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Abstract. 

 

 As indicated throughout this text, there is a constant effort to move to more sensitive, 

specific, and quantitative methods for characterizing breast tissue via magnetic resonance imaging 

(MRI).  In the present chapter, we focus on six emerging techniques that seek to quantitatively 

interrogate the physiological and biochemical properties of the breast.  At the physiological scale, 

we present an overview of ultra-fast dynamic contrast enhanced MRI and magnetic resonance 

elastography which provide remarkable insights into the vascular and mechanical properties of 

tissue, respectively.  Moving to the biochemical scale, magnetization transfer, chemical exchange 

saturation transfer, and spectroscopy (both “conventional” and hyperpolarized) methods all 

provide unique, non-invasive, insights into tumor metabolism.  Given the breadth and depth of 

information that can be obtained in a single MRI session, methods of data synthesis and 

interpretation must also be developed.  Thus, we conclude the chapter with an introduction to two 

very different, though complementary, methods of data analysis: 1) radiomics and habitat imaging, 

and 2) mechanism-based mathematical modeling. 
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1. Introduction.  

Magnetic resonance imaging (MRI) is clinically utilized to evaluate patient prognosis, 

extent of disease, and therapeutic response for patients with breast cancer.  All three of these 

applications of breast MRI, within the standard-of-care setting, are dominated by anatomical and 

morphological based imaging.  However, as anatomical and morphological assessments are 

fundamentally limited in their ability to characterize the underlying physiological, cellular, and 

molecular changes within tissue, they can be inadequate in many contexts of patient care.  Thus, 

there has been great effort (over many years) to develop MRI-based measures that can accurately 

and precisely characterize the relevant tumor biology of breast lesions.  The subject of this chapter 

is to provide an introduction, and illustrative examples, of a range of emerging MRI-based 

techniques that are designed to quantitatively report on breast tissue at the physiological, cellular, 

and molecular levels.  At the physiological scale, topics discussed include hemodynamics (ultra-

fast contrast enhanced MRI), architecture (MR elastography), and macromolecular content 

(magnetization transfer and chemical exchange saturation transfer MRI).  At the cellular and 

molecular levels, we present insights from metabolites known to be present at higher 

concentrations in malignant cells (MR spectroscopy) as well as methods to characterize 

metabolism (hyperpolarized MRI).  The chapter is concluded with a description of two techniques 

for analyzing and summarizing the enormous amount of multi-parametric data that emerges from 

modern MRI studies, one based on a data-driven approach (radiomics), and another that attempts 

to explicitly model the underlying biology (mechanism-based, mathematical modeling). 

 

 

2. Ultra-fast dynamic contrast enhanced imaging  

 

Standard-of-care MR images are acquired at very high spatial resolution to characterize 

patient anatomy and tumor morphology.  This requires scan times of 60-90 seconds which is far 

too low to accurately measure kinetic parameters, especially in early uptake phase when signal 

changes rapidly, particularly in cancers. This means that important diagnostic and prognostic 

information is lost.  Lesion conspicuity is highest immediately after contrast injection1,2, so it is 

especially important to faithfully capture early-uptake kinetics. Other modes of analysis, including 



analysis of morphology, also benefit from increased temporal resolution. Texture features have 

typically been viewed as static, but recent work3,4 has shown improvement in diagnostic efficacy 

when the evolution of texture over time is analyzed5,6. 

 Pharmacokinetic analysis requires quantitative measurement of the arterial input function 

(AIF) with high temporal resolution. In a seminal study, Henderson et al.7 recommended that the 

AIF should be measured with temporal resolution of 1 s/image; a challenging task, indeed.  Parker 

et al.8 defined a population-average AIF with resolution of 5s/image.  In small animals, researchers 

have characterized AIFs with significantly higher sampling frequency: Yankeelov et al.9 measured 

an AIF at 0.9s/image in mice, while Kershaw et al. measured an AIF at 0.44s/image in rabbits10.   

This previous work demonstrates that temporal resolution much higher than that employed in the 

routine, clinical DCE-MRI study is required to maximize diagnostic accuracy. 

 There are a number of approaches currently under investigation to accelerate the 

acquisition of DCE-MRI.  Ultrafast methods using conventional partial Fourier sampling, and high 

parallel imaging acceleration can be used to image the early phase of contrast media uptake in the 

breast at high temporal resolution11-13.  View-sharing methods14-19 accelerate acquisitions by 

sampling k-space with non-uniform densities, sampling low frequencies much more often than 

high spatial frequencies. While these methods accurately represent large-scale enhancement 

patterns (e.g., average enhancement within a lesion), they sample different spatial frequencies at 

different temporal resolutions which can lead to errors in any subsequent analysis.  Compressed 

sensing15,20-24 leverages sparse enhancement during the early phase of contrast media uptake to 

create L1-constrained image reconstructions from very highly under-sampled data. This provides 

high spatial and temporal resolution. However, the incoherent k-space sampling can cause ghosting 

and signal blurring artifacts.  Learning-based methods25,26 produce image reconstructions based on 

repeated training with large numbers of datasets. These methods have potential for high 

acceleration combined with good spatial resolution. However, the reconstruction process is a 

“black box”, and it is difficult characterize the artifacts it produces.  Furthermore, features not 

found in the training set are difficult to identify in individual patients found in the “validation” or 

test case(s). Finally, the unfolding method27 accelerates bilateral breast DCE-MRI by reducing the 

field-of-view, allowing aliasing, and unfolding the resulting images.  Since less than 5% of voxels 

enhance significantly during the first 30 - 45 seconds after injection, enhancing voxels rarely 

overlap in aliased images.   



