of the final mosaicing
module this output will be discharged, while another dataset coming from a VHR
image and covering only the central part of the city will be accepted because of a
better matching with the low-resolution reference data (top-right). A visual check of
the original image data at a more detailed scale reveals however that the reference
information layer in this example provides a strongly biased representation of the
actually existing structures, underestimating dramatically the presence of built-up
areas in the region. The reason is probably the fact that the settlements, as shown
in the bottom-left image, are relatively scattered and contain large vegetated areas.
The scenes are discarded by the low-resolution radiometric classification procedure
as shown in the bottom-right image.

Fig. 9.11 Estimated quality of the current GHSL output by WWF ecoregion.

9.4 Information discovery

A total of 2895 CBERS-2B satellite scenes, accounting for 3.19E+06 km2 of ground
surface, where selected for testing the “discovery” modes of the IQ GHSL learning
and classification workflow. For this set of scenes all adaptive learning methods
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Fig. 9.12 City of Dhaka, Bangladesh. Top-left: available GHSL output information overlaid with
the low-resolution reference layer; top-right: final mosaic selecting only those outputs that fit with
Q(x) ≥ 85%; bottom-left: zoom in the discharged GHSL areas that do not fit sufficiently with
the BUref layer; bottom-right: visual check of the input image. The area is densely inhabited but
because of the scattered patterns and vegetation it is labelled as not urban in the low-resolution
reference layers.

failed due to the absence of information on the presence of built-up areas. Most of
these scenes are located in remote rural areas with scattered small scaled settlements
away from larger agglomerations (villages and/or towns). In the first iteration of the
IQ workflow the BUref layer consisted of a combination of low-resolution globally
available layers (LandScan, Modis500), in which low density rural areas are poorly
represented. During the ’meta-learning’ phase, the statistical distributions of the
best thresholds on image features were analysed in the satellite scenes, where the
adaptive learning phase was providing high reliability. The satellite scenes chosen
for the ’meta-learning’ phase were selected by a query listing all the CBERS-2B
scenes, where at least 20% of surface was identified as built-up in the available
BUref, and producing an output with BUref MER less than 10%. The thresholds
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learned from this phase were then applied blindly to the satellite scenes suitable for
the ’discovery’ phase.

The sum of the new built-up surface discovered in the HR input images during
this phase was estimated as 1.00E+05 km2. This was with an average accuracy
of 98.57% and a StdDev of 2.42% with respect to the BUref. The accuracy was
measured as the inverse of the MER using BUref as reference.

9.5 Mosaic quality assessment

The input image data models for this study were heterogeneous including i) a col-
lection of individual scenes, ii) a collection of sub-tiled scenes, iii) pan-sharpening
fusion of specific bands of individual scenes, and iv) large mosaics made of individ-
ual aerial photographs. Problems associated with such image datasets are overlap
in the spatial domain and repeated image acquisitions during the time line. More-
over, due to specific sensor characteristics, local landscape and other operational
parameters, images of the same area may yield results of rather different quality.
For example multispectral acquisitions of the same area may yield a very different
output compared to the panchromatic channel used alone, even when using the very
same automatic image information extraction method.

Fig. 9.13 Ranking of all the scenes processed during the experiment by increasing quality opti-
mised among all the processed options (band, learning parameters) available on the same scene.
This is the process implemented for the composition of the final GHSL mosaic, taking the best of
the available processed pieces of information. The blue dots represent the worst quality available
on the same corresponding scenes.
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During the mosaic phase this complexity is reduced i) by standardisation of the
global projection and scale using the OSGeo TMS standard and ii) by introduc-
ing a set of hierarchical composition rules, giving priority in representation of the
available information that is judged more suitable of answering to the specific user
query. The process is implemented through a recursive loop that is looking for the
best information available for each output mosaic tile. Because of the embedded
hierarchical composition rules based on optimisation, it is expected that the final
GHSL mosaic will have a quality greater than the average of all the available GHSL
outputs in all the processed image data. For each area mapped systematically the
output providing the smallest estimated error is selected among all the available
outputs.

Figure 9.13 shows a simulation of the effect of this mechanism in the universe
under processing during the experiment. All the input images processed during the
study are ranked by increasing quality optimised among all the output options (band,
learning parameters). The best and the worst options available for each input scene
are represented in red and in blue respectively. The spread and density of the blue
dots below the optimised red line shows the decision space explored by the I2Q
system during the composition of the final image information layer. Thanks to this
optimisation mechanism, the final mosaic is expected to have a rejection of 10% of
the mapped surface, selecting Q(x) = 90% as the minimal quality threshold.

9.6 Data compression

The data compression is a crucial aspect of any system having the aim of map-
ping large areas with HR, VHR input images. The control of this aspect becomes
mandatory, if the system under test is tasked to provide global outputs, where a non-
optimised feature space may introduce an unrealistic explosion of the storage size
of the image-derived features and information. Table 9.6 reports about the results of
the experiment concerning the image data and information storage.

