408 research outputs found

    Analysis of contrast-enhanced medical images.

    Get PDF
    Early detection of human organ diseases is of great importance for the accurate diagnosis and institution of appropriate therapies. This can potentially prevent progression to end-stage disease by detecting precursors that evaluate organ functionality. In addition, it also assists the clinicians for therapy evaluation, tracking diseases progression, and surgery operations. Advances in functional and contrast-enhanced (CE) medical images enabled accurate noninvasive evaluation of organ functionality due to their ability to provide superior anatomical and functional information about the tissue-of-interest. The main objective of this dissertation is to develop a computer-aided diagnostic (CAD) system for analyzing complex data from CE magnetic resonance imaging (MRI). The developed CAD system has been tested in three case studies: (i) early detection of acute renal transplant rejection, (ii) evaluation of myocardial perfusion in patients with ischemic heart disease after heart attack; and (iii), early detection of prostate cancer. However, developing a noninvasive CAD system for the analysis of CE medical images is subject to multiple challenges, including, but are not limited to, image noise and inhomogeneity, nonlinear signal intensity changes of the images over the time course of data acquisition, appearances and shape changes (deformations) of the organ-of-interest during data acquisition, determination of the best features (indexes) that describe the perfusion of a contrast agent (CA) into the tissue. To address these challenges, this dissertation focuses on building new mathematical models and learning techniques that facilitate accurate analysis of CAs perfusion in living organs and include: (i) accurate mathematical models for the segmentation of the object-of-interest, which integrate object shape and appearance features in terms of pixel/voxel-wise image intensities and their spatial interactions; (ii) motion correction techniques that combine both global and local models, which exploit geometric features, rather than image intensities to avoid problems associated with nonlinear intensity variations of the CE images; (iii) fusion of multiple features using the genetic algorithm. The proposed techniques have been integrated into CAD systems that have been tested in, but not limited to, three clinical studies. First, a noninvasive CAD system is proposed for the early and accurate diagnosis of acute renal transplant rejection using dynamic contrast-enhanced MRI (DCE-MRI). Acute rejection–the immunological response of the human immune system to a foreign kidney–is the most sever cause of renal dysfunction among other diagnostic possibilities, including acute tubular necrosis and immune drug toxicity. In the U.S., approximately 17,736 renal transplants are performed annually, and given the limited number of donors, transplanted kidney salvage is an important medical concern. Thus far, biopsy remains the gold standard for the assessment of renal transplant dysfunction, but only as the last resort because of its invasive nature, high cost, and potential morbidity rates. The diagnostic results of the proposed CAD system, based on the analysis of 50 independent in-vivo cases were 96% with a 95% confidence interval. These results clearly demonstrate the promise of the proposed image-based diagnostic CAD system as a supplement to the current technologies, such as nuclear imaging and ultrasonography, to determine the type of kidney dysfunction. Second, a comprehensive CAD system is developed for the characterization of myocardial perfusion and clinical status in heart failure and novel myoregeneration therapy using cardiac first-pass MRI (FP-MRI). Heart failure is considered the most important cause of morbidity and mortality in cardiovascular disease, which affects approximately 6 million U.S. patients annually. Ischemic heart disease is considered the most common underlying cause of heart failure. Therefore, the detection of the heart failure in its earliest forms is essential to prevent its relentless progression to premature death. While current medical studies focus on detecting pathological tissue and assessing contractile function of the diseased heart, this dissertation address the key issue of the effects of the myoregeneration therapy on the associated blood nutrient supply. Quantitative and qualitative assessment in a cohort of 24 perfusion data sets demonstrated the ability of the proposed framework to reveal regional perfusion improvements with therapy, and transmural perfusion differences across the myocardial wall; thus, it can aid in follow-up on treatment for patients undergoing the myoregeneration therapy. Finally, an image-based CAD system for early detection of prostate cancer using DCE-MRI is introduced. Prostate cancer is the most frequently diagnosed malignancy among men and remains the second leading cause of cancer-related death in the USA with more than 238,000 new cases and a mortality rate of about 30,000 in 2013. Therefore, early diagnosis of prostate cancer can improve the effectiveness of treatment and increase the patient’s chance of survival. Currently, needle biopsy is the gold standard for the diagnosis of prostate cancer. However, it is an invasive procedure with high costs and potential morbidity rates. Additionally, it has a higher possibility of producing false positive diagnosis due to relatively small needle biopsy samples. Application of the proposed CAD yield promising results in a cohort of 30 patients that would, in the near future, represent a supplement of the current technologies to determine prostate cancer type. The developed techniques have been compared to the state-of-the-art methods and demonstrated higher accuracy as shown in this dissertation. The proposed models (higher-order spatial interaction models, shape models, motion correction models, and perfusion analysis models) can be used in many of today’s CAD applications for early detection of a variety of diseases and medical conditions, and are expected to notably amplify the accuracy of CAD decisions based on the automated analysis of CE images