Ultrafast DCE-MRI is commonly based on a spoiled gradient echo pulse sequence with 

minimized TR and TE, often with fat suppression.  Ultrafast sampling can be incorporated into a 

standard clinical protocol, as shown in Figure 1.  The top line in blue shows a conventional clinical 

DCE-MRI protocol with 60 second acquisitions before and after contrast injection.  In the bottom 

scheme, ultrafast acquisitions are inserted for 30 seconds before and 45 seconds after contrast 

injection.  This is followed by 60-second high spatial resolution acquisitions to follow contrast 

media washout.  Ultrafast sampling allows accurate sampling of a number of important parameters: 

a. Arterial input function. With high temporal resolution, the initial portion of the AIF can be 

calculated directly from the internal mammary artery using only the early portion of the 

contrast bolus, when the contrast media concentrations in the blood are relatively low and 

can be accurately measured by MRI.  Alternatively, with a low dose of contrast media, the 

entire AIF can be measured directly from an artery2,28. 

b. Bolus tracking.  The peak of the contrast media bolus can be tracked through the arteries to 

trace blood vessels and measure arterial and venous blood flow2,29. Preferably, these 

measurements would be performed with sampling at 2 sec-1 or higher, but even resolutions 

of 0.3 sec-1 provides useful information. 

c. Unidirectional Ktrans measurement. Ultrafast sampling allows accurate measurement of the 

early phase of contrast media uptake.  In this case a unidirectional model can be used for 

pharmacokinetic analysis.  This approximates that flow occurs only from plasma to the 

extravascular space, and there is no backflow.  This avoids errors due to the use of 

compartmental models that may not be applicable to breast tissue30,31.  

d. The bolus arrival time (BAT) or time-of-initial enhancement (TIE). The BAT in arteries and 

TIE in tissue are important markers for cancer14,28 that can be accurately measured from 

ultrafast data. Values for BAT and TIE should be expressed relative to the time of initial 

enhancement in the aorta to remove the influence of global variables such as cardiac output. 

e. Lesion transit time (LTT).  High temporal resolution data makes it possible to identify 

arteries feeding suspicious lesions and veins draining the lesions, based on differences in 

BAT.  This allows calculation of the LTT (see Figure 2). 

 The introduction of ultrafast imaging allows precise measurement of the initial 

enhancement in arteries, veins, normal breast tissue, and cancers.  These new kinetic parameters 

(i.e., TIE and BAT) show great promise for increasing diagnostic accuracy2,14.  Mann et al. showed 



that the ‘TIE’ measured using a view sharing method (TWIST) was more effective than the 

conventional BIRADS ‘curve type’ analysis14,15 in distinguishing benign from enhancing 

abnormalities. Pineda et al. developed a ‘low-dose imaging technique’ (LITE) that uses 15% of 

the standard dose, combined with ultrafast sampling. They showed that ultrafast DCE-MRI could 

detect lesions reliably at the low dose, and in fact conspicuity and enhancement rate were both 

higher in the low-dose images, with low-to-standard-dose ratios of 1.5 ± 0.1 and 1.2 ± 0.4, 

respectively. This suggests that ultrafast LITE DCE-MRI measures contrast agent dynamics 

accurately and with high dynamic range28,32.  The LITE ultrafast approach has potential to reduce 

adverse effects of contrast agents, increase screening compliance, and improve quantitative 

analysis. 

 While development and clinical implementation of ultrafast methods for breast DCE-MRI 

are at an early stage, it is reasonable to expect significant advances in sampling rate and spatial 

resolution.  This new approach to DCE-MRI is leading to new methods for quantitative analysis 

as well as new diagnostic and prognostic parameters (see, e.g., ref. 33) that will facilitate more 

widespread and effective clinical use of MRI for breast cancer screening. 

 

3. Magnetic Resonance Elastography  

 Magnetic resonance elastography (MRE) quantitatively interrogates the mechanical 

integrity of tissue, with image contrast derived from mechanical properties of tissue. MRE can 

characterize fundamental functional mechanical properties of tissues, thereby providing important 

insights into tissue disease status, as changes in the composition and cytoarchitecture of tissue 

often accompany disease progression. Specifically, distinct changes in the tissue mechanical 

microenvironment are associated with breast cancer progression. Alterations of the breast tumor 

stroma to increase the deposition, structural remodeling, and organization of extracellular matrix 

(ECM) proteins are observed as a part of a desmoplastic transition that has been shown to have 

roles as both a host reaction to tumor invasion as well as facilitating further tumor aggressiveness34-

38. This transition to an aberrant ECM state is associated with dramatic increases in tissue 

mechanical stiffness properties39. Clinical examination of breast disease commonly exploits this 

physical phenomenon, relying on detection of aberrant mechanical stiffness of breast tissue 

through manual palpation. MRE, as a direct and functional non-invasive measure of mechanical 

stiffness, seeks to quantitatively characterize changes in breast tissue mechanical properties as an 



indicator of tissue abnormalities. Indeed, recent preclinical studies comparing MRE with 

computational histology have shown that MRE provides an accurate measure of tumor collagen 

status that is sensitive to therapeutic ECM modulation40. 

 MRE characterizes tissue mechanical properties through the analysis of image acquisitions 

that are synchronized with externally applied or intrinsically activated mechanical loading. 

Following induction of deformation, acquired images record the tissue mechanical displacement 

response to the deformation loading. The displacement images can then be post-processed to yield 

spatial maps of mechanical elasticity based on assumed relationships between the physical 

constitutive mechanical material properties. While MRE initially emerged as an imaging method 

to non-invasively measure mechanical elasticity, MRE techniques have been extended beyond the 

elasticity namesake to examine various additional mechanical phenotypic properties to 

characterize other tissue mechanical properties, such as anisotropy, viscoelasticity, hyperelasticity, 

and poroelasticity41-44. 

 There are a number of MRI-based measurement of breast tissue mechanical properties that 

differ based on the selected mechanical deformation source, displacement image acquisition, and 

mechanical property inversion method. In dynamic MRE, vibrational piezoelectric or acoustic 

drivers are placed in direct contact with either the breast or sternum and used to induce mechanical 

shear waves within breast tissue. Phase-contrast MRI techniques are sensitive to induced 

displacement using oscillating motion encoding gradient sequences that are synchronized to the 

frequency of vibrational mechanical loading and used to record displacement wave propagation. 

