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Abstract
This paper aims to solve the arterial input function (AIF) determination in dynamic contrast-enhanced MRI (DCE-MRI), an 
important linear ill-posed inverse problem, using the maximum entropy technique (MET) and regularization functionals. In 
addition, estimating the pharmacokinetic parameters from a DCE-MR image investigations is an urgent need to obtain the 
precise information about the AIF–the concentration of the contrast agent on the left ventricular blood pool measured over 
time. For this reason, the main idea is to show how to find a unique solution of linear system of equations generally in the 
form of y = Ax + b, named an ill-conditioned linear system of equations after discretization of the integral equations, which 
appear in different tomographic image restoration and reconstruction issues. Here, a new algorithm is described to estimate 
an appropriate probability distribution function for AIF according to the MET and regularization functionals for the contrast 
agent concentration when applying Bayesian estimation approach to estimate two different pharmacokinetic parameters. 
Moreover, by using the proposed approach when analyzing simulated and real datasets of the breast tumors according to 
pharmacokinetic factors, it indicates that using Bayesian inference—that infer the uncertainties of the computed solutions, and 
specific knowledge of the noise and errors—combined with the regularization functional of the maximum entropy problem, 
improved the convergence behavior and led to more consistent morphological and functional statistics and results. Finally, 
in comparison to the proposed exponential distribution based on MET and Newton’s method, or Weibull distribution via 
the MET and teaching–learning-based optimization (MET/TLBO) in the previous studies, the family of Gamma and Erlang 
distributions estimated by the new algorithm are more appropriate and robust AIFs.

Keywords  Maximum entropy technique · Arterial input function · Regularization Functional · Dynamic contrast-enhanced 
MRI · Gamma distribution · Pharmacokinetic parameters

Introduction

As a fast and noninvasive approach, dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) is widely 
used to analyze to quantitatively analyze perfusion in soft 

tissues in various clinical applications. These include the 
detection, characterization, and monitoring of different dis-
eases for therapeutic purposes [1–6]. Typically, pharmacoki-
netic models are used in the quantitative analysis of DCE-
MR images. For the DCE-MRI scan, an extracellular contrast 
agent with a low molecular weight such as gadolinium dieth-
ylenetriaminepentaacetic acid, Gd-DTPA, is injected. The 
in vivo concentration of the contrast agent (CA) in tissue 
over time is measured using T1-weighted images. Several 
pharmacokinetic models have been developed for the char-
acterization of the signal intensity change over time. These 
models allow to quantify local physiologic features of the 
tissue, known as pharmacokinetic parameters [7].

Among pharmacokinetic models, the two-compartment 
model is the most popular [7]. In this model, the change in 
the contrast agent concentration is attributed to its trans-
fer between two compartments: the blood plasma and the 
extravascular extracellular space (EES) of the tissue. The 
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pharmacokinetic model can be determined as solution to 
an ordinary-differential equation (ODE) describing the 
exchange between the compartments [8–15].

An important term in the pharmacokinetic model is the 
arterial input function (AIF), that is CA concentration in the 
left ventricular blood pool over time. Despite the fact that 
the AIF itself has no clinical relevance, its precise calcula-
tion is of particular interest for proper estimation of pharma-
cokinetic parameters [16, 17]. Given the strong dependence 
of the determined rate constants on the AIF [18–22], their 
quantification in an absolute and reliable manner requires a 
precise measurement.

However, in many cases the direct measurement of the 
AIF from DCE-MRI images is not possible, as no large ves-
sel is in the field of view, for example in breast scans. As a 
replacement, it has been proposed to use a simplified method 
such as a population averaged AIF. These AIFs include bi-
exponential functions with parameters obtained by [23, 24] 
or a mix of the two Gaussian with an exponential [8–15]. 
The literature is split over the efficiency of population aver-
aged AIF, with some authors reporting its ability to ade-
quately estimating pharmacokinetic parameters [25, 26], 
while others raise concerns [27, 28].

