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Summary

Understanding quantitative DCE-MRI of the breast

Towards meaningful clinical application

In most industrialized countries breast cancer will affect one out of eight women
during her lifetime. In the USA, after continuously increasing for more than two
decades, incidence rates are slowly decreasing since 2001. Since 1990, death rates from
breast cancer have steadily decreased in women, which is attributed to both earlier
detection and improved treatment. Still, it is second only to lung cancer as a cause of
cancer death in women. In this work we set out to improve early detection of breast
cancer via quantitative analysis of magnetic resonance images (MRI).

Screening and diagnosis of breast cancer are generally performed using X-ray
mammography, possibly in conjunction with ultrasonography. However, MRI is
becoming an important modality for screening of women at high-risk due to for instance
hereditary gene mutations, as a problem-solving tool in case of indecisive
mammographic and / or ultrasonic imaging, and for anti-cancer therapy assessment. In
this work, we focused on MR imaging of the breast. More specifically, the dynamic
contrast-enhanced (DCE) part of the protocol was highlighted, as well as radiological
assessment of DCE-MRI data.

The T;-weighted (T;: longitudinal relaxation time, a tissue property) signal-
versus-time curve that can be extracted from the DCE-MRI series that is acquired at the
time of and after injection of a T;-shortening (shorter T; results in higher signal) contrast
agent, is usually visually assessed by the radiologist. For example, a fast initial rise to the
peak (1-2 minutes post injection) followed by loss of signal within a time frame of about
5-6 minutes is a sign for malignancy, whereas a curve showing persistent (slow) uptake
within the same time frame is a sign for benignity. This difference in contrast agent
uptake pattern is related to physiological changes in tumorous tissue that for instance
result in a stronger uptake of the contrast agent. However, this descriptive way of curve
type classification is based on clinical statistics, not on knowledge of tumor physiology.

We investigated pharmacokinetic modeling as a quantitative image analysis tool.
Pharmacokinetics describes what happens to a substance (e.g. drug or contrast agent)
after it has been administered to a living organism. This includes the mechanisms of
absorption and distribution. The terms in which these mechanisms are described are
physiological and can therefore provide parameters describing the functioning of the
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tissue. This physiological aspect makes it an attractive approach to investigate
(aberrant) tissue functioning. In addition, this type of analysis excludes confounding
factors due to inter- and intra-patient differences in the systemic blood circulation, as
well as differences in the injection protocol.

In this work, we discussed the physiological basis and details of different types of
pharmacokinetic models, with the focus on compartmental models. Practical
implications such as obtaining an arterial input function (AIF, the input to the
pharmacokinetic model) and model parameter estimation were taken into account as
well. A simulation study of the data-imposed limitations — in terms of temporal
resolution and noise properties — on the complexity of pharmacokinetic models led to
the insight that only one of the tested models, the basic Tofts model, is applicable to
DCE-MRI data of the breast. For the basic Tofts model we further investigated the
aspect of temporal resolution, because a typical diagnostic DCE-MRI scan of the breast is
acquired at a rate of about 1 image volume every minute; whereas pharmacokinetic
modeling usually requires a sampling time of less than 10 s. For this experiment we
developed a new downsampling method using high-temporal-resolution raw k-space
data to simulate what uptake curves would have looked like if they were acquired at
lower temporal resolutions. We made use of preclinical animal data. With this data we
demonstrated that the limit of 10 s can be stretched to about 1 min if the arterial input
function is inversely derived from a healthy reference tissue, instead of measured in an
artery or taken from the literature.

An important precondition for the application of pharmacokinetic modeling is
knowledge of the relationship between the acquired DCE-MRI signal and the actual
concentration of the contrast agent in the tissue. This relationship is not trivial because
with MRI we measure the indirect effect of the contrast agent on water protons. To
establish this relationship via calculation of T; (t), we investigated both a theoretical and
an empirical approach, making use of an in-house (University of Chicago) developed
reference object that is scanned concurrently with the patient. The use of the
calibration object can shorten the scan duration (an empirical approach requires less
additional scans than an approach using a model of the acquisition technique), and can
demonstrate if theoretical approaches are valid. Moreover we produced concentration
images and estimated tissue proton density, also making use of the calibration object.

We studied therapy assessment as well. Via pharmacokinetic modeling and
other MRI-derived measures we partly revealed the actions of a novel therapeutic in a
preclinical study. In particular, the anti-tumor activity of a single dose of liposomal
prednisolone phosphate was investigated, which is an anti-inflammatory drug that has
demonstrated tumor growth inhibition.

The work presented in this thesis contributes to a meaningful clinical application
and interpretation of quantitative DCE-MRI of the breast.

v
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Chapter 1

In most industrialized countries breast cancer will affect one out of eight women
during her lifetime (Berg 2009). Prevalence of male breast cancer is about 90 times
lower. In the USA, after continuously increasing for more than two decades, incidence
rates are slowly decreasing since 2001. Since 1990, death rates from breast cancer have
steadily decreased in women, which is attributed to both earlier detection and improved
treatment. Still, it is second only to lung cancer as a cause of cancer death in women. In
this work we set out to improve early detection via quantitative analysis of magnetic
resonance images (MRI).

In the present chapter the formation of breast cancer will be described in
relationship to breast cancer imaging. Screening and diagnosis of breast cancer are
generally performed using X-ray mammography, possibly in conjunction with
ultrasonography. As a screening modality, MRI is only used for women at high risk —
among other reasons — because of its superior sensitivity in young women. In this work,
we will focus on MR imaging of the breast. More specifically, the dynamic contrast-
enhanced (DCE) part of the protocol will be highlighted, as well as radiological
assessment of DCE-MRI data. The current standard of care will be reviewed and
directions for improvement will be pointed out.

1.1 Oncogenesis

Cancer can be defined as uncontrolled malignant cell growth. As the number of
neoplastic cells increases, their demand for oxygen and nutrients outgrows the capacity
of interstitial diffusion. The consequent local hypoxia is a trigger for angiogenesis, which
is the sprouting of new blood vessels from pre-existing vessels. The angiogenic cascade,
regulated by pro-angiogenic factors such as vascular endothelial growth factor, involves
proliferation, migration, and differentiation of endothelial cells to form new capillaries.
In the tumor environment this process is however not well-controlled, resulting in
structural and functional abnormalities; an important one being high vessel-wall
permeability due to incomplete endothelium lining and an interrupted basement
membrane. In addition, the smooth muscle layer that assures vasoreactivity is often
underdeveloped or lacking.

The onset of angiogenesis adds to the malignant potential of the tumor because
it enables (rapid) tumor growth and provides access to the blood circulation, thereby
increasing the risk of metastases. However, the increased vasculature also provides
access to the tumor, such that contrast materials and drugs can be delivered, to,
respectively, detect and treat it. High-grade tumors tend to present higher vascular
disorganization and permeability than low-grade tumors (Daldrup et al. 1998). Tumor
grade is defined as the histological degree of cell abnormality; the less the cells are
differentiated into normal cells, the higher the grade and the faster the cells grow and
spread. Monitoring tumor vascularization could therefore potentially help to predict
tumor aggressiveness and to design a tailored treatment (Brix et al. 1999).
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As cancer is a heterogeneous disease, not all types of breast cancer develop as a
single clump of growing cells. In radiological terminology a fairly large (about 5 mm or
larger, American College of Radiology 2003) single clump of cancer cells is called a mass,
which is defined as a space-occupying lesion that distorts the surrounding tissue. Other
cancers develop as a more diffuse pattern. They are categorized as non-mass-like
enhancement (NMLE). ‘Enhancement’ refers to the increased MR signal in these areas
(as will be described in Section 1.3). Ductal carcinoma in situ (DCIS) is an example of a
non-obligate precursor of cancer that frequently presents as NMLE. In DCIS, abnormal
cells have accumulated in the milk duct but have not spread to other tissues in the
breast. Since it is a non-obligate precursor, it is of special interest to detect and
characterize DCIS. Image-based evidence of the absence or presence of malignant
potential could prevent unnecessary treatment.

1.2 Breast cancer imaging

Most breast cancers are diagnosed using (X-ray) mammography, which is the
standard screening modality. The introduction of population screening programs in the
late 1980’s has decreased the death rate from breast cancer, despite an increased
incidence. Although mammography is the only screening test proven to reduce breast
cancer mortality, there is increased awareness that mammography alone may not be
adequate to screen certain subpopulations (Berg 2009). Those subpopulations consist
for instance of women with a genetic predisposition to develop breast cancer — such as
carrying one of the BRCA mutations — women with a personal history of cancer, or
women who have undergone chest radiation. As they are at high-risk (aggregate
lifetime risk of more than 20%, Saslow et al. 2007), these women should start screening
at a relatively young age, when breast tissue is often mammographically dense. A high
density arises from a high calcium concentration causing a high background signal on
mammography, possible obscuring microcalcifications that can be a sign of cancer.
Moreover, a high density is also a risk factor in itself (Berg 2009). For women at high
risk, the addition of either MRI or ultrasound to mammography results in a higher
detection yield than achieved with mammography alone, as can be seen in Table 1.1.
Therefore, for these women, additional screening beyond annual mammography has
been advised by the American Cancer Society since 2007 (Saslow et al. 2007). Preferably
MRI is used, because the combination of MRI with standard mammography gives the
highest detection rate. For women at normal risk, MRI can be used in case of a
suspicious but inconclusive mammogram. However, ultrasound is more commonly used
as a second-look modality. Over the past ten years, in the USA the number of breast
MRI studies has increased with nearly 40% per year (Newell et al. 2010).
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Table 1.1 High-risk screening, percentage of cancers found listed per modality
and per combination of modalities, after Berg 20089.

Modality % of cancers found
Mammography 36
Ultrasound 40
Mammography + Ultrasound 52
Magnetic resonance imaging 81
Mammography + magnetic resonance imaging 93

If diagnosis calls for treatment, MRI could be used to assess the extent of disease.
However, this use of MRI, as well as the use of MRI for (contralateral) screening, is
currently vehemently debated as it may (unnecessarily) increase recall and intervention
rates. An increase of the false positive ratio has been reported (Houssami et al. 2008),
although others state that the specificity — i.e. the probability of a negative test in
women without breast cancer — of MRI is similar to that of mammography (Kuhl et al.
2007). The reported range in specificity is therefore large (37-97%). On the part of
sensitivity — i.e. the probability of a positive test in women with breast cancer — there is
consensus that it is higher for MRI (77-100%) than for mammography (25-59%).
Possibly, improvements in standardization can contribute to a higher and more uniform
specificity. The above figures hold for women at high risk (Kuhl et al. 2005b, Leach et al.
20053, Lehman et al. 2005, Lord et al. 2007, Newell et al. 2010, Sardanelli et al. 2007,
Warner et al. 2004).

During the treatment phase, MRI can be used to monitor the response to
(neoadjuvant) chemotherapy or other therapies. For agents acting on the tumor
vasculature it can be crucial to use MRI for therapy assessment, because it can provide
information about the degree of vascularization and the quality of the vessels. More on
this topic in Chapter 7.

1.3 MRI and tissue contrast

MR contrast emerges from differences in relaxation properties of tissue
hydrogen nuclei after undergoing radio-frequency excitation. In the classical view, the
excitation tilts the magnetic spin vectors of the hydrogen nuclei from their alignment
with the main (static) magnetic field. After the excitation they return to equilibrium
(alignment with the main field) due to relaxation processes. The time constants of these
relaxation processes are used to generate image contrast. The longitudinal relaxation
time constant T; tells us how quickly the spins return to equilibrium, the transverse
relaxation time constant T, how quickly the spins de-phase due to fluctuations in
precession frequency. If field inhomogeneities play a role, the transverse relaxation
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time constant is shorter than T,, which is then referred to as T,. A third property adding
to tissue contrast is proton density (PD), which is a measure of mobile hydrogen nuclei.
Acquisition sequences can be tuned in such a way that one of the tissue properties

dominantly determines the contrast, resulting in T;-weighted, TZ(*)—weighted, or PD-
weighted imaging.

Only a limited percentage of malignant breast tumors can be detected — as well
as distinguished from benign tumors — using the intrinsic T;- / T,- / PD-weighted MR
contrast (Bottomley et al. 1987). Therefore, during a standard clinical MR breast
examination, a T;-shortening contrast agent is intravenously injected. The most
common agents are low-molecular-weight (weight < 1kDa) complexes of the lanthanide
gadolinium (Gd*). The unpaired electrons of this paramagnetic metal ion create a
locally fluctuating magnetic field causing water nuclei in its close proximity to relax more
rapidly through dipole-dipole interactions. Due to the process of angiogenesis, more of
the contrast agent ends up in the tumor area than in the surrounding normal tissue. The
T;-shortening in the tumor area causes a bright signal, resulting in an increased contrast
between the tumor and its environment. Here we emphasize that the presence of the
contrast agent can only be indirectly detected through measurements of tissue water
relaxation. This is a fundamental difference with contrast agents used in nuclear
medicine. To allow for quantification of the contrast agent concentration (Section 1.6),
the native tissue T; (T;o) has to be measured, requiring additional scans (Chapter 4).
The AR, (R, = 1/T;) caused by the presence of the contrast agent is related to its
concentration in the following way

ARy (t) = Ry (t) —Ryp =11 - C(1), (1.1]

in which 7y (mM™? s?) is the longitudinal relaxivity; C (mM) the contrast agent
concentration; and t (min) is time. A similar relationship holds for AR5, which is
exploited in dynamic susceptibility-weighted MRI (DSC). In DCE-MRI this effect is
suppressed in the signal due to T;-weighting.

The acquisition of MR data takes place in k-space, which is the spatial-frequency
domain. Application of the inverse Fourier transform on the (complex) k-space data
results in the corresponding image data. In Figure 1.1 we show an example taken from
rat data (Chapters 5 and 6), both in k-space and in the image domain. We stress that
MRI is not a ‘snapshot tool’. The excitation and subsequent signal readout cannot
happen for every spatial frequency at the same time, otherwise it would be unknown
where the acquired signal came from, and thereby it would be impossible to reconstruct
the image. The fact that acquisition of a single k-space data volume can take more than
a minute is important in the context of quantifying temporal aspects of contrast agent
uptake; i.e., during the acquisition of a single volume the local contrast agent
concentration varies due to the ongoing processes of flow and extravasation which
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makes it difficult to obtain measures of these processes. We will discuss this in more
detail in Chapters 5 and 6.

Figure 1.1 Left: acquired k-space data (taken absolute), and right: the
corresponding image.

1.4 Dynamic contrast-enhanced MRI

DCE-MRI of the breast was first performed by Heywang et al. (1989), and Kaiser
and Zeitler (1989). ‘Dynamic’ reflects that the acquisition is repeated multiple times,
before as well as after contrast agent administration. Nearly all clinical DCE-MRI is
performed at 1.5 T, although 3.0 T is gaining popularity (Kuhl 2007a). The data have a
typical spatial resolution of a cubic millimeter; this to achieve an acceptable signal-to-
noise ratio while covering the volume of both breasts within an acceptable amount of
time. The acquisition is repeated as rapidly as possible continuing for 5 to 10 minutes
after injection. As peak enhancement in breast tissue is expected within the first 2
minutes after contrast injection, a temporal resolution of at least 60 s — 120 s is specified
in the guidelines from the European Society of Breast Imaging (Mann et al. 2008). A
commonly used T;-weighted acquisition is the spoiled gradient echo sequence, with a
repetition time of 3 to 10 ms, an echo time under 5 ms, and a variety of choice of flip
angle (Jackson et al. 2007). The spoiled gradient echo signal model is given by

S(t) = M, - e TE/T2(6) sin 6(1-e~TR/T1(0))
0 1—cos §-e~TR/T1(1)’

[1.2]

in which S(t) is the measured signal intensity; M, is a scaling factor that depends on
scanner gain and proton density; 8 (°) is the flip angle; TE (ms) is the echo time; TR (ms)
is the repetition time; and t (min) is time. To obtain AR, (see Eq. 1.1), needed to
calculate contrast agent concentration, the measured signal S has to be converted to T,
for instance using the signal model given in Eq. 1.2. More on this matter in Chapter 4.

The tissue characteristics that are exploited by MRI to detect malignant lesions
are fundamentally different from those used in (X-ray) mammography. Whereas in

6
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mammographic imaging certain patterns of calcium deposits (microcalcifications) are
seen as signs of increased cell activity and possibly cancer; in the T;-weighted dynamic
contrast-enhanced part of the MRI protocol it is the tumor microvasculature that is
probed. Both an increased blood supply and increased vessel wall permeability will
cause more of the contrast agent to end up in the tumor region than in the surrounding
healthy tissue. The observed enhancement pattern is used to assess both tissue
morphology and contrast agent uptake kinetics.

Clinical MRI protocols for the breast often also contain a T,-weighted imaging
sequence performed before injection of the contrast agent. This to exclude certain
benign conditions, like cysts, that may appear alarming on T;-weighted images, but can
often be excluded from suspicion in case of a bright T,-weighted signal. Recently,
diffusion-weighted imaging is gaining popularity in diagnostic MRl of the breast
(Partridge et al. 2009). However, it is not (yet) part of most clinical protocols. Although
we provided a general description of a clinical MR breast exam, we should stress that
acquisition protocols vary to a great extent; there is only limited standardization.

1.5 Radiological assessment

Most breast MR practices will assess the acquired MRI data according to the BI-
RADS guidelines (Breast Imaging-Reporting and Data System, American College of
Radiology 2003, update expected end of 2010). These guidelines distinguish three main
lesion types: focus, mass, and non-mass-like enhancement. A focus is so small — smaller
than 5 mm but this may change as the achievable spatial resolution is currently higher
than in 2003 — that it cannot otherwise be characterized. A mass is a space-occupying
lesion that comprises a single process. Non-mass-like enhancement presents as areas of
normal glandular tissue or fat interspersed between the abnormally enhancing
components. In radiological assessment, these types of lesions are each treated
differently. A focus can only be characterized as being present. Mass lesions can be
characterized by their ‘shape’, ‘margin’, and ‘internal enhancement pattern’; e.g. a
round lesion with a smooth margin and a homogeneous enhancement pattern is much
more likely to be benign than a lesion with an irregular shape and margin showing
heterogeneous enhancement. The descriptors for NMLE are slightly different; they are
‘distribution” and ‘internal enhancement pattern’. For instance, a diffuse distribution
showing homogeneous enhancement is more likely to be benign than a segmental
distribution showing heterogeneous enhancement. Especially in case of NMLE, an
important characteristic is also the degree of symmetry between the two breasts; if both
breasts show the same enhancement pattern, it is more likely that we are seeing
(strong) enhancement in the healthy glandular tissue.

The above-described characteristics are morphologic, usually assessed by looking
at the (baseline-subtracted) image volume that shows most enhancement in the lesion.
However, the guidelines also describe how the temporal contrast agent uptake pattern



Chapter 1

can be assessed, so making use of the whole dynamic series. The so-called kinetic
curves are usually inspected as relative enhancement (RE in percentage) curves:

RE = @ x 100%, [1.3]

0

in which S(t) is the dynamic signal; S, = S(t = 0) the precontrast signal; and t (min)
time. Normalization with respect to S, deals to a large extent with inhomogeneous coil
sensitivity, but it does not make RE protocol-independent (see Chapter 4). The obtained
curves are classified as (i) steady enhancement, (ii) plateau of signal intensity, or (iii)
wash-out, see Figure 1.2 (Kuhl et al. 1999). A typical malignant lesion will show a fast
initial rise and wash-out (signal decay) after reaching peak enhancement. This
classification scheme may seem basic, but at a temporal resolution of 1 — 2 min, there
are only a few T;-weighted image volumes acquired (series duration 5 — 10 min).
Moreover, this classification scheme has statistically been proven to add to lesion
differentiation (Kuhl et al. 1999).

i) steady enhancement

(i) plateau

(iii) wash-out

relative enhancement

’,

/'éarly phase§ delayed phase

time

Figure 1.2 Descriptive curve-type classification of relative enhancement
curves. Steady enhancement is associated with benignity, washout with
malignancy. The intermediate pattern (plateau) is suspicious.