Based on an assumption of constitutive property relationship between displacement and 

mechanical properties, elastic and/or viscoelastic mechanical properties are estimated by 

processing of the wave displacement image using computational models or analytical direct 

inversion methods. In quasi-static MRE, MR images are acquired in differing states of tissue 

deformation, either externally induced or intrinsically activated. Tissue mechanical elasticity 

properties are then estimated by computational model processing of either MR spin-tagging/strain-

encoding images45, or non-rigid image registration techniques applied to conventional anatomical 

images46. An example of quasi-static MRE in breast cancer with model-based estimation of tissue 

mechanical elasticity properties is shown in Figure 3. 

 MRE is an emerging technique in breast imaging and as such there are a limited number 

of studies applying MRE in the breast. In these preliminary studies, MRE has shown promise for 



use in multi-parametric imaging assessment of breast disease. In a study by Balleyguier et al., 

MRE was used to assess the viscoelasticity of suspicious breast lesions in 43 patients with the goal 

of predicting malignancy status47. Viscoelasticity mechanical properties determined by MRE were 

found to correlate with MRI BI-RADS score and subsequent histological assessment. Prediction 

of lesion malignancy status by combining MRE viscoelasticity phase angle with the MRI BI-

RADS score was found to improve the diagnostic accuracy over BI-RADS scoring alone, 

increasing the area under the receiver operating characteristic curve from 0.84 to 0.9247. In another 

study by Hawley et al., breast MRE assessed stiffness was found to scale with the amount of 

fibroglandular tissue, with dense breasts associated with significantly increased stiffness as 

compared to nondense breasts. Additionally, Hawley et al. performed reproducibility studies for 

breast MRE in 22 healthy volunteers. Breast MRE mechanical properties were found to be 

significantly reproducible with concordance correlation coefficient of 0.87 and 95% limits of 

agreement of -0.11 to 0.12 kPa over a range of mean stiffness from 0.6 to 1.2 kPa for central slice 

analysis of breast stiffness48. Whole breast analysis of stiffness showed reproducibility with 

concordance correlation coefficient of 0.91 and 95% limits of agreement of -0.07 to 0.09 kPa over 

a range of mean stiffness from 0.6 to 1.1 kPa48.  For a thorough review of dynamic MRE applied 

to the breast, the interested reader is referred to published reviews49, 50. 

 

4. Magnetization Transfer and Chemical Exchange Saturation Transfer  

Biological tissue includes freely moving water molecules, which can be examined by 

standard MRI techniques, as well as a milieu of other molecules within the extracellular matrix 

such as proteins, peptides, glycoproteins, including collagen, laminin, proteoglycans, and 

fibronectin. Indirect detection of the energy transfer between these macromolecules and the free 

water allows characterization of this complex molecular environment using magnetization transfer 

(MT) and chemical exchange saturation transfer (CEST) MRI. MT-MRI reports on the 

macromolecular content of tissue in a semi-solid or bound state51, while CEST-MRI reflects more 

mobile macromolecules52, 53 (potential indicators of pH54 and cellular levels of mobile proteins and 

peptides). These saturation-based imaging methods have both demonstrated the potential for tumor 

detection, characterization, and treatment assessment55-62. By measuring the biochemical 

composition of tissues, MT- and CEST-MRI are able to probe the complex molecular environment 

and provide complementary information to standard, anatomical MRI.  



Magnetization transfer exploits the interactions between water protons within two distinct 

environments. This “two-pool” model is based on the “free” water proton pool, which produces 

the conventionally-visible MRI signal, and a “bound” proton pool in which the protons are bound 

to macromolecules (Figure 4) 63. Exchange and cross-relaxation of magnetization between these 

two pools give rise to the MT effect51, resulting in attenuated signal intensity when the bound 

protons are saturated well off-resonance63, 64. The protons of the semi-solid tissue components 

(e.g., membranes and collagen) have very short T2 and high degree of coupling and can therefore 

transfer saturation rapidly, resulting in a reduced MR signal.  

Chemical exchange is a type of MT in which protons of mobile macromolecules, such as 

proteins and peptides, directly exchange with the free water. These exchangeable protons, 

resonating at discrete frequencies relatively close to water, can be quantified through selective 

saturation and delayed detection of the water signal, which is affected by the transfer of this 

saturation.  

MT-MRI is based on observing the effects of far off-resonance radio-frequency (RF) pulses 

on the measured the signal intensity. This off-resonance irradiation can be applied in a continuous 

wave or pulsed mode65 prior to spoiled gradient echo acquisition (Figure 5). Importantly, MT 

measurements do not report directly on tissue properties, but rather reflect the experimental 

settings related to saturation (power, offset frequency, and duty cycle) and the image acquisition 

(repetition time [TR], echo time [TE], and flip angle). This semi-quantitative imaging technique is 

typically accomplished using a 2D or 3D spoiled gradient-echo sequence with excitation, preceded 

by saturation preparation with a bandwidth of a few 100 Hz, at a single frequency offset 

(∆𝜔) between 50 Hz-50 kHz from the free proton resonance (Figure 5). The pulse amplitude and 

duration are typically governed by specific absorption rate (SAR) limitations.  

While conventional MT-MRI includes a minimum of two images acquired, with- and 

without saturation, CEST-MRI extends the idea of MTR to implement selective RF irradiation 

through a range of frequencies proximal to water (∆𝜔 = 1.5 ppm for hydroxyls and 3.5 ppm for 

amides) 52, 53, 66. The CEST effect depends on many factors such as field strength (B0), 

concentration of exchanging protons, exchange rate (kbf), field homogeneities (both B0 and B1), T1 

of water protons, and RF saturation pulse duration (𝜏𝑑), duty cycle, and amplitude, which may be 

optimized for a given metabolite. Saturation in CEST-MRI of the breast is typically achieved via 

a series of RF pulses followed by a fast-imaging technique (Figure 6) to accommodate image 



acquisitions needed to sample the spectral offsets (n > 30) and the long saturation time needed 

(order of seconds). 

