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ABSTRACT

ANALYSIS OF CONTRAST-ENHANCED MEDICAL IMAGES

Fahmi Abdallah Khalifa

March, 28th, 2014

Early detection of human organ diseases is of great importance for the accurate di-

agnosis and institution of appropriate therapies. This can potentially prevent progression to

end-stage disease by detecting precursors that evaluate organ functionality. In addition, it

also assists the clinicians for therapy evaluation, tracking diseases progression, and surgery

operations. Advances in functional and contrast-enhanced (CE) medical images enabled

accurate noninvasive evaluation of organ functionality due to their ability to provide supe-

rior anatomical and functional information about the tissue-of-interest. The main objective

of this dissertation is to develop a computer-aided diagnostic (CAD) system for analyzing

complex data from CE magnetic resonance imaging (MRI). The developed CAD system

has been tested in three case studies: (i) early detection of acute renal transplant rejection,

(ii) evaluation of myocardial perfusion in patients with ischemic heart disease after heart

attack; and (iii), early detection of prostate cancer.

However, developing a noninvasive CAD system for the analysis of CE medical

images is subject to multiple challenges, including, but are not limited to, image noise and

inhomogeneity, nonlinear signal intensity changes of the images over the time course of

data acquisition, appearances and shape changes (deformations) of the organ-of-interest

during data acquisition, determination of the best features (indexes) that describe the perfu-
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sion of a contrast agent (CA) into the tissue. To address these challenges, this dissertation

focuses on building new mathematical models and learning techniques that facilitate ac-

curate analysis of CAs perfusion in living organs and include: (i) accurate mathematical

models for the segmentation of the object-of-interest, which integrate object shape and

appearance features in terms of pixel/voxel-wise image intensities and their spatial interac-

tions; (ii) motion correction techniques that combine both global and local models, which

exploit geometric features, rather than image intensities to avoid problems associated with

nonlinear intensity variations of the CE images; (iii) fusion of multiple features using the

genetic algorithm. The proposed techniques have been integrated into CAD systems that

have been tested in, but not limited to, three clinical studies.

First, a noninvasive CAD system is proposed for the early and accurate diagnosis of

acute renal transplant rejection using dynamic contrast-enhanced MRI (DCE-MRI). Acute

rejection–the immunological response of the human immune system to a foreign kidney–is

the most sever cause of renal dysfunction among other diagnostic possibilities, including

acute tubular necrosis and immune drug toxicity. In the U.S., approximately 17,736 renal

transplants are performed annually, and given the limited number of donors, transplanted

kidney salvage is an important medical concern. Thus far, biopsy remains the gold standard

for the assessment of renal transplant dysfunction, but only as the last resort because of its

invasive nature, high cost, and potential morbidity rates. The diagnostic results of the pro-

posed CAD system, based on the analysis of 50 independent in-vivo cases were 96% with

a 95% confidence interval. These results clearly demonstrate the promise of the proposed

image-based diagnostic CAD system as a supplement to the current technologies, such as

nuclear imaging and ultrasonography, to determine the type of kidney dysfunction.

Second, a comprehensive CAD system is developed for the characterization of my-

ocardial perfusion and clinical status in heart failure and novel myoregeneration therapy us-

ing cardiac first-pass MRI (FP-MRI). Heart failure is considered the most important cause

of morbidity and mortality in cardiovascular disease, which affects approximately 6 million
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U.S. patients annually. Ischemic heart disease is considered the most common underlying

cause of heart failure. Therefore, the detection of the heart failure in its earliest forms is

essential to prevent its relentless progression to premature death. While current medical

studies focus on detecting pathological tissue and assessing contractile function of the dis-

eased heart, this dissertation address the key issue of the effects of the myoregeneration

therapy on the associated blood nutrient supply. Quantitative and qualitative assessment

in a cohort of 24 perfusion data sets demonstrated the ability of the proposed framework

to reveal regional perfusion improvements with therapy, and transmural perfusion differ-

ences across the myocardial wall; thus, it can aid in follow-up on treatment for patients

undergoing the myoregeneration therapy.

Finally, an image-based CAD system for early detection of prostate cancer using

DCE-MRI is introduced. Prostate cancer is the most frequently diagnosed malignancy

among men and remains the second leading cause of cancer-related death in the USA with

more than 238,000 new cases and a mortality rate of about 30,000 in 2013. Therefore, early

diagnosis of prostate cancer can improve the effectiveness of treatment and increase the pa-

tient’s chance of survival. Currently, needle biopsy is the gold standard for the diagnosis of

prostate cancer. However, it is an invasive procedure with high costs and potential morbid-

ity rates. Additionally, it has a higher possibility of producing false positive diagnosis due

to relatively small needle biopsy samples. Application of the proposed CAD yield promis-

ing results in a cohort of 30 patients that would, in the near future, represent a supplement

of the current technologies to determine prostate cancer type.

The developed techniques have been compared to the state-of-the-art methods and

demonstrated higher accuracy as shown in this dissertation. The proposed models (higher-

order spatial interaction models, shape models, motion correction models, and perfusion

analysis models) can be used in many of today’s CAD applications for early detection

of a variety of diseases and medical conditions, and are expected to notably amplify the

accuracy of CAD decisions based on the automated analysis of CE images.
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CHAPTER I
INTRODUCTION

Early detection of human organ diseases is crucial for the accurate diagnosis and

institution of appropriate medical therapies, which can increase the survival rate of the

patients. Therefore, it is critical to detect precursors that evaluate human organ function-

ality, which can potentially prevent progression to end-stage disease. In addition, accurate

evaluation of organ functionality can assist the clinicians for early diagnosis of diseases,

therapy decisions and evaluations, and surgery operations. Advances in medical imaging

techniques, particularly functional and contrast-enhanced (CE) medical images, enabled

accurate noninvasive evaluation of human organ functionality due to their ability to pro-

vide superior anatomical and functional information about the tissue of interest. Therefore,

the development of noninvasive computer-aided diagnostic (CAD) systems using CE im-

ages for the evaluation of human organ functionality is of great importance. However,

this is subject to multiple challenges that include, but are not limited to, image noise and

inhomogeneity, nonlinear signal intensity changes of the images over the time course of

data acquisition, and shape changes (deformations) of the organ of interest during data ac-

quisition. The goal of this dissertation is to develop a general, noninvasive, image-based

framework that accounts for these challenges for the analysis of complex data from CE

magnetic resonance imaging (MRI) for the evaluation of human organ functionality. The

proposed framework is applied in three case studies: early detection of renal transplant

rejection, functional assessment of myocardial perfusion in patients with ischemic heart

disease, and early detection of prostate cancer.

Recent advances in medical image modalities, including magnetic resonance imag-

ing (MRI), computed tomography (CT), ultrasound, positron emission tomography, and

single photon emission computed tomography, enable the acquisition of images for almost
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all types and sizes of different structures with acceptable degrees of contrast and resolu-

tion. Nowadays, medical imaging is a basic component in current medical diagnostic tools

and has been effectively used to assist clinicians and radiologists in diagnosis, therapy de-

cisions, and surgery operations. Each image modality (see e.g., Figure 1 and Figure 2)

has its own mechanism of providing relevant physiological information of the organ being

imaged as well as its own advantages and limitations. Medical images can be classified

based on their modalities (Figure 2) or based on the type of information that they provide

(i.e., the structure or the function of the organ being imaged, see Figure 3). Since all the

work presented in this dissertation mainly deals with MRI, an overview of different types

of the MRI modality with the focus on functional and CE images is given in the following

section.

(a) (b) (c)

(d) (e) (f)

FIGURE 1: Different types of medical images: magnetic resonance imaging (MRI) of

(a) the kidney and (b) the heart, (c) computed tomography (CT) image of the lung, (d)

ultrasound image of the kidney [7], (e) positron emission tomography image of the lung,

and (f) single photon emission computed tomography image of the heart (Courtesy of [8]).

2



FIGURE 2: Schematic illustration of different classes of medical image modalities.

FIGURE 3: Categories of medical image modalities based on the type of information that

they provide about the organ being imaged, i.e., structural or functional imaging.

A. MAGNETIC RESONANCE IMAGING

Magnetic resonance imaging (MRI) is a medical imaging modality that is based on

the same principals of nuclear magnetic resonance spectroscopy [24]. MRI has become

the most powerful and central noninvasive tool for clinical diagnosis of diseases [25]. The

fundamental principle of MRI is based on the use of a strong static magnetic field in which

the hydrogen nuclei (single proton) of water molecules in human tissues are aligned par-

allel to that field. Then, an external radio frequency (RF) pulse (wave) is applied to the
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unpaired magnetic spins (proton) aligned in the static magnetic field, making them spin in

different directions [26]. The interaction between the RF and proton spins leads to peri-

odic absorption and emission of energy. When the protons relax back to their lower energy

(equilibrium) state, they release detectable signals (energy) that are spatially encoded and

are used to construct the MR image. Different types of tissues (muscle, fat, cerebral spinal

fluid, etc.) send back measurably different types of tissue-specific signals following the

application of the same RF pulse. The contrast of an MR image is strongly dependent on

the way the image is acquired. Different components of the scanned area can be high-

lighted using different preselected pulse sequences: strength, shape, and timing of the RF

and gradient pulses (external fields). Generally, MRI can be used to acquire planar 2D

images (Figure 4), 3D volumes (Figure 5), or sequences of 3D volumes (i.e., 4D images

see, Figure 6). Most commonly-known specialized MRI techniques are shown in Figure 7.

Below, an overview of the main MRI types is given.

FIGURE 4: 2D cine MR image of the heart.

1. Structural MRI

The amount of energy (or signal strength) of the MRI primarily depends on the

magnetic relaxation properties of body atomic nuclei. The time of the relaxation process

(i.e, the time taken by nuclei to return to their baseline states after applying the RF pulse) is

known as longitudinal relaxation time (T1) or transverse relaxation time (T2), based on the
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(a) (b) (c)

FIGURE 5: 3D T2-weighted MRI of the prostate, captured in the axial (a), coronal (b), and

sagittal (c) planes. Courtesy of [9]

FIGURE 6: 4D (3D + time) cardiac MRI data. Images are acquired at different sections

covering the heart (from basal to apical) and each section consists of a time series of 25

image frames over the cardiac cycle (t1 −→ t25). The inner and the outer borders of the

heart wall are shown in red and green, respectively.

orientation of the component with respect to the magnetic field. Every tissue in the human

body has its own T1 and T2 values, which depend on the concentration of protons in the

tissue in the form of water and macromolecules. T1-weighted MRI is the commonly-run

clinical MRI scan that emphasizes T1-contrast, i.e., most of the contrast between tissues is
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FIGURE 7: Different specialized MRI acquisition techniques.

due to differences in tissue T1 values. Thus, it is the best MRI method for demonstrating

anatomical details. T2-weighted is a basic type of MRI in which most of the contrast

between tissues is due to differences in tissue T2 values. Usually, T2-weighted scans are

used when contrast between fluid, abnormalities (e.g., tumors, inflammation, trauma), and

the surrounding tissues is required. Therefore, it is the best MRI method for pathological

details. In practice, T1- and T2-weighted images provide complementary information, so

both are important for characterizing abnormalities. Finally, the spin or proton density-

weighted scans try to have no contrast from either T1 or T2. The only signal change is

due to differences in the amount of available spins (hydrogen nuclei in water). The main

advantage of the proton density-weighted images is the increase in contrast between fluid

and non-fluid tissues. However, proton density-weighted images usually show less contrast

resolution than T1- and T2-weighted images. This is due to the fact that the difference in

hydrogen concentration (proton density) of soft tissues is relatively small.

The main strength of MRI is that it offers the best soft tissue contrast among all

image modalities. Moreover, it is a dynamic technology that can be optimized to tailor the

imaging study to the anatomical part of interest and to the disease process being studied. In

this regard, MRI offers different degrees of dynamic optimization. For example, the imag-

ing plane can be optimized to the anatomical area being studied (axial, coronal, sagittal,

see Figure 5, and multiple oblique planes can be captured with equal ease). In addition,

as previously described, the signal intensities of the imaged tissues can be controlled by
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selecting the type of the scan (see, Figure 8): either proton density-weighted, T1-weighted,

or T2-weighted [25].

(a) (b) (c)

FIGURE 8: Examples of axial MRI scans of the osteochondroma underlying the pseudoa-

neurysm: (a) T1-weighted, (b) proton density-weighted, and (c) T2-weighted images. The

images have different contrast that reveal specific information about the structures in the

knee. Courtesy of [10].

2. Dynamic Contrast-Enhanced MRI (DCE-MRI)

Although structural MRI provides excellent soft tissue contrast, it lacks functional

information. Dynamic contrast-enhanced MRI (DCE-MRI) is a special MR technique that

has the ability to provide superior information of the anatomy, function, and metabolism of

target tissues [27]. The technique involves the acquisition of serial MR images with high

temporal resolution before, during, and at several times after the administration of a contrast

agent (CA) into the blood stream. In DCE-MRI, the signal intensity in the target tissue

changes in proportion to the CA concentration in the volume element of measurement,

or voxel. DCE-MRI is commonly used to enhance the contrast between different tissues,

particularly normal and pathological. Dynamic MRI has gained considerable attention due

to the lack of ionizing radiation, increased spatial resolution, ability to yield information

about the hemodynamic (i.e., perfusion) properties of tissues, micro-vascular permeability,

and extracellular leakage space [28]. Typical examples of dynamic MRI time series data of

the kidney, heart, and prostate are shown in Figure 9.
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FIGURE 9: Dynamic MR images taken at different time points post the adminstration of

the contrast agent (CA) showing the change of the contrast as the CA perfuse into the tissue

for the heart, kidney, and prostate.

Unlike structural MRI where the contrast mainly depends on the intrinsic magnetic

relaxation times T1 and T2, the DCE-MRI technique employs the administration of a CA

prior to the medical scan. The main role of the CA is to increase the image contrast of

anatomical structures (e.g., blood vessels) that are not easily visualized by the alteration

of the magnetic properties of water molecules in their vicinity. This in turns improves the

visualization of tissues, organs, and physiological processes. In clinical practice, several

types of CAs are in use and their choice is based on the imaging modality. In particular, for

MRI there are several types of CAs such as paramagnetic agents, superparamagnetic agents,

extracellular fluid space (ECF) agents, and tissue (organ)-specific agents, see Figure 10.

Superparamagnetic CAs are based on water insoluble iron oxide crystals, usually

magnetite (Fe3O4) or maghemite (γ-Fe2O3). These CAs are suitable for MRI scans of the

gastrointestinal tract, including the liver, spleen, esophagus, the stomach, etc. The super-

paramagnetic can be classified into superparamagnetic iron oxide particles and ultrasmall

superparamagnetic iron oxide particles [29]. The most successful MRI contrast agents that

have been widely investigated are gadolinium-based. Gadolinium, a rare metal, is a non-
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FIGURE 10: Different types of contrast agents used in MRI medical scans.

toxic paramagnetic CA that enhances the detected MR signal and produces high contrast

images of soft tissues by decreasing T1 relaxation times of water protons in living tissue in

the vicinity of the paramagnetic CA. Used for cardiovascular, oncological, and neurological

imaging, the MRI does not utilize radioactive materials such as X-ray.

3. Diffusion MRI

Sometimes MRI techniques that depend on using CA (e.g., gadolinium-based) may

be harmful to some patients (e.g., patients with kidney problems). In order to avoid the

use of CAs, in recent years researchers have started to investigate an MRI technique called

diffusion imaging. Diffusion MRI is a functional technique that is based on the measure-

ment of the micromovements (random, Brownian) of extracellular water molecules inside

the body. These movements provide indirect information about the structures surrounding

these water molecules. Diffusion MRI is a noninvasive technique that has the advantage of
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being acquired very rapidly, without the use of any CA or specialized hardware. Basically,

DWI focuses on the movements of the water molecules inside the body. Diffusion MRI can

be classified into three main types, namely, diffusion-weighted imaging (DWI), diffusion

tensor imaging (DTI) and diffusion spectrum imaging (DSI).

a. Diffusion-weighted imaging (DWI) is designed to obtain images whose con-

trast depends on the differences in water molecule mobility. This is achieved during data

acquisition by adding diffusion magnetic field gradients. The degree of diffusion weight-

ing of the sequence, expressed as the b-factor (in s/mm2), depends on the amplitude of the

field gradient, time of application, and time interval between the magnetic field gradients.

A typical DWI-MRI for the prostate is shown in Figure 11. DWI is a well-established MRI

method that has been successfully used for tumor localization and diagnosis [30], investi-

gation of brain disorders, such as epilepsy, multiple sclerosis, brain abscesses and tumors,

and hypertensive encephalopathy [31], and in-vivo study of tissue microstructure [32].

(a)

(b)

FIGURE 11: Diffusion MR images for the prostate at (a) b-value of 0 s/mm2 and (b) b-

value of 800 s/mm2.

b. Diffusion tensor imaging (DTI) is another type of diffusion MRI that is based

on the measurement of the Brownian motion of water molecules in tissue. DTI is a newly-

developed MRI technique to study in vivo tissue microstructure, e.g., the connectivity be-

tween different brain areas. This MRI modality allows the scientist to be able to look at

the network of nerve fibers. Nowadays, DTI has been used by neuroscientists to study

a number of disorders (e.g., addiction, epilepsy, traumatic brain injury, and various neu-

rodegenerative diseases) and to identify subtle abnormalities in a variety of diseases, (e.g.,
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stroke, multiple sclerosis, dyslexia, and schizophrenia) [32]. An example of a brain nerve’s

connectivity bundle obtained from a 3D DTI data set is shown in Figure 12.

FIGURE 12: A 2D projection of the tractographic color map estimated from a DTI imaging

data set. Color codes have been assigned based on the mean orientation of the fibers.

Note that the data set may be rotated continuously into various planes to provide better

tractographic assessments of the brain.

c. Diffusion spectrum imaging (DSI) is the third type of diffusion MRI. Al-

though DTI has been proven as a useful MR technique in studying in vivo fibrous connec-

tivity, it cannot directly image fiber crossings within a single voxel [33]. To overcome this

limitation, DSI has been developed as a generalization of DTI to map complex structures

such as crossing fibers. Thus, DSI allows more accurate mapping of axonal trajectories

than other diffusion imaging approaches [33]. The disadvantages of DSI are that it requires

several hundred images and long acquisition times compared with DTI and DWI [34].

4. Functional Magnetic Resonance Imaging (fMRI)

Functional magnetic resonance imaging (fMRI) is a noninvasive MRI technique that

is used to study the activated area of the brain after certain stimuli and to map changes of

brain hemodynamics that correspond to mental operations. The technique has the ability to

observe brain function as well as to determine which structures participate in specific func-
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tions [35]. fMRI acquires consecutive images, one while the brain is in rest state followed

by another one after the brain is stimulated in some way. The areas of brain activation

are determined as any regions that are different between the two scans. Functional MRI

allows radiologists to better understand brain organization and to assess neurological status

and neurosurgical risk. Unlike Electroencephalography that provides surface information

(brain waves) through electrodes mounted on the patients’ scalp, fMRI has the advantage

of providing in-depth details of what is inside the brain. Figure 13 shows a typical fMRI

for the brain of a normal person reading. The arrows point to parts of the brain that are

activated. As shown in the figure, the fMRI can determine the changes in particular regions

of the brain in response to a certain stimuli.

FIGURE 13: A lateral view showing the active human brain areas of a subject viewed

moving and static figures. Orange regions are the activated brain areas when the subject

viewed moving figures, while green and blue regions responded similarly to both moving

and static figures. Courtesy of [11].

5. Tagged Magnetic Resonance Imaging

Tagged MRI is a well-known MRI technique for detailed and noninvasive visual-

ization of cardiac motions [36]. This imaging modality can help in the localization of heart

diseases (e.g., coronary atherosclerosis) and global conditions (e.g., heart failure and di-

abetes) that result in heart wall dysfunction. Cardiac MRI tagging places a pre-specified
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pattern of temporary markers (called tags) inside soft body tissues, e.g. tag lines created by

patterns of magnetic spin in the examined tissue so that the motion in the tagged tissue can

be measured from the images [37]. This technique complements traditional anatomical im-

ages and can capture detailed information about the heart over time. The tag lines allow for

computing displacement, velocity, rotation, elongation, strain, and twist of the heart. While

traditional MRI techniques carry only information about the motion at the boundaries of an

object, the tag lines allow us to examine the strain and displacement of the interior of the

tissue in close detail [38]. Figure 14 shows a typical tagged MRI time-series of the heart.

FIGURE 14: A example of the tagged MRI time-series for the heart.

6. Perfusion-Weighted Imaging (PWI)

Perfusion-weighted imaging (PWI) is a serial MRI technique designed to image

blood flow into brain vasculature. PWI uses an MR contrast to provide information about

the location and extent of cell death within a few hours of a stroke, and it has been shown

to be superior to conventional MRI [39]. The most common technique is known as dy-

namic susceptibility contrast imaging, which has been thoroughly studied to measure the

cerebral blood flow of the brain for patients with vascular stenosis, stroke, and brain tu-

mors [40]. This MR technique helps the neuroradiologist to more accurately understand

brain perfusion by providing other important parameters, such as blood volume and perfu-

sion enhancement time.

In total, potential advantages of MRI include (i) MRI does not involve exposure

to any harmful radiation, can be repeated sequentially over time, and has the ability to

generate cross-sectional images in any plane (including oblique planes); (ii) MRI provides
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superior resolution with far better contrast (the ability to distinguish the differences be-

tween two arbitrarily similar but not identical tissues) compared with other medical image

modalities [25]; and (iii) MRI plays an important role in assessing the extent and loca-

tion of tumors, directing biopsies, planning proper therapy, and evaluating therapeutic re-

sults [41]. Nonetheless, MRI imaging modality has its own disadvantages: (i) MRI data

acquisition is relatively long and complex–for each scan the imaging parameters and pulse

sequence need to be fixed; (ii) MRI is not suitable for patients with metal implants due

to its magnetic nature; (iii) MRI suffers from sensitivity to noise and image artifacts; (iv)

MRI signals are dependent on the imaging sequence used and can become non-linear be-

yond certain concentrations leading to errors in extracted physiology; (v) MRI scanning

processes may be uncomfortable for some people because it can produce claustrophobia.

Recent improvements in MRI design aim to aid claustrophobic patients by using more open

magnet designs and shorter exam times.

B. QUANTIFICATION OF ORGAN FUNCTIONALITY USING CE IMAGES

The use of contrast-enhanced (CE) medical images for the quantification of the hu-

man organ functionality has been increased in recent years due to its ability to provide su-

perior anatomical and functional information about the tissue being imaged. For example,

the potential of CE images has shown an important role in many clinical applications, such

as localizing the locations and the extent of pathological tissues [42–44], differentiation

between various brain tumors [45–48], early detection of breast cancer [49–55], planning

proper therapy [56], and evaluating therapeutic results [57–60].

The goal of this work is to develop a noninvasive image-based framework for the

analysis of the complex data from CE medical images. The dissertation focuses on building

new mathematical models and learning techniques in order to facilitate the accurate analysis

of the perfusion of the CA in living organs through imaging. The ultimate goal of the

proposed work is to be applicable to medical imaging of different organs in living subjects.

In this dissertation, the proposed models have been applied to three case studies. The first

14



case study defines a CAD system for the early detection of acute renal transplant rejection

using DCE-MRI. In the second case study, a comprehensive framework is proposed for the

analysis of the transit of the CA at cardiac first-pass MRI (FP-MRI) to depict regional and

transmural effects across the myocardial wall. Finally, a CAD system for early detection

of prostate cancer using DCE-MRI is proposed. In the following sections, a brief overview

is given for each of the proposed analysis systems.

1. Early Detection of Renal Transplanted Rejection

Early detection of acute renal rejection—the immunological response of the hu-

man immune system to a foreign kidney—is important to institute salvage medical and

immune therapy in patients with transplanted kidneys [61]. In the United States, approxi-

mately 17,736 renal transplants are performed annually [62], and given the limited number

of donors, transplanted kidney salvage is an important medical concern. Functional as-

sessment of renal transplant is initially evaluated using blood tests and urine sampling,

e.g., plasma creatinine and creatinine clearance. However, these indexes have low sen-

sitivity, since a significant change in creatinine levels is only detectable after the loss of

60% of kidney function. Therefore, more sophisticated techniques, such as radionuclide

approaches and Ultrasound, are used for noninvasive evaluation of kidney dysfunction.

However, radionuclide-based approaches involve radiation exposure, thereby limiting the

applicability of these techniques. Ultrasound imaging, while noninvasive, suffers from low

signal-to-noise ratios, shadowing artifacts, and speckles that greatly decrease image qual-

ity and diagnostic confidence. These shortcomings make these techniques impractical for

clinical use. Thus far, biopsy (see Figure 15) remains the gold standard for the assessment

of renal transplant dysfunction, but only as the last resort because of its invasive nature,

high cost, and potential morbidity rates. Also, the relatively small needle biopsy sample

may lead to over- or under-estimation of the extent of inflammation in the entire graft.

Therefore, there is an urgent need for new technology based on noninvasive techniques that

possesses the ability of early and accurate diagnosis of the transplanted kidney status.

15



FIGURE 15: An illustration of taking biopsy samples from the kidney. A thin needle is

inserted through the skin to perform the operation, and the procedure is usually directed by

an imaging device (e.g., ultrasound) to help in placing the needle into the right location [12].

The proposed work in this dissertation seeks to provide a new noninvasive CAD sys-

tem that possesses the ability to facilitate the accurate analysis of the perfusion of a CA in

the kidney tissue in an effort to extract perfusion parameters that distinguish non-rejection

and acute rejection transplants. In DCE-MRI of the kidney, the widely used clinical agent

gadolinium behaves as a leakage agent, namely it distributes in the extracellular extravas-

cular space, and at short times (up to about 2 minutes (min) after administration) perfusion-

related parameters that reflect the CA delivery to the tissue can be derived from the tissue

kinetic curves or time-intensity curves, see Figure 17. To characterize the transplanted kid-

ney, the proposed framework segments the kidney and cortex (as it is the functional unit

that is most affected by rejection) after handling the global and local motions. Then, agent

kinetic curves of the segmented cortex are constructed and perfusion-related parameters

are estimated and are used for the evaluation of kidney status, see Figure 16. In addition to

the global information about the transplanted kidney condition, pixel-by-pixel displays of

perfusion for local assessment was developed (see Figure 18). These pixel-wise perfusion

maps are important for the radiologist to investigate which kidney regions need attention

during follow-up of the treatment and thus to determine the appropriate therapy.
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FIGURE 16: A typical CAD system for the detection of acute renal transplant rejection.

The motion correction step is used to handle global and/or local motions of the input DCE-

MRI data. Then, the kidney and its functional unit (cortex) are extracted from the surround-

ing abdomen tissue. Next, agent kinetic curves are constructed and perfusion parameters

are extracted and are used for diagnosis.

FIGURE 17: A typical time-intensity curve of the average intensity of the kidney measured

before and after contrast agent adminstration. The curve illustrates typical perfusion-related

indexes that can be estimated and used for diagnosis of the kidney status.
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FIGURE 18: Pixel-wise perfusion maps of the perfusion indexes shown in Figure 17: (a)

peak signal intensity, (b) initial up-slope, (c) average plateau, and (d) time-to-peak; for one

normal (upper row) and one abnormal (lower row) kidney. The red and blue hues of each

color scale correspond to the highest and lowest values, respectively. Note all indexes show

worsening of perfusion with pathology.

2. Functional Assessment of Myocardial Perfusion

Heart failure is considered the most important cause of morbidity and mortality in

cardiovascular disease, which affects approximately 6 million US patients annually. Thus it

is critical in these patients to detect precursors in order to prevent progression to end-stage

disease. Ischemic heart disease is considered to be the most common underlying cause of

heart failure [63]. Therefore, the detection of the heart failure in its earliest forms is essen-

tial to prevent its relentless progression to premature death. Recent clinical research has

explored a novel therapeutic strategy for restoring damaged heart wall tissue due to heart

attack based on harnessing normal cells from the patient’s own heart [64, 65]. To reliably

detect clinically meaningful responses to therapy, cardiac magnetic resonance images are

usually used as the “gold standard” for evaluating heart function, e.g., quantifying the LV

function and measuring the infarct size [66]. While several MRI studies have focused on

viability [42–44] and contractile function [67–69] in areas with myoregeneration, there is
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a dearth of in-vivo studies designed to address the key issue of the effects of the myoregen-

eration therapy on the associated blood nutrient supply.

FIGURE 19: A schematic diagram of the proposed CAD system for the analysis of myocar-

dial perfusion. The input to the system is the cardiac FP-MRI data. The motion correction

step is used to handle the global and/or the local motions of the heart. Then, the left ventri-

cle (LV) wall is segmented, the agent kinetic curve is constructed, and perfusion parameters

are estimated and used to depict regional and transmural effects across the myocardial wall.

In this dissertation, a comprehensive framework for functional assessment of my-

ocardial perfusion is proposed based on the study of first-pass dynamics of gadolinium CA,

see Figure 19. First-pass MRI was employed because of its strong relation to perfusion ki-

netic parameters, such as permeability-surface area product, blood flow, and proportional

blood volume [70]. The proposed system is evaluated in patients with ischemic heart dam-

age who are undergoing a novel myoregeneration therapy [65]. The innovation in this

case study is a comprehensive analysis framework, with robust automated steps, which

optimally characterizes myocardial perfusion and clinical status in heart failure and novel

myoregeneration therapies. The proposed framework possesses the ability (i) to follow-

up on treatment, and (ii) to determine whether regions showing improvement with other

functional indexes (e.g., derived from viability or cine MRI) also manifest improvement in

vascularity as indexed at first-pass myocardial transit of the CA (see Figure 20).
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FIGURE 20: Pixel-wise parametric map display of the peak signal intensity demonstrating

local LV areas that may be damaged due to the heart attack. The red and blue hues of each

color scale correspond to enhanced and reduced perfusion, respectively.

3. Early Diagnosis of Prostate Cancer

Prostate cancer is the most frequently diagnosed malignancy among men and re-

mains the second leading cause of cancer-related deaths in the U.S. In 2013, prostate can-

cer studies reported an estimate of 238,590 new cases and a mortality rate of close to

29,720 [71]. Therefore, early diagnosis of prostate cancer can improve the effectiveness

of treatment and increase the patient’s chance of survival. Currently, there are different

techniques that are used for early diagnosis of prostate cancer. However, the accuracy of

these techniques are clearly unsatisfactory. For example, prostate specific antigen (PSA)

has a high chance of false positives, ranging from 28%-58% [72] and doesn’t offer accurate

information about the location and extent of the lesion [73]. T2-weighted MRI modality,

while possessing the ability to provide reliable information about the size and shape of

the prostate gland, is limited by unsatisfactory sensitivity and specificity for cancer detec-

tion and localization [74]. More recent MRI modalities, such as DCE-MRI [75–77] and

DWI [78–80], have demonstrated the promise for early detection of prostate cancer.

The innovation in this case study is a CAD system that integrates stochastic ap-

proaches using new Markov-Gibbs random field (MGRF) energy models and the geometric

approaches to accurately separate the prostate from the surrounding tissues, after handling
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the global and local motion, in order to optimally distinguish between malignant and be-

nign prostate cancers. The proposed CAD system is based on DCE-MRI and possesses

the ability to be used as a supplement for the current technology for early diagnosis of the

prostate cancer.

FIGURE 21: A block diagram of the proposed CAD system for the early diagnosis of

prostate cancer using DCE-MRI. The time series data is first corrected for motion artifacts.

Then, the prostatic tissue is segmented and the agent kinetic curves are constructed. Finally,

perfusion-related parameters are extracted from the kinetic curves and are used for the

classification of both malignant and benign cases.

C. LIMITATION OF EXISTING WORK AND THE INNOVATION OF THIS
WORK

The ultimate goal of this work is to develop an image-based, noninvasive framework

for the analysis of CE medical images. A generic framework for the analysis of CE images

can include one or more of the following steps: (i) motion correction models, (ii) segmenta-

tion approaches to extract the object of interest, (iii) construction of enhancement (kinetic

or perfusion) curves, and (iii) estimation of perfusion-related features to understand the

functionality of the object being diagnosed. Motion correction, object segmentation, and

features extraction are the main processing steps in any pipeline for the analysis of CE

images. In the literature, a tremendous number of image segmentation techniques have

been proposed for the extraction of medical structures from CE medical images. However,
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existing techniques for image segmentation have their own shortcomings:

• Threshold-based methods are too inaccurate, due to similar intensities (gray levels)

of the object of interest and the surrounding tissues. In addition, these methods work

fine for post- and late-contrast images, but fail in segmenting pre-contrast images.

• Region growing and split-and-merge methods do not guarantee connectedness of the

found objects, which is a basic requirement in many medical imaging and CAD appli-

cations. Additionally, region growing-based approaches are sensitive to initialization

and often need user assistance to select proper seed points.

• Deformable model-based methods without adequate shape and appearance models

fail in the case of excessive image noise, poor image resolution, and diffused bound-

aries, and they are quite sensitive to imperfect organ contours.

• Most of the existing shape-based methods do not impose temporal constrains on

organ segmentation.

• Most of the existing segmentation approaches do not take into account the spatial

dependencies between the pixels and therefore are quite sensitive and may perform

poorly on some image frames due to the lack of well-defined organ contours.

Moreover, motion correction models are essential for the accurate estimation of

perfusion-related parameters to insure that the same pixels be evaluated between the im-

age frames of a given CE time series data. In the literature, several motion correction

approaches have been proposed for the alignment of CE images. However, existing motion

correction models show the following limitations:

• Global motion correction methods do not take into account the local motion of the

objects due to transmitted respiratory and peristaltic effects.

• Local motion correction methods and pharmacokinetic (PK)-based methods register

the original grey level data without any prior segmentation, thus they do not guarantee

pixel-on-pixel matches of the registered perfusion data.

• PK-based methods increase the computational cost of registration, since a full model

fitting has to be performed on a per-pixel basis.

22



• Intensity-based registration methods are prone to nonlinear intensity variations over

the time series and perform poorly in pre-contrast images.

After motion correction and object segmentation, the next step in a typical CAD

system for the analysis of CE images is to extract perfusion-related parameters (indices

or features), which are numerical values that correspond to attributes of the segmented

region (e.g. mean pixel/voxel intensity). In the literature, established dynamic perfusion

analyses derive empirical parameters from the CA kinetic (or signal intensity versus time,

see Figure 17), which consists of two time sections or phases: the wash-in (transient or

first-pass) and wash-out (tissue distribution or plateau) phases. Typical parameters that can

be estimated from these curves include: initial up-slope, peak signal intensity, and time-to-

peak, etc. The main challenge for CE analysis is the determination of the best parameter(s)

that can be used to evaluate the object functionality. For example, while transient phase

parameters gives an indication about how the tissue of interest responds to rapid changes

in CA kinetics, the resulting limited temporal sampling of the transient phase leads to

noisy estimates of those parameters. Therefore, it is crucial to extimae new indices using

a large number of data points in order to better characterize tissue perfusion. This can be

achieved by calculating the total area under the curve and the average of signal change

during the more slowly varying phase (plateau or tissue distribution phase, see Figure 17).

For accurate analysis of CE images it is therefore important to estimate parameters from

both wash-in and wash-out phases to completely describe the whole agent kinetic curve.

In addition, the fusion between the estimated parameters, using appropriate weights, is of

great importance for a more robust characterization of tissue perfusion. The augmentation

of multiple parameters is expected to increase the accuracy of CAD decision.

In this dissertation the aim is to address the above-mentioned shortcomings and

discrepancies of motion correction and organ segmentation for accurate analysis of CE

medical images. In order to achieve this, comprehensive mathematical models for the

segmentation and motion correction techniques are proposed. In particular, two novel seg-

mentation models are developed for precise segmentation of the organ from CE data. First,
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a geometric (level set-based) deformable model is proposed for the segmentation of the

medical structures from the CE images, in which the evolution is constrained by a novel

stochastic force that counts for an adaptive probabilistic shape model and appearance fea-

tures of the organ (e.g., kidney) in terms of pixel-wise image intensities and their spatial

interactions. Experiments, presented in Chapters III and IV, confirm that the proposed

segmentation approach has superior results in segmenting the kidney tissues as well as

the LV boundaries of the heart. The second segmentation model is a maximum A poste-

riori (MAP)-based approach aimed at accurate segmentation of different organs from CE

medical images. The proposed segmentation approach is based on the integration of statis-

tical approaches (the first- and second-order appearance models and a probabilistic shape

of the object of interest) into a log-likelihood function for the purpose of segmentation.

The experiments presented in Chapter V demonstrate promising results of the proposed

approach in segmenting the prostate tissue from DCE-MRI. The preliminary results of the

proposed segmentation approaches confirm the benefits of these models and encourage ap-

plying them in other applications.

In addition to the proposed segmentation models, this work proposes a novel non-

rigid registration approach for the local motion correction of medical structures. The pro-

posed approach exploits geometric features, rather than image intensities in order to avoid

problems associated with intensity variations over the temporal dynamic contrast agent

data set. Namely, it is based on deforming the medical objects over a set of nested, equi-

spaced contours (i.e., iso-contours) to closely match a reference object. The solution of the

Laplace equation is used to co-allocate the pixel-wise correspondences between the iso-

contours. Both in-vivo and phantom experiments in Chapter III confirm that the proposed

Laplace-based method outperforms well-known literature methods in co-allocation of the

corresponding pixel pairs between the target and reference objects. It is worth mentioning

that the proposed local alignment possesses the ability to provide accurate pixel-on-pixel

matches of the registered data for generating and displaying pixel-wise parametric maps.

Moreover, a new similarity function for nonrigid registration of medical images is

presented, which accounts for both the first– and second–order normalized mutual infor-
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mation (NMI). Unlike the traditional NMI metric that depends solely on the first-order term

(i.e., intensity or grey levels), the proposed similarity metric incorporates a second-order

NMI term (i.e., spatial information). The incorporation of the second-order term increases

the ability of the motion correction approach to capture more features from the CE images,

and therefore can improve the registration accuracy for image frames with significant in-

tensity differences. The proposed similarity metric has been applied for the registration of

the cardiac FP-MRI data, see Chapter IV. Validation on realistic synthetic phantoms of

the heart with different types deformations document the high registration accuracy of the

proposed similarity function compared with the first-order NMI alone.

Finally, in the present work both the transient (time-to-peak, peak signal intensity)

and slowly varying (the signal change index) phase indexes were employed for the analysis

of CE images. Experiments, presented in Chapter III demonstrated that the weighted-

augmentation of perfusion parameters leads to more accurate diagnosis of the transplanted

kidney status when compared with individual indexes.

D. BROADER IMPACT OF THE PROPOSED RESEARCH IN THE U.S. AND
WORLDWIDE

The goal of this work is to develop computationally flexible, and feasible mathe-

matical models for efficient analysis of contrast-enhanced medical images. The proposed

models in this dissertation are based on higher-order Markov-Gibbs random field models,

shape models, motion correction models, and perfusion analysis models, that are essential

in developing CAD systems for early detection of a variety of diseases and medical condi-

tions. The developed models and learning techniques has been successfully tested on, but

not limited to, three case studies of the kidney, heart, prostate. The work presented in this

dissertation and the obtained results is expected to notably amplify the accuracy of CAD

decisions based on the automated analysis of CE images, which is expected to substan-

tially benefit research and healthcare in the U.S. and worldwide by providing noninvasive

technology.
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E. DISSERTATION ORGANIZATION

This dissertation consists of six chapters. The following remarks summarize the

scope of each chapter:

• Chapter I presents some basic concepts about medical images and CE images. A

brief summary of the basic contributions of the proposed research for analyzing CE-

images and the clinical applications are also outlined.

• Chapter II overviews the existing methods for the analysis of dynamic contrast-

enhanced magnetic resonance imaging (DCE-MRI) and outlines their strengths and

weaknesses. Additionally, the state-of-the-art clinical applications and findings using

these computational methods are covered.

• Chapter III presents a novel image-based framework in renal application for accurate

and early detection of acute renal transplant rejection after kidney transplantation

using DCE-MRI.

• Chapter IV presents a comprehensive, noninvasive framework in cardiac application

for the improved visualization of myocardial transit of a CA using first-pass perfusion

MRI (FP-MRI), including the ability to depict regional and transmural effects.

• Chapter V presents a novel, noninvasive framework in prostate application for early

detection of prostate cancer using DCE-MRI.

• Chapter VI concludes the work and outlines the future directions.
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CHAPTER II
MODELS AND METHODS FOR ANALYZING DCE-MRI: A SURVEY

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) allows for

noninvasive quantitative analysis of contrast agent (CA) transient in soft tissues. Thus it is

an important and well-established tool to reveal microvasculature and perfusion in various

clinical applications. For the last three decades, a host of nonparametric and parametric

models and methods have been developed in order to quantify the CA’s perfusion into

the tissue and estimate perfusion-related parameters (indexes) from signal enhancement or

concentration-time curves. These indexes are widely used in various clinical applications

for the detection, characterization, and therapy monitoring of different diseases, such as

breast and prostate cancer, renal rejection, liver tumors, etc. This chapter reviews most

popular nonparametric and parametric approaches to analyze DCE-MRI data, discusses

their strengths and weaknesses, and outlines state-of-the-art clinical applications of and

findings from these approaches.

A. INTRODUCTION

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a special-

ized MR technique that has the ability to provide superior information about the anatomy,

function, and metabolism of the tissues [27]. Dynamic MRI is widely explored in many

clinical studies for noninvasive detection, characterization, and therapy monitoring of dif-

ferent diseases, heart failure, breast and prostate cancer, renal rejection, liver tumors, etc.