    Arterial input function for quantitative dynamic contrast-enhanced MRI to diagnose prostate cancer

    Get PDF
    PURPOSEThis study aims to analyze the ability of quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to distinguish between prostate cancer (PCa) and benign lesions in transition zone (TZ) and peripheral zone (PZ) using different methods for arterial input function (AIF) determination. Study endpoints are identification of a standard AIF method and optimal quantitative perfusion parameters for PCa detection.METHODSDCE image data of 50 consecutive patients with PCa who underwent multiparametric MRI were analyzed retrospectively with three different methods of AIF acquisition. First, a region of interest was manually defined in an artery (AIFm); second, an automated algorithm was used (AIFa); and third, a population-based AIF (AIFp) was applied. Values of quantitative parameters after Tofts (Ktrans, ve, and kep) in PCa, PZ, and TZ in the three different AIFs were analyzed.RESULTSKtrans and kep were significantly higher in PCa than in benign tissue independent from the AIF method. Whereas in PZ, Ktrans and kep could differentiate PCa (P < .001), in TZ only kep using AIFpdemonstrated a significant difference (P = .039). The correlations of the perfusion parameters that resulted from AIFm and AIFa were higher than those that resulted from AIFp, and the absolute values of Ktrans, kep, and ve were significantly lower when using AIFp. The values of quantitative perfusion parameters for PCa were similar regardless of whether PCa was located in PZ or TZ.CONCLUSIONKtrans and kep were able to differentiate PCa from benign PZ independent of the AIF method. AIFaseems to be the most feasible method of AIF determination in clinical routine. For TZ, none of the quantitative perfusion parameters provided satisfying results

    Maximum Entropy Technique and Regularization Functional for Determining the Pharmacokinetic Parameters in DCE-MRI

    Get PDF
    This paper aims to solve the arterial input function (AIF) determination in dynamic contrast-enhanced MRI (DCE-MRI), an important linear ill-posed inverse problem, using the maximum entropy technique (MET) and regularization functionals. In addition, estimating the pharmacokinetic parameters from a DCE-MR image investigations is an urgent need to obtain the precise information about the AIF-the concentration of the contrast agent on the left ventricular blood pool measured over time. For this reason, the main idea is to show how to find a unique solution of linear system of equations generally in the form of y = Ax + b, named an ill-conditioned linear system of equations after discretization of the integral equations, which appear in different tomographic image restoration and reconstruction issues. Here, a new algorithm is described to estimate an appropriate probability distribution function for AIF according to the MET and regularization functionals for the contrast agent concentration when applying Bayesian estimation approach to estimate two different pharmacokinetic parameters. Moreover, by using the proposed approach when analyzing simulated and real datasets of the breast tumors according to pharmacokinetic factors, it indicates that using Bayesian inference-that infer the uncertainties of the computed solutions, and specific knowledge of the noise and errors-combined with the regularization functional of the maximum entropy problem, improved the convergence behavior and led to more consistent morphological and functional statistics and results. Finally, in comparison to the proposed exponential distribution based on MET and Newton's method, or Weibull distribution via the MET and teaching-learning-based optimization (MET/TLBO) in the previous studies, the family of Gamma and Erlang distributions estimated by the new algorithm are more appropriate and robust AIFs