Initial applications of MT-MRI in the breast demonstrated its feasibility, reproducibility, 

and repeatability in the clinical setting67, 68. Application in patient populations have revealed 

significant reductions in the MTR in malignant lesions compared to benign55, 56, potentially 

reflecting differences in structure of the collagenous component of the extra-cellular matrix. This 

is corroborated by the work of Virostko et al.68 in which longitudinal evaluation of patients during 

neoadjuvant chemotherapy (NAT) suggested that a decline in the average MTR of the lesion 

correspond to therapeutic response (Figure 5A). Further evaluation of the distribution of MTR 

values within breast lesions indicated a wider distribution of tumor MTR values in patients who 

achieved a pathological complete response after 2–4 cycles of NAT compared to non-responders68. 

Together these studies support prognostic potential for MTR in the NAT setting.  

CEST MRI of the amide proton transfer (APT), as well as glycosaminoglycans (gagCEST), 

have been shown to be feasible and reproducible at both 7T59 and 3T61. CEST-MRI measurements 

of APT have been performed in patients before and after one cycle of chemotherapy (Figure 7). 

Following therapy, APT increased in the one patient with progressive disease and decreased in the 

two patients with a partial or complete response suggesting that CEST-MRI may report on 

treatment response in these patients61.   

 

5. Magnetic Resonance Spectroscopy 

Conventional proton magnetic resonance spectroscopy (MRS) is a noninvasive approach 

to detect and quantify metabolites in vivo. The spectrum is collected from a voxel, which can be 

localized in various homogeneous parts of the human body including breast. Most clinically useful 

metabolites resonate at proton chemical shifts ranging from 1 to 5 ppm including water. As the 

metabolites’ concentration is typically in the range of 1-20 mM, MRS faces two fundamental 

challenges. The first one is the size of the voxel that is required to obtain spectra with sufficient 

signal-to-noise ratio—the voxel size is large: ~2-3 orders of magnitude greater than the voxel size 

in conventional standard-of-care MRI scan. Second, a water suppression is required to minimize 

the background signal of water in MRS. Despite these challenges many metabolites can be detected 

in vivo69. Lactate and choline proton resonances have been employed as diagnostic markers for a 



wide range of diseases for the purpose of initial diagnosis and monitoring response to treatment70, 

71. 

 The additional MRS challenges in breast are tissue heterogeneity and the substantial 

presence of lipids. Since the lipid resonance is very close to the lactate resonance, lactate 

quantification is challenging. Moreover, lactate concentration can vary substantially in breast 

tissues due to natural causes such as lactation. As a result of these challenges, the key prognostic 

metabolite in MRS of breast is choline resonance at ~3.2 ppm (Cho). This resonance is comprised 

of several choline compounds including choline, phosphocholine, glycerophosphocholine, and 

taurine. While these metabolites can be spectrally resolved using high-resolution NMR 

spectroscopy, clinical MRI scanners do not have sufficient spectral resolution, and as a 

consequence, this resonance is frequently referred to as total Cho72. 

 MRS techniques have progressed from a single-voxel spectroscopy technique to a multi-

voxel chemical shift imaging (CSI) technique. In CSI, the spectra from multiple voxels are 

recorded simultaneously during MRS scan. For example, Figure 8 shows a 2D CSI grid of 66 

proton spectra of choline resonance, which have been recorded using localization over the breast. 

(Note that 3D CSI acquisitions are also feasible.) The Cho resonance intensity can be converted to 

mM concentration for each voxel in CSI and plotted as a metabolite map. The key strengths of CSI 

are the possibility of metabolite mapping and improvement in the voxel size compared to single-

voxel spectroscopy. The resulting metabolite CSI maps can be overlaid over standard-of-care MRI 

scans. Moreover, the obtained Cho concentrations can be employed for diagnostic purpose. 

 MRS detection typically employs some variant of Point REsolved SpectoScopy (PRESS) 

pulse sequence, although some MRI scanners may employ Stimulated Echo Acquisition Mode 

(STEAM) or simple spin-echo acquisition schemes. The typical clinical MRS scan takes 5-15 

minutes.  A number of quantification approaches have been developed for converting the Cho 

signal into molar concentration. The method that gained popularity avoids the use of external 

calibration phantoms—instead, a corresponding data set is acquired without water signal 

suppression72. As the resulting water signal is substantially stronger than that of Cho, the 

corresponding water signal reference map can be recorded rapidly. In the next step, the signal of 

water is employed as a reference signal with known water concentration in breast tissue (ca. 91 

M73) to obtain the molar Cho concentration. A number of correction factors are applied during 

quantification to account for the different T1, T2, number of protons contributing to the resonance 



signal, and the number of scans/averages for Cho CSI and reference scan respectively. This method 

is insensitive to the variable sensitivity of breast proton MRS measurements. Moreover, the 

method does not require the use of external phantoms for quantification. This quantification 

approach has been successfully applied to a wide range of magnetic fields including clinically 

relevant 1.5 T74. 

 The use of Cho resonance in proton MRS as a marker of malignancy has a reported 

sensitivity range of 71-74% and the specificity of 78-88%. These values are overall comparable to 

those of DWI MRI (84-91% and 75-84%, respectively75). Despite being a comparatively good 

diagnostic tool, MRS remains more a less a research tool, whereas DWI has enjoyed more 

widespread clinical adaptation because MRS of breast has the disadvantages of (i) relatively long 

acquisition times, (ii) frequent instances of exams with low quality spectra, (iii) challenging 

standardization75. 