In, DCE-MRI a tracer, or a CA is injected into the blood stream and then a time series

of MR images of the same organ is acquired with fast imaging techniques. MR signal in-

tensities in volume elements (voxels) of a target tissue under the measurement change in

proportion to a CA’s concentrations. Examples of cross-sectional DCE-MRI time series of
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the heart, kidney, and prostate are shown in Figure 9.

Due to its ability to describe organ functionality in addition to the anatomy, DCE-

MRI has been widely investigated in perfusion-related studies in many clinical applications,

e.g., in evaluation of the kidney, heart, breast, and prostate. Parameters of the CA’s deliv-

ery to a tissue of interest can be derived from DCE-MRI shortly (up to about two min)

after the administration of the CA, e.g., gadolinium [81]. Kinetics (spatial and temporal

distributions) of the CA transit depend heavily on the tissue perfusion, vessel permeability,

and volume of the extracellular and extravascular space (EES). Following the CA admin-

istration, the perfusion can be depicted using changes over time in the recorded MR signal

intensity, S(t). A typical time varying signal S(t) shown in Figure 22 demonstrates that

the tissue intensity rises at the bolus arrival (wash-in), reaches its maximum, and then de-

creases slowly afterwards (wash-out). Such an S(t)-curve allows for deriving or estimating

perfusion-related indexes (parameters) of the tissue’s vascularization. The next sections

detail and discuss most popular approaches for analyzing S(t).

B. TECHNIQUES FOR ANALYZING DYNAMIC MRI

Traditional DCE-MRI analysis is based on subjective evaluation by an experienced

observer of signal enhancement curves in voxels or a region-of-interest (ROI) and asso-

ciates each curve with one out of a small number of predefined shape categories (see e.g.,

Figure 23). Although this approach is most intuitive [82], it is prone to errors due to ex-

pert’s experience and bias, and provides no quantifiable indexes (like a rate of tracer uptake

or wash-out) and measurements of tissue perfusion and permeability. Therefore, other

quantitative methods have been proposed for the analysis of DCE-MRI.

This chapter focuses on the two most well-known groups of approaches to quantita-

tively analyze DCE-MRI, namely, nonparametric (model-free) and parametric (analytical)

ones. The nonparametric approaches derive empirical parameters (indexes) that character-

ize the shape and structure of the S(t). Typical examples of these parameters are shown

in Figure 22. Straightforward and simple definitions and computations of these empirical
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FIGURE 22: Typical S(t) curve showing the time points that quantifies the CA’s dynamics

and results in different metrics that qualitatively characterize the agent’s perfusion: the

onset time (To), time-to-peak (TP ), peak signal intensity, wash-in slope (initial up-slope),

wash-out slope (down-slope), area under the curve (AUC), and initial area under the curve

(IAUC). Note that S0 is the intensity before the adminstration of CA and Tmax is the time

period of the MR experiment.

parameters are their main advantages. The empirical indexes correlate with the physiol-

ogy of the organ as evidenced by their change with diseases (e.g., cancer, renal rejection);

however, it is difficult to estimate the physiological quantities of the tissue, such as vas-

cular permeability and blood flow, directly from these empirical indexes. The parametric

approaches, on the other hand, aim to estimate kinetic parameters directly by fitting one

out of several well-known pharmacokinetic (PK) models to the concentration curves. The

PK models are potentially able to extract a set of kinetic parameters, which are physiolog-

ically interpretable, e.g., the EES volume and capillary permeability [83]. However, the

underlying assumptions of each PK model may not be applicable to all types of tissues or
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tumors. Therefore, the choice of a PK model depends on the clinical application [84]. The

key point of the PK modeling is the accuracy of estimating the CA concentration in the

blood plasma, which is known as the arterial input function (AIF).

FIGURE 23: Different enhancement patterns: Type I – a progressive signal intensity (S(t))

increase during the experiment; Type II – an initial peak followed by a relatively constant

enhancement (no wash-out), and Type III – a sharp uptake followed by an enhancement

decrease over time (wash-out).

The nonparametric approaches are suited more to a fast and simple noninvasive

image-based diagnostics, whereas the parametric ones support studying the CA kinetics in a

certain tissue or organ when physiological parameters of the underlying tissue are required.

Strengths and weaknesses of the popular nonparametric and parametric approaches for

analyzing the dynamic MRI, together with various clinical applications and findings using

these methods, are discussed below.
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C. NONPARAMETRIC DCE-MRI ANALYSIS

The first category for the analysis of CA perfusion is based on nonparametric or

model-free techniques. The established nonparametric dynamic perfusion analysis of ex-

tracellular extravascular CA, such as gadolinium, measures empirical indexes directly from

S(t). The perfusion-related measurements, shown in Figure 22, include the onset (lag, or

arrival) time, peak signal intensity, wash-in slope (maximum or initial up-slope) [81], wash-

out slope (down-slope) [85], maximum intensity time ratio (MITR) [86], time-to-peak, and

others, which are defined as follows:

To – the onset (lag or bolus arrival) time of an enhancement curve, i.e., the time from the

CA injection to the appearance of contrast in the tissues.

Sm = max
t
S(t) – the maximum signal intensity (peak enhancement) of a given time-

varying signal S(t).

∆S = Sm − So – the peak (maximal absolute) enhancement of a given signal S(t), i.e.,

the difference between the maximum (Sm) and baseline (So intensities.

∆S
So

– the relative signal intensity (RSI) or peak enhancement ratio (PER), i.e., the

relative peak enhancement.

TP – the time-to-peak, i.e., the time before the CA circulating in the blood reaches its

highest value during the first-pass cycle.

T90 – the time before the CA circulating in the blood reaches 90% of the maximal signal

intensity.

△S
TP

– the maximum intensity time ratio (MITR), i.e., the ratio between the peak en-

hancement ∆S and the time-to-peak TP . Also, the normalized MITR (nMITR), △S
SoTP

,

is used.

– the wash-in slope (the maximal or initial up-slope), △S
(TP−To)

, i.e., the slope of the line

connecting the baseline (So) and the peak intensity (Sm) points:
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– the wash-out slope (down-slope), i.e., the slope of the line connecting the peak intensity

Sm and the last point of the signal curve.

– the average plateau, i.e., the average signal change during the tissue distribution (wash-

out) phase, starting at approximately 30 sec after the CA injection and extending to

approximately two minutes (min) for peripheral injections [87].

– the area under the curve (AUC), i.e., the area under the S(t) curve (relative or ab-

solute). Some methods use the area under the S(t) curve for a time point t (e.g.,

AUC60, AUC90, etc.) and the area under the initial uptake portion of the curve, called

the initial AUC (IAUC).

However, the CA kinetics change rapidly during the transient phase of the CA tran-

sit, so that the limited temporal sampling results in the noisy measurements. To overcome

this problem, the perfusion can be characterized using a large number of data points over

the signal intensity time series. This can be achieved by calculating the total AUC and

the average signal change during the more slowly varying phase (plateau or tissue distribu-

tion), as shown in Figure 22. In the case of peripheral injections, the plateau phase starts at

approximately 30 seconds (sec) and effectively extends to approximately two min [87].

Obvious advantages of the nonparametric DCE-MRI analysis include (i) less com-

plicated and time-consuming acquisition requirements (e.g., no AIF measurement is re-

quired), (ii) parameter estimation is performed directly from the S(t)-curves without con-

verting them into CA concentrations, and (iii) possibilities to completely describe the S(t)-

curve with a large set of measurements (see Figure 22). However, since the analysis is

based on the signal intensity, MR acquisition parameters and scanner type and settings can

influence the measurements. Comparisons of results obtained at different times and/or at

different sites are also difficult unless totally identical settings are used [88]. Although the

nonparametric analysis cannot derive physiological information (e.g., vascular permeabil-

ity and blood flow) directly from S(t), there exists a correlation between the curve-related

measurements and the underlying physiology. For example, the increased wash-in slope,
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AUC, and peak enhancement and the decreased time-to-peak are likely related to an im-

proved response to therapy or increased vascular density and/or vascular permeability.

1. Clinical Applications of Nonparametric Approaches

The promise of DCE-MRI as a new diagnostic modality and the feasibility of the

nonparametric analysis of perfusion MRI for developing noninvasive CAD systems were

investigated in various clinical studies. These studies try to correlate DCE-MRI mea-

surements with diseases. The early DCE-MRI-based diagnosis was explored in different

clinical studies, including head and neck [89], cardiac [90–98], pelvic [99], rectal [100],

pancreatic cancer [101], liver [102], lung [103], colon [104], breast [52, 56, 105–117], re-

nal [3, 118–129], and prostate [75, 77, 130–140], applications. Recent applications of the

nonparametric DCE-MRI analysis and their findings for the assessment of heart disease,

kidney function, and prostate and breast cancers are overviewed below.

Ischemic heart disease is the most common cause of heart failure, which affects

approximately 6 million US patients annually [63]. Therefore, detecting precursors to pre-

vent progression to end-stage disease is of important clinical concern. The nonparametric

DCE-MRI analysis has been used for the assessment of myocardial perfusion in patients

with heart diseases in [90–98]. Schwitter et al. [90] detected and sized the compromised

myocardium by using MRI, comparing with quantitative measures of coronary angiogra-

phy and positron emission tomography (PET). The up-slope index was used to measure the

myocardial perfusion. According to their results, the MRI measurements could reliably de-

tect and quantify perfusion deficits in patients with the coronary artery disease, even when

perfusion abnormalities were confined to the subendocardial layer. Ibrahim et al. [91] mea-

sured in a similar way the coronary flow reserve (CFR) defined as the stress-to-rest ratio of

the maximal up-slope and myocardial peak signal intensity indexes. The MRI-based CFR

was underestimated with respect to the PET-based one. A semi-automated approach by

Positano et al. [92] characterized the myocardial perfusion in patients with suspected coro-

nary artery diseases using the wash-in slope, the time-to-peak, and the peak signal intensity
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for a number of user-defined equiangular sectors. Semi-automated evaluation of regional

myocardial perfusion by Tarroni et al. [98] quantified the perfusion regionally with the peak

signal intensity, the initial up-slope, and the product of the amplitude and the slope. The

up-slope index had the highest diagnostic accuracy compared to a coronary angiography

reference for the presence of obstructive coronary artery disease. An automated assess-

ment of cardiac perfusion in patients with acute myocardial infarction by Ólafsdóttir et

al. [93] used parametric maps of three perfusion-related indexes (the maximum up-slope,

the time-to-peak, and the peak value) to reveal severe perfusion deficit across the myocar-

dial wall. A similar approach by Xue et al. [94] employed the scale-space theory and the

non-maximal suppression [141]. A framework for evaluating the perfusion indexes for

normal and ischemic myocardium was proposed by Su et al. [95]. The segment-wise ra-

tio of the maximum up-slope (i.e., the up-slope at stress) to the up-slope at rest using the

17-segment model [6] differentiated between ischemic and non-ischemic myocardium. In

addition to studying ischemic heart diseases, the dynamic MRI was also employed for eval-

uating the follow-up on therapy. Khalifa et al. [96, 97] analyzed the myocardial first-pass

MRI of patients with ischemic damage from heart attacks who were undergoing a stem cell

myoregenrataion therapy. The perfusion was quantified using pixel-wise perfusion-related

maps of the peak signal intensity, time-to-peak, initial up-slope, and average plateau in-

dexes. The derived perfusion maps demonstrated the ability to show regional perfusion

differences and improvements with treatment, including transmural effects.

Breast cancer is one of the most common female malignancies worldwide that ac-

counts in total for more than 20% of new cancer cases and about 15% of cancer deaths [71].

Therefore, its early detection, diagnosis, and treatment are of prime importance. The accu-

racy of early detection and/or diagnosis using the nonparametric DCE-MRI measurements

has been tested and improved in a number of CAD systems [52, 56, 105–117]. An approach

for the extraction and visualization of perfusion parameters of breast DCE-MRI was pro-

posed by Glaßer et al. [105]. To reveal the most suspicious region and the heterogeneity

of the tumor, their study employed voxel-wise parametric maps of relative enhancement of

breast tumors. Karahaliou et al. [106] investigated the feasibility of discriminating between
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the malignant and benign breast tumors by texture analysis. Discriminatory features quanti-

fying the heterogeneity of the lesion enhancement kinetics were obtained from the maps of

three indexes (Sm, measured for the first three min after the CA injection; (Sm−Sfinal)/Sm,

and the signal enhancement ratio, (Sm − S0)/(Sfinal − S0), see Figure 22). Discriminating

abilities of the texture features were investigated using the minimum least-squares distance

classifier. Abramson et al. [107] characterized the breast lesions as benign or malignant

with three metrics: the lesion volume, the percentage of the lesion volume demonstrating

enhancement (assessed by a radiologist), and an enhancement kinetic index calculated from

the voxels with either ≥ 50%- or ≥ 100%-increase of intensity over the baseline following

the CA injection. The ability to discriminate between the types of tumors was obtained

after one cycle of neoadjuvant chemotherapy (NAC). The NAC reduces cancer burdens for

patients before surgery and allows for an earlier treatment of cancer cells [142]. To im-

prove the diagnostic performance of the Type II enhancement curves of the breast, Fusco

et al. [108] used the difference between the percentage enhancement at the last time point

and the peak percentage enhancement as a discriminatory feature. In addition to the breast

cancer detection and diagnosis, the nonparametric DCE-MRI based evaluation and follow-

up on treatment have been also explored [56, 109–111]. Martincich et al. [109] predicted

histological responses in patients undergoing primary chemotherapy for breast cancer us-

ing the total lesion volume, the pre-contrast uptake (the signal intensity over the baseline

normalized by the baseline intensity), and the enhancement pattern categorized into Types

I, II and III, shown in Figure 23. A similar study by El Khoury et al. [110] for patients

with breast cancer under preoperative chemotherapy quantified the tumors using the wash-

out variation maps (i.e., the maps of the difference between Sfinal and Sm of the dynamic

series in each voxel, see Figure 22). The nonparametric MRI-based indexes were used by

Johansen et al [56] for the early prediction of the response to the NAC and the five-year

survival for patients with locally advanced breast cancer. In the baseline DCE-MRI study,

which was performed prior to the start of therapy, the patients surviving for more than five

years had significantly less heterogeneous RSI distribution than the non-survivors. The use-

fulness of DCE-MRI in analyzing and predicting the survival of the breast cancer patients

35



has been demonstrated also by Tuncbilek et al. [111].

Renal diseases, including cancer, artery stenosis, and transplant rejection, can also

be diagnosed with the nonparametric DCE-MRI techniques [3, 118–129]. A semi-automated

framework by Ho et al. [118] evaluated renal lesions, which were identified manually by

observers, with a percentage of the enhancement ratio between the pre- and post-contrast

signals in each set of images. A 15% threshold was used to distinguish between cysts and

solid renal lesions. All malignancies were accurately diagnosed between two min and four

min after administering the CA (100% sensitivity for true tumors and 6% or fewer false-

positive tumor diagnoses). Michaely et al. [119] assessed the feasibility of the renal MR

perfusion for grading renal artery stenosis effects on parenchymal perfusion. The gamma

variate function [143] was used to describe the transient (first pass, or wash-in) phase of

the time varying signal S(t). Then perfusion-related indexes after agent bolus, such as the

mean transit time (MTT), the maximal up-slope, the maximum signal intensity, and the

time-to-peak, were calculated from the fitted S(t). The evaluated perfusion reflected the

renal function measured with serum creatinine in a cohort of 73 patients. The peak signal

intensity, the MTT, the initial up-slope, and the time to peak were also used to analyze the

perfusion by Positano et al. [120]. Other research groups have exploited DCE-MRI for

early detection of the renal rejection following the kidney transplantation [3, 121–129]. A

DCE-MRI based CAD system for early diagnosis of the acute renal transplant rejection

proposed by Farag et al. [122] and El-Baz et al. [123, 125] classified the kidney status of

each patient using four indexes: the peak signal intensity, the time-to-peak, the wash-in

slope, and the wash-out slope, calculated from the MRI signal for the kidney cortex. Sim-

ilar approaches, but with the perfusion curves for the whole kidney, rather than only the

cortex, were proposed in [126, 127]. The latter CAD system was tested on 100 patients.

A novel nonparametric MRI-based technique by Khalifa et al. [128] for analyzing the kid-

ney perfusion accounts for kidney deformations in order to accurately calculate indexes for

classifying the transplanted kidney status and evaluating the acute renal transplant rejec-

tion. The kidney status is characterized by both the transient phase indexes (the peak signal

intensity, the initial up-slope, and the time-to-peak) and the tissue phase signal change in-

36



dex (the average plateau). This technique was extended in [129] by applying a simplified

gamma variate fit [144] to the S(t)-curves.

Prostate cancer is the most frequently diagnosed male malignancy and the sec-

ond leading cause (after lung cancer) of cancer-related death in the USA with more than

238,000 new cases and a mortality rate of about 30,000 in 2013 [71]. Early diagnosis im-

proves the effectiveness of the treatment and increases the patient’s chances of survival.

The nonparametric DCE-MRI analyses have been widely used to identify and classify

prostate cancer [75, 77, 130–140]. Engelbrecht et al. [130] separated cancerous and nor-

mal prostate tissues in the peripheral zone (PZ) and central zone (CZ) by combining the

T2-relaxation rate with DCE-MRI indexes, calculated from the concentration curves, rather

than the S(t)-curves. According to receiver operating characteristics (ROC), the relative

peak enhancement index was the best for discriminating the prostate carcinoma in the PZ

and CZ. Noworolski et al. [131] used DCE-MRI data to classify the prostate tissues into

cancerous or normal PZ and stromal benign or glandular hyperplasia. Capabilities of the

DCE-MRI indexes in diagnosing the benign and malignant prostate tissues were evaluated

by Ren et al. [132], who also investigated relationships between characteristics of the S(t)-

curves and angiogenesis. Their studies confirmed that DCE-MRI and histological findings

are correlated. DCE-MRI based CAD systems introduced by Puech et al. [133, 134] and

Firjani et al. [75, 77] classified the prostatic tissue using the wash-in and wash-out slopes

derived from the S(t)-curves. Isebaert et al. [138] evaluated the correlation to histopathol-

ogy of nonparametric DCE-MRI characteristics, such as the time-to-peak, the maximal

signal enhancement, the wash-in slope, and the clearance rate of the CA (the wash-out), for

detecting prostate carcinoma and separating malignant and benign prostate tissue regions.

According to this study, the wash-in slope is the most accurate separator of the malig-

nant and benign tissues. Niaf et al. [139] developed a CAD system using multiple MRI

data (namely, the T2-weighted MRI, DCE-MRI and DWI-MRI) to diagnose prostate can-

cer in the PZ. Four supervised classifiers of malignant and benign tissues were compared:

a nonlinear support vector machine (SVM), the linear discriminant analysis, a k-nearest

neighbor, and a naı̈ve Bayes one, combining image intensity, texture, and gradient with
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functional features (e.g., PK features, peak intensity, and the wash-in and wash-out slopes).

In addition to cancer detection and classification, DCE-MRI facilitated prostate cancer ther-

apy evaluations. Haider et al. [135] compared the DCE-MRI diagnostic accuracy with the

conventional T2-weighted MRI for detecting and localizing the recurrent prostate cancer in

the PZ for patients with biochemical failures after the external beam radiotherapy. A DCE-

MRI based voxel-enhancement criterion at 46 sec after the CA injection outperformed the

T2-weighted MRI. A similar study was conducted by Casciani et al. [136] to detect the lo-

cal cancer recurrence after radical prostatectomy using the combined endorectal MRI and

DCE-MRI. Multivariate analysis of magnetic resonance spectroscopy (MRS) imaging and

DCE-MRI was used by Valerio et al. [137] to differentiate between various prostate dis-

eases, such as chronic inflammation, fibrosis and adenocarcinoma. Capabilities of DCE-

MRI in staging the prostate cancer were investigated in [140]. To separate the stage 2 and

stage 3 prostate carcinoma, four perfusion-related indexes have been calculated from the

concentration curves of the dynamic MRI data instead of the S(t)-ones, just as in [130]. A

summary of the studies covered in this section and their findings is given in Table 1.

TABLE 1: Recent studies for nonparametric analysis of DCE-MRI. Note that DIM and AL
stand for data dimension (i.e., 2D, 3D, or 4D) and the automation level (i.e., automated or
semi-automated), respectively

Study DIM, AL, and Data Tissue of Interest MRI Parameters
Schwitter et
al. [90]

• 2D
• Semi-automated
• 66 subjects (18

volunteers and 48
patients)

• Heart • Up-slope

Ibrahim et
al. [91]

• 2D
• Semi-automated
• 45 subjects (20

volunteers and 25
patients)

• Heart • Peak signal intensity (over the base-
line)

• Up-slope

Postiano et
al. [92]

• 2D
• Automated
• 10 patients (70

image sequences)

• Heart • Peak signal intensity
• Time-to-peak
• Wash-in slope

Ólafsdóttir
et al. [93]

• 2D
• Automated
• 10 subjects

• Heart • Peak signal intensity
• Time-to-peak
• Maximum up-slope

Continued on next page . . .
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TABLE 1 – continued from previous page
Study DIM, AL, and Data Tissue of Interest MRI Parameters
Su et al. [95] • 2D

• Automated
• 42 subjects

• Heart • Maximum up-slope
• Up-slope ratios

Xue et
al. [94]

• 2D
• Automated
• 260 perfusion

time series

• Heart • Peak signal intensity
• Time-to-peak
• Maximum up-slope

Tarroni et
al. [98]

• N/A
• Semi-automated
• 42 subjects

• Heart • Peak signal intensity
• Initial up-slope
• Product of the amplitude and slope

Khalifa et
al. [96, 97]

• 2D
• Automated
• 24 data sets

• Heart • Peak signal intensity
• Time-to-peak
• Initial up-slope
• Average plateau.

Martincich
et al. [109]

• 3D
• Automated
• 30 patients

• Breast • Total lesion volume
• Early contrast uptake
• S(t)-curve pattern type

El Khoury
et al. [110]

• 3D
• Semi-automated
• 33 patients

• Breast • Wash-out variation (Sfinal − SP )

Johansen et
al. [56]

• 3D
• Semi-automated
• 24 patients

• Breast • RSI in each voxel,
• S(t)-curve pattern type

Karahaliou
et al. [106]

• 3D
• Semi-automated
• 74 subjects

• Breast • Initial enhancement
• Post-initial enhancement
• Signal enhancement ratio

Glaßer et
al. [105]

• 3D
• Semi-automated
• 5 data sets

• Breast • Peak enhancement
• Time-to-peak
• Up-slop
• Wash-out slope
• AUC

Tuncbilek et
al. [111]

• 2D
• Semi-automated
• 49 subjects

• Breast • Maximal relative enhancement within
the first minute

• Maximal relative enhancement of the
entire study

• Steepest slope
• Time-to-peak

Abramson
et al. [107]

• 3D
• Automated
• 21 patients

• Breast • Total lesion volume
• Early contrast uptake
• S(t)-curve pattern type

Fusco et
al. [108]

• 2D
• Semi-automated
• 44 patients

• Breast • Difference between the percentage-
enhancement at the last time point and
the peak percentage-enhancement

Ho et
al. [118]

• 2D
• Semi-automated
• 74 patients

• Kidney • Percentage enhancement ratio:
SIpost−SIpre

SIpre
%

Farag et
al. [122] and
El-Baz et
al. [123, 125]

• 2D
• Automated
• 30 data sets

• Kidney • Peak signal intensity
• Time-to-peak
• Wash-in slope
• Wash-out slope

Continued on next page . . .

39



TABLE 1 – continued from previous page
Study DIM, AL, and Data Tissue of Interest MRI Parameters
El-Baz et
al. [126, 127]

• 2D
• Automated
• 100 data sets

• Kidney • Peak signal intensity
• Time-to-peak
• Wash-in slope
• Wash-out slope

Michaely et
al. [119]

• 2D
• Automated
• 73 patients

• Kidney • Mean Transit time (MMT)
• Maximum signal intensity
• Time-to-peak
• Maximum up-slope

Positano et
al. [120]

• 2D
• Automated
• 20 subjects

• Kidney • Peak signal intensity
• Time-to-peak
• Mean transit time (MTT)
• Initial up-slope

Khalifa et
al. [128]

• 2D
• Automated
• 50 data sets

• Kidney • Peak signal intensity
• Time-to-peak
• Initial up-slope
• Average plateau

Khalifa et
al. [129]

• 2D
• Automated
• 50 data sets

• Kidney • Time-to-peak
• Average plateau
• Gamma-variate parameters

Engelbrecht
et al. [130]

• 3D
• Automated,
• 58 image se-

quences

• Prostate • Onset time
• Time-to-peak
• Peak enhancement
• Relative peak enhancement
• Wash-out,
• T2 relaxation rates.

Noworolski
et al. [131]

• 3D
• Semi-automated
• 25 patients

• Prostate • Peak signal intensity
• Time to 90%peak
• Initial up-slope
• Wash-out slope

Fütterer et
al. [140]

• 3D
• N/A
• 124 patients

• Prostate • Onset time
• Time to peak
• Peak enhancement
• Wash-out slope

Ren et
al. [132]

• N/A
• Automated
• 50 patients

• Prostate • Peak enhancement
• Time-to-peak
• Enhancement rate (up-slope)

Haider et
al. [135]

• 3D
• N/A
• 33 patients

• Prostate • Voxel-enhancement at 46 sec after CA
injection to a greater degree than the
mean signal intensity of the prostate at
618 sec

Casciani et
al. [136]

• 2D
• N/A
• 51 patients

• Prostate • Initial signal increase over the baseline
(90 sec after CA injection)

• Post-initial signal increase over the
baseline (90–325 sec after CA injec-
tion)

Valerio et
al. [137]

• 2D
• Semi-automated
• 51 patients

• Prostate • Onset time
• Time-to-peak
• Peak enhancement

Puech et
al. [134]

• 3D
• Semi-automated
• 100 patients

• Prostate • Wash-in slope
• Wash-out slope

Continued on next page . . .
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TABLE 1 – continued from previous page
Study DIM, AL, and Data Tissue of Interest MRI Parameters
Firjani et
al. [75, 77]

• 3D
• Automated
• 21 data sets

• Prostate • Wash-in slope
• Wash-out slope

Isebaert et
al. [138]

• 3D
• Semi-automated
• 53 subjects

• Prostate • Time-to-peak
• Maximal contrast enhancement
• Wash-in slope
• Clearance rate of the CA (Wash-out)

Niaf et
al. [139]

• 3D
• Semi-automated,
• 30 subjects

• Prostate • Image features (grey-level, texture,
and gradient features)

• Functional features (onset time, time-
to-peak, peak value, 95% of peak
value, time to max, AUC, and wash-in
and wash-out slopes)

• parametric features (K trans, kep, and
vp)

D. PARAMETRIC DCE-MRI ANALYSIS

Parametric approaches fit mathematical pharmacokinetic (PK) models to the dy-

namically acquired tissue concentration curves, so that quantitative tissue parameters (e.g.,

permeability and volume fractions) that are related to vascularity can be estimated. The

pioneering works by Larsson [145], Brix [146], and Tofts [13] for the study of multiple

sclerosis [13, 145] and brain tumors [145, 146] showed the potential promise of the PK

models to better understand the CA perfusion kinetics in human tissue. Later on, these ini-

tial models enabled modeling of the CA kinetics with DCE-MRI and were used to estimate

perfusion and permeability in several clinical studies. Recent PK analyses reveal physio-

logical tissue characteristics by relating the perfusion to the tissue vascular functionality,

which enables measurement of the blood volume and capillary permeability [70].

The literature’s PK models proposed for quantitative analysis of DCE-MRI data

are based on different assumptions and simplifications. The choice of a particular model

for solving a certain clinical problem depends on many factors, including (i) the unique

physiology of the tissue of interest (e.g., brain, breast, or prostate) that governs the CA

behavior; (ii) dominant conditions identifying the MR signal (e.g., fast or limited water

exchange); (iii) whether the depicted anatomy allows for determining an AIF; and (iv) the

temporal MR data resolution needed to accurately capture CA uptake, etc. [147]. The
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dynamic perfusion data analysis involves two main PK models, namely, compartment and

distributed models. The former category includes the Larsson (LM), Brix (BM), Tofts

and Kermode (TK), extended TK (ETK), two-compartment exchange (2CXM), and Patlak

(PM) models, whereas the latter category comprises the distributed-parameter (DP) and

tissue homogeneity (TH) models and its adiabatic approximation or the AATH model.

The compartment PK model proposed originally by Kety [148] describes complex

blood-tissue exchanges of an administered CA with a collection of interacting homoge-

neous components, called compartments. Two assumptions are sufficient to completely

define the CA kinetics: (i) compartments are well-mixed, i.e., the CA concentration is

spatially uniform at any given time within the volume, and (ii) an output CA flux of any

compartment is directly proportional to its concentration. Generally, the larger the num-

ber of compartments, the higher the accuracy of the PK model, but the higher the analysis

complexity [149]. Due to simplicity and small numbers of parameters to be estimated,

the compartment models have gained considerable attention in many clinical investigations

over the past two decades.

The distributed kinetic model [150, 151] is based on a plug-flow model, carrying

an administered CA through a tube by a flow, where all particles travel with the same

velocity. Unlike the compartment models, the distributed ones account for both spatial

and temporal variations of an administered CA. Therefore, these models correspond more

closely to reality, are expected to reflect the underlying physiology more accurately than the

compartment models, and potentially increase modeling accuracy and provide additional

information. However, their higher complexity (in terms of larger numbers of parameters)

requires higher data quality to maintain the accuracy and precision of the estimated model

parameters and thus limits their widespread popularity [152].

Since most of the PK analysis requires the CA concentration in the blood supply,

i.e., measuring or determining a so-called arterial input function (AIF), most popular AIF

determination methods are outlined in the next section.
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1. Arterial Input Function (AIF)

The AIF describing the changes of the CA concentration over time in a blood vessel

feeding the tissue of interest has to be determined or measured for almost all the parametric

DCE-MRI models [153]. However, the true AIF is difficult to be accurately determined or

estimated due to problems including flow artefacts, inflow and non-linear effects of high

CA concentrations, and partial volume effects [14]. The AIF kinetics differ from the tissue

concentration as it is characterized by a sharp uptake, followed by a short-lived peak value,

and subsequently a longer wash-out period. Current techniques to measure or determine the

AIF can be stratified into five groups: the gold standard, population-based, subject-specific,

reference tissue-based, and jointly-estimated AIFs, which are briefly reviewed below.

The gold standard AIF is determined by analyzing blood samples collected during

DCE-MRI acquisition from an arterial catheter inserted into the subject. Larsson et al. [145]

measured the CA amount in a series of blood samples taken at intervals of 15 sec after

a CA bolus injection. The main advantage of this method for AIF determination is the

precise measurement of Cp in each sample over time, i.e., the accurate characterization

of the AIF as a function of time. However, this invasive approach is inconvenient for

patients and its accuracy depends on temporal resolution (the number of samples that can

be collected), especially for depicted small lesions. Additionally, it is unsuitable for some

clinical applications, such as breast DCE-MRI, due to the lack of big vessels in the field of

view.

The population-based AIF is determined by measuring blood samples from a small

group of subjects and using their average measurement for subsequent studies [154]. Tofts

and Kermode [13] used a population-based AIF and described it by a sum of two decreasing

exponentials (see Figure 24 (a)) with parameters estimated by fitting plasma concentration

measurements, taken from control subjects, in the earlier work by Weinmann [154]:

Cp(t) = D
(
a1e

−m1t + a2e
−m2t

)
(1)

where D is the CA dose (mM kg−1); a1 = 3.99 kg and a2 = 4.78 kg are amplitudes of the

exponentials, and m1 = 0.144 min−1 and m2 = 0.011 min−1 are their rate constants [13].
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(a) (b)

FIGURE 24: The population-based arterial input functions (AIF) proposed by (a) Tofts and

Kermode [13] with D = 0.1mM kg−1; and (b) Parker et al. [14]. Different time scales are

used to visualize better the CA uptake and wash-out phases in each AIF.

Parker et al. [14] proposed another population-based AIF where a mixture of two

Gaussian kernels plus an exponential modulated with a sigmoid function (see Figure 24(b))

fits the average of plasma concentration measurements for 23 cancer patients:

Cp(t) =
Be−m1t

1 + e−m2(t−tc)
+

2∑
i=1

ai

σi
√
2π
e
−
(

t−µi
σi

√
2

)2

(2)

where B = 1.050 mM and m1 = 0.1682 min−1 are the amplitude and the decay constant

of the exponential; m2 = 38.078 min−1 and tc = 0.1483 min are the sigmoid width and

center, and a1 = 0.809 mM min, a2 = 0.330 mM min, σ1 = 0.0563 min, σ2 = 0.132 min,

µ1 = 0.170 min, and µ2 = 0.365 min are the scales, widths, and centers of the Gaussian

kernels, respectively.

As demonstrated in Figure 24, the AIF by Parker et al. [14] is closer by kinetics

to the true AIF and therefore is more realistic than the AIF proposed by Tofts and Ker-

mode [13]. The population-based AIFs are widely used in quantitative DCE-MRI studies

due to their simplicity and the fact that no additional MR measurements in other regions

of interest are required [155]. However, ignoring variations of the CA injection rates and

presuming small inter-subject variabilities are their main limitations, which can result in

large errors in both the AIF characterization and subsequent PK analysis.
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The subject-specific, or individual-based AIF is determined from the patient’s DCE-

MRI data [156, 157]. Typically, the MRI signal from a region, which contains a large

feeding artery located near the tissue of interest, is monitored and converted to the CA con-

centration (such a conversion is detailed in Section II.D.2) to directly characterize the AIF.

This approach is a completely noninvasive technique and is expected to closely approxi-

mate the true AIF. However, the required large arterial vessel within the depicted field of

view may not exist if small lesion areas, e.g., breast cancer, are imaged. Also, the accu-

racy of the measured AIF depends on the chosen MRI pulse sequence parameters [158],

namely, the optimization of temporal resolution for determining the AIF accurately could

result in undesirable spatial resolution and signal-to-noise ratio (SNR) [155]. It is worth

mentioning that the AIF obtained from a feeding artery characterizes the whole arterial

blood and must be corrected to account for the hematocrit factor in order to represent the

plasma concentration.

The reference tissue-based AIF [159–162] overcomes limitations of the subject-

specific AIF and inaccuracies of the population-based AIF. Instead of measuring the MRI

signal in a nearby feeding artery or assuming a particular form of the AIF, the CA con-

centration in a well-characterized, healthy reference tissue (e.g., a muscle) is measured to

calibrate signal intensity changes in the tissue of interest. These techniques are stratified

into two groups called the single and multiple reference tissue-based methods, respectively.

The former presume the known PK parameter values for a single healthy reference tissue

and use its CA uptake curve to inversely derive the AIF [159]. However, this assumption

does not necessarily hold due to inter-individual variability of the kinetic parameters [163],

which affects the accuracy and reduces the reproducibility of the results [161]. Addition-

ally, the single reference tissue-based AIF is assumed to be the same for both the reference

tissue (e.g., a muscle) and the tissue of interest (e.g., a tumor). Moreover, single refer-

ence tissue-based AIF is applicable only for simple DCE-MRI modeling, which does not

include the fractional volume of plasma per unit volume of tissue, or vp [164, 165]. The

double [164, 165] and multiple [166, 167] reference tissue-based techniques involve no as-

sumptions about the kinetic parameters in the reference tissue. The multiple reference
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tissue-based AIFs have demonstrated better PK modeling compared with the population-

based ones [166].

The jointly estimated AIF is specified as an acceptable function with adjustable

parameters of blood plasma concentration, which can be jointly estimated with the PK pa-

rameters. No measurements of or assumptions about an AIF are involved. Both the PK and

AIF parameters are jointly adjusted for fitting the tissue CA concentration curve, while the

AIF parameters are tuned for obtaining the best fit [168]. The main advantage is that no

special DCE-MRI protocol for measuring the AIF is required. As shown in [169], the joint

estimation of both the AIF and PK model parameters decreases biases and uncertainties

in the PK estimates compared to a population-based technique. Mono-exponential func-

tions [170] are the simplest AIF forms; however, these simplifications may give significant

errors in the estimated PK parameters [165]. More realistic AIF forms with a large number

of free parameters, like, e.g., Eq. (1), increases the computational cost of DCE-MRI analy-

sis. For example, the Tofts model [171] and the AIF by Parker et al. [14] require in total 12

free parameters (2 for the Tofts model and 10 for the AIF), which makes the search space

for the optimum parameters of the tissue concentration curve in each voxel very big, and

therefore the probability of being trapped in local minima is high. This most recent AIF

determination technique requires additional investigation, similar to the multiple reference

tissue-based approach.

An essential requirement for building a PK model for analyzing DCE-MRI in clini-

cal applications is to convert the measured MR signal intensity (S(t)) into the CA concen-

tration curve. The estimation of the CA concentration from the signal data follows.

2. Estimation of Contrast Agent Concentration

Almost all parametric DCE-MRI analysis calls for determining both the tissue,

Ct(t), and blood plasma, Cp(t), CA concentration curves from the signal intensity or

strength (S(t)). Determination of CA concentrations may not be necessary as long as the

relationship between S(t) and CA concentration is linear and is the same for blood and tis-
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sue. In other words, one could change the scale on which CA concentrations are measured

and it would not change the results for blood flow, permeability surface area products, etc.

However, in most cases, the relationship between S(t) and CA concentration is non-linear

due to the effects of signal saturation at higher CA concentrations [172]. DCE-MRI mea-

sures the CA presence effect on proton relaxation times, T1 and T2, rather than the signal

change from the CA uptake. But since changes in the relaxation times affect the recorded

MRI signal, the S(t)-curve can be transformed into CA concentration curves using the

Bloch’s equations [173] for any MRI sequence.

Typical MRI acquisition techniques include saturation recovery, inversion recov-

ery, spin echo, and gradient echo sequences. A spoiled gradient echo (SPGRE) sequence

is frequently used in gadolinium-diethylene triamine pentacetate (Gd-DTAP) acid-based

studies of the T1-weighted DCE-MRI [155]. This sequence provides high temporal sam-

pling, being adequate to characterize the CA transit, while maintaining an acceptable SNR

and spatial resolution for visualizing the anatomy. The expected signal intensity using an

SPGRE sequence is [174]:

S(t) =M0

exp
(
−TE

T ∗
2

)(
1− exp

(
− TR

T1(t)

))
sin(α)

1− cos(α) exp
(
− TR

T1(t)

) (3)

where M0 is a scaling factor that depends on the scanner gain and proton density; α is

the flip angle; TR is the repetition time (msec), TE is the echo time (msec), and T1 and T2

are the spin-lattice (longitudinal) and spin-spin (transverse) relaxation times, respectively.

In heavily T1-weighted scenarios (TE ≪ T ∗
2 ) the T ∗

2 effect on signal degradation can be

ignored and Equation (3) can be simplified by incorporating the effects of T2, TE and other

scanner parameters into the M0 term, denoted below S0:

S(t) = S0

(
1− exp

(
− TR

T1(t)

))
sin(α)

1− cos(α) exp
(
− TR

T1(t)

) (4)

In theory, the tissue CA concentration, Ct, relates linearly to the time-variant relax-

ation rate [171]:
1

T1(t)
=

1

T10
+ r1Ct (5)
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where the longitudinal CA relaxation coefficient r1 (mM−1sec−1) depends on temperature,

field strength, and chemical structure of the CA [175] and T10 is a so-called native relax-

ation time, i.e., the value of T1 before injecting any CA. To determine the CA concentration,

both T1(t) and T10 essentially have to be calculated. In MR literature, Equation (5) applies

for tissue in the fast exchange limit (FXL) scenarios.

Both S0 and T10 are estimated most frequently by a multiple-angle acquisition, from

images taken before administering the CA at two or more different flip angles [176]. In the

case of two flip angles, α1 and α2, the signal intensities are calculated from the two SPGRE

pulse sequences acquired using these angles. Then, using Equation (3), the ratio,Rα =
Sα2

Sα1
,

of the two measurements allows for finding the T10 value [177]. The T1(t)-curve can be

calculated analytically:

T1(t) = TR

[
ln

(
S1(t) cos(α1) sin(α2)− S2(t) sin(α1) cos(α2)

S1(t) sin(α2)− S2(t) sin(α1)

)]−1

(6)

The multiple flip angle method [178] requires three or more SPGRE signal intensi-

ties Sαi
at different angles αi; i = 3, 4, . . . Rearranging Equation (4) yields a straight line

equation:

Y = mX + S0 (1−m) (7)

where Y =
Sαi

sin(αi)
, X =

Sαi

tan(αi)
, and m = exp

(
−TR

T1

)
represents the slope of the line.

Hence from the Y -against-X plot, the T10 = − TR

ln(m)
value can be calculated. For a more

accurate DCE-MRI analysis and better evaluation of the PK parameters, the estimated T1(t)

and T10 values should be compared with the known ones for different tissues (e.g., muscles,

grey matter, and white matter) to ensure that these estimates are in the acceptable ranges.

Once the AIF is measured or determined, the S(t) is converted to the tissue CA

concentration curve using Equation (5), and the PK model is then used to fit the latter.

The final solution describes the CA concentration, Ct, in terms of various rates and volume

parameters of the PK model used. Strengths and weaknesses of the most common com-

partment and distributed tracer-kinetic models that are used for analyzing DCE-MRI, are

outlined below.
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3. Compartment Models

For the last two decades, many compartment models of various complexities and

under different assumptions have been proposed for quantifying the CA uptake in the tissue.