To accurately track the distribution of the injected contrast agent over time,
temporal resolution has to be increased. However, there is a direct trade-off between
sampling time and spatial resolution / image volume. As stated in the European
guidelines (Mann et al. 2008), temporal resolution should not compromise spatial
resolution. Indeed, it was shown that an increase in spatial resolution results in higher
diagnostic confidence, even when the temporal resolution is slightly sacrificed (Kuhl et

8
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al. 2005a). Also, in the BI-RADS guidelines kinetic assessment is considered an adjunct
to morphologic assessment, as morphology overrules kinetics: suspicious morphologic
features should prompt biopsy regardless of curve kinetics (American College of
Radiology 2003). Moreover, several papers have stated that kinetic assessment is of
limited relevance for NMLE (Kuhl 2007b, Newell et al. 2010, Yabuuchi et al. 2010),
restricting its role to the differentiation of mass lesions. But is this ‘secondary’ role of
kinetic analysis justified? For example, in a multi-center study using an automatic
feature selection method, kinetic features were preferred over morphologic features
(Heywang-Kobrunner et al. 2001). Besides, the added value of kinetic analysis can
probably not be fully assessed at temporal resolutions typical for DCE-MRI of the breast.

As pointed out by Schabel et al. (2010), in the previously mentioned study by
Kuhl et al. (2005a) a decrease in temporal resolution from 69 s to 116 s may not have
caused a loss of crucial kinetic information as both resolutions are too low to provide an
accurate description of kinetics. This thesis is supported by the work of El Khouli et al.
(2009) which showed a significant increase in the area under the receiver-operatoring-
characteristic curve when increasing the temporal resolution from 60 s to 15 s. Yet,
according to Kuhl (2007b), there is no relevant additional diagnostic information
attainable by reducing sampling times to below 60 s, because studies using high-
temporal-resolution DCE-MRI in combination with advanced kinetic modeling — as will
be discussed in the next section — did not demonstrate superiority, compared to a
standard protocol that allowed detailed morphologic assessment. Certainly, the cited
work by Schorn et al. (1999) demonstrated that considerably sacrificing spatial
resolution (factor of 5) to gain high-temporal resolution (factor of 44) does not result in
higher diagnostic confidence, because kinetic analysis cannot replace morphologic
analysis. Interestingly, other cited references in Kuhl 2007b are milder in their judgment
and speak of a useful functional imaging technique that needs to be standardized
(Choyke et al. 2003); and issues that must be addressed to move this methodology into
routine clinical practice, such as the needed kinetic model complexity (a simple model
might suffice), and the most rational and reliable data collection procedure (Taylor et al.
1999). It is likely too early to state that a gain in diagnostic performance can only be
expected from an increase in spatial resolution, as the temporal aspects appear to not
have been fully exploited yet. Nonetheless, current consensus lies at a temporal
resolution of 1 — 2 min in combination with a (sub)millimeter in-plane spatial resolution
at a slice thickness of 1 —3 mm (Kuhl 2007b). It is therefore also important to study if
more kinetic information can be extracted from ‘low’ temporal resolution data (a
temporal resolution of 1 min is not considered low in the context of DCE-MRI of the
breast, but very low in the context of, for instance, DCE-MRI of the prostate). We will
therefore discuss pharmacokinetic modeling of low-temporal-resolution data as an
alternative to descriptive curve-type modeling. In the future, acquisition protocols may
head for a combination of high-temporal / high-spatial resolution as a result of faster
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scan techniques, or smart alternation between high-temporal-resolution sampling
(during the first phase) and high-spatial-resolution sampling (during the second phase).
In the work by Veltman et al. (2008) the latter approach significantly improved
diagnostic performance.

1.6 Quantitative image analysis

Despite the fact that relative enhancement curves not only reflect a change in
contrast agent concentration, but also depend on scan parameters such as repetition
time and flip angle (Hittmair et al. 1994) and other factors such as the native T; of the
tissue and the patient’s systemic blood circulation, still, descriptive modeling of RE
curves adds considerable diagnostic value (Kuhl et al. 1999). With the use of more
guantitative methods, the aim is to remove these unwanted dependencies so that the
derived parameters only reflect local tissue properties. The removal of irrelevant factors
can potentially boost the diagnostic value of kinetic analysis.

Two factors that should not affect diagnostics are the patient’s systemic
circulation and the applied injection protocol. Together, they dictate the shape of the
arterial input function (AIF). The AIF describes the bolus of contrast agent passing
through the blood circulation. As the contrast agent is exchanged between the blood
plasma and the tissue, the shape of the AIF can influence the enhancement seen in the
tissue. In a pharmacokinetic model (thoroughly explained in Chapter 2), for example a
two-compartment model, the input of contrast agent material (AIF) is taken into account
in assessing the response, i.e. the uptake of contrast agent material in the tissue. By
deconvolving the response with the input function, variations in systemic circulation or
injection protocol are excluded from the assessment of the contrast agent uptake. To
arrive at tissue parameters with a physiological meaning, the pharmacokinetic model
has to be fitted to contrast agent uptake curves represented in contrast agent
concentration. We therefore have to convert the measured signal intensities to Ty (t).
The change in T;(t) with respect to the precontrast T;(t = 0) can then be used to
derive contrast agent concentration (see Eq. 1.1). The background and details of
pharmacokinetic modeling will be thoroughly discussed in Chapter 2. In Chapter 4 we
will deal with signal calibration, i.e. the conversion from signal intensity to contrast
agent concentration.

A conversion from signal intensity to contrast agent concentration can also be
applied as a preprocessing step for descriptive curve-type classification, but this is rarely
seen; it is usually applied to relative enhancement. The native-T; dependency that is
present in RE curves is nicely illustrated in Galbraith 2006, Figure 2, as well as in
Vincensini et al. 2007, Figure 2. This dependency mainly affects the assessment of the
initial uptake: the same uptake results in a higher RE in tissues with a long native T; than
in tissues with a short native T;.
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Several studies have demonstrated high diagnostic performance using
pharmacokinetic modeling. Schabel et al. (2010) arrived at a sensitivity of 91% and a
specificity of 85%, using a three-parameter pharmacokinetic model and automatic
thresholding. In comparison, a large multi-center trial (Bluemke et al. 2004) using
similar eligibility criteria but a standard (BI-RADS) protocol and analysis reached a
sensitivity of 88% at a specificity of 68%. Eliat et al. (2004) reached a sensitivity of 95%
at 85% specificity using a combination of descriptive kinetic and pharmacokinetic
parameters.  Moreover, as pharmacokinetic modeling is physiology-based, the
parameters have potential application not only in diagnostics, but also in determining
prognosis, in predicting (non)responders, and in evaluating treatment effect (Henderson
et al. 2000). This also means that lesions with a distinct physiology, like DCIS, may be
characterized by looking at a different combination of pharmacokinetic parameters than
for ‘typical’ mass lesions. Pharmacokinetic modeling is not a ‘one-size-fits-all’ approach.

Even though introduction of quantitative pharmacokinetic modeling should
overcome the issues caused by a lack of standardization in data acquisition,
pharmacokinetic model selection and parameter estimation methods are also non-
standardized. There are few guidelines describing which model is applicable in which
context. We will address this in Chapters 2 and 3. In Chapter 3 we will provide a
practical guideline for model selection.

In this section we have discussed quantitative kinetic analysis, but there is no
reason to restrict quantitative analysis to kinetics only. The assessment of morphologic
features using concentration images instead of signal intensity (subtraction) images, can
potentially improve diagnostic standardization and reproducibility as well. In addition,
morphologic features are quite subjective if a lesion does not show a distinct ‘shape’,
‘distribution’, ‘margin’, or ‘internal enhancement pattern’ (Kose et al. 2010). Computer-
aided calculation of morphologic features (Gilhuijs et al. 2002) could therefore also
improve the reproducibility of diagnostics.

1.7 Rationale and outline

The aim of this work is to provide understanding of quantitative techniques to
analyze DCE-MRI data of the breast, as well as guidance on how to apply these
techniques and under which conditions. Quantitative analysis of DCE-MRI data will only
provide meaningful parameters that can contribute to diagnostics in case it is applied in
a sensible way.

In Chapter 2 we will discuss and explain pharmacokinetic modeling starting from
the physiological basis. The focus lies on compartmental models. In addition to the
theoretical background we also deal with the practical implications of applying a
pharmacokinetic model, such as obtaining an arterial input function and parameter
estimation. We will answer questions such as: ‘in what way do pharmacokinetic models

11
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describe contrast agent uptake in a lesion?’, ‘there are many pharmacokinetic models,
in what sense do they differ?’ and ‘what are the practical implications of applying a
pharmacokinetic model?’

As the relatively low temporal resolution of DCE-MRI breast data forms a major
challenge to the application of pharmacokinetic models, we continue in Chapter 3 with a
simulation study that should answer the question: ‘given these specific data properties,
which pharmacokinetic model can | apply?’ In this simulation study we investigated for
a range of temporal resolutions and noise levels the applicability of the basic Tofts
model (2 parameters), the extended Tofts model (3 parameters), and the shutter-speed
model (3 parameters). (The details of these models are explained in Chapter 2.) The
results of this study suggest that the use of models more complex than the basic Tofts
model require data of very high quality, currently rarely obtained for clinical breast MRI.
So, even though the basic Tofts model assumptions may be an oversimplification of the
underlying physiology in some scenarios, we will investigate the use of this model in the
remainder of this work.

An important relationship to establish in the framework of quantitative analysis
of DCE-MRI data is the one between the acquired signal and the actual concentration of
the contrast agent in the tissue. We will therefore look into signal calibration in Chapter
4. For this purpose, we developed a breast-coil insertable reference phantom that can
be concurrently scanned with the patient. With the use of this phantom we investigated
patient-specific signal calibration, answering questions as: ‘Can | assume a theoretical
relationship between contrast agent concentration and signal intensity?’ and ‘Can | still
calibrate the signal if there is no applicable theoretical model?” The advantage of
concurrent scanning is that variations introduced by the presence of the patient, as well
as variations in scanner performance can be taken into account. We used the phantom
to estimate a flip angle correction factor for variable flip angle precontrast T;-mapping
under assumption of the spoiled gradient echo signal model (Eq. 1.2). We also
demonstrate a more empirical approach. Moreover, we produced concentration images
and estimated tissue proton density, making use of the calibration phantom.

In Chapters 5 and 6 we will further explore the use of pharmacokinetic modeling
in combination with low-temporal-resolution data. For this purpose, we used raw k-
space rat data acquired at high-temporal resolution. First (Chapter 5), we investigated a
realistic downsampling strategy to mimic the acquisition of low-temporal-resolution
data, in which we incorporated the non-instantaneous nature of MR acquisition
techniques: ‘How can | simulate DCE-MRI data acquisition at low-temporal resolution?’
In a comparison, we demonstrated that downsampling by omitting intermediate time
points does not realistically reflect a low-temporal-resolution acquisition. In the same
chapter, we estimated the error in the pharmacokinetic parameter estimates as a
function of temporal resolution while making use of the true AIF (high-temporal-
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resolution standard AIF): ‘Using a standard AIF, how accurately can | estimate
pharmacokinetic parameters from low-temporal-resolution data?’

Since in reality the high-temporal-resolution AIF would be unknown for data
acquired at low-temporal resolution, in Chapter 6 we estimated the AIF from the
contrast agent uptake in a reference tissue present in the low-temporal-resolution data
(data-derived AIF). Again, we investigated the error in the parameter estimates as a
function of temporal resolution: ‘Given low-temporal-resolution data, can | improve
pharmacokinetic parameter estimation by making use of a data-derived AIF?’ With the
data under study, temporal resolution had no significant impact on parameter accuracy
up to a sampling time of 60 s using the data-derived AlFs, whereas the use of a standard
AIF resulted in a progressive error in the pharmacokinetic parameter estimates.

In Chapter 7 we will discuss preclinical therapy assessment of an anti-cancer
therapeutic in a mouse model. More specifically, we investigated the anti-tumor activity
of a single dose of liposomal prednisolone phosphate. This anti-inflammatory agent has
demonstrated to inhibit tumor growth. To investigate the mechanisms through which it
acts on the tumor and its vasculature we studied multiple in vivo MRI-derived
parameters as well histological parameters: ‘Can | assess treatment response with MRI-
derived parameters?’

In the concluding Chapter 8 we will provide a general discussion as well as
implications for future research resulting from this work.
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Introduction to
pharmacokinetic modeling
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In the present chapter we provide an overview of pharmacokinetic models,
covering the most-applied models in the field of oncology. We describe their common
ground and the ways in which they differ, both from a theoretical as well as a practical
point of view. Moreover, we discuss methods to obtain an arterial input function and
describe the parameter estimation methods applied in this work.

The application of the discussed models and methods is not limited to the
context of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the
breast. However, we did write this chapter with that perspective in mind; i.e. strengths
and limitations are addressed with the focus on DCE-MRI of the breast. An issue that is
specific for this context is the relatively low-temporal resolution at which diagnostic
DCE-MRI data of the breast is often acquired. We will touch upon this matter towards
the end of this chapter, and discuss it in more detail in Chapters 3, 5, and 6. In this
chapter it is assumed that uptake curves are available as contrast agent concentration
curves. In Chapter 4 we will address the conversion from measured signal intensity data
to contrast agent concentration.

2.1 Physiology in the framework of compartment modeling

Pharmacokinetics describes what happens to a substance, e.g. drug or contrast
agent, after it has been administered to a living organism. This includes the mechanisms
of absorption and distribution. The terms in which these mechanisms are described are
physiological and therefore provide parameters describing the functioning of the
organism’s tissue. This physiological aspect makes it an attractive approach to
investigate (aberrant) tissue functioning, and to diagnose diseased tissue.

In the field of DCE-MRI, pharmacokinetics is mainly studied by means of
compartment modeling. ‘Compartment’ is a modeling concept and does not necessarily
describe a singular physical location. A compartment can be defined as an amount or
volume of material. The interconnected compartments that are involved in the
distribution of the substance define the system. A compartment by itself is assumed to
be kinetically homogeneous, i.e. the kinetic behavior is the same across the
compartment. It is also assumed to be well-mixed, i.e. a single concentration is
expected within the compartment. A physiological process can be modeled at different
levels of detail, depending on the necessity to capture the complexness of the specific
process. Different model systems, i.e. differing in the number of simplifying model
assumptions, can therefore describe the same physiological process.

A basic pharmacokinetic model is the two-compartment model, in which the first
compartment serves as input to the second compartment. The offered amount of
substance, u, (t) — where t represents time — to the first compartment (with volume V;)
results in a dynamic concentration C;(t). The dynamic concentration of the responding
compartment (with volume V), C,(t), changes as a result of exchange between the two
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compartments. The exchange from compartment 1 to compartment 2 is governed by
exchange rate k,,, whereas the reverse is governed by k;,. The loss of substance from
the system is modeled by the excretion rate f,;. This example model is shown in Figure
2.1.

uq (t) k2“1
' Ci (), Vy ’ Co (1), V,
Ik'lZ
«—

o

Figure 2.1 Basic two-compartment model. Influx of substance into and efflux
of substance out of the system takes place in compartment 1. Compartment 2
receives (k,,) substance from and returns (k,,) substance to compartment 1.

The mass balance equations representing this system are

£ dCdlt(t) = u1 () = (k21 + fo1) * Ci(8) + kqp - C5(t), and [2.1]
v, dC;t(t) =ky, - C1(t) — kyp + Cy(1). [2.2]

In the context of DCE-MRI, u; (t) represents an intravenous (bolus) injection of a
gadolinium-based contrast agent; compartment 1 represents the distribution volume in
the capillary blood, which is the capillary blood plasma space V,; and compartment 2
represents the distribution volume in a specific tissue, which is the extravascular
extracellular space (EES)V,. The EES is the space within the tissue, outside the
microvessels, and outside the tissue cells. These two distribution volumes are specific
for contrast agents that can exit the blood circulation but cannot enter cells. The latter
currently holds for all clinically approved gadolinium-based contrast agents. In addition,
the contrast particles are not actively transported across the microvascular membrane
and therefore the exchange is symmetric, i.e. only passive, concentration-gradient-
based, exchange takes place. This happens in the capillary bed, because only
microvessels have a porous vessel wall. Schematically, the capillary bed is shown in
Figure 2.2, connecting the arterial (C,) to the venous (C,) side of the main blood
circulation. At this level, the contrast particles (small spheres) can leave the blood
plasma and enter the EES. Excretion (f,; in Fig. 2.1) takes place in the kidneys.
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Figure 2.2 Schematic representation of an imaging voxel relative to the size of
a medium-sized tumor and the contrast agent exchange process taking place
on the microvessel scale.

Probing the microvasculature with MRI is a great challenge due to a discrepancy
in scale. Microvessels range from 5 to 10 um in diameter, whereas MRI images are
acquired on a millimeter scale — a more than hundredfold difference in scale. The
implication is that the signal that is measured at the millimeter scale contains
contributions of several compartments, and therefore is a measure of the bulk
concentration. For example, the single 1 mm?® voxel, as depicted in Fig. 2.2 (white box),
contains microvessels, cells, and extravascular extracellular space. This difference in
scale, and the fact that the MR signal is an indirect measure of the contrast agent
concentration, necessitates assumptions about the underlying physiological tissue
behavior. Because current pharmacokinetic models differ in the level of assumptions
and thereby resulting simplifications, the differences and overlap between several
models will be discussed in Section 2.2.

In terms of tissue functioning, it is interesting to know what changes occur in the
course of cancer development. As discussed in Chapter 1, hypoxia triggers the process
of angiogenesis. Due to the poorly regulated sprouting and growth of the tumor-feeding
microvessels, they exhibit structural (for impressive scanning electron microscopic
images see: McDonald and Choyke 2003) and functional abnormalities; an important
one being high vessel-wall permeability due to incomplete or lacking endothelium lining,
and an interrupted basement membrane (Brix et al. 2004). The extent of microvascular
disorganization and permeability can even be related to malignant tumor grade, i.e.
becoming worse for higher grade (less differentiated) tumors. Tumor grade might
therefore (partly) determine the organization and maturation of newly recruited
microvessels (Daldrup et al. 1998). The increased microvascular density and
permeability cause a rapid inflow of contrast agent into malignant tissue, resulting in the
characteristic fast initial rise. Moreover, the same properties enable quick diffusion back
into the capillary space; resulting in the other malignant characteristic, wash-out.
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Another factor contributing to wash-out can be understood by separating the tissue bulk
concentration into its blood plasma and EES components. If the plasma component
contributes dominantly to the tissue bulk concentration the tissue will display wash-out,
whereas a dominant EES contribution leads to a persistent uptake curve (Brix et al.
2004). Care should be taken not to overlook non-mass-like enhancements, which
usually do not display this typical enhancement pattern, but a slower and often
persistent uptake (Jansen et al. 2007, Newell et al. 2010). Take for example ductal
carcinoma in situ (DCIS); the governing pharmacokinetics are in that case probably
fundamentally different from those in mass-like lesions. Likely, an additional intraductal
compartment is involved (Jansen et al. 2009a). Moreover, masses might not display a
fast initial rise due to high interstitial pressure caused by increased permeability and lack
of lymphatic drainage. For this type of tumor the EES is increased and therefore an
important tissue property to determine (Vincensini et al. 2007, Vos et al. 2008).