    Quantitative PET-CT Perfusion Imaging of Prostate Cancer

    Get PDF
    Functional imaging of 18F-Fluorocholine PET holds promise in the detection of dominant prostatic lesions. Quantitative parameters from PET-CT Perfusion may be capable of measuring choline kinase activity, which could assist in identification of the dominant prostatic lesion for more accurate targeting of biopsies and radiation dose escalation. The objectives of this thesis are: 1) investigate the feasibility of using venous TACs in quantitative graphical analysis, and 2) develop and test a quantitative PET-CT Perfusion imaging technique that shows promise for identifying dominant prostatic lesions. Chapter 2 describes the effect of venous dispersion on distribution volume measurements with the Logan Plot. The dispersion of venous PET curves was simulated based on the arterio-venous transit time spectrum measured in a perfusion CT study of the human forearm. The analysis showed good agreement between distribution volume measurements produced by the arterial and venous TACs. Chapter 3 details the mathematical implementation of a linearized solution of the 3-Compartment kinetic model for hybrid PET-CT Perfusion imaging. A noise simulation determined the effect of incorporating CT perfusion parameters into the PET model on the accuracy and variability of measurements of the choline kinase activity. Results indicated that inclusion of CT perfusion parameters known a priori can significantly improve the accuracy and variability of imaging parameters measured with PET. Chapter 4 presents the implementation of PET-CT Perfusion imaging in a xenograft mouse model of human prostate cancer. Image-derived arterial TACs from the left ventricle were corrected for partial volume and spillover effects and validated by comparing to blood sampled curves. The PET-CT Perfusion imaging technique produced parametric maps of the choline kinase activity, k3. The results showed that the partial volume and spillover corrected arterial TACs agreed well with the blood sampled curves, and that k3max was significantly correlated with tumor volume, while SUV was not. In summary, this thesis establishes a solid foundation for future clinical research into 18F-fluorocholine PET imaging for the identification of dominant prostatic lesions. Quantitative PET-CT Perfusion imaging shows promise for assisting targeting of biopsy and radiation dose escalation of prostate cancer

    Measurement Variability in Treatment Response Determination for Non-Small Cell Lung Cancer: Improvements using Radiomics

    Get PDF
    Multimodality imaging measurements of treatment response are critical for clinical practice, oncology trials, and the evaluation of new treatment modalities. The current standard for determining treatment response in non-small cell lung cancer (NSCLC) is based on tumor size using the RECIST criteria. Molecular targeted agents and immunotherapies often cause morphological change without reduction of tumor size. Therefore, it is difficult to evaluate therapeutic response by conventional methods. Radiomics is the study of cancer imaging features that are extracted using machine learning and other semantic features. This method can provide comprehensive information on tumor phenotypes and can be used to assess therapeutic response in this new age of immunotherapy. Delta radiomics, which evaluates the longitudinal changes in radiomics features, shows potential in gauging treatment response in NSCLC. It is well known that quantitative measurement methods may be subject to substantial variability due to differences in technical factors and require standardization. In this review, we describe measurement variability in the evaluation of NSCLC and the emerging role of radiomics. © 2019 Wolters Kluwer Health, Inc. All rights reserved

    A non-invasive diagnostic system for early assessment of acute renal transplant rejection.