The well-known compartment models are based on the original Kety’s [148] model that

captures exchanges of blood, which contains the CA, between different compartments.

A two-compartment model, widely used for quantitative analysis of tissue perfusion, is

sketched in Figure 25. Its compartments specify the CA concentrations in the EES and the

blood plasma (intravascular space). An arterial input CA amount,Ca(t), administered to the

system yields a dynamic concentration, Cp(t), in the first compartment, whereas the inter-

compartment exchange of the CA results in a dynamic concentration, Ce(t), in the second

compartment. Inter-compartment exchange rates are governed by forward and backward

volume transfer constants, k12 and k21, respectively, and CA losses from the system are

described by an excretion rate, kel. Since, the parameters k12 and k21 control the CA transfer

from the blood plasma to the tissue, they are related to capillary permeability [171]. The

total tissue CA concentration is as follows: Ct(t) = vpCp(t) + veCe(t) where vp and ve

(0 < vp, ve < 1) are the fractional plasma and EES volumes, respectively. The most popular

compartment models for analyzing the CA perfusion in the tissue are detailed below.

FIGURE 25: Two-compartment model: the function Ca(t) quantifies the arterial input into

the plasma compartment; the peripheral compartment receives the contrast agent (CA) from

and returns it to the plasma compartment at the rates k12 and k21, respectively, and the rate

kel specifies the CA loss from the system.

49



a. The Larsson model (LM) Developed by Larsson et al. [145], it is one of the

earliest kinetic models for analyzing DCE-MRI. In this model, the CA flow between the

blood plasma in the capillary and EES (also called the interstitial water space) is assumed

to be controlled by a single transfer constant kep (min−1) combining three parameters: the

capillary blood flow, Fp; the extraction fraction, E, and the fractional EES volume, see

Figure 26.

FIGURE 26: The Larsson model (LM) for a capillary-tissue system: the blood plasma

flows in the capillary at a rate of Fp and exchanges the contrast agent (CA) with the extra-

cellular and extravascular space (EES) at a rate of kep.

To build the model, the CA concentration in the plasma compartment, Cp(t), is

obtained using the gold standard AIF, namely, by measuring the CA amount in a series of

blood samples taken in 15 sec intervals after a bolus CA injection. The measurements are

then fitted with a sum of three exponentials with the amplitudes ai and time constants mi,

respectively (i = 1, 2, 3):

Cp(t) =
3∑

i=1

aie
−mit (8)

The temporal tissue CA concentration uptake change in the EES compartment is described

using the transfer equation:
dCt

dt
= kep (Cp(t)− Ct) (9)
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which can be solved for Ct using Cp(t) in Equation (8) as follows:

Ct(t) = kep

3∑
i=1

ai
(
e−kept − e−mit

)
mi − kep

(10)

The LM assumes that the MR signal S(t) relates linearly to the CA concentration:

S(t) = S0 +

(
k′(t)

kep

)
Ct (11)

where k′(t) = S′(t)
3∑

i=1
ai

; S0 is the baseline signal intensity before the CA injection, and S ′(t)

is the initial signal slope, or equivalently

S(t) = S0 + k′(t)
3∑

i=1

ai
(
e−kept − e−mit

)
mi − kep

(12)

The LM is applicable under a very limited tissue permeability, i.e., when the permeability

is considerably lower than the flow, and is fully described by the single transfer constant,

kep. The latter can be estimated via optimization, e.g., by the least-squares techniques.

The main limitation of the LM is its assumed negligible contribution of the plasma (in-

travascular space) tracer. Additionally, the work presented in [145] provide only a com-

bined estimation of both permeability and mean extravascular space. However, Larsson

and coworkers provisioned a method that allows for separate estimation of permeability

and ve, which was introduced in [179] using in vitro value of relaxivity, and a measurement

of T10.

b. The Brix model (BM) Proposed by Brix et al. [146], it is one of the most well-

known compartment models for analyzing DCE-MRI. In the Brix model, kinetics of the

CA exchange between the blood plasma and the peripheral (interstitial) EES compartments

are described with several rate and transfer constants, shown in Figure 27. The CA is

administered at a constant rate of kin over a time-span τ , exchanged between the plasma

and EES compartments at kpe (forward) and kep (reverse) transfer rates, and eliminated

from the plasma at a rate of kel. Unlike the LM, which requires a predetermined AIF, for

the BM a particular AIF is taken to be known from the infusion rate (the flux) entering the

body. However, it is not correct to assume that the infusion is the same flux that enters the

tissue compartment in focus.
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FIGURE 27: The Brix model (BM): the CA is administered at a constant rate of kin into

the plasma compartment; exchanged between the two compartments at rates of kep and kpe,

respectively, and eliminated (cleared) from the plasma at a rate of kel.

Relationships between the intravascular and peripheral compartments in the BM are

described using the mass conservation principle [146]:

dCp

dt
=
kin

Vp
(u(t)− u(t− τ))− kelCp(t) (13)

dCt

dt
= kpe

Vp

Ve
Cp − kepCp(t) (14)

where u(t) is the Heaviside step function, and Vp and Ve are the intravascular plasma and

the EES compartment volumes, respectively. Solving Equations (13) and (14) under the

initial conditions Cp(t) = 0 and Ct(t) = 0 for t = 0 gives the following CA concentrations

in the blood plasma and tissue [180]:

Cp(t) =
kin

Vpkel

(
ekelt

′ − 1
)
ekelt (15)

Ct =
kinkpe

Vp(kep − kel)

[
e−kelt

kel

(
ekelt

′ − 1
)
− e−kept

kep

(
ekept′ − 1

)]
(16)

where t′ = t if 0 ≤ t ≤ τ , and t′ = τ if τ ≤ t. To fit the measured signal S(t), the BM

uses three parameters, namely, the CA exchange rate, kep; the elimination rate, kel, and an

additional parameter,ABrix, being an arbitrary constant that depends on the tissue properties
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and the MR sequence parameters. The relationship between the signal S(t) and these free

model parameters at any time is as follows [146]:

S(t)

S0

= 1 +
ABrix

kep − kel

[
e−kelt

kel

(
ekelt

′ − 1
)
− e−kept

kep

(
ekept′ − 1

)]
(17)

where t′ = t if 0 ≤ t ≤ τ and t′ = τ if τ ≤ t. After a CA bolus injection, Equation (17) is

reduced to:
S(t)

S0

≈ 1 + τABrix
(
e−kelt − e−kept

kep − kel

)
(18)

A modified version of the BM proposed by Hoffmann et al. [170] reduces the CA

infusion length to one minute. The after-bolus signal S(t) is fitted by using the following

equation:
S(t)

S0

≈ 1 + kepA
H
(
e−kelt − e−kept

kep − kel

)
(19)

where the amplitude parameter, AH approximately corresponds to the EES size if the CA

relaxation properties, the native T1, and the CA dose do not vary significantly [171].

Although the BM has been widely used due to its simplicity and proved ability to

closely fit the tissue DCE-MRI data, its basic assumption of approximating Cp(t) with a

single exponential function for up to 20 min after the CA injection is seldom supported

by experimental observations [13, 154]. Additionally, the BM provides no direct measure

of capillary permeability and is applicable only under specific permeability-limiting con-

ditions [181]. However, the vasculature permeability can be roughly estimated with the

product of the amplitude parameter, ABrix, and the rate constant, kep [146, 182].

c. The Tofts and Kermode (TK) model The most popular PK model proposed

by Tofts and Kermode (TK) [13] has unified many previous ones and introduced common

characteristic parameters and naming conventions [183]. It assumes that the CA diffuses

from and returns to the blood plasma at rates governed by the forward transfer constant,

K trans (min−1), and the reverse constant, kep (min−1), respectively (see Figure 28).

The tissue CA concentration is derived in the TK from the EES components only,

while the intravascular (plasma) compartment contribution is ignored, i.e., Ct(t) = veCe(t).
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FIGURE 28: Schematic illustration of the CA transfer in the Tofts and Kermode (TK)

model between the central (plasma) compartment and the EES space with the K trans and

kep rates, respectively.

The tissue concentration, Ct(t), is described by the transfer equation:

dCt

dt
= K transCp(t)− kepCt(t) = K trans

(
Cp(t)−

Ct(t)

ve

)
(20)

where kep = K trans/ve. The CA concentration in the plasma, Cp(t), after injection specifies

the AIF and is used as the initial condition to estimate Ct(t). Under the initial conditions

Cp(t) = Ct(t) = 0 at t = 0, Equation (20) has the following solution [183]:

Ct(t) = K trans

t∫
0

Cp(t
′) exp

(
−K

trans

ve

)
(t− t′)dt′ (21)

Alternatively, the TK output, Ct(t), in Equation (21), can be found by using the

convolution theory. Namely, Ct(t) is obtained by the convolution (denoted ⊗) of the input

signal, Cp(t), with the tissue impulse response, HTK(t), i.e., Ct(t) = Cp(t)⊗HTK(t) where

HTK(t) = K trans exp

(
−K

trans

ve
t

)
(22)

A population-based AIF in the original TK [13], described by a sum of two ex-

ponentials (see Equation (1) and Figure 24 (a)) results in the following output Ct(t) of
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Equation (21):

Ct(t) = DKtrans
a1

m1−kep

(
exp

(
−K trans

ve
t
)
− exp (−m1t)

)
+ a2

m2−kep

(
exp

(
−K trans

ve
t
)
− exp (−m2t)

) (23)

where D is the CA dose (mM kg−1 of body mass) and K trans and ve are the TK model free

parameters that determine the shape of the fitted data, and kep = K trans/ve.

Physiologically, K trans is the most important and significant tissue-dependent pa-

rameter in the TK model. It assesses either plasma flow Fp in flow-limited scenarios or

tissue permeability (represented by the tissue permeability-surface area product, PS) in

permeability-limited scenarios for the uptake. In mixed scenarios, it indicates a combina-

tion of flow and permeability properties of the tissue and acts as a lump measure of their

joint effect.

d. Extended Tofts and Kermode (ETK) model The original TK depends on the

two parameters, K trans and ve, and assumes that the tissue is weakly vascularized (vp = 0).

However, this assumption is invalid for many tissues, especially tumors. The generalized

TK [171], known commonly as the extended TK (ETK), includes the intravascular contri-

bution vpCp(t) to the tissue concentration by representing the Ct(t) as:

Ct(t) = vpCp(t) + Cp(t)⊗HTK(t)

= vpCp(t) +K trans
t∫
0

Cp(t
′) exp

(
−K trans

ve
(t− t′)

)
dt′

(24)

where vp is the fractional plasma volume per unit tissue volume. Free ETK parameters,

K trans, ve, and vp, can be estimated by fitting an empirical tissue concentration estimated

from the MRI data by the curve Ct(t) of Equation (24) with a measured or determined

AIF (as described in Section II.D.1). For fitting, the signal intensity is converted to the CA

concentration using Equation (5). Both the TK [13] and ETK [171] are considered the best-

established models for analyzing the T1-weighted DCE-MR images. However, because the

volume transfer constant, K trans, incorporates both the plasma flow and tissue permeability,

these latter parameters cannot be estimated separately. The use of a population-based AIF,

which was originally introduced by Weinmann et al. [154], differs significantly from the

true AIF and is an additional disadvantage of both the models.
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e. Patlak model (PM) Unlike the above PK models, Patlak et al. [184] have

proposed a graphical approach, called Patlak plot, for compartment analysis in order to

estimate the CA transfer constant between the blood plasma and the EES space. The Patlak

model (PM) assumes the reverse vascular transfer constant (kep) from the EES back to the

plasma in Figure 28) and Equation (24) is negligibly small due to low permeability and

short measuring time. This assumption results in the following tissue concentration:

Ct(t) = vpCp(t) +K trans

t∫
0

Cp(t
′)dt′ (25)

where vp is the vascular fraction. The Patlak plot linearizes Equation (25) as:

Y = K transX + vp (26)

where Y = Ct(t)
Cp(t)

and X =

t∫
0

Cp(t′)dt′

Cp(t)
. Estimation of the parameter K trans by constructing

visual linear graphical plots and simple interpretation are the main advantages of the PM.

This linearized graphical analysis has a widespread popularity in certain clinical studies,

such as renal applications [185–188] where K trans is equal to the kidney’s glomerular fil-

tration rate (GFR). However, this model does not take into account the reverse flow (kep);

therefore, its estimates can be highly inaccurate and the analysis results could have some

limitations [189]. Moreover, if the model assumption is violated, the plotted points are not

collinear and the estimation of the parameters is no longer correct [190].

Chen et al. [190] developed an extended graphical PM, which is an intermediate

between the ETK and PM and yields more stable and unbiased estimates of K trans within

short acquisition durations. It expands the ETK by correcting for reflux while retaining the

central PM’s advantages, such as linearity in the parameters estimated, simple graphical

interpretation, and stable fitting procedures. Due to accommodating the CA efflux, the

extended graphical PM became less susceptible to bias [191].

f. Two-compartment exchange model (2CXM) The earlier PK models [13, 145,

146, 171] allowed, in principle, for estimating the volume transfer constant, K trans, that

combines both the blood flow and tissue permeability. A recent more general two-compartment

exchange model (2CXM) [192–194] allows for separate estimation of the permeability,
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PS, and the plasma blood flow, Fp. A block diagram of the 2CXM is schematized in

Fig. 29 and consists of two compartments, namely the intravascular plasma and the EES

compartments. The intravascular compartment experiences an external flow, Fp, of the

plasma and the CA exchanges between both compartments at a symmetric rate of PS.

FIGURE 29: Schematic illustration of the two-compartment exchange model (2CXM).

The CA delivered via arteries to the plasma compartment at an FP rate, is exchanged be-

tween the intravascular plasma and EES compartments at a symmetric rate of PS, and is

eliminated subsequently from the plasma compartment.

Using the mass conservation principle, the CA diffusion between the capillary plasma

and the EES space is described by the coupled system of differential equations [192]:

dCp

dt
=

PS

vp
(Ce(t)− Cp(t)) +

Fp

vp
(Ca(t)− Cp(t)) (27)

dCe

dt
=

PS

ve
(Cp(t)− Ce(t)) (28)

Ct(t) = vpCp(t) + veCe(t) (29)

where Cp(t), Ce(t), and Ca(t), are the intravascular plasma, EES space, and arterial plasma

CA concentrations, respectively. Here vp, and ve are the respective fractional capillary

plasma and EES compartments’ volumes. The Ct(t) is specified by convolving the AIF
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with the tissue impulse response function, multiplied by the blood plasma flow, Fp:

Ct(t) = FpH2CXM(t)⊗ Ca(t) (30)

where the tissue response, H2CXM(t), is found by solving Equations (27) and (28) for the

input delta-function Ca(t) = δ(t) under the initial conditions Cp(t) = Ce(t) = 0 for t = 0

and using Equation (29) [193]:

H2CXM(t) = Be−m1t + (1−B)e−m2t (31)

where B, m1, and m2 relate to the model parameters (Fp, PS, vp, and ve) as follows:

m1 =
1
2

(
a+ b+

√
(a+ b)2 − 4bc

)
m2 =

1
2

(
a+ b−

√
(a+ b)2 − 4bc

)
B = m2−c

m2−m1

(32)

where

a =
Fp + PS

vp
; b =

PS

ve
; c =

Fp

vp
(33)

Generally, most of the well-known PK models can be derived from the 2CXM under

specific assumptions. For example, the ETK model is derived from the 2CXM model

by assuming that the plasma flow is so high such that the time taken for the CA to pass

through the plasma compartment, i.e., the mean transit time (MTT), is negligible. Under

this assumption, the intravascular plasma concentration cannot be distinguished from the

AIF, i.e., Cp(t) ∼= Ca(t).

As the most general compartment model, the 2CXM is gradually becoming popular

for fitting the MRI data in many clinical applications [193–195]. Its main advantage is the

possibility to estimate both the regional blood flow and capillary permeability as well as

the volume fractions of the intravascular (plasma) and interstitial (EES) space [192]. The

main limitation of this and other compartment models is the assumed well-mixed tissue

compartments so that spatial variations of the CA diffusion are not taken into account.

In addition, all the compartment models assume a fast exchange limit regime, which is

not always valid or true, especially for the high CA concentration in the voxel of interest,
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as was recently shown in [196, 197]. The extravascular space is divided in these studies

into two separate compartments, namely, the EES and the extravascular-intracellular space,

and a special shutter speed model is introduced in order to account for a limited water

exchange rate between the compartments [198]. More details about these models can be

found in [196, 197, 199, 200].

4. Distributed Models

The main limitation of the compartment models–the assumed fast CA movement

and even distribution throughout the compartment–makes the CA concentration a function

of time only, but not space. Advanced distributed kinetic models, detailed below, that

account for both temporal and spatial CA concentration distributions [150, 151, 201, 202]

have been introduced for a more precise perfusion data analysis.

a. Distributed-parameter (DP) model The DP model [203] is the first type of

the distributed kinetic models that is based on a plug flow model, which assumes that the

administered CA is carried through a tube by a flow where all particles are traveling with

the same velocity. In contrast to the compartment models, the DP does not assume homo-

geneous (well-mixed) compartments, but accounts instead for a CA concentration gradient

within the plasma and EES compartments making their CA concentrations functions of

both the time and distance along the capillary length (see Figure 30). Within the DP, the

EES is modeled as a series of infinitesimal compartments exchanging the CA with only

nearby locations in the capillary bed [70]. Also, no axial CA transportation (along the

x-direction in Figure 30) is allowed in the EES.

From the mass conservation, the DP can be represented with a system of differential

equations for an elementary volume dx along the axial length L of a capillary tube [203]:

vp
∂Cp(x, t)

∂t
= −LFp

∂Cp(x, t)

∂x
− PS [Cp(x, t)− Ce(x, t)] ; (34)

ve
∂Ce(x, t)

∂t
= PS [Cp(x, t)− Ce(x, t)] (35)

Similarly to the 2CXM, the analytical DP solution is obtained by the convolution of
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FIGURE 30: Schematic illustration of the Distributed-parameter (DP) model. The CA

concentration within the capillary decreases with position (x) along the capillary length

(L), producing concentration gradients between the arterial (x = 0) and venous (x = L)

capillary ends. During the CA passage, some amounts diffuse between the plasma and

EES at a controlled PS rate, so that the plasma, Cp(x, t), and EES, Ce(x, t), concentrations

show both the spatial and temporal dependence.

Ca(t) (the AIF) with the tissue impulse response function, multiplied by the blood plasma

flow, Fp. The latter function is found again by solving Equations (34) and (35) for the

delta-function input of CA [70, 147] as:

HDP(t) = u(t)− u(t− Tc) exp

(
−PS
Fp

)
(1 +Ht’(t)) (36)

where and u(t) is the Heaviside unit step function, Tc =
vp

Fp
is the MMT of the capillary,

and Ht’(t) is defined as

Ht’(t) = PS

t−Tc∫
0

(
1

t′Fpve

)0.5

exp

(
−PS
ve
t′
)
× I1

(
2PS

(
t′

Fpve

)0.5
)
dt′ (37)

where I1(.) is the modified Bessel function [204]. Compared to the compartment models,

the DP is more realistic and makes fewer assumptions about microcirculation. However,

like all distributed kinetic models in general, the DP is computationally more intensive and

requires data with higher temporal resolution in order to derive meaningful results [152].
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b. Tissue homogeneity (TH) model Another distributed-parameter model is the

tissue homogeneity (TH) model that was first described by Johnson and Wilson [150] and

applied in nuclear medicine by Sawada et al. [202]. The TH model is a special case of the

DP assuming the homogeneous (well-mixed) spatial distribution of the CA concentration

within the EES, and therefore, only the time-dependent EES concentration. The TH and

DP equations are identical apart from the x-position-independent EES concentration [150,

205]:

vp
∂Cp(x, t)

∂t
= −LFp

∂Cp(x, t)

∂x
− PS [Cp(x, t)− Ce(t)] ; (38)

ve
∂Ce(x, t)

∂t
= PS [Cp(t)− Ce(t)] (39)

where Cp(t) and Cp(x, t) denote the average CA concentration in plasma and the local CA

concentration at x, respectively [70]. Unlike the DP, the TH has no analytical solution in

the time domain, hindering its widespread applicability for DCE-MRI analysis [151]. The

closed-form model solution exists only in the Laplace space [205]. According to Garpe-

bring et al. [206], the TH solution could be found with the fast Fourier transform. This

approach removes many practical obstacles to using the TH in DCE-MRI analysis [70].

St. Lawrence and Lee [151] found a time-domain TH solution by assuming adia-

batic (slow) changes in the EES compartment with respect to the change rate in the capillar-

ies. Unlike the TH, their model is based on two basic assumptions: the capillary walls are

impermeable to the CA and the EES receives influx with clearance EFp from the venous

capillary end; where the extraction fraction E = 1 − exp
(
−PS

Fp

)
is the intravascular-to-

EES CA fraction extracted in the first CA pass through the capillary bed. The assumptions

lead to the following coupled transfer equations [70]:

vp
∂Cp(x, t)

∂t
= −LFp

∂Cp(x, t)

∂x
; (40)

ve
∂Ce(x, t)

∂t
= EFp [Cp(L, t)− Ce(t)] (41)

where Cp(L, t) is the CA concentration at the venous capillary end. The resulting compact

closed-form solution, called the adiabatic approximation of the TH (AATH), determines
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Ct(t) by convolving the AIF with the tissue impulse response function HAATH(t) [151]:

Ct(t) = FpHAATH(t)⊗ Ca(t) (42)

where

HAATH(t) = u(t) + Eu(t− Tc) exp

(
−
EFp

ve
(t− Tc)

)
(43)

The AATH has four free parameters: Fp, E, ve, and Tc. Also, other physiological

parameters can also be calculated [183]: K trans = EFp, kep =
EFp

ve
, vp = FpTc, and PS =

− Fp

ln(1−E)
. The main advantage of the AATH is a closed time-domain solution, which allows

for estimating the TH parameters from DCE-MRI data. However, the TH estimation is

somewhat difficult and slow even with the AATH, due to a large number of initial guesses

in order to avoid too large parameter values [207]. Also, the increased computational cost

if voxel-wise parametric maps are needed hinders the wider use of the model [206].

5. Clinical Applications of Parametric Models

Over the past two decades several PK models have been developed to capture the

dynamics of the CA perfusing into the tissue. These models are able to extract microvas-

cular characteristics and physiological parameters, such as the fractional blood volume and

permeability, that describe the blood flow (perfusion) in a biological tissue. The PK anal-

yses provide radiologists with additional functional information about the tissue perfusion,

which can facilitate the diagnosis, prognosis, treatment choice, or follow-up on treatment.

The dynamic perfusion data analysis can be performed by using two common types of the

kinetic models, namely, the compartment and distributed ones. The choice of a particular

PK type influences notably the accuracy and precision of the estimated PK parameters [84]

and depends on many factors including the underlying application, and data quality and

structure, e.g., injection protocol, temporal resolution, acquisition time and noise level.

The compartment models have gained a widespread popularity due to their simplic-

ity and a small number of parameters to be estimated. While being introduced initially to

study the blood-brain barrier, they have been used then to analyze DCE-MRI in a wide
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range of clinical applications. In particular, the LM has been applied to study multiple

sclerosis [145], assess heart diseases [208–211], quantify regional myocardial perfusion

in healthy humans [212, 213], and diagnose breast cancer [214, 215]. The BM, which is

particularly attractive since the AIF need not be known a priori [216], has been used to

study the brain [146, 170] and breast tumors [217–220]. It is frequently used to analyze the

contrast uptake patterns in other applications, including intracranial meningiomas [221],

malignant pleural mesothelioma [222], cervical cancer [223] and its chemoradiotherapy

outcome [216], colorectal [224] and liver tumors [225], prostate diseases [180, 226–229],

and recently, bone perfusion [182].

The most straightforward to interpret are the TK and ETK models, which have been

extensively applied to characterize the brain [48, 230–233]), lung [234, 235], breast [51,

53–55, 197, 236–240], prostate [163, 241–254], liver [225], and colorectal [57, 255–257]

tumors. These models have also shown promise in a variety of other clinical applications,

such as renal carcinoma [258], rheumatoid arthritis [259, 260], quantification of myocar-

dial blood flow (MBF) [261, 262], nasopharyngeal carcinoma [263], arterial occlusive dis-

ease [264] and carotid atherosclerotic plaque [191, 265], hepatocellular carcinomas [266],

and tumor heterogeneity analysis [57, 58, 267]. New fields, such as assessment of preopera-

tive oral cancer therapy [60], pancreatic [59] and cervical cancer [167, 194, 216, 268, 269],

head and neck cancers [270–274], and cardiac diseases [275–277] are also regularly ex-

plored. The Patlak plot is the simplest PK technique having been widely used in the dy-

namic MRI analysis. The slope of the Patlak plot is a useful quantitative index for charac-

terizing CA kinetics in certain applications, such as quantifying the MBF [262, 278, 279],

assessing kidney function [185–187, 280], predicting blood-brain barrier disruption after an

embolic stroke in rats [281], measuring blood-brain barrier permeability [233], and study-

ing abdominal aortic aneurysm [282] and carotid stenosis [191].

The more general 2CXM resolves the ambiguity in interpreting the K trans-estimates

from the TK and ETK models. This is a well-known model in classical pharmacokinet-

ics [283] and has been applied to analyze nuclear medicine data by Larson et al. [201] and

adopted for the perfusion analysis by Brix et al. [284, 285] and Cheong et al. [286]. Classifi-
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cation of breast tumors by Brix et al. [192] was its first DCE-MRI application. Recently, the

2CXM is gradually becoming popular in various applications, such as brain [193, 195, 287]

and lung cancer [288], myometrium [289], cervix [194] and bladder cancer [290], head and

neck tumors [291], and carotid atherosclerotic plaques [191].

Compared to the compartment models, the distributed kinetic models, such as DP,

TH, and AATH, account much more accurately for the underlying physiology. The DP has

been first described by Sangren and Sheppard [203] and applied to DCE-MRI by Bisdas

et al. [292] for studying head and neck cancer and more recently by Koh et al. [293] for

studying hepatic metastases. In contrast to the DP, the TH has not been widely used for

DCE-MRI analysis due to the lack of a closed-form solution in the time domain. Because

the closed-form solution exists only in the Laplace space [205], the fast Fourier transform

was used by Garpebring et al. [206] to apply the TH for studying brain tumors.

The AATH has been first applied to characterize animal brain tumors using DCE-

MRI by Henderson et al. [294]. Among all current models measuring Fp and PS separately,

the AATH has been most widely used in a number of DCE-MRI studies, such as detect-

ing viable myocardium [295] and lung nodules [235], exploring breast tumors [220, 296]

and prostate cancer [207, 297–299], cerebral perfusion mapping [287], and investigating

hepatocellular carcinomas in animals [266].

In summary, the PK modeling capabilities to noninvasively characterize microvas-

cular physiology have been explored and validated in a wide range of clinical applications.

This section covered the clinical applications of the reviewed PK models. Table 2 sum-

marizes a number of important findings in a wide range of non-tumor and tumor studies,

including tumor detection, characterization, and staging, as well as therapy monitoring.

TABLE 2: Recent parametric DCE-MRI studies in different clinical applications.

Study PK model Tissue of interest Objectives (o) and conclusions (c)
Harrer et
al. [230]

TK, ETK,
and the first-
pass leak-
age profile
(FPLP) [300]

Brain; 18 pa-
tients.

(o) Characterizing human gliomas with three PK
models

(c) Highly correlated ETK- and FPLP-based esti-
mates of K trans and vp validate the use of these
models for the evaluation of perfusion and per-
meability in tumors

continued on the next page . . .
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TABLE 2 – continued from the previous page
Study PK model Tissue of interest Objectives (o) and conclusions (c)

Haris et
al. [231]

TK Brain; 103
patients.

(o) Assessing capabilities of various perfusion in-
dexes to separate infective from neoplastic
brain lesions

(c) K trans and ve are useful indexes for discriminat-
ing between infective brain lesions and gliomas

Bergamino
et al. [233]

ETK and
PM

Brain; 25 pa-
tients.

(o) PK analysis of the T1-weighted DCE-MRI
to investigate blood-brain-barrier permeability
associated with different brain tumors

(c) Different permeability measurements based on
K trans for different tumor grades: the higher the
histological grades, the higher the permeability
values

(c) Significantly different ETK- and PM-related
K trans-values for the high grade tumors

Lee et
al. [272]

ETK Head and
neck; 21
patients.

(o) Investigating the radiation exposure effect on
the DCE-MRI parameters and correlating the
radiation dose and the degree of parotid gland
atrophy

(c) The correlation between the greater glandular
atrophy and a lower baseline ve and vp, as
well as a higher post-treatment increase in ve
showed sound potentialities of DCE-MRI for
predicting and assessing the radiation injury in
the parotid glands

Lee et
al. [274]

ETK Head and
neck; 63
patients.

(o) Examining DCE-MRI capabilities in differen-
tial diagnostics of various head and neck can-
cers

(c) Significantly different K trans-values obtained
by the PK analysis between the undifferenti-
ated carcinomas (UDC) and squamous cell car-
cinoma (SCC), as well as between the UDC
and lymphoma

(c) The obtained K trans-values correlate with the
vascular endothelial growth factor (VEGF) ex-
pression

Donaldson
et al. [291]

2CXM Head and
neck; 8
patients.

(o) Analyzing DCE-MRI data and correlating the
obtained PK parameters with measurements of
hypoxia and VEGF expression in patients with
squamous cell carcinoma

(c) Negative correlation between the perfusion and
both the VEGF expression and hypoxia

Bisdas et
al. [48]

TK Brain; 18 pa-
tients.

(o) Investigating the feasibility of the PK model-
ing to distinguish recurrent high-grade gliomas
from radiation injury

(c) Significantly higher K trans-values in recurrent
gliomas in comparison to radiation-induced
necrosis sites

(c) 100% sensitivity and 83% specificity of detect-
ing recurrent gliomas on the basis of a cut-
off K trans-value, compared to 71% sensitivity
and 71% specificity of the like diagnostics with
nonparametric AUC

continued on the next page . . .
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TABLE 2 – continued from the previous page
Study PK model Tissue of interest Objectives (o) and conclusions (c)

Chih-Feng
et al. [301]

ETK Brain; 10 pa-
tients.

(o) Correlating the K trans-values and the ini-
tial area under the concentration time curve
(IAUC) for parametric and nonparametric PK
modeling, respectively, in clinical patients with
brain tumors

(c) High correlation coefficient (0.913) between
the IAUC and K trans suggests the IAUC as an
alternative for evaluating physiological condi-
tion in DCE-MRI

Adluru et
al. [261]

TK Heart; 10 pa-
tients.

(o) Assessing the accuracy of a PK-based registra-
tion of the myocardial DCE-MRI for quantify-
ing the myocardial blood flow (MBF)

(c) Improved estimation of the regional perfusion
flow indexes for 77% out of all the data sets

Pärkkä et
al. [212]

LM Heart; 18 pa-
tients.

(o) Assessing the myocardial perfusion reserve
(MPR) in healthy humans by using DCE-MRI
in comparison with the positron emission to-
mography (PET)

(c) Significant correlation between the MRI- and
PET-based MPR

(c) Myocardial perfusion can be quantified by PK
modeling of DCE-MRI

Fritz-
Hansen et
al. [213]

LM Heart; 10 pa-
tients.

(o) Evaluating the MPR in humans using DCE-
MRI and 13N-ammonia PET as a reference

(c) High correlation coefficient (0.96) between the
mean perfusion values at rest and hyperemia
derived from both DCE-MRI and PET data

Kerwin et
al. [277]

ETK Heart; 45
patients (20
with carotid
atheroscle-
rosis and 25
after carotid
endarterec-
tomy).

(o) Characterizing vasa vasorum in the carotid
artery in patients with carotid atherosclerosis
disease

(c) K trans-values estimated for the adventitial
carotid region are significantly correlated with
serum inflammation markers, such as C-
reactive protein levels (r = 0.57; p = 0.01)

(c) The adventitial K trans-value may be a risk
marker

Kurita et
al. [278]

PM Heart, 20 pa-
tients.

(o) Comparing the regional MPR with the CFR
found, respectively, by DCE-MRI-based esti-
mation of myocardial perfusion and with the
intracoronary Doppler flow wire

(c) Significant direct correlations between DCE-
MRI-based MPR assessments and Doppler-
based CFR assessments (the correlation coef-
ficients of 0.87 and 0.86 for culprit and non-
culprit arteries, respectively)

Ichihara et
al. [279]

PM Heart; 10 pa-
tients.

(o) Quantifying the MBF estimated from DCE-
MRI and comparing with the MBF estimate
obtained from the coronary sinus blood flow

(c) The means of 86±25 and 89±30 ml/min/100
g, for the MBFs from DCE-MRI-related per-
fusion estimates and the coronary sinus blood
flow, respectively

continued on the next page . . .
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TABLE 2 – continued from the previous page
Study PK model Tissue of interest Objectives (o) and conclusions (c)

Pack
and Di-
Bella. [262]

TK and PM Heart, 20
subjects.

(o) Comparing different quantitative techniques
for regional myocardial perfusion quantifica-
tion

(c) No significant differences between the aggre-
gate K trans-values for both the TK and the Pat-
lak plot analysis

Furman-
Haran et
al. [51]

TK Breast; 121
patients.

(o) Quantifying microvascular perfusion parame-
ters in various breast lesions and determining
whether the parameters vary between benign
and malignant lesions.

(c) High specificity (96%) and sensitivity (93%) of
the K trans-values for breast cancer detection

(c) Significant improvements of breast cancer di-
agnosis using the PK models

Padhani et
al. [58]

TK Breast; 25
patients.

(o) Correlating early changes in the PK parame-
ters’ distribution with treatment response as-
sessments

(c) Changes in vascular heterogeneity quantified
by K trans at the end of the second cycle of sys-
temic chemotherapy can predict both clinical
and histopathological responses after three to
six cycles of the therapy

Vincensini
et al. [53]

TK Breast; 92
patients.

(o) Studying the effectiveness of quantitative
DCE-MRI parameters to characterize malig-
nant breast lesions

(c) Excellent classification sensitivity and speci-
ficity of the kep-parameter

(c) Monitoring the kep-value may be used to dis-
criminate between lesions that respond well or
poorly to therapy at the early treatment stage

Radjenovic
et al. [302]

BM Breast; 52
patients.

(o) Studying the effectiveness of quantitative
DCE-MRI parameters for monitoring neoadju-
vant chemotherapy (NAC)

(c) The parameters K trans and kep exhibit the high-
est correlation with the high-grade breast carci-
nomas, whereas differ significantly in the low-
grade ones

Ah-See et
al. [54]

TK Breast; 28
patients.

(o) Investigating whether the PK modeling param-
eters for pre- and post-NAC could predict final
clinical and pathological response

(c) According to the ROC analysis, the parame-
ter K trans is the best pathological non-response
predictor (the AUC of 0.93; sensitivity of 94%,
and specificity of 82%)

(c) Correctly identified 94% of non-responders
and 73% of responders, being comparable to
the change of the MRI-derived tumor size that
failed to predict the pathological response

continued on the next page . . .
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Schmid et
al. [296]

AATH Breast; 12
patients.

(o) Evaluating the accuracy of a Bayesian P-
spline-based semi-parametric quantification of
concentration curves obtained from DCE-MRI

(c) The P-spline model demonstrates a superior fit
to the observed concentration curves and cap-
tures accurately the time series up-slope

Schabel et
al. [55]

ETK Breast; 74
patients.

(c) Prospective investigation of whether the PK
parameters could provide diagnostically useful
information to distinguish between benign and
malignant breast lesions

(c) The AUC of 0.915 and the excellent sensitivity
(91%) and specificity (85%) of the K trans and
kep based classification with respect to mam-
mography (the sensitivity of 88% and speci-
ficity of 68%)

El Khouli et
al. [238]

ETK Breast; 95
patients.

(c) Comparing the ETK performance with the con-
ventional morphology plus kinetic curve type
analysis

(c) The kinetic curve type assessment or PK mod-
eling improve similarly the diagnostic perfor-
mance

Fusco et
al. [220]

ETK, BM,
and AATH

Breast; 4 pa-
tients.

(o) Analyzing the performance of different DP and
compartment PK models

(o) Comparing the TK and BM on the real breast
DCE-MRI data

(c) The AATH achieved better fit than the TK and
BM with respect to three goodness-of-fit met-
rics: the residual sum of squares, the Bayesian
information criterion, and the Akaike informa-
tion criterion (AIC)

Naish et
al. [235]

TK, ETK,
and AATH

Lung; 6 pa-
tients.

(o) Comparing the performance of three PK mod-
els and a model-free analysis in distinguishing
malignant from nonmalignant lung tissues

(c) The AATH gives the best description of the
lung tumor data with respect to the AIC

Michoux et
al. [266]

TK, ETK,
and AATH

Liver; 12
Wistar rats.

(o) Assessing which PK parameters reflect de-
creased transvascular and interstitial transport
if low- and high-molecular-weight CA are used
in rat hepatocellular carcinomas

(c) Both the kinetic parameters ve and E have
better potential to show differences of the
transvascular and interstitial transport than the
parameter K trans, and therefore may be of in-
terest for observing the effect of antiangiogenic
agents

De Sen-
neville [280]

PM Kidney; 20
patients.

(o) Evaluating the effect of DCE-MRI motion cor-
rection on the estimated glomerular filtration
rate (GFR)

(c) Significant uncertainty reduction on the com-
puted GFR for native, but not the transplanted
kidneys

continued on the next page . . .
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Sourbron et
al. [188]

Sourbron
model [188]

Kidney; 15
volunteers.

(o) Measuring the GFR with the gadobenate
dimeglumine (Gd-BOPTA) CA using a Sour-
bron mode–the 2-compartment PK model with
bolus dispersion and tubular outflow

(c) About 40%-underestimation of the GFR (ar-
guably, due to low albumin binding of the Gd-
BOPTA , which leads to reduced relaxivity in
the tubular system and incomplete glomerular
filtration)

Anderlik et
al. [303]

Sourbron
model [188]

Kidney; 11
volunteers.

(o) Quantitative assessment of kidney function us-
ing DCE-MRI

(c) Promising estimates of the GFR
Hahn et
al. [258]

ETK Kidney; 56
patients.

(o) Investigating DCE-MRI as a pharmacody-
namic biomarker of a Sorafenib antiangiogenic
agent with renal cancer activity

(c) The derived K trans and IAUC90 are pharmaco-
dynamic biomarkers of Sorafenib in metastatic
renal cancer

(c) The high baseline K trans and vp may act as a
prognostic or predictive biomarker, which is
beneficial to Sorafenib

Buckley et
al. [298]

AATH Prostate; 22
patients.

(o) Prospective evaluation of vascular characteris-
tics of prostate cancer using DCE-MRI and the
kinetic DP model

(c) Increased plasma flow and EES-space fraction
within prostate cancer tissue, when compared
to its peripheral zone (PZ)

(c) Similar permeability and plasma volume frac-
tion estimates in both regions of interest

Kelm et
al. [180]

BM Prostate; 37
patients.

(o) Assessing the efficacy of spatial prior knowl-
edge for estimating PK parameter maps from
DCE-MRI

(c) The spatial prior knowledge reduces both
the bias and variance of the estimated kep-
parameter maps

Kiessling et
al. [226]

BM Prostate; 27
patients.

(o) Evaluating the accuracy of discrimination of
prostate cancers from the peripheral gland with
descriptive and PK parameters

(c) Potentialities of the PK parameters (ABrix and
kep) in discriminating the prostate cancers from
the peripheral prostate tissue

(c) The nonparametric indexes of the early signal
enhancement after the CA injection, such as the
AUC and up-slopes at 26, 39, 52, and 65 sec,
have higher sensitivity and specificity, although
at the start of the signal intensity increase, To,
these indexes do not discriminate the carcino-
mas from the glandular tissue

continued on the next page . . .
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van Dorsten
et al. [304]

LM Prostate; 50
patients.

(o) Differentiating prostate carcinoma from
healthy PZ and CZ using DCE-MRI and
two-dimensional 1H MR MRS imaging.

(c) Excellent potentialities of the combined spatio-
vascular information from DCE-MRI and
metabolic information from MRS for improv-
ing the localization and characterization of the
prostate cancer in a clinical setting.

Ocak et
al. [241]

TK Prostate; 50
patients.

(o) Determining PK parameters, being useful for
prostate cancer diagnostics

(c) Four PK parameters: (K trans, kep, ve, and the
AUC of the gadolinium concentration curve
were determined and compared for cancer, in-
flammation, and healthy peripheral

(c) Improved prostate cancer specificity of the
conventional T2-weighted MRI for the K trans

and kep parameters
Kershaw et
al. [297]

AATH Prostate; 13
patients.

(o) Evaluating microvascular and relaxation pa-
rameters of prostate and nearby muscle in pa-
tients with benign prostatic hyperplasia and ex-
amining measurement reproducibility

(c) Significantly different bootstrap analysis of the
PK parameters (Fp, Tc, K trans, and PS) in the
prostate’s CZ, comparing with the PZ

Jackson et
al. [242]

TK Prostate; 19
patients.