In recent years, a couple of models have been developed 
to estimate the AIF from DCE-MRI scans without larger 
vessels in the field of view. The aim is to estimate the AIF 
together with the corresponding pharmacokinetic parameters 
from the CA signal over time [29–32]. For partial and fully 
automated AIF estimation, several different techniques have 
been proposed. Fan et al. [33] attempted to extract the AIF 
with a cluster method, using a manually marked region of 
interest (ROI). Reishofer et al. [34] proposed AIF extrac-
tion using classification based on criteria involving inherent 
arterial input features including an early bolus arrival and 
fast passage, as well as a high-contrast agent concentration.

In this paper, we propose a novel method for estimating 
the probability density function (PDF) of the AIF directly 
from measured concentration-time curves in enhanced tis-
sues. Statistically speaking, the determination of the AIF 
from DCE-MRI scans is seen as the determination of the 
PDF of sample data. From a conceptual perspective, the 
choice of the type of distribution is an open problem. When 
available information is limited, e.g., sample size is small 
and/or has lower–order moments, an approach based on the 
maximum entropy (ME) principle can be the solution. Using 
all available data the maximum entropy distribution is the 
estimation with the smallest bias. Nevertheless, applying 
ME has a number of theoretical and practical restrictions.

Many nonparametric and parametric techniques have 
been proposed to estimate the probability density function of 
a random variable from observations. The maximum entropy 
technique (MET) is a widely used method to estimate and 
determine the probability density, with known high accuracy 

and efficiency. In MET an optimization problem is solved to 
obtain the unknown density. Jaynes [35] proposed the ME 
principle as a statistical inference method and stated that 
by employing this principle, a probability density function 
is selected that corresponds to the available knowledge and 
provides no unwarranted information. In this regard, among 
probability density functions meeting some constraints, the 
one with smaller entropy has more information, hence less 
uncertainty [35–38]. Over the past decade, there has been 
an extensive application of entropy maximization or similar 
approaches, including the determination of macromolecu-
lar structures and interactions [39–50] and the inference of 
signaling [51–53] and regulatory networks [54, 55] as well 
as the coding organization in neural populations [56–65]  
according to the analysis of DNA sequences (e.g., the identi-
fication of specific binding sites) [65–71]. In addition, MET 
is an often used tool for image reconstruction. This includes 
applications in radio astronomical interferometry, dealing, 
on a daily basis, with images with large dynamic ranges and 
up to one million pixels [72–75].

In a previous work, we proposed using a combination of 
MET and Newton’s method for AIF estimation and maxi-
mum a posterior (MAP) for estimation of the pharmacoki-
netic parameters [76]. In another study, we proposed two 
enhanced algorithms to estimate the AIF as a combination 
of Bayesian inference and optimization techniques. The first 
algorithm combines MET, teaching–learning-based optimi-
zation (TLBO) to assess the performance of observer in the 
classification tasks with existing data, and Bayesian methods 
to estimate the pharmacokinetic parameters [77]. Similar to 
other algorithms inspired by nature, TLBO is also a popula-
tion-based approach and employs a population of solutions 
to obtain a global result [31, 78]. The second algorithm is the 
combination of MET, a concave optimization method, and 
the general regularization approach. In the present work, we 
propose to regularize the ME problem and the ill-conditioned 
linear system of equations in the pharmacokinetic model. In 
general, regularization is an appropriate method to find stable 
solution to ill-posed inverse problems [79].

The first proposed algorithm uses the Weibull distribution 
as most robust model for the AIF. In the proposed improved 
algorithm, via regularization the family of Gamma distribu-
tions is the best solution of the ME problem . To estimate 
physiological parameters, extensive investigation was per-
formed on empirical data, such that a better understanding of 
the performance of the proposed method could be obtained. 
The previously analyzed data were provided by Paul Strick-
land Scanner Center, Mount Vernon Hospital, Northwood, 
UK [7]. The data were acquired according to the recom-
mendations of [80]. Informed consent was obtained from 
all patients.

The following sections are organized as follows. “Meth-
odology” gives a brief description of the methodology. The 
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pharmacokinetic model for the analysis of DCE-MRI data 
is described. Then the MET for the ill-posed inverse prob-
lem is developed, following by the regularization of the ME 
problem. The TLBO algorithm is presented, followed by 
the Bayesian approach. In addition, some characteristics 
and flowchart of the proposed algorithm are also provided. 
In “Numerical Experiment”, the developed method is used 
to analyze the in vivo DCE-MRI data. “Discussion and Con-
clusions” provides concluding remarks.