    Get PDF
    Early diagnosis of acute renal transplant rejection (ARTR) is of immense importance for appropriate therapeutic treatment administration. Although the current diagnostic technique is based on renal biopsy, it is not preferred due to its invasiveness, recovery time (1-2 weeks), and potential for complications, e.g., bleeding and/or infection. In this thesis, a computer-aided diagnostic (CAD) system for early detection of ARTR from 4D (3D + b-value) diffusion-weighted (DW) MRI data is developed. The CAD process starts from a 3D B-spline-based data alignment (to handle local deviations due to breathing and heart beat) and kidney tissue segmentation with an evolving geometric (level-set-based) deformable model. The latter is guided by a voxel-wise stochastic speed function, which follows from a joint kidney-background Markov-Gibbs random field model accounting for an adaptive kidney shape prior and for on-going visual kidney-background appearances. A cumulative empirical distribution of apparent diffusion coefficient (ADC) at different b-values of the segmented DW-MRI is considered a discriminatory transplant status feature. Finally, a classifier based on deep learning of a non-negative constrained stacked auto-encoder is employed to distinguish between rejected and non-rejected renal transplants. In the “leave-one-subject-out” experiments on 53 subjects, 98% of the subjects were correctly classified (namely, 36 out of 37 rejected transplants and 16 out of 16 nonrejected ones). Additionally, a four-fold cross-validation experiment was performed, and an average accuracy of 96% was obtained. These experimental results hold promise of the proposed CAD system as a reliable non-invasive diagnostic tool

    Quantitative Magnetic Resonance Imaging of Tissue Microvasculature and Microstructure in Selected Clinical Applications

    Get PDF
    This thesis is based on four papers and aims to establish perfusion and diffusion measurements with magnetic resonance imaging (MRI) in selected clinical applications. While structural imaging provides invaluable geometric and anatomical information, new disease relevant information can be obtained from measures of physiological processes inferred from advanced modelling. This study is motivated by clinical questions pertaining to diagnosis and treatment effects in particular patient groups where inflammatory processes are involved in the disease. Paper 1 investigates acquisition parameters in dynamic contrast enhanced (DCE)-MRI of the temporomandibular joint (TMJ) with possible involvement of juvenile idiopathic arthritis. High level elastic motion correction should be applied to DCE data from the TMJ, and the DCE data should be acquired with a sample rate of at least 4 s. Paper 2 investigates choices of arterial input functions (AIFs) in dynamic susceptibility contrast (DSC)-MRI in brain metastases. AIF shapes differed across patients. Relative cerebral blood volume estimates differentiated better between perfusion in white matter and grey matter when scan-specific AIFs were used than when patient-specific AIFs and population-based AIFs were used. Paper 3 investigates DSC-MRI perfusion parameters in relation to outcome after stereotactic radiosurgery (SRS) in brain metastases. Low perfusion prior to SRS may be related to unfavourable outcome. Paper 4 applies free water (FW) corrected diffusion MRI to characterise glioma. Fractional anisotropy maps of the tumour region were significantly impacted by FW correction. The estimated FW maps may also contribute to a better description of the tumour. Although there are challenges related to post-processing of MRI data, it was shown that the advanced MRI methods applied can add to a more accurate description of the TMJ and of brain lesions.Doktorgradsavhandlin

    Understanding quantitative DCE-MRI of the breast : towards meaningful clinical application