(o) Assessing the efficacy of spatial prior knowl-
edge for estimating PK parameter maps

(c) Pixel-wise parametric maps for the K trans, ve,
and kep parameters reveal significant differ-
ences between the benign and malignant tu-
mors in the PZ, while the ROC analysis shows
that the PK parameters are only “fair discrimi-
nators between the cancer and benign gland

(c) The radiologist interpretation shows similar
specificity (85% vs 81%; p=0.593) and higher
sensitivity (50% vs 21%; p = 0.006) of DCE-
MRI with respect to T2-weighted MR images
for cancer localization

(c) Guiding the radiotherapy beam with DCE-MRI
and PK modeling can improve the outcome of
radiotherapy

Langer et
al. [244, 247]

TK Prostate; 25 [244]
and 24 [247]
patients.

(o) Investigating relationships between the multi-
modal MRI (DTI, T2-weighted, DCE-MRI)
measurements and the underlying composition
of normal and malignant prostate tissues

(c) Significant differences between the cancer and
normal PZ tissues for the MRI-derived appar-
ent diffusion coefficient (ADC), T2, K trans, and
ve) parameters and the percentage areas of all
tissue components except stroma

continued on the next page . . .
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Vos et
al. [246]

TK Prostate; 34
patients.

(o) Developing a multi-modality (T2-weighted
MRI and DCE-MRI) CAD system with an
SVM classifier to diagnose prostate cancer in
the PZ

(c) Using the T2-weighted sequence significantly
improves the diagnosing performance obtained
with only DCE-MRI PK parameters, namely,
the ROC’s AUC increases from 0.83 (0.75–
0.92) to 0.89 (0.81–0.95)

Vos et
al. [251]

TK Prostate; 177
patients.

(o) Investigating the feasibility of an automated
CAD system with a linear discriminant analy-
sis (LDA) classifier to detect prostate’s cancer-
suspicious regions

(c) The CAD system detects 74% of all tumors at
a false positive (FP) level of 5

(c) The system’s sensitivity of 88% for the high-
grade tumors at the FP level of 5

Vos et
al. [252]

TK Prostate; 45
patients.

(o) Assessing cancer aggressiveness in the PZ with
a combination of the kinetic parameters, K trans

and kep, and model-free parameters wash-in
and wash-out slopes

(c) According to the ROC analysis, the 75-
percentile of wash-in, K trans, and kep dis-
criminate the best between low-grade and
intermediate/high-grade prostate cancer cases

Li et
al. [253]

TK Prostate; 33
patients.

(o) Investigating and comparing the diagnostic
performance of DTI, DCE-MRI, or their com-
bination in detecting the prostate’s cancerous
areas in the PZ

(c) Good agreement between the PK parameters
estimated from the DCE-CT and DCE-MRI
(only ve-values differ significantly when esti-
mated from the MRI and CT)

Chikui et
al. [60]

TK Oral cancer,
29 patients.

(o) Evaluating usefulness of a PK analysis to mon-
itor the oral cancer response to chemoradio-
therapy (CRT)

(c) Statistical analysis reveals that the ve-increase
strongly suggests a good tumor response to the
CRT

(c) Significantly larger K trans-changes for respon-
ders, than for non-responders

De Lussanet
et al. [57]

ETK Rectal cancer;
17 patients.

(o) Evaluating radiation therapy-related microvas-
cular changes in locally advanced rectal cancer
using DCE-MRI and histology

(c) Lower intratumoral heterogeneity in K trans and
vp for primary rectal cancer patients receiving
the radiation therapy than for those without the
radiation therapy

continued on the next page . . .
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deLussanet
et al. [264]

TK Thigh; 15
male rabbits.

(o) Assessing the use of the MRI (DCE-MRI and
MRA) to evaluate the muscle perfusion recov-
ery and the growth of collateral arteries in a
rabbit femoral artery ligation model

(c) The combined DCE-MRI and MRA data allow
for noninvasive serial monitoring of changes
in the muscle blood flow and growth of sub-
millimeter sized collateral arteries

Akisik et
al. [59]

TK Pancreas; 11
patients.

(o) Evaluating capabilities of the PK modeling of
DCE-MRI to predict a pancreatic cancer re-
sponse to combined chemotherapy and antian-
giogenic therapy

(c) Significant reduction of all perfusion parame-
ters, such as K trans, ve, the peak concentration,
up-slope, and AUC at 60 sec, after the com-
bined therapy

(c) The pre-treatment K trans-measurement in pan-
creatic tumors can predict response to antian-
giogenic therapy

Zahra et
al. [268]

TK Cervix; 13
patients (each
with three
scans).

(o) Evaluate DCE-MRI-based prediction of the re-
sponse to cervix cancer radiotherapy

(c) In spite of statistically significant correlation
between the percentage tumor regression and
both nonparametric indexes (peak time, slope,
maximum slope, and contrast enhancement ra-
tio) and PK parameters (K trans (p = 0.043) and
kep (p = 0.022)) for the pre-treatment DCE-
MRI, the same characteristics for the second
and third scans show no correlation

Donaldson
et al. [194]

2CXM and
TK

Cervix; 30
patients.

(o) Comparisons of the 2CXM and TK on report-
ing microvascular parameters in patients with
cervical cancer

(c) The 2CXM model demonstrated better fit to the
data for all patients

(c) Inaccurate PK parameter estimates for the TK
due to its inherent assumption of the negligible
plasma MTT

Andersen et
al. [216]

BM and TK Cervix; 81
patients.

(o) Assessing the prognostic value of the PK pa-
rameters derived from pre-chemoradiotherapy
DCE-MRI of cervical cancer patients

(c) According to the prognostic significance of
the PK parameters (FIGO stage and tumor
volume), being assessed with the multivari-
ate analysis, the estimated imaging parame-
ters prior to chemoradiotherapy may be used
to identify patients at risk of treatment failure

continued on the next page . . .
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Ma et
al. [182]

BM Bone per-
fusion; 165
subjects.

(o) Investigating PK modeling of bone perfusion
in subjects with varying bone mineral density

(c) Notable reduction of the PK parameter ABrix in
osteoporotic subjects compared to the normal
ones

(c) Less pronounced reductions in the permeabil-
ity constant, ABrixkep, and the elimination one,
kel

E. SUMMARY AND DISCUSSION

In this chapter, an overview of the explored DCE-MRI analysis and modeling tech-

niques as well as their applications in a wide range of clinical studies in the last two decades

has been presented. Promising theoretical findings and experimental results for the reviwed

models and techniques in a variety of clinical applications suggest that DCE-MRI is a clin-

ically relevant imaging modality. For example, the classical mammography has a signifi-

cantly lower sensitivity (33%–59%) in early detection of breast cancer than DCE-MRI anal-

ysis (71%–96%) [51–55]. Among all the MRI modalities, DCE-MRI offers also the highest

diagnostic accuracy of small (less than 1 cm) breast lesions [86, 237, 305] and the most ac-

curate localization and staging of prostate cancer [75, 77, 130, 140, 226, 241, 251, 252]. The

DCE-MRI allows for differentiating very accurately between various brain tumors, such as

glioma, meningioma, acoustic neuroma, or metastases [45, 47, 48] and is a promising non-

invasive tool for detecting acute renal rejection at its earliest stage [3, 124–129], even one

day after transplantation [128].

As discussed in this chapter, both nonparametric and parametric approaches for

DCE-MRI analysis possess the ability to quantify tissue perfusion. The main advantage of

these analysis methods is that they reduce the original DCE-MRI data dimensionality to a

small set of parameters that describe the tissue perfusion. The straightforward nonparamet-

ric techniques characterize shapes and structures of signal enhancement curves by com-

puting descriptive indexes (e.g., the maximum enhancement, time-to-peak, up-slope, etc.)

directly from signals of the curves. The advantages of these techniques are two-fold: (i) no
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need to convert the recorded MR signals into CA concentrations and (ii) the complete anal-

ysis of the whole enhancement curve cycle by computing perfusion-related indexes from

both wash-in and wash-out phases. However, the relation of the indexes to the underlying

physiology is often unclear, although some correlation with quantitative or at least quali-

tative physiological measurements can be established. For example, an increased wash-in

slope, AUC, peak enhancement, and decreased time-to-peak indicate likely an improved

response to therapy or increased vascular density and/or vascular permeability. Neverthe-

less, the indexes can be reproducible at different sites only if an identical data acquisition

protocol is used [306].

The parametric techniques fit one of the well-known mathematical PK models to the

concentration curves in order to estimate physiologically-meaningful parameters, e.g., the

EES volume and capillary permeability of a tissue of interest. The parametric PK modeling

has the following advantages: (i) estimation of a set of kinetic parameters that have physi-

ological interpretations; (ii) they provide a way for better understanding of the interaction

between drugs (i.e., contrast agent) and the human tissue, and (iii) the lesser sensitivity of

parameter estimates to noise, image settings and data acquisition protocols [83]. However,

both the data acquisition and analysis become more complicated in comparison with the

nonparametric techniques. The complexity arises from the required conversion of MR sig-

nal intensities into CA concentrations involving the measurements of tissue relaxation time

(T1), native relaxation time (T10), and the tissue AIF. The PK models are typically refined

to more closely reflect physiological processes by including additional parameters, e.g.,

water exchange and CA diffusion. However, the refinement mostly complicates DCE-MRI

analysis, and its usefulness requires additional investigation [197, 290, 307–309].

One of the challenges in gadolinium-based DCE-MRI analysis is the risk of nephro-

genic systemic fibrosis, which is increased in patients with renal dysfunction [310]. Also,

the choice of an appropriate CA dose for the quantitative DCE-MRI analysis is a chal-

lenging problem: the high dose increases the signal enhancement in the tissue, but may

cause overestimation of the PK parameters due to saturation or nonlinearity of the MRI

signal [188] or their underestimation due to transendothelial water exchange effects [311].

74



Investigations of alternative CA types, such as superparamagnetic iron oxide (SPIO) and

ultra SPIO (USPIO) particles remain an open research area.

Comparison of different published results is still a challenging problem, in part,

due to the lack of standardized DCE-MRI acquisition protocols; difficulties of achieving

adequate spatial and temporal DCE-MRI resolutions simultaneously; various analytical

post-processing, which sometimes may not describe adequately the relevant physiology,

and different types of diseases, number of subjects, and treatment scenarios.

Recent trends to increase the reliability and accuracy of the DCE-MRI-derived per-

fusion parameters include the searches for (i) objective criteria for choosing a suitable PK

model among the existing ones to fit a given application; (ii) a standard consensus for

a DCE-MRI data acquisition protocol in each specific application; (iii) better data nor-

malization techniques that account for different physiological and scanning factors, e.g.,

patient weight/size and scanner type/acquisition parameters, respectively; (iv) since the

analysis techniques describe a direct relation between the MRI signal and the underlying

model, a new trend is to apply motion correction techniques before analyzing DCE-MRI

data [128] to remove noise and motion effects in order to assure that the change in the

signal is related to the CA transit in the tissue; (v) since nonparametric approaches are

simple and fast, a new trend is to develop complete noninvasive image-based diagnostic

systems for early diagnosis of different diseases, e.g., lung and prostate cancer; (vi) fusion

of parametric and nonparametric approaches is one more new trend towards more robust

diagnostic decisions in each application [48, 129, 139, 229, 239, 249, 254, 263, 268, 301].

The high correlation between the estimated physiological (parametric) and nonparamet-

ric indexes [129, 239, 254, 301] suggests the nonparametric DCE-MRI analysis can help in

avoiding the complexity and limitations of the parametric methods for evaluation of phys-

iological conditions; and (vii) distributed-parameter models are more realistic and makes

fewer assumptions about microcirculation, therefor they are the main focus of research in

recent years and their usefulness requires additional investigation.
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CHAPTER III
EARLY DETECTION OF ACUTE RENAL TRANSPLANT REJECTION

In this chapter a novel framework for the classification of acute rejection versus

non-rejection status of renal transplants from 2D dynamic contrast-enhanced magnetic res-

onance imaging (DCE-MRI) is proposed. The proposed framework consists of four steps.

In the first step, kidney objects are segmented from adjacent structures with a level set-

based deformable model guided by a novel stochastic speed function. The latter accounts

for a fourth-order Markov-Gibbs random field (MGRF) model of the kidney/background

shape and appearance. Second, a Laplace-based nonrigid registration approach is employed

to account for local kidney deformations caused by physiological effects. Namely, the

target kidney object is deformed over closed, equi-spaced contours (i.e., iso-contours) to

closely match the reference object. In the third step, the renal cortex is segmented as it

is the functional kidney unit that is primarily affected by by the perfusion deficits that

underlie the pathophysiology of acute rejection. To characterize rejection, perfusion is es-

timated from contrast agent kinetics using empirical indexes, namely, the transient phase

indexes (peak signal intensity, time-to-peak, and initial up-slope), and a steady-phase in-

dex defined as the average signal change during the slowly varying tissue phase of agent

transit. Finally, a kn-nearest neighbor classifier is used to distinguish between acute rejec-

tion and non-rejection status. Performance of the proposed framework was evaluated using

the receiver operating characteristics (ROC). Experimental results in 50 subjects, using a

combinatoric kn-classifier, correctly classified 92% of training subjects, 100% of the test

subjects, and yielded an area under the ROC curve that approached the ideal value. The

proposed framework thus holds promise as a reliable noninvasive diagnostic tool.
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A. KIDNEY: ANATOMY, FUNCTION, AND RENAL TRANSPLANT DISEASES

The kidneys are bean-shaped organs, each approximately has the size of the fist and

a length of about four or five inches. They are vital body organs as they filter the blood

before flowing to the rest of the bodys tissues. As the kidneys filter blood, the waste and

extra water become urine that flows to the bladder and through the urethra to the outside

environment [312]. In this section, a brief description of the kidney anatomy and function,

as well as the diseases that affect the transplanted kidneys are described.

FIGURE 31: The abdominal area of the human body showing the kidney location [15].

Kidneys are bean-shaped organs, located at the back of the abdominal cavity, one on

each side of the spinal column, just below the rib cage [312] as shown in Figure 31. Every

day, they process about 200 quarts of blood to make the two quarts of waste products and

extra water which becomes urine [313]. It is the urine production that keeps the blood

clean and chemically balanced, making the kidneys vital organs for the body. A schematic

illustration of a cross-section of the right kidney showing its internal structures is shown

in Figure 32. The main three regions of the kidney are the pelvis, cortex, and medulla.

The pelvis region is only an extension of the ureter into the kidney, while the cortex (outer

portion) and the medulla (inner portion) are the main two structural regions. The cortex

and medulla consist of nearly 1 million functional units called nephrons, which are 45 to
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65 mm in length and 0.05 mm in width [313]. Nephrons in the cortex and the medulla

process the blood that enters the kidney in several steps to form the urine. Once the urine

is formed, it escapes into the pelvis to be transported via ureter tubes to the urinary bladder

and through the urethra to the outside environment [312].

FIGURE 32: A schematic illustration of a corronal cross-section of the human right kidney

showing its internal structures [15].

The actual process of creating the urine from the blood takes place in the nephrons.

Each nephron consists of a glomerulus, its tubule, and its blood supply as shown in Fig-

ure 33. The tubule is divided into four parts: Bowman capsule, proximal tubule, loop of

Henle, and distal tubule (see Figure 33). The blood meets the glomerulus structure and

the urine starts to formulate through three consecutive processes, namely filtration by the

glomerulus, reabsorption, and secretion by the tubular cells (see Figure 34). By means of

these processes, the important products, such as the amino acids and water in the body are

conserved, while the metabolic wastes (urea, uric acid, creatinine, ammonia) are excreted

out of the body. The first process of urine formation is the filtration, which occurs in the

glomerulus. The differences in the blood pressure and the protein osmotic (oncotic) pres-

sure allows the glomerulus to act as an ultra-filter that allows only small particles to enter

the fluid that goes into the Bowman’s capsule. Thus, the fluid that enters the Bowman’s
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FIGURE 33: A schematic illustration of the detailed structure of a nephron [16].

capsule lacks the blood cells and the proteins. In the second process, the filtrated fluid in

the Bowman’s capsule goes into the tubular cells, which actively transport the necessary

materials (e.g., glucose, amino acids) back into the body via a process called reabsorp-

tion. This process helps to retain normal levels of necessary materials of the blood. The

final process of urine creation is the secretion, which is responsible for removing some

substances from the blood and adding them to the tubular [313]. In this respect, secretion

is reabsorption in reverse (see Figure 34). By the end of these three steps, the urine of a

healthy kidney should be free of protein, glucose and any blood cells.

The function of the transplanted kidney can suffer from different types of renal com-

plications, which, as shown in Figure 35, can be divided into six classes: (i) urologic com-

plications, (ii) fluid collections, (iii) vascular complications, (iv) neoplasms, (v) recurrent

native renal disease, and (vi) graft dysfunction [314]. Urologic complications include urine

leaks associated with discharged urinomas, which have different sizes and occur within two

weeks from transplantation. In addition, transplant patients face the high risk of develop-

ing calculous disease and urinary obstruction. Transplant fluid collections (e.g., urinomas,
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FIGURE 34: Illustration of the basic processes of urine formulation [17].

FIGURE 35: Different types of renal transplant complications.

hematomas, lymphoceles, and abscesses) are another type of renal transplant complica-

tions that have been recorded in up to 50% of renal transplantations. The size, location,

and growth possibility of these collections greatly influence their clinical relevance [315].

Vascular complications include transplanted artery stenosis, infarction, arteriovenous fis-
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tulas and pseudoaneurysms, and renal vein thrombosis. Although these complications are

found in only 10% of transplantation cases, they represent significant causes for serious

graft dysfunction with high mortality rates [316]. Kidney transplantation increases cancer

development, especially when the immunosuppression period is extended. Neoplasm risks

include renal cell carcinomas and lymphomas [317]. Recurrent disease is rare in the early

stage post-transplantation, but it is usually detected in long-term renal transplant recipi-

ents who suffer from diabetes, amyloidosis, and cystinosis [318]. Another type of renal

transplant complications is the graft dysfunction, which is one of the major causes of re-

nal transplant loss [319]. Renal graft dysfunction causes are acute tubular necrosis (ATN),

drug nephrotoxicity, and rejection [320]. ATN is found initially in most cadaveric grafts,

and usually diminishes within two weeks depending on ischemic insult. ATN is usually

related to the donor kidney and is commonly observed in patients whose transplants are

from living relatives [321]. Drug toxicity also contributes in degrading the grafted kidney

functions. Cyclosporine imposes a high nephrotoxic potential as it can affect glomerular

arterioles [322]. Acute renal rejection–the immunological response of the human immune

system to the foreign kidney–is a major cause of allograft dysfunction, which can lead to

the loss of the transplanted kidney. In the next section, more details about acute renal rejec-

tion, which is a case study in this dissertation, and current approaches for early detection

of this kidney condition is provided.

B. ACUTE RENAL TRANSPLANT REJECTION

Acute renal transplant rejection is one of the most critical problems in urology.

In the United States, approximately 17,736 renal transplants are performed annually [62],

and given the limited number of donors, the salvage of transplanted kidney is an important

medical concern. Acute renal rejection is found in up to 40% of patients within three weeks

after transplantation and it is typically reversible through high-dose steroids or antibody

therapy [323]. A gradual deterioration in graft function results in chronic rejection, which

starts approximately at three months post-transplantation [322]. Since finding an effective
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treatment of chronic rejection is still an ongoing area of research, avoiding acute rejection

episodes is the ideal way of preventing chronic rejection [321]. Therefore, early detection

of rejection is important to institute appropriate medical and immune therapy in patients

with transplanted kidneys [61].

At present, initial evaluation of renal transplant dysfunction is based on multiple

blood tests and urine sampling (e.g., plasma creatinine, creatinine clearance). Creatinine

clearance is a laboratory measurement used to estimate renal function, such as glomerular

filtration rate (GFR). The creatinine level is determined by measuring the concentration of

endogenous creatinine, which body produces in both plasma and urine. Creatinine clear-

ance is still rendered as the more practical clinical measurement to assess renal function.

However, the efficiency of such index in detecting renal rejection is limited due to the fact

that creatinine clearance provides information on both kidneys together not unilateral in-

formation [324], as well as a significant change in creatinine level is only detectable after

the loss of 60% of the kidney function [325]. Nonetheless, biopsy remains the gold stan-

dard, but only as the last resort because of its high costs and potential morbidity rates.

Also, biopsy is an invasive procedure that imposes the risk of bleeding and infection to pa-

tients. Additionally, the relatively small needle biopsy sample may lead to over- or under-

estimation of the extent of inflammation in the entire graft [326]. Therefore, there is an

urgent need for new technology based on noninvasive techniques that possess the ability of

early and accurate diagnosis of the transplanted kidney status.

Several noninvasive imaging modalities have been used clinically to assess trans-

planted kidneys. Radionuclide imaging (also called scintigraphy), the traditional method

in renal imaging, is an excellent modality for evaluating graft function, both qualitatively

and quantitatively, while screening for common complications [320]. However, this tech-

nique fails in showing accurate anatomical details due to its limited spatial resolution, so

functional abnormalities inside different parts of the kidney (e.g., the cortex and medulla)

cannot be discriminated precisely [327]. Furthermore, radionuclide imaging includes ra-

diation exposure [328], thus limiting the range of its applications, especially in monitor-

ing such diseases as ATN or cyclosporin [329]. Ultrasound imaging is usually used to
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evaluate the transplanted kidney early in the postoperative period, and it can also be used

for long-term follow-up assessment of the transplanted kidney. Ultrasound is a relatively

cheap and non-nephrotoxic modality. However, sensitivity and reliability of this method

mainly depend on the investigator’s experience and suffers from low signal-to-noise ratios,

shadowing artifacts, and speckles that greatly decrease image quality and diagnostic con-

fidence [330]. Computed tomography (CT) is a commonly available imaging technique

that allows accurate evaluation of various diseases in renal transplantation with lower costs

than magnetic resonance imaging [331]. However, CT has a limited role in diagnosing

acute renal rejection because the information gathered by CT is unspecific and the contrast

agent (CA) used are still nephrotoxic [332]. More recently, dynamic contrast-enhanced

MRI (DCE-MRI) is a non-invasive imaging technique that has been explored in perfusion-

related concerns in many clinical applications (e.g., in evaluation of the kidney, brain, and

heart) due its ability to provide both functional and anatomical information. The potential

advantages of DCE-MRI over other noninvasive techniques include (i) the lack of ionizing

radiation, (ii) increased spatial resolution, (iii) the ability to provide both anatomical and

functional information, and (iv) the feasibility to be used as early as possible (even one day

post-transplantation) for the assessment and follow-up of the transplanted kidney

Developing a CAD system for early and noninvasive diagnosis of the kidney using

DCE-MRI is an ongoing area of research. However, DCE-MRI exhibits multiple chal-

lenges stemming from (i) the need to image very quickly, to capture the transient first-pass

transit effects, while maintaining adequate spatial resolution; (ii) varying signal intensities

over the time course of agent transit; and (iii) nonrigid deformations, or shape changes,

may occur related to pulsatile or transmitted effects from adjacent structures, such as the

bowel. A typical CAD system for the detection of acute rejection using DCE-MRI mainly

involves motion correction to compensate for the global and/or local kidney motion, and

segmentation of kidney and/or its functional unit (i.e., cortex). The related work on image

segmentation and motion correction is provided below, and an overview of today’s CAD

systems for kidney diagnosis is detailed in Chapter II.
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1. Related Work on Image Analysis for Acute Renal Rejection

Dynamic MR images are subject to relatively low signal-to-noise, nonuniform in-

tensity distribution over the time series images, and geometric kidney deformations caused

by gross patient motion, transmitted respiratory effects, and intrinsic and transmitted pul-

satile effects. Therefore, accurate segmentation and registration of dynamic MR renal im-

ages is a challenge. These two basic steps are commanding the major attention in this re-

search area for automated analysis of dynamic perfusion MRI. Particularly, motion effects

can be compensated for by specific use of global and local registration techniques. On the

other hand, kidney segmentation techniques can be classified into three main categories:

threshold-based, deformable boundary-based, and probabilistic or energy minimization-

based methods. The related work on kidney segmentation and registration techniques ad-

dressing the above-mentioned challenges are described below.

Signal thresholding segments the kidney and its internal structures (i.e., cortex and

medulla) by analyzing an empirical probability distribution, or histogram of pixel inten-

sities in a region-of-interest (ROI). Earlier computerized renal image analysis (e.g., [333–

336]) was usually carried out either manually or semi-automatically. Typically, the user de-

fines an ROI in one image and for the rest of the images, image edges were detected and the

model curve was matched to these edges. However, manual ROI placements are based on

the users’ knowledge of anatomy and thus are subject to inter- and intra-observer variabil-

ity. Additionally, these approaches are very slow, even though semi-automated techniques

(e.g., [333, 336]) do reduce the processing time. Giele et al. [337] introduced an approach

for the segmentation and registration of the kidney on DCE-MRI. First, the kidney contour

is drawn manually by the user in a single high-contrast image. Then, the phase difference

movement detection (PDMD) method is employed to correct kidney displacements. Their

registration technique demonstrated better performance than direct image intensity match-

ing and cross-correlation (CC) methods. However, when compared with the radiologist

results, the PDMD method accuracy was about 68% and a manual mask to register the

time frames was still required. Additionally, only translational motion was handled, while
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rotational motion was not mentioned. De Priester et al. [336] subtracted the average of

pre-contrasted images (10 frames) from the average of early-enhanced images (30 frames)

and thresholded the resulting difference image to obtain a kidney mask. Objects smaller

than a certain size (700 pixels) were removed, and the remaining kidney object was closed

using morphological erosion and manual processing. This approach was further expanded

by Giele [327] by applying an erosion filter to the mask image in order to obtain a contour

at a second subtraction stage. Koh et al. [338] segmented kidneys with the morphological

3D H-maxima transform. Rectangular masks and edge information were used to exclude

training data or prior knowledge. In general, simple thresholding is too inaccurate to seg-

ment human organs in DCE-MRI, because these specific regions have similar gray level

(intensity) distributions. Also, these methods work fine for post- and late-contrast phases,

but fail in segmenting pre-contrast images.

Evolving deformable boundary methods have been explored as a more accurate

means of kidney segmentation. A series of studies on both rats and human subjects [339–

343] has been conducted for the registration and segmentation of kidneys from DCE-MRI.

A multi-step segmentation and registration in the study on humans by Sun et al. [341, 343]

initially corrected the large-scale motion by using a gradient-based rigid registration (only

translational). Once roughly aligned, a high-contrast image is subtracted from a pre-

contrast image and a level set approach was used to extract the kidney border from the dif-

ference image. Then, the segmented contour is propagated over other frames to search for

the rigid (rotation and translation) registration parameters. For rat studies [339, 340, 342] a

variational level set approach that integrates a subpixel motion model and temporal smooth-

ness constraints was used to find kidney borders. For segmenting the cortex and medulla,

the level set approach by Chan and Vese [344] was used. Abdelmunim et al. [345] incor-

porated both image and shape prior information into a variational level set framework for

kidney segmentation. However, their model did not adequately account for spatial depen-

dencies between the pixels and therefore is quite sensitive to imperfect kidney contours and

image noise. Yuksel et al. [346, 347] proposed a parametric deformable model approach

for the segmentation of the kidney where the contour evolution was constrained using two
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density functions. The first described the kidney shape prior and was constructed using the

average signed distance maps of the training samples. The second functional described the

grey level distribution of the kidney and its background, estimated using adaptive linear

combinations of discrete Gaussians (LCDG) [348–350]. A similar approach that incorpo-

rated shape and visual appearance priors was proposed by El-Baz et al. [351, 352]. Their

shape model is constructed from a linear combination of vectors of distances between the

training boundaries and their common centroid. The appearance prior is modeled with a

spatially homogeneous second-order Markov-Gibbs random field (MGRF) of gray levels

with analytically estimated pairwise potentials. The current appearance model is described

with the LCDG [348–350]. Khalifa et al [3, 128] proposed an automated level set-based

framework for the segmentation of kidney from dynamic MRI. They proposed a stochastic

force that accounts for a shape prior and features of image intensity and pairwise MGRF

spatial interactions. These features are integrated in to a joint MGRF image model of the

kidney and its background to constrain the evolution of the deformable contour. They em-

ployed a two-stage registration methodology using first an affine transformation to account

for the global motion, followed by a partial differential equation (PDE)-based approach

for local motion correction. Gloger et al. [353] presented a level set-based approach us-

ing the shape prior information and Bayesian statistical concepts for generating the shape

probability maps. However, the shape prior models in [346, 347, 351–353] did not impose

temporal constraints on kidney segmentation.

The graph cut-based segmentation algorithm by Boykov et al. [354] minimizes the

energy of a temporal MGRF model of intensity curves. Each voxel is described with a

vector of intensity values over time. Initially, several seed points are placed on the ob-

jects and on the background to give user-defined constraints as well as expert samples of

intensity curves. These samples are used to compute a two-dimensional histogram further

acting as a data penalty function in minimizing the energy. Although the results looked

promising, manual interaction was still required. Rusinek et al. [355] proposed a graph

cut-based segmentation framework to assess cortical and medullary functional parameters.

Their method employed a rigid registration step to account for the kidney displacements
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and the approach has been tested on simulated and in-vivo data. Ali et al. [356] used the

graph cut-based minimization of an energy functional that combines a shape constraint with

boundary properties. The constraint was built using a Poisson probability distribution and

distance maps. Chevaillier et al. [357, 358] proposed a semi-automated method to segment

internal structures (i.e., cortex, medulla) from DCE-MRI using k-means-based partition-

ing to classify pixels according to contrast evolution using a vector quantization algorithm.

However, it was only tested on eight data sets for normal kidneys, and user interaction

was still required. A similar segmentation by Song et al. [359] has only been tested on

two MRI data sets, with simulated (rotation and translation) rigid motion, for one nor-

mal and one abnormal kidney. An automated framework proposed by Zöllner et al. [360]

assesses renal function by deriving voxel-based functional information from DCE-MRI.

They employed a B-splines based nonrigid image registration to compensate for the mo-

tion and deformation of the kidney. The k-means clustering method [361] was used for

extracting functional information about different regions of the kidney according to their

dynamic contrast enhancement patterns. An automated wavelet-based k-means clustering

framework for segmenting the kidneys was proposed by Li et al. [362]. The images were

co-aligned using B-splines registration and a CC cost function. Their framework was tested

on seven subjects (four volunteers and three patients). Yang et al. [363] proposed a frame-

work for the classification of kidney tissue using fuzzy c-means clustering. In order to

reduce the motion artifacts, their framework employed a nonrigid registration step using

the demons algorithm [364] and the squared pixel distance as a similarity metric and the

squared gradient of the transformation field as the smoothness regularization term. In total,

Table 3 summarize the reviewed methodologies for kidney segmentation and registration.

In summary, the segmentation and registration of DCE-MRI kidney data has been

an area of increased research. As previously discussed, however, the existing DCE-MRI

analysis techniques have their own limitations. To overcome these limitations, in this chap-

ter novel mathematical models and learning techniques for motion correction and kidney

segmentation are proposed. The developed techniques are combined in a comprehensive

framework (shown in Figure 36) for noninvasive classification of non-rejection and acute
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renal transplant rejection from 2D DCE-MRI. In particular, a geometric deformable model

approach is proposed for the segmentation of the kidney and its cortex. The proposed ap-

proach possess the ability to overcome shape variabilities, signal intensity variations, and

image inhomogeneity by integrating appearance and shape features of the kidney into a

joint probabilistic Markov-Gibbs random field (MGRF) image model to constrain the de-

formable model evolution. Additionally, a novel nonrigid registration approach for local

kidney motion correction based on the solution of the Laplace equation is proposed. The

proposed approach exploits geometric kidney features rather than image intensities, there-

fore it is not affected by intensity variations over the the time series. Details of the proposed

framework are given in the following sections.

TABLE 3: Summary of kidney motion correction and segmentation techniques using mag-
netic resonance imaging (MRI).

Study Methodology Data and Performance
De Priester et
al. [336]

• 2D, semi-automated
• Image thresholding
• Morphological erosion and man-

ual processing.

• 18 data sets (9 subjects)
• N/A

Giele et al. [327,
337]

• 2D, semi-automated
• Manual segmentation of the kid-

ney
• PDMD registration

• 5 data sets
• ACC: 68%

Sun et al. [339,
340, 342]

• 2D, automated
• Variational level set

• 20 data sets
• Visual evaluation by an

expert
Sun et al. [341] • 2D, semi-automated

• Multi-step rigid registration
• level set segmentation for the kid-

ney and the cortex

• 5 subjects
• Error is at most one

pixel size (for one se-
quence of 150 image
frames)

Boykov et
al. [354]

• 3D, semi-automated
• Graph cut-based segmentation
• Temporal MGRF

• 1 data set
• N/A

Song et al. [359] • 3D+time, semi-automated
• Fourier-based registration regis-

tration
• Template-based segmentation

• 4 Subjects
• N/A

continued on the next page . . .
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TABLE 3 – continued from the previous page
Study Methodology Data and Performance

Rusinek et
al. [355]

• 3D+time, semi-automated
• Mutual information (MI)-based

rigid registration (translation only)
• Graph cut-based segmentation

• 40 data sets (18 sim-
ulated and 22 clinical
data sets)

• AD cortex: 7.2±6.1,
AD medulla: 6.5±4.6

Ali et al. [356] • 2D, semi-automated
• MI-based affine registration
• Graph cut shape-based segmenta-

tion

• N/A
• OAE 5.7±0.9% (tested

on 33 slices)

Yuksel et al. [346,
347]

• 2D semi-automated,
• Shape-based segmentation using

parametric deformable model.

• N/A,
• OAE 0.382% (for one

image only).
Abdelmunim et
al. [345]

• 2D, automated
• Shape-based segmentation using

level set

• 39 data sets to build
shape prior (Testing
data N/A)

• N/A
El-Baz et al. [351,
352]

• 2D+time, semi-automated
• Scale invariant feature transform-

based alignment
• Shape-based segmentation using

parametric deformable model
• Second-order MGRF spatial inter-

action model of grey scale images

• 2700 images
• OAE 0.83±0.45%

Chevaillier et
al. [357, 358]

• 2D, semi-automated
• k-means based clustering based

on contrast evolution using a vec-
tor quantization algorithm

• 8 Data sets
• DSC : 0.79, 0.70, and

0.77 (cortex, medulla,
and cavities)

Zöllner et
al. [360]

• 3D+time, automated
• B-splines nonrigid registration
• k-means clustering

• 4 Data sets
• Average similarity

score of 0.96
Khalifa et al. [3] • 2D+time, automated

• Affine registration
• Shape-based segmentation using

level set
• Second-order MGRF spatial inter-

action model

• 26 Data sets
• OAE 1.29±0.60

Li et al. [362] • 3D+time, automated
• B-splines nonrigid registration
• wavelet-based k-means clustering

• 7 Data sets
• ACC : 88%, 91%, and

98% (cortex, medulla,
and pelvis)

continued on the next page . . .
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TABLE 3 – continued from the previous page
Study Methodology Data and Performance

Yang et al. [363] • 3D+time, semi-automated
• Demons algorithm nonrigid regis-

tration
• Fuzzy c-mean clustering

• N/A
• N/A

Khalifa et
al. [128]

• 2D+time, automated
• Affine registration
• Shape-based segmentation using

level set
• Higher-order MGRF spatial inter-

action model

• 50 Data sets
• DSC: 0.982±0.016

Khalifa et
al. [129]

• 2D+time, automated
• Affine registration
• Shape-based segmentation using

level set
• Second-order MGRF spatial inter-

action model

• 50 Data sets
• DSC: 0.970±0.02

ACC: Accuracy; ACC = TP+TN
TP+FP+FN+TN ; where, TP: true positive,

FP: false positive, FN: false negative, TN: true negative.
AD: Absolute disparity.
DSC: Dice similarity coefficient: DSC = 2·TP

2·TP+FP+FN
N/A: Not applicable.
OAE: Overlapping area error; OAE = FP+FN

TP+FN%

C. METHODS

In this chapter, a noninvasive image-based framework (see Figure 36) aimed at clas-

sifying acute rejection versus non-rejection transplants by analyzing 2D DCE-MRI time

series perfusion data is proposed. In the proposed DCE-MRI based framework, the classi-

fication of kidney status is performed using the following five steps: (i) affine-based regis-

tration of the DCE-MRI data with the shape prior images, (ii) segmenting kidney objects

from the surrounding structures, (iii) nonrigid registration for local motion correction, (iv)

segmenting the cortex and generating the physiological perfusion data and parameters; (v)

classifying the acute rejection versus non-rejection kidney status, evaluating the method

as a diagnostic test, and depicting the parametric maps of the estimated perfusion indexes.

The overall framework has been tested on a total of 50 dynamic MRI perfusion data sets to

permit us to draw statistically meaningful inferences.
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FIGURE 36: The proposed computer-aided diagnostic (CAD) system for noninvasive eval-

uation of acute renal transplant rejection.

1. Kidney Segmentation Using a Joint Bi-Level MGRF Model

Dynamic MRI time series are subject to relatively low signal-to-noise, non-uniform

intensity distribution over the time series images, and respiratory and physiological motion.

Therefore, accurate kidney segmentation from DCE-MRI is a challenging problem. In this

chapter, the goal is to address these variations and discrepancies by integrating shape and

appearance features (in terms of pixel-wise image intensities and their spatial interactions)

of the kidney into a deformable model framework for precise segmentation of the kidney

from DCE-MRI time series data. In the proposed approach, deformable prototypes using

level sets are used due to its flexible evolution on the xy-plane and need no parametrization.

The level set function ϕ is a distance map of the signed minimal Euclidean distances from

every point (x, y) of the plane to the boundary (negative for interior and positive for exterior

points). It is evolving in the discrete time-space domain as follows [365]:

ϕn+1(x, y) = ϕn(x, y)− τFn(x, y)|∇ϕn(x, y)| (44)
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where n is a discrete instant of time t = nτ taken with a step τ > 0, Fn(x, y) is a speed

function controlling the evolution, and ∇ϕn(x, y) =
[
∂ϕn

∂x
, ∂ϕn

∂y

]
is the gradient of ϕn(x, y).

For more accurate segmentation, a stochastic speed function that depends on three features–

a weighted probabilistic shape prior, pixel-wise image intensities, and high-order spatial

interactions–is proposed. The features are integrated into a joint, bi-level, probabilistic

MGRF model of the kidney and its background.

Let R = {(x, y) : 0 ≤ x ≤ X − 1, 0 ≤ y ≤ Y − 1}; Q = {0, 1, . . . , Q − 1}; and

L = {0, 1} denote a finite arithmetic lattice of the size of XY supporting grayscale images

and their region (segmentation) maps, a finite set of Q integer gray values, and a binary

set of object (“1”) and background (“0”) labels, respectively. Let g = {gx,y : (x, y) ∈

R; gx,y ∈ Q} and m = {mx,y : (x, y) ∈ R; mx,y ∈ L} be a gray scale image taking

values from Q, i.e., g : R → Q, and a region map taking values from L, i.e., m : R → L,

respectively. An input image g, co-aligned to a shape prior, and its region map m are

described with a joint probability model:

P (g,m) = P (g|m)P (m) (45)

where P (g|m) is a conditional distribution of the images given the map and P (m) =

Psp(m)PV(m) is an unconditional probability distribution of maps. Here, Psp(m) denotes

a weighted shape prior, and PV(m) is a Gibbs probability distribution with potentials V,

which specifies a MGRF model of spatially homogeneous maps m. Details of the model’s

components are outlined below.

a. Weighted shape prior The level set evolution is constrained using an adap-

tive shape prior of the kidney that is built for a set of training images (Figure 38 (a)).

To reduce the variability of kidney shapes in the training data and to maximize the over-

lap area of the estimated probabilistic shape prior, the training images are mutually co-

aligned by an affine 2D transformation, maximizing their MI [366]. To construct the shape

prior, an expert in medical imaging delineated the kidney borders, which specify the re-

gion maps for the co-aligned training images (see Figure 37 (c)). Then, the shape prior

was built as a spatially variant independent random field of region labels in these maps:
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Psp(m) =
∏

(x,y)∈R psp:x,y(mx,y) where psp:x,y(1) and psp:x,y(0) = 1 − psp:x,y(1) are the

empirical pixel-wise probabilities of kidney and background, respectively. Each input im-

age to be segmented first is co-aligned to one of the training images, and the normalized

cross-correlation (NCC) values, ηj; j = 1, . . . , N , between the co-aligned input image

and each of the N training images are computed. Then, the pixel-wise kidney probability

psp:x,y(1) (Figure 38(b)) is estimated by a weighted sum of occurrences of the pixel (x, y)

in the kidney region in all training maps: psp:x,y(1) = 1
α

N∑
j=1

ηjmj:x,y where α =
N∑
j=1

ηj .

(a)

(b)

(c)

FIGURE 37: Forming kidney shape prior: (a) training samples, (b) their affine alignment,

and (c) manually segmented kidney objects . Note that the registration enhances the overlap

between the kidney objects and thus reduce the variability of the final estimated shape.

b. MGRF model with second and higher–order spatial interaction To better

account for the large inhomogeneity of the kidney (e.g., cortex, and medulla), the higher-

order spatial interactions (i.e., the families of the triple and quad cliques, Figure 39 (b,c))

between region labels of a map m are added to the pairwise ones [348, 367]. Let Ca denote

a family of s-order cliques of an interaction graph with nodes in the lattice sites (x, y)

and edges connecting the interacting, or interdependent, sites (see Figure 39). To account

for large variations of the DCE-MRI time series data related to the transit of the contrast

agent, the label interactions are modeled by a spatially homogeneous MGRF with up to
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(a) (b) (c)

FIGURE 38: Gray-coded shape prior of the kidney before (a) and after (b) the affine mutual

information (MI) based registration and the color-coded visualization of the shape prior (c).

fourth-order interactions over the nearest 8-neighborhoods of pixels:

PV(m) =
1

Z
exp

(
A∑

a=1

∑
c∈Ca

Va(m(x, y) : (x, y) ∈ c)

)
(46)

where A clique families describe the geometry of interactions, V = [Va : {0, 1} →

(−∞,∞) : a = 1, . . . , A] is a collection of Gibbs potential functions Va for the families

Ca, and the partition function Z normalizes the probabilities over the parent population

M = {0, 1}XY of all the maps.