Methodology

We propose a novel algorithm combining the MET with 
regularization functionals, enabling us to estimate the PDF 
of the AIF along with the pharmacokinetic parameters in a 
similar method in a Bayesian framework. Compared to pre-
vious methods, the proposed algorithm does not consist of 
several phases, decreasing the computation time of the esti-
mation. The proposed algorithm is a robust combination of 
MET, regularization, and the Bayesian estimation approach.

Basic Model

Pharmacokinetic Model

Here, the popular pharmacokinetic model [81] is consid-
ered. The assumption of this model is that the CA resides 
in two compartments of the tissue, the vascular space and 
the extracellular extravascular space (EES), with exchange 
of CA between these two compartments. The exchange of 
CA in the tissue of interest ( CT (t) ) can be described via an 
ODE [8–16],

where Cp(t) gives the concentration of CA in the vascular 
blood pool, that is the AIF, Ka and Kb are constants quantify-
ing the CA exchange rate between plasma and extravascular-
extracellular space (EES), respectively. With initial condi-
tion Cp(0) = 0 , the integration form of Eq. (1) is as follows,

Equation (2) is a commonly used in many applications [24]. 
Murase [82] suggested another solution of Eq. (1) using 
discretization:

In matrix form, Eq. (3) is

(1)
dCT (t)

dt
= KaCp(t) − KbCT (t),

(2)CT (t) = Ka ∫
t

0

Cp(s)e
−Kb(t−s)ds.

(3)CT (t) = Ka ∫
t

0

Cp(s)ds − Kb ∫
t

0

CT (s)ds,

in which the matrix A⃗×2 = {A(1),… ,A(n)}� with I = 1, 2,

..., n ∶ includes n rows which are defined as A(I) = (∫ t
I

0

Cp(s)ds,− ∫ tI
0

CT (s)ds), and K⃗ =
(
Ka,Kb

)� and C⃗
T
=

(
C
T
(t
1

),

C
T
(t
2

),…,C
T
(t
n
)
)�
. The following linear system of equations 

arising in various tomographic image restoration and recon-
struction problems is considered:

where bi∼N(0, �2) and Ytis(ti) are, respectively, the measured 
concentration in tissue at time ti and the measured uncer-
tainty (noise), considered to be additive, white, centered, 
Gaussian and independent of K [83].

The ill-posed inverse problem (IPP) Eq. (5) can be sim-
plified to estimate K subject to A and Y. When the forward 
solution is determined, the important step is to estimate K̂ 
such that K optimizes the related measures, like the least 
square criterion, J(k) = ‖Y − AK‖2 . However, the model 
might fit to the data, but due to the ill-posedness of the lin-
ear problems, it may not have desired properties [79]. To 
this end, one can consider some initial prior information 
regarding errors and the unknowns K. The problem can then 
be handled using general regularization theory and by appli-
cation of the statistical inference. Two different strategies 
can be used for this, either information theory and entropy, 
or Bayesian inference [79].

Regularization Methods

Regularization is an appropriate method to find a unique 
and stable solution to the IIP in Eq. (5), [79]. There are two 
issues at hand. The first one is that Y = AK has more than 
one solution and there is a need to know more conditions, for 
example △(K, q) to choose that unique solution by

where q is a prior solution and △ a distance measure. 
The Lagrangian approach [79, 84] has been described 
as the best method to solve this. With the Lagrangian 
L(K, q) = △(K, q) + �t(Y − AK) on can estimate (𝜆̂, K̂) via

or another solution by

△(Y ,AK) is a measure of distance between Y and AK. 
In here, the △(Y ,AK) = ‖Y − AK‖2 is least square (LS) 
criterion. Obviously, if K̂  satisfies AtAK̂ = AtY  (the nor-
mal equation), it will be a solution to the LS approach. In 

(4)C⃗ = A⃗ × K⃗,

(5)YT (ti) = A(i)K⃗ + bi

(6)K̂ = argminK∶AK=Y △ (K, q),

(7)
𝜆̂ = argmin𝜆{D(𝜆) = infKL(K, 𝜆)},

K̂ = argminK{L(K, 𝜆̂)}.