Table 9.6 Compression ratio of image features and information outputs.

Data volume (Gb) compr. ratio 1:x
Source image data 4676

Image features 1843 2.54
Image information 366 12.78

(classification)

Thanks to the fast image feature extraction and classification algorithms applied
during the workflow, the I/O throughput is actually becoming the major bottleneck
of the current version of the I2Q system: we estimated an average cost of process-
ing (feature extraction and classification) of the imagery to be equal equal or less
than 50% of the cost of reading the imagery from the disk. Consequently, the min-
imisation of the feature space and its compression become an important issue to
monitor in order to evaluate the performance of any system delivering HR/VHR
global image information. Using the current setup, including 10m-resolution textu-
ral (PanTex) and multi-scale morphological features (CSL) a compression ratio of
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1:2.54 was observed with respect to the size of the heterogeneous input images used
during the experiment. The extracted image information from the available features
report about i) the presence of built-up areas and ii) the scale (size) of the included
built-up structures. This image-derived information has the same resolution as the
image features, but they show a much better compression ratio of 1:12.78, if com-
pared with the original size of the image data.



Chapter 10
Case study: feasibility of European GHSL

10.1 Introduction

The Joint Research Centre, in pursuing its mission of scientific and technical support
for policy making in Brussels, has planned and carried out a series of tests in col-
laboration with DG Regional Policy, in view of a possible integration of its in-house
Global Human Settlement Layer (GHSL) technology to the European Urban Atlas
(UA). The support is based on specific parameters derived from the application of
the satellite-based methodology developed by the JRC for human settlement analy-
sis. The Urban Atlas provides detailed and cost-effective digital mapping, ensuring
that city planners have the most up-to-date and accurate data available, offering
new tools to assess risks and opportunities, ranging from threat of natural disasters
and impact of climate change, to identifying new infrastructure and public transport
needs. The GHSL/UA integration would contribute to population disaggregation
and risk and disaster management applications, as well as support regional planning
in general.

This feasibility report describes the application of the GHSL protocol accord-
ing to the Urban Atlas product specifications and more specifically the comparison
between European Soil Sealing Layer (SSL) output information with the GHSL
built-up information extraction in the context of the Urban Atlas 2012-2013.

The objectives of the work described in this report are i) to test the processing
capacity of the JRC IQ system in order to assess the feasibility of a pan-European
GHSL coverage or ”built-up-areas detection” using the image data prepared for the
UA 2012-2013, ii) to assess the reliability and added value of the automatic im-
age information retrieval by systematic comparison of the automatic output with a
known reference layer reporting about similar information, namely, the European
soil sealing layer (SSL).

10.2 Input data

10.2.1 Image data

The image data potentially available for the current test is made of 793 satellite
scenes collected by the SPOT-5 platform during the years 2003-2009. The data was

73
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made available by the European COPERNICUS Programme (previously known as
Global Monitoring for Environment and Security) for the establishment of a Eu-
ropean capacity for Earth Observation. Originally it was acquired to produce the
Urban Atlas 2006.

Fig. 10.1 Number of scenes by scene projection and type of image data.

Fig. 10.2 Number of scenes by Cloud Cover percentage.

The satellite scenes are projected in various local UTM projections and also ge-
ographical lat-lon projection (EPSG 4326). These scenes have different radiometric
characteristics including multispectral, panchromatic and ”pan-sharpened” products
(Fig. 10.1). Moreover, these input scenes show various levels of cloud cover. 260
scenes show cloud coverage less than 0.1%, while all the others show cloud cover-
age up to 50% (Fig. 10.2). The expected spatial displacement or tolerance admitted
is of 5m RMSE, as specified in the UA technical specifications.

Figure 10.3 shows the spatial distribution of the available image data and the sen-
sor characteristics. We can observe that while the majority of areas are covered by
PSH scenes, in some areas only PAN image data are available, while occasionally
some PAN+ MUL bundle images are also available. In order to simplify the design
of the test, only PSH images having a UTM projection were introduced in the pro-
cessing list. In total they are 628 scenes scattered all around the European territory
(Fig. 10.4).

With respect to the standard IQ GHSL workflow the available image data for this
test is placed between the 1:10K and 1:50K GHSL specifications. In particular, the
geo-coding quality would allow 1:10K GHSL products, but the input image resolu-
tion is not enough to calculate the morphological/shape criteria that are necessary
to recognise and describe the built-up structures at 1:10K scale. Moreover, the pan-
sharpening adopted for the fusion of multispectral and panchromatic data, although
producing suitable results for visual inspection and interpretation, has some draw-



10.2 Input data 75

Fig. 10.3 Available image data input by type of image data.