2.2 Common ground and differences
between compartment models

2.2.1 Common ground

The compartment models that will be further discussed in this work have the basic
shape of an open two-compartment model in common (Fig. 2.3). The models are ‘open’
because the main blood circulation, which could be seen as the third compartment, is
not modeled as such, but as supplying input to the system and taking up its output.
Input and output are governed by the apparent plasma flow F. The exchange between
the capillary blood plasma compartment and the EES is governed by Kpg, which is a
measure of the permeability surface area product (P -S). Excretion (fy; in Fig. 2.1)
reduces the amount of contrast agent in the main blood circulation and is therefore not
explicitly present in the diagram. The mass balance equations representing this system

are
V2D = F(Gp(0) = Col®)) = Kps(Cel®) = Co(®)), and 23]
V29 = K,g(C.(0) = ColD)), [2.4]

in which C. (mmol/L = mM) is the concentration in the capillary plasma volume, V. (mL);
and C, (mM) in the EES, V, (mL). C, (mM) is the concentration entering the capillary bed
on the arterial side, and C,, (mM) the concentration exiting on the venous side. F
(mL/min) is the apparent plasma flow, and Kpg (mL/min) is the capillary transfer
coefficient. (Note, the use of liters as well as milliliters in one equation is due to
conventions.) Although it is common to use the notations ‘C.(t)’ and ‘C,(t)’, as we did
in the previous section, we will use the notations ‘C.(t)’ and ‘C,(t)’ in Section 2.2 to
reflect that these concentrations are (spatial) mean concentrations in the capillary space
and the EES, respectively.
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Figure 2.3 General open two-compartment model, after (Brix et al. 1999).

C.(t) and C,(t) respectively denote the mean concentration in the capillary

compartment and the mean concentration in the extravascular extracellular
volume.

All models have to cope with the fact that the scale of MRI is too large to
measure C.(t) and C,(t) independently. The measured tissue bulk concentration,
C.(t), represents C.(t) as well as C,(t),

Ve  Ce(6) = V.- Co(®) + V- Co(8) = Co(8) = v, - C.(8) + v, - Co (D), [2.5]

in which the concentrations in the contributing compartments are weighted by their
respective volume fractions (v, = V./V;, v, =V, /V;, V; = tissue volume). In Figure 2.4,
we show four C,(t) curves. The dashed lines show the separate contributions of the
capillary compartment and the EES. We used the system as described by Egs. 2.3 and
2.4 and a literature input function (Yang et al. 2007) to simulate these curves. In Fig.
2.4(a), C,(t) is simulated for pectoralis muscle with v, /v, = 0.09/0.04 = 2.25 (Brix et
al. 2004). The curve shape is persistent uptake / plateau. In Fig. 2.4(b) we increased v,
from 0.04 to 0.20, resulting in a ratio v, /v, = 0.09/0.20 = 0.45. Interestingly, the
dominant capillary contribution in (b) does not result in a wash-out type of
enhancement pattern. A mere increase in v,, decreasing the ratio v, /v,, is not the sole
cause of a wash-out pattern (as mentioned in Section 2.1). Its increase does, however,
cause a steeper initial rise. To obtain a wash-out curve, the input of contrast agent into
the capillary space cannot stay at the basic level: at low flow, the larger space v, will
follow the input function Cp(y) more slowly, and will not resemble its ‘spike’ shape.
Only if we scale F with v, so times five in comparison to (a) and (b), we obtain a wash-
out curve (Fig. 2.4(c)). Scaling Kpg with v, as well (Fig.2.4(d)) enhances the wash-out
feature because in that case the contrast agent can more easily enter and exit the EES.
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Figure 2.4 Simulated contrast agent uptake curves in the tissue, showing the
separate contributions of the EES (weight: v,) and the capillary space (weight:
v.). (a) Relatively large contribution of v,, as found in pectoralis muscle; (b)
increased v, (c)increased v, and F; and (d) increased v,., F and Kps. The
latter two combinations cause a wash-out curve type.

As explained above, Cc(t) plays a double role; it inputs contrast agent to the EES,
and contributes to C,(t) as a direct throughput. To extract pharmacokinetic parameters
from a tissue measurement C,(t), we therefore need to know C.(t). Because it is
impossible to measure at the scale of the capillary bed, C,(t) has to be estimated. The
difficulty with estimating C,(t) is that while passing through the capillary bed, contrast
agent is exchanged with the EES. This implicates a spatial dependency in addition to a
temporal dependency. That is why in Eq. 2.3 flow is called the apparent flow (F). This

issue is addressed in Panel A by looking at the transport of a contrast agent through a
single capillary.
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Panel A

Suppression of spatial variations to arrive at compartmental
description of contrast agent exchange

The following description of transport of a contrast agent through a single
capillary is largely based on the appendix in Brix et al. 1999 and Chapter 27 in
Principles of Nuclear Medicine by Wagner, Szabo, and Buchanan (Gjedde 1995). We
assume that within the tissue of interest all capillaries demonstrate identical
behavior. The solubility of the contrast agent is assumed to be the same in the EES as
in the blood plasma. We make use of the general definition of a compartment as a
tracer state that varies in time only (Rescigno and Beck 1972):
Ezj—k-m, [Al]
in which m (mmol) is the quantity of tracer that belongs to the compartment, k (min
') is the rate constant (m is depleted at rate k - m), and j (mmol/min) is the rate at
which m is replenished.

To investigate the spatial dependency of contrast agent concentration we look
at a small time interval dt during which we assume an instantaneous concentration
gradient between the capillary space and the EES. The replenishing rate (j) can in
that case be described by Fick’s first law of unidirectional diffusion:

dc(t,x)

j=-D-4 ax ’

[A.2]

in which D (mL cm™ min™) is the diffusion coefficient, A (cm?) is the cross-sectional
area through which the diffusion occurs, x (cm) marks the position, and dc(t,x)/dx
is the concentration gradient. The negative sign takes into account that diffusive flow
is in the opposite direction of increasing concentration, i.e. the flow runs from the
compartment with the highest concentration to the compartment with the lowest
concentration.

In the context of a single capillary j can be described as

j=—F- L—acfi(t'x), [A.3]

X

in which L (cm) is the length of the capillary. The dimensions of [D - A] = mL cm min’
! are the same as those of [F - L] = mL min™ cm. The depletion rate (k - m) can be
described as

k-m = Kps(C.(t,x) — Co(t, x)), [A.4]

in which Kpg is the capillary transfer coefficient. For dm/dt holds
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Panel A (continued)

am _ y, 26) [A.5]
dt dt

Using Egs. A.3 — A5, we can write the following pair of mass balance equations for
the capillary compartment and the EES:

aCC(t' ) aCC(t, )

Vc_atx =—F. L_axx — Kps(C.(t,x) — C,(t,x)), and [A.6]
dCe(tx)

Ve =57 = Kps(Cc(t,x) — Ce(t, %)), [A.7]

in which C.(t, x) is the plasma concentration at time t at point x along the capillary,
C.(t, x) the concentration in the EES at time t at point x along the capillary, and F is
the plasma flow through the capillary. The first term in Eq. A.6 represents diffusive
flow along the capillary, the second exchange with the EES.

Because a compartment is assumed to be kinetically homogeneous and well-
mixed, we can suppress spatial variation from inlet (x = 0) to outlet (x = L) by an
approximation of the integral:

fy C.(t,x)dx =L+ C. (v), [A.8]

fOL Co(t,x)dx = L - C,(t), [A.9]
Lac.(tx)

Jo a; dx = C.(t,x = L) — C.(t,x = 0), [A.10]

in which C,.(t) and C,(t) reflect the mean concentration in the capillary plasma and
the EES, respectively. Because C.(t,x = 0) equals C,(t), and C.(t,x = L) equals
C,(t), instead of Egs. 2.3 and 2.4 we can write:

V298 = F(Cy(0) = Co(0)) = Kes(Co(8) = Co(1)), [A11]
AR N(ACEIAG)) [A12]

In brief, via the assumptions of (i) identical capillaries in the tissue of interest, (ii)
equal solubility of the contrast agent in the EES and the blood plasma, and (iii) kinetic
homogeneity and well-mixedness in the compartments, the system that was described
by Egs. 2.3 and 2.4 can now be described by

V52 = F (60 = o (0) = Kns(Co) = Co(0), and (261
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2O = Kps(C.(6) = Co(0)), [2.7]

Ve

in which F (mL/min) is the true flow instead of the apparent flow. However, as a
consequence of using the true flow, C,(t) is introduced in Eq. 2.6. Whereas it is possible
to measure Cy,(t), i.e. the passage of contrast agent material before arrival in the
capillary bed, the exiting material, C,(t), is hard to measure. The specific assumptions
involved to exclude C,(t) from the pair of mass balance equations are dealt with in
Sections 2.2.2 and 2.2.3.

2.2.2 Independent measures of flow and permeability

Two characteristics that can point out a malignant type of growth are flow (F)
and permeability (Kpg); one being a measure of the amount of functional vessels, the
other of microvessel wall quality. Especially in the assessment of therapeutic effects of
agents acting on the vasculature, it can be crucial to obtain independent estimates of
these two parameters.

Morales and Smith

Morales and Smith (1948) developed an approach to allow independent
estimation of flow and permeability. The main idea being that there is a constant factor
r between C,,(t) — C,(t) and C,,(t) — C.(t), so that

r(Cy(0) - C,,(t)) = C,(t) — C. (1), for0 <r < 1. [2.8]

It gives a weight to the influence of C,(t) and C,(t) on C.(t). For example:
r=1-C,(1t) - C,(t) = C,(t) — C.(t) = C.(t) = C,(t), which means that there is
ample loss of contrast agent to the EES, enough to have C.(t) match C,(t). Or:
r=0-0=C,(t)—C.(t) = C.(t) = Cy(t), which means that there is minor loss of
contrast agent to the EES, and C.(t) remains at the level of Cp(t). Using this factorr,
Egs. 2.6 and 2.7 become

Ve décft(t) - g(cp(t) - Ec(t)) — Kps(C.(t) — C.(t)), and [2.9]
Ve dc_;ft) = Kps(C.(t) — C.()). (2.10]

Via the assumption of a fixed slope (r) of the concentration gradient from inlet to
outlet of the capillary bed, we have removed C,(t) from the equations. The apparent
plasma flow F, as introduced in Section 2.2.1, equals

>F, for0<r<i. [2.11]

It follows from Eq. 2.11 that the apparent flow F is an overestimation of the true flow F.
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As a final step, we express Egs. 2.9 and 2.10 per unit of tissue volume (v, =
V./V., v, =V,/V;) to meet the convention as proposed by Tofts et al. (1999). We first
multiply with the tissue density p (M, /V;):

Mt%% = “2(6o(®) = Ce®) = Kps - p(Ce(®) = Co(1)), [2.12]

in which V./V, = v.. Then we divide by M, again, changing the unit of both F and Kpg

from mL/min to mL/min/g. In addition, we drop the ‘C’ notation to denote the use of a
spatial mean:

v a2 = T (Co () = Ce(®) = Ko p(Ce(t) = C(®)), [2.13]
v “22 = Kps - p(Co() = Co (1)), and (2.14]
Ct(t) =V, Cc(t) + Ve * Ce(t). [215]

Note that in the proposed convention F represents whole blood flow, not plasma
flow. In that case, F has to be corrected for the hematocrit factor, H;:

Fwhote blood = Fplalsma(1 - Hct)- [2.16]

A typical range of hematocrit in large vessels is 0.4 (Lammertsma et al. 1984) to 0.45
(Brix et al. 2004). In Henderson et al. (2000) it is proposed to scale the hematocrit factor
from large to small vessels, because the red blood cell content in small vessels is lower.
The factor (1 — H,;) then changes into (1 —w + H,;), withw = 0.7 (Lammertsma et al.
1984). Note that the hematocrit level is often lower in cancer patients (Yang et al.
2009). Here, we did not adopt the use of F as marking whole blood flow.

We will refer to the above-described type of model, which gives us independent
estimates of (apparent / true) flow and permeability-surface area product, as the full
two-compartment model (Brix et al. 2009). Recent publications using this type of model
are Bains et al. 2010, Brix et al. 2004, Brix et al. 2009, and Donaldson et al. 2010. In De
Bazelaire et al. 2005, this type of model is used under the assumption of negligible reflux
of the contrast agent from the EES back into the capillary space; which means that no
estimate of v, is obtained. This assumption is appropriate for macromolecular contrast
agents with a slow trans-membrane leakage rate, and / or a DCE-MRI acquisition of
short duration.

St. Lawrence and Lee

The approach as proposed by St. Lawrence and Lee (1998) to solve the open two-
compartment model is not purely compartmental. It is an adiabatic approximation to
the tissue homogeneity model (Johnson and Wilson 1966). In the tissue homogeneity
model spatial variation in contrast agent concentration along the capillaries is taken into
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account. Although Garpebring et al. (2009) recently showed promising results via
calculations in Fourier space, parameter estimation with the tissue homogeneity model
is unstable. For this reason, Morales and Smith (1948) averaged the capillary
concentration (see Panel A), which reduces the capillary space to a compartment. Here,
a different approach is chosen (the ‘common ground’ as described in 2.2.1 only holds for
purely compartmental models). The tissue enhancement is divided into two phases: the
initial vascular phase (fromt =0tot =T, T,: mean capillary transit time), and the
secondary extravascular phase. In contrast to the capillary space, the EES is modeled as
a compartment. The approach is called adiabatic because the AIF is assumed to not
change appreciably during the mean capillary transit time (Brix et al. 2010), which
implies the assumption of negligible exchange during the initial phase. This assumption
is motivated by the fact that concentration changes in the EES are slow relative to those
in the capillary space. Therefore, for a small time interval, the rate of change of C,(t)
can be considered to be at steady state while the fast change of C,(t) is taking place.
The equation describing C;(t) (Buckley 2002b),

C,(t)=F- pfOTC Cy(t—wdu+F-E-p thC C,(u) e FEP/Velt=uTo) gy, [2.17]

is a closed-form solution of the tissue homogeneity model in the time domain (St
Lawrence and Lee 1998), leading to estimates of F, E, v,, and T,. The unit step function
is denoted as u.

The newly introduced parameter E represents the initial extraction fraction
during first pass, (Cp(t)—C,,(t))/Cp(t), and, using the Renkin-Crone assumption
(Crone 1963, Renkin 1959), can be described by

E=1—e PS/F, [2.18]

The discontinuity between the intravascular phase and the extravascular phase at
t = T,, occurs as a fraction (1 — E) of the contrast agent leaves the tissue. It is
assumed that first-pass exchange of contrast agent is unidirectional, and that the
concentration decreases exponentially along the capillary as a result of loss of contrast
agent to the EES. Therefore, the higher the permeability (P) and the surface area for
exchange (S), the closer E'is to 1. The extraction fraction is inversely related to the
plasma flow, because at high flow rates the capacity of the capillary bed for transferring
the contrast agent approaches a maximum. The constant P - S describes the loss of
contrast agent from the capillary space to the EES in case the concentration gradient
between the two compartments would be constant, i.e. if capillary concentration was
maintained almost at the arterial level throughout the length of the capillary (Peters
1998). Because F is present in both the first and the second term of Eq. 2.17, we can
obtain independent estimates of Fand P - S.
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The St. Lawrence and Lee approach is reasonable in brain tissue because of the
blood-brain barrier (limited permeability), but may be less applicable to other tissues (St
Lawrence and Lee 1998). The applicability can be tested by simultaneously measuring
changes in T;-relaxation (affected by flow and permeability) and T, -relaxation (affected
by flow only) as a function of contrast agent concentration. Modeling approaches
similar to the St. Lawrence and Lee approach described in this section have been applied
by for instance Henderson et al. (2000), Koh et al. (2001), Buckley (2002b), and Kershaw
et al. (2009). We will refer to this type of model as the adiabatic approximation to the
tissue homogeneity model. In case the mean capillary transit time (T,) is negligible
(physically or relative to the sampling interval of the measurement), the first term
equals zero and the second term can be recognized as the integral form of the model
described in the next section.

2.2.3 Composite measure of flow and permeability

Although it is valuable to obtain independent measures of flow and permeability,
instead, the most commonly applied pharmacokinetic models deliver a composite
measure. The models as described in Section 2.2.2 are demanding in terms of data
quality. Because of their level of detail and thus large number of fitting parameters (full
two-compartment model: F, Kpg, v,, V,; St. Lawrence and Lee model: F, T,, E, v, from
which P - S and v, can be derived), they require a high temporal-sampling rate and a
high signal-to-noise ratio. The fact that the ‘less demanding’ models as described in this
section are more commonly applied, reflects the gap that exists between modeling
theory and practical data acquisition. In Section 2.3 we will further compare the
different types of models and their use.

Vascular component neglected

We can think of two scenarios in which the contribution of the capillary
compartment to the measured signal is negligible, and C,(t) = v, - C,(t). One, in case
the capillary fraction (v,) is negligibly small (Tofts and Kermode 1991), and two, in case
the capillary concentration (C,(t)) cannot be distinguished from the extravascular
extracellular concentration (C,(t)) due to very high permeability (Gjedde 1995), see
Figure 2.5.

The first scenario is mainly applicable to brain diseases, because in normal brain
tissues the capillary volume fraction is about 2-4% (Tofts 2003). The approach was first
suggested by Kety (1951). It is assumed that the loss of contrast agent from the capillary
space to the EES does not deplete the capillary contrast agent concentration (Tofts and
Kermode 1991). A small vascular volume (V) in combination with limited permeability
(F > P -S), implies that the changes in mean tissue concentration during the time of
passage of an element of blood through the tissue are negligible:

dcCe(t) _ dC.(t) ace(t) dCe(t)

v .
toat ¢ at € gt € gt

[2.19]
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Using Eq. 2.19, we can reduce Eq. 2.6 to

0=F (Cp() = Co(©)) = Kps(Co(®) = C.(0)), [2:20]

which we can use in 2.7:

v, dfd—t“) =F (G, () - G, (®))- [2.21]
F F F F
Cp(t)_’ N Cv(t) Cp(t)—’ C_'C(t), VL —> Cv(t)

T iKps C.(6),V,

GOV, T lffps

Figure 2.5 Left: scenario 1, permeability-limited (large flow); right: scenario
2, flow-limited (large permeability).

In the second scenario (P -S » F), the contrast agent concentration in the
capillary compartment is identical to the concentration in the EES, as it exits from the
tissue. Such a high-permeability scenario is for instance applicable to high-grade tumors
with aggressive angiogenesis, resulting in an extensive network of highly permeable
vessels. In that case, the only limitation for C,(t) to directly follow C.(t) is the blood
plasma flow (F). The increase in C,(t) thereby becomes directly proportional to the
difference between the entering concentration (C,(t)) and the exiting concentration
(C,(t)), which makes it impossible to obtain a measure of the permeability surface area
product, Kps. In addition, the distribution volume V, includes both, V, and V,. We again
obtain Eq. 2.21.