(8)K̂ = argminK{△(Y ,AK)}
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addition, when AtA is invertible and well-conditioned, then 
K̂ = (AtA)−1AtY is again the unique generalized inverse solu-
tion [79].

Bayesian Estimation Approach

An alternative approach is to use Bayesian inference, which 
allows to find the exact parameter estimations, not only 
approximations. To this end, the parameters are considered 
as random variables, with prior distribution using prior 
information, e.g., from earlier data [85, 86]. Here, we need 
prior distributions for errors and unknown parameters.

The following equation (Eq. (5)) proposed by [85–88] 
is considered to estimate the pharmacokinetic parameters. 
The problem is to estimate the positive-vector K (the pixel 
intensities in an object) under a measured vector Y (e.g., a 
degraded image or the projections of an object) and a linear 
transformation A that links both vectors via

Subject to p(K), p(Y|K) and p(Y), the posterior probability 
distribution of K condition to Y, p(K|Y), using Bayes: rule 
will be [89]:

The Bayesian estimator K̂ can be determined by maximizing 
p(K|Y), such that in Eq. (10), p(Y) has no dependence on K, 
p(Y|K) is related to noise, and p(K) is a prior distribution 
of K.

The PDFs p(K) and p(Y|K) can be estimated using MET 
as proposed by [85, 86, 89], with the general form of the 
estimated model belonging to the exponential family. In the 
MET, initial information to define the constraints of p(K) 
is required to choose the model with the maximum entropy 
(see “Maximum Entropy Technique- Entropy as a Regulari-
zation Functional”). The posterior distribution is computed 
as follows

Maximum Entropy Technique—Entropy 
as a Regularization Functional

We propose to solve the ME problem using the regulariza-
tion method. Generally, there is a unique optimizer to solve 
either J(x) = ‖Y − Ax‖2 + �P(x) or

(9)Y = AK + b.

(10)p(K|Y) = p(Y|K) ⋅ p(K)
p(Y)

.

p(Y|K) ≈ exp[−Q(K)],

Q(K) = [Y − AK]t[Y − AK]∕�2.

(11)J(x) = △1(Y − Ax) + �△2 (x, q)

where △1 and △2 are two distance measures, � is a regu-
larization parameter and q is a priori solution. The important 
step is to choose △1 and △2 , and determining � and q. The 
main part of MET is maximizing Shannon’s entropy [38]:

subject to the following constraints, which are the expecta-
tions of known functions computed numerically based on 
the data via Taylor’s theorem [90].

in which �0(x) = 1 , and �i(x) , k = 0,… ,N are N + 1 known 
functions. The general forms of these functions are xn,ln(x) , 
x ln(x) , trigonometric or geometric functions [37]. Entropy 
can also be used as a regularization functional in Eq. (11). 
An essential challenge in this method is to specify the regu-
larization parameter � . Here,

where DK−L is Kullback–Leibler divergence DK−L and g is an 
initial solution of p. J(p) is convex on Rn

+
 and if the solution 

exists, it will be unique. Using the Lagrangian technique 
gives the following:

with

We mentioned that p may be in nonlinear form. In the fol-
lowing, we briefly describe the MET regularization algo-
rithm (MET/REG)

–	 (1) Assuming �i s as constraints which are the expected 
value of the known functions �(x),∈ C , computed 
numerically from data based on the Taylor’s theorem, 
� = Ep(�(X)).

–	 (2) Estimating p(x) by minimizing DK−L subject to the 
known constraints in Eq. (13). Then, g(x) is an initial 
(empirical) solution for p. Using the Lagrangian, the 
following equation is solved 

 and its parameters will be determined by �lnZ(�)∕��i , 
i = 1, ...,M.

(12)H(X) = −∫ p(x) ln p(x)dx,

(13)E(�i(x)) = ∫ �i(x)p(x)dx = �i,

(14)J(p) = ‖� − E(�(x))‖2 + �DK−L(p, g)

(15)p̂j = gjexp[−[A
t𝜆̂]j]

(16)𝜆̂ = argmin𝜆{D(𝜆) = 𝜆𝜇 − G(𝜙(At𝜆), g) +
1

𝜆
‖𝜆‖2}.