(a) (b) (c)

FIGURE 39: Second- (a), third- (b), and fourth-order (c) cliques for the 8-neighborhood.

An initial map m, obtained by the pixel-wise classification, allows for analyti-
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cally approximating the maximum likelihood estimates of the potentials and computing the

pixel-wise probabilities of the region labels at each step of the contour evolution. For sym-

metry sake, only the equality or inequality of the labels in a clique c is taken into account.

The second- and third-order potentials are given by Equations (47) and (48), respectively:

Va(mx1,y1 ,mx2,y2) =


V2:a:eq if mx1,y1 = mx2,y2

−V2:a:eq otherwise

(47)

Va (mx1,y1 ,mx2,y2 ,mx3,y3) =


V3:a:eq3 if mx1,y1 = mx2,y2 = mx3,y3

−V3:a:eq3 otherwise

(48)

and for the fourth-order potentials:

Va (mx1,y1 ,mx2,y2 ,mx3,y3 ,mx4,y4) =


V4:a:eq4 if there are 4 equal labels

V4:a:eq3 if there are 3 equal labels

−
(
V4:a:eq3 + V4:a:eq4

)
otherwise

(49)

The proposed analytical approximation of the Gibbs potentials from a given map m,

i.e., the computation of the above values V2:a:eq, V3:a:eq3 , V4:a:eq3 , and V4:a:eq4 , extends earlier

second-order MGRFs [348, 367] to the higher-order models. To the best of our knowledge,

the analytical estimation of the Gibbs potential for higher-order MGRF model is the first

of its kind in the literature. For completeness, it is detailed in Appendix I.

c. Intensity model The visual appearance of both kidney region and surround-

ing tissues is modeled by separating a mixed empirical 1D distribution of pixel intensi-

ties into two individual components, associated with the dominant kidney and background

modes, respectively. To model the current kidney appearance, the empirical distribution is

precisely approximated with the LCDG model and automatically separated into the distinct

kidney and background LCDG components1 [348–350]. The main advantage of the LCDG

probabilistic model is that using both positive an negative Gaussian components can help to

1LCDG model is also applicable for images with more than two classes, which can be automatically

estimated from the image using the modified Akiake information criterion [69, 368]
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fit any shape of the empirical density. In many cases of empirical densities, it is difficult (if

not impossible) to accurately approximate the shape using only single symmetric kernels.

Let Ψθ = (ψ(q|θ) : q ∈ Q) denote a discrete Gaussian (DG)2 with parameters

θ = (µ, σ), integrating a continuous 1D Gaussian density with mean µ and variance σ2

over successive gray level intervals [348–350]. The LCDG with two dominant positive

DGs and Mp ≥ 2 positive and Mn ≥ 0 negative subordinate DGs is defined as [348–350]:

Pw,Θ(q) =

Mp∑
i=1

wp:iψ(q|θp:i)−
Mn∑
j=1

wn:jψ(q|θn:j) (50)

where all the weights w = [wp:i, wn:j] are non-negative and meet an obvious constraint∑Mp

i=1wp:i−
∑Mn

j=1wn:j = 1. All the LCDG parameters, including the numbers of DGs, are

estimated from the mixed empirical distribution to be modeled. Both the latter distribution

and its two components are modeled with the LCDGs more accurately than with a con-

ventional mixture [369] of only positive DGs or other unimodal distributions, thus yielding

a better initial region map after the pixel-wise classification of intensities. The LCDG of

Equation (50), including the numbers Mp and Mn of its components, is identified using the

expectation-maximization (EM)-based algorithm introduced in [367, 370–375].

d. Deformable model evolution In overall summary, the weighted probabilis-

tic shape prior, pixel-wise image intensities, and higher–order spatial interaction terms

contribute to the pixel-wise guidance of the level set. Let p(q|l) denote the pixel-wise

probability of the intensity q ∈ Q for the LCDG model of current kidney (l = 1) or

background (l = 0) appearance. Let pV:x,y(1) be the probability of the kidney label for

the pixel (x, y) of the region map m in the MGRF model PV(m) at the current evo-

lution step. Let P1:x,y = Ω1:x,y

Ω1:x,y+Ω0:x,y
and P0:x,y = Ω0:x,y

Ω1:x,y+Ω0:x,y
= 1 − P1:x,y, where

Ω1:x,y = p(q|1)pV:x,y(1)ps:x,y(1) and Ω0:x,y = p(q|0) (1− pV:x,y(1)) (1− ps:x,y(1)). Then,

the speed function of Equation (44) is defined as: F (x, y) = κϑ(x, y) where κ is the mean

2A Discrete Gaussian (DG) Ψθ = (ψ(q|θ) : q ∈ Q) with θ = (µ, σ2) is defined as ψ(q|θ) = Φθ(q +

0.5) − Φθ(q − 0.5) for q = 1, . . . , Q − 2, ψ(0|θ) = Φθ(0.5), and ψ(Q − 1|θ) = 1 − Φθ(Q − 1.5) where

Φθ(q) is the cumulative Gaussian function with the mean µ and the variance σ2.
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contour curvature and ϑ(x, y) specifies the magnitude and direction of contour evolution:

ϑ(x, y) =


−P1:x,y if P1:x,y > P0:x,y

P0:x,y otherwise

(51)

In total, the key kidney segmentation steps are summarized in Algorithm 1.

2. Iso-contours Based Nonrigid Registration

After affine registration and kidney segmentation, a new nonrigid registration ap-

proach is proposed [3, 128] to compensate for local kidney motion and deformations over

the time frame of image acquisition. In order to avoid problems associated with inten-

sity variations over the temporal dynamic contrast agent data set, the proposed approach

exploits geometric features, rather than image intensities. These geometric features are

estimated from the electric field vectors that are calculated by solving the Laplace second-

order PDE between the segmented kidney borders. Estimating these field vectors allow

for co-allocation of point-to-point correspondences between the segmented kidney objects.

Mathematically, the second-order Laplace PDE defines a scalar field γ is defined as:

∇2γ =
∂2γ

∂x2
+
∂2γ

∂y2
= 0 (52)

The solution γ(x, y) of Equation (52) within the boundaries results in intermediate equipo-

tential surfaces and streamlines (field lines), being everywhere orthogonal to all equipoten-

tial surfaces and establish natural point-to-point correspondences between the boundaries,

e.g., the line connecting the points Bai and Bbj in Figure 40. In medical imaging, the

Laplace-equation based approaches have been previously used for colon surface flattening

and centerline extraction [376], and thickness measurements [67, 377]. To the best of our

knowledge, the Laplace-based registration is the first of its kind in application to kidney

motion correction in DCE-MRI for further improving the registration accuracy.

The proposed Laplace-based nonrigid registration approach is based on deforming

each pixel of the segmented kidney objects over a set of nested, equi-spaced contours (i.e.,

iso-contours), which is generated for both the target and reference kidney objects as shown
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Algorithm 1 Key Steps for Level Set Segmentation of the Kidney

Input: greyscale image g to be segmented.

Output: segmented kidney border.

1. Build the kidney shape prior from the training grayscale images and their binary

region maps.

2. For each input image g to be segmented:

(a) Co-align image g to one of the images used for building the shape prior using

the affine transformation .

(b) Update the weighted shape prior:

• Calculate the NCCs between the co-aligned image and all training images.

• Compute the weighted sum of the training region maps in order to update

the shape prior.

(c) Estimate the LCDG models of marginal intensity distributions for the kidney

and its background.

(d) Form an initial kidney/background region map m by the pixel-wise classifica-

tion with these LCDG models.

(e) Estimate analytically the Gibbs potentials for the fourth-order MGRF model of

the map m.

3. Find the speed function ϑ(x, y) of Equation (51) using Steps 2(b)–2(e).

4. Segment g by evolving the level set function ϕ guided by the speed function calcu-

lated in Step 3.

in Figure 41. To find the iso-contours, a distance map is generated inside the binary object

area by finding the minimum Euclidean distance for every inner point to the object bound-

ary. The external points are excluded from consideration. Then, the Laplace equation is
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FIGURE 40: Schematic illustration of establishing point-to-point correspondences be-

tween two boundaries by a potential field.

(a) (b) (c)

(d) (e) (f)

FIGURE 41: Generation of iso-contours: the reference and target images (a,d), their dis-

tance maps (b,e), and the generated iso-contours (c,f).
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applied to the respective reference and target iso-contours to co-locate their corresponding

points. Figure 42 illustrates the ability of the proposed nonrigid registration to find point-to-

point correspondences in both possible misregistration scenarios; either when the surfaces

overlap (bottom row) or they do not (top row). These scenarios are likely to occur due to

unexpected large patient movements during MRI scanning. Note that the Laplace-based

nonrigid registration is employed after affine alignment of the images (Figure 42 (b,e)).

Basic steps of the Laplace-based nonrigid registration are summarized in Algorithm 2.

(a) (b) (c)

(d) (e) (f)

FIGURE 42: Co-allocation of point-to-point correspondences for two possible scenarios of

kidney misregistration: the reference (green) and target (red) contours before (a,d), and af-

ter (b,e) affine alignment, and streamlines (yellow) linking the corresponding points found

by solving the Laplace equation (c, f).
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Algorithm 2 Laplace-Based Iso-Contours Nonrigid Registration

Input: segmented kidney objects.

Output: point-to-point correspondences.

1. Generate the distance maps inside the segmented kidney (Figure 41 (b,e)).

2. Generate the nested iso-contours for the target and reference maps (Figure 41 (c,f)).

3. Initial condition: Set the maximum and minimum (zero) potential γ at the target

iso-contour and the corresponding reference iso-contour, respectively.

4. Solve Equation (52) between the corresponding iso-contours using the above condi-

tion at Step 3.

5. Compute components of the gradient vectors in both X- and Y-directions for the

estimated potential in Step 4.

6. Form the streamlines using the gradient vectors in Step 5, then find the corresponding

points between the iso-contours that are matched by forming the streamlines.

7. Repeat Steps 3 – 6 for the next set of the corresponding iso-contours.

3. Cortex Segmentation and Generation of Physiological Data

Vascular insults directly affect the kidney cortex [378]. Therefore, the cortex of the

co-aligned kidneys is finally segmented after the nonrigid registration. To achieve this, the

proposed level set approach is applied again, using only intensity and spatial features to

guide the evolution. Since all the images are already co-registered, the deformable bound-

ary evolves with respect to a circular contour initialized at the center of the registered

kidney (see Section III.F.3, Figure 56). After the cortex is segmented, it serves as a mask

that is propagated over the remaining co-registered image frames of a given perfusion time

series data.
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Following the cortex segmentation, agent kinetic curves (signal intensity versus

time curves) are constructed by estimating the average intensities over the entire cortex

for each image frame of the time series (see Figure 57). To control for different physio-

logical factors at different patient imaging exams, perfusion values obtained for the cortex

were normalized by the perfusion of an adjacent segment of body wall muscle that was

obtainable for each patient. Established dynamic perfusion analyses of extracellular ex-

travascular agents, such as gadolinium agents, have previously used empirical parameters,

including–initial up-slope, peak signal intensity, and time-to-peak [81]. However, due to

rapidly changing contrast agent kinetics during the transient phase, the resulting limited

temporal sampling leads to noisy estimates. Therefore, agent delivery during the more

slowly varying phase (plateau, or tissue distribution phase, starting at approximately 30 sec

and effectively extending to approximately two min for peripheral injections) is character-

ized. This also serves to incorporate a large number of data points over the signal intensity

time series to characterize perfusion [87]. Thus, both the transient phase indexes and a

tissue phase signal change index are used. Please see Figure 36, Step # 4.

4. Classification, Performance Analysis, and Visualization of Perfusion Indexes

To distinguish between the non-rejection and acute rejection cases, a kn-nearest

neighbor classifier learning statistical characteristics of the perfusion curves averaged over

the entire cortex was used. The characteristics are obtained from the training sets containing

both non-rejection and acute rejection cohorts. After training, the four perfusion indexes

were chosen one by one to classify the test cases. For a more robust characterization, the kn

classifier was augmented by combining all four indexes with appropriate weights, estimated

by genetic optimization [379] using the training data sets. The weights were estimated by

maximizing the Euclidean distance between the weighted-combined indexes of the non-

rejection and acute rejection groups in order to better classify the training data, based on

the biopsy ground truth. The dependence of the proposed framework on the selection of

the training data set was evaluated using a cross-validation approach. All available data

102



sets were divided into four groups and a four-fold cross-validation using the combined

kn-nearest classifier with new weights computed for each current training set.

The receiver operating characteristics (ROC) [380] is an alternate metric to test the

performance of diagnostic systems. The ROC curve evaluates the sensitivity of a CAD sys-

tem relative to the choice of its operating point (e.g., a classification threshold) by plotting

the relationship between the true positive and false positive rates for different operating

points. The ROCs for each of the individual indexes as well as the weighted combined

indexes were computed. Also, a bootstrapping method [381] to compute the 95% confi-

dence interval (95% CI) for each area under the ROC (Az) was employed. To carry out the

bootstrapping method, a sample (n = 50) was randomly drawn, with replacement, from the

original data sets. Then, the kn-classification was conducted based on individual perfusion

indexes as well as the augmented indexes using this bootstrapping sample. The procedure

was repeated 1,000 times and the Az was computed each time.

Whereas in many indications it is adequate to consider perfusion over the entire

cortex, it is conceivable that a vascular insult can be confined to a local territory. Thus,

for visual local assessment, the perfusion indexes can be displayed as parametric maps,

on a pixel-by-pixel basis, and overlayed on an anatomic image. Briefly, for the registered

images each perfusion index is computed over the entire time series for a given pixel, and

then mapped to the corresponding pixel of the anatomic image.

D. PERFORMANCE EVALUATION AND VALIDATION

The proposed framework consists of the two main image processing steps: segmen-

tation and nonrigid registration. Performance evaluation at each stage is outlined below.

1. Evaluating Segmentation Accuracy Using the Dice Metric

Segmentation accuracy is evaluated using the Dice similarity coefficient (DSC),

characterizing the agreement between the segmented and ground truth regions. Mathemat-
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ically, the DSC is defined as [382]:

DSC =
2 · TP

2 · TP + FP + FN
(53)

where TP, FP, and FN denote the true positive, false positive, and false negative segmenta-

tion results, respectively (see Figure 43). For a segmented region, S, and its ground truth,

G, TP = |S ∩G| is the area of their overlap, i.e., the number of the common points in S

and G; FP = |S − S ∩ G| is the number of points in the difference between S and TP,

and FN = |G − S ∩G| is the number of points in the difference between G and TP (see

Figure 43). The closer the DSC to “1”, the better the segmentation. To obtain the ground

truth of the segmentation, an MRI expert delineated the kidney borders.

FIGURE 43: Measuring segmentation errors between the ground truth G and automatic

segmentation S.

2. Evaluating and Validating Accuracy of Nonrigid Registration

The accuracy of the proposed nonrigid registration is evaluated using both synthetic

phantoms and in-vivo grayscale DCE-MRI data. For synthetic phantoms with inner and

outer borders (see Figure 53), the registration accuracy is assessed for each inner border

point of the phantom by a relative error metric, e. It is measured by the Euclidean distance
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between the known “ground-truth” outer point and the correspondences found by solving

the Laplace equation (d1 in Figure 44). This relative error e is defined with respect to the

local distance, i.e., the Euclidian distance between this inner point and its corresponding

“ground-truth” outer point (d2 in Figure 44): e =
(

d1
d2

)
%. For real MRI data, the reg-

istration accuracy was evaluated using expert-identified anatomical landmarks in both the

reference and target grayscale images (see Figure 50). After the correspondences were

identified, the proposed nonrigid registration aligned the target to the reference, and the

registration accuracy was assessed for each expert-identified target point. The accuracy

was evaluated by the Euclidian distance between the registered position for each target

point and its corresponding ground truth point on the reference image (see Figure 50)

FIGURE 44: Illustration of the relative error e = 100 · (d1/d2) % measurement for the

evaluation of nonrigid registration.

E. PATIENT DATA AND MRI ACQUISITION PROTOCOL

The proposed framework has been tested on 2D DCE-MRI data sets collected from

50 subjects (35 men and 15 women from 10 to 56 years old and with a mean age of 31±11

years). Both the rejection (23 subjects) and non-rejection (27 subjects) groups, as part of

the usual care after transplant, were routinely assessed with serum creatinine laboratory

values. All non-rejection cases had a GFR above 30 milliliters/minute (ml/min). Patients
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manifesting renal dysfunction, as evidenced by values greater than 1.3 millilgrams/liter

(mg/L), were subsequently evaluated clinically using ultrasound to assess the kidney size

and to exclude hydronephrosis. A Doppler study was also done for vascular patency. All

patients were subsequently underwent ultrasound-guided biopsy, based on their clinical

indication, as the gold standard. DCE-MRI was done before any biopsy procedure.

DCE-MRI was performed using temporal sampling adequate to characterize the

transit of the CA during the first-pass, while maintaining adequate spatial resolution for

visualizing the anatomy. A gradient-echo T1 imaging was employed using a 1.5 T MRI

scanner (Signa Horizon LX Echo speed; General Electric Medical Systems, Milwaukee,

WI, USA) with a phased-array torso surface coil. Gadoteric acid (Dotarem 0.5 mmol/mL;

Guerbet, France) CA was injected at the rate of 3-4 ml/sec, at the dose of 0.2 ml/kilogram

body weight (kgBW). Imaging parameters were: slice thickness 5 millimeter (mm); TR =

30-40 millisecond (msec); TE = 2-3 msec; flip angle 70o; FOV = 38×38 centimeter2 (cm2),

and matrix size = 256×160. For each patient, a single coronal section at the renal hilum

level of the transplanted kidney was used and approximately 80 repeated temporal frames

were obtained at 3 sec intervals to obtain representative sampling to characterize perfusion.

F. EXPERIMENTAL RESULTS

1. Kidney Segmentation

The proposed CAD system was tested on the above DCE-MRI data from 50 sub-

jects. The marginal intensity distributions of the MR images have two dominant modes:

one mode for the kidney, and another mode for the abdomen and darker tissues. Figure 45

illustrates basic steps of building the LCDG models of both modes. Sample results of kid-

ney segmentation for five independent subjects are shown in the first row of Figure 46. To

highlight the advantages of using all three image features for level set segmentation, the

test images were also segmented using (i) the shape prior only and (ii) the combined in-

tensity and shape information. One of these results is shown in Figure 47, and the overall
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 45: A typical DCE-MRI kidney image (a); and estimated density (b) using only

two dominant Gaussian components (c), deviation between empirical and estimated densi-

ties (d), estimated density of absolute deviation (e) LCDG components (f), final estimated

density (g), and the final estimated marginal density for each class (h).

segmentation accuracy is summarized in Table 4 using the DSC with respect to ground

truth (manual expert contouring). Figure 47 (b) clearly demonstrates that the use of the

shape information only as a guidance for the deformable model leads to high segmen-
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tation errors due to the variabilities of the learned prior with respect to the mean shape.

Adding intensity information to shape prior allows the evolving contour to address the

shape variabilities, thus enhancing the results as shown in Figure 47 (c). Finally, adding

the higher-order spatial interactions to the intensity and shape features minimizes, to a

large extent, the segmentation errors around the kidney edges. The results in Figure 47 (d)

thus highlight the advantages of the proposed integration of the weighted adaptive shape

prior, kidney/background marginal intensity distributions, and up to the fourth-order spatial

interaction characteristics into the level-set based segmentation.

(a)

(b)

(c)

FIGURE 46: Segmentation results of the proposed level set-based approach (a) in com-

parison with the shape-based (SB) approach (b) by Tsai et al. [1], and the vector level set

(VLS) approach (c) by Abdelmunim and Farag [2]. The segmented kidney boundary is in

red, and the manual expert’s segmentation is in green.

To show the advantage of the proposed level set-based segmentation, the proposed

method is compared with the shape-based (SB) approach [1] and the vector level set (VLS)

approach [2]. Figure 46 compares qualitatively the accuracy of these segmentation meth-
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(a) (b)

(c) (d)

FIGURE 47: (a) Typical MRI slice to be segmented; and the segmentation results using (b)

the shape prior information only, (c) the combined intensity and shape prior information,

and (d) the proposed approach. The segmented kidney boundary is in red, and the manual

expert’s segmentation is in green.

ods for sample data from five independent subjects, with respect to the ground truth. The

ground truth is obtained by manually contouring the kidney borders by an imaging expert.

Differences between the mean DSC for the proposed level set segmentation and other ap-

proaches in Table 5 are statistically significant using the paired t-test. Moreover, Table 5

demonstrates the comparison to the previous work in [3] and shows clear preference to use

the adaptive shape in addition to the high-order MGRF model of the kidney region.
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TABLE 4: Kidney segmentation accuracy for the proposed level set segmentation (com-

bined shape prior, higher-order MGRF, and intensity features) versus the level set segmen-

tation based on the shape prior only or the combined shape prior and intensity information

(“SD” stands for standard deviation).

DSC (Mean ± SD) P -value

Level set with shape prior only 0.884±0.023 ≤ 10−4

Level set with combined shape and intensity 0.928±0.021 ≤ 10−4

The proposed level set approach 0.982±0.016

TABLE 5: Accuracy of the proposed level-set segmentation of the kidney versus the shape-

based [1], the vector level set [2], and the second-order MGRF [3] approaches in compari-

son to the expert’s ground truth using the Dice metric (“SD” – standard deviation).

DSC (Mean±SD) P -value

The proposed levelset approach 0.982±0.016

Previous approach [3] 0.943±0.028 ≤ 10−4

Shape-based (SB) approach [1] 0.914±0.034 ≤ 10−4

Vector level set (VLS) approach [2] 0.902±0.083 ≤ 10−4

2. Nonrigid Registration

After segmenting the DCE-MRI time series, the proposed Laplace-based nonrigid

registration is applied to correct for the geometric kidney deformations by establishing

point-to-point correspondences between the segmented kidney objects. As an intuitive

visualization tool, Figure 48 presents checkerboard displays for four kidney samples before

and after applying nonrigid registration (the reference and target objects are in a light and

dark hues, respectively). This display uses the net contour as a metric of the agreement

between the superimposed objects. The coinciding edges after registration demonstrate

that the proposed Laplace-based approach effectively reduces the misregistration effects.
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The effect of registration on the physiological data of a typical time-intensity curve for

one subject is also shown in Figure 49, illustrating the reduction of frame-to-frame signal

intensity variability related primarily to motion effects.

A

B

C

(a) (b) (c) (d)

FIGURE 48: Superimposed reference (green) and target (red) kidney borders (A); and

checkerboard displays before (B) and after (C) nonrigid registration for four independent

subjects with (a,b) and without (c,d) overlapping edges.

In addition to checkerboard visual assessment and frame-to-frame signal intensity

variability reduction, the accuracy of the proposed nonrigid registration was evaluated us-

ing anatomical landmark correspondences selected by a MRI expert using grayscale images

(see Figure 50). The accuracy was assessed using the Euclidean distance metric defined

in Section III.D.2. To account for inter-observer variability for landmark selection, the

anatomical correspondences on both reference and target images were identified by three
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FIGURE 49: Typical time-intensity curve for one data set before and after registration.

independent experts (denoted below OB1, OB2, and OB3). The statistical paired t-test

confirmed that differences between the alignment accuracy for the experts’ annotations are

insignificant (see P -values in Table 6). The advantages of the proposed approach are also

highlighted by the comparison of the above summarized error statistics to the B-splines

(BS) approach [4] using the paired t-test. The results in Table 7 show that improvements

of the registration accuracy for all three observers in this experiment were statistically sig-

nificant.

In addition, the alignment accuracy of the three observers’ annotations was assessed

using the Bland-Altman analysis [383]. For evaluation, the bias (mean difference) and the

95% limits of agreement (±1.96 standard deviation around the bias) between the results of

each two observers were calculated. The results are summarized in Figure 51 and show that

the observers’ accuracies are in close agreement for the proposed nonrigid registration and

the BS approach [4] individually. It is evidenced by the near-zero biases of the observation

(-0.489, -0.134, and -0.623 for the proposed approach; and -0.137, -0.286, and -0.423 for

the BS approach), most data points fall within the 95% limits of agreement, and the small
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FIGURE 50: Validating the proposed nonrigid registration and the B-Splines (BS) ap-

proach [4] using the corresponding anatomical landmarks identified by an expert in both

the reference (red; •) and target (green; �) images.

TABLE 6: Comparison of inter-observer variability in annotating corresponding anatom-

ical landmarks for the proposed nonrigid registration and the B-splines approach [4], for

real data using 30 data points (“SD” – standard deviation and “OB” – observer).

Alignment error (in mm)

Proposed Approach B-Splines Approach

Observer Mean ± SD P -value Mean ± SD P -value

OB1 2.67±1.95 (OB1,OB2): 0.23 4.43±2.88 (OB1,OB2): 0.76

OB2 3.16±1.69 (OB2,OB3): 0.73 4.57±2.57 (OB2,OB3): 0.42

OB3 3.30±1.53 (OB1,OB3): 0.09 4.86±2.44 (OB1,OB3): 0.10

TABLE 7: Comparison of the proposed nonrigid approach versus B-splines approach [4]

for landmarks identified by three independent observers (“SD” – standard deviation).

Alignment Error in mm (Mean ± SD)

Approach OB1 OB2 OB3

Proposed Approach 2.67±1.95 3.16±1.69 3.30±1.53

B-Splines Approach 4.43±2.88 4.57±2.57 4.86±2.44

P -value 0.0005 0.0143 0.0019
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FIGURE 51: Bland-Altman plots for alignment errors with respect to annotations of the

three observers (OB1, OB2, and OB3). Each plot shows the difference errors (y-axis)

versus their average (x-axis) and the 95% confidence interval (95% CI; ±1.96 SD, dotted

lines) for inter-observer comparison for OB1 and OB2 (a,b), OB2 and OB3 (d,e), and

OB1 and OB3 (g,h). The comparison between the proposed nonrigid registration and the

B-splines (BS) approach [4], for OB1, OB2, and OB3 annotations are shown in (c), (f),

and (i), respectively. For close agreement the bias (mean, solid lines) should be near zero,

while the data points should fall within the 95% CI. These plots document that while there

is good inter-observer agreement for both the proposed approach and the BS approach, it

also demonstrates the significant differences in performance between both methods.

range of the 95% agreement interval. Contrastingly, the large biases 1.763, 1.411, and 1.562

in Figure 51 (c), (f), and (i), respectively, demonstrate the significant differences between

the observers’ results of the proposed approach registration versus the BS approach.
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To demonstrate that the proposed nonrigid registration is not affected by nonlinear

intensity variations due to agent transit, an experiment is conducted using MR images at

different stages of contrast enhancement phases (baseline, peak-intensity, and tissue dis-

tribution) of the DCE-MRI time series (see Figure 52). Anatomical landmark correspon-

dences in both the reference image (selected from the peak-intensity phase) and all target

images were chosen once again by an imaging expert. Then, the proposed nonrigid regis-

tration aligned all target images to the reference, and the registration accuracy was assessed

just as described in Section III.D.2. The results in Figure 52 and error statistics summa-

rized in Table 8 justify that the proposed nonrigid registration is independent of intensity

variations over the given temporal image.

(a) (b) (c) (d)

FIGURE 52: Validating the proposed nonrigid registration with the anatomical landmarks

identified by an expert for different phases of contrast-enhancement. Top row: the refer-

ence (a), baseline (b), peak-intensity (c), and tissue distribution (d) images. Middle row:

superimposed expert-identified correspondences for both the reference (red; •) and target

(green; �) images. Bottom row: the registration results obtained by the proposed approach.
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TABLE 8: Alignment errors (in mm) of the proposed nonrigid registration for the expert-

identified landmarks at different phases of contrast enhancement.

Alignment errors (in mm)

Baseline Peak-Intensity Tissue Distribution

Before After Before After Before After

Maximum 5.35 4.20 13.69 8.91 13.27 4.45

Mean 3.16 1.05 7.04 1.84 6.34 0.95

SD 1.55 1.57 4.66 2.30 3.91 1.63

P -Value 0.0035 0.0072 0.0030

Because the manual landmark selection may cause inaccurate identification of the

corresponding points, the accuracy of the proposed approach was also assessed using syn-

thetic phantoms with known (ground truth) point-to-point correspondences and also by

applying simulated deformation to both synthetic and real MRI data.

A synthetic 2D phantom that mimics kidney shape with known (ground-truth)

point-to-point correspondences was generated (see Figure 53). The phantom consists of

concentric shapes with sharp edges. The registration accuracy was evaluated using the

relative error e defined in Section III.D.2. The average relative error over all the ground

truth points of the phantom was 0.0%.

Secondly, more realistic phantoms with curved and overlapping edges (see Fig-

ure 54) were generated by deforming the border of a manually segmented kidney using

the 2D cubic B-spline model of local transformation [18]. The phantom images were gen-

erated by inverse mapping in accord with the 1D marginal probability distribution of the

kidney signals in DCE-MRI. Visual appearances of the phantom images in Figure 54 were

generated to mimic the varying contrast-enhanced intensity during the agent transit. To

assess the accuracy of localizing the point-to-point correspondences of the proposed ap-

proach, three types of the deformations (small, moderate, and large) were generated, and

the ground truth correspondences were established. Similarly, the error for each point on
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FIGURE 53: Validation of the proposed nonrigid registration on synthetic kidney-shaped

phantom with sharp edges: ground truth (white lines) versus estimated (black lines) corre-

spondences.

the un-deformed kidney border was defined by the Euclidian distance between its matching

“simulated point” after deformation and the point found by solving the Laplace equation.

To highlight the advantages of the proposed nonrigid registration, the deformed images

were registered using an affine transformation with six degrees of freedom (two coordinate-

wise scales and shifts, one rotation angle, and one shear parameter). Results for the three

types of deformations, at different contrast-enhancement phases, for the proposed nonrigid

approach and the affine registration are shown in Figure 54. The figure clearly demonstrates

the advantages of the proposed approach, as evidenced by small errors in co-allocating cor-

responding points, as well as by the checkerboard overlay displays in Figure 55.

Nonrigid deformations on in-vivo MRI data were obtained by simulating local deforma-

tions on a real grayscale MRI using the transformation model proposed in [18]. The regis-

tration accuracy was assessed for three types of generated deformation fields (with small,

moderate, and large deformations, respectively), as indicated in Table 9. The proposed non-

rigid registration was applied to each type of deformation field, and the performance was
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FIGURE 54: Validation of the proposed nonrigid alignment (top row) versus affine

alignment (bottom row) on three realistic simulated kidney-shaped phantoms at different

contrast-enhancement stages (from left to right: baseline, peak intensity, and tissue dis-

tribution phase). Blue and green circles represent ground truth correspondences on the

reference and target objects, respectively. Laplace and affine-determined correspondences

are represented by red diamonds. The ground truth and correspondences estimated on the

target object are connected to the reference ground truth points by green and red lines, re-

spectively. Small (a), moderate (b), and large (c) deformations of a manually segmented

kidney (black) were generated by using the 2D cubic B-spline transformation model [18].
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FIGURE 55: Checkerboard display for the proposed (top row) and the affine registration

(bottom row) for small (a), moderate (b), and large (c) deformations of the phantom shown

in Figure 54. The reference object is in light gray, and target objects are in dark gray.

quantitatively assessed by comparing the simulated and recovered pixel displacements. The

deformed image had also been registered using the multiresolution BS approach by Rueck-

ert et al. [4]. Table 9 summarizes the registration errors in these experiments along with the

P -values of the paired t-test comparing the proposed and the BS approaches.
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TABLE 9: Accuracy of the proposed nonrigid registration approach (PA) versus the B-

splines (BS) approach for displacements simulated with cubic B–splines, for real data using

30 data points (“SD” – standard deviation).

Simulated displacements (in mm)

Small Moderate Large

Maximum 3.33 9.05 11.86

Mean 1.68 6.56 8.37

SD 0.95 1.38 2.32

Alignment errors (in mm)

PA BS PA BS PA BS

Maximum 2.97 3.33 3.31 4.69 4.69 5.94

Mean 1.25 1.75 1.63 2.52 1.87 2.95

SD 0.92 0.77 0.94 1.38 1.13 1.50

P -Value 0.025 0.005 0.003

3. Cortex Segmentation

After segmenting the whole kidney from the background and correcting for the

local motion, the cortex of the aligned kidney is segmented. Figure 56 shows basic steps

of the cortex segmentation for one subject. Since the cortex does not have specific shape,

the proposed deformable model is automatically initialized at the center of the segmented

kidney region and evolves on the basis of the combined spatial interaction and intensity

information. The extracted cortex area (Figure 56 (b)) is used as a mask (Figure 56 (c))

and is applied to the rest of the time series as shown in Figure 56 (f – j). To demonstrate

the advantages of the proposed cortex segmentation method, a comparison to the most

popular level set approach of Chan and Vese [344] is conducted. The DSC values for this

comparison, with respect to the ground truth, were 0.937±0.045 and 0.814±0.036 for the

proposed approach and the Chan and Vese approach [344], respectively.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 56: Step-by-step cortex segmentation for one subject: (a) kidney object after non-

rigid alignment; (b) automatically-determined bounding box (yellow) that yields the seed

point (red) for level set initialization; (c) initial contour (yellow); (d) final contour (red); (e)

the extracted cortex mask; and (f)–(j) the propagation of the mask over the registered time

series images at representative time instants 6, 42, 120, 180, and 234 sec, respectively.

4. Perfusion Indexing and Diagnostic Results

The ultimate goal of the proposed CAD system is to provide a reproducible, non-

invasive diagnostic tool for reliable detection of renal transplant rejection physiology. In a

pathophysiological sense, transplant rejection is believed to have a microvasculature basis.

Therefore, the focus is on vascular parameters (or indexes) obtained from the dynamic con-

trast agent transit, characterized by the signal intensity-time plots of contrast agent kinetics.

Plots grouping all rejection versus non-rejection patients (see Figure 57) reveal obvious

separation between the two groups both in the transient phase and the more slowly varying

phase of bolus contrast agent transit. Due to the few number of data points that characterize

the transit first-pass effect, the plateau perfusion parameter was also used because it permits

characterization using a large number of averaged data points. This parameter indexes the

amount of contrast agent delivered to the tissue and approximates the area under the signal
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intensity-time curve, namely a parameter related to intra-vascular blood volume [87].

FIGURE 57: Normalized signal intensity, averaged over the entire cortex, with respect to

timing of agent delivery. Standard deviations (error bars) for the non-rejection (black; •)

and acute rejection (red; ◦) subjects indicate the clear separation between the two groups

by the transient phase kinetic parameters (peak signal, time-to-peak, and initial up-slope),

and the average signal magnitude at the more slowly varying tissue distribution plateau

phase. Note that the time-to-peak index has the least selectivity, and the area under the

signal intensity time curve is related to the kinetic parameter blood volume.

To build the kn-nearest neighbor classifier that characterizes the kidney status, 50%

(13 non-rejection and 12 rejection subjects) was used for training, and the other 50% (14

non-rejection and 11 rejection subjects) for testing. The diagnostic accuracy for each of

the perfusion indexes is shown in Table 10. Note that the time-to-peak has the worst per-

formance. When a weighted combination of the indexes is used, given by the genetic algo-

rithm [379], all the 25 test data sets (100%) were correctly classified. Building an accurate

classifier requires a large number of data points, ideally the entire time-intensity curve. The

proposed augmented weighted index results in virtually the same diagnostic accuracy as all
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the data points of the entire time-intensity curve (about 48, or 96% out of the 50 training

and test data sets), whereas it notably accelerates the classification process.

TABLE 10: Diagnostic accuracy of the kn-nearest neighbor classification using individual

perfusion-related renal indexes.

The index used for classification:

Peak value Time-to-peak Initial up-slope Average plateau

Accuracy 23/25 19/25 24/25 23/25

As a demonstration of the importance of using perfusion of the kidney cortex, when

perfusion over the entire kidney [3] was used, the diagnostic performance for the test data

sets was reduced to 80% (20 out of 25). Moreover, the diagnostic accuracy to the cur-

rent clinical approach used by radiologists is compared with the proposed perfusion analy-

sis. Using clinical software, radiologists manually define multiple ROIs inside the kidney

cortex. Then, these ROIs are used as a mask applied to all images (see Figure 58), no-

tably, without any segmentation or motion correction. The perfusion curve is then obtained

from the average intensity of these ROIs over all the time series images and three features,

namely wash-in slope, time-to-peak, and wash-out slope, are extracted for the classifica-

tion of kidney status (Figure 58). The diagnostic accuracy of this comparative method is

reduced to 92% (23 out of 25) and 76% (19 out of 25) for the training and testing data sets,

respectively. This reduced classification accuracy is due to the high frame-to-frame signal

intensity variability, which is related primarily to uncorrected motion effects (Figure 58).

This eventually leads a noisy estimation of the perfusion-related parameters. These results

highlight the advantage of the proposed CAD system over currently available clinical soft-

ware for perfusion analysis using the automatically segmented cortical area on images that

has been corrected for global and local motions. Finally, a 4-fold cross-validation was per-

formed and have documented the independence of the diagnostic accuracy of the combined

kn classification system on the choice of the training data sets, see Table 11.
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FIGURE 58: Radiologist clinical method for the estimation of the perfusion parameters for

the classification of the transplanted kidney status.

TABLE 11: Sensitivity to a training set using a 4-fold cross-validation.

Cross-validating the classifier

Selection 1 2 3 4

Accuracy 25/25 24/25 23/25 23/25

5. ROC Analysis and Regional Perfusion Displays

To further test the robustness of the proposed CAD system, the ROCs for the kn

classifiers were computed. Figure 59 shows the ROC curves for each of the single kn- clas-

sifiers, and the weighted-combined classifier. Based on the ROC analysis, the augmented

kn-classification attained essentially the ideal performance; the area under the ROC curve

approached the ideal value of “1” (i.e., Az = 1.0). Note that based on the visual inspection

124



of the ROC curves, characterization using time-to-peak has the worst performance. As a

more refined statistical comparison uing the bootstrapping method, the 95% CI, defined

as the 2.5 percentile to the 97.5 percentile, was computed for the 1,000 bootstrapped val-

ues for parameter area under the curve (Az). The 95% CIs were [0.951, 0.979], [0.791,

0.975], [0.951, 0.979], [0.906, 0.978], and [0.974, 1.000] for individual classifiers corre-

sponding to the peak signal intensity, time-to-peak, initial up-slope, average plateau, and

for the combined classifier, respectively. Based on the objective 95% CIs, it does appear

that the time-to-peak has the worst observable performance.

FIGURE 59: ROC curves for the kn diagnostic classification based on the individual perfu-

sion indexes extracted from the cortex– the peak signal intensity (green; ×); time-to-peak

(black; �); initial up-slope (pink; •), the average plateau (blue; ⋄), and the combined clas-

sifier (red; ◦). Note that the weighted combination of the four indexes has almost the ideal

performance, as evidence by the area under the ROC curve approaching unity (Az ≈ 1.0).

Finally, as a method of regional display pixel-by-pixel mapping of the indexes was

explored using the registered perfusion data. Figure 60 demonstrates parametric maps cor-

responding to the four indexes–peak signal intensity, time-to-peak, initial up-slope,and av-
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erage plateau–for a non-rejection case and an acute rejection case. These data reveal the

expected relation of the perfusion indexes for non-rejection versus rejection status.

(a) (b) (c) (d)

FIGURE 60: Perfusion maps for the four perfusion indexes, using the normalized signal in-

tensity: peak signal intensity (a); time-to-peak (b); initial up-slope (c), and average plateau

(d) for a representative non-rejection subject (upper row) and acute rejection subject (lower

row). The red and blue hues of each color scale correspond to highest and lowest values,

respectively. Note all indexes show worsening of perfusion with pathology.

G. DISCUSSIONS

In this chapter, a method based on the pathophysiology of renal transplant rejection,

specifically perfusion derangements, was investigated to develop a novel image-based CAD

system for the classification of transplant physiological status. Experiments documented

that the estimated empirical perfusion indexes (peak signal intensity, time-to-peak, initial

up-slope, and average plateau) are able to separate acute rejection versus non-rejection,

when referenced against a biopsy gold standard in a cohort of 50 participants, using a kn-

nearest classifier to identify each subject as rejection or non-rejection. This resulted in an

overall diagnostic accuracy of 92% and 100% for the training and testing data sets, respec-
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tively. The ROC analysis was used to test the diagnostic performance of the individual kn

classifiers and their use in a combinatorial fashion. The combined classifier has near ideal

ROC performance, while the time-to-peak index consistently has the worst performance.

Whereas rejection would be expected to result in a global reduction of perfusion over the

entire cortex, it is conceivable that a vascular insult can be confined to a local region of the

cortex. Thus, for local visualization of perfusion deficits, pixel-by-pixel displays were de-

veloped. In a sample exploration of non-rejection versus acute rejection, all four perfusion

indexes revealed the expected behavior for perfusion reduction.