Even though the underlying tissue compositions and behavior are very distinct,
the two scenarios (see Fig. 2.5) lead to the same approximation (Eq. 2.21). This single
equation is a reduced version of the system described by Egs. 2.6 and 2.7. A detailed
derivation of how the unknown C,(t) is removed from Eq. 2.21 is given in Panel B. The
outcome is that, assuming uniformity of C.(t) along the capillary, we can write
Cp(t) — Cy(t) interms of C, () — C () :
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Cp(6) = C,(6) = (1= e~P¥/7) (C, (1) — C.(®), [2.22]
in which we can recognize the Renkin-Crone model (Eq. 2.18).

Combining Egs. 2.21 and 2.22, we arrive at

Ve d%ﬂ = F(l - e—Ps/F) (Cp(t) - Ce(t)) =F-E (Cp(t) — Ce(t)). [2.23]

To meet the convention as proposed by Tofts et al. (1999), we first multiply with the
tissue density p (M, /V;):

Ve dCo(t)
ty, at

F-E-p (Cp(t) - Ce(t)), [2.24]

in which V,/V, = v,. Then we divide by M, again, changing the unit of F from mL/min

to mL/min/g:
v, O = F . E . p (0 - C.®). [2.25]

Because the contribution of the capillary compartment to the signal is assumed to be
negligible, C,(t) can be replaced by C;(t) /v, (see Eq. 2.5), leading to

dCe(t) Ce(t)
e = FEp(Cy(0) - - ),and [2.26]
C,(t) = v, C,(t). [2.27]

In case of the first scenario, in which F >> P - §, we can see that theterm F - E - p can
be reduced to represent the permeability surface area product, using a first order Taylor
expansion:

F-E-p=F(1—-e?/Fp~F-P-S/F-p=P-S-p, [2.28]

whereas in the second scenario, in which F << P - §, the same term represents flow,
because E approaches a value of 1:

F-E-p=F(1—-e?/F)p=F-1-p=F-p. [2.29]
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Panel B

Introduction of the extraction fraction into the reduced
two-compartment model

The following description is largely based on the derivation given in Kety 1951,
and uses the same single capillary model as in Panel A. We start with the general
definition of a compartment as a tracer state that varies in time only (Rescigno and
Beck 1972):

E=j—k-m. [B.1]

Using Eq. 2.6, repeated over here,

V290 = B (6y(0) = Co(0)) — Kps(Co(8) = Co(®)), [8.2]

we can describe the loss of contrast agent from the capillary space to the EES (—k -
m, i.e. the second term in Eqg. B.2) for a unit amount of contrast agent (dm.) as it
moves from x through dx, during a unit time interval dt as:

dm.(t,x) =—P-s'- dx(CC(t, x) — C,(t, x))dt, [B.3]

in which P (L cm™ min™) is the permeability per unit area per unit time, s’ (cm) is the
surface area per unit length, dx (cm) is a unit length, C.(t,x) (mM) is the
concentration in the capillary space at position x and time t, C,(t,x) (mM) is the
concentration in the EES at position x and time t, and dt (min) is a unit time.

The left-hand side of Eq. B.3 can be expressed as
dm,(t,x) = dC.(t,x) - v - dx, [B.4]

in wich v’ (cm?) is the volume per unit length. If we introduce f (cm min™) as the
average linear plasma velocity in the capillary, it holds that

dx = f - dt, [B.5]
which can be used in Eq. B.4:

dC.(t,x)-v' -dx =dC.(t,x)-v'-f-dt. [B.6]
Combining Egs. B.3 and B.6, we obtain

dc.(t,x)-v'-f-dt=—-P- s dx(Cc(t, x) — C,(t,x))dt, [B.7]

which can be rearranged as:

dcc(tx) P-sr

dx vrf (Cc (t,x) — C(t, X)) [B.8]
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Panel B (continued)

Assuming that C, (t, x) is approximately uniform along the capillary, it is only a
function of time, i.e. C,(t). In that case, the solution of this differential equation is
given by

P-s/

C.(t,x) —Co(t) =A-e V7, [B.9]

where A is an integration constant. Application of the boundary conditions that
Cc(t,x) = Cy(t) atx = 0,and that C.(t,x) = C,(t) atx = L, gives

Ce(t,0) = Co(t) = C,p(t) — Co(t) = 4, and [B.10]

P-st P-s!

C.(t, L) — Co(8) = C,(t) = C,() = A-e wf" = (Cp(t) - Ce(t)) e it [B.A1]
Because P - s’ - L can be writtenas P - S,and v’ - f as F, Eq. B.11 is equivalent to
Co () =€) = (G(0) = Col) €777, (3.12]

Using the above result, we can now write C,,(t) — C,(t) in terms of C, (t) — C,(¢):

(Co(®) = Ce(®)) = (Co(®) = C(®) = (Cp(®) = Ce(®)) = (Co(E) = Cel)) e7PS7F,
[B.13]
thus:

C,(t) — C,(t) = (1 — e PS/F) (Cp(t) - Ce(t)). [B.14]

Eq. 2.28 represents the permeability-limited regime, whereas Eq. 2.29 represents
the flow-limited regime. In reality, a tissue might show intermediate behavior, which is
called the mixed regime. Because of the potentially ambiguous meaning of F - E - p (in
case it is unknown which regime the tissue obeys), the transfer coefficient K" is
introduced:

Ktrans = F . E . p. [2.30]

Sometimes, K" and v, are reported as the ratio K" /y,, which equals the rate
constant between the EES and the capillary plasma fraction, k., (Tofts et al. 1999). The
use of k,, has the advantage of providing a measure with unit min?, even without
conversion from signal intensity to contrast agent concentration. This does not hold for

Ktrans ‘which has in that case an arbitrary unit.
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Similar implementations of this type of model have been suggested by Tofts and
Kermode (1991), Brix et al. (1991), and Larsson et al. (1990). In Larsson and Tofts 1992 it
was shown that the differences between the approaches suggested by Tofts, Brix, and
Larsson are mainly due to differences in the respective measurement schemes, and can
be largely removed by making use of precontrast T; estimates and independent AIF
measurements. In Zwick et al. 2010 it was shown that if the originally proposed
measurement schemes are used, the Kt"9" /v, obtained with the Tofts approach does
not match well with k., obtained with the Brix approach. This was attributed to
differences in modeling the AIF — respectively, assuming a standard (predefined) rapid-
bolus injection, and modeling a short-time constant-rate infusion — signal calibration,
and model implementation. Because we use the Tofts version of this type of model, we
will refer to it as the basic Tofts model.

Vascular contribution

The above-described model that ignores a vascular contribution to the signal can
only roughly characterize tissue composition and behavior, because it does not reflect all
main components of the system. In many tissues outside the brain, the capillary volume
fraction is too large to be neglected; especially in case of cancer. This rules out scenario
1, as described above (Fig. 2.5). Also, many tissues contain non-exchange vessels
(Gjedde 1995). The contrast agent concentration in these (micro)vessels can be seen as
a direct throughput of G, (¢) into C;(t). Therefore, the reduction of the capillary space
and the EES to a single compartment (scenario 2, Fig. 2.5) often leads to an incomplete
description of contrast agent exchange. In both cases, both C.(t) and C,(t) significantly
contribute to C;(t). For C.(t) and C,(t) to be distinguishable, the loss of contrast agent
from the capillary space to the EES can only happen at a moderate rate, i.e. obeying the
permeability-limited regime. In that case

Cc(t) = Cy(t), and [2.31]
Ce(t) = v - Co(t) + v, - Co(t) = vy - Gy () + v - Co(2), [2.32]

in which v, has the same meaning as v, (v, is more common in use than v,) and C,(t) is
described by Eq. 2.25. We will refer to this type of model as the extended Tofts model
(Tofts 2003).

Reflux neglected

To obtain a reliable estimate of v,, data acquisition has to be long enough for
C:(t) to no longer be rising (Donaldson et al. 2010). If this is not the case — note that
persistent uptake is a commonly observed curve type — for instance due to limited scan
time and / or the use of a macromolecular contrast agent, it is wise to use a model that
assumes unidirectional exchange, i.e. from the capillary plasma to the EES (Patlak et al.
1983). The reflux from the EES back into the capillary plasma space is assumed to be
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negligible. This assumption only holds under the permeability-limited regime. In Eq.
2.33, K179 js therefore a measure of permeability:

v LD = F LB p- Cy(t) = KOS - (), and [2.33]
Co(t) = v, - Cp() + e - Co(0). [2.34]

We will refer to this type of model as the Patlak model. Examples of publications in
which this type of model is applied are Li et al. 2000 and Vonken et al. 2000.

2.2.4 Well-mixedness revisited

For all the models we have touched upon, we tracked the path of the contrast
agent particles from entering the capillary bed on the arterial side, possibly leaving the
blood plasma and entering the EES, and exiting the capillary bed on the venous side.
What is crucial to underscore, is that with (*H,0) MRI it is not the contrast agent that
generates the positive signal (T; shortening), but the water protons that the contrast
agent acts upon. Whereas the contrast agent cannot enter cells because it cannot pass
their membranes, water molecules can. This transcytolemmal (across cell membrane)
water exchange necessitates a closer look at the intracellular space. Note that in most
tissues most water is intracellular (Yankeelov et al. 2003). In addition, just as the
contrast agent, water molecules pass the microvessel wall. This transendothelial water
exchange may also affect contrast agent concentration quantification (Donahue et al.
1997, Kim et al. 2002). We have added both types of water exchange to the schematic
representation of contrast agent exchange at the microvessel scale (Fig. 2.6).

H,0

o SlFQ? .0 &-C0
o V= = —
\/ ,lo'1 \2_\ capillary blood
| ” \\ \/ 0 / / \
agent . P O plasma space
(@ @=2" - (V,C (1)
J
prieyr EES (V}, Co (8))

zoom in H,0

Figure 2.6 Transendothelial (top) and transcytolemmal (bottom) water
exchange added to the schematic representation of contrast agent exchange.

If water exchange is not modeled explicitly, it is assumed to be ‘infinitely’ fast (on
the time scale of the water T;), which is equal to assuming that the contrast agent acts
on all water molecules in the tissue. This situation is called the fast-exchange limit (FXL);
a single relaxation rate is assumed in each compartment. Whereas there is some
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evidence that the FXL assumption holds in normal tissues, there is no data available to
substantiate its validity for a broad range of pathological tissues (Brix et al. 2010).
Especially at high contrast agent concentrations, the FXL assumption may not hold; i.e.
not all contrast agent particles may have access to all water. The shutter-speed model
was developed to add the effect of a finite water exchange rate to a compartment
model. It replaces the assumption of a linear relationship between the longitudinal
relaxation rate (R;) and the contrast agent concentration, as described in Eq. 1.1 in
Chapter 1.

Considering transcytolemmal water exchange, there are two different R; values
in each compartment, of which the population ratio is determined by the exchange rate
of

[H,0]; S [H,0],, [2.35]

in which ‘i’ stands for intracellular and ‘o’ stands for outside. In principle, this holds for
both the EES as well as the blood (about half the water in blood is contained in red blood
cells). However, because red blood cells are smaller and more water-permeable than
tissue cells, the transcytolemmal exchange in the blood is usually assumed to be in the
FXL (Faranesh et al. 2006: transcytolemmal water exchange rate red blood cell = 100 s,
transcytolemmal water exchange rate muscle cell = 0.8 s). The transendothelial water
exchange process can be described in the same way (Eq. 2.35), replacing ‘i’ with ‘t’
(tissue) and ‘o’ with ‘b’ (blood).

In case the capillary fraction is small, transendothelial water exchange is
negligible, and the shutter-speed model is a combination of the basic Tofts model and
the above-described transcytolemmal water exchange in the tissue. Besides K% and
v,, the mean intracellular lifetime of a water molecule, 7; (s), is obtained. We will refer
to this model as the first generation shutter-speed model. In case of a significant
capillary fraction, the transendothelial water exchange could be included. The
compartment model of choice would in that case be the extended Tofts model, leading
to estimates of K", v, v,
water molecule in a capillary if there was no flow. This model we will refer to as the

T;, and tp; with 7, (s) representing the mean lifetime of a

second generation shutter-speed model (Li et al. 2005). The latter model is only relevant
for tissue with a large capillary fraction and a low K" (Yankeelov et al. 2003).

For modeling details we refer to the following papers. In Landis et al. 1999 and
Landis et al. 2000 incorporation of the shutter-speed effect is extensively described. In
response to these papers, Buckley (2002a) expressed his concerns about the
appropriateness of assuming the fast-exchange regime (FXR), thereby neglecting the
slow component (with smaller T;). In Yankeelov et al. 2003, a thorough comparison of
the applicability of the FXL, FXR, and the slow-exchange regime (SXR) was given.
According to this paper, there is a range of contrast agent concentrations (Landis et al.
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1999: up to 10 mM) wherein the slow component is not directly detectable. At higher
concentrations, the slow component can no longer be neglected, and the system has
entered the slow-exchange regime (SXR). The second generation shutter-speed model is
well-explained in Li et al. 2005. Recent publications using the shutter-speed model are
Buckley et al. 2008, Huang et al. 2008, Kim et al. 2007, and Yankeelov et al. 2008.

2.3 Summary comparison of discussed models

In Section 2.2 we have discussed a selection of commonly used pharmacokinetic
models; one model representing the underlying physiology in a more simplified way
than the other. Please note that the application of a specific model in a specific context
is not standardized. Besides different ‘tastes’ in models, e.g. compartmental versus non-
compartmental, the same data can be fitted with a varying level of complexity. In
general, the more compartments a model has, the harder it becomes to discriminate
between those compartments. In addition, the transfer coefficients can be
distinguished only when they are not too different or too similar. Thus, if we measure
the tissue bulk concentration C;(t), only a limited number of compartments and
transfer coefficients can be identified (Gjedde 1995). This brings us to the bias versus
variance trade-off; with too few model parameters we are likely to introduce a bias in
our parameter estimates, while with too many model parameters we are likely to obtain
poor precision. A possible way of dealing with this trade-off is to analyze data by means
of competing models (Brix et al. 2010). Moreover, not all pharmacokinetic parameters
are equally difficult to estimate. In Brix et al. 1999 it is mentioned that the volume
fractions v, and v, can be determined with greater accuracy than the functional
parameters F and P - S. In our own experience, in the context of the extended Tofts
model, the above holds for v, but not for v,. The latter is often difficult to estimate due
to its small scale. As a critical note, we should consider that all described models are
based on the fundamental idea that the capillary bed consists of capillaries of equal
length and volume, each supplying nutrients to a cylinder-shaped volume of tissue. This
neatly ordered and parallel conception might not be representative of the capillary bed
of most tumors, because those capillary beds are often greatly disorganized (Kety 1951).
Further reviewing of the different types of pharmacokinetic models applied to DCE-MRI
data can be found in Brix et al. 2009, Brix et al. 2010, Buckley 2002b, Jackson et al. 2005,
Parker and Tofts 1999, Tofts 1997, Tofts et al. 1999, and Tofts 2003. Below, we will
review the major differences between the discussed models and their limitations.

2.3.1 Ktrans yersus independent measures of flow and permeability

In the basic Tofts model the composite measure K'"3" js both affected by
changes in flow (F) and permeability surface area product (P - S). In the extended Tofts
model K% should be representative of P - S, but the model is often applied to non-
permeability-limited problems. In those cases, the physiological meaning of K" js
difficult to interpret. Data presented in Brix et al. 2004 show that the distinction
between F and P - S can be crucial, because in that study the enhancement of breast
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carcinoma hot spots was permeability-limited, whereas the enhancement of most
benign lesions was flow-limited. With the composite measure Kt it would not have
been possible to make this distinction. In contrast with this study, Henderson et al.
(2000) point out that measurements of K" and F are of the same magnitude in at
least some human breast tumors, which implies a large extraction fraction and thereby
K" peing a measure of F (flow-limited regime). Subtle differences in permeability
are in that case unidentifiable. It was shown by Fan and Karczmar (2009) that the basic
Tofts model assumption of a mono-exponential impulse response holds for muscle
tissue, but not for tumor tissue. As a result, the basic Tofts model often finds
unrealistically large values of v, in tumor tissue.

The ambiguous meaning of K73 makes it hard to compare values found in one
study / patient / tumor type / model implementation to another. And, in studying
treatment effects, what if F and P - S change in opposite directions, how would that be
reflected in K"3"5? |t is clear that we would obtain much more insight into tumor
physiology if we would estimate flow and permeability separately. However, this comes
at a price. To measure flow separate from permeability, as well as the capillary fraction
vy, sampling times have to be in the order of a few seconds (Donaldson et al. 2010,
Henderson et al. 1998). Only in cases of very limited permeability the contrast agent
uptake may take several minutes, and sampling times up to the order of 1 minute may
be appropriate (Buckley 2010a). High sampling rates usually result in compromised
image quality because temporal resolution is exchanged for spatial resolution, and / or
signal-to-noise ratio (SNR), and / or imaging field of view.

2.3.2 Vascular component

In the basic Tofts model the contribution of the vascular component to the tissue
bulk concentration is neglected. In case this model is applied under the flow-limited
regime, it should be recognized that v, represents both v, and v,,. Neglection of v, can

Ktrans - Beside the possible introduction of biases in v, and K" (for more

also bias
on this matter see Chapter 3), neglecting the vascular contribution also limits the utility
of the basic Tofts model for diagnostics or therapy assessment. The capillary fraction v,
is likely to be an important parameter to assess, because it directly relates to
microvessel angiogenesis. As mentioned in Section 2.1, a large vascular contribution can

lead to a wash-out curve shape, which is associated with malignancy.

2.3.3 Capillary transit time

Both the basic and extended Tofts model assume that the capillary transit time is
negligible (at least shorter than the data sampling interval), which is equivalent to the
assumption of no dispersion of the AIF in the tissue; i.e. C.(t) equals C,(t). This
assumption can lead to biases in the parameter estimates. However, the capillary
transit time can only be estimated in case of adequate temporal resolution during the
initial enhancement phase, i.e. the sampling time has to be smaller than the mean
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transit time (MTT) of the contrast agent particles passing through the capillary bed.
After the initial phase, sampling requirements are less stringent (Brix et al. 2010). In
addition to rapid sampling, the separation of the flow-dominated phase from the
permeability-dominated phase requires a rapid bolus injection. There is evidence to
suggest that the MTT is often non-negligible. Donaldson et al. (2010) estimated an MTT
of 22 s for cervix carcinoma. It is mentioned that cervix carcinomas are known to be
highly vascular with a long MTT. Kershaw and Buckley (2006) found an MTT of 19 s in
prostate tumor, of 60 s in healthy prostate tissue, and of 41 s in muscle tissue.
Henderson et al. (2000) supply an educated guess of an MTT of 20 s for breast tumors.
On the contrary, in white and gray matter, MTTs are in the order of seconds (Sourbron
et al. 2009). In the latter case, MTT could be negligible relative to the temporal sampling
interval, and modeling with the extended Tofts model could be appropriate. In case of
negligible v,,, the model could be further reduced to the basic Tofts model.