 

6. Hyperpolarized [1-13C]-Pyruvate 

 Conventional MRI forms images that reflect the spatial distribution of hydrogen atoms, 

subject to relaxation mechanisms that confer the outstanding soft-tissue contrast for which MRI is 

well known. Although the signal that is measured to generate images arises from only a small 

fraction of hydrogen nuclei (~10 parts per million at 3T), traditional 1H MRI is feasible over a 

clinically practical timeframe because hydrogen is the most abundant atom in biological tissue, 

and the relative sensitivity to the hydrogen nucleus (a single proton) is the highest among stable 

atomic nuclei. MRI scanners can be tuned to be sensitive to other atomic nuclei, but these 

measurements face compounding barriers due to lower sensitivity and lower concentration that 

would be typically be overcome by signal averaging over impractically long acquisition times. 

 A number of methods have been proposed to overcome this barrier by enhancing the 

fraction of atomic nuclei that contribute signal to the imaging measurement. In recent years, 

dissolution dynamic nuclear polarization (dDNP) has been used to generate hyperpolarized (HP) 

13C-enriched imaging agents with nuclear polarization ranging from 20-50%, resulting in signal 

enhancement of four to five orders of magnitude76, 77 that permits real-time spectroscopic imaging 

of key 13C-enriched imaging agents and their metabolites. HP [1-13C]-pyruvate is the most widely 

studied of these agents to date for a number of reasons.  Pyruvate occupies an important metabolic 

branching point, it has favorable polarization characteristics, a relatively long T1 relaxation time 



constant, and rapid pharmacokinetics that allows insight into metabolic biochemistry within its 

observable signal lifetime. The spin label carried by the 13C nucleus persists through chemical 

conversion, and the position of the spin label in the unique molecular environment of pyruvate and 

its metabolites (Figure 9) confers a unique chemical signature for each metabolite. 

 The conversion of HP pyruvate into lactate is of particular importance in oncology as 

aerobic glycolysis, the conversion of pyruvate to lactate in the presence of oxygen, is upregulated 

in many cancers.  HP pyruvate is administered by intraveneous injection and is carried to the tumor 

through the vasculature. After extravasation, pyruvate enters cells primarily through 

monocarboxylate transporter 1 (MCT1). The chemical conversion of HP pyruvate to lactate in 

cytosol is mediated by the enzyme lactate dehydrogenase A (LDHA) and cofactor nicotinamide 

adenine dinucleotide (NADH). Molecules of HP [1-13C]-pyruvate that enter the citric acid cycle 

lose the 13C label to 13CO2 in the first step of the pyruvate dehydrogenase complex, which converts 

pyruvate into acetyl coenzyme A. (HP bicarbonate is often observed following this reaction 

because bicarbonate is in rapid chemical equilibrium with CO2). HP pyruvate can also be 

transaminated to form alanine.   

 Spectroscopy and spectroscopic imaging of the dynamic interaction between HP imaging 

agents and target biology is complicated by the fact that the enhanced spin polarization that is 

established in the polarizer is finite and non-renewable once removed from the polarizer, and 

continuously depleted by spin-lattice relaxation and signal excitations that are necessary for 

imaging. Imaging protocols must be optimized to balance the need for spatial encoding, spectral 

encoding, and sufficient time for interaction between the HP imaging agent and target biology. 

Since each signal excitation affects all future observations, the acquisition strategy must also be 

designed with careful consideration of the planned approach to signal analysis.  

 Signals from HP imaging agents are evanescent and change continuously over the course 

of their visible lifetime (Figure 10). Acquisition of dynamic HP MR images typically begins prior 

to arrival of the bolus injection, and signal is visible for only a few seconds to minutes after arrival. 

A variety of quantitative and semi-quantitative methods have been proposed to summarize 

dynamic HP MRI data78, 79. Pharmacokinetic (PK) models of signal evolution80, 81 can be used to 

extract kPL, the apparent rate constant for conversion of HP pyruvate into lactate, as an imaging 

biomarker for tumor metabolism. These models vary significantly in complexity, with more 

physiologically accurate PK models requiring a larger number of parameters that must be 



determined by fitting model predictions to dynamic data during pharmacokinetic analysis. Simpler 

models with fewer parameters are easier to fit, but simplifying assumptions often lead to some 

ambiguity in the interpretation of parameter values. Studies are currently underway to determine 

the appropriate level of complexity and prior information that may be included to facilitate 

quantitative analysis for specific applications. The normalized lactate ratio (nLac), calculated as 

the area under the lactate curve divided by the sum of the areas under pyruvate and lactate curves, 

is a semi-quantitative biomarker that is often used to summarize the conversion of HP pyruvate 

into lactate. While nLac is appealing as the calculation is straightforward, it does not account for 

the perturbation of signal evolution imposed by the imaging sequence itself, and therefore 

comparison of nLac values between studies or acquired under different experimental conditions 

can be difficult. 

 There is tremendous potential for HP MRI to provide unique new information to improve 

our understanding of disease and response to therapy. Several preclinical studies have shown that 

conversion of HP pyruvate into lactate increases with tumor aggressiveness and can provide early 

indications of response to treatment82. The safety and feasibility of metabolic MRI using HP [1-

13C]-pyruvate in human studies has been proven83, and this technology is now being evaluated in 

a number of clinical trials involving patients with cancers of the prostate, breast, brain, liver, 

pancreas, kidney, and other sites.  

Recent studies have also demonstrated the safety and feasibility of HP MRI in patients with 

breast cancer.  Gallagher et al. recently reported that lactate conversion significantly correlated 

with tumor volume and MCT1, and that conversion was observed to be higher in patients with 

more aggressive tumors84.  Although this study enrolled a relatively modest number of participants, 

it suggests that this technology could address an unmet need for early indications of response to 

neoadjuvant therapy in aggressive breast tumors.  A significant reduction in the HP lactate-to-

pyruvate ratio was subsequently reported in a patient with aggressive triple-negative breast cancer 

following a single cycle of neoadjuvant chemotherapy85.  The lower HP lactate-to-pyruvate ratio 

suggested that the tumor was responding to therapy, and that patient was later confirmed to have 

had a complete pathologic response.  These studies are highly encouraging but remain somewhat 

limited by small sample sizes.  Larger studies are needed to confirm these results and clarify the 

role that HP MRI may play in management of patients with breast cancer. 