    Get PDF
    In most industrialized countries breast cancer will affect one out of eight women during her lifetime. In the USA, after continuously increasing for more than two decades, incidence rates are slowly decreasing since 2001. Since 1990, death rates from breast cancer have steadily decreased in women, which is attributed to both earlier detection and improved treatment. Still, it is second only to lung cancer as a cause of cancer death in women. In this work we set out to improve early detection of breast cancer via quantitative analysis of magnetic resonance images (MRI). Screening and diagnosis of breast cancer are generally performed using X-ray mammography, possibly in conjunction with ultrasonography. However, MRI is becoming an important modality for screening of women at high-risk due to for instance hereditary gene mutations, as a problem-solving tool in case of indecisive mammographic and / or ultrasonic imaging, and for anti-cancer therapy assessment. In this work, we focused on MR imaging of the breast. More specifically, the dynamic contrast-enhanced (DCE) part of the protocol was highlighted, as well as radiological assessment of DCE-MRI data. The T_1-weighted (T_1: longitudinal relaxation time, a tissue property) signal-versus-time curve that can be extracted from the DCE-MRI series that is acquired at the time of and after injection of a T_1-shortening (shorter T_1 results in higher signal) contrast agent, is usually visually assessed by the radiologist. For example, a fast initial rise to the peak (1-2 minutes post injection) followed by loss of signal within a time frame of about 5-6 minutes is a sign for malignancy, whereas a curve showing persistent (slow) uptake within the same time frame is a sign for benignity. This difference in contrast agent uptake pattern is related to physiological changes in tumorous tissue that for instance result in a stronger uptake of the contrast agent. However, this descriptive way of curve type classification is based on clinical statistics, not on knowledge about tumor physiology. We investigated pharmacokinetic modeling as a quantitative image analysis tool. Pharmacokinetics describes what happens to a substance (e.g. drug or contrast agent) after it has been administered to a living organism. This includes the mechanisms of absorption and distribution. The terms in which these mechanisms are described are physiological and can therefore provide parameters describing the functioning of the tissue. This physiological aspect makes it an attractive approach to investigate (aberrant) tissue functioning. In addition, this type of analysis excludes confounding factors due to inter- and intra-patient differences in the systemic blood circulation, as well as differences in the injection protocol. In this work, we discussed the physiological basis and details of different types of pharmacokinetic models, with the focus on compartmental models. Practical implications such as obtaining an arterial input function and model parameter estimation were taken into account as well. A simulation study of the data-imposed limitations – in terms of temporal resolution and noise properties – on the complexity of pharmacokinetic models led to the insight that only one of the tested models, the basic Tofts model, is applicable to DCE-MRI data of the breast. For the basic Tofts model we further investigated the aspect of temporal resolution, because a typical diagnostic DCE-MRI scan of the breast is acquired at a rate of about 1 image volume every minute; whereas pharmacokinetic modeling usually requires a sampling time of less than 10 s. For this experiment we developed a new downsampling method using high-temporal-resolution raw k-space data to simulate what uptake curves would have looked like if they were acquired at lower temporal resolutions. We made use of preclinical animal data. With this data we demonstrated that the limit of 10 s can be stretched to about 1 min if the arterial input function (AIF, the input to the pharmacokinetic model) is inversely derived from a healthy reference tissue, instead of measured in an artery or taken from the literature. An important precondition for the application of pharmacokinetic modeling is knowledge of the relationship between the acquired DCE-MRI signal and the actual concentration of the contrast agent in the tissue. This relationship is not trivial because with MRI we measure the indirect effect of the contrast agent on water protons. To establish this relationship via calculation of T_1 (t), we investigated both a theoretical and an empirical approach, making use of an in-house (University of Chicago) developed reference object that is scanned concurrently with the patient. The use of the calibration object can shorten the scan duration (an empirical approach requires less additional scans than an approach using a model of the acquisition technique), and can demonstrate if theoretical approaches are valid. Moreover we produced concentration images and estimated tissue proton density, also making use of the calibration object. Finally, via pharmacokinetic modeling and other MRI-derived measures we partly revealed the actions of a novel therapeutic in a preclinical study. In particular, the anti-tumor activity of a single dose of liposomal prednisolone phosphate was investigated, which is an anti-inflammatory drug that has demonstrated tumor growth inhibition. The work presented in this thesis contributes to a meaningful clinical application and interpretation of quantitative DCE-MRI of the breast

    Emerging Techniques in Breast MRI

    Get PDF
    As indicated throughout this chapter, there is a constant effort to move to more sensitive, specific, and quantitative methods for characterizing breast tissue via magnetic resonance imaging (MRI). In the present chapter, we focus on six emerging techniques that seek to quantitatively interrogate the physiological and biochemical properties of the breast. At the physiological scale, we present an overview of ultrafast dynamic contrast-enhanced MRI and magnetic resonance elastography which provide remarkable insights into the vascular and mechanical properties of tissue, respectively. Moving to the biochemical scale, magnetization transfer, chemical exchange saturation transfer, and spectroscopy (both “conventional” and hyperpolarized) methods all provide unique, noninvasive, insights into tumor metabolism. Given the breadth and depth of information that can be obtained in a single MRI session, methods of data synthesis and interpretation must also be developed. Thus, we conclude the chapter with an introduction to two very different, though complementary, methods of data analysis: (1) radiomics and habitat imaging, and (2) mechanism-based mathematical modeling