2.3.4 Fast-exchange limit versus fast-exchange regime

To date, most applications of pharmacokinetic modeling are under the
assumption of the fast-exchange limit (FXL). There is an ongoing debate about the
issues of water exchange (Buckley 2002a). In case of non-negligibly short water
lifetimes, the consequence of the FXL assumption is underestimation of v, and
overestimation of K'"%"$ (Cao et al. 2005, Donahue et al. 1996, Faranesh et al. 2006). In
case the vascular fraction is neglected, inappropriately assuming FXL results in
underestimation of Kt"%" (Yankeelov et al. 2003). The consideration we have to make
in case of adequate data quality and temporal resolution to add an additional parameter
to the basic Tofts model, i.e. v, or 7;, is discussed in Chapter 3. Table 2.1 provides an
overview of the different properties of the discussed pharmacokinetic models. The need
for high-temporal resolution (last row Table 2.1) is not always clear — how high is high
enough? This will be further investigated in Chapter 3.
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Table 2.1 Six pharmacokinetic models and their properties summarized.
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2.4 Applied models in current work

Not all the above-discussed models will be applied in the remainder of this work.
We focused on models based on compartment theory; therefore we did not further
investigate the adiabatic approximation to the tissue homogeneity model. Because our
aim is to apply pharmacokinetic modeling to diagnostic DCE-MRI data of the breast,
which is often acquired at relatively low temporal resolution, we first obtain an
indication of the suitability of the full two-compartment model, the extended Tofts
model, and the basic Tofts model in this section. The addition of the shutter-speed
effect will be discussed in Chapter 3; as well as a more thorough investigation on
temporal sampling requirements.

We qualitatively assessed how well the models can fit the pharmacokinetic
parameters via the analysis of sensitivity functions (Henderson et al. 1998). If sensitivity
functions of two parameters are very similar, a parameter estimation method will have
difficulty to distinguish those two parameters. A sensitivity function (SF) is defined as

SFi(t) = 0C(t)/dp;, [2.36]

in which p; is the i*" parameter of a model. It means that if the i*" parameter is
changed by 4p;, then C¢(t) will change by Ap; - SF;(t). We used a forward Euler
approach to approximate the sensitivity functions (Mattheij and Molenaar 2002). In
Figure 2.7 we show the sensitivity functions as relative contributions (SF;(t) - p;) to the
contrast agent uptake in the tissue. The first column shows the contrast agent
concentration curve in the tissue (C;(t)) simulated with the basic Tofts model and its
relative contributions (v,, K""); the second column shows the same for the extended

Tofts model (v,, Kt"a"s

, Up); and the third column for the full two-compartment model
(Ve, Kps, v, F).  For the first row we used parameter values for pectoralis muscle:
v, = 0.04, v, = 0.09, F/V;, =24 min",P-S/V, =12 min™ (Brix et al. 2004). Fis
here the apparent plasma flow. To calculate K" from these parameters we used:
E=1-ePSF(Eq. 2.18), and K = F . E - p (Eq. 2.30). We assumed p equal to 1
g/mL. Using the same settings, but multiplying Kpg with a factor of 4, we obtained the
curves shown on the second row. An additional multiplication of F with a factor of 4

resulted in the curves shown on the last row.

An interesting difference between the three models is the contribution of v,;
there is no contribution in the basic Tofts model, whereas in the extended model we see
a direct throughput of the AIF, causing a high and narrow peak. With the full two-
compartment model the AIF is dispersed in the tissue; therefore most of the narrow
spike is lost. Moving from the first to the second row, the contributions to the curve
simulated with the full two-compartment model nicely show that with Kps > F we
move towards the flow-limited regime, i.e. the influence of F increases whereas the
influence of Kps becomes very small. If we now also increase F (third row), the
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contributions of Kpg, F, and v, are very similar in the early enhancement phase. It is not
unlikely that a parameter estimation method would not be able to identify the separate
contributions in such a scenario. Indeed, a Monte Carlo simulation study (high-temporal
resolution, no noise) using the full two-compartment model confirmed that parameters
were often unidentifiable from the data (G.J.S. Litjens, personal communication). Here,
unidentifiable means that there are different sets of parameter values that describe the
measured data equally well, with equal likelihood (Lopata et al. 2007). To us, these
observations indicate that studying the use of the full two-compartment model in
combination with data at relatively low temporal resolution would be in vain. So, we did
not study the use of the full two-compartment model in this work, despite of its benefits
from a theoretical point of view. Parameter estimation will be further discussed in
Section 2.6.
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Figure 2.7 Sensitivty functions shown as relative contributions. Columns (left
to right): basic Tofts model, extended Tofts model, full two-compartment
model. Rows (top to bottom): pectoralis muscle (v,= 0.04, v, = 0.09, F/Vp =
min, P - S/V,=1.2 min™), 4 times higher Kps than in pectoralis muscle, 4
times higher Kpg and F than in pectoralis muscle.
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2.5 The arterial input function

2.5.1 Obtaining the arterial input function

To fit a pharmacokinetic model to DCE-MRI data, we need both the tissue bulk
concentration C;(t), as well as the arterial input function C,(t). Measurement or
estimation of the AIF has proven to be difficult, which makes it a major source of error in
pharmacokinetic parameter estimates (Yang et al. 2004). Several approaches to obtain
the AIF have been proposed, of which 5 are discussed below.

Blood sampling

The first method is to draw blood samples during the DCE-MRI experiment (e.g.,
Larsson et al. 1990). Due to its invasiveness and inherently low temporal resolution, this
method is rarely put to practice.

Direct AIF measurement in artery

The second approach is direct measurement of the bolus passage in an artery (in
the DCE series); preferably, a tumor-feeding artery. In case of DCE-MRI of the breast,
due to a lack of other options, the aorta is often used, which is quite remote from the
tissue of interest. A remotely measured AIF can be substantially different from the AIF
that arrives at the tissue of interest due to delay and dispersion effects (Yang et al.
2004). A recent publication extracted the AIF from a nearby artery, i.e. the axillary
artery (Huang et al. 2010). However, this measurement could not be performed in all
patients.

A direct measurement in an artery faces several challenges. To mention a few,
for the high contrast agent concentrations encountered in arteries, conversion from
signal intensity to concentration may be problematic due to nonlinearities and T, -
effects; furthermore, the measured signal can be distorted by artifacts arising from
effects such as inflow, dephasing, partial volume, and pulsatility (Zhang et al. 2009). To
capture the rapid dynamics of the bolus passage in an artery, a sampling interval of
approximately 1 s is required (Henderson et al. 1998).

The measurement can be performed by ROl placement if a large artery is
available, or automatic arterial voxel selection. The latter method is usually applied in
the brain (e.g., Simonetti et al. 2007), because of less disturbing background
enhancement in healthy brain tissue than in healthy body tissues due to the blood-
brain-barrier. Rijpkema et al. (2001) showed that arterial voxel selection can also be
applied outside the brain, for instance in the prostate. Note that, after conversion from
signal intensity to contrast agent concentration, the extracted curve represents the
whole arterial blood concentration and has to be corrected for the hematocrit factor
(see Section 2.2) to represent the plasma concentration.
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Standard AIF

The third method is to use a standard AIF. This could be an AIF published in
literature, such as the bi-exponential AlFs by Weinmann et al. (1984), by Fritz-Hansen et
al. (1996) — recently combined with the Weinmann AIF to form the modified Fritz-
Hansen AIF (Walker-Samuel et al. 2006) — and by Tofts and Kermode (1991); the
simplified mono-exponential AIF by Vincensini et al. (2007); the gamma-variate AIF by
Starmer and Clark (1970); the population-averaged AIF by Parker et al. (2006); or
adapted versions of the latter AIF (Orton et al. 2008, Yang et al. 2007). The use of a
standard AIF can reduce random sources of error, but, in case it is based on direct
measurements, may not correct systematic artifacts such as inflow and partial volume
effects (Zhang et al. 2009). Furthermore, the standard AIF can mismatch with the
specific patient’s hemodynamics (cardiac output, blood volume), and with the specific
injection protocol. The latter problem could be overcome by constructing a population-
averaged AIF from an (independent) group of patients that underwent exactly the same
protocol as the patients under study. Still, according to Port et al. (2001), peak signal
enhancement and the area under the AIF can, respectively, vary 2.5- and 3.7-fold
between patients.

In a small experiment we investigated the effects of such inter-patient AIF
variability on descriptive curve-shape classification (Heisen et al. 2007a). The results are
reproduced in Panel C. In descriptive curve-shape classification, the AIF is not
considered and thus implicitly assumed to vary little between patients. This is similar to
the assumption of a standard AIF in pharmacokinetic modeling.

Simultaneous estimation of the AIF and pharmacokinetic properties

The fourth method does not involve a measured or assumed AIF. It is assumed
that the AIF can be described by a family of functions with adjustable parameters. The
AIF parameters and the pharmacokinetic parameters are simultaneously fit, only using
the tissue bulk concentration C;(t). The AIF parameters are adapted in such a way that
the best fit to C;(t) is provided. In Hoffmann et al. 1995 a mono-exponential function
was chosen to characterize the shape of the AIF. According to Yang et al. (2004) this
oversimplification may introduce significant errors in pharmacokinetic parameter
estimates. However, usage of an AIF model with many parameters may hinder
dissociation of the AIF parameters from the pharmacokinetic parameters.
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Panel C

Effect of not taking inter-patient AIF variation into account on
descriptive curve-type classification

According to Port et al. (2001), peak signal enhancement and the area under
the AIF can, respectively, vary 2.5- and 3.7-fold between patients. The effect of this
intra-patient variability of the AIF shape on descriptive curve shape classification was
investigated using two types of AIF variation, i.e. dispersion and scale. To simulate a
difference in dispersion, the adapted Parker AIF (Yang et al. 2007) was convolved
twice with a transport function

p_a(t—to)a_l e—(t-to)/p
I'(o) ’

h(t) = [C.1]
in which p (min) is the scale of the transport function and o the order; t (min) is time;
to (min) is the bolus arrival time; and I' denotes the complete Gamma function.
Once, we used a scale (p) of 0.02 min, and once a scale of 0.05 min. The order (o)
was fixed at 4, and t; at 0 min. After convolution, a time lag of 25 s was added. This,
to simulate a protocol in which the acquisition of the first postcontrast volume is
timed to start at the same time as the contrast injection. The obtained AlFs, having
the same area under the curve, are displayed in Fig. C.1(a). A difference in scale was
obtained by applying the same transport function h(t) to the adapted Parker AIF with
a scale of 0.03 min, and subsequently multiplying it with a factor of 3. In comparison
to before multiplication, the difference in AUC is now a factor of 3. This combination
of AlFs is shown in Fig. C.1(b).
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Figure C.1 (a) Two simulated AlFs with different dispersion; i.e., p = 0.02
min (dashed), p = 0.05 min (solid). The areas under the curves are the
same. (b) Two simulated AlFs with the same dispersion, p = 0.03 min, but a
different scale. The area under the large AIF (solid) is three times as large
as the area under the normal AIF (dashed).
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Panel C (continued)

To simulate tissue response curves to these four AlFs we used the extended
Tofts model and the following parameter ranges: K" = [0.1 — 1.3 min™'] and v, =
[0.1 — 8]. The vascular fraction v, was fixed at 0.01. Then, acquisition parameter
settings representative of a clinical protocol (repetition time / echo time = 4.53/2.2
ms, 6 = 10°) were used to convert the generated contrast agent concentration curves
to signal intensity curves, afterwards converted to relative enhancement curves (Eq.
1.3). Subsequently, the relative enhancement curves were downsampled to a typical
temporal resolution of 1 min by averaging over the acquisition period. Finally, the 1
min resolution relative enhancement curves were classified according to descriptive
curve shape modeling. The signal enhancement ratio (SER) was defined as the
relative enhancement at the early (2 min) postcontrast time point divided by the
relative enhancement at the late (6 min) postcontrast time point. The applied rules
to distinguish the three types of curve shape were: (i) if the SER is smaller 0.9 the
curve shows steady uptake (blue, probably benign); (ii) if the SER is larger than 1.1 the
curve shows wash-out (red, probably malignant); and (iii) intermediate SER is
descriptive for plateau enhancement (green, suspicious). The color-coded results are
shown in the K'"S.versus-v, plane. In Figure C.2 we see on the left the
classification corresponding to the small-dispersion AIF, and on the right to the large-
dispersion AIF. The difference in classification is marginal. In Figure C.3 the
classifications corresponding to the normal-AUC AIF (left), and the large-AUC AIF
(right) are shown. Here, the difference in classification is substantial. It implicates,
for instance, that it is less likely that a tumor (certain combination of K", y,, Vp) in
a patient with a large AIF will be classified as probably malignant than in a patient
with a normal AIF, only due to a difference in AIF. As an example, a K"*"S gbove 0.8
min™ is always considered a sign for malignancy, except for the case of the large-AUC
AlF.

AIF differences are partly due to variation in patient systemic circulation such
as cardiac output, blood volume, and vessel wall stiffness. However, the cause of a
large-AUC AIF can also be dosage. Although a dosage of 0.1 mmol gadolinium-based
contrast agent/ kg body-weight is fairly standard, some institutes may use a different
dose. This is usually not taken into account in automatic classification systems that
apply rules similar to the ones described above. Moreover, an obese patient will
receive a larger amount of contrast agent because the dose is calculated per kg of
body-weight. However, in case of obesity, the increase in weight is not proportional
to the increase in blood volume. This is because fatty tissue is poorly perfused.
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Panel C (continued)
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Figure C.2 Color-coded combinations of Ktrans and ve, corresponding to
three curve types; probably malignant (red), probably benign (blue), and

suspicious (green). On the left, a low-dispersion AIF was used, on the right
a large-dispersion AIF. Little difference in classification.
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Figure C.3 On the left, a normal-AUC AIF was used; on the right a large-
AUC AIF. Both curves had normal dispersion. With the large AIF, more
curves are classified as suspicious (green), less as benign (blue) or
malignant (red).

45



Chapter 2

Reference tissue AIF

The fifth approach is to derive the AIF from a reference tissue (Kovar et al. 1998,
Yankeelov et al. 2005). This method does not involve a measured or assumed AIF either.
The most basic form uses the assumption of known pharmacokinetic parameter values
for a single healthy reference tissue. The AIF can then be inversely derived from the
contrast agent uptake curve in the reference tissue.

The reference tissue AIF method shows good correlation with direct AIF
measurement (Kovar et al. 1998, Yankeelov et al. 2007). But, in a study by Yang et al.
(2010), it was found that the reference tissue AIF had a much higher and wider first-pass
peak than the directly measured AIF. Also, the directly measured AIF showed the
second pass, whereas this detail could not be seen in the reference tissue AIF. The
wider shape can be partly explained by the fact that the reference tissue AIF is more
local than the directly measured AlF, and thus has travelled further along smaller vessels
experiencing more dispersion. Dispersion might also explain why the second pass could
not be seen.

An inherent assumption of this method is that the AIF is the same for the
reference tissue as for the tumor. This is not necessarily true, although the reference
tissue is usually nearer to the tumor tissue than the feeding artery, in which a direct AIF
measurement can be performed. Moreover, recent research has demonstrated that the
reference tissue AIF can be adjusted to produce a local tumor AIF (Fan and Karczmar
2009).

The assignment of literature values to healthy tissue ignores that there is a
natural range of pharmacokinetic tissue properties; for human skeletal muscle, see for
instance Padhani et al. 2002). In addition, systemic or local therapy could also affect
healthy tissue. This assighment of literature values is not a necessity; but, additional
degrees of freedom in the fitting routine entail a greater potential variability.
Alternatively, the pharmacokinetic parameters of the tissue of interest could be
reported relative to the pharmacokinetic parameters of the reference tissue (Yankeelov
et al. 2005). Using relative parameter values, assuming literature values for the
reference tissue is no longer necessary.

The use of multiple reference tissues (Yang et al. 2007, Yang et al. 2010) could
improve AIF accuracy, and, if enough reference tissues are used, this method does not
require the assignment of literature values to the reference tissues either (so-called
blind identification); it only requires an estimate of the AIF scale. The scale could be
obtained by combining the (multiple) reference tissue method with a post-peak
measurement in an artery (Fan et al. 2010b). Since with multiple reference tissues it is
unnecessary to assign literature values, there is no reason to not use the tumor itself. It
can even be advantageous to use the tumor, because it can often be split up into several
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clusters of different enhancement patterns due to tumor heterogeneity, providing more
than one reference tissue. In addition, the produced AIF is in that case a truly local
tumor AIF (Yang et al. 2007).

The choice of a specific pharmacokinetic model to represent reference tissue
behavior can affect parameter estimation for the tissue of interest, i.e. in case the tissue
of interest demonstrates more complex behavior than encompassed in the reference
tissue model (Faranesh and Yankeelov 2008, Chapter 3). Inclusion of more than one
reference tissue, possibly described by different models, could offer a solution. The
uptake in skeletal muscle tissue is usually described by the basic Tofts model, which suits
its pharmacokinetic properties (Fan and Karczmar 2009).

2.5.2 Arterial input function shape

Several approaches to obtain the AIF include assumptions about the AIF shape. It
is important to note that some of these approaches might match better with a certain
kind of injection and scan protocol, than with another kind. Currently, a rapid
intravenous bolus injection (duration < 10 s) (Tofts 2003) is the most-applied method to
administer the contrast agent, but a constant-rate infusion injection is also in use
(duration = 30 s) (Brix et al. 2004). According to Brix et al. (2010), good mixing of the
injected contrast agent in the blood pool is achieved when injection time is comparable
with the blood circulation time, which is in the human body about 20-25 seconds. These
two injection protocols result in different AIF shapes. Papers comparing the use of
different standard AIF shapes are for instance Orton et al. 2008 and Cheng 2008. In Port
et al. 2001, the inter-patient variability in AIF shape was investigated. It is remarked by
Yang et al. (2004) that a bi-exponential standard AIF cannot describe the high first-pass
peak that is characteristic of rapid bolus injection. It may only be suitable for data
acquired with a relatively low temporal resolution, thereby only capturing the effects of
the second pass.

In case a patient-specific AIF is extracted from the data itself, a first order check
of its shape can be performed by measuring the area under the first-pass part of the
curve (whole blood contrast agent concentration). (In Yang et al. 2009, a gamma-variate
function was fit to the AIF to exclude the second pass.) Because the rate at which the
agent is diluted reflects the cardiac output (CO), this area under the curve is inversely
related to the CO via (Hamilton et al. 1948)

co = Q

ffirst pass

ot [2.37]
in which C, (mM) represents the whole arterial blood contrast agent concentration, and
Q (mmol) the dose of injected contrast agent. For instance, the cardiac output
corresponding to the Parker AIF (Parker et al. 2006) was approximated at 10.5 L/min
(Yang et al. 2009), which is much higher than the average adult cardiac output of 6.5
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L/min (Wade and Bishop 1962). The multiple reference tissue method applied in the
same paper (Yang et al. 2009) produced an average AIF that corresponded to a cardiac
output of 6.1 L/min.

2.5.3 Temporal resolution and bolus arrival time

As briefly mentioned, if a standard AIF is used, it should match the temporal
resolution of the data at hand. Interestingly, a common reason for using an — often
high-temporal-resolution (!) — standard AIF is that the temporal resolution of the data at
hand is too low to directly measure an AIF. In that case, the use of a high-temporal-
resolution standard AIF results in, respectively, under- and overestimation of K"*"S and
v, (see Chapter 5, Heisen et al. 2010a). This temporal-resolution-dependent bias cannot
be easily accounted for. According to Cheng 2008, in case of low temporal resolution, it
is better to use a standard bi-exponential AIF. With such an AlF, the vascular fraction
cannot be estimated. However, accurate estimation of v, is not expected — not even
with the use of a high-temporal-resolution standard AIF — due to the low temporal
resolution of the data at hand.