Unlike approaches that involve free parameters, the proposed CAD system param-

eters are based on the mathematical definitions and are computed directly from the image

data. Specifically, the mean, variances, and weights of the components of the LCDG visual

appearance model; Gibbs potentials for the MGRF region map model; and mixing weights

of the probabilistic weighted shape prior are automatically estimated first from the image

data. Then, these parameters are integrated in a joint MGRF probabilistic model to derive a

speed function that controls the deformable model evolution. Further, unlike other methods

that are prone to image intensity variations over the time series, the proposed nonrigid reg-

istration involves a Laplace-based search for point-to-point correspondences between the

boundaries that explicitly depends only on the geometric features of the segmented kidney.

It is worth mentioning that the proposed local alignment is not generic and was designed

specifically for the current application to provide accurate pixel-on-pixel matches for gen-

erating and displaying parametric maps. These capabilities are of great importance for the

radiologists to help investigate, in the case of renal dysfunction, which region of the kidney

needs attention and follow-up with appropriate therapeutic treatment after transplantation.

If detected early, renal transplant rejection can be potentially mitigated by the ad-

minstration of anti-rejection medications. Reliable, early detection of the kidney rejection

is thus important for the management of these patients. Renal biopsy with histopathology

assessment is the gold standard for diagnosing acute graft rejection. However, this pro-

cedure is invasive and has the risk of serious complications. Additionally, radionuclide

techniques and biopsy procedures cannot be used early after transplantation, and therefore
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will not help in the early detection of kidney failure. On the other hand, dynamic MRI can

be used at anytime, even at day one post-transplantation, for the assessment and follow up

of the functionality of the transplanted kidney. In this study, dynamic MRI combined with

computer-aided segmentation and motion correction was used to derive perfusion indexes

that characterize the renal cortex. The proposed CAD system documented the ability to

differentiate between normal kidneys and kidneys with altered function without the need

for invasive procedures, thus it can aid in early diagnosis and the institution of appropriate

therapy for detected rejection cases.

H. SUMMARY

Determination of rejection status for an individual patient, in the earliest stages

when there is an optimal opportunity to intervene using existing clinical strategies to slow

or reverse rejection, may represent an important advance in the personalized management

of this condition. In this chapter, a noninvasive MRI-based CAD system for early detection

of acute renal transplant rejection has been introduced. The proposed framework demon-

strated the documented ability to reliably distinguish rejection from non-rejection, in a

biopsy-proven preliminary cohort of 50 participants. Essential contributions of this chapter

are (i) an accurate level set segmentation approach to extract kidney objects from surround-

ing abdomen structures; (ii) an unsupervised probabilistic model to learn the second- and

higher-order spatial interactions between the kidney pixels from DCE-MRI data; (iii) a

two-stage registration methodology that separately accounts for global (based on affine

transformation) and local (based on the solution of the Laplace equation) motions of the

kidney to reduce the effect of frame-to-frame variability due to transmitted respiratory, peri-

staltic effects, or intrinsic pulsatile effects, and (iv) fusion of four physiologically-motivated

indexes that characterize both transient and slowly varying phase perfusion effects for the

classification of kidney status. The work presented in this chapter has been published in the

IEEE Transactions on Medical Imaging [128], NMR in Biomedicine [129], and the Medi-

cal Image Computing and Computer-Assisted Intervention (MICCAI) conference [3].
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CHAPTER IV
FUNCTIONAL ASSESSMENT OF MYOCARDIAL PERFUSION

This chapter presents an automated framework for accurate analysis of myocardial

perfusion using first-pass magnetic resonance imaging (FP-MRI). The main processing

steps of the proposed framework include, motion correction of the heart, level set segmen-

tation of the heart wall, and myocardial perfusion analysis. First, in order to account for

heart deformations due to respiratory motion and heart contraction, a two-step registra-

tion methodology is proposed. The proposed method involves an affine-based registration

followed by a local B-splines alignment to maximize a new similarity function that ac-

counts for the first– and second–order normalized mutual information (NMI). Then the my-

ocardium is extracted using a level set deformable model, its evolution being constrained by

three features, namely, a weighted shape prior, a pixel-wise mixed object/background im-

age intensity distribution, and a second-order binary Markov-Gibbs random field (MGRF)

spatial model. At the third stage, residual segmentation errors and imperfection of im-

age alignment are reduced by employing a Laplace-based registration refinement step that

provides accurate pixel-on-pixel matches on all segmented frames to generate accurate

parametric perfusion maps. Finally, physiology is characterized by pixel-wise mapping

of empirical indexes–peak signal intensity, time-to-peak, initial up-slope, and the average

signal change of the slowly varying agent delivery phase–that are extracted from contrast

agent kinetics. The proposed framework has been tested on 24 perfusion data sets from

eight patients with ischemic damage who are undergoing a novel myoregeneration therapy.

The performance of the processing steps of the proposed framework is evaluated using both

synthetic and in-vivo data. By quantitative and visual assessment, the proposed framework

documented the ability to visualize regional and transmural perfusion; thus, it can aid in

follow-up on treatment for patients undergoing myoregeneration therapy.
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A. HEART: ANATOMY, FUNCTION, AND DISEASES

The human heart is a hollow muscular organ that is approximately the size of a fist

and approximately weighs 250–300 grams in females and 300–350 grams in males [384]. It

is the most important organ of the human body as it pumps blood and supplies all body parts

and organs with oxygen. In this section, brief overviews of heart anatomy and function, as

well as the diseases that affect the heart, are given.

FIGURE 61: Illustration of the location of the heart in the body [19].

The human heart is located under the ribcage in the center of the chest in the direct

neighborhood of the lungs (see Figure 61) slightly to the left of the breastbone. The heart

is divided into left and right parts separated by a muscle called the interventricular septum

(see Figure 62). Each part (left or right) of the heart has two chambers, the atrium and

the ventricle (see Figure 62). The four heart chambers are right atrium, right ventricle, left

atrium, and left ventricle (LV). The heart’s wall consists of three layers as shown in Fig-

ure 63: the outermost wall layer (epicardium); the contracting muscle (myocardium); and

the innermost wall layer (endocardium), which is in direct contact with the heart blood pool.

The ventricles walls are lined with an irregular muscle called trabeculae carneae [385].

The function of the heart is to pump blood to both the lungs and all other body

systems. To control blood flow, the pumped blood passes through certain types of valves

before leaving each chamber (atrium or ventricle) of the heart, which are separated by
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FIGURE 62: A schematic illustration of a long-axis cross-section of the heart showing the

four chambers of the heart and the atrioventricular valves that controls blood flow [20].

FIGURE 63: A short-axis MR image taken at the mid-cavity level of the heart showing

different layers of the cardiac wall.

atrioventricular valves (tricuspid and mitral valves). Additionally, both ventricles are closed

by valves (pulmonary and aortic valves) that define the flow direction of the blood and
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prevent the blood from flowing backwards or “regurgitating” back into the heart [385]. All

heart valves are actually flaps or cusps that act as one-way inlets (or outlets) for blood

coming into (or leaving) a ventricle. The cardiac cycle is defined as the occurring events

during one heartbeat (an adult heart beats about 60–80 beats per minute). During this cycle,

any of the heart chambers can be found in one of the two phases: systolic or diastolic.

During systole, the heart contracts to push blood out of the chamber. Whereas, during

diastole the heart muscle relaxes to allow the chamber to be filled with blood [385]. During

these ventricular systole and diastole phases, the arterial blood pressure changes between a

maximum (systolic) and a minimum (diastolic) value. Typical blood pressure value ranges

of healthy adults are 90–120 and 60–80 for systolic and diastolic pressure, respectively.

The function and structures of the heart are affected by a broad range of diseases

or conditions, referred to as cardiovascular diseases (CVDs). CVDs affect approximately

6 million US patients annually and are considered to be the leading cause of death for both

men and women in the USA. CVDs include a group of disorders of the heart and blood

vessels, such as coronary artery disease (atherosclerosis), abnormal heart rhythms (arryth-

mia), ischemic heart disease (myocardial infarction), congenital heart disease, heart muscle

disease (cardiomyopathy), pericardial disease, vascular disease (blood vessel disease), and

heart failure [386]. Coronary artery disease is a condition where the inner walls of the

arteries that provide vital oxygen and nutrients to the heart become narrow due to buildup

of plaque or blood clots. This is known as atherosclerosis, or hardening of the arteries.

Arrhythmia is an irregular or abnormal condition with the rhythm of the heartbeat, which

can involve too fast, too slow, or uneven (irregular) heartbeats. Ischemic heart damage

is a severe form of heart disease that occurs due to the blocking of blood flow to part of

the heart and causes myocardial infarction. This leads to the damage or death of the heart

muscle if untreated. Congenital heart disease is a problem with the structure of the heart or

blood vessels that is present at birth and disrupts the normal blood flow through the heart.

This cardiac disorder can allow the blood to flow in the wrong direction, slow down, or be

blocked completely [387]. Cardiomyopathies are heart diseases that weaken and enlarge

the heart muscle, thereby weakening the heart’s ability to pump blood to the rest of the
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body. Most patients with untreated cardiomyopathy can have heart failure and abnormal

heart rhythms. Pericardial disease is inflammation that affects the membrane that surrounds

and protects the heart, which is known as the pericardium. Vascular diseases include any

condition that affects the blood vessels (circulatory system) that carry the blood pumped

by the heart to every part of the body. Another major heart condition is heart failure, which

occurs when the heart muscle does not pump the blood to meet the body’s needs. Heart fail-

ure can be caused by many factors, such as coronary artery disease, heart defects present at

birth, diabetes, lung diseases, etc., and is considered as the most salient cause of morbidity

and mortality in cardiovascular disease. The only therapy once end-stage symptoms set in

is heart transplant. Due to the paucity of transplant organs, early detection of heart failure

is essential to prevent its relentless progression to premature death.

In this chapter, the main focus is on the assessment of heart functionality for patients

with ischemic heart damage due to heart attack who are undergoing a novel myoregenera-

tion therapy [64, 65]. The evaluation of heart function is based on using cardiac perfusion

MRI. The next section overviews different MRI modalities for the evaluation of heart func-

tion and the related work on cardiac perfusion MR image analysis.

B. ANALYSIS OF MYOCARDIAL PERFUSION

Heart failure is considered the most important cause of morbidity and mortality in

cardiovascular disease, which affects approximately 6 million US patients annually. Thus it

is critical in these patients to detect precursors in order to prevent progression to end-stage

disease. The most common underlying cause of heart failure is ischemic heart disease [63].

Therefore, early detection of heart failure is essential to prevent its relentless progression to

premature death. In order to characterize the workings of the heart status different cardiac

MRI techniques, such as cine MRI, tagged MRI, or late-gadolinium MRI, have been ex-

ploited. The status of cardiac physiology in health and disease is quantified with multiple

important indicators of cardiac function, including global performance indexes (e.g.,wall

mass, end-systolic and end-diastolic volumes, and ejection fraction), and local functional
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indexes (e.g., functional strain and wall thickening). These characteristics assist cardiol-

ogists in detecting myocardial dysfunction, specifically major heart conditions leading to

heart attack or failure, and in optimizing therapies for individual patients [67]. While sev-

eral MRI studies have focused on viability [42–44] and contractile function [67–69] in

areas with myoregeneration, there is a dearth of in-vivo studies designed to address the key

issue of the effects of the myoregeneration therapy on the associated blood nutrient supply.

First-pass magnetic resonance imaging (FP-MRI) is another MRI technique that has

also been used for the assessment of heart status in ischemic heart disease. Perfusion MRI

has long been investigated for non-invasive analysis of myocardial perfusion [388–393]. As

opposed to late-gadolinium analysis, FP-MRI characterizes the dynamic phase of contrast

agent (CA) transient, therefore yield parameters that reflects tissue vascularity (perfusion).

Visual myocardial perfusion assessment is usually adequate for clinical purposes [394].

However, the cardiac motion, large data dimensionality (3D+time) the requirement of rapid

temporal sampling of first-pass images (with compromises in spatial resolution), and the

relatively low-contrast resolution images, sometimes limit visual assessment and reliability.

Thus, the goal of this chapter is to to develop a processing framework to aid the analysis of

myocardial perfusion images and to improve the visualization of perfusion effects across

the myocardial wall. The proposed framework accounts for rigid and nonrigid motion of

the heart, and characterizes and displays perfusion indexes using color- coded regional

maps to aid visual assessment of myocardial perfusion.

Two basic steps of automated analysis of myocardial perfusion MRI–image seg-

mentation and motion correction models–are commanding major attention in this area. In

addition, the incorporation of these methods into a comprehensive work flow has been an

area of research interest. Next, an overview of the state-of-the-art computational techniques

for the analysis of myocardial perfusion using MRI is presented. The state-of-the-art CAD

systems for the analysis of myocardial perfusion are discussed in Chapter II.
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1. Related Work on the Segmentation of Cardiac Perfusion MRI

Accurate analysis of cardiac perfusion MRI requires precise delineation of the LV

wall borders. However, this is subject to multiple challenges due to the need to maintain

adequate spatial resolution while imaging very quickly to capture the transient first-pass

transit event, nonlinear intensity variations due to agent transit, relatively low signal-to-

noise ratio (SNR), and partial influence of adjacent structures. Several studies have been

proposed to address these challenges by integrating both temporal and spatial information

of the perfusion images into their segmentation methods. Spreeuwers and Breeuwer [395]

proposed to segment the myocardium using active contours. In their approach, tempo-

ral maximum intensity projection for pre- and post-contrast time periods of the dynamic

acquisition are calculated to serve as feature images for the active contour evolution. Pos-

tiano et al. [92] proposed a semi-automated approach for the segmentation of perfusion

images using a gradient vector flow snake. The LV wall borders were segmented only on

one user-defined frame (the one with the best SNR), and were then used as a mask that

was applied to all co-registered frames of the time series. A similar approach was pro-

posed by Santarelli et al. [396]. They employed non-linear anisotropic diffusion filtering

to reduce gray scale inhomogeneity and to selectively preserve the myocardium edges. To

segment the myocardium, the active contour is initialized by a manually traced polygon

in the LV. Pluempitiwiriyawej and Sotthivirat [397] proposed an automated approach for

myocardial border detection using active contours. To find the initial contours, threshold-

ing and morphological operations were employed. Then, an energy minimization approach

that incorporated an elliptical shape prior of the heart and probabilistic region- and edge-

based energy terms were used to guide the contour evolution. A level set-based approach

to extract the LV borders on perfusion MRI was proposed by Adluru et al. [398]. However,

deformable contour-based methods fail in the case of excessive image noise, poor image

resolution, or diffused boundaries, if they do not take advantage of a priori models and spa-

tial relationship between image pixels. Active appearance model (AAM) based techniques

were also proposed by Stegmann et al. [399] and Gupta et al. [400] to segment the LV
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borders of dynamic MRI time series. A multi-band AAM framework for the segmentation

of cardiac perfusion MRI that integrated both spatial priors about myocardial shape and

temporal priors about characteristic perfusion patterns was proposed by Baka et al. [401].

However, parametric shape-based approaches depend on the existence of good texture fea-

tures in perfusion images and may perform poorly on some frames due to noise and the lack

of well-defined features. Mahapatra and Sun [402] proposed a segmentation framework of

cardiac perfusion MRI using Markov random field (MRF). They used a graph cut-based

approach to optimize a cost function that combines the mutual dependence of registration

and segmentation information. This framework was later extended by using a groupwise

registration that incorporated temporal information of the time series data [403].

The above overview shows the following limitations of existing segmentation ap-

proaches: (i) some of them require manual user input, and are prone to variability (ii)

most of them did not account for spatial interaction between image pixels; (iii) deformable

model-based methods without appearance and shape priors result in errors related to dif-

fused or discontinuous object boundaries, excessive image noise, and poor image resolu-

tion; and (iv) parametric shape-based approaches depend on the existence of good texture

features in perfusion images and may perform poorly on some frames due to noise and the

lack of well-defined features.

2. Related Work on Motion Correction of Cardiac Perfusion MRI

Patient and respiratory motions and heart contraction result in geometric deforma-

tions in the LV wall. These rigid and nonrigid deformations limit accurate quantification

of perfusion parameters on time series data. Therefore, for accurate evaluation of per-

fusion MRI, the first-pass temporal data must be registered to compensate for these arti-

facts. In literature, several motion correction techniques have been introduced to correct

the motion of the heart on perfusion MRI time series. Breeuwer et al. [404] proposed

a translation/rotation-based rigid-body registration approach using the normalized cross-

correlation (NCC) as a similarity measure. A similar approach was proposed by Wong et
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al. [405] using normalized mutual information (NMI). Bidaut and Vallee [406] introduced

a multiresolution registration approach employing cardiac masks to restrict the registration

to the area of the nearly rigid motion of the heart. Their approach is based on minimiz-

ing the mean squared differences between perfusion time series images and the reference

image. A similar approach was introduced by Dornier et al. [407] using tightly cropped

masks with no signal intensity changes throughout the time series. S. N. Gupta et al. [408]

have also reported a technique for rigid-body registration that considered translation effects

of the center of mass, but did not explicitly consider rotation or shape changes. However,

all of these registration methods [404–408] account for the global motion, and do not ac-

count for the nonrigid deformations of the heart. Gallippi et al. [409] corrected cardiac

motion using a statistics-based registration approach. All the images are registered to the

central image of the time series using intensity variations and edge directions as similarity

measures. However, this method depends only on first-order image intensity for regis-

tration criteria, which performs poorly for frame with significant intensity changes. An

iterative model-based nonrigid registration approach was proposed by Adluru et al. [261].

Each image frame was registered to its corresponding model image, which was obtained

in a preliminary PK model registration step by minimizing the mean square difference

between a user-selected reference image and all other perfusion images. However, PK-

based techniques increase the computational cost of the registration approach, since a full

model fitting has to be performed on a pixel basis. Milles et al. [410] proposed a two-pass

coarse-to-fine registration approach using independent component analysis (ICA) for deal-

ing with local intensity change of the perfusion images. In their framework, each image

frame is registered to a time-varying reference image that is constructed from three identi-

fied images of the left and the right ventricle intensity curves using ICA. The registration is

achieved based on minimizing the sum of squared differences. However, only translational-

motion was corrected. A similar ICA-based nonrigid registration approach was proposed

by Wollny et al. [411] using an improved independent component labeling approach that

is based on time-frequency analysis of the perfusion images. Wollny et al. [412] proposed

a multiresolution nonrigid registration approach based on the quasi-periodicity of respi-

137



ratory motion. Their registration framework uses a semilocal B-spline parametric trans-

formation to optimize the normalized gradient field similarity metric. To compensate for

cardiac translation and deformation, Tarroni et al. [413] proposed a nonrigid registration

algorithm using a 2D multi-scale extension of NCC. In their approach, each image frame is

registered to a template frame and five additional frames created by resizing the reference

frame. The transformation parameters are determined according to the template with peak

cross-correlation value. Then, contour adaptation is achieved using an edge-based level set

method. To overcome the intensity change on myocardial perfusion images, Li et al. [414]

proposed a registration framework that is based on an initial semi-automatic segmentation

of the heart ventricles. In their framework, an approximation of ground truth of the image

sequence is obtained using spatio-temporal smoothness constraints derived from the initial

segmentation. This idealized ground truth is then used as reference for non-linear registra-

tion to reduce motion within the perfusion time series images. Tautz et al. [415] proposed

a multi-scale nonrigid registration approach that utilized local phase (rather than intensity

or gradient information) and the Demons algorithm [416]. The central image frame of the

time series was selected as the reference image.

In total, the aforementioned motion correction models have their own limitations:

(i) most of the methods depend on using only rigid alignment and do not account for the

nonrigid deformations of the heart; (ii) most of them heavily depend on first-order image in-

tensity characteristics for registration criteria; (iii) PK- based techniques increase the com-

putational cost of the registration approach, since a full model fitting has to be performed

on a pixel basis; and (iv) none of the existing techniques provide accurate pixel-on-pixel

matches of the co-aligned image frames of a given time series.

To overcome the shortcomings and discrepancies of the existing segmentation and

motion correction techniques, a comprehensive image-based framework, shown in Fig-

ure 64, is proposed for the analysis of myocardial perfusion based on the study of first-pass

dynamics of gadolinium CA. For the myocardium segmentation, a level set-based approach

that has the ability to overcome LV shape variabilities, signal intensity variations over the

time series, and image inhomogeneity is proposed. This is achieved by integrating shape

138



and appearance features of the heart into a joint probabilistic Markov-Gibbs random field

(MGRF) image model to constrain the deformable model evolution. To reduce the variabil-

ities of the LV wall in FP-MRI, it is first imperative to co-align the time series images to

account for the heart deformations. Therefore, a novel two-step registration methodology

is proposed that has the ability to handle both the global (using affine alignment) and lo-

cal (using B-splines alignment) motions of the heart. The proposed methodology is based

on using a new similarity metric that accounts for the first-and second–order NMI. The

second–order NMI similarity term is proposed to increase the ability of the NMI to capture

more features of the perfusion images, and therefore can improve the registration accuracy

for frames with significant intensity differences. Details of the proposed framework are

described in the following sections.

FIGURE 64: The proposed framework for the analysis of cardiac first-pass perfusion MRI.

C. MYOCARDIAL BORDERS SEGMENTATION

A novel geometric (level set-based) deformable model approach is proposed for

the segmentation of the LV wall borders from FP-MRI time series. The evolution of the

level set is controlled by three features: a weighted probabilistic shape prior, the first-order

pixel-wise image intensities, and a binary pair-wise Potts MGRF spatial interaction model.

These features are integrated into a joint MGRF model to guide the evolution of the level

set deformable model as described in Section III.C.1.
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In order to constrain the level set evolution, a weighted probabilistic shape prior

of the myocardium that is built for a set of training images is employed (Figure 65 (a)).

In order to reduce the shape variability of the LV wall and get more accurate segmenta-

tion, the training images are mutually co-aligned using a two-step registration approach

that accounts for both global and local motions related to heart contraction and respira-

tory motion. First, the training image frames are co-aligned by an affine transformation to

account for the global motion of the heart (Figure 65 (b)). Second, the B–splines transfor-

mation model [18] is used to locally register the globally aligned frames due to its flexibility

and effectiveness for modeling large deformations (Figure 65 (c)). The basic idea of us-

ing B–splines is to deform an object by manipulating an underlying lattice, Π, of control

points, Πu,v : u = 0, . . . , U − 1; v = 0, . . . , V − 1, to maximize a new similarity function

that accounts for first–and second–order NMI. The B-splines deformation model is defined

as [18]:

f(x, y) =
2∑

i=−1

2∑
j=−1

βi(s)βj(h)ψu+i,v+j (54)

where u = ⌊x⌋, v = ⌊y⌋, ⌊.⌋ denotes the integer part of a real-valued number; (s, h) : s =

x−u ∈ [0, 1) and h = y−v ∈ [0, 1), is the relative position of the point (x, y) with respect

to the four nearest lattice points (u, v), (u+ 1, v), (u, v + 1) and (u+ 1, v + 1); and βj(h)

is the jth basis function of the uniform cubic B-spline [18]:

β−1(h) =
−h3+3h2−3h+1

6
; β0(h) =

3h3−6h2+4
6

;

β1(h) =
−3h3+3h2+3h+1

6
; β2(h) =

h3

6

(55)

1. Similarity Function

A new similarity metric Υ that accounts for both first (I)– and second (S)–order

NMI between the reference (gr) and the target (gt) images is proposed:

Υ(gr,gt) =
HI(gr) +HI(gt)

HI(gr,gt)
+
HS(gr) +HS(gt)

HS(gr,gt)
(56)

where I stands for intensity and S stands for spatial, H(.) (referring to either HI or HS) is

the Shannon’s entropy (H(.) = −
∑

(x,y)∈R px,y(.) log px,y(.)) of the image signals, H(., .)
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(a)

(b)

(c)

(d)

(e)

FIGURE 65: Building the LV wall probabilistic shape prior: (a) training samples, (b) their

affine-based alignment, (c) their B–splines based nonrigid registration, (d) the deformation

fields used for the B-splines registration, and (e) the manually segmented myocardium.

is their joint entropy (H(., .) = −
∑

(x,y)∈R px,y(., .) log px,y(., .). Here R = {(x, y) : 0 ≤

x ≤ X − 1, 0 ≤ y ≤ Y − 1} denotes a finite 2D arithmetic lattice of the size of XY

supporting the gray scale images gr and gt.

a. Estimation of the first–order NMI is performed using the linear combina-

tion of discrete Gaussians (LCDG) as described in Section III.C.1.c. The LCDG was em-

ployed for more accurate approximation of both the marginal (PI(gr) or PI(gt)) and joint

(PI(gr,gt)) graylevels probability distributions,
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b. Estimation of the second–order NMI is performed using a generic second-

order MGRF model of greyscale images. Generally, the interaction structure and Gibbs

potentials of an MGRF model can be arbitrary and are identified from training data. For

simplicity and by symmetry considerations, the interaction structure is limited to the pixel’s

nearest 8–neighbors shown in Figure 66 (a) for the estimation of second–order marginal

MGRF probability distributions PS(gr) and PS(gt). On the other hand, for the estimation

of joint MGRF probability distribution PS(gr,gt) the structure includes 17-neighbors as

shown in Figure 66 (b)–8-neighbors within the target frame and 9–neighbors within the

reference frame.

(a)

(b)

FIGURE 66: Neighborhood systems for the estimation of the second-order marginal (a),

and joint (b) MGRF probabilities.

For both structures, the Gibbs potentials are bi-valued and depend only on whether

each pair of gray levels are equal or not. Under these assumptions, it is similar to the

Potts model [417] and differs only in that the potentials are estimated analytically. The

8-neighborhood (Figure 66 (a)) has two types of symmetric pairwise interactions that are
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specified by the distance d between two pixels in a given image: (i) horizontal and vertical

pairs with d = 1, and (ii) the diagonal pairs with d =
√
2. In addition to d ∈ D = {1,

√
2},

the 17-neighborhood has an additional type of pairwise interactions (d =
√
3) between a

given pixel location on the target image and the reference image (Figure 66 (b)).

In order to use the Potts model of the spatial interactions in grayscale images and

reduce the noise effect on estimating the Gibbs potentials, the 256 gray levels were reduced

to 64 levels by representing every four adjacent gray levels by one label. Note that such

a grey level compression is performed only for obtaining the transformation parameters

that optimize the registration. Once obtained, the transformation is applied to the original

uncompressed images. Therefore, the analysis of the contrast agent’s perfusion is done on

the original recorded images and is not affected by the compression. Let N = {Nd, d ∈

D = {1,
√
2,
√
3}} denote the family of the neighboring pixel pairs supporting the Gibbs

potentials and |CN| denote its cardinality. Let Va = {Va(q, q′) = Va,eq if q = q′ and

Va(q, q
′) = Va,ne if q ̸= q′; q, q′ ∈ Q = {0, 1, . . . , Q−1}} denote bi-valued Gibbs potentials

describing symmetric pairwise interactions. Then, the MGRF probability of an individual

greyscale image g (standing for gr or gt) is as follows:

PS(g) =
1

Z
exp

∑
(x,y)∈R

∑
(ξ,ζ)∈N

Va(gx,y, gx+ξ,y+ζ) (57)

whereZ is the approximate partition function [348, 367]: Z ≈ e(Va|CN|). The MGRF model

is identified analytically using the maximum likelihood estimates of the potentials [367]:

Va,eq = −Va,ne = 2× fa,eq(g)− 1 (58)

where fa,eq(g) denotes the relative frequency of the label pairs in the neighboring pixel

pairs {(x, y), (x+ ξ, y + ζ)} ∈ R2; (ξ, ζ) ∈ {(±1, 0), (0,±1), (±1,±1)}. Similarly, the

joint MGRF probability, PS(gr,gt), can be estimated using Equation (57) and the neigh-

borhood system of Figure 66 (b) with d ∈ D = {1,
√
2,
√
3}. A gradient descent method

to find the best lattice resolution (i.e., control points) to maximize the proposed similarity

metric in Equation (56) is used.
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2. Level Set Evolution

After the co-alignment of the training images as described above, their region maps

are obtained by a medical imaging expert delineation of the LV wall borders. Then, the

shape prior, shown Figure 67, is built using these training maps and is updated for each

input image to be segmented as described in Section III.C.1.a. Then, the weighted prob-

abilistic shape prior, the pixel-wise image intensities (Section III.C.1.c), and the binary

pairwise spatial interaction (Section III.C.1.b) are integrated into a joint MGRF model to

provide the pixel-wise guidance of the level set deformable model as described in Sec-

tion III.C.1.d. In total, the key steps of the LV wall borders segmentation are summarized

in Algorithm 3.

(a) (b)

(c) (d)

FIGURE 67: Overlaps of the training maps before (a) and after (b) affine registration; (c)

after the two-step registration; and (d) color-coded visualization of shape prior.
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Algorithm 3 Left Ventricle Wall Borders Segmentation

Input: grayscale image g to be segmented.

Output: segmented LV borders.

1. Construct the shape prior using the training images and their binary maps.

2. For each input image g to be segmented:

(a) Co-align g to one of the training images using the proposed two-steps registra-

tion methodology.

(b) Update the weighted shape prior.

• Calculate the NCCs between the co-aligned image and all training images.

• Compute the weighted sum of all training maps to update the shape prior.

(c) Estimate the LCDG models of marginal intensity distributions for the LV wall

and its background.

(d) Use the estimated LCDG to form an initial LV wall/background map m.

(e) Estimate the Gibbs potentials for the binary MGRF model of m.

3. Find the speed function defined in Equation (51) using Steps 2(b)—2(e).

4. Evolve the level set using the determined speed function.

D. ISO-CONTOURS REFINEMENT

To generate accurate pixel-by-pixel parametric maps that represent the transit of the

CA in the LV wall of a given patient, one-on-one pixel matches in all segmented walls of the

time series images are required. To account for the segmentation errors and imperfection

of image alignment, an additional registration refinement step is proposed, which is based

on deforming each pixel of a target wall over evolving iso-contours to closely match the

reference wall. To generate these iso-contours, the first step is to extract the centerline of

both reference and target walls. A description of this follows.
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(a) (b)

(c) (d)

FIGURE 68: Illustration of the centerline extraction: (a) the distance map of a typical

LV wall, (b) the streamlines found by solving Laplace equation between the inner and the

outer borders of the LV wall, (c) the identified centerline points (blue), and (d) the extracted

centerline overlaid on the binary mask of the LV wall.

1. Centerline Extraction of the LV Wall

The main idea of the proposed centerline approach is to find point-to-point cor-

respondences between the inner and outer borders of the segmented LV wall. Then, the

centerline is extracted by picking the points that are located at equidistance from each two

correspondence points (see e.g., blue points in Figure 68 (c)). The point-to-point correspon-
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dences between the wall borders are estimated based on solving the linear second–order

Laplace equation as described in Section III.C.2, Equation (52). Basic steps of centerline

extraction using the Laplace method are summarized in Algorithm 4 and Figure 68. A

distance map is generated inside the LV wall by finding for every inner point the minimum

Euclidean distance to the wall boundaries, as shown in Figure 68 (a). The Laplace equation

is then applied to wall borders to co-locate the corresponding border points (see Figure 68

(b)). Then, for each streamline linking corresponding border points, the streamline point

located at equidistance from both borders is selected as a candidate location on the center-

line (see Figure 68 (c)). Finally, the centerline is generated using a closed spline fit for the

selected points (see Figure 68 (d)).

Algorithm 4 Centerline Determination of the Left Ventricle Wall

Input: segmented LV wall.

Output: centerline of the LV wall.

1. Generate a distance map inside the segmented LV wall (see Figure 68 (a)).

2. Apply the Laplace equation to the inner and outer borders of the segmented my-

ocardium to c-allocate the point-to-point correspondences (see Figure 68 (b)).

3. Locate the points located equidistant from the boundary point-pairs using distance

map obtained in Step (1) (see Figure 68 (c)).

4. Determine the centerline using a closed spline fit for the identified points in Step 3

(see Figure 68 (d)).

2. Evolution of the Generated Iso-contours

Following the extraction of the centerline, a collection of equi–spaced contours (iso-

contours) within the LV wall, generated at equal distances from the centerline, is formed
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(see Figure 69). Subsequently, the Laplace equation was applied to the corresponding iso-

contours of the reference and target LV walls to co-locate the corresponding contour points.

(a) (b)

FIGURE 69: A typical example of the generated iso-contours for the reference (a) and

target (b) LV walls. The extracted centerline of the LV wall is shown in yellow.

E. PERFUSION TIME SERIES AND PARAMETERS

The ultimate goal of the proposed analysis framework is to improve regional and

transmural analysis and visualization of cardiac perfusion of a given patient. Thus, the

final step of the proposed framework is to construct agent kinetic (time-intensity) curves,

by calculating the average intensities of the LV wall for each image of the time series, and to

derive perfusion indexes from these curves (see Figure 70). As described in Section III.C.3,

the agent delivery is characterized using both the transient phase indexes (time-to-peak,

peak signal intensity, and initial up-slope [81]) and the tissue phase signal change index or

the average plateau index, which is less dependent on temporal sampling [87].
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FIGURE 70: A typical agent kinetic curve showing the time points within the cardiac

perfusion MRI data used to estimate the perfusion indexes. Image frames are acquired at

an interval of approximately one second.

F. PERFORMANCE EVALUATION

In order to evaluate the accuracy of the proposed segmentation approach, the Dice

similarity coefficient (DSC) [382], described in Section III.D.1, was used to characterize

the agreement between the segmented and ground truth regions. Second, the accuracy of

the proposed nonrigid registration is evaluated using realistic synthetic phantoms [5] and

a Euclidean distance error metric, which is calculated for each point on the borders of the

reference wall and its corresponding point on the target wall’s borders. The corresponding

pair of points (460 points) were selected by solving the Laplace equation between the bor-

ders of the reference and all target walls. Finally, the overall performance of the proposed

framework was evaluated using a segment-wise comparisons of the perfusion indexes for

the pre- and post treatment using the 17-segment model of the heart [6] and by parametric

perfusion maps. Since ischemic heart disease has both regional and transmural manifes-
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tations, pixel-by-pixel maps are created as a method of regional display of the computed

perfusion indexes (Figure 70). These parametric maps (see e.g., Figure 80) will be used by

radiologists for visual identification of pathological tissues and assessment of the response

to the myoregeneration therapy.

G. EXPERIMENTAL RESULTS

1. Clinical Data

The proposed framework has been tested on 24 independent FP-MRI data sets.

These data sets were obtained from eight patients with prior myocardial infarctions, docu-

mented by viability MRI, and who were undergoing a novel myoregneration therapy [65].

Short-axis images were obtained using a 1.5 T Espree system–Siemens Medical Solutions,

USA Inc.–with phased array wrap-around reception coils. Saturation recovery GRE imag-

ing (TR- minimum /TE- 1.2 msec /TI- 100 msec /Flip angle- 12o) was performed with car-

diac gating, and during a typical 20 second breath-hold followed by free (shallow) breathing

acquisition. Slice thickness is 10 mm and in-plane resolution is 1.87×1.87 mm2. Typically,

60 time frames were obtained with a time frame acquired in an R-R, heart interval.

2. Registration Results and Evaluation

The proposed nonrigid registration using the first–and second-order NMI is evalu-

ated using realistic synthetic phantoms [5]. The visual appearance of the phantom images

(Figure 71) were generated to mimic the varying contrast-enhanced intensity of the agent

transit based on the integration of the Gibbs sampler and the maximum A posteriori (MAP)

estimates [21] for a pairwise energy function of a 3D Generalized Gauss-Markov random

field (GGMRF) probabilistic model [418]. The phantom images were constructed from

a manually segmented LV wall using a descriptive mathematical model that accounts for

physical features of the LV and physiological LV responses as the heart progresses through

the cardiac cycle [5]. The simulated phantom contains images with different types of de-
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formations: namely, small, moderate, and large deformations, as shown Figure 72.

(a) (b) (c)

FIGURE 71: The realistic synthetic phantom images [5] at different myocardial signal

intensities: (a) baseline, (b) peak intensity, and (c) tissue distribution phases. The images

were generated based on the integration of the Gibbs sampler and the MAP estimates [21].

(a) (b) (c) (d)

FIGURE 72: Three different types of deformations of the realistic synthetic phantom [5]

for the tissue distribution phase: (a) reference image; and target images with (b) small, (c)

moderate, and (d) large deformations.

To assess the accuracy of the proposed registration approach, the deformed images

were registered to the reference phantom image (Figure 71 (a)) using (i) the B-splines

model using the first–order NMI only (BS1), and (ii) the B-splines model using the pro-

posed first– and second–order NMI (BS2). The accuracy of registration is assessed by

calculating the Euclidian distances between a set of 460 points on the border of the refer-

ence (Figure 71 (a)) and all target walls. The average error statistics are summarized in

Table 12, and the registration results for one of the phantom images (Figure 71 (c)) for the

three types of deformations are shown in Figure 73.
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FIGURE 73: Registration accuracy of the synthetic phantom shown in Figure 71 (c) for the

(A) small, (B) moderate, and (C) large deformations: (a) reference image, (b) deformed

image, (c) registered image, and (d) checkerboard visualization of the superimposed refer-

ence and target images after alignment using (I) the B-splines model with first–order NMI

only (BS1), (II) B-splines model with the proposed first- and second-order NMI (BS2), and

(III) the proposed approach BS2 followed by iso-contours registration (BS2+ISO).

In addition to the evaluation of the proposed registration methodology on synthetic

phantoms, the accuracy of the proposed registration was also qualitatively assessed using

physiological data. A typical agent kinetic curve for one data set before and after regis-

tration is shown in Figure 74. As is readily seen, the proposed registration methodology

effectively reduces frame-to-frame signal intensity variability related primarily to motion

effects. The reduction of signal variability over the time series produces more smoothed

time-intensity curves that allows for accurate estimation of perfusion-related parameters.
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TABLE 12: Accuracy of the proposed nonrigid registration (in mm) on the realistic syn-

thetic phantoms [5]. Note that the total number of points is 460 (“SD” – standard deviation).

Deformation

Small Moderate Large

Alignment Error (mm)

Mean ± SD Mean ± SD Mean ± SD P-value

BS1 2.43 ± 1.58 3.51 ± 2.27 3.83 ± 2.37 ≤ 10−4

BS2 1.40 ± 1.20 1.34 ± 1.19 1.35 ± 1.16

FIGURE 74: Typical time-intensity curves, averaged over the entire myocardium, for one

patient before and after registration.

3. Segmentation Results and Evaluation

One of the image frames and its step-wise segmentation of the myocardial wall

is shown in Figure 75. Additional segmentation results for three independent data sets

are demonstrated in Figure 76. The accuracy of the proposed segmentation approach is

evaluated using the DSC [382], and the statistics are summarized in Table 13. The ground

truth was obtained by manual contouring of the LV borders by an MR imaging expert.
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(a) (b) (c)

(d) (e) (f)

FIGURE 75: Step-by-step segmentation: (a) reference image, (b) target image, (c) affine

registration, (d) B-splines registration, (e) deformation field used for B-splines registration,

and (f) final borders’ segmentation (red) with respect to the ground truth (green).

FIGURE 76: More segmentation results of the proposed segmentation approach for one

image frame in three different patients showing reliable determination of the wall borders

(red) with respect to the ground truth (green), at different myocardial signal intensities.

To highlight the advantage of the proposed level-set segmentation approach, its per-

formance was compared against two other shape-based segmentation techniques; namely,
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the shape-based segmentation approach proposed by Tsai et al. [1] that uses a linear com-

bination of signed distance maps to build the shape prior, and its modified version that was

proposed by Abdelmunim and Farag [2] and uses a linear combination of signed vector

level set functions to construct the shape prior. To illustrate the comparative qualitative

accuracy of the proposed segmentation approach versus Tsai et al. [1] and Abdelmunim

and Farag [2], representative examples for two different data sets are shown in Figure 77.

Table 13 compares the DSC statistics for the proposed, Tsai et al. [1], and Abdelmunim

and Farag [2] approaches. Differences between the mean DSC value for the proposed seg-

mentation, and Tsai et al. [1] and Abdelmunim and Farag [2] are statistically significant

by the paired t-test. As demonstrated in Table 13, the proposed approach yields higher

segmentation accuracy compared to other approaches. This is due to that the proposed ap-

proach accounts for both global and local motions of the heart; while in the shape-based

approach [1] and the vector level set approach [2], only the global motion of the heart is

handled during image alignment.

TABLE 13: Performance of the proposed segmentation versus the shape-based ap-

proach [1] and the vector level set approach [2] in terms of the DSC compared with the

expert manual ground truth. Note that “SD” stands for standard deviation.

DSC

Algorithm Mean ± SD P-value

Proposed approach 0.910 ± 0.037

Shape-based approach [1] 0.862 ± 0.045 ≤ 10−4

Vector level set approach [2] 0.844 ± 0.047 ≤ 10−4

To evaluate the effect of intra- and inter-observer variability, one temporal data set

comprising of 50 images was manually segmented by two experienced observers. The DSC

values comparing the proposed automatic segmentation results are summarized in Table 14.

A paired t-test was performed between the DSCs of the proposed segmentation approach

with respect to each of the observer’s contouring. The P values of 0.638 (intra-observer),
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(a) (b) (c)

FIGURE 77: Comparative segmentation results for (a) the proposed approach, (b) the

shape-based approach [1], and (c) the vector level set approach [2] for different image

frames from different data sets.

TABLE 14: Inter-observer performance of the segmentation of 50 agent-enhanced image

frames. DSC between the segmented myocardium and expert ground truth obtained using

both intra- and inter-observers. Note that “SD” stands for standard deviation.

