21,198 research outputs found

    Automated modelling assistance by integrating heterogeneous information sources

    Full text link
    Model-Driven Engineering (MDE) uses models as its main assets in the software development process. The structure of a model is described through a metamodel. Even though modelling and meta-modelling are recurrent activities in MDE and a vast amount of MDE tools exist nowadays, they are tasks typically performed in an unassisted way. Usually, these tools cannot extract useful knowledge available in heterogeneous information sources like XML, RDF, CSV or other models and meta-models. We propose an approach to provide modelling and meta-modelling assistance. The approach gathers heterogeneous information sources in various technological spaces, and represents them uniformly in a common data model. This enables their uniform querying, by means of an extensible mechanism, which can make use of services, e.g., for synonym search and word sense analysis. The query results can then be easily incorporated into the (meta-)model being built. The approach has been realized in the Extremo tool, developed as an Eclipse plugin. Extremo has been validated in the context of two domains { production systems and process modelling { taking into account a large and complex industrial standard for classi cation and product description. Further validation results indicate that the integration of Extremo in various modelling environments can be achieved with low e ort, and that the tool is able to handle information from most existing technological spacesThis work was supported by the Ministry of Education of 1256 Spain (FPU grant FPU13/02698); the Spanish MINECO (TIN2014-52129-R);1257 the R&D programme of the Madrid Region (S2013/ICE-3006); the Austrian 1258 agency for international mobility and cooperation in education, science and re1259 search (OeAD) by funds from the Austrian Federal Ministry of Science, Research 1260 and Economy - BMWFW (ICM-2016-04969

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web

    A framework for utility data integration in the UK

    Get PDF
    In this paper we investigate various factors which prevent utility knowledge from being fully exploited and suggest that integration techniques can be applied to improve the quality of utility records. The paper suggests a framework which supports knowledge and data integration. The framework supports utility integration at two levels: the schema and data level. Schema level integration ensures that a single, integrated geospatial data set is available for utility enquiries. Data level integration improves utility data quality by reducing inconsistency, duplication and conflicts. Moreover, the framework is designed to preserve autonomy and distribution of utility data. The ultimate aim of the research is to produce an integrated representation of underground utility infrastructure in order to gain more accurate knowledge of the buried services. It is hoped that this approach will enable us to understand various problems associated with utility data, and to suggest some potential techniques for resolving them

    EXTREMO: An Eclipse plugin for modelling and meta-modelling assistance

    Full text link
    Modelling is a core activity in software development paradigms like Model-driven Engineering (MDE). Therefore, the quality of (meta-)models is crucial for the success of software projects. However, many times, modelling becomes a purely manual activity, which does not take advantage of information embedded in heterogeneous information sources, such as XML documents, ontologies, or other models and meta-models. In order to improve this situation, we present EXTREMO, an Eclipse plugin aimed at gathering the information stored in heterogeneous sources in a common data model, to facilitate the reuse of information chunks in the model being built. The tool covers the steps needed to incorporate this knowledge within an external modelling tool, supporting the uniform query of the heterogeneous sources and the evaluation of constraints. Flexibility of the main features (e.g., supported data formats, queries)is achieved by means of extensible mechanisms. To illustrate the usefulness of EXTREMO, we describe a practical case study in the financial domain and evaluate its performance and scalabilityThis work was partially supported by the Ministry of Education of Spain (FPU grant FPU13/02698), the Spanish Ministry of Science (RTI2018-095255-B-I00), and the R&D programme of the Madrid Region (S2018/TCS-4314

    The Hierarchic treatment of marine ecological information from spatial networks of benthic platforms

    Get PDF
    Measuring biodiversity simultaneously in different locations, at different temporal scales, and over wide spatial scales is of strategic importance for the improvement of our understanding of the functioning of marine ecosystems and for the conservation of their biodiversity. Monitoring networks of cabled observatories, along with other docked autonomous systems (e.g., Remotely Operated Vehicles [ROVs], Autonomous Underwater Vehicles [AUVs], and crawlers), are being conceived and established at a spatial scale capable of tracking energy fluxes across benthic and pelagic compartments, as well as across geographic ecotones. At the same time, optoacoustic imaging is sustaining an unprecedented expansion in marine ecological monitoring, enabling the acquisition of new biological and environmental data at an appropriate spatiotemporal scale. At this stage, one of the main problems for an effective application of these technologies is the processing, storage, and treatment of the acquired complex ecological information. Here, we provide a conceptual overview on the technological developments in the multiparametric generation, storage, and automated hierarchic treatment of biological and environmental information required to capture the spatiotemporal complexity of a marine ecosystem. In doing so, we present a pipeline of ecological data acquisition and processing in different steps and prone to automation. We also give an example of population biomass, community richness and biodiversity data computation (as indicators for ecosystem functionality) with an Internet Operated Vehicle (a mobile crawler). Finally, we discuss the software requirements for that automated data processing at the level of cyber-infrastructures with sensor calibration and control, data banking, and ingestion into large data portals.Peer ReviewedPostprint (published version
    • 

    corecore