Fig. 10.4 Image data input under test.
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backs on the side of the automatic exploitation of the same input image data. The
image pan-sharpening degrades the image radiometric criteria, which impact signif-
icantly the performances of automatic shadow and vegetation analysis. According to
evidences collected in the available images, the pre-processing included also a ‘vi-
sual enhancement’, probably through high-band-pass filtering by convolution. This
kind of filtering introduces image artifacts on the borders of the image structures
(objects) and increases the overall image noise, decreased the signal/noise ratio. All
these facts have a negative impact on the performances of the textural and morpho-
logical/shape image-derived criteria needed for the automatic discrimination and
characterisation of the built-up structures.

10.2.2 Reference data

In order to maximise consistency of the output, the IQ GHSL image information
workflow includes automatic optimisation of some processing parameters by sys-
tematic comparison with known reference information sources. This includes two
standard reference layers, the global population density layer (LANDSCAN, 2010)
with approx. 1 km resolution and a global land use map of urban extents derived
from remote sensing data (MODIS500)with 500m nominal resolution.

For this case study we added an additional layer in the workflow that is available
only for European countries: Degree of soil sealing with a resolution of 100m, which
was produced by the GMES Fast Track Service Precursor on Land Monitoring. This
layer is used for the production of the UA urban fabric classes discriminating them in
different soil sealing percentage thresholds. It was produced by a hybrid procedure
intersecting satellite-image-derived land cover information with data reporting on
roads and settlements. It is used here for benchmarking the GHSL product accuracy
in detection of built-up areas.

10.3 Workflow

During the current experiment, a mix of the standard 1:10K and 1:50K IQ GHSL
queries was implemented in order to cope with the intermediate scale (between
1:10K and 1:50K) of the available input images with respect to the GHSL speci-
fications and data requirements. The output of the two queries is then integrated (by
sum) and evaluated using the reference sealed soil surface layer at 100 meters of
resolution (Fig. 10.5).

In particular, the recognition of built-up areas are done at 1:50K scale, while a
subset has been used, if the 1:10K GHSL workflow was applied for detection and
characterisation of single built-up structures inside these detected built-up areas.
The characterisation was based only on the estimated area (in plant) of the built-up
structures. At 1:50K scale, any spatial reference unit (pixel) of 50x50 meters that
covers at least one built-up structure or part of is considered built-up. Analogously,
at 1:10K scale any spatial unit of 10x10 meters, covering at least one building or
a part of it is considered built-up. At 2.5-m input spatial resolution, only 1:50K
built-up areas are reliable: moreover, the tolerance in characterisation of the area of
built-up structures is of 6.25 meters (surface of one input image pixel).
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Fig. 10.5 Automatic image information workflow applied during the experiment.

The two GHSL output scales are then integrated by sum at the 1:10K scale res-
olution: in this way we create a hybrid 1:10K-1:50K product that is evaluated by
systematic comparison with the European SSL.

10.4 Evaluation parameters

Both the reference layer and the GHSL output are continuous information layers:
the reference layer reports about the percentage of sealed surfaces in respect to the
spatial unit of 100x100 meters, while the GHSL output reports about the presence
of built-up structures in the spatial units of 10x10 and 50x50 meters, integrated by
sum.

The built-up presence information released by the IQ system at any scale is
a membership value to the class built-up as formalised by the image information
query. For the purpose of this report, this membership value can be interpreted both
i) as probability (or possibility) score made by the system that this cell corresponds
to a built-up structure on the ground, and ii) as a percentage of the unit cell cor-
responding to a built-up structure. The two statements can be merged in one by
interpreting the membership value as the estimated possibility that the whole output
unit cell is covering a built-up structure on the ground.

In order to measure the agreement between the GHS output and the reference,
we adopted two strategies: i) directly measure the agreement of the continuous in-
formation layers by linear regression techniques, and ii) dichotomise the continuous
information layers by a given threshold, and then calculate agreement measurements
based on confusion matrix. In this experiment, a threshold of 25% in both layers was
considered to discriminate between built-up (BU) and not-built-up (NBU) classes.
In the dichotomic-classification case the GHSL output under test was aggregated
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at the same resolution provided with the reference layer, then 100x100 meters. In
the continuous case two different resolutions were put under test: 50x50 meters and
500x500 meters.

During the evaluation, the following measurements were collected per each input
scene processed: overall accuracy, built-up accuracy, built-up
agreement, and x fit.

• The overall accuracy is the number of pixels with agreement on the
BU/NBU classification divided by the sum of all the pixels analysed in the scene;

• The built-up accuracy is the number of pixels with agreement on the BU
class divided by the sum of all BU reference pixels analysed in the scenes;

• The built-up agreement A is a per scene global measurement expressing
the agreement on the total surface classified as BU class:

A = 1− abs(pixBUclass− pixBUref)/(pixBUclass+ pixBUref),

with pixBUclass be the number of BU pixels estimated by the classification
under test and the pixBUref the number of BU pixels estimated by the refer-
ence layer;

• The x fit measurement reports about the per-pixel R-square linear regression
fit (correlation) between the GHSL output and the reference layer. It was calcu-
lated using two different scales or spatial resolutions: 50x50 meters, and 500x500
meters.