(17)
dp(�, �) = exp[�t[Ax] − lnZ(�)]dg(x),

where Z(�) = ∫C

exp[�t[Ax]]dg(x)
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–	 (3) Determining the expected value of p, 𝜇̂(𝜆) = E
p
(X)

= ∫ xdp(x, �) as the solution of the inverse problem. 
The solution 𝜇̂ is a function of dual variable ŝ = At𝜆̂ by 
𝜇̂(s) = ▽sG(ŝ, q) in which 

–	 (4) If the function g is a separable measure: g(x) =
∏

N

j=1

g
j
(x

j
) then p is a separable measure: dp(x, �) =

∏N

j=1
dpj

(x
j
, �) and then, 

 function gj will be the logarithmic Laplace transform of 
gj ∶ gj = ln ∫ exp[sx]dgj(x).

Maximum Entropy Technique—Teaching–
Learning‑Based Optimization

In the previous work [76, 77], the MET/MAP and MET/
TLBO have been applied to estimate the ME distribution of 
the AIF along with the pharmacokinetic parameters. In the 
following a brief description of the MET/TLBO is provided.

Applying the Lagrange multipliers approach proposed by 
[36, 37, 90] where Shannon’s entropy Eq. (12) is a target 
function with the known constraints as in Eq. (13), J(p) is

where p(x) is determined via differentiating J subject to p(x):

When setting Eq. (20) equal to zero, p(x) is as follows [38]:

and �i are estimated when the determined p(x) in Eq. 
(21) satisfies Eq. (13). In addition, determination of 
� = [�0, ..., �N] is the cornerstone for the specification of the 
family of estimated distributions. For that, TLBO is used 
to solve the N + 1 unknown parameters, as the set of N + 1 
nonlinear equations a(1 ≤ k ≤ m):

The TLBO is a commonly used technique which simulates 
the teaching–learning process in a class [78]. Here, a group 

(18)

G(s, q) = lnZ(s, q) = ln∫C

exp[stx]dg(x),

q = Eg(X) = ∫C

xdg(x)

𝜆̂ = argmax𝜆{D(𝜆) = 𝜆ty − G(At𝜆̂)}.

(19)G(s, q) = �jgj(sj, qj),

(20)

J(p) = −∫ p(x) ln p(x)dx + �0 ∫ p(x)dx +

N∑
i=1

�i ∫ p(x)�i(x)dx.

(21)
�J(p)

�p(x)
= − ln p(x) − 1 + �0 +

N∑
i=1

�i�i(x).

(22)p(x) = e−
∑N

i=0
�i�i(x), x ∈ S,

(23)Gi(�) = ∫ �i(x)e
−
∑

i �i�i(x)dx = �i.

of students are considered to be the target population, and 
the subjects concerning them are variables of the optimiza-
tion problem. The scores of students in any subject are the 
value of the mentioned variables. The teacher is the best 
solution in the whole population and distributes his infor-
mation to the students modifying the quality of learning. 
Additionally, the quality of a student is determined by the 
average value of the student’s scores in the same class. The 
algorithm has two main steps:

Teacher Phase

Here, the teacher attempts modifying the average scores of 
the students condition on their situation to produce a new 
result replacing the old one. This is a random step:

where C is the number of courses, ZAlt,C (a vector 1 × C ) 
is the old result with no contribution for the learners to 
increase their information and involves the results of every 
specific course, a random number r ∈ [0, 1] , ZTe,C gives 
the most desirable solution in the entire population, SF is a 
teaching factor ranging randomly from 1 to 2 with the same 
probability, and vector MC ( 1 × C ) is the mean scores of the 
class in any course. The new solution Zneu,C is considered as 
better than the old one [91].

Learner Phase

Here, the aim is to improve the information of each stu-
dent in situations in which he/she has random cooperation 
with other students, Eq. (24) is applied to the whole class. 
This way, a student is able to obtain new information from 
another student who has more information.

In the above, i = 1, 2 is the solution number, ZAlt,i means 
the lack of cooperation between ri ∈ [0, 1] , and Zj and Zl 
represent two students selected randomly for j ≠ l when Zj 
provides a better objective value than Zl . If the solution 
Znew,i is better than the old one ZAlt,i , it is accepted.