 



7. MRI-constrained radiomics and habitat imaging 

Traditionally, a trained radiologist interprets the breast MRI and provides critical 

recommendations for the clinical management of a patient’s disease; however, these assessments 

are subjective and variable between readers86, 87. The field of radiomics, defined as the conversion 

of medical images into mineable data, seeks to automate the derivation of insights from 

information-rich image data to aid in clinical decision making88, 89. Radiomics of breast MRI has 

demonstrated promise in advancing diagnostics90-92, prognostics93-96, and the prediction of 

therapeutic response97-100. Within radiomics studies, quantitative features from breast MRI are 

extracted and incorporated into machine learning models, enabling the integration of high-

dimensional data to aid in the detection and diagnoses of breast cancer101. 

Figure 11 illustrates a typical radiomics workflow for breast MRI, which includes the 

following steps: 1) image acquisition and processing, 2) lesion localization and segmentation, 3) 

feature extraction, and 4) data analysis and model development. During a clinical MRI session, a 

variety of pulse sequences (e.g., DW-MRI, and pre- and post-contrast T1-weighted MRI) may be 

used to acquire multiple images that provide varying contrast between different tissue structures. 

For downstream analyses, it is often necessary to ensure image alignment and correct for any 

patient motion during the acquisition via image registration across scans. The acquired data may 

then require additional processing, such as the generation of parametric maps (e.g., apparent 

diffusion coefficient maps from DW-MRI, Figure 11A) or image harmonization to standardize 

data acquired with different scanners or acquisition protocols102-104. After data acquisition and 

processing, the lesion is localized and segmented (Figure 11B). Segmentation of the tumor volume 

is traditionally accomplished manually, although this approach can be subjective and susceptible 

to inter-reader variability105. As lesion segmentation can significantly influence calculated 

features, automated segmentation techniques are of interest to improve repeatability and 

reproducibility of radiomics analyses106. A commonly implemented approach to automated 

segmentation of breast lesions was developed by Chen et al., who employed fuzzy C-means 

clustering of DCE-MRI to discriminate lesions from surrounding tissue107. With lesions 

segmented, quantitative features are then extracted (Figure 11C), describing a variety of tumor 

attributes, such as lesion shape (e.g., volume and surface area), enhancement kinetics (e.g., contrast 

wash-in rate), and parameter distributions (e.g., kurtosis and skew)108. These features are then 

integrated into machine learning models for a number of clinical applications, including 



distinguishing benign versus malignant lesions90-92, and identifying patients at higher risk of 

disease recurrence109-111. In the field of radiogenomics, investigators utilize machine learning 

techniques to link imaging features with biomolecular information112. Radiogenomics studies have 

found significant associations between breast cancer imaging and molecular phenotypes113-115 and 

have utilized this information for the prediction of breast cancer subtype116-118 as well as risk of 

disease recurrence109, 119.  

Radiomics features are often computed for the entire lesion, with an underlying assumption 

that heterogeneity within a tumor is “well-mixed”120. However, within clinical image data, 

intratumoral heterogeneity at the tissue level is observed as spatially-distinct subregions121, 122, and 

analysis of tumor subregions has demonstrated improved diagnostic predictions compared to 

whole tumor analyses123, 124. Habitat imaging is a technique that characterizes intratumoral 

heterogeneity using multiparametric MRI data to spatially resolve tumor subregions or 

“habitats”125. Typically, after image registration and lesion segmentation, multiparametric voxel 

data of the tumor region are clustered to identify habitats (Figure 11B)125. Radiomics studies have 

then computed features from tumor habitats to incorporate breast tumor heterogeneity in model 

predictions of Ki-67 status126, breast cancer subtype127, and response to neoadjuvant therapy128, 129. 

For example, Wu et al. used DCE-MRI data acquired prior to the start of neoadjuvant therapy to 

identify habitats within breast tumors130. The investigators then used habitat features to stratify 

patients into two subgroups and, via these characterizations of pre-treatment tumor heterogeneity, 

found one subgroup was associated with increased risk of disease recurrence130. It is hypothesized 

that tumor habitats exert unique selection forces on the cell populations within them, and thus 

potentially offer a surrogate representation of the cellular diversity within a tumor120. To 

investigate this hypothesis, investigators have imaged tumors and leveraged corresponding 

histological data to explore the underlying biology of imaged habitats in preclinical models of 

breast cancer131-133. Applications of habitat imaging in the clinical setting could provide an 

opportunity to profile tumors based on intratumoral heterogeneity characteristics and enable 

improved understanding of an individual patient’s tumor physiology. 

While radiomics and habitat imaging demonstrate promise to advance breast MRI research, 

a number of challenges remain for the translation of these techniques to clinical practice. A primary 

barrier for the expansion of radiomics is standardizing the acquisition, processing, and analysis of 

large amounts of data that are necessary for the development of radiomic models106, 134. As 



reproducibility and repeatability of computed features is essential to ensure model 

generalizability103, 135-137, efforts from groups, such as the Quantitative Imaging Network (QIN) 

and Image Biomarker Standardisation Initiative (IBSI) are currently working to standardize image 

acquisition and feature calculations138, 139. Additionally, radiomics benefits from large sample 

sizes, which provides improved statistical power88. This necessitates the buildout of publicly-

available databases for the storage and sharing of well-curated data that needed for radiomic model 

development88, 106, 134. 

 

8. MRI-constrained Mathematical Modeling  

Mathematical modeling of cancer is the science of defining systems of equations and 

mathematical formulations that capture the driving biological mechanisms of tumorigenesis. These 

models are designed to predict the temporal and/or spatial dynamics of cancer in vitro or in vivo. 