10.5 Results

10.5.1 Qualitative inspection

Figure 10.8 shows the standard output obtained by the GHSL workflow under test
over the city of Luneburg, Germany. Brighter grey levels mean higher membership
output value to the class ”built-up” which is automatically generated by the IQ sys-
tem. Figure 10.6 shows the same region as represented by GoogleEarth imagery,
while Fig. 10.7 shows the representation made by the SSL reference layer. Also in
this case brighter grey level means higher value of ”sealed surface” percentage.

Figure 10.9 shows the GHSL output concerning the variable: ”size of built-up
structures”. For ”size” here it is understood the estimated area (in plant) of the
built-up structure. The original GHSL information is represented in square meters
or ”scale”: for visualisation purposes the colour palette applied ranges from green
(low) values to red (high) values.

10.5.2 Quantitative analysis

In this test, only the built-up area detection of the GHSL output was evaluated quan-
titatively. Other GHSL output information layers including characterisation of built-
up structures inside the built-up areas (discrimination by size) were not taken in to
account. The reason of this choice is twofold:
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Fig. 10.6 The city of Luneburg, Germany at 10-m-resolution.

1. built-up areas detection is preceding all other GHSL output measurements in the
workflow, including built-up areas characterisation. Hence it is the most impor-
tant variable influencing the reliability of all the others;

2. the impossibility to implement a consistent quantitative evaluation protocol —
without having a consistent reference layer of a suitable scale— as a single build-
ing footprints at 1:10K scale.

The results of this first quantitative test show a good level of agreement between
the built-up areas automatically generated by the JRC IQ system following a cus-
tomised GHSL task and the reference SSL layer.

The agreement is good in both dichotomic and continuous evaluation schemata
(Figure 10.10). In particular, the 628 satellite scenes under test were showing a
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Fig. 10.7 The same region as represented by the SSL reference layer.

90.8 ± 3.9 average overall accuracy rate and 86.6 ± 7.1 average rate of built-up
accuracy. Moreover, the correlation fit is estimated as 84.7± 8.0 and 96.1± 5.1 at
50m and 500m of spatial generalisation.

Because of the different nature of the two compared information layers, these
measurements include both errors in the classical sense as well as errors due to the
different semantic and scale/generalisation parameters. In other words, the 10% of
disagreement between the two information layers can be originated by the following
phenomena:

1. Wrong built-up area value in the GHSL output if compared with reality (input
imagery);
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Fig. 10.8 The same region as represented by the ”built-up areas” GHSL output.

2. Wrong sealed percentage value in the reference layer if compared with reality
(input imagery);

3. Different scale and generalisation parameters;
4. Different semantic definition of built-up area and sealed surface area.

While the first two items are generally considered being error scores, the last two
are more related to relative differences in the definition of the geographical informa-
tion in the two layers under comparison. The discrimination between these different
phenomena is quite challenging and may require expensive additional independent
assessments following the two distinct geographic information collection protocols.
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Fig. 10.9 The same region as represented by the ”size of built-up areas” GHSL output.

Fig. 10.10 Agreement measures between the GHSL built-up areas output and the reference layer.
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Fig. 10.11 Correlation between the total estimation of BU surface per scene in the reference and
in the GHSL layers: all satellite scenes under test.

Certain attempts can be made by observing that the factors related to the points
iii) and iv) have more chance to take the behaviour of as a systematic bias effect,
while factors i) and ii) are in principle randomly distributed .

Figure 10.11 shows the correlation between the total (per scene) surface esti-
mated as ”built-up” by the SSL and the GHSL layers, for all the scenes under test. It
can be noticed a slight positive slope in the estimated linear regression (y = 1.15*x)
meaning that on the whole set under study the GHSL estimation of BU areas tends
to be systematically more abundant than the one made by the SSL layer.

This is a counter-intuitive result, because in principle ”built-up” surfaces are ex-
pected to be a sub-set of the ”sealed” surfaces. Hence, it would be expected to find
systematically more sealed surface than built-up. The expected slope factor in the
linear regression would be smaller than 1. This result can be partially explained by
observing the linear regression in the subset of scenes having low density settlement
pattern.

For example, in Figure 10.12 the regression is estimated only in the subset of
scenes having less than 100 square kilometres of built-up surface, and excluding all
the scenes dominated by big urban centres. In this case, the linear regression takes
the expected slope smaller than 1 (y = 0.95*x) and showing a systematic underesti-
mation of GHSL ”built-up” surfaces with respect to the ”sealed” surface.

Even if requiring further analysis, we think that these empirical evidences are the
combined effect of the two ”disagreement” factors described above: the iii) differ-
ent scale and generalisation parameters and the iv) different semantic definition of
”built-up area” and ”sealed surface area”.
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Fig. 10.12 Correlation between the total estimation of BU surface per scene in the reference and
in the GHSL layers: it is considered only the subset of satellite scenes having less than 100 square
kilometres of BU surface.