    Advanced perfusion quantification methods for dynamic PET and MRI data modelling

    Get PDF
    The functionality of tissues is guaranteed by the capillaries, which supply the microvascular network providing a considerable surface area for exchanges between blood and tissues. Microcirculation is affected by any pathological condition and any change in the blood supply can be used as a biomarker for the diagnosis of lesions and the optimization of the treatment. Nowadays, a number of techniques for the study of perfusion in vivo and in vitro are available. Among the several imaging modalities developed for the study of microcirculation, the analysis of the tissue kinetics of intravenously injected contrast agents or tracers is the most widely used technique. Tissue kinetics can be studied using different modalities: the positive enhancement of the signal in the computed tomography and in the ultrasound dynamic contrast enhancement imaging; T1-weighted MRI or the negative enhancement of T2* weighted MRI signal for the dynamic susceptibility contrast imaging or, finally, the uptake of radiolabelled tracers in dynamic PET imaging. Here we will focus on the perfusion quantification of dynamic PET and MRI data. The kinetics of the contrast agent (or the tracer) can be analysed visually, to define qualitative criteria but, traditionally, quantitative physiological parameters are extracted with the implementation of mathematical models. Serial measurements of the concentration of the tracer (or of the contrast agent) in the tissue of interest, together with the knowledge of an arterial input function, are necessary for the calculation of blood flow or perfusion rates from the wash-in and/or wash-out kinetic rate constants. The results depend on the acquisition conditions (type of imaging device, imaging mode, frequency and total duration of the acquisition), the type of contrast agent or tracer used, the data pre-processing (motion correction, attenuation correction, correction of the signal into concentration) and the data analysis method. As for the MRI, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a non-invasive imaging technique that can be used to measure properties of tissue microvasculature. It is sensitive to differences in blood volume and vascular permeability that can be associated with tumour angiogenesis. DCE-MRI has been investigated for a range of clinical oncologic applications (breast, prostate, cervix, liver, lung, and rectum) including cancer detection, diagnosis, staging, and assessment of treatment response. Tumour microvascular measurements by DCE-MRI have been found to correlate with prognostic factors (such as tumour grade, microvessel density, and vascular endothelial growth factor expression) and with recurrence and survival outcomes. Furthermore, DCE-MRI changes measured during treatment have been shown to correlate with outcome, suggesting a role as a predictive marker. The accuracy of DCE-MRI relies on the ability to model the pharmacokinetics of an injected contrast agent using the signal intensity changes on sequential magnetic resonance images. DCE-MRI data are usually quantified with the application of the pharmacokinetic two-compartment Tofts model (also known as the standard model), which represents the system with the plasma and tissue (extravascular extracellular space) compartments and with the contrast reagent exchange rates between them. This model assumes a negligible contribution from the vascular space and considers the system in, what-is-known as, the fast exchange limit, assuming infinitely fast transcytolemmal water exchange kinetics. In general, the number, as well as any assumption about the compartments, depends on the properties of the contrast agent used (mainly gadolinium) together with the tissue physiology or pathology studied. For this reason, the choice of the model is crucial in the analysis of DCE-MRI data. The value of PET in clinical oncology has been demonstrated with studies in a variety of cancers including colorectal carcinomas, lung tumours, head and neck tumours, primary and metastatic brain tumours, breast carcinoma, lymphoma, melanoma, bone cancers, and other soft-tissue cancers. PET studies of tumours can be performed for several reasons including the quantification of tumour perfusion, the evaluation of tumour metabolism, the tracing of radiolabelled cytostatic agents. In particular, the kinetic analysis of PET imaging has showed, in the past few years, an increasing value in tumour diagnosis, as well as in tumour therapy, through providing additional indicative parameters. Many authors have showed the benefit of kinetic