With reliable mathematical formulations, one can represent and interpret complex cancer data in 

terms of solvable formulae and equations. Additionally, mathematical models can generate and 

test hypotheses as well as predictions of future dynamics, and therefore may ultimately guide 

clinical decision-making and treatment optimization140. Mathematical modeling of cancer has a 

rich history across various cancer types and scales141-145. More recently, imaging-informed, 

biophysical mathematical models have been developed featuring careful integration of patient-

specific data and solved with robust numerical methods. There is growing evidence that these 

imaging-informed models can accurately predict the spatiotemporal dynamics of cancers of the 

kidney146, brain147-153, lung154, 155, pancreas156-159, prostate160, 161, and breast162-169. 

Imaging data is a fundamental enabler of mathematical modeling development170-173 and, 

in particular, MRI provide many measurements of tumor characteristics (see, for example, the 

above sections). Importantly, these measurements can be collected at the time of diagnosis and at 

multiple time points throughout treatment to track the growth and therapeutic response of tumors, 

which are specific to individual patients. Mathematical models of cancer can be initialized and 

calibrated using these spatial and temporally resolved patient-specific data, such that their 

resolution yields individualized tumor forecasts that can be further validated against actual patient-

specific outcomes. Unlike “big data” methods, imaging-informed mechanism-based mathematical 

models can evaluate tumor growth or response to therapy on a patient-specific basis without having 

to first train/calibrate the model utilizing large population datasets172. This mechanism-based 



strategy may also facilitate the testing of therapeutic regimens, where the model system serves as 

an in silico twin for each patient to optimize and personalize regimens140, 169. Therefore, the ability 

to parameterize models with patient-specific imaging data that are readily accessible is difficult to 

overstate. 

Reaction-diffusion models are partial differential equations (PDEs) that provide a common 

framework for integrating quantitative MRI data within a mechanism-based description of tumor 

spatiotemporal dynamics143, 153, 161, 166, 169-171, 174, 175. For example, the following reaction-diffusion 

PDE represents the evolution of tumor cells, NTC(x̅,t), with respect to time, t, and spatial position, 

x̅: 

∂NTC(x̅,t)

∂t
=∇∙(D∇NTC(x̅,t))⏞        

Diffusion

+ (g(x̅,t) – d(x̅,t))NTC(x̅,t))⏞              
Reaction

,                                 (1) 

where the change in tumor cell number per time (∂NTC(x̅,t)/∂t) is governed by diffusive and 

reactive terms. The diffusion term describes the random outward movement of the tumor cells with 

coefficient D, which may be defined as a constant under the assumption that tumor cell spread is 

isotropic. However, this tumor cell movement can also be governed by specific functions that 

relate tumor cell movement to specific host tissue anatomy151, 152, 161, 165. The reaction term 

encompasses the proliferation (g(x̅,t)) and death (d(x̅,t)) of tumor cells in time and space. Logistic 

growth is commonly used in mathematical models of cancer, but other formulations for 

proliferation can been employed (see 143 for a review of mathematical descriptions of proliferation 

in cancer). The tumor cell death function can describe various dynamics which can eliminate tumor 

cells, such as therapy168, immune response141, and/or modulation of proliferation due to mechanical 

forces and stresses161, 176-178. 

The parameters within Eq. (1) can be determined in a patient-specific manner by leveraging 

longitudinal MRI measurements of tumor features, such as ROI morphology and volume, tumor 

cellularity (from diffusion data), and the evolving distribution of therapeutics (from, for example, 

contrast enhanced data) throughout the tumor153, 168. During calibration, the model is initialized 

and repeatedly solved for varying values of the parameters, which are updated in each model run 

to provide an increasingly better match to the patient’s MRI measurements at a target timepoint152, 

174, 178, 179. Once the model is calibrated to the patient’s data, it can be reinitialized at the 

calibration’s endpoint and simulated further in time to yield a forecast of the future growth and 

therapeutic response of the patient’s tumor. These predictions can be validated against additional 



MRI measurements at a later time as well as clinical outcomes (e.g., pathological response status). 

Figure 12 illustrates this process of calibration and validation of a reaction-diffusion cancer model 

using longitudinal MRI data. 

Examples of the reaction-diffusion model utilized to model clinically relevant problems of 

breast cancer using MRI data span the prediction and assessment of neoadjuvant therapies165-168 to 

surgical planning for breast conserving surgery180, 181. Using a similar model to Eq. (1), where drug 

distribution is approximated using DCE-MRI data collected prior to and during neoadjuvant 

therapy (Figure 12), has enabled patient-specific predictions of tumor response to chemotherapies 

for breast cancer168. MR images have also been utilized in a modeling system combining a 

reaction-diffusion model accounting for the biological processes of wound healing with tissue 

biomechanics for wound contraction180, 181. This modeling scheme is shown to predict, pre-

operatively, the outcome shape of the breast after conserving surgery within clinically useful 

accuracy.  

While the reaction-diffusion framework is a popular method for mathematical modeling 

studies, we note that this is just one of numerous modeling strategies that can be integrated with 

patient-specific MRI data151, 178. One recent example establishes a new way to assess breast tumors 

using a computational fluid dynamics model of blood flow and interstitial transport developed to 

be constrained by individual DW- and DCE-MRI data for breast cancer patients182. Using 

advanced image processing methods to generate tumor-related vasculature geometry, the 

mathematical model was used to characterize the tumor-associated blood supply unique to each 

patient, and significant differences were found between the modeling results for benign and 

malignant tumors.  

 

8. Conclusion 

 It is clear that magnetic resonance imaging of the breast is in the process of moving far 

beyond merely providing high-contrast, anatomical images for morphological assessment.  The 

field is now capable of offering quantitative insights into tumor biology at the physiological, 

cellular, and molecular levels.  Furthermore, there are emerging methods that seek to summarize 

these data in ways that can provide more information than each data type individually. As these 

approaches mature and become more widely available, they will be incorporated into clinical trials 



of interventions designed to induce changes in tumor biology that will be difficult to measure with 

standard, anatomical-based MRI.   
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Figure Captions 

 

Figure 1.  Panel A presents a standard DCE-MRI acquisition with temporal resolution of 60 – 90 

seconds per image.  Panel B shows an ultrafast acquisition (in red), for approximately 30 seconds 

before and 45 seconds after contrast injection, integrated with standard acquisitions in blue before 

injection and during contrast media washout. 