The working hypothesis is that, while the factor (iv) is always related to the back-
ground, the factor (iii) becomes dominant in case of presence of compact large ur-
ban nuclei, where the surface of open spaces and roads between buildings is highly
relevant respect to the total area under analysis. This ”interstitial” surface is then
changing BU/NBU class according to the different scale and generalisation rules
adopted in the two layers under comparison. As known, the impact of scale and
generalisation factors is heavily related to the spatial pattern of the represented in-
formation.

10.5.3 Difference maps

During the test ”difference maps” were systematically calculated for all the scenes
under analysis in order to help the identification and understanding of the agree-
ment/disagreement of spatial patterns between the two information layers. In this
first test, only dichotomic difference map where calculated using the same spatial
resolution and thresholds used for the accuracy analysis discussed above.

Figure 10.16 shows an example of the ”difference map” obtained in region south-
east of Bologna Italy. Red and blue pixels represent areas where the SSL over-
estimates and underestimates, respectively, the GHSL built-up areas. Figure 10.13
shows the same region from GoogleEarth imagery for visual inspection, while Fig-
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Fig. 10.13 Example region South-East of Bologna, Italy.

ure 10.14 and Figure 10.15 represent, respectively, the SSL and the GHSL informa-
tion layers.

Some patterns observable from Figure 10.16 are well explained by the different
semantics embedded in the two products: for example the highway is present in the
SSL layer while it is not reported by the GHSL output, because it is not matching
with the ”built-up” definition.

Other patterns (usually large red patches, relatively isolated) of sealed surface
overestimation with respect to the GHSL output can be explained instead as errors
of the SSL detection. See for example Figure 10.17 showing two ”sealed surface”
patches in reality corresponding to agricultural fields.
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Fig. 10.14 The same region as represented by the SSL layer.

10.6 Conclusions

10.6.1 Assessment

A test of the JRC GHSL production workflow and output was done by JRC during
February 2012 with the purpose of:

• testing the processing capacity of the JRC IQ system in order to assess the fea-
sibility of a whole European GHSL coverage of ”built-up areas detection” using
the image data prepared for the UA 2012-2013;

• assessing the reliability and added value of the automatic image information re-
trieval by systematic comparison of the automatic output with a known refer-
ence layer reporting similar information, namely, the European sealed soil sur-
face layer.
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Fig. 10.15 The same region as represented by the ”built-up areas” GHSL output.

During the test 628 satellite scenes used for the production of the UA were suc-
cessfully processed by the JRC IQ system, performing automatically a customised
version of the standard GHSL query including i) automatic recognition of built-up
areas and ii) automatic characterisation of built-up structures based on size (area).
Automatic detection of occlusions and no-image-data areas (clouds) and hierarchi-
cal mosaicing were also activated in order to test the production of seamless infor-
mation layers from any arbitrary set of partially-overlapping or cloud-covered input
satellite scenes. Other standard GHSL descriptors (building height, vegetation) were
not calculated because of technical limitations of the input images available.

The computation and production test was successful and showed the capacity to
produce seamless European layers using the same JRC technology and similar in-
put data. Limiting factors are substantially linked only to the available storage space
capacity of the current IQ system that should be up-scaled in order to i) improve
the spatial resolution (the scale) of the output information layer now set to 10 me-
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Fig. 10.16 Difference map between the dichotomic ”built-up areas” and ”sealed surface” classes.
In red and light blue the positive, negative differences, respectively, in the Sealed/GHSL compari-
son.

ters ii) improve the number of information layers that can be produced (settlement
characterisation)

The results of the automatic recognition of built-up areas made by the IQ system
were systematically compared in all the 628 processed satellite scenes with the SSL
layer used for the production of the UA. According to the results of this compari-
son, the IQ GHSL automatic output showed an overall high degree of agreement in
respect to the SSL layer. The agreement is good in both dichotomic and continuous
evaluation schemata. In particular, the 628 satellite scenes under test were showing
a 90.8±3.9 average ”overall accuracy” rate and 86.6±7.1 average rate of ”built-up
accuracy”. Moreover, the correlation fit is estimated as 84.7± 8.0 and 96.1± 5.1 at
50 and 500 meters of spatial generalisation, respectively.
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Fig. 10.17 Zoom in the difference map revealing some error spots in the SSL reference layer.

10.6.2 Next steps

The analysis of the 10-20% thematic differences between the two layers has only
started. We can observe the contribution of four main factors: i) commission errors
in GHSL; ii) commission errors in SSL; iii) different scale and generalisation pa-
rameters; and iv) different semantic definition of ”built-up area” and ”sealed-surface
area”.

Better understanding of the contribution of these factors would require the design
of an improved experimental setting including:

1. Independent collection of reference information from the same input images by
an explicit protocol including visual interpretation rules and a clear definition of
”built-up” areas;



90 10 Case study: feasibility of European GHSL

2. Increased resolution of the GHSL output under test in order to better describe the
settlement components including built-up structure morphological characteristics
and the space between built-up structures (road, open spaces);

3. Production of increased number of descriptors of settlement patterns including
different levels of generalisation and different constraints in the available GHSL
information layers (morphological characteristics, patterns).