analysis of anticancer drugs after labelling with radionuclide in measuring the specific therapeutic effect bringing to light the feasibility of applying the kinetic analysis to the dynamic acquisition. Quantification methods can involve visual analysis together with compartmental modelling and can be applied to a wide range of different tracers. The increased glycolysis in the most malignancies makes 18F-FDG-PET the most common diagnostic method used in tumour imaging. But, PET metabolic alteration in the target tissue can depend by many other factors. For example, most types of cancer are characterized by increased choline transport and by the overexpression of choline kinase in highly proliferating cells in response to enhanced demand of phosphatidylcholine (prostate, breast, lung, ovarian and colon cancers). This effect can be diagnosed with choline-based tracers as the 18Ffluoromethylcholine (18F-FCH), or the even more stable 18F-D4-Choline. Cellular proliferation is also imaged with 18F-fluorothymidine (FLT), which is trapped within the cytosol after being mono phosphorylated by thymidine kinase-1 (TK1), a principal enzyme in the salvage pathway of DNA synthesis. 18F-FLT has been found to be useful for noninvasive assessment of the proliferation rate of several types of cancer and showed high reproducibility and accuracy in breast and lung cancer tumours. The aim of this thesis is the perfusion quantification of dynamic PET and MRI data of patients with lung, brain, liver, prostate and breast lesions with the application of advanced models. This study covers a wide range of imaging methods and applications, presenting a novel combination of MRI-based perfusion measures with PET kinetic modelling parameters in oncology. It assesses the applicability and stability of perfusion quantification methods, which are not currently used in the routine clinical practice. The main achievements of this work include: 1) the assessment of the stability of perfusion quantification of D4-Choline and 18F-FLT dynamic PET data in lung and liver lesions, respectively (first applications in the literature); 2) the development of a model selection in the analysis of DCE-MRI data of primary brain tumours (first application of the extended shutter speed model); 3) the multiparametric analysis of PET and MRI derived perfusion measurements of primary brain tumour and breast cancer together with the integration of immuohistochemical markers in the prediction of breast cancer subtype (analysis of data acquired on the hybrid PET/MRI scanner). The thesis is structured as follows: - Chapter 1 is an introductive chapter on cancer biology. Basic concepts, including the causes of cancer, cancer hallmarks, available cancer treatments, are described in this first chapter. Furthermore, there are basic concepts of brain, breast, prostate and lung cancers (which are the lesions that have been analysed in this work). - Chapter 2 is about Positron Emission Tomography. After a brief introduction on the basics of PET imaging, together with data acquisition and reconstruction methods, the chapter focuses on PET in the clinical settings. In particular, it shows the quantification techniques of static and dynamic PET data and my results of the application of graphical methods, spectral analysis and compartmental models on dynamic 18F-FDG, 18F-FLT and 18F-D4- Choline PET data of patients with breast, lung cancer and hepatocellular carcinoma. - Chapter 3 is about Magnetic Resonance Imaging. After a brief introduction on the basics of MRI, the chapter focuses on the quantification of perfusion weighted MRI data. In particular, it shows the pharmacokinetic models for the quantification of dynamic contrast enhanced MRI data and my results of the application of the Tofts, the extended Tofts, the shutter speed and the extended shutter speed models on a dataset of patients with brain glioma. - Chapter 4 introduces the multiparametric imaging techniques, in particular the combined PET/CT and the hybrid PET/MRI systems. The last part of the chapter shows the applications of perfusion quantification techniques on a multiparametric study of breast tumour patients, who simultaneously underwent DCE-MRI and 18F-FDG PET on a hybrid PET/MRI scanner. Then the results of a predictive study on the same dataset of breast tumour patients integrated with immunohistochemical markers. Furthermore, the results of a multiparametric study on DCE-MRI and 18F-FCM brain data acquired both on a PET/CT scanner and on an MR scanner, separately. Finally, it will show the application of kinetic analysis in a radiomic study of patients with prostate cancer
    • 

    corecore