DSC

Observer intra-observer inter-observer

1 2 3

Mean ± SD 0.890 ± 0.022 0.887 ± 0.020 0.885 ± 0.023

P-value (1,2) : 0.638 (2,3) : 0.673 (1,3) : 0.065

and 0.673 and 0.065 (inter-observers) are not statistically significant and support strong

agreement. Moreover, to evaluate the sensitivity of the proposed segmentation approach

to selection of the training images, the eight manually segmented independent patient time

series data sets were divided into three groups and performed the 3-fold cross validation.
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Table 15 shows that such a dependence is statistically insignificant. To further test the

robustness of the proposed segmentation approach, the receiver operating characteristic

(ROC) [380] was employed. The ROC for segmentation was computed using (i) the in-

tensity information only; (ii) the intensity information and spatial interactions, and (iii) the

intensity information and shape features. The results shown in Figure 78 clearly demon-

strate that the full features combination results in the greatest area under the ROC curve

(Az = 0.915).

TABLE 15: Sensitivity to the selection of the training data, divided into three groups. Note

that “SD” stands for standard deviation.

DSC

Group #1 Group #2 Group #3

1 2 3

Mean ± SD 0.904 ± 0.031 0.910 ± 0.031 0.910 ± 0.028

P-value (1,2) : 0.252 (2,3) : 0.812 (1,3) : 0.443

FIGURE 78: The ROC curves for different feature combinations for level set guidance:

the proposed approach (blue); intensity feature only (red), combined intensity and spatial

interactions features (green), and combined intensity and shape features (black).
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4. Iso-Contours Refinement

The ultimate goal of the proposed framework is to compute perfusion parameters

on pixel-wise basis for the evaluation of myocardial perfusion. Thus, to account for any

misregistration residual of the LV wall after the segmentation step, a final Laplace-based

registration refinement step was employed to ensure that there is a one-on-one pixel match

of all segmented walls, i.e., the same pixels are being evaluated between the image frames

in given data set. Figure 79 demonstrates a typical example of the final Laplace-based

registration step of one image frame. For visual assessment of the registration adequacy, a

checkerboard display before and after the registration refinement step is shown in Figure 79

(d) and (e), respectively. The reference and target objects are in red and blue, respectively.

It is evident based on the figure that the application of the Laplace-based local alignment

of contours shows near ideal matching of the target and reference contours; therefore it

ensures pixel-on-pixel matches of all segmented frames.

(b) (c)

(a) (d) (e)

FIGURE 79: An example of the final iso-contours-based adjustment: (a) reference image,

(b) target image, (c) checkerboard visualization of the superimposed target and reference

walls before iso-contours registration, (d) Laplace-based registration, and (e) checkerboard

visualization after iso-contours registration showing nearly ideal match of the boundaries.
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5. Perfusion Indexing and Physiological Assessment

The effectiveness of the proposed framework is illustrated using parametric map

displays, which were developed to aid in visual assessment of patient responses to therapy.

Following iso-contours registration, agent transit curves of registered data are constructed

and the perfusion indexes (see Section IV.E) are estimated on a per-pixel basis. Then,

the computed indexes are displayed using pixel-wise parametric maps. An example for

one image section of a patient with heart damage before and after treatment using the four

indexes is shown in Figure 80. The figure clearly demonstrates that the peak signal intensity

(Figure 80 (a)) and the average plateau indexes (Figure 80 (d)) are the most uniform across

regions. Moreover, a transmural gradient of perfusion is not evident before treatment;

while after treatment the perfusion indexes not only show an improvement, but also one

can discern a gradient of perfusion across the wall (bottom row in Figure 80). This was

consistent for data corresponding to the treated patients. Thus, these functional maps hold

promise for clinicians to visualize treatment effects in patients.

Min Max

(a) (b) (c) (d)

FIGURE 80: Parametric maps for the perfusion indexes: (a) peak signal intensity, (b)

time-to-peak, (c) initial up-slope, and (d) average of tissue distribution (plateau) phase for

one subject. The red and blue hues of the color scale relate to highest and lowest values,

respectively. The top and bottom rows represent pre- and post-therapy, respectively. Note

that there is an apparent improvement in the myocardial wall after therapy.
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In order to quantify the perfusion, the estimated values of the perfusion indexes

are assessed using the standardized myocardial segment model [6] in which the LV wall

is divided into 17 circumferential segments: six segments at the basal and mid-cavity lev-

els, four segments at the apical level, and one at the the extreme tip of the ventricle. A

schematic illustration of the locations of segments corresponding to the mid-cavity section

of the heart is shown in Figure 81. Table 16 summarizes the average values of the four es-

timated perfusion-related parameters, for the six sectors of the mid-cavity level of the heart

corresponding to the patient data in Figure 80. From the presented values, after undergo-

ing treatment these perfusion indexes have show an improvement as compared with those

before treatment. Moreover, the 95% confidence interval statistic was used to compare the

four perfusion indexes before and after treatment. Figure 82 shows the box plots of the

perfusion indexes’ values for pre- and post-treatment for all patients in this study, averaged

over the six sectors of the mid-cavity level. Based on the groups’ separation, shown in

Figure 82, it can be concluded that, on average, there is an improvement of the estimated

indexes after undergoing treatment compared with that before treatment.

FIGURE 81: Corresponding segment locations for the mid-cavity image section of the

myocardial 17-segment model [6]. The segment numbering starts counter-clockwise from

the anatomical landmark indicated by the white arrow. Please note that the coloring is

simply to indicate different segments and provide visibility of the segment numbering.
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TABLE 16: Average perfusion parameter values for the mid-cavity level sectors of the

17-segment model [6] for the results shown in Figure 80.

Peak Value Time-to-Peak Up-Slope Average Plateau

Sector Number Pre Post Pre Post Pre Post Pre Post

Sector #7 0.314 0.523 38.59 13.50 0.008 0.038 0.396 0.411

Sector #8 0.246 0.678 39.12 14.72 0.006 0.046 0.401 0.602

Sector #9 0.312 0.689 39.92 15.35 0.008 0.045 0.516 0.674

Sector #10 0.280 0.603 40.47 13.68 0.007 0.044 0.445 0.604

Sector #11 0.260 0.599 39.93 14.17 0.007 0.043 0.316 0.582

Sector #12 0.203 0.462 39.15 13.83 0.005 0.036 0.384 0.570

(a) (b)

(c) (d)

FIGURE 82: Box plots of the perfusion indexes (average over all heart sectors) for the

pre-treatment (PR,red) and post-treatment (PO,blue) for all patients enrolled in this study:

peak signal intensity (a), time-to-peak (b), initial up-slope (c), and average plateau (d).
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H. SUMMARY

Detection of heart failure in its earliest forms when there is an optimal opportunity

to intervene using existing clinical strategies to restore damaged heart tissue may represent

an important advance in the personalized management for individual patients to prevent

progression to end-stage disease. In this chapter, a novel framework for improved analysis

of cardiac first-pass perfusion MRI has been introduced. The proposed framework demon-

strated the documented ability to reveal regional perfusion improvements with therapy, and

transmural perfusion differences across the myocardial wall in a preliminary cohort of eight

total participants who are undergoing a novel myoregeneration therapy. Essential contribu-

tions of this chapter are: (i) a two-step registration methodology (affine-based registration

followed by a local B-splines alignment) that accounts for heart deformations due to respi-

ratory motion and heart contraction based on maximizing a new similarity function, which

accounts for the first– and second–order normalized mutual information; (ii) deformable

model-based segmentation combining a weighted probabilistic shape prior, first-order im-

age intensities, and a second-order spatial interactions model; (iii) a Laplace-based registra-

tion refinement method for ultimate pixel-on-pixel matches of the segmented myocardium

for accurate analysis of CA transit into the heart wall. The presented work in this chapter

has been published in the International Conference on Image Processing (ICIP) [419], the

International Conference on Pattern Recognition (ICPR) [97], and the International Sym-

posium on Biomedical Imaging (ISBI) conference [96, 420].
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CHAPTER V
EARLY DETECTION OF PROSTATE CANCER

This chapter presents a noninvasive approach for early diagnosis of prostate can-

cer from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). In order to

precisely analyze the complex 3D DCE-MRI of the prostate, a novel processing frame-

work that consists of four basic steps is proposed. The first step isolates the prostate region

from the surrounding anatomical tissue based on a maximum a posteriori (MAP) estimate

of a log-likelihood function that accounts for three image descriptors: the shape priori of

the prostate, the spatial interaction between the prostate tissue, and the current appearance

of the prostate tissue and its background. In the second step, a nonrigid registration ap-

proach based on the solution of the Laplace equation is employed to account for any local

deformations that could occur in the prostate during the scanning process due to patient

breathing and local motion. In the third step, the contrast agent kinetics are obtained from

the segmented prostate of the whole image sequence of the patient. Then, two perfusion-

related features are collected from these curves and a kn-nearest neighbor classifier is used

to distinguish between malignant and benign detected tumors. Finally, parametric perfu-

sion maps that illustrate the propagation of the contrast agent (CA) into the prostate tissues

are constructed. This is achieved based on the analysis of the 3D spatial interaction of the

change of the gray-level values of prostate voxels using a generalized Gauss–Markov ran-

dom field (GGMRF) image model. Moreover, the tumor boundaries are determined using

a level set deformable model controlled by the perfusion information and the spatial inter-

action between the prostate voxels. Experimental results on 30 clinical prostate DCE-MRI

data sets yielded promising diagnostic results.
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A. PROSTATE: ANATOMY, FUNCTION, AND DISEASES

The prostate is the largest accessory gland in the male urinary and reproductive sys-

tem. It is a cone-shaped organ and is about the size of a walnut that weighs approximately

15–20 grams and measures approximately 4×2×3 centimeters in a mature male [421]. In

this section, brief descriptions of the prostate anatomy and function, as well as the diseases

that affect the prostate, are provided.

FIGURE 83: Schematic illustration of an anatomical view of the lower abdomen area that

contains the prostate [22].

The prostate is located deep in the pelvis just below the urinary bladder and in front

of the rectum, see Figure 83. It surrounds the urethra as it exits the bottom of the bladder.

The prostate has two main functions. First, it stores, secretes, and controls the flow of the

milky fluid, which constitutes 30% of the volume of the semen and is injected into the

urethra along with sperm when a male is sexually aroused. Second, it controls the diameter

of the urethra, thereby controlling the flow of urine [422]. To accomplish these functions,

the prostate contains three main cell types: (i) gland cells that excrete seminal fluid, (ii)

muscles cells that control the diameter of the urethra for urine flow and ejaculation, and

(iii) fibrous cells that make up the supportive structure of the prostate [422].
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In pathology, the prostate region is divided into different segments or zones. Each of

these zones consists of different cell types and is susceptible to different types of diseases.

Figure 84 illustrates the main glandular zones of the prostate: the central zone (CZ), the

transition zone (TZ), and the peripheral zone (PZ). The PZ is the sub-capsular portion of

the prostate gland that surrounds the distal urethra and constitutes up to 70% of a normal

prostate gland. The CZ is the second largest region of the prostate that surrounds the

ejaculatory ducts and constitutes about 25% of a normal prostate gland. The third zone is

the TZ that surrounds the urethra and is the region of the prostate that grows through-out

life. The TZ comprises about 5% of a normal prostate gland [423].

FIGURE 84: Schematic illustration of the front and side cross-sectional views of the

prostate showing different prostate zones [23].

The function of the prostate can be affected by various types of medical complica-

tions. The three most common prostate problems are the prostatitis, benign prostatic hyper-

plasia (prostate enlargement), and prostate cancer. Prostatitis is microscopic inflammation

(swelling) of the tissue of the prostate gland, which affects mostly young and middle-aged

men [424]. This inflammatory disease is usually caused by bacteria and is categorized into

four groups based on the chronicity of symptoms [425]: Type I–acute bacterial prostatitis,
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Type II–chronic bacterial prostatitis, Type III–chronic abacterial prostatitis (chronic pelvic

pain syndrome), and Type IV–asymptomatic inflammatory prostatitis. Type I is less likely

to occur; however, it is potentially life-threatening. Type II is also relatively uncommon

and occurs when bacteria find a spot on the prostate where they can survive. On the other

hand, Type III is the most common and can be found in men of any age; nevertheless, it is

the least understood form of prostatitis [426]. The incidence of Type IV is unknown and

diagnosis is made after a biopsy and is usually correlated with the higher PSA values [427].

Benign prostatic hyperplasia is the second medical complication that affects the prostate,

which is caused by non-cancerous enlargement of the prostate gland and is associated with

aging. This condition can cause men to have some troubles, such as the frequent need to

urinate, and the difficulty to start urination or to fully empty the bladder [428].

The last type of prostate disease is prostate cancer, which is one of the most com-

mon cancers among males. In most cases, prostate cancer has no symptoms and is only

found due to screening. When symptoms are present they include pain, difficulty in urinat-

ing, and problems during sexual intercourse. Prostate cancer is a slow growing cancer that

may invade other organs if untreated. In addition, it has different occurrence rates at dif-

ferent zones of the prostate, due to the difference in cell types that compromise each zone.

Particularly, the vast majority (70%) of prostate cancer originate in the PZ, while only 25%

occur in the TZ and 5% in the CZ, which tends to be the more aggressive type [429]. In or-

der to determine how far the cancer has spread (within the prostate or to other body parts),

a staging test is performed. Staging of the prostate cancer plays an important role in the

choice and the success of treatment. Prostate cancer has four stages (Stages I through IV).

Stage I is the earliest cancer stage in which the cancer cells are confined to a microscopic

area and are too small to be either felt by a physician or seen in imaging tests. Stage II is

more advanced than stage I and the cancer can be felt by a physician. Like stage I, however,

the cancer is still confined only to the prostate gland. In stage III, the cancer spreads outside

the prostate to nearby tissues, e.g., seminal vesicles. The final stage of prostate cancer is

stage IV in which the cancer cells have spread beyond the outer layer of the prostate to the

nearby organs, such as the lymph nodes, bones, rectum, or bladder.
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Prostate cancer is the sixth leading cause of cancer-related death in men worldwide

and is the second in the U.S. [430]. Therefore, it is crucial to detect/diagnosis prostate

cancer in its earliest stage in order to improve the effectiveness of treatment and increase

the patient’s chance of survival. In recent years, both the diagnosis and the treatment of

prostate cancer continue to evolve using different techniques and methods. The next section

overviews different techniques that are used for early diagnosis of prostate cancer as well as

the related work on prostate cancer detection and diagnosis in the context of the proposed

framework.

B. CURRENT DIAGNOSTIC METHODS OF PROSTATE CANCER

Prostate cancer is the most frequently diagnosed male malignancy and the sec-

ond leading cause (after lung cancer) of cancer-related death in the USA, with more than

238,000 new cases and a mortality rate of about 30,000 in 2013 [71]. Early diagnosis im-

proves the effectiveness of the treatment and increases the patient’s chances of survival.

Compared to other types of cancers, such as lung cancer, prostate cancer, when treated by

removing the prostate gland, has a zero chance of recurrence. There are many techniques

that are used for the diagnosis of prostate cancer. The main diagnostic tools for prostate

cancer are digital rectal exam (DRE), serum concentration using prostate specific antigen

(PSA) blood test, and needle biopsy. The DRE test is carried out by a skilled physician

who manually feels for any abnormalities in the prostate gland through the rectum. The

DRE is inexpensive and easy to perform. However, the accuracy of a DRE examination is

not high enough and depends on the physician experience. Also,it can only detect tumors

with sufficient volumes. Another screen test for the diagnosis of prostate cancer is per-

formed using PSA– an enzyme that is secreted by the prostatic cells. The higher the values

of PSA, the more likely the prostate gland is to have cancer. However, PSA is associated

with a high-risk of over diagnosis of prostate cancer as higher PSA levels may reflect other

conditions, such as an enlarged or inflamed prostate [431]. In addition, PSA screening

lacks the ability to provide accurate information about the location and the extent of the
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cancer. If either the DRE or PSA tests raise any concern, the needle biopsy is performed to

collect tissue samples from the prostate, which are analyzed in a lab to determine if cancer

cells are present or not. Biopsy remains the gold standard for diagnosis of prostate cancer,

but it is the last resort because of its invasive nature, high costs, and potential morbidity

rates. Additionally, the relatively small needle biopsy samples have a higher possibility of

producing false positive diagnosis.

To overcome these limitations, noninvasive evaluation of prostate cancer has been

clinically explored with several medical imaging tools, such as ultrasound, computed to-

mography (CT), and magnetic resonance imaging (MRI). These imaging methods are fa-

vorable due to their ability to provide reliable information about the size and shape of

prostate gland and can localize the cancer foci, which would improve the accuracy of di-

agnosis and enable more efficient treatment. Transrectal ultrasound (TRUS) is the most

commonly used technique for prostate imaging. TRUS is used in estimating the volume

of the prostate gland in PSA screening, and is often used in planning and guiding needle

biopsies [432]. TRUS is often chosen due its inexpensive cost, ease of use, portability,

and real-time nature. However, it does have several disadvantages, including low contrast

and a low signal-to-noise ratio (SNR) [433]. As a result, it can be difficult to accurately

detect and locate cancerous cells using TRUS images. Traditional CT imaging modality is

widely used for post-therapy evaluation by physicians to assess the effectiveness of treat-

ment [432]. However, it uses radiation and has poor soft-tissue contrast resolution, which

does not allow precise distinction of the internal or external anatomy of the prostate. As

an alternative for ultrasound and CT, magnetic resonance (MR) imaging techniques are be-

coming increasingly attractive as new diagnostic tools for prostate cancer. Over the past

years, these MRI-based techniques have shown varying degrees of success for improved vi-

sualization and localization of prostate cancer [75, 77, 79, 80, 132, 134–140, 434, 435]. The

key advantage of MRI is that it provides higher contrast of soft tissues, which allows for bet-

ter detection of cancerous tissues. In addition to anatomical information, MRI can provide

valuable functional information about the tissue by using functional acquisition techniques,

such as MR spectroscopy (MRS), DCE-MRI, and diffusion-weighted imaging (DWI) [77].
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In this chapter, the focus is on using DCE-MRI to develop a computer-aided di-

agnostic (CAD) system for early detection of prostate cancer. The the lack of ionizing

radiation, increased spatial resolution, and the ability to provide both anatomical and func-

tional information are the key motivation of using DCE-MRI. In general, early diagnosis

of prostate cancer using DCE-MRI requires intermediate image processing steps, such as

prostate registration, segmentation, and classification. The next sections introduce the re-

lated work on prostate segmentation and registration, and the state-of-the-art CAD systems

for early detection of prostate cancer.

1. Related Work in Prostate Segmentation and Registration

Prostate segmentation, i.e., the delineation of prostate borders from the surround-

ing tissues, is a basic step in any noninvasive CAD system for early detection of prostate

cancer. However, accurate delineation of prostate borders in MR images is a challenge due

to: large variations of prostate shapes within a specific time series as well as across sub-

jects; the lack of strong edges and diffused prostate boundaries; and the similar intensity

profile of the prostate and surrounding tissues. Although manual outlining of the prostate

border enables the prostate volume to be determined, it is time consuming and observer

dependent. Moreover, traditional edge detection methods [436] are unable to extract the

correct boundaries of the prostate since the graylevel distributions of the prostate and the

surrounding organs are hardly distinguishable. To overcome this limitation, most success-

ful known approaches have addressed the segmentation challenges by incorporating the

prostate appearances and shapes into their segmentation techniques.

In particular, an automated framework by Allen et al. [437] was proposed for 3D

prostate segmentation that consists of two steps. voxel classification is performed based on

Gaussian probabilities of grey level. Then, a statistical shape model is used to segment the

prostate region. A hybrid 2D/3D active shape model (ASM)-based methodology for global

optimal segmentation of the 3D MRI prostate data was proposed by Zhu et al. [438]. Itera-

tive segmentation was performed by a 2D ASM search on each slice, then the final surface
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is reconstructed from the 2D search results and updated by re-estimating the parameters

of the 3D probabilistic shape model. Klein et al. [439, 440] presented an atlas-based seg-

mentation approach that utilized a localized version of mutual information (MI) to extract

the prostate from MR images. The segmentation of the prostate is obtained as the aver-

age of the best-matched registered atlas set to the test image (image to be segmented).

Flores-Tapia et al. [441] proposed a semi-automated edge detection technique for MRI

prostate segmentation. In their framework, the prostate borders were detected by tracing

four manually-selected reference points on the edge of the prostate using a static Wavelet

transform [442] to locate the prostate edges. Toth et al. [443] presented an algorithm for

the automatic segmentation of the prostate in multi-modal MRI. Their algorithm starts by

isolating the region of interest (ROI) from MRS data. Then, an ASM within the ROI is used

to obtain the final segmentation. A semi-automated approach by Vikal et al. [444] used a

priori knowledge of prostate shape to detect the contour in each slice and then refined them

to form a 3D prostate surface. An unsupervised segmentation method was proposed by Liu

et al. [445] for the segmentation of MR prostate images. A level set deformable model was

employed and was guided by an elliptical prostate shape prior and intensity gradient was

employed to refine the initial results obtained by Otsu thresholding [446]. A maximum A

posteriori (MAP)-based framework was proposed by Makni et al. [447] to perform auto-

mated 3D MRI prostate segmentation. Their framework combined graylevel, contextual

information regarding voxels’ neighborhoods using MRF, and statistical shape information

to find optimum segmentation based on Bayesian a posteriori classification, estimated with

the iterative conditional mode (ICM) algorithm. Liu et al. [227] proposed an automated ap-

proach that utilized fuzzy MRF modeling for prostate segmentation from multi-parametric

MRI. Their framework exploited T2-weighted image intensities, pharmacokinetic (PK) pa-

rameter kep, and apparent diffusion coefficient (ADC) values in a Bayesian approach to

label prostate pixels as cancerous or non-cancerous. The labeled pixels are then clus-

tered using the k-means algorithm. The system had a specificity of 89.58%, sensitivity

of 87.50%, accuracy of 89.38%, and a DSC of 62.2%. A similar approach was developed

by Artan et al. [228] and located cancerous regions using cost-sensitive support vector ma-
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chine (SVM). Prostate segmentation was performed using a conditional random field and

the same three features in [227] were utilized for classification. The DSC for prostate

localization and segmentation was 0.46±0.26, and the area under the receiver operator

characteristic (ROC) curves (Az) of the classification was 0.79±0.12. Ozer et al. [448]

also developed a technique that directly segmented prostate cancers using the same three

features in [227, 228]. Both the SVM and relevance vector machine (RVM) [449] classi-

fiers were used and the system showed a specificity of 0.78 and a sensitivity of 0.74 for

RVM and 0.74 and 0.79 for SVM. Gao et al. [450] proposed a shape-based technique that

utilized point cloud registration of the MR images before segmenting the prostate. The

final prostate border is obtained by minimizing a cost functional that incorporated both

the local image statistics as well as the learned shape prior. Martin et al. [451] developed

an atlas-based approach for segmenting the prostate from 3D MR images by mapping a

probabilistic anatomical atlas to the test image. The resulting map is used to constrain a

deformable model-based segmentation framework. Firjani et al. [452] proposed a MAP-

based framework that combines a graph-cut approach and three image features (grey-level

intensities, spatial interactions between the prostate pixels, and a prior shape model) for

2D DCE-MRI prostate segmentation. Their method was later extended in [76] to allow

for 3D segmentation from DCE-MRI volumes. It utilized both a 3D MRF to model the

spatial interaction between the prostate voxels and a 3D shape prior. Recently, Dowling et

al. [453] proposed an automated framework that combined dynamic multi-atlas label fusion

methods. They employed the diffeomorphic demons method for the nonrigid registration

using the selective and iterative method for performance level estimation (SIMPLE) tech-

nique [454]. In their framework, a pre-processing step for bias field correction, histogram

equalization, and anisotropic diffusion smoothing was employed. Ghose et al. [455] pro-

posed a probabilistic graph-cut-based framework for prostate segmentation based on the

fusion of the posterior probabilities determined with a probabilistic atlas and a supervised

random forest learning framework. An automated technique that first applied global reg-

istration to the prostate MRI data followed by an active appearance model (AAM) based

segmentation of the prostate tissue was proposed by Ghose et al. [456]. Table 17 sum-
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marizes the reviewed methodologies for prostate segmentation and registration with the

validation data sets and achieved performance for each study.

In summary, a tremendous number of studies have been developed for the segmen-

tation and registration of prostate MRI data. However, in most of these approaches the

segmentation and registration reliability is not very high due to the following reasons: (i)

parametric shape models fail in the presence of large gray-level variability across subjects

and time; (ii) edge detection methods are not suitable for discontinued objects; (iii) de-

formable models tend to fail in the case of excessive noise, poor image resolution, diffused

boundaries or occluded objects if they do not incorporate a priori models (e.g., shape and

appearance). In addition, most of the motion correction models account only for the global

motion and do not take into account the local motion of the prostate due to transmitted res-

piratory and peristaltic effects. Furthermore, the existing local motion correction methods

are intensity-based techniques, which are prone to nonlinear intensity variations over the

time series and perform poorly in pre-contrast images. Also, local motion correction meth-

ods register the original grey level data without any prior segmentation; therefore, they do

not guarantee voxel-on-voxel matches of the registered perfusion data.

TABLE 17: Summary of the discussed prostate segmentation and registration techniques
and their experimental performance. Note that DIM and AL stand for data dimension (i.e.,
2D, 3D, or 4D) and the automation level (i.e., automated or semi-automated), respectively.

Study DIM, AL, and Methods Data and Performance
Allen et
al. [437]

• 3D
• Automated
• ASM-based segmentation

• 22 data sets
• MAD: 2.8±0.82

Klein et
al. [439]

• 3D
• Automated
• Affine + B-Splines Registration
• Atlas-based segmentation

• 38 data sets
• Median DSC: 0.82

Zhu et
al. [438]

• 3D
• Automated
• Hybrid 2D+3D ASM

• 26 data sets (288 slices)
• RMSD: 5.481±2.91

Flores-Tapia
et al. [441]

• 3D
• Semi-automated
• Edge detection

• 1 data set (19 slices)
• DSC: 0.93±0.005

continued on the next page . . .
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TABLE 17 – continued from the previous page
Study DIM, AL, and Methods Data and Performance

Toth et
al. [443]

• 3D
• Automated
• Unsupervised spectral clustering
• ASM-based segmentation

• 150 slices
• Average OR: 0.83, average

SEN: 0.89, average SPE:
0.86, and average PPV: 0.93

Klein et
al. [440]

• 3D
• Automated
• Affine + B-splines registration
• Atlas matching

• 50 slices
• Median DSC: 0.85

Vikal et
al. [444]

• 3D
• Semi-automated
• ASM

• 3 data sets (39 slices)
• DSC: 0.93±0.3 and MAD:

2.00±0.6 (mm)
Makni et
al. [447]

• 3D
• Automated
• ASM

• 12 data sets
• Mean HD: 9.62 (mm), GD:

2.39 (mm), OR: 0.84, VPC:
0.90, and DSC: 0.91

Liu et
al. [445]

• 2D
• Automated
• Level-set-based segmentation

• 10 data sets
• DSC: 0.91±0.03

Ozer et al.
[448]

• 2D
• Automated
• SVM and RVM

• 20 data sets
• SPE: 0.78, SEN: 0.74, and

DSC: 0.51 for RVM
• SPE: 0.74, SEN: 0.79 and

DSC: 0.52 for SVM
Artan et
al. [228]

• 2D
• Automated
• Cost-sensitive conditional ran-

dom field

• 21 data sets
• Az: 0.790±0.12 and DSC:

0.46±0.26

Liu et
al. [227]

• 3D
• Automated
• fuzzy MRFs

• 11 data sets
• SPE: 0.896, SEN: 0.894, and

DSC: 0.622
Gao et
al. [450]

• 3D
• Automated
• Affine registration
• Level set segmentation

• 48 data sets
• DSC: 0.84±0.03 and 95%

HD: 8.10±1.50 (mm) (33
data sets)

• DSC: 0.82±0.03 and 95%
HD: 10.22±4.03 (mm) (15
public data sets)

Martin et
al. [451]

• 3D
• Automated
• Affine + Multi-resolution

Demons registration
• ASM

• 36 data sets
• Median DSC: 0.86 and Aver-

age surface error: 2.41mm

continued on the next page . . .
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TABLE 17 – continued from the previous page
Study DIM, AL, and Methods Data and Performance

Firjani et
al. [452]

• 2D
• Automated
• Affine registration
• Graph-cut segmentation

• 10 Subjects (180 Volumes)
• MD: 5.2±1.2

Firjani et
al. [76]

• 3D
• Automated
• Affine registration
• Graph-cut segmentation

• 15 data sets
• OAE: 0.6±0.80, DSC:

0.92±0.004, PPV:
0.98±0.004, and SEN:
0.85±0.004

Dowling et
al. [453]

• 3D
• Automated
• Diffeomorphic demons registra-

tion
• Atlas-based segmentation

• 50 data sets
• Median DSC: 0.86 and Aver-

age surface error: 2.0 (mm)

Ghose et
al. [455]

• 3D
• Semi-automated
• Affine + nonrigid Demon regis-

tration
• Graph-cut segmentation

• 15 data sets
• DSC: 0.91±0.04 and

95%HD: 4.69±2.62 (mm)

Ghose et
al. [456]

• 2D
• Automated
• Affine registration
• AAM-based segmentation

• 15 data sets
• DSC: 0.88±0.11; HD:

3.38±2.81 (mm), and MAD:
1.32±1.53

AMM: Active appearance model.
ASM: Active shape model.
DSC: Dice similarity coefficient: DSC = 2·TP

2·TP+FP+FN
where, TP: true positive, FP: false positive, FN: false negative.

GD: Gravity distance.
HD: Hausdorff distance.
MD: Mean distance.
MAD: Mean absolute distance.
N/A: Not applicable.
OR: Overlap ratio.
OAE: Overlapping area error; OAE = FP+FN

TP+FN%

PPV: Positive predictive value; PPV = TP
TP+FP .

RMSD: Root mean squared distance.
RVM: Relevance vector machine.
SEN: Sensitivity; SEN = TP

TP+FN .
SPE: Specificity; SPE = TN

TN+FP ; where TN: true negative.
VPC: Volume properly contoured.
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2. Related Work in CAD Systems for Prostate Cancer

The development of CAD systems for detecting prostate cancer using MR image

modalities is an ongoing area of research. Current medical studies suggest that T2-weighted

MRI and DCE-MRI hold promise for improving prostate cancer detection, thereby reduc-

ing the need for prostate biopsy [130, 133, 134, 241, 251, 435, 457–465]. In this section, the

state-of-the-art CAD systems developed for prostate cancer detection will be discussed. A

summary of the discussed systems along with their computational methods, validation data

sets, and validation accuracy are given in Table 18.

To the best of our knowledge, the first semi-automated computerized MRI-based

CAD system for prostate cancer diagnosis was developed by Chan et al [457]. In their

study, multi-modal MRI (T2-weighted, T2-mapping, and line scan diffusion imaging) were

used to estimate malignancy likelihood in the PZ of the prostate. Both statistical maps and

textural features were obtained and a SVM and a linear discriminant analysis (LDA) classi-

fiers were employed for the classification. Their systems resulted in an Az of 0.761±0.043

and 0.839±0.064, for SVM and LDA respectively. Madabhushi et al [458] proposed an

automated CAD system for detecting prostatic adenocarcinoma from MR prostate images.

In their method, multiple image features, including gray levels statistics (intensity values,

mean, and standard deviation), intensity gradient, and Gabor filter features, were used for

classifying groups of pixels as tumors. A kn-nearest neighbor classifier and Bayesian con-

ditional densities were used for classification, and the system achieved an Az of 0.957. A

study by Engelbrecht et al. [130] evaluated which MRI parameters would result in opti-

mal discrimination of prostatic carcinoma from normal PZ and CZ of the prostate. Using

the ROC curves, their study concluded that the relative peak enhancement was the most

accurate perfusion parameter for cancer detection in the PZ and CZ of the gland. A semi-

automated CAD system by Kim et al. [459] demonstrated that parametric imaging of the

wash-in rate was more accurate for the detection of prostate cancer in the PZ than was

T2-weighted imaging alone. However, they also observed significant overlap between the

wash-in rate for cancer and normal tissue in the TZ. Fütterer et al. [435] developed a CAD
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system to compare the accuracies of T2-weighted MRI, DCE-MRI, and MRS imaging for

prostate cancer localization. The results showed higher accuracy in DCE-MRI than were

achieved with T2-weighted MRI in prostate cancer localization. A similar study was con-

ducted by Rouvière et al. [460] for the detection of postradiotherapy recurrence of prostate

cancer. Their study also concluded that DCE-MRI possesses the ability to depict the in-

traprostatic distribution of recurrent cancer after therapy more accurately and with less

inter-observer variability than T2-weighted MRI. Puech et al. [133, 134] developed a semi-

automated dynamic MRI-based CAD system for the detection of prostate cancer. Candi-

date lesion ROIs were selected either manually or by using a region growing technique

initiated by a user-selected seed point. Lesions are classified as benign, malignant or inde-

terminate based on the analysis of the median wash-in and wash-out values. Their CAD

system demonstrated a sensitivity and specificity of 100% and 45% for the PZ, and sen-

sitivity and specificity of 100% and 40% for the TZ. Ocak et al. [241] developed a CAD

system using PK analysis for prostate cancer diagnostics in patients with biopsy-proven

lesions. In their framework, four PK parameters (K trans, kep, ve, and the area under the

gadolinium concentration curve) were determined and compared for cancer, inflammation,

and healthy peripheral. Their results showed improvement in prostate cancer specificity

using the K trans and kep parameters over that obtained using conventional T2-weighted

MRI. An automated DCE-MRI CAD system for prostate cancer detection was proposed

by Viswanath et al. [461]. Prostate borders were segmented using an ASM, and a nonrigid

registration scheme (affine and thin plate spline) was employed to map the whole mount

histological sections onto corresponding 2D DCE-MRI. In order to classify prostate tissue,

a local linear embedding approach [466] was used to create a feature vector using local

neighborhood intensities. Then, a k-means clustering approach was used for the classi-

fication and the system achieved an accuracy of about 77%. Their framework was later

extended in [462] by combining T2-weighted features and DCE-MRI functional features.

The system validation showed that the integration of both modalities (Az of 0.815) has a

better performance of either individual modalities (0.704 for T2-weighted MRI and 0.682

for DCE-MRI). A semi-automated framework by Vos et al. [463] classified prostate le-
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sions using quantitative PK maps and T1 estimates. PK features were extracted from a

user-defined ROI around the prostate and a SVM was used to estimate the likelihood of

malignancy. Based on the ROC analysis, the reported results showed that the system had

an accuracy of 83% in the classification of the ROIs with abnormal enhancement patterns

in the PZ. Ampeliotis et al. [464] proposed a semi-automated multi-parametric CAD sys-

tem that used T2-weighted and DCE-MRI. The T2-weighted pixel intensities and the four

low-frequency coefficients of the discrete cosine transform were used as features and prob-

abilistic neural networks were employed as the classifier. Based on the ROC analysis (Az

of 0.898), their study concluded that the fused T2-weighted and dynamic MRI features out-

perform that of either modality’s features alone. A similar CAD system was proposed by

Litjens et al. [465] that employed an ASM to segment the prostate. In order to classify

the segmented prostate voxels, the ADC, K trans, and kep parameters were estimated and a

SVM classifier with a radial basis function kernel was used. The validation results showed

a sensitivity of 74.7% and 83.4% with seven and nine FPs per patient, respectively. Vos et

al. [251] utilized an automated CAD system for the detection of prostate cancer. Just as

in [465], the prostate was segmented using an ASM-based technique. Then, multiple ROIs

were located within the segmented prostate using peak and mean neighborhood intensity

and ADC values. These values and the differences between the peak and the mean were

again used as features for ROI classification. In addition, the 25 percentile T2, 25 percentile

ADC, 25 percentile wash-out, 50 percentile T1, 75 percentile K trans, and 75 percentile ve

were used as features. The resulting feature vector was classified using an LDA classifier.

This system had an Az of 0.83±0.20. A maximum Az of 0.88 was reported for high-grade

tumors, but the system had difficulty classifying lower grade tumors, achieving a maxi-

mum Az of 0.74. Another semi-automated multi-parametric system by Peng et al. [467]

utilized T2-weighted, DCE-MRI and DWI. Candidate features, including the T2-weighted

intensity skew, the K trans, and the average and 10th percentile ADC, were calculated from

a manually-selected ROI. Then, an LDA classifier was used to differentiate prostate cancer

from normal tissue in those ROIs. Their CAD system concluded that the best diagnostic

performance (Az of 0.95±0.02, SEN of 0.82, and SPE of 0.953) is obtained by combining
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the 10th percentile ADC, average ADC, and T2-weighted intensity skewness features.

In summary, developing noninvasive CAD systems for the detection and diagno-

sis of prostate cancer is an area of research interest. Current CAD systems focus mainly

on the initial voxel classification stage by obtaining likelihood maps that combine infor-

mation from MR images using mathematical descriptors. State-of-the art studies showed

that voxel basis discrimination between benign and malignant tissue is feasible with good

performances. However, the majority of these studies were performed by radiologists who

selected an ROI (small window) around the prostate and followed signal changes within

these ROIs. In addition, the final diagnosis and patient management is left to the radiolo-

gist. Unfortunately, such approaches not only require manual interaction of the operators,

but also ROI selection biases the final decision and brings up the same issue of over- or

under-estimating the problem in the entire gland, just as with biopsy. Moreover, manual

ROI selection and function curve generation from these ROIs assume that the prostates

(prostate contours) remain exactly the same from scan to scan. Nonetheless, prostate con-

tours may not always exactly match due to patient movement or breathing effects; there-

fore, motion correction techniques should be applied first before ROI selection. Also, to

automate the algorithm and to cancel ROI dependency, segmentation approaches that can

separate the prostate from the surrounding structures are needed.

TABLE 18: Summary of MRI-based CAD systems for prostate cancer detection and diag-
nosis, including segmentation method, selected features, classifier, and experimental per-
formance.

Study Segmentation (s), Features (f) & Classifier (c) Data and Performance
Chan et
al. [457]

(s) Manual ROIs
(f) T2 intensities, 3D T2 intensity gradient, and

Gabor filter
(c) LDA and SVM

• 5 Subjects (33 images)
• Az: 0.839±0.064

(LDA) and
0.761±0.043 (SVM)

Litjens et
al. [465]

(s) ASM
(f) T2-weighted intensities, K trans, kep, and

ADC
(c) SVM

• 188 subjects
• SEN: 0.747 (at 7 FP per

patient) and 0.834 (at 9
FP per patient)

continued on the next page
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TABLE 18 – continued from the previous page
Study Segmentation (s), Features (f) & Classifier (c) Data and Performance

Engelbrecht
et al. [130]

(s) Manual ROIs
(f) Onset time, time to peak, peak enhance-

ment, washout, and T2 relaxation rate
(c) N/A

• 36 subjects
• Az PZ: 0.79 (Onset

time), 0.60 (time to
peak), 0.89 (peak
enhancement), 0.93
(relative peak enhance-
ment), 0.82 (wash-out),
and 0.64 (T2 relaxation
rate)

• Az CZ: 0.70 (onset
time), 0.60 (time to
peak), 0.79 (peak
enhancement), 0.83
(relative peak enhance-
ment), 0.82 (wash-out),
and 0.51 (T2 relaxation
rate)

Rouvière et
al. [460]

(s) Manual ROIs
(f) N/A
(c) Evaluation and scoring by three indepen-

dent readers. The MRI scoring results
were correlated against biopsy results in 10
prostate sectors

• 22 subjects
• ACC: 0.59 (T2-

weighted MRI)
• ACC: 0.75 (DCE-MRI)

Kim et
al. [459]

(s) Manual ROIs
(f) Wash-in rate
(c) A cut-off threshold selected by a radiologist

differentiate cancer from normal tissue

• 53 subjects
• ACC: 0.62 (T2-

weighted MRI)
• ACC: 0.88 (DCE-MRI)

Madabhushi
et al. [458]

(s) N/A
(f) T2 intensities, 3D T2 Intensity gradient, and

Gabor filter
(c) Bayes classifier

• 5 Subjects (33 images)
• SEN: 0.42, SPE: 0.97

and PPV: 0.43

Madabhushi
et al. [468]

(s) N/A
(f) T2 intensities, 3D T2 intensity gradient, and

Gabor filter
(c) Bayes and kn-nearest neighbor classifiers

• 5 Subjects (33 images)
• Az: 0.957

Fütterer et
al. [435]

(s) Manual ROIs
(f) ve, kep, K trans, and wash-out slopes
(c) Prospectively evaluation and scoring of the

selected features by two independent radi-
ologists

• 34 subjects
• Az: 0.68 (T2-weighted

MRI), 0.91 (DCE-
MRI), and 0.80 (MRS)

Viswanath
et al. [461]

(s) ASM
(f) Ratio of the wash-in and wash-out rates
(c) K-means clustering

• 21 subjects
• SEN: 60.72%, SPE:

83.24%, and ACC:
77.2%

continued on the next page
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TABLE 18 – continued from the previous page
Study Segmentation (s), Features (f) & Classifier (c) Data and Performance

Ocak et
al. [241]

(s) Manual ROIs
(f) K trans, kep, ve, and the area under the

gadolinium concentration curve
(c) Logistic regression modeling

• 50 subjects
• For T2-weighted MRI

SEN: 0.94, SPE: 0.37,
PPV: 50, and NPV: 0.89

• For DCE-MRI SEN:
0.73, SPE: 0.88, PPV:
75, and NPV: 0.75

Puech et
al. [133,
134]

(s) Manual ROIs/region growing
(f) Wash-in and wash-out slopes
(c) Automatic scoring algorithm of the selected

features

• 84 subjects
• for PZ SEN: 100% and

SPE: 45%
• for TZ SEN: 100% and

SPE: 40%
Vos et
al. [463]

(s) Manual ROIs
(f) 50% T1 static, 75% ve, 75% kep, 75%

K trans, and 25% wash-out
(c) SVM

• 34 subjects
• Az: 0.83

Ampeliotis
et al. [464]

(s) Manual ROIs
(f) T2-weighted features (intensity, and the in-

tensity variance and kurtosis for a 3x3 win-
dow) and S(t) of DCE-MRI sequence

(c) Probabilistic neural networks

• 10 Subjects
• Az: 0.898 (T2-weighted

+ DCE-MRI); 0.790
(DCE-MRI), and 0.864
(T2-weighted)

Viswanath
et al. [462]

(s) ASM
(f) T2 features (standard deviation, gradient,

Haralick feature), and DCE features (wash-
in and wash-out)

(c) Bayes classifier and random forest

• 6 subjects (18 Images)
• Az: 0.815±0.029
• ACC: 0.861±0.004

Lopes et
al. [469]

(s) Manual ROIs
(f) Fractal dimension, and Multi-fractional

Brownian motion
(c) SVM and AdaBoost

• 17 subjects
• SEN: 0.83 and SPE:

0.91 for AdaBoost
• SEN: 0.85 and SPE:

0.93 for SVM
Shah et
al. [470]

(s) K-means
(f) T2-weighted intensities, Kep, kel, T1, and

ADC
(c) SVM

• 24 subjects
• F-M: 0.93, Rater’s

agreement (Kappa):
0.89

Sung et
al. [229]

(s) Manual ROIs
(f) baseline and peak signal intensities, initial

up-slope, wash-in and washout rates, time
to peak, percentage of relative enhance-
ment, percentage enhancement ratio, time
of arrival, Kep, kel, and ABrix

(c) SVM

• 42 subjects
• SEN: 0.77, SPE: 0.77,

and ACC: 0.83

Vos et
al. [251]

(s) ASM
(f) T2-weighted intensities, T2 relaxation time,

wash-out rate, K trans, ve, and ADC
(c) LDA

• 200 subjects
• SEN: 0.41 (at 1 FPs),

0.65 (at 3 FPs), and
0.74 ( at 5 FPs)

continued on the next page
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TABLE 18 – continued from the previous page
Study Segmentation (s), Features (f) & Classifier (c) Data and Performance

Niaf et
al. [139]

(s) Manual ROIs
(f) PK features (K trans, kep, and ve), nonpara-

metric features (Image intensity, texture,
gradient, peak intensity, time-t-peak, Tmax,
wash-in and wash-out slopes, AUC)

(c) Nonlinear SVM, LDA, kn-nearest neigh-
bor, and naı̈ve Bayes classifiers

• 30 subjects
• Az: 0.89

Peng et
al. [467]

(s) Manual ROIs
(f) T2-weighted weighted skewness, K trans,

average ADC, and 10th percentile
(c) LDA

• 48 Subjects
• Az: 0.95±0.02, SEN:

0.820, and SPE:0.953

Hambrock
et al. [471]

(s) Manual ROIs
(f) 25 percentile of T2 wash-out, 25 percentile

ADC, and 75 percentile of K trans and ve
(c) LDA

• 34 subjects
• Az: 0.90, 0.92, and 0.87

for whole prostate, PZ,
and TZ, respectively.