Chapter 11
Case study: feasibility of Brazilian GHSL

11.1 Introduction

This chapter describes an assessment of the feasibility of automatically mapping the
settlements of Brazil using the using the data of the High Resolution Panchromatic
Camera (HRC) operated on board of the China-Brazil Earth Resources Satellite
program (CBERS) 2B satellite and the processing workflow of the GHSL described
in previous chapters.

11.2 Data

11.2.1 CBERS-2B data

We used 5620 single satellite scenes acquired between 2007 and 2010 by the HRC
instrument on board the CBERS-2B satellite. The panchromatic data has a spatial
resolution of 2.5m. The scenes were downloaded from the online INPE catalogue1

allowing for a maximum cloud cover of 50 percent. The scenes cover 1.4 million
km2 of the most populated areas of Brazil along the southern and eastern coast as
well as areas around Brasilia, Manaus and Cuiaba (Figure 11.1). According to the
LandScan2 population data set this area is inhabited by 118 million people, approx-
imately 60 percent of the population of Brazil.

11.2.2 Ancillary data

Several additional data sets were used in the workflow as ancillary data for the
processing or for the validation of the processing output. For the orthorectification
of the CBERS-2B HRC data we used the TerraColor as reference layer. This is
an orthorectified global imagery base map at 15m spatial resolution built primarily

1 URL: http://www.dgi.inpe.br/CDSR/
2 copyright by UT-Battelle, LLC, operator of Oak Ridge National Laboratory under Contract No.
DE-AC05-00OR22725 with the United States Department of Energy

91



92 11 Case study: feasibility of Brazilian GHSL

Fig. 11.1 CBERS-2B HRC image footprints used in this study superimposed on TerraColor mo-
saic.

from Landsat-7 satellite imagery. The Open Street Map (OSM) data were used to
extract a high resolution land-sea border. During the processing global data sets are
used to control the information extraction output. One of the data sets is urban class
of the MODIS Land Cover Type product [SFP10]. In addition the LandScan (2008
and 2010) global population data sets were used. The selection of scenes for the
validation uses the WWF ecoregions of the world3 and the 2010 census of Brazil4.

11.3 Workflow

In this case study the same the workflow follows the one described in Sec. 4.3.
During the pre-processing, the CBERS data are first checked for their spatial consis-
tency. For the CBERS-2 HRC imagery, the geolocation of the input imagery is unre-

3 URL: http://www.worldwildlife.org/science/data/terreco.cfm
4 URL: http://www.ibge.gov.br/english/
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liable with the scene centre displaced by up to 40 kilometres [dCE04]. We have used
normalised cross-correlation measurements [BS72] to automatically find tie points
for correcting the geolocation of the input CBERS imagery. The 15-m-spatial reso-
lution TerraColor Landsat data set is used as a reference to reach a RMS spatial tol-
erance of around 20 meters, which is sufficient for a mapping of settlements at a map
scale of 1:50,000. The CBERS image is then warped using the affine transforma-
tion model with least square estimation of the transformation parameters given the
final set of tie points. The radiometric consistency check identifies occlusions and
no-data areas including clouds. The image information query starts with a feature
extraction using both textural and morphological features. The textural image fea-
tures used in this study are derived from grey-level co-occurrence matrix (GLCM)
contrast textural measurements [RKI73]. The contrast textural measures calculated
using anisotropic displacement vectors are combined in a rotation-invariant image
feature, called PanTex [PGK08], [Pes+11] by using extrema operators. The mor-
phological features are derived from a multi-scale morphological analysis protocol
referred to as the ”mtDAP” [OPS12]. It computes the Differential Attribute Pro-
file (DAP) vector field [Dal+10] from the input imagery. The DAP of a pixel is the
concatenation of two response vectors. The first registers intensity differences, i.e.
contrast, within a top-hat scale-scape of an anti-extensive attribute filter. The second
registers intensity differences on the bottom-hat scale space of an extensive attribute
filter. The mtDAP can be configured with any morphological attribute filter, but in
this case simple area openings and closings prove to be sufficient. The area attribute
is used to order objects based on size and it is computed incrementally. The pro-
tocol organises the image information content into meaningful structures using a
Max-Tree structure [SOG98]. The feature extraction is followed by learning proce-
dures in order to optimise the decision thresholds in the input features using a given
reference layer. The learning is necessary to process multiple-scene image input
data without manual intervention in the input parameter set. After the final classifi-
cation of the single scenes the quality is assessed using the BUREF layer. This layer
is a reclassification of LandScan data set using MODIS as training set. The scenes
with the best quality are eventually used for the mosaicing of the final product. In
addition to the automated quality control an independent validation is based on a
dichotomic validation protocol [Ehr+12] [link to the relevant section of this report].
This includes the collection of spatial samples by a systematic grid procedure and
the interpretation of each sample by visual inspection of the corresponding part of
image. For each sampling grid a cell of 200x200 meters is selected. Each sample
cell is subdivided in 4x4 sub-samples with the size of 50x50 meters and screened
for the presence of buildings. For this feasibility study we have used a stratified
sampling approach based on the ecoregions of the world and the urbanisation status
of Brazil (rural/urban area) derived from the 2010 census of Brazil. The stratified
sampling should assure that the validated scenes cover a wide range of ecological
zones and building densities. The 98 scenes have been selected in such a way that
they represent 50% rural and 50% urban areas (according to the census enumeration
areas). In addition the cover the following ecoregions:

• Tropical and subtropical moist broadleaf forests (60%);
• Tropical and subtropical grasslands, savannas, and shrublands (30%);
• Flooded grasslands and savannas (8%);
• Tropical and subtropical dry broadleaf forests (1%);
• Deserts and xeric shrublands (1%).



94 11 Case study: feasibility of Brazilian GHSL

11.4 Results

The pre-processing of the CBERS2-B HRC data was not trivial due to the poor ge-
olocation accuracy and the potentially high cloud coverage. Out of the 5620 scenes
downloaded, we were able to process 3314 (60%). For this study we have applied a
learning technique based Receiver Operational Characteristics (ROC) [Kul68] op-
timisation using MODIS urban areas as a reference. Compared to the 98 scenes
that were analysed visually, this is providing an equal error rate (EER) of 0.18 ±
0.09 and a minimal error rate (MER) of 0.06 ± 0.06. The EER/MER is higher in
rural areas (0.2008/0.0135) than in urban districts (0.1738/0.1035). With respect to
the terrestrial ecoregions, the biggest error (0.233/0.015) is obtained for the xeric
shrublands due to confusion with rock outcrops or single trees and shrubs. Fig-
ure 11.2 shows an example of the information extracted from the CBERS-2B HRC
data for the city of Sao Paolo. The figure shows the presence of buildings, where the
pixel brightness is proportional to the percentage of built-up presence in the specific
spatial units. For Belo Horizonte several scenes were available and the final result
for each spatial unit is made of the ‘best’ information extracted from all the avail-
able processed scenes. Visually, the map shows a high level of detail not only in the
urban areas, but also in the rural settlements around the city. Figure 11.3 shows the
same information for the Sao Paolo, Rio de Janeiro and Belo Horizonte triangle.
Moreover, the high spatial resolution data input offers the option of characterising
the built-up areas by automatic analysis of the morphological characteristics of the
built-up structures. Figure 11.4 shows a zoom into the area south of the airport of
Belo Horizonte. The image shows the ‘average building size’ layer at a 1:10,000
map scale. The colour-coding follows the blue-green-yellow-red order on increas-
ing size of the built up structures.

Fig. 11.2 Sao Paolo (Brazil). Presence of buildings with the pixel brightness proportional to the
percentage of built-up presence in the specific spatial units. Note the gaps in the CBERS data
coverage, which were filled with the 500m BUref data.
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Fig. 11.3 Presence of buildings in the Sao Paolo–Rio de Janeiro–Belo Horizonte triangle. Note
that gaps in the CBERS2-B HRC data have been filled with the BUREF layer.

Fig. 11.4 Belo Horizonte (Brazil). Zoom into the area south of the airport. The image shows the
‘average building size’ layer at a 1:10,000 map scale. The colour-coding follows the blue-green-
yellow-red order on increasing size of the built up structures.
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11.5 Conclusions

This study confirms that it is possible to use the CBERS-2B data to automatically
map the settlements of Brazil. Although only some parts of the country could be
analysed until now, the study can be seen as a proof-of-concept with the major ter-
restrial ecoregions being included and both rural and urbanised areas being mapped.
The next steps will be the extension of the processing to all the areas covered by
CBERS2-B HRC data. More, research is still needed to validate in a consistent
and sustainable way the building size and density information, and to make use of
the information produced in the various application areas. This could include the
linking of the automatically derived settlement information to other conventionally
produced data sets (e.g. the census of Brazil).



Chapter 12
Conclusions

12.1 Summary of the results

This report provides a proof-of-concept for the possibility to build an advanced
and up-to-date global human settlement layer (GHSL) derived from HR and VHR
optical remotely-sensed data. The test involved 24.3 millions of square kilometres
spread over four continents, which were automatically mapped using imagery col-
lected by a variety of optical satellite and airborne sensors with a spatial resolu-
tion ranging from 0.5 to 10m. The area mapped was in 2010 inhabited by an esti-
mated population of 1,3 billion according to the LandScan 2010 data set. To the best
of our knowledge, it is the largest test of automatic image classification involving
such kind of imagery. Several imaging modes were tested including panchromatic,
multispectral and pan-sharpened images. A new multi-scale framework was intro-
duced, integrating the automatic image information retrieval with global available
geo-information layers derived from other satellite sensors or GIS modelling. For
the first time we demonstrated the capacity to extract automatically information
from remotely sensed data at detailed scale and the capacity to control the global
consistency of the output both spatially and thematically in realistic scenarios. The
robustness of the adopted image features was tested globally with a high variety
of input data quality including challenging “worst-case” scenarios. New multi-scale
morphological and textural image feature compression and optimisation methods
were introduced, together with new learning and classification techniques allowing
the processing of HR, VHR image data using low-resolution reference data.