Evaluation Procedure

All computations are done using MATLAB. To determine 
the general form of the ME distribution, we have applied 
the Kernel distribution using ‘KernelDistribution’ objects 
and ‘ksdensity’ in MATLAB. Regularization algorithms 
considered were Lasso, Ridge regression (Tikhonov regu-
larization), and the generalized minimal residual (GMRES) 
method. MATLAB functions for these three methods were 
‘lasso’, ‘ridge’ and ‘gmres’, respectively. The step-by-step 

(24)Zneu,D = ZAlt,D + r(ZTe,C − SFMC)

(25)Zneu,i = ZALt,i + ri(Zj − Zl)
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algorithm (regularization of entropy) is provided in “Maxi-
mum Entropy Technique- Entropy as a Regularization Func-
tional”. To assess the accuracy of each step of the algorithm, 
in addition to the Kullback–Leibler divergence DK−L , we 
have used symmetric measurements to evaluate the close-
ness of the estimated ME distribution to the empirical one. 
In addition, some other statistics which are robust for the 
comparison are mentioned: 

(1)	 Evaluation by measuring distance between the esti-
mated PDF and the empirical one, e.g., Kullback–Lei-
bler divergence DK−L

(2)	 Evaluation by using measures comparing the estimated 
values to the sample data. With the predicted values 
ŷ1, ..., ŷl and the observed values y1, ..., yl : 

Numerical Experiment

Data Description

In this study, DCE-MRI images of twelve patients before treat-
ment were used. For each patient, once Gadolinium-DTPA was 

(26)DK−L(p̂||g) = ∫s

p̂Cp
(t) ln

p̂Cp
(t)

g(Cp)
dt.

(27)R −MSE =
[
1

l

l∑
i=1

(yi − ŷi)
2
]1∕2

,

(28)Chi − Square =

∑l

i=1
(yi − ŷi)

2

l − n
,

(29)R2 = 1 −

∑N

i=1
(yi − ŷi)

2

∑N

i=1
(yi − ȳ)2

,

administered as the CA, 46 scans were taken at intervals of 
11.9 seconds. To calculate the values of T1 , based on calibra-
tion curves reported in [92, 93], a two-point measurement was 
employed. T1 in DCE-MRI gives the relaxation time, which 
measures the recovering rate of the net magnetization vector. 
The value of T1 is calculated as a ratio of a T1-weighted fast 
low-angle shot (FLASH) image and a proton-density-weighted 
FLASH image. The CA concentration CT (t) is measured by 
converting the signal intensity into T1 using T1-weighted and 
proton-density-weighted images as well as data from calibra-
tion phantoms knowing T1 [94]. The concentration of Gd-
DTPA is calculated by CT (t) =

1

r1

[
1

T1(t)
−

1

T10

]
, where T10 is the 

T1 with no contrast, calculated as the average of the first four 
images, and r1 = 4.24l∕s∕mmol gives the in vivo longitudinal 
relativity of protons from Gd-DTPA. For the T1-weighted 
FLASH images, the obtained parameters are TR = 11 ms, TE 
= 4.7 ms, � = 35, with the corresponding parameters for the 
proton-density-weighted images are TR = 350 ms, TE = 4.7 
ms, � = 6. All the scans had the same field of view, namely 
260 × 260 × 8 mm per slice, making the voxel dimensions of 
1.016 × 1.0168 mm. Each scan included three successive slices 
with 256 × 256 voxels and one slice put in the contra-lateral 
breast as control, which was not used for this analysis. Follow-
ing the fourth scan, Gd-DTPA was injected at D = 0.1 mmol 
per kg body-weight using a power injector with 4 mL/s with a 
20 mL saline flush also at 4 mL/s.

Example Description

We compare the proposed MET/REG algorithm with the pre-
viously proposed MET/MAP and MET/TLBO algorithms. In 
previous work, the Weibull distribution as PDF for the AIF 
turned out to satisfy most of the conditions. See Table 1 for 
more information about the model and estimation approaches. 
The PDF of the Weibull distribution with two parameters is 
as follows:

Table 1   Parameter Estimation Techniques

Methods Parameter Estimation

Empirical Measurement Approach is the specific case of the method of moment [97] with the 
Gamma function Γ(.).