 

Figure 2. A cartoon depiction of a bolus of contrast agent traversing the vascular support of a 

lesion.  Ultra-fast MRI is potentially capable of resolving the very different features of the arterial 

phase, lesion response, and venous output components of these dynamics.  This information is 

simply not accessible at the temporal resolutions employed during standard-of-care MRI. 

 

Figure 3. Quasi-static MR elastography of a breast tumor. Anatomical MR images before (left) 

and after (middle) external application of tissue deformation are used with a computational 

biomechanics model to estimate tissue mechanical elasticity properties (right). 

 

Figure 4. Two-pool models for magnetization transfer and chemical exchange saturation transfer. 

Panel (A) presents a two-pool model of magnetization transfer where M
0

F  and M
0

B  represent the 

fully relaxed values of magnetization associated with the free and the bound pools, respectively. 

Each pool is characterized by its own longitudinal relaxation rate (RF and RB) and by its rate of 

loss of longitudinal magnetization due to the RF irradiation (RRFF and RRFB). The exchange rate 

between the two pools, R, is assumed to be symmetrical. The shaded portion of the boxes 

represents the spins in each pool that are saturated, while the white area represents the spins that 

are in the longitudinal plane, for a given instant of time. Panel (B) presents the two-pool model of 

CEST contrast enhancement illustrated with exchange between a solute pool and a solvent pool 

(water). 

 

Figure 5. Magnetization transfer data acquisition. Panel (A) depicts a typical continuous wave 

MT-MRI pulse sequence for breast where the saturation pulse is typically a long (~ 9 ms) Gaussian 

pulse. Panel (B) displays an example of the MT pulse where Δω is several hundred to several 

thousand Hertz away from the “free” water frequency to saturate the “bound” pool. 



 

Figure 6.  Chemical exchange saturation transfer data acquisition. Panel (A) shows a diagram of 

a pulsed-CEST imaging sequence where the irradiation train consists of a series of Gaussian pulses 

with flip angle θ (a multiple of 90° or 180°) and duration τp followed by interpulse delay τd, where 

τp + τd is the duty cycle. These pulses are applied at a resonance frequency, Δω, at a saturation 

amplitude, B1, and a total duration for the pulsed train tsat. Panel (B) shows the application of 

saturation at ± Δω and the resulting signal intensity reduction due to MT, direct saturation 

(spillover), and the CEST effect. 

 

Figure 7. Examples of CEST and MT MRI measurements in the human breast. Panel (A) displays 

MT-MRI performed before (left) and after (right) one cycle of chemotherapy suggests declines in 

MTR may correlate with therapeutic response. Panel (B) CEST-MRI measurements of amide 

proton transfer (APT) in the breast in a healthy subject (left) and an APT map of a breast with 

tumor indicated by an arrow (right).   

 

Figure 8.  Panel a presents a volume of interest (36 voxels of 0.25 cm 3 each) overlain on a 

transverse proton MRI centered on an invasive ductal carcinoma. Panel b displays a spectral map 

with intense water and minor fat peaks in the lesion. After application of water and fat suppression, 

Panel c presents the Cho peak in the tumor, as shown on spectra, and Panel d shows the Cho peak 

as hyperintense. Cr = creatine. (Reproduced with permission from X.) 

 

Figure 9. Chemical endpoints of hyperpolarized [1-13C]-pyruvate in vivo.  The molecular 

environment of the 13C label (left) imparts unique spectral offsets for pyruvate and its metabolites 

(right).  The unlabeled peak represents pyruvate hydrate, which is not metabolically active.   

 

Figure 10. Representative evolution of signal from hyperpolarized [1-13C]-pyruvate and its 

metabolites in vivo.  After injection, HP pyruvate interacts with intracellular enzymes and the 

transfer of the spin label into different chemical pools can be quantified by dynamic MR 

spectroscopy or spectroscopic imaging. 

 



Figure 11. The typical radiomics workflow with breast MRI and its use for clinical decision 

support. First, MRI data is acquired and processed (panel A) to, for example, correct for any patient 

motion or generate parametric maps. The lesion is then localized, and segmented (panel B) through 

manual or automated techniques to isolate the tumor region of interest (ROI). To spatially resolve 

intratumoral heterogeneity, additional subregions, or “habitats”, within the tumor ROI can be 

identified. Finally, quantitative features (panel C) are extracted from the ROIs and may be 

combined with other modalities of information, such as genomic or clinical data. These features 

are ultimately integrated into models that can aid in clinical decision making for breast cancer 

patients, including diagnosis, prognosis, or prediction of therapeutic response (panel C). 

 

Figure 12. Schematic of the tumor features extracted from MRI data to be incorporated into a 

reaction-diffusion mathematical model for calibration and prediction of tumor response to therapy 

on an individual patient basis. Panels (a) and (b) depict example DW- and DCE-MRI data, 

respectively, that are used to derive maps of the apparent diffusion coefficient (ADC) of water 

(panel (c)), tumor ROIs (panel (d), and physiological parameters describing the tumor associated 

vasculature (panel (e)). These imaging maps can then be used to calculate approximate tumor 

cellularity (panel (f)) and drug distribution (panel (g)) within the tumor to initialize and constrain 

variables and parameters within a reaction-diffusion mathematical model (panel (h)). With MRI 

scans acquired (for example) prior to therapy, during therapy, and after the completion of therapy 

(scans 1, 2, and 3 in panel (i), respectively), the model can be calibrated with early therapy data, 

and the resulting patient-specific parameter maps can be used to simulate the model forward in 

time to predict tumor response at the completion of the regimen. The final scan may be used to 

then evaluate the predictive ability of the model—comparing measured tumor response to the 

model forecast for each patient. 
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