12.2 Critical points

Beside some known limitations included in the design of the experiment such as
the absence of radiometric descriptors in the discrimination function, the test high-
lighted some important weaknesses that can be linked to i) the general input data
model or ii) the quality control and validation.

The dominant input data model was “per scene” both individual or tiled, with
some important exceptions of large mosaics of aggregated aerial frames. In the cases
of tiled scenes or image mosaics, the system was creating a virtual image index that
was interpreted as a single whole input image source. This “per scene” processing
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paradigm seems natural because most of the critical parameters that are necessary
to estimate are depending on the per scene image data collection conditions. Even
if this is technically correct it may create problems related to i) the arbitrary and
very heterogeneous size (mapped surface) of the input scenes and ii) the probability
to fall in unfortunate coverage situations, where for example just a little minority
of the available image data corresponds to land with searchable information, or no
reference data is available. Those facts may create instability in the information ex-
traction process and mislead the learning phases, hence decreasing the consistency
of the global mosaic in output. Mitigation measures will include the development
of more refined “discovery” learning and classification I2Q modules, taking into
account the spatial patterns of the input scenes and their overlap.

Regarding the quality control and validation, the adoption of low-resolution ref-
erence layers allowed the development of a fully automatic information extraction
chain working for 90% of the cases, but with the risk of destroying the extremely in-
teresting information extraction, where the HR and VHR image data processing was
providing unexpected, but reliable results. Mitigation measures will include a priori
ranking of the visual inspection according to the results of the automatic matching.
In addition, we expect that a systematic collection and system integration of poten-
tially available reference layers at a more detailed scale will provide more reliable
reference information. The results of these counter measures will be included in the
new release of the GHSL, and will contribute to the assessment of the local reli-
ability of the available low-resolution reference layer. In general, a new Q metric
will be developed taking into account i) the mismatch with respect to the available
global reference layer, but also ii) the reliability of the reference layers according to
the nearest evidences and iii) the known reliability of the same input data with the
same operational parameters. This first test helped gaining a deeper insight in these
issues.

12.3 Next steps

We are aiming at a continuous improvement of the I2Q system and the GHSL layer
with respect tot the processing quality and the areal coverage. The next steps will
include i) development and integration of the above described mitigation measures
regarding input data model and validation, ii) the introduction of a new radiometric
calibration procedure able to work within the constraints of GHSL realistic scenario
constraints, iii) the introduction of new radiometric criteria in the I2Q GHSL query,
iv) the improvement of the automatic spatial matching module in the I2Q system,
which will reduce the errors and the number of non processed scenes (e.g. due to
too big displacement or outdated references), v) the introduction of a fully automatic
change detection module.

Furthermore, it is expected to extend the IQ GHSL workflow to a wider range of
input image data including i) the GMES wall-to-wall complete European coverage
of SPOT-5 data of 2012/2013, ii) enlargement of the available areas mapped with
CBERS data in Brazil and China, and iii) activation of a process-on-demand mech-
anism allowing generic users to process any suitable geo-coded image data using
the IQ GHSL tools.
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Finally, the integration of the GHSL with geo-spatial information extracted from
other satellite platforms and active/passive sensors will be studied in the frame of
exploitation of cross-platform complementarities.
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Abstract 
 
A general framework for processing of high and very-high resolution imagery for creating a Global Human Settlement 
Layer (GHSL) is presented together with a discussion on the results of the first operational test of the production 
workflow. The test involved the mapping of 24.3 millions of square kilometres of the Earth surface spread over four 
continents, corresponding to an estimated population of 1.3 billion of people in 2010. The resolution of the input image 
data ranges from 0.5 to 10 meters, collected by a heterogeneous set of platforms including satellite SPOT (2 and 5), 
CBERS-2B, RapidEye (2 and 4), WorldView (1 and 2), GeoEye-1, QuickBird-2, Ikonos-2, and airborne sensors. Several 
imaging modes were tested including panchromatic, multispectral and pan-sharpened images. A new fully automatic 
image information extraction, generalization and mosaic workflow is presented that is based on multiscale textural and 
morphological image features extraction. New image feature compression and optimization are introduced, together with 
new learning and classification techniques allowing for the processing of HR/VHR image data using low-resolution 
thematic layers as reference.  A new systematic approach for quality control and validation allowing global spatial and 
thematic consistency checking is proposed and applied. The quality of the results is discussed by sensor, by band, by 
resolution, and eco-regions. Critical points, lessons learned and next steps are highlighted 
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