{
𝛼 = (

𝜎

x̄

)−1.086,

𝛽 =
x̄

Γ(1+
1

𝛼
)
, Γ(x) = ∫ ∞

0
t
x−1

e
−t
dt

The Maximum Likelihood Approach is applied to describe the time-series data with the Weibull 
distribution [96]. n is the size of non-zero data vector, with ( �, � ) the shape and scale parameters.
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Modified Maximum Likelihood Approach is utilized when data has the frequency distribution 
form. P(x

i
) is the data x

i
 , n the number nonzero data, and P(x ≥ 0) the probability of the random 

variable equal or exceeding zero and � and � are determined explicitly [98, 99].
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where � and � are the shape and scale parameters, respec-
tively [95, 96]. The MET tests and utilizes different moment 
constraints [37] and selects the minimum number of them 
to generate a proper PDF of the observation. The moment 
constraints as known functions are based on the data, and 
their expectations are obtained numerically via the Tay-
lor’s theorem using the observations [90]. Note that add-
ing more constraints does not guarantee a better ME model. 
The estimated PDF of the data with the initial conditions 
( �0 = 1 , �1 = ln(Cp(t)) and �2 = Cp(t) ) and expected values 
( 1,−0.446 and 0.335) from Taylor’s theorem fits well with 
the Weibull and with the family of Gamma distributions 
based on MET/TLBO and MET/REG (Fig. 1), respectively. 
For data C⃗p(t) both models are as follows:

(30)p(x) =
�

��
x�−1exp(−(

x

�
)�),

(31)

p
(1)

Cp
(t) = e−�0−�1�1(Cp(t))−�2�2(Cp(t)),

= e

ln(
�

��
)+(�−1) ln(Cp(t))−

⎛
⎜⎜⎝

Cp(t)

�

⎞⎟⎟⎠

�

.

in which �0 = − ln(� ⧵ ��) , �1 = −(� − 1) and �2 = �−� . 
Resulting values for � and � can be found in Table 2.

The general form of the Gamma distribution and its ME 
model are:

in which �0 = − ln(1 ⧵ Γ(�)��) , �1 = −(� − 1) and �2 = �−1 . 
For Erlang distribution,

in which �0 = − ln(1 ⧵ (� − 1)!��) , �1 = −(� − 1) and 
�2 = �−1 . Based on Eqs. (30) to (33), the estimated param-
eters for all models are presented in Table 2, respectively.

Table 3 shows Kullback–Leibler distance DK−L and the 
entropy of different estimated AIFs for model evaluation. 
Higher values of entropy indicate better AIF estimation. 
The value of DK−L is the distance between the estimated 
AIF and the empirical one. Lower values means the two 
models are close together. Figures 2 and 3 show the curve 
of CDFs from all proposed approaches and the empirical 
CDF for visual validation. In Table 4, the results are evalu-
ated via RMSE, the goodness of fit ( �2 ), and determination 
coefficient ( R2).

Tables 3 to 4 show that MET/TLBO and MET/REG per-
form the best. The proposed novel MET/REG has the lowest 
DK−L divergence and high entropy.

(32)

p
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−�0−�1 ln(Cp(t))−�2Cp
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Table 2   Estimated parameters for different approaches

Estimation Approach � �

Empirical (Weibull) 1.647 0.779
Maximum Likelihood (Weibull) 1.801 0.789
Modified Maximum Likelihood (Weibull) 2.020 0.776
Maximum Entropy & MAP (Exponential) – 1.554
Maximum Entropy & TLBO (Weibull) 2.6 1.738
Maximum Entropy & REG. (Gamma) 2.719 0.237
Maximum Entropy & REG.(Erlang) 2 0.237

Fig. 1   Estimated AIF via MET/
REG. (Gamma Distribution) & 
Empirical AIF
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For all 12 patients, similar results in regard to model 
performance are achieved, see Fig. 4). Nevertheless, to 
obtain a proper estimation of the pharmacokinetic param-
eters, correct estimation of the AIF is of particular impor-
tance. The measured DK−L values are in the range (0, 0.1) 
for all 12 patients. In Fig. 5, Ka estimations are provided 
based on MET/REG and assumed AIF/ML & MET/MAP 
and MET/TLBO for all the patients. Most importantly, 
using the estimated AIF via MET/REG led to more real-
istic k values compared to assumed AIF, see Fig. 5 and 
Table 5.