To obtain a patient-specific AIF directly measured in an artery, temporal
resolution has to be around 1 s. For DCE-MRI data at lower temporal resolution —
almost always the case for DCE-MRI of the breast — extracting a patient-specific AIF via a
reference tissue presents as an attractive alternative. A reference tissue with gradual
enhancement can be sampled relatively slowly. In this approach, it is not the AIF that
sets the necessary temporal resolution, but the contrast uptake curve in the lesion. We
will investigate the use of the reference tissue AIF approach in Chapter 6. Several
papers have already shown that this method works well for low temporal resolution
data (Heisen et al. 2010b, Planey et al. 2009, Yankeelov et al. 2005), even at sampling
intervals of 88 s (Li et al. 2009).

The effect of temporal resolution is intertwined with the effect of bolus arrival
time. In case of a long sampling interval the switch from precontrast (no contrast agent
present) to postconstrast (contrast agent present in the tissue) will likely take place
during the acquisition of an image volume. The volume before this specific image will be
seen as the last precontrast volume, and the volume itself will be seen as the first
postcontrast volume. However, a large part of the first postcontrast volume may have
been acquired before bolus arrival. If a standard AIF is subsequently aligned with this
time frame, K™% can be seriously underestimated. The reference tissue AIF method
suffers less from not knowing the exact bolus arrival time because the reference tissue
and the tissue of interest are imaged in the same way, in the same volume.
Approximate temporal alignment is guaranteed, as long as the reference tissue is not
very remote. Note that in the multiple reference tissue method the difference in bolus
arrival time is included as a model parameter (Yang et al. 2010). In case the AIF is
obtained via direct measurement in an artery, it is advisable to include the time lag
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between bolus arrival in the artery and in the tissue of interest as an additional
parameter in the pharmacokinetic model (e.g. time lag between aorta and breast tissue
~ 12 s, Brix et al. 2010). The intricate matter of bolus arrival time is only briefly touched
upon in this work in Chapter 6. Publications considering bolus arrival time are
Henderson et al. 1998, Kershaw and Buckley 2006, and Laue et al. 2007.

2.5.4 Standard versus patient-specific AIF

In pharmacokinetic modeling, the reason for deconvolving the contrast agent
uptake in the tissue of interest with the AIF is to separate systemic effects from local
effects. The obtained pharmacokinetic parameters therefore describe local tissue
properties. With this in mind, ideally, the AIF is patient-specific, leading to more
accurate parameter estimates relative to a standard AIF (Port et al. 2001, Rijpkema et al.
2001). As mentioned, the inter-patient — and even intra-patient — differences in AIF can
be large. Moreover, it has been demonstrated that in diagnostics the use of a patient-
specific AIF results in a larger area under the receiver-operator curve, and thus performs
better, than the use of a standard AIF (Huisman et al. 2006, Vos et al. 2009). On the
other hand, Parker et al. (2006) showed an improved reproducibility in a longitudinal
patient study when using a standard AIF (matching the same group of patients). A
possible reason may be that sampling resolution was not high enough to measure the
first-pass peak with high precision (Henderson et al. 1998). In case the peak was not
captured in one of the visits, a standard — i.e. constant — AIF would give better
reproducibility. Despite this possible shortcoming of the study, Walker-Samuel et al.
(2007b) as well found a better reproducibility with a standard AIF. Rijpkema et al.
(2001), however, found the opposite, i.e. better reproducibility with a patient-specific
AlIF.

The choice of a certain type of AIF depends on the possibilities — e.g., is it
possible to obtain a patient-specific AIF? — and on the purpose of the study. In a
longitudinal study, it may be more important to capture a change in the parameters
than capturing them with high accuracy. In a cross-sectional study (comparing patients
group), the use of a standard AIF could mask treatment effects acting on the AIF itself,
thereby influencing the difference in pharmacokinetic parameter estimates between the
patient groups (Parker et al. 2006).

2.6 Parameter estimation

There are many techniques available to fit a pharmacokinetic model to the
combination of the tissue bulk concentration C;(t) and the arterial input function C,(t).
To estimate the pharmacokinetic parameters, a merit function has to be defined that
provides a measure of agreement between the acquired data and the model with a
particular choice of parameters. Once a parameter set has been found that minimizes /
maximizes the merit function, the ‘quality’ of the set can be assessed with a goodness-
of-fit measure. Having found a good fit, however, may not mean that we have found the

49



Chapter 2

best fit, or that there are no other parameters sets of comparable quality. An error
estimate on the found parameter values, for instance the standard deviation, can tell us
how likely the estimate is: if K9S js estimated at 0.20 + 0.15 min™, it means that there
is a fairly large range of K% values with comparable likeliness of matching the data
representation of the underlying process. An optimal fitting procedure therefore
provides (i) parameter estimates, (ii) error estimates on the parameters, and (iii) a
statistical measure of goodness-of-fit (Flannery and Teukolsky 1992). To prevent the
event of finding a good fit in one area of parameter space (local optimum), whereas the
best solution lies in a different area (global optimum), one can use global optimization
techniques that search the whole solution space spanned by the model parameters.
Even though the solution space is searched in a clever way, global techniques are usually
computationally expensive.

A popular local optimization technique is nonlinear least-squares, often using
Levenberg-Marquardt (Di Giovanni et al. 2010), repeated with several (e.g. N = 500,
Lopata et al. 2007) randomly selected initializations. The use of several initializations
increases the chance of finding the global optimum. If the measurement errors are
independent and normally distributed with constant standard deviation, least-squares
fitting gives a maximume-likelihood estimation of the fitted parameters (Flannery and
Teukolsky 1992). It can also provide an error estimate on the parameters making use of
the Fisher information matrix (Raue et al. 2009): the variance on the parameters is
inversely proportional to the ‘visibility’ of the parameters in the residuals (residual:
difference between the measured data point and the model value); i.e. if the residuals
can be characterized as white noise, the variance on the parameter estimate is very
small (Damen 2003).

Another local optimization technique is golden section search (GSS), e.g. used in
Fan et al. 2010b. It is the analog of the bisection method for finding roots, optimized for
function optimization (Press et al. 2007). Because it is a bracketing technique, selecting
a smaller interval in which the optimum is expected at each step, it does not require
several initializations. The appeal of this method is that it is fast, which is important in
fitting 3D (x, y, time) or even 4D (x, y, z, time) image data. Note that a disadvantage of
this method is that it does not provide an error estimate on the parameters. Usually,
GSS is applied to 1D problems. To solve a 2D problem, as in fitting the basic Tofts model,
the bracketing has to be alternated between parameters (K95, v,). Here, we
investigated its suitability for this specific context.

2.6.1 Using golden section search to fit the basic Tofts model
The golden section search fitting approach was tested for its robustness against local
optima. As merit function we used R? (coefficient of determination)

R2=1-— SSresiduals [2.38]

’
SStotal
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in which the sum of squared residuals is defined as

SSresiduals = Z?Izl(yi - fi)zr [2.39]

and the total sum of squares as

SStotal = 21 (Vi — V)%, [2.40]

where y; are the observed values modeled with f;, and y is the mean of the observed
data. The closer R? is to 1, the better the fit follows the trend of the data. In alternating
between K" and v, we started off with bracketing v,. K" followed in each step,
providing a K" range for both the lower and upper bound of v,. This order was
chosen because v, is a more stable parameter than K", As an example we used
DCE-MRI rat data that will be further discussed in Chapters 5 and 6. Here, we show the
algorithm being tested for two types of tissue, i.e. muscle and tumor tissue, at two
temporal resolutions, i.e. 5 s and 60 s resolution. The AIF that we used in fitting the
basic Tofts model was derived from the uptake in muscle tissue under the assumption of
known K9S and v, (0.11 min™, 0.20, Kovar et al. 1998). It matched the data sets in
temporal resolution. Figure 2.8 shows the AIF (left axis), a single-voxel uptake curve in
muscle tissue (right axis, circles), and a single-voxel uptake curve in tumor tissue (right
axis, squares), at 5 s resolution. Figure 2.9 shows the same curves, but extracted at 60 s
resolution. The details of downsampling from 5 s to 60 s resolution will be discussed in
Chapter 5. Note that the scale of the AIF extracted at 60 s resolution is smaller than the
one extracted at 5 s resolution.
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Figure 2.8 AIF derived from uptake in muscle tissue at 5 s resolution (left
axis), single-voxel uptake curve in muscle tissue (right axis, circles), and
single-voxel uptake curve in tumor tissue (right axis, squares).
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Figure 2.9 AIF derived from uptake in muscle tissue at 60 s resolution (left

axis), single-voxel uptake curve in muscle tissue (circles), and single-voxel

uptake curve in tumor tissue (squares). The curves are extracted from the
same locations as at 5 s resolution.

To find the global solution we applied a brute force approach of calculating R?
values over all combinations of K" and v, covering a large range. Subsequently, we
applied the GSS fitting algorithm. We did this for both tissues, at both temporal
resolutions. The results are displayed in Tables 2.2 (muscle tissue) and 2.3 (tumor
tissue). For both tissues, and at both temporal resolutions, the parameter estimates
obtained with GSS were very similar to the best-R? results. Convergence was mostly
reached within less than 20 iterations, as shown in Figure 2.10 for the 5 s resolution
contrast agent uptake curve in muscle. The stopping criterion for both K" and v,
was a distance of 1-10™ between the upper and lower bound.

Table 2.2 Positions of best-R? and GSS optimal R? in K'"*"S-versus-v, space:
contrast agent uptake in muscle tissue.

K (min™)  Global GSS v, Global GSS
optimum  optimum optimum optimum

5 s resolution 0.14 0.14 5 s resolution 0.22 0.21

60 s resolution 0.14 0.14 60 s resolution 0.23 0.22
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Table 2.3 Positions of best-R? and GSS optimal R? in K"*"S-versus-v, space:
contrast agent uptake in tumor tissue.

iteration number

Ve

Global GSS
optimum optimum

5 s resolution

0.61 0.61

60 s resolution

0.61 0.61

(b)

K'ans (min™) Global GSS
optimum optimum
5 s resolution 0.56 0.53
60 s resolution 0.52 0.52
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2
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Figure 2.10 Example of convergence of GSS method for the uptake in muscle
tissue at 5 s resolution. (a) v,, (b) K" corresponding to the lower bound of
Ve, ()K" corresponding to the upper bound of v,.

In Figures 2.11 (5 s resolution) and 2.12 (60 s resolution) we show the best-R?
solution and the GSS solution together with the acquired data. The difference between
the best-R? solution and the GSS solution is hard to see. What we can see is that the
curves fitting the tumor data do not display the same shape as the measured data; the
decay after the peak is slower and the end phase is lower. This holds both for the best-
R? as well as for the GSS fit.
model (more on this matter in Chapter 3). The GSS fitting approach therefore appears

robust against local optima.

It therefore appears to be a limitation of the assumed
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Figure 2.11 Single-voxel uptake in muscle tissue (circles) and in tumor tissue
(squares), at 5 s resolution. For both measured curves the dashed line reflects
the global best-R? fit, whereas the continuous line reflects the optimal-R2 GSS

fit.
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Figure 2.12 The same measured curves and fits as in Fig. 2.11, this time at 60-
second resolution.

To test for robustness against noise, we used the best-R? solution and added
noise in the signal intensity domain. We determined the noise level in these data in air
(outside imaged object) and corrected for the Rician distribution (Kaufman et al. 1989).
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In muscle, baseline SNR was about 40, and peak signal SNR was about 50. Using 200
random noise realizations, we transformed the curves back to contrast agent
concentration and fitted the basic Tofts model with the GSS fitting routine. As can be
seen in Figs. 2.13 (5 s resolution) and 2.14 (60 s resolution), the GSS solutions are all
found within a narrow range (slightly larger at lower temporal resolution). The figures
show the contour plots of the R? landscape with v, on the x-axis and K" on the y-
axis. The cross marks the best-R? solution, whereas the black stars mark the optimal-R?
GSS solutions. For tumor tissue we do see a bias in K" (3.7% at 5 s and 11.4% at 60 s
resolution) introduced by the fitting routine, i.e. the best solution lies just outside the
collection of GSS solutions. As a temporal resolution of 60 s (bias of 11.4% for tumor
tissue) is towards the limit in terms of temporal resolutions suitable to fit the basic Tofts
model — which we will further discuss in Chapters 3, 5, and 6 — we conclude that the GSS
fitting approach is robust against noise. Taken as a whole, we can conclude that the
golden section search fitting algorithm is appropriate for fitting the basic Tofts model.
The method does provide a goodness-of-fit measure R?, but no error estimate on the
parameters.

The fairly flat landscape surrounding the best-R? solution (Figs. 2.13 and 2.14)
results in a range of solutions having a comparable likelihood. A nonlinear least-squares
approach can provide the likelihood of the found solution. The merit function is in that
case the sum of squared differences. The method looks at the steepness of the merit
function surrounding the solution with a quadratic approximation. This tells us how
‘easy’ it is to end up at the wrong solution. The steeper the ‘valley’, the higher the cost
of being wrong, so the likelier it is that we have ended up at the right position. Because
in the approximation the ‘valley’ is assumed to be ellipsoidal, this error estimate gives a
lower bound of the error (Lopata et al. 2007). An estimate of the error on the
parameters tells us if the parameters are identifiable from the data, whereas a
goodness-of-fit measure alerts for erroneous fits. Both can be caused by erroneous
model assumptions. Note that both R? and the sum of squared differences not only
depend on the quality of the model fit but also on the random noise contained in the
data. Alternative merit functions, less influenced by noise, are proposed by Balvay et al.
(2005).

2.6.2 Fitting complex pharmacokinetic models

In Chapter 3, the basic Tofts model, the extended Tofts model, and the shutter-
speed model will be compared. The extended Tofts model and the shutter-speed model
both have three parameters. With three parameters, the use of the golden section
search method may become problematic, e.g. the order in which the parameters are
alternated might start to play a role. Therefore, in that chapter, the models are all fit
with a robust global search method, i.e. the Downhill Simplex method (Nelder and Mead
1965). Simplex fitting is an accepted approach in the field of pharmacokinetic modeling
(Bonate 2006, Harmatz and Greenblatt 1987). The method requires only function
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evaluations, not derivatives (Press et al. 2007). As a final note, we would like to
encourage adding information about the applied fitting routine to (clinical) publications
on pharmacokinetic modeling. As the fitting routine can be one of the factors
contributing to inter-institute differences, it is important to know its details.
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Figure 2.13 Contour plots of the R? landscape for the basic Tofts model, grey

levels scaled between 0 and 1. Left: uptake in muscle tissue, right: uptake in

tumor tissue. Temporal resolution is 5 s.
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Figure 2.14 Contour plots of the R? landscape for the basic Tofts model.
Temporal resolution is 60 s.
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Data-imposed limitations on
pharmacokinetic models for
DCE-MRI of the breast

This chapter is based on:

G.J.S. Litjens, M. Heisen, J. Buurman, B.M. ter Haar Romeny (submitted). “Data-imposed
limitations on pharmacokinetic models for DCE-MRI of the breast”

G.J.S. Litjens, M.Heisen, J. Buurman, B.M. ter Haar Romeny (2010). “Pharmacokinetic
models in clinical practice: What model to use for DCE-MRI of the breast?” Proceedings
IEEE ISBI 2010, Rotterdam, The Netherlands, 1727
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Abstract

Fitting a pharmacokinetic model to dynamic contrast-enhanced magnetic
resonance imaging (DCE-MRI) data of the breast may improve diagnosis of breast cancer
by providing higher specificity. For the analysis of diagnostic breast data, the most
prominent challenge in using pharmacokinetic modeling is the sampling time, which can
exceed 1 minute. In this simulation study, three pharmacokinetic models — i.e. basic
Tofts, extended Tofts, and shutter-speed — were tested for their robustness against low-
temporal resolution (1 s — 20 s) and noise (0% — 16%); assessing both accuracy and
precision for a large range of pharmacokinetic parameter combinations. In addition, the
robustness of the basic Tofts model was tested for the presence of a non-negligible
vascular fraction, or non-negligibly-short water lifetimes (i.e. inappropriate assumption
of the fast-exchange limit). The arterial input function (AIF) was obtained via a reference
tissue, whose contrast uptake curve was simulated under the same conditions as the
uptake of the lesion. It was found that, within the context of breast imaging (~8% noise,
usually sampling time > 20 s), the extended Tofts and shutter-speed model are not
useable within a 20% error margin, whereas the basic Tofts model demonstrated
adequate robustness (~¥20% error margin). However, if a non-negligible vascular fraction
is present, ignoring it — both in extracting the AIF and in fitting the uptake in the lesion —
leads to large errors in the estimated parameters, even for high-quality data. In case the
intracellular lifetime of water is longer than 0.2 s, neglecting the shutter-speed effect
also leads to unacceptably large errors (> 20%). When using a reference tissue AIF
approach, a high signal-to-noise-ratio is more important than a short sampling time.
Provided proper model selection, i.e. while considering data quality and the nature of
the tissue under study, pharmacokinetic modeling of DCE-MRI breast data is feasible
within an acceptable error margin.
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3.1 Introduction

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has shown
to be a valuable tool in the diagnosis of breast cancer (Kuhl et al. 1999). During an MR
exam, a gadolinium-based contrast agent is injected and T;-weighted scans are made
over time (duration < 10 min), usually on a 1.5 T MRI scanner using a radio-frequency-
spoiled gradient echo sequence. In addition to morphologic features of enhancing
regions, the kinetics of the contrast agent uptake have diagnostic potential (Kuhl 2007b).
However, descriptive kinetic features like signal enhancement ratio (as a measure of
wash-out) are subject to large inter- and intra-patient variability, in addition to inter-
protocol variability; the former due to variations in systemic circulation, the latter due to
variations in injection protocol (Aerts et al. 2008) and scan protocol (Hittmair et al.
1994). To remove these dependencies and obtain tumor-specific parameters,
pharmacokinetic models were developed.

Over the past two decades several pharmacokinetic models (e.g. the early
models by Brix et al. 1991, Larsson et al. 1990, and Tofts and Kermode 1991) have
become available for the analysis of DCE-MRI tissue response curves. These models
describe the contrast agent exchange between the blood plasma and the extravascular
extracellular space; each using different assumptions and simplifications of the true
physiological process. In the context of diagnostic DCE-MRI of the breast, the most
prominent constraint for using these models is the sampling time with which clinical
images are acquired; it can exceed 1 minute. The sampling time is important because of
the Nyquist-Shannon sampling criterion; i.e., if it is too large, rapid kinetics cannot be
captured and the pharmacokinetic parameters are unidentifiable from the data (Lopata
et al. 2007). In image acquisition a balance has to be found between image quality —i.e.
signal-to-noise-ratio (SNR) and spatial resolution — and sampling time, to allow
concurrent assessment of morphologic (as described in the BI-RADS lexicon, American
College of Radiology 2003) and kinetic features.