ACC: Accuracy; ACC = TP+TN
TP+FP+FN+TN ; where TP: true positive,

FP: false positive, FN: false negative, and TN: true negative.
ADC: Apparent diffusion coefficient.
DSC: Dice similarity coefficient: DSC = 2·TP

2·TP+FP+FN .
F-M: F-Measure.
IAUC Initial area under the time-concentration curve.
LDA: Linear discriminate analysis.
N/A: Not applicable.
PPV: Positive predictive value; PPV = TP

TP+FP .
RVM: Relevance vector machine.
ROC: Receiver operating characteristic.
SEN: Sensitivity; SEN = TP

TP+FN .
SPE: Specificity; SPE = TN

TN+FP ; where TN: true negative.
SVM: Support vector machine.

To overcome the limitations of the existing work on prostate cancer diagnosis using

MR images, a novel noninvasive DCE-MRI-based framework (Figure 85) for early diag-

nosis of prostate cancer is proposed. The proposed framework performs sequentially the

following processing steps. First, the prostate is segmented from the surrounding anatomi-

cal tissues based on a MAP estimate of a new likelihood function. To handle the object in-

homogeneities and variability and overcome image noise, the proposed likelihood function

accounts for the visual appearances of the prostate and background, 3D spatial interaction

between the prostate voxels, and a learned 3D shape model. Second, in order to account for

any local prostate deformations that could occur during the scanning process, a nonrigid

registration algorithm is employed, which is based on deforming a target prostate object
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over evolving iso-contours to match a reference object. The correspondences between the

target and reference objects are found by the solution of the Laplace equation as described

in Section III.C.2. In the third step, agent kinetic curves that show the contrast agent (CA)

propagation into the tissue are obtained, and then used to collect two features to distinguish

between malignant and benign detected tumors using a kn-nearest neighbor classifier. Fi-

nally, parametric map displays that illustrate the propagation of the CA into the prostate

tissue are constructed for visual assessment and characterization of the physiological data.

Details of the proposed framework are described in the following sections.

FIGURE 85: The proposed CAD system for early detection of prostate cancer.

C. DELINEATION OF THE PROSTATE BORDERS

The segmentation of the prostate from DCE-MRI is a challenge due to the anatom-

ical complexity of the prostate and the undistinguishable gray-level distribution of the

prostate and surrounding organs. To account for these challenges, a MAP-based approach
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based on a learned shape model and an identifiable joint Markov-Gibbs random field (MGRF)

model (Figure 86) is proposed. The proposed MGRF image model relates the joint proba-

bility of an image and its object- background region segmentation map, to geometric struc-

ture and to the energy of repeated patterns within the image [472]. The basic theory behind

such models is that they assume that the signals associated with each voxel depend on the

signals of the neighboring voxel, and thus explicitly take into account their spatial interac-

tion, and other features, such as shape.

FIGURE 86: Illustration of the Joint Markov-Gibbs random field (MGRF) image model of

the prostate DCE-MRI.

The input 3D DCE-MRI data g and its region map m are described by the joint

MGRF model as outlined in Section III.C.1.b, Equation (45). The Bayesian MAP estimate

of the map, given g, m∗ = argmax
m

L(g,m) maximize the log-likelihood function:

L(g,m) = log(P (g|m)) + log(P (m)) (59)

where P (g|m) is a conditional distribution of the images given the map m and P (m) =

Psp(m)PV(m) is an unconditional probability distribution of maps. Here, Psp(m) denotes
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the prostate shape prior, and PV(m) is a Gibbs probability distribution with potentials V,

which specifies a MGRF model of spatially homogeneous maps m.

The specific visual appearance of the prostate in each data set to be segmented

is taken into account by modeling the marginal gray level distribution with the LCDG

model [348–350] as described in Section III.C.1.c. To overcome noise effect and to ensure

the homogeneity of the segmentation, the spatial voxel interactions between the region

labels of a given map m are also taken into account using the pairwise MGRF spatial model

as described in Section III.C.1.b and the nearest voxel 26-neighbors shown in Figure 87.

In addition to voxel-wise image intensities and their pairwise spatial interaction, additional

constraints based on the expected shape of the prostate are introduced by co-aligning each

given DCE-MRI data to a training database and using probabilistic 3D prostate shape model

Psp(m), see Figure 88.

FIGURE 87: 3D second-order MGRF neighborhood system. Note that the reference voxel

is shown in red and a represents the absolute distance between two voxels in the same and

adjacent MRI slices, or cross-sections.

To perform initial prostate segmentation, a given 3D DCE-MRI is aligned to one of

the training data. The shape model provides the voxel-wise object and background proba-
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(a) (b)

FIGURE 88: Gray-coded (a) and color-coded (b) axial view of the prostate shape prior.

bilities being used, together with the conditional image intensity model P (g|m), to build an

initial region map. The final Bayesian segmentation is performed using the identified joint

MGRF model of the DCE-MRI data and its region maps. In total, the proposed prostate

segmentation approach involves the steps summarized in Algorithm 5.

1. Nonrigid Registration

Due to patient breathing and local movement, accurate registration is a main issue

in DCE-MRI time series. After affine registration and prostate segmentation, the Laplace-

based nonrigid registration demonstrated in Section III.C.2 is used for local motion correc-

tion of the prostate over the time frame of image acquisition. For completeness, the main

steps of the Laplace-based nonrigid registration is summarized in Figure 89 as follows:

1. Generation of the distance maps inside the prostate regions (Figure 89 (a,b)).

2. Generation of the iso-contours using distance maps in Step 1 (Figure 89 (c,d)).

3. Solution of the Laplace equation between respective reference and target iso-contours

to co-allocate the corresponding points.
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Algorithm 5 Prostate Segmentation Approach

Input: 3D MRI prostate data g to be segmented.

Output: segmented prostate border (the final estimate m).

• Training Phase:

1. Co-alignment of the 3D DCE-MRI training sets using a 3D affine registration

in a way that maximizes their MI [366].

2. Manual delineation of the prostate borders from the co-aligned data.

3. Estimation of the voxel-wise probabilities by counting how many times each

voxel (x, y, z) was segmented as the prostate.

• Testing Phase:

1. Perform a 3D affine alignment of a given MRI to an arbitrary prototype prostate

from the training set using MI [366] as a matching metric.

2. Estimate the conditional intensity model P (g|m) by identifying the bimodal

LCDG.

3. Use the intensity model found in Step 2 and the learned probabilistic shape

model to perform an initial segmentation (region map m) of the prostate.

4. Use m to estimate the potential for the Potts MGRF model and to identify the

MGRF model P (m) of region maps.

5. Improve m using voxel-wise stochastic relaxation (ICM [473]) through suc-

cessive iterations to maximize Equation (59) until the log-likelihood remains

almost the same for two successive iterations.

6. Update the Shape Prior: by adding the current segmented 3D prostate data to

the prior calculated shape model.
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(a) (b)

(c) (d)

FIGURE 89: Generation of the iso-contours: the reference and target distance maps (a,b),

and their iso-contours (c,d).

2. Perfusion Characterization and Tumor Boundary Determination

After the nonrigid alignment, the time-intensity or agent kinetic curves are con-

structed by calculating the average intensities of prostate regions for each time sequence.

These curves show the response of the prostate tissue to the transient of the CA perfusing

into each image section (see Figure 90). To characterize the physiological data, parametric

map displays are constructed to illustrate the propagation of the CA into the prostate tis-

sue. To construct the initial color maps, the changes in image signals ∆x,y,z due to the CA

transient are estimated (see Figure 90) from the constructed kinetic curves as the difference

between the signals of image sequences at peak time (Tp) and initial time (T0). To preserve

continuity (remove inconsistencies), the initial estimated ∆x,y,z values are considered as

samples from a Generalized Gauss-Markov random field (GGMRF) image model [418] of

measurements with the 26-voxel neighborhood shown in Figure 87. Continuity of the con-
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structed 3D volume (see Figure 91) is amplified by using their MAP estimates as shown

in [418]:

∆̂P = argmin
∆̃P


∣∣∣∣∣∣∣∆P − ∆̃P

∣∣∣∣∣∣∣
a

+ αaχb
∑

P′∈νP

ΓP,P′

∣∣∣∣∣∣∣∆̃P −∆P′

∣∣∣∣∣∣∣
b (60)

where ∆x,y,z and ∆̃x,y,z denote the original values and their expected estimates at the ob-

served 3D location, P = (x, y, z), νP is the neighborhood system (Figure 87), ΓP,P′ is the

GGMRF potential, and α and χ are scaling factors. The parameter b ∈ [1.01, 2.0] controls

the smoothing level (e.g., smooth, b = 2, vs. relatively abrupt edges, b = 1.01). The param-

eter a ∈ {1, 2} determines the Gaussian, a = 2, or Laplace, a = 1, prior distribution of the

estimator. Then, the color maps are generated based on the final estimated ∆̂ ( Figure 95).

FIGURE 90: Estimating the changes in image signals ∆ from the kinetic curve as the

difference between the peak (Ip) and initial (I0) signals of the image sequences.
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FIGURE 91: Enhanced perfusion estimation and continuity analysis using the 3D GGMRF

image model.

The final step after the 3D GGMRF smoothing is the delineation of the detected

tumor boundary, which is important to determine the cancer stage in case of malignancy.

To achieve this, the level set deformable model presented in Section III.C.1 is applied again.

The evolution of the level set is controlled by a stochastic speed function that accounts for

the perfusion information and spatial interactions between the prostate voxels.

D. EXPERIMENTAL RESULTS

1. Patients and Data Acquisition

The performance of the proposed framework has been evaluated by applying it

on DCE-MRI prostate data that has been collected from 30 patients. These patients had

biopsy-proven prostate cancer. DCE-MRI was obtained at 1.5 T using a gradient-echo T2

imaging (SIGNA Horizon, General Electric Medical Systems, Milwaukee, WIS) using an

additional pelvic coil. Images were taken at a 7 mm thickness with an interslice gap of 0.5

mm; TR was 50 msec; TE was minimum; flip angle at 60o; band width was 31.25 kilohertz
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(kHz); field-of-view (FOV) was 28 cm; and the number of slices was 7. The DCE-MRI

process started with a series of MRI scans which were used to establish a baseline in im-

age intensity. These scans were performed without the administration of the CA so that

the tissue’s non-enhanced image intensity could be established. In the next stage, 10 cubic

centimeter (cc) of gadoteric acid (Dotarem 0.5 millimole/milliliter (mmol/mL); Guerbet,

France) was administered intravenously at a rate of 3 mL/sec. At this point, a series of MRI

scans was performed every 10 sec for approximately 3 min, and every series contained 7

slices. Note that all the subjects were diagnosed using a biopsy (ground truth).

2. Segmentation Results

The proposed segmentation approach has been tested on DCE-MRI sequences for

30 independent subjects. Figure 92 shows some segmentation results of the prostate region

at selected image sections for different subjects and their associated false positive (FP) and

false negative (FN) segmentation errors, with respect to the ground truth segmentation.

The ground truths were obtained by manual delineation of the prostate borders by an MR

imaging expert. The positive predictive value (PPV), sensitivity (SEN), and Dice similarity

coefficient (DSC) statistics for the proposed approach are summarized in Table 19.

TABLE 19: Error statistics of the proposed segmentation approach. Note that “SD”, stands

for standard deviation.

Performance Metric

PPV SEN DSC

Mean ± SD 0.982±0.004 0.846±0.004 0.923±0.004

To highlight the advantage of the proposed segmentation approach, all time series

images have been segmented using the shape-based (SB) approach proposed by Tsai et

al. [1]. The comparative results for a few of them are shown in Figure 93 and Table 20

summarizes the segmentation error statistics of the proposed approach and the SB approach
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FIGURE 92: Sample segmentation results of the proposed segmentation approach for dif-

ferent subjects at different cross-sections. The false negative (FN) and false positive (FP)

error referenced to the ground truth G are shown in yellow and red, respectively.

with respect to ground truth. The differences between the mean errors of the proposed

approach and the SB approach are shown to be statistically significant by the unpaired

t-test (the two-tailed value P is less than 0.0001).

3. Diagnostic Results

The ultimate goal of the proposed framework is to successfully distinguish between

malignant and benign detected tumors by constructing the time-intensity curves from the

DCE-MRI sequences. The curves show the response of the prostate tissues as the CA

191



(a) (b) (c)

FIGURE 93: Comparative segmentation results: (a) different prostate dynamic MR images,

(b) proposed approach segmentation, and (c) segmentation with [1]. The false negative

(FN) and false positive (FP) segmentation errors referenced to the ground truth G are shown

in yellow and red, respectively
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TABLE 20: Comparative segmentation accuracies of the proposed prostate segmentation

against the shape-based (SB) approach [1] in comparison to the expert’s ground truth (“SD”

– standard deviation).

Segmentation Technique

Proposed Approach SB Approach [1]

Mean±SD (%) 0.53±0.33 5.91±4.44

Two-tailed P-value 0.0001

perfuses. The malignant subjects show an abrupt increase of the signal intensity and the

benign subjects show a delay in reaching their peak (see Figure 94). From these curves, it

is conclude that the peak signal value and the wash-in slope are the two major features that

can be extracted for the classification of prostate cancer. To distinguish between benign and

malignant cases, a kn-nearest neighbor classifier is used to learn the statistical characteris-

tics of both benign and malignant cases from the time-intensity curves of the training sets.

Nine data sets were used for the training and the other 21 data sets were used for testing.

The diagnostic accuracy of the kn classifier was 100% for all training and testing data sets.

Following the classification, a visual assessment is performed using color-coded

maps. Figure 95 presents the color-coded maps over all image sections before and after

applying the 3D GGMRF smoothing for three independent subjects. Figures 96 show two

examples of the tumor contours determination for one benign and one malignant subject.

E. SUMMARY

In this chapter, a noninvasive framework for detecting prostate cancer using DCE-

MRI is proposed. The framework includes delineation of the prostate region, local motion

correction, and kn-classification. The proposed framework has the documented ability to

reliably distinguish benign from malignant prostate cancer, in a biopsy proven preliminary

cohort of 30 patients. To extract the prostate region, a new 3D approach that is based
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FIGURE 94: Selected normalized signal intensity, averaged over the entire prostate, with

respect to the timing of contrast agent (CA) delivery for malignant (red) and benign (blue)

subject.

on a MAP estimate of a new log-likelihood function that accounts for a priori shape, the

spatial interactions between the prostate voxels, and the current appearance of the prostate

tissues and its background is proposed. Following segmentation, a nonrigid registration ap-

proach is introduced. The proposed approach deforms the prostate object on iso-contours

instead of a square lattice, which provides more degrees of freedom to obtain accurate

deformation. The agent kinetic curves of the co-aligned prostate regions are constructed

and the two features extracted from these curves undergo kn-classification. Applications

of the proposed framework yield promising results that would, in the near future, represent

a supplement of the current technologies to determine the type of prostate cancer. The

work presented in this chapter has been published in the IEEE International Symposium

on Signal Processing and Information Technology (ISSPIT) conference [474], the IEEE

International Symposium on Biomedical Imaging (ISBI) conference [76], the International

Conference on Developments in eSystems Engineering (DeSE) [75], Journal of Biomed-
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FIGURE 95: Color-coded maps for three subjects before and after the 3D GGMRF smooth-

ing using α = 1, χ = 5, b = 1.01, a = 2, and ΓP,P′ =
√
2. The red and blue ends of the

color scale relate to the maximum and minimum changes, respectively.

ical Science and Engineering [80], and the Handbook of Computational Intelligence in

Biomedical Imaging [77].
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(a) (b)

FIGURE 96: Color-coded maps of local tumor progression overlaid on anatomic DCE-MRI

data for one benign (a) and one malignant (b) subject. The determined tumor contours are

shown in green.
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CHAPTER VI
CONCLUSIONS AND FUTURE WORK

The work presented in this dissertation documents the ability of contrast-enhanced

(CE) medical images for the evaluation of human organ functionality. The effectiveness

of CE images have been successfully tested for efficient analysis of CE images in three

case studies (i) early detection of acute renal transplant rejection using dynamic contrast-

enhanced MRI (DCE-MRI); (ii) evaluation of myocardial perfusion in patients with heart

failure using cardiac perfusion first-pass MRI (FP-MRI); and (iii) early detection of prostate

cancer using DCE-MRI. The key main advanatge of the proposed computer-aided diag-

nostic (CAD) system for the evaluation of human organ functionality is the ability of the

developed motion correction model to provide accurate pixel-on-pixel matches of the reg-

istered images for generating and displaying parametric maps. These capabilities are of

great importance for the radiologists to help investigate, in the case of organ dysfunction,

which local regions need attention and follow-up with appropriate treatment. Comparison

results with other motion correction models using synthetic and in-vivo data showed the

higher accuracy of the proposed model. In addition, summary of the main contributions of

this dissertation are as follows:

• A novel stochastic speed, instead of traditional edge-based geometric speed func-

tions, is proposed to guide the evolution of a geometric (level set-based) deformable

model to segment/extract the object of interest from medical imaging. The proposed

speed function accounts for three image features: the higher-order spatial-interaction

between the image pixels, prior probabilistic shape model, and first-order visual ap-

pearance of the object-of-interest. These three features are integrated into a two-

level joint Markov-Gibbs random field (MGRF) model of the object-of-interest and

its background.
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• An unsupervised probabilistic model to learn the second- and higher-order spatial

interactions between the object pixels (voxels) from medical images is proposed.

The model possesses the ability to account for the appearance features to learn the

large inhomogeneity in the object-of-interest (e.g., the kidney). The proposed model

adds to the pairwise the higher-order spatial interactions between region labels of a

given segmentation, namely, the families of the triple and quad cliques.

• An adaptive probabilistic shape model that has the ability to learn both the shape

of the object-of-interest and the subject-to-subject variability is proposed. The main

advantage of the proposed shape prior model is its ability to impose temporal con-

straints on the segmentation of dynamic MRI data.

• A novel global alignment scheme is developed for the alignment of medical objects

using a new similarity function that accounts for both the first- and second-order

normalized mutual information (NMI). The incorporation of the second-order NMI

similarity term increases the ability of the NMI to capture more features from the

images, and therefore can improve the registration accuracy.

• A new nonrigid registration to compensate for local object deformations caused by

physiological effects is proposed. The proposed nonrigid registration deforms each

pixel of the target object over a set of nested, equi-spaced contours (i.e., iso-contours)

to closely match the reference object, by exploiting the geometric features, rather

than image intensities to avoid problems associated with nonlinear intensity varia-

tions in medical images.

Several possibilities for the future work of this dissertation include, but are not

limited to, the following:

• Extending the proposed 3D (2D+time) CAD sytem for the detection of acute renal

rejection to deal with 4D (3D+time) DCE-MRI in order to more accurately localize

the pathology in the whole kidney.
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• Testing the proposed mathematical models and learning techniques in other clinical

studies, such as detection of lung cancer using CE computed tomography (CE-CT)

images [21, 475–506], brain cancer using DCE-MRI, and colon cancer using CE-CT

images.

• The focus of this dissertation for the analysis of CE images was on using non-

parametric perfusion techniques, future work will investigate the fusion of the non-

parametric indexes and pharmacokinetic (PK) parameters, such as the volume of the

extra-vascular extracellular space (ESS), capillary permeability. This fusion is ex-

pected to give critical insight into the functionality of the transplanted kidney.

• A future work of this dissertation is to investigate the integration of the proposed

work with the BioImaging lab work for the detection of other brain disorders such as

autism [507–522] and dyslexia [523–531].
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Latour, G. Vétek, I. Pályka, and C. S. Springer. Determination of the MRI contrast
agent concentration time course in vivo following bolus injection: Effect of equilib-
rium transcytolemmal water exchange. Magn. Reson. Med., 44(4):563–574, 2000.

[199] S. Kim, H. Quon, L. A. Loevner, M. A. Rosen, L. Dougherty, A. M. Kilger, J. D.
Glickson, and H. Poptani. Transcytolemmal water exchange in pharmacokinetic
analysis of dynamic contrast-enhanced MRI data in squamous cell carcinoma of the
head and neck. J. Magn. Reson. Imaging, 26(6):1607–1617, 2007.

[200] X. Li, W. Huang, E. A. Morris, L. A. Tudorica, V. E. Seshan, W. D. Rooney, I. Tagge,
Y. Wang, J. Xu, and C. S. Springer. Dynamic NMR effects in breast cancer dynamic-
contrast-enhanced MRI. Proc. Natl. Acad. Sci., 105(46):17937–17942, 2008.

[201] K. B. Larson, J. Markham, and M. E. Raichle. Tracer-kinetic models for measuring
cerebral blood flow using externally detected radiotracers. J. Cereb. Blood Flow
Metab., 7(4):443–463, 1987.

[202] Y. Sawada, C. S. Patlak, and R. G. Blasberg. Kinetic analysis of cerebrovascular
transport based on indicator diffusion technique. Am. J. Physiol., 256(3):H794–
H812, 1989.

[203] W. C. Sangren and C. W. Sheppard. A mathematical derivation of the exchange of a
labeled substance between a liquid flowing in a vessel and an external compartment.
Bull. Math. Biophys., 15(4):387–394, 1953.

[204] W. H. Press, B. P. Flannery, S. A. Teukolsky, , and W. T. Vetterling. Numerical
Recipes in FORTRAN: The Art of Scientific Computing. Cambridge University Press,
Cambridge, England, 1992.

[205] G. R. Moran and F. S. Prato. Modeling tissue contrast agent concentration: A so-
lution to the tissue homogeneity model using a simulated arterial input function.
Magn. Reson. Med., 45(1):42–45, 2001.

[206] A. Garpebring, N. Ostlund, and M. Karlsson. A novel estimation method for physio-
logical parameters in dynamic contrast-enhanced MRI: Application of a distributed
parameter model using Fourier-domain calculations. IEEE Trans. Med. Imaging,
28(9):1375–1383, 2009.

[207] L. E. Kershaw and D. L. Buckley. Precision in measurements of perfusion and mi-
crovascular permeability with T1-weighted dynamic contrast-enhanced MRI. Magn.
Reson. Med., 56(5):986–992, 2006.

216



[208] T. Fritz-Hansen, E. Rostrup, L. Sørndergaard, P. B. Ring, O. Amtorp, and H. B. W.
Larsson. Capillary transfer constant of Gd-DTPA in the myocardium at rest and
during vasodilation assessed by MRI. Magn. Reson. Med., 40(6):922–929, 1998.

[209] J.-P. M. Vallée, H. D. Sostman, J. R. Macfall, T. R. Degrado, J. Zhang, et al. Quan-
tification of myocardial perfusion by MRI after coronary occlusion. Magn. Reson.
Med., 40(2):287–297, 1998.

[210] J. H. S. Cullen, M. A. Horsfield, C. R. Reek, G. R. Cherryman, D. B. Barnett, and
N. J. Samani. A myocardial perfusion reserve index in humans using first-pass
contrast-enhanced magnetic resonance imaging. J. Am. Coll. Cardiol., 33(5):1386–
1394, 1999.

[211] G. Nielsen, T. Fritz-Hansen, C. G. Dirks, G. B. Jensen, and H. B. W. Larsson.
Evaluation of heart perfusion in patients with acute myocardial infarction using dy-
namic contrast-enhanced magnetic resonance imaging. J. Magn. Reson. Imaging,
20(3):403–410, 2004.
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APPENDIX I

ANALYTICAL ESTIMATION OF GIBBS POTENTIALS

Let L = {0, 1} and R = {(x, y) : 0 ≤ x ≤ X − 1, 0 ≤ y ≤ Y − 1} denote

a binary set of object (“1”) and background (“0”) labels, and a finite arithmetic lattice

supporting binary maps m : R → L, respectively. Let Ca be a family of s-order cliques of

interaction graph with nodes in the lattice sites (x, y) and edges connecting the interacting

(interdependent) sites. Let A clique families describe the spatial geometry of interactions

between the region labels for an MGRF model of binary maps:

PV(m) =
1

ZV

exp

(
A∑

a=1

∑
c∈Ca

Va(m(x, y) : (x, y) ∈ c)

)

where V = [Va : {0, 1} → (−∞,∞) : a = 1, . . . , A] is a collection of potential functions

for the families Ca and ZV is the partition function

ZV =
∑
m∈M

exp

(
A∑

a=1

∑
c∈Ca

Va(m(x, y) : (x, y) ∈ c)

)

normalising the probabilities over the population M = {0, 1}XY of the maps.

Let F(m◦) = [ρaFa(µ1, . . . , µs|m◦) : (µ1, . . . , µs) ∈ {0, 1}s; a = 1, . . . , A] and PV =

[ρaPa(µ1, . . . , µs|V) : (µ1, . . . , µs) ∈ {0, 1}s; a = 1, . . . , A] where ρa = 1
XY

|Ca| is the

relative cardinality of the clique family with respect to the lattice cardinality, denote the

collection of scaled relative frequencies Fa(µ1, . . . , µs|m◦) of co-occurrences of configu-

rations (µ1, . . . , µs) of binary labels in the cliques of each family Ca over a given training

map m◦ and the corresponding scaled marginal probabilities Pa(µ1, . . . , µs|V) of these

configurations for the MGRF model, respectively.

The normalized log-likelihood L(V|m◦) = 1
XY

logPV(m
◦) of the map m◦ has the

gradient

∇L(V|m◦) ≡ ∂

∂V
L(V|m◦) = F(m◦)−PV

244



and its Hessian matrix of the second derivatives is equal to the negated covariance matrix

of the marginal probabilities of signal co-occurrences in the cliques (due to non-negative

definiteness of the covariance matrix, the log-likelihood is unimodal over the potential

space).

The analytical potential estimate (i.e., the approximate maximum likelihood esti-

mate) is specified as scaled gradient vector at the origin in the potential space:

V∗ = λ∗ (F(m◦)−P0)

where the factor λ∗ maximizes the truncated (to the first three terms) Taylor series decom-

position of the log-likelihood L(V|m◦) about the origin:

L(V|m◦) ≈ L(0|m◦) + λ (F(m◦)−P0)
T (F(m◦)−P0)

−λ2

2
(F(m◦)−P0)

TD0 (F(m
◦)−P0)

where D0 denotes the covariance matrix for marginal clique-wise probabilities at the origin.

Generally,

λ∗ =
(F(m◦)−P0)

T (F(m◦)−P0)

(F(m◦)−P0)
TD0 (F(m◦)−P0)

The origin, V = 0 (zero potentials), corresponds to an independent random field

(IRF) of equiprobable labels, so that the covariance matrix is closely approximated with

the diagonal matrix of variances.

For the binary labels, m(x, y) ∈ {0, 1}, the marginal co-occurrence probabilities

over cliques of second, third, and fourth order are 1
4
, 1

8
, and 1

16
, respectively. If for the

symmetry sake, only equality and inequality of the labels are taken into account, then the

combinations of co-occurrences and their probabilities are summarized in Table 21.

Provided the cardinalities of the clique families are close to the lattice cardinality

(so that ρa ≈ 1) for all the families a = 1, . . . , A, the resulting potential estimates for the

second- and third-order models are independent of the number A of the clique families:

Second-order family: V2:a:eq = −V2:a:ne = 4
(
Fa:eq(m

◦)− 1
2

)
Third-order family: V3:a:eq3 = −V3:a:eq2 =

16
3

(
Fa:eq3(m

◦)− 1
4

)
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TABLE 21: Label combinations and their marginal probabilities for second-, third-, and

fourth-order cliques. Here, p denote the probability, “eq” and ”ne” denote two equal or

non-equal labels for a second-order clique, and “eqi” denote i equal labels for a third- or

fourth-order clique.

Clique order 2 3 4

Label combinations eq ne eq3 eq2 eq4 eq3 eq2

Marginal p for the IRF 1/2 1/2 1/4 3/4 1/8 1/2 3/8

Its variance p(1− p) 1/4 1/4 3/16 3/16 7/64 1/4 15/64

But for the fourth-order model the factor depends on the number of clique families and the

marginal probabilities of label combinations for these families on the training map m◦:

V4:a:eq4 = λ∗
(
Fa:eq4(m

◦)− 1
8

)
V4:a:eq3 = λ∗

(
Fa:eq3(m

◦)− 1
2

)
V4:a:eq2 = λ∗

(
Fa:eq2(m

◦)− 3
8

)
= −

(
V4:a:eq4 + V4:a:eq3

)
where

λ∗ =

A∑
a=1

((
Fa:eq4(m

◦)− 1
8

)2
+
(
Fa:eq3(m

◦)− 1
2

)2
+
(
Fa:eq2(m

◦)− 3
8

)2)
A∑

a=1

(
7
64

(
Fa:eq4(m

◦)− 1
8

)2
+ 1

4

(
Fa:eq3(m

◦)− 1
2

)2
+ 15

64

(
Fa:eq2(m

◦)− 3
8

)2)
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APPENDIX II
NOMENCLATURE

The following convention is used throughout the dissertation

• T1 is the spin-lattice (longitudinal) relaxation time of an MRI scan.

• T2 is the spin-spin (transverse) relaxation time of an MRI scan.

• Ca(t), Cp(t), and Ct(t) are the concentration of the contrast agent in the feeding

artery, blood plasma, and the tissue of interest, respectively.

• K trans is the volume transfer constant of the contrast agent from the blood plasma to

the interstitial space. and

• kep is the reverse transfer constat of the contrast agent from the interstitial space to

the blood plasma.

• kel denotes the elimination rate of the constant constat from blood plasma.

• Vt, Vp, and Ve are the total tissue, plasma, and interstitial space volumes in ml, re-

spectively.

• vp and ve are the blood plasma and interstitial space volume fractions, respectively.

• Fp is the blood plasma flow per unit mass of tissue fraction.

• PS is the Permeability-surface area product of the tissue.

• ρ is the tissue density.

• T10 is the native longitudinal relaxation time (i.e., T1 before a contrast agent injec-

tion).
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• R1 = 1/T1 is the longitudinal relaxation rate.

• r1 is relaxivity constant of the contrast agent.

• (x, y) denotes the cartesian coordinates of points (pixels) in the image plane.

• Q = {0, . . . , Q− 1} denotes sets of gray levels q.

• L = {1, . . . , l} denotes sets of region labels l.

• R = {(x, y) : 0 ≤ x ≤ X − 1, 0 ≤ y ≤ Y − 1} denotes a finite 2D arithmetic

lattice supporting gray level images g : R → Q and their region (segmentation)

maps m : R → L

• g = {gx,y : (x, y) ∈ R; gx,y ∈ Q} denotes a gray level digital image taking gray

values from the finite set Q = {0, 1, . . . , Q− 1}.

• m = {mx,y : (x, y) ∈ R; mx,y ∈ L} denotes region map taking labels from a finite

set L = {1, . . . , l}.

• P (g,m) = P (g|m)P (m) is a joint two-level Markov-Gibbs random field probabil-

ity model of a gray scale image g and its region map m.

• P (g|m) is a conditional distribution of images, given the map (the lower level of the

joint MGRF model).

• P (m) = Psp(m)PV(m) is an unconditional Gibbs probability distribution of maps

with shape prior (the higher level of the joint MGRF model).

• Psp(m) is the shape prior probability of the region maps.

• PV(m) is an unconditional Gibbs probability distribution of the region maps.

• ϕ(x, y) denotes the level set function.

• t denotes the continuous time.

• τ denotes a time step.
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• n denotes a discrete time instant.

• ∇ is the differential operator ∇ =
[

∂
∂x
, ∂
∂y
, ∂
∂z

]
.

• ϑ(x, y) denotes the deformable model evolution magnitude and direction at each

pixel location.

• Ω1:x,y and Ω0:x,y are the combined shape, spatial, and intensity probabilities of the

object and background, respectively.

• κ is the curvature of the deformable contour.

• F (x, y) = κϑ(x, y) is the deformable model speed function at each pixel location.

• η denotes the normalized cross-correlation.

• α is the normalization factor of the weighted shape prior.

• A is the clique families that describe the geometry of spatial interactions over the

nearest 8-neighborhoods of pixels.

• V = [Va : {0, 1} → (−∞,∞) : a = 1, . . . , A] is a collection of Gibbs potential func-

tions Va for the families Ca.

• fa,eq(.) denotes the relative frequency of co-occurrences of the labels in the cliques

of each family Ca.

• Z is the partition function that normalizes the Gibbs probability distribution.

• θ ≡ (µ, σ2) is a shorthand notation for the mean, µ, and variance, σ2 of a Gaussian

distribution.

• ψ(q|θ) is a Gaussian density of the grey level value with θ denoting its mean and

variance.

• Φθ(q) = (ψ(q|θ) : q ∈ Q) is a discrete Gaussian density distribution; where

ψ(q|θ) = Φθ(q + 0.5) − Φθ(q − 0.5) for q = 1, . . . , Q − 2, ψ(0|θ) = Φθ(0.5),

and ψ(Q− 1|θ) = 1− Φθ(Q− 1.5).
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• Mp and Mn are the number of positive and negative Gaussian kernels, respectively,

for the estimated mixed density.

• wp,. and wn,. are the mixed weight of positive and negative Gaussian kernels, respec-

tively.

• Pw,Θ(q) is the estimated density for the mixed gray level distribution.

• γ denotes a scalar field.

• G denotes the expert, ground truth segmented region.

• S denotes the model segmented region.

• e denotes the relative error.

• Az denotes the area under the receiver operating characteristic (ROC) curve.

• Π denotes a lattice of u× v control points Πu,v, u = 0, . . . , U − 1; v = 0, . . . , V − 1.

• βj(.), j = −1, . . . , 2, is the uniform cubic B-spline basis function.

• ⌊ε⌋ denotes the integer part of a real-valued number ε.

• (s, h): s = x − ⌊x⌋ ∈ [0, 1) and h = y − ⌊y⌋ ∈ [0, 1), is the relative position of

the cartesian point (x, y) with respect to the four nearest lattice points (u, v), (u +

1, v), (u, v + 1), (u+ 1, v + 1)

• Υ(., .) is the similarity metric between the reference and target images.

• H(.) is the Shannon’s entropy of the image signals.

• H(., .) is the joint entropy of the image signals.

• PI(.) and PI(., .) denote the marginal and joint probability distributions of the gray

levels, respectively.

• PS(.) and PS(., .) denote the marginal and joint MGRF probability distributions of

gray scale images, respectively.
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• d ∈ D = {1,
√
2,
√
3} is the Euclidean distance between the center location of a

3× 3× 3 neighborhood and the surrounding 26 pixels.

• N = {Nd, d ∈ D} denote the family of the neighboring pixel pairs supporting the

Gibbs potentials for a 3× 3× 3 neighborhood system.

• |CN| is the cardinality of the neighborhood system.

• ξ and ζ are the shifts in x- and y-directions, respectively.
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APPENDIX III
LIST OF ABBREVIATIONS

1D One-Dimensional.

2CXM Two-Compartment Exchange Model.

2D Two-Dimensional.

3D Three-Dimensional.

4D Four-Dimensional.

AAM Active Appearance Model.

AATH Adiabatic Approximation of the Tissue Homogeneity.

ACC Accuracy.

ADC Apparent Diffusion Coefficient.

AIF Arterial Input Function.

AAM Active Shape Model.

ATN Acute Tubular Necrosis.

AUC Area Under the Curve.

BM Brix Model.

BS B-Splines.

CA Contrast Agent.

CAD Computer-Aided Diagnostic.

CC Cross-Correlation.

CE Contrast-Enhanced.

CFR Coronary Flow Reserve.

CT Computed Tomography.

CZ Central Zone.

DCE-MRI Dynamic Contrast-Enhanced Magnetic Resonance Imaging.
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DG Discrete-Gaussian.

DP Distributed-Parameter.

DRE Digital Rectal Exam.

DSC Dice Similarity Coefficient.

DSI Diffusion Spectrum Imaging.

DTI Diffusion Tensor Imaging.

DWI Diffusion-Weighted Imaging.

EES Extracellular and Extravascular Space.

EM Expectation Maximization.

ETK Extended Tofts and Kermode.

fMRI Functional Magnetic Resonance Imaging.

FN False Negative.

FOV Field of View.

FP False Positive.

FP-MRI First-Pass Magnetic Resonance Imaging.

FXL Fast Exchange Limit.

GD Gravity Distance.

Gd-DTAP Gadolinium-Diethylene Triamine Pentacetate.

GGMRF Generalized Gauss-Markov Random Field.

GFR Glomerular Filtration Rate.

HD Hausdorff Distance.

IAUC Initial Area Under the Curve.

ICA Principal Component Analysis.

LCDG Linear Combinations of Discrete Gaussians.

LDA Linear Discriminant Analysis.

LM Larsson Model.

LV Left Ventricle.

MAD Mean Absolute Distance.
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MAP Maximum A Posteriori.

MBF Myocardial Blood Flow.

MD Mean Distance.

MGRF Markov-Gibbs Random Field.

MI Mutual Information.

MITR Maximum Intensity Time Ratio.

MR Magnetic Resonance.

MRF Markov Random Field.

MRI Magnetic Resonance Imaging.

MRS Magnetic Resonance Spectroscopy.

MTT Mean Transit Time.

NAC Neoadjuvant Chemotherapy.

NCC Normalized Cross-Correlation.

NMI Normalized Mutual Information.

OAE Overlapping Area Error.

OB Observer.

OR Overlap Ratio.

PDE Partial Differential Equation.

PDMD Phase Difference Movement Detection.

PER Peak Enhancement Ratio.

PET Positron Emission Tomography.

PK Pharmacokinetic.

PM Patlak Model.

PPV Positive Predictive Value.

PSA Prostate Specific Antigen.

PWI Perfusion-Weighted Imaging.

PZ Peripheral Zone.

RF Radio Frequency.
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RMSD Root Mean Squared Distance.

ROC Receiver Operating Characteristic.

ROI Region of Interest.

RSI Relative Signal Intensity.

RVM Relevance Vector Machine.

SB Shape-Based.

SD Standard Deviation.

SEN Sensitivity.

SNR Signal-to-Noise Ratio.

SPE Specificity.

SPGRE Spoiled Gradient Echo.

SVM Support Vector Machine.

TH Tissue Homogeneity.

TN True Negative.

TP True Positive.

TRUS Transrectal Ultrasound.

TZ Transition Zone.

VLS Vector Level Set.

VPC Volume Properly Contoured.
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