Table 3   Evaluation scales to compare the estimated and the empirical 
AIFs

Method & Model K − L Diver-
gence

Entropy

MET/MAP-EXP. 0.029 0.031
MET/TLBO/MAP-WB. (� = 2) 0.036 0.087
MET/TLBO/MAP-WB. (� = 3) 0.044 0.21
MET/TLBO/MAP-WB. (� = 2.6) 0.039 0.176
MET/REG.-GAMMA. 0.040 0.097
MET/REG.-ERLANG. 0.029 0.103

Fig. 2   Estimated CDFs of AIF 
via MET/MAP, MET/TLBO 
and MET/REG.-Gamma Distri-
bution & eCDF of AIF
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Fig. 3   Estimated CDFs of AIF 
via MET/MAP, MET/TLBO 
and MET/REG.-Erlang Distri-
bution & eCDF of AIF
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Table 4   Evaluating Approaches 
for the MET/REG model of AIF 
and the empirical one

Methods Root-MSE Chi-Square R
�

Empirical Approach 0.29 0.08 0.63
Maximum Likelihood Approach 0.28 0.12 0.57
Modified Maximum Likelihood Approach 0.28 0.08 0.64
Maximum Entropy Approach & TLBO 0.03 7.5e-04 0.99
Maximum Entropy Approach & Regularization-Gamma 0.07 0.10 0.99
Maximum Entropy Approach & Regularization-Erlang 0.07 0.1 0.97
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 Discussion and Conclusions

In this paper we investigated the application of MET and 
regularization functionals with some probabilistic models 
to solve the problem of AIF determination in DCE-MRI, 
a linear ill-posed inverse problem. Reasons for applying 
the MET in combination with the selected optimization 

or regularization methods to estimate the AIF, instead of 
using the assumed AIF, were discussed. In addition, the 
effect of the estimated AIF on the determination of phar-
macokinetic parameters was examined.

We have shown how all these different frameworks con-
verge to solve the linear ill-posed inverse problems. The 
results show that the Bayesian framework provides more 

Table 5   Estimated 
Pharmacokinetic parameters via 
MET/REG

Patient 1 2 3 4  5 6 7 8 9 10 11 12

k
a

0.53 0.31 0.28 0.57 0.96 0.91 0.88 0.43 0.16 0.34 1.54 0.86

Fig. 4   Estimated PDFs of AIF 
via MET/REG. for 12 Patients
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Fig. 5   Estimated Pharmacoki-
netic Parameters via different 
Approaches
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tools to infer the uncertainties of the computed solutions, 
account for more specific knowledge of the noise and errors, 
estimate the hyper-parameters, and handle myopic and blind 
inversion problems. For that, regularization, MET, and 
the Bayesian estimation approach were discussed briefly. 
Finally, we presented some numerical results to illustrate the 
efficiency of the presented method. The main objective of 
these numerical experiments was to demonstrate the effect of 
different choices for prior laws or, equivalently, regulariza-
tion functionals on the result. To determine the ME solution 
via entropy regularization, it was assumed that the exist-
ing data are represented by generalized moments, including 
the power and the fractional ones as a subset. However, as 
mentioned in the paper, the solution of an inverse problem 
generally depends on our prior hypothesis regarding AIF, 
errors and K.

The proposed MET/REG algorithm has multiple notable 
features: (1) applicability to distributions with any type of 
support, (2) efficiency in terms of computation since the 
ME solution is derived simply as a set of linear equations, 
(3) proper bias-variance, and (4) proper estimation of the 
distribution tails when the sample sizes are small. Given 
the important role of the AIF when analyzing DCE-MRI 
images, when determining the AIF in the image is not possi-
ble, a standard approach is to use assumed AIFs proposed in 
the literature. This research provides an alternative method 
for the assessment of the AIF from the available information. 
Based on the results, the estimated model using MET/REG 
fits well to the data and properly estimates the pharmacoki-
netic parameters.
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