The purpose of the current simulation study was to investigate which
pharmacokinetic models can be reliably used in the diagnostic breast MRI setting. Three
pharmacokinetic models, being the basic Tofts (Tofts et al. 1995), extended Tofts (Tofts
1997), and shutter-speed model (Yankeelov et al. 2003), were tested for their
robustness against low-temporal resolution and noise. Both accuracy and precision
were assessed for a large range of pharmacokinetic parameter combinations. The
arterial input function (AIF) was obtained via simulation of a reference tissue approach.
In addition, we also investigated the effect of simplifying model assumptions about the
underlying physiological process on pharmacokinetic parameter estimation, i.e.
neglecting the vascular contribution, or assuming infinitely fast water exchange.
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3.2 Materials and methods

3.2.1 Contrast agent distribution

In oncology, contrast agent exchange is usually modeled with two
compartments: an input compartment and a response compartment. The input
compartment is the blood plasma and the response compartment is the lesion. Because
of the scale of MRI, the imaged lesion voxels consist of intracellular space (IS),
extravascular extracellular space (EES), and capillary space (CS). The common
gadolinium-based contrast agents cannot access the IS, only the CS and EES. The
contrast agent enters the capillary bed on the arterial side from where it diffuses into
the EES. Here, the contrast agent influences the relaxation rate of the surrounding
water protons, causing a T;-shortening and thereby a signal increase. It is important to
note that the contrast agent can only directly influence the water protons in the CS and
EES. The water protons in the IS are only influenced through water exchange between
the IS and the EES. A schematic overview is given in Figure 3.1.
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Figure 3.1 Contrast agent diffusion from the blood plasma into the EES. The
water protons inside the cells are only influenced due to water exchange
between the IS and EES.

3.2.2 Pharmacokinetic models

Common pharmacokinetic models for DCE-MRI are the basic Tofts model, the
extended Tofts models, and the shutter-speed model. There are many more models
available. Recently, models using an adiabatic approximation to the tissue homogeneity
model are gaining popularity (Donaldson et al. 2010, Henderson et al. 2000). These
models incorporate an estimate of the mean transit time (MTT) of the contrast agent
particles passing through the capillary bed of the tissue to obtain separate estimates of
blood flow and permeability. In this paper, we focus on the models that are based on
Kety compartment theory (Kety 1951) and use the simplification of a negligibly short
MTT.
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The basic and extended Tofts models are defined by two and three parameters,
respectively. In the basic Tofts model, defined as

C,(t) = KTans [ e KT E=)/ve . ¢ (s)ds, [3.1]

Ktans (min™) is a combined measure of blood flow and capillary wall permeability,
whereas it only represents permeability in the extended model (under the assumption
of fast blood flow):

C.(t) = Ktrans fot e KT W=/ . ¢ (s)ds + v, - Cp(2). [3.2]

In both models, v, is the volume fraction of extravascular extracellular space (EES)
within a voxel; C, (mM) is the concentration of contrast agent in the blood plasma; C;
(mM) the concentration in the tissue of interest; and t (min) is the time that has passed
since contrast agent injection. The additional parameter used in the extended Tofts
model is v, i.e. the fraction of blood plasma within a voxel. In the basic Tofts model this

fraction is assumed to be negligible.

The (first generation) shutter-speed model (Eq. 3.3) is different in that it
incorporates the effect of water exchange between the IS and EES on the MR signal
amplitude. For a thorough derivation the reader is referred to Yankeelov et al. 2003.
This effect of transcytolemmal water exchange is combined with the basic Tofts model,
which represents the pharmacokinetic part of the equation. The Tofts models
themselves assume the water exchange between the IS and EES to be infinitely fast,
essentially stating that the contrast agent can influence all water. In the shutter-speed
model the extra parameter 7; (s) is introduced, which is the mean time that a water
proton is in the IS. The non-infinitely fast water exchange affects the MR longitudinal
magnetization, and thus the shutter-speed part of the model provides a relationship
between contrast agent concentration C;(t) and R, (s1), the longitudinal relaxation
rate:

1 1
Rl(t) = E(Tl * Ct(t) + Rlo‘i + T_l + Al + Az)

1 1 2
—5 (—Tl * Ct(t) + RlO,i + T_l - Al - Az) + A3, [33]

Rio—(1-Pe)R1oy 1- A1-
A1 — R0 Pe 10,1, AZ pe’ A3 — ( pze)
Pe Pe'Ti Pe'T;

7

in which r; (mM™ s™) is the relaxivity of the contrast agent; Ry, (s™') and Rip; (s') are
the relaxation rates in the absence of contrast agent of, respectively, the entire tissue
and the IS; and p, denotes the fractional water population of the EES. Time t in this
model is expressed in seconds. In our simulations we assumed r; equal to 3.8 mM*tst
which corresponds to the relaxivity of gadopentetate dimeglumine (Gd-DTPA,
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Magnevist, Schering, Berlin, Germany) at 1.5 T, and p,, equal to 0.8 - v, (Yankeelov et al.
2003).

Fundamental to pharmacokinetic modeling of DCE-MRI data is the use of an
arterial input function (AIF) which describes the bolus of contrast agent passing through
the blood circulation, and serves as input to the contrast agent uptake in the tissue of
interest. It is difficult to extract an accurate AIF from data acquired with modest
temporal resolution via direct measurement in an artery. Therefore, reference tissue
AIF approaches (Kovar et al. 1998, Yankeelov et al. 2005) were developed to estimate
the AIF from a reference tissue; i.e. inversely using a pharmacokinetic model to estimate
the input curve from the response curve of a tissue with known properties.
Diagnostically, the use of a patient-specific (reference tissue) AlF results in a larger area
under the ROC curve, and thus performs better than the use of a standard AIF (Vos et al.
2009). In addition, use of a standard AIF can lead to large errors in parameter
estimation (Yang et al. 2007).

In a diagnostic setting there are usually no expectations beforehand about the
tissue physiology; i.e. it is unknown what degree of model complexity is necessary to
describe it. However, parameter estimation errors, as investigated for the three models
addressed in this study, depend on the significance of several contributions to the
contrast agent uptake. So, for each type of contrast agent uptake we could find a
different error. To obtain a general estimate of model performance, we performed
forward-backward simulations for a large range of pharmacokinetic parameter
combinations — i.e. fitting the lesion response curve with the same model as with which
it was generated — as described in the next section.

3.2.3 Simulation setup

We performed a simulation study to estimate model accuracy and precision
under different conditions. First, a reference tissue response curve was generated using
a standard AIF (sampling time of 5 s, Parker et al. 2006) and one of the three
pharmacokinetic models. Skeletal muscle was chosen to serve as reference tissue,
because in DCE-MRI of the breast the pectoralis muscles are often visible within the
imaging field of view. The assumed parameter values for muscle were K" = 0.12
min™, ve = 0.10, v, = 0.08 (in the basic Tofts and shutter-speed model: v, & 0),and ;=
1.00 s (in the Tofts models 7; = 0) (Faranesh and Yankeelov 2008, Yankeelov et al. 2005,
Yankeelov et al. 2008). Subsequently, the reference tissue curve was downsampled and
noise was added. The obtained curve was then used as input for the estimation of the
pharmacokinetic parameters of the downsampled lesion response curve without explicit
calculation of the AIF (Yankeelov et al. 2005). In simulating the reference tissue curve,
the same pharmacokinetic model was selected as was used for simulating the lesion
response curve. We assume that the same model is applicable to both the reference
tissue and the lesion. One simulation cycle consists of:

62



Data-imposed limitations on pharmacokinetic models

Selecting lesion pharmacokinetic parameter values from a predefined range;
Generating tissue response curves for both the reference tissue and the tissue of
interest using a standard AIF, one out of three pharmacokinetic models, and the
selected parameter values in step 1;

3. Downsampling both tissue response curves (reference and tissue of interest) and
adding noise;

4. Fitting the downsampled tissue of interest curve with the model selected in step
2, or, alternatively, with a more simplified model, using the reference tissue
curve and its assumed parameters as input;

5. Calculating the error between the fitted lesion parameter values and those used
to generate the lesion response curve.

In step 1, using Latin hypercube sampling (Iman et al. 1981), a set of lesion
parameter values was selected from a predefined range and a lesion response curve was
simulated using one of the three models. For K% we used values ranging from 0.00
to 1.50 min™, for v, from 0.10 to 0.80 (Aerts et al. 2008, Eliat et al. 2004, Veltman et al.
2008), for v, from 0.00 to 0.30 (Faranesh et al. 2006, Henderson et al. 1998), and for t;
from 0.00 to 1.50 s (Yankeelov et al. 2003). After simulating the tissue response curves
(step 2), they were downsampled (Planey et al. 2009) and Gaussian noise was added
(Aerts et al. 2008, Lopata et al. 2007) to represent concentration uncertainty (step 3). In
our simulation study the investigated sampling times ranged from 1 s to 20 s per data
point (1, 2, 4, 6, 8, 10 and 20 s), which is comparable to the sampling times investigated
in other studies (Faranesh and Yankeelov 2008, Henderson et al. 1998, Yankeelov et al.
2008). Noise was added in multiples of 1/3 (varying between 0 and 2) times the typical
level of uncertainty in clinical data. In our experience, this level is around 8% of the
concentration maximum of a curve, which is similar to values reported in literature
(Aerts et al. 2008, Yankeelov et al. 2005). This uncertainty is not only based on image
noise but also on uncertainties in T;-estimation, which is needed to convert signal
intensity to contrast agent concentration. In step 4, the selected model was fitted to the
simulated curves using the downhill Simplex method (Nelder and Mead 1965), which is
relatively robust to local maxima, with a random initialization. Finally (step 5), the
resulting parameter estimates were compared to the ones used to generate the lesion
response curve. The percentage of error was defined as:

i it
iorL_Pfl

error = - 100%, [3.4]

14
PiOTl

in which P; is the i*" pharmacokinetic parameter. For each model, and for every
combination of sampling time and uncertainty level, 500 simulations were performed
using different pharmacokinetic parameter values in a Monte-Carlo fashion. The
medians and median deviations of the obtained error distributions were determined, as
well as the 95%-confidence intervals on the 90th-percentiles (Conover 1980).
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Figure 3.2 Overview of one simulation cycle. A standard AIF is used as input.
Two sets of pharmacokinetic parameters, one for the reference tissue (P7¢f)
and one for the tissue of interest (P**) are used in conjunction with a model to
generate two response curves. After downsampling and addition of noise
either the same model is used to fit the lesion response curve (solid arrows), or
the basic Tofts model is used to fit the lesion response curve generated with a
more complex model (dashed arrows). The fitted parameter values (Pf%) can
be compared to the simulation parameter values (Pt = poTi),

In addition to the experiments in which we assume that the preconditions for the
use of a specific model are fulfilled (forward-backward simulations), we also investigated
the effect of using the basic Tofts model when the underlying assumptions are incorrect,
i.e. ‘undermodeling’. For example, when v, or 7; is not small enough to be neglected.
The basic Tofts model was chosen because it is the most-simplified representation of the
contrast agent distribution process. These experiments were performed with sampling
times of 4, 10 and 20 s per data point and an added noise levels equal to 0 and 2.67% (=
1/3:8%) of the concentration maximum. These sampling times and noise levels were
chosen to get an indication of the effects of incorrect model assumptions on the
parameter estimation errors as a function of temporal resolution and noise. Lesion
response curves were simulated using either the extended Tofts or the shutter-speed
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model with different values of, respectively, v, and 7; The generated curves were fitted
with the basic Tofts model and the errors in K"%"S and v, were determined. For both
the basic Tofts / extended Tofts and the basic Tofts / shutter-speed combination 1000
simulations were performed. A schematic overview of the complete simulation setup is
presented in Figure 3.2.

3.3 Results

For each model and each model parameter, using the error measure specified in
Eqg. 3.4, contour plots were made of the median absolute error and the median deviation
of the absolute error distribution (medians taken over 500 simulations) as a function of
sampling time and noise level. Absolute errors were used because otherwise a median
error of O could give the false impression that the error is low, whereas error is an
absolute quantity. The median error and median deviation were preferred over the
mean error and mean deviation to limit the influence of outliers. Showing these
measures as contour plots provides, respectively, insight into model accuracy (bias) and
model precision (variability). In general, a large error variation is worse than a bias;
because a known stable bias could be corrected for. If the bias is unstable, thus implying
a large variation, this is not possible.

In Figure 3.3 the estimation errors in K" and v, for the forward-backward
simulation with the basic Tofts model are shown as contour plots, with the vertical axis
representing the sampling time and the horizontal axis representing the noise level. The
almost vertical lines in plots 3.3(a)-(d) indicate that the noise level greatly affects model
accuracy and precision, much more so than the sampling time. This can be explained by
the fact that noise is present in the input (via uptake in muscle) as well as in the
response (uptake in lesion), thereby having a double effect.
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Figure 3.3 Basic Tofts model: contour plots of the median error (left column)
and median deviation of the error (right column) in parameter estimates, as a
function of sampling time and noise level. The contour lines represent the
values (%) of the median error and median deviation. High values are red, low
values are blue. The somewhat unsmooth appearance of the contour lines is
due to fairly coarse sampling.
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In Figure 3.4 the results of the forward-backward simulations with the extended
Tofts model are shown. The errors are, on average, larger than for the basic Tofts
model. As expected, these results demonstrate that the use of more complex models
requires more stringent demands on data quality and temporal resolution. In addition,
these contour plots show that for the use of the extended Tofts model the sampling
time appears much more important than for the use of the basic Tofts model, as the
contour lines are much more horizontal.

The results of the forward-backward simulations with the shutter-speed model
are shown in Figure 3.5. Here, it can be seen that this model is very sensitive to noise, as
the contour lines are almost vertical and sharply rising for all parameters. To allow
correct estimation of pharmacokinetic parameters, a very high SNR seems to be
required.

Figure 3.4 (next page) Extended Tofts model: contour plots (%) of the median
error (left column) and median deviation of the error (right column) in
parameter estimates, as a function of sampling time and noise level.

Figure 3.5 (page after next) Shutter-speed model: contour plots (%) of the
median error (left column) and median deviation of the error (right column) in
parameter estimates, as a function of sampling time and noise level.
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Figure 3.4 (Extended Tofts)

68



Data-imposed limitations on pharmacokinetic models

20 40 20" \/
17.5 125
w15 = 15
(] [0}
£ £
= =
_g’ 10 _g’ 10
=3 =
£ £ 15
A !
5- 5
|
0 5 10 15 0 5 10 15
Noise Level [% of Signal Maximum ] Noise Level [% of Signal Maximum ]

(a) Median of the error distribution of K" given (b) Median deviation of the error distribution of
in percentages over different sampling times and Ktans given in percentages over different sampling
noise levels. times and noise levels.

201 20

o 15 o 15+
(] [0}
E £ !
_g’ 10 _g’ 10
= o
£ £
4] o
v (V2]
5- 5-
h . n h 3 :
0 5 10 15 0 5 10 15
Noise Level [% of Signal Maximum ] Noise Level [% of Signal Maximum ]

(c) Median of the error distribution of v, given in (d) Median deviation of the error distribution of v,
percentages over different sampling times and given in percentages over different sampling times
noise levels. and noise levels.

20 - ‘ :

—_
w
—_
v
T
—

Sampling Time [s]
=
Sampling Time [s]

S

5 5-
15 0 5 10 15
Noise Level [% of Signal Maximum ] Noise Level [% of Signal Maximum ]
(e) Median of the error distribution of t; given in (f) Median deviation of the error distribution of ;
percentages over different sampling times and given in percentages over different sampling times
noise levels. and noise levels.

Figure 3.5 (Shutter-speed)
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With use of the 95%-confidence interval on the 90th-percentile of the error
distribution we can state with 95% confidence that 90% of the error will be below the
upper value of the confidence interval. In comparison to the median error £ one median
deviation, the influence of outliers is more prominent on the 95%-confidence interval on
the 90th—percentile. The specific use of pharmacokinetic parameter estimates in a
diagnostic setting will dictate acceptable error margins; i.e. error margins that do not
result in a large overlap between the parameter estimates corresponding to a benign
uptake pattern and those corresponding to a malignant uptake pattern. In literature we
find that separating benign and malignant clusters in pharmacokinetic parameter space
is possible up to an error margin of approximately 20% (Eliat et al. 2004, Hulka et al.
1995, Planey et al. 2009, Yankeelov et al. 2008).

In Tables 3.1-3.3 the 95%-confidence interval on the 90th—percentile of the error
distribution is shown for the parameters of, respectively, the basic Tofts, the extended
Tofts, and the shutter-speed model. For all three models the 90th-percentile increases
rapidly for increasing noise levels, whereas temporal resolution is less critical. In the
tables we highlighted the results that indicate diagnostic usability (90th—percentile 95%-
confidence interval on the error below 20%) in light grey. Borderline cases are indicated
with dark grey. Interestingly, the results presented in Tables 3.1-3.3 imply much stricter
data-requirements than those presented in Figures 3.3-3.5, likely indicating the impact
of the tails of the error distribution. For instance, looking at the median + one median
deviation, the basic Tofts model (Figure 3.3) performs adequately (i.e. for K%< 1.5
min’?, v, < 0.8) at a sampling time of 20 s and a noise level of 8%; but looking at the 90™-
percentile confidence interval (Table 3.1) the allowed noise level is 2.7% instead. This
underlines the importance of a high SNR.
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Table 3.1 Basic Tofts model: 95%-confidence interval on the 90”’-percentile of
the error (%) in K% and v,. Light grey: within 20% error.

sampling time (s)

Ktrans ve
noise level (% of signal maximum)

0 2.67 5.35 8 10.67 1334 16 0 2.67 5.35 8 10.67 1334 16

1| 00- 88- 26.7- 40.0- 516- 585- 62.1-| 0.0- 1.2- 25- 41- 51- 6.7- 7.7-

0.0 142 377 549 608 669 720 | 0.0 2.0 4.1 5.8 6.5 9.6 9.3

2| 01- 82- 247- 414- 514- 573- 64.1-|0.0- 15- 31- 47- 6.2- 78- 94-
02 126 390 535 641 692 724 | 0.0 2.2 4.2 7.0 7.9 109 126
41 03- 81- 24.2- 382- 50.6- 588- 60.0-| 0.0- 21- 42- 63- 86- 93- 120-
0.6 121 384 518 628 671 710 | 0.0 2.9 5.5 83 113 122 1538
6| 07- 79- 344- 40.1- 56.2- 589- 644-| 0.0- 27- 63- 7.1- 98- 126- 17.3-
1.7 113 521 529 631 680 732 ]| 0.0 35 119 9.2 145 16.0 22.7
8| 07- 89- 26.1- 40.8- 49.1- 586- 63.1-| 0.0- 28- 6.0- 82- 106- 13.6- 15.8-
19 119 391 568 627 698 734 ]| 0.1 3.7 7.7 101 146 17.4 199
10( 2.7- 93- 26.2- 43.3- 499- 59.0- 635-| 0.1- 3.0- 62- 94- 115- 14.6- 18.7-
55 124 376 552 600 674 740 | 0.1 4.5 9.4 123 143 180 2238
20| 5.2- 13.7- 26.8- 38.4- 485- 58.7- 63.1-| 04- 42- 80- 119- 14.8- 189- 22.2-
7.2 196 336 506 591 699 741 | 05 6.1 109 145 193 252 28.1

Table 3.2 Extended Tofts model: 95%-confidence interval on the 90""-
percentile of the error (%) in K*"%"S, v,, and vp. Light grey: within 20% error,

dark grey: slightly larger error.

sampling time (s)

10

20

Ktrans

Ve

noise level (% of signal maximum)

0 267 535 8 10.7

133 16

0 27

5.4

8

10.7 13.3 16

0 27 54 8

10.7 13.3

16

04- 17.6- 483- 77.3- 91.3-
23 283 742 122.8 1283

19- 21.1- 62.6- 64.5- 953-
59 271 89.2 1115 1359

6.7- 21.8- 52.5- 76.7- 86.0-
9.7 315 67.2 108.5 129.4

15.7- 24.0- 479- 67.2- 77.3-
22,7 330 643 856 977

25.2- 30.8- 53.2- 71.5- 75.8-
334 425 675 104.6 104.5

429- 43.7- 639- 69.2- 76.3-
539 657 774 96.0 104.8

138.5-142.4-137.2-128.8-114.0 -
235.2 226.5 215.8 205.4 -200.5

83.7- 98.1-
134.3 162.8

112.8-104.5 -
166.1 168.3

98.1- 98.9-
149.2 142.2

82.2- 91.5-
118.2 94.0

81.6- 83.3-
115.8 116.4

89.1- 83.4-
116.4 111.0

137.4-122.1-
207.9 217.1

0.4- 809-
09 123

15- 11.4-
34 155

6.1- 15.4-
70 215

149- 19.8-
173 237

279- 326-
32.0 37.0

50.0- 52.9-
55.9 59.9

297.0-297.0 -

25.8 -
36.7

37.0-
46.1

35.8 -
46.2

37.5-
46.2

41.9 -
53.1

61.2 -
72.4

297.1-

38.6 -
49.9

40.2 -
53.3

46.8 -
59.1

53.4 -
68.2

58.9 -
75.4

77.9 -
97.6

293.7 -

44.5 -
61.6

56.5 -
72.9

58.4 -
76.5

65.2 -
87.3

73.0-
88.1

100.9 -
115.3

296.5 -

51.2 -
67.8

61.7 -
77.2

72.1-
84.0

70.2 -
83.2

83.4 -
101.8

96.6 -
119.3

293.9-

51.9-
66.6

64.9 -
91.5

74.0 -
86.6

175.6 -
269.1

86.4 -
104.5

108.2 -
137.4

293.9-

382.2 3829 383.0 383.0 375.2 380.0 378.2

0.9- 15.8- 48.7- 69.8-

49 209 533 737

4.1- 17.9- 5009-

11.4  20.8 | 57.2 780

143- 193- 52.1- 71.6-
27.8 264 60.1 78.6

42.7- 23.4- 47.7- 73.3-
63.1 394 643 813

63.1- 48.4- 49.5- 70.2-
95.1 62.8 70.2 843

1193- 91.4- 82.8- 89.2-
2279 165.1 121.4 122.2

283.1-286.5-262.2 -

80.6 -
85.2

71.4- 81.6-

86.5

88.0 -
91.7

81.7—- 93.7 -

91.0

82.7 -
93.4

86.5 -
98.4

86.0 -

89.7

88.6 -

92.5

91.7 -

96.2

97.9

90.0 -

95.5

95.9 -

99.2

260.8 - 228.7 - 248.3 -

88.5 -
91.5

94.3 -
97.5

95.3 -
98.3

74.9 -
133.0

96.6 -
98.6

96.6 -
99.0

218.4 -

388.5 413.6 413.8 358.5 382.3 4219 3221
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Table 3.3 Shutter-speed model: 95%-confidence interval on the 90th-percentile

of the error (%) in K", v,, and t;. Light grey: within 20% error, dark grey:

slightly larger error.

sampling time (s)

10

20

Ktrans v T:
e 13
noise level (% of signal maximum)

0 267 535 8 10.7 13.3 16 0 27 54 8 10.7 133 16 0 27 54 8 10.7 133 16
0.2- 73.2- 82.4- 86.0- 87.4- 90.3- 93.4-| 0.0- 124.2-151.0- 168.8-185.2 - 203.8-204.8-| 0.1- 315.2-348.8 - 341.8 - 305.2 - 288.7 - 281.3 -
1.2 795 859 885 902 922 954 | 29 151.0 187.8 2149 2319 2362 251.3| 7.3 519.8 501.3 557.4 633.5 593.9 532.3
1.0- 75.2- 81.3- 85.5- 88.3- 90.8- 93.8-| 0.2- 114.9-147.4-162.8-174.8-204.4-205.6-| 0.9- 298.3-327.3-348.0-307.2 - 295.1 - 265.5 -
3.7 802 856 885 90.2 93.7 961 | 7.0 137.4 1851 2085 221.9 2464 2663 22.1 440.4 587.0 570.9 594.3 584.1 498.3
3.7- 76.0- 81.9- 85.- 889- 91.5- 947-| 0.6- 117.7-151.0- 164.7-179.5- 194.0- 204.9-| 3.8- 312.8-325.9-353.1-315.8-264.7 - 244.2 -
127 809 864 890 916 93.8 963 | 144 1422 1948 206.2 236.2 254.5 264.6| 34.0 521.0 575.4 5287 558.2 512.8 495.7
142- 77.2- 823- 86.5- 89.0- 92.7- 953-| 2.5- 127.0-150.4- 174.6- 193.6 - 204.9-213.1-| 7.6- 305.6 - 343.6 - 327.3 - 293.3 - 252.2 - 228.3 -
202 | 81.3 855 893 917 945 96.7 | 189 1557 1958 2183 249.5 260.7 287.1| 32.8 546.0 540.8 551.3 548.5 458.9 457.3
19.6- 743- 83.0- 86.3- 88.9- 93.5- 94.9-| 3.9- 119.2-1458-164.7 - 202.5-204.9 - 209.7 -| 12.7 - 324.4-337.6- 324.4 - 299.6 - 270.2 - 278.1 -
309 822 872 895 919 954 963 | 162 147.4 185.1 203.0 262.1 250.3 286.1| 47.9 519.8 547.1 586.3 649.0 551.0 570.9
233- 77.7- 81.0- 92.8- 89.7- 93.1- 952-| 8.6- 114.1-130.8-213.9-199.4-215.1-232.1-| 21.5- 309.3 - 203.4 - 203.5 - 315.8 - 283.4 - 265.8 -
613 80.6 883 954 93.4 947 96.6 | 32.6 158.2 205.7 283.5 252.1 265.4 299.2| 79.8 558.8 8455 425.8 633.4 631.4 487.3
57.1- 77.9- 84.2- 88.2- 92.1- 94.5- 959-31.2- 121.4-159.3-181.3-200.2 - 222.7 - 244.3 -| 65.4 - 287.0 - 336.9 - 310.7 - 328.0 - 246.1 - 273.5 -
66.7 837 87.6 913 947 962 97. | 566 156.1 2145 237.0 257.3 303.0 309.8| 99.5 553.5 640.7 646.2 642.3 576.6 474.5

Now that we have seen that the basic Tofts model is robust against long sampling

times and fairly robust against noise, it is illustrative to look at the results when the

specific preconditions are no longer satisfied; i.e. when v, or 7; is non-negligible. These

results are shown in Figure 3.6. In subfigures 3.6(a) and 3.6(b) the errors in K"*"S and

v, are plotted (+ one median deviation) versus v, for the basic Tofts / extended Tofts

combination (both reference tissue and tissue of interest). We see the error (y-axis)

versus an increasing v, fraction (x -axis).

For the basic Tofts / extended Tofts

combination the median error + one median deviation on K" is too high (> 20 %)

immediately from the start, where v, is still very low. This is probably caused by the fact

that it is assumed that the reference tissue does not contain a significant vascular

fraction v, while it does. The error increases for increasing v, in the tissue of interest.

For v, we still obtain fairly good estimates (median error + one median deviation < 20%)

for very small fractions of v, (< 0.1) in the tissue of interest. Temporal resolution and

SNR are less important than the assumptions about the underlying physiology, because

the curves show little variation between sampling times of 4, 10, and 20 s, with or

without added noise. In subfigures 3.6(c) and 3.6(d) similar results are shown for the

basic Tofts / shutter-speed combination; the errors in K"*"S and v, are plotted versus

T;.

estimates are still reasonable (error < 20%).

However, for small values of 7; (7; < 0.20 s for K" 7, < 0.50 s forv,) these

For this combination of basic Tofts /

shutter-speed we do see some differences between the two noise levels (no noise
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versus 2.7%), implying that at higher noise levels neglecting 7; has a larger effect. The

different sampling times caused little variation in the error.
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Figure 3.6 Median error in the basic Tofts parameters for different values of

v, (a, b) and 7; (c, d). The black, dark gray, and light gray lines represent

sampling times of 4, 10 and 20 s, respectively. Solid lines are without noise
and dashed with 2.7% noise.
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3.4 Discussion

In this paper we have shown that the use of pharmacokinetic models in a
diagnostic setting for breast cancer is feasible if sampling times can be reduced to 20 s,
or less. However, careful consideration is required in selecting a model and interpreting
its results. As expected, the basic Tofts model is most robust against long sampling
times and noise, but its estimates can have large errors if the specific preconditions,
being a negligible v, and 7; are not met. We also explored the use of two more complex
models, i.e. the extended Tofts model and the shutter-speed model, which we
demonstrated to have high demands in terms of data quality. But, if these demands are
met, the models provide additional and more accurate (oversimplification leads to
biases in the parameters) information regarding the underlying physiology. In case of
adequate data quality, the choice for either of these complex models depends on the
expected degree of tumor vascularization: if the tumor is highly vascular the extended
Tofts model gives a better representation of the true process than the shutter-speed
model, because use of the extended Tofts model would result in more accurate
estimates of K% and v,. When the vascular fraction is assumed negligible we
recommend the use of the shutter-speed model in case of high-SNR data. To provide
some concrete limits: if the noise level is significantly lower than 2.7% and the vascular
fraction is negligible, one should use the shutter-speed model. If the noise level is about
2.7% or lower and the vascular fraction is non-negligible the extended Tofts model
should be used for sampling times of 2 s or shorter. In other cases the basic Tofts model
should be used; but note that under the strict measure of the 95%-confidence interval
on the 90th—percentile of the error distribution the typical noise level of 8% is fairly high.

In the scenario where we fitted the basic Tofts model to data simulated with the
extended Tofts model (Figs. 3.6(a) and (b)), both the reference tissue and the tissue of
interest were simulated with a significant vascular fraction. In a practical setting one
could also encounter a situation in which the reference tissue v, is negligible whereas
the lesion v, is significant. If in that case we use a sampling time of 4 s (no noise added),
the median error in both K'"*"$ and v, is below 20% up to a lesion v, of 0.1. In
comparison to the results presented in Figs. 3.6(a) and (b), this shows that neglect of a
non-negligible reference tissue v, has a large impact.

An interesting aspect of the results presented in this study is the prominent role
of the signal-to-noise ratio. In contrast to an earlier study in which we assumed a
standard (known) AIF (Litjens et al. 2010) and found that temporal resolution was more
important than SNR, we showed in this work that a low noise level is very important
when using a reference tissue AIF approach. This can be explained by the fact that noise
propagates both into the input (via the reference tissue) and into the response (tissue of
interest) when using a reference tissue method. In our view, the scenario simulated in
this paper mimics diagnostic practice in a more realistic way than the use of a standard
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AIF, because in practice a perfectly matching AIF (forward-backward simulation with
standard AIF) would not be available. To reduce noise propagation in low-SNR
situations, a prefitting of the contrast agent uptake curves with an empirical function
might be considered (Fan et al. 2007).

In previous research by Henderson et al. (1998) temporal resolution
requirements for the basic and extended Tofts models were estimated. In this
simulation study a lower-temporal-resolution AIF (sampling time of 10 s) was used as a
standard input. The AIF was not derived from the data. In addition, the simulated range
of noise levels was smaller than in our study. The main finding of this paper was that for
use of the basic Tofts model the sampling time should be below 16 s in case the AIF is
sampled every second; for use of the extended Tofts model the sampling time should be
below 4 s. Using a reference tissue AIF approach, we found higher temporal
requirements for use of the extended Tofts model, whereas we found lower temporal
requirements for use of the basic Tofts model. The required temporal resolution for use
of the basic and extended Tofts models was also investigated in a series of papers that
used the reference tissue AIF approach as well (Faranesh and Yankeelov 2008, Yankeelov
et al. 2005). However, in these papers the simulation setup (parameter range, AlF,
temporal resolution, analysis method) was not the same for the basic Tofts model and
the extended Tofts model, making a comparison difficult. The main findings were that
the basic Tofts model in combination with a reference tissue AIF approach required a
sampling time of roughly 32 seconds (Yankeelov et al. 2005), which is similar to what we
found in our study. We found that for a sampling time of 20 s and a low noise level the
error on the parameter estimates is within 20%. Because, the influence of temporal
resolution is limited (see Fig. 3.3), a sampling time of approximately 30 s appears within
reach. For the extended Tofts model they also observed that accurate parameter
estimation depends heavily on high-temporal resolution. Faranesh and Yankeelov
(2008) obtained accurate results (error = 0%) with a sampling time of approximately 1 s
without added noise, while with our criterion (error < 20%) we found that a sampling
time of approximately 6 s is allowed, provided a low noise level (< 2.7%).

In the current work, we focused on the models most commonly in use. The
adiabatic approximation to the tissue homogeneity model, which includes separate
estimates of blood flow and capillary permeability, was not considered. The
investigation of temporal requirements for this model — and a comparison with more
simplified models — would be challenging because of the complicated interplay between
temporal resolution and the mean transit time. Besides variations in the MTT, variations
in the sampling grid relative to bolus arrival (Henderson et al. 1998) also form an
interplay with temporal resolution. We did not take the latter into account either. To
assess model performance we studied the accuracy and precision with which
pharmacokinetic parameters could be estimated. Accurate retrieval of the true
parameter values is not necessarily crucial in a diagnostic setting; a systematic error
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does not have to result in a poorer separation of malignant and benign clusters in
parameter space. If both are shifted with 20% in a certain direction, their separation is
still intact. Biases are often the result of oversimplification. In applying the basic Tofts
model to curves generated with the extended Tofts model we found that neglect of v,
causes overestimation of K% and underestimation of v,. Fitting contrast agent
uptake curves characterized by a non-negligibly short t; with the basic Tofts model
resulted in 7;-dependent underestimation of both K" and v,. In both cases the
degree of over- / underestimation was temporal-resolution dependent. These
observations imply that the error in the parameters results from the interplay between
temporal resolution, noise level, and model choice. The co-occurrence of a large
vascular fraction and a non-negligibly short t; was not investigated in this study. It
probably deserves a closer look because a highly vascularized tumor often displays large
contrast agent uptake, and at high concentration levels it is less likely that the agent has
access to all water.

Current diagnostic DCE-MRI of the breast is performed with a temporal
resolution of approximately 1 minute. In this work we investigated higher temporal
resolutions (1 s — 20 s) for several reasons. As was shown, a comparison of the more
complex models with the basic Tofts model would be meaningless at 1 min resolution;
even at a sampling time of 20 s the more complex models are unusable. In addition, it
has been shown previously in prostate cancer that pharmacokinetic modeling at these
temporal resolutions (< 20 s) can have an added diagnostic value (Vos et al. 2009), and
we also see this trend in breast cancer research (Veltman et al. 2008). Technical
developments will allow shorter sampling times while still achieving high image quality
in the near future. This paper thus shows what could be achieved using these methods
in combination with such data.

Summarizing, we demonstrated that the basic Tofts model is robust to lower
quality data, but large errors in parameter estimates can be expected when the specific
preconditions are not met. In addition, we have shown that the use of more complex
models is feasible with very high data quality. At this point in time, these requirements
are very difficult to meet in the diagnostic breast MRI setting, making the basic Tofts
model the model of choice. In conclusion, when proper care is taken in analyzing the
data, it is possible to reliably estimate pharmacokinetic parameters within an error
margin of 20% for diagnostic DCE-MRI of the breast. Based on the above-presented
results, we will use the basic Tofts model in the remainder of this work, because the
sampling times of the data in Chapters 5, 6, 7 do not allow for the use of more complex
models.
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of a breast-coil insertable
reference phantom
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4.1 Introduction

Currently, most clinical sites follow the BI-RADS (Breast Imaging-Reporting and
Data System, American College of Radiology 2003) guidelines in assessing contrast agent
concentration curves in a descriptive way, i.e. assigning one of three curve types
(persistent, plateau, wash-out; see Chapter 1, Fig. 1.2) to the uptake pattern in a lesion.
Before doing so, the measured curves are converted to relative — with respect to the
native signal intensity — enhancement. Whereas inspection of the relative change in
signal may be less protocol-dependent than inspection of the absolute signal in arbitrary
units, it is far from protocol-independent. The relative signal does not only reflect a
change in contrast agent concentration, but also depends on scan parameters such as
the repetition time and flip angle (Hittmair et al. 1994); and other factors such as the
native T; (longitudinal) relaxation time of the tissue, and the arterial input function (as
was shown in Chapter 2, Panel C). In fact, the division by the native signal intensity
increases the dependency on the native T; relaxation time (Hittmair et al. 1994). A
more thorough form of calibration is the conversion from signal intensity to T, (t), which
can be related to contrast agent concentration C(t). This conversion will be the topic of
this chapter.

In a recent study, Jansen et al. (2009b) demonstrated that the influence of
scanner / protocol dependencies on relative enhancement curves can actually impact
diagnostic practice. The objective of their study was to compare dynamic contrast-
enhanced (DCE) MRI breast data acquired with three different MRI systems. The kinetic
curve data of malignant lesions showed large differences in initial contrast uptake and
curve type between systems. As rapid initial enhancement and wash-out curve type are
both considered important signs of malignancy (Kuhl et al. 1999), these discrepancies in
malignant lesion presentation adversely impact the diagnostic sensitivity and specificity
of kinetic analysis. To provide all women undergoing DCE-MRI of the breast with an
adequate and consistent diagnosis, we therefore need improved standardization.
However, since scan protocol variation is wide due to differences in scanner capabilities,
local preferences, and the fact that protocols are tailored to the specific purpose of each
type of exam, protocol standardization is unrealistic. Instead, we should standardize the
measured dynamic contrast-enhanced data via quantification of the contrast agent
concentration. We can attain this by adding a few — at least one — additional scans to
the protocol, leaving freedom to variation in the DCE-MRI series.

Pharmacokinetic curve type modeling has long been the promise to provide
quantitative, reproducible, tissue parameters. However, to deal with native T; and scan
parameter dependencies — here as well — a precondition is that the signal intensity data
is converted to contrast agent concentration. The most popular conversion method
includes precontrast T;-mapping, often performed via a variable flip angle approach
(Buckley et al. 2004), and the assumption of a theoretical signal model, usually the
spoiled gradient echo model (Heilmann et al. 2006). This conversion step frequently
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results in a large uncertainty on the contrast agent concentration curves due to noise
propagation from the T;-map, plus a position-dependent bias due to imperfect flip angle
profiles. Moreover, clinical scan protocols are fine-tuned to provide high-contrast low-
noise images at a fast rate. Smart acquisition schemes and filter techniques may affect
the dynamic data in such a way that the often-assumed theoretical signal models do not
describe the actual data. For example, it is difficult to predict how various fat saturation
methods affect the signal. Straight-forward application of ‘old’ conversion techniques to
‘new’ data can result in non-reproducible, and, yet again, scan-protocol dependent
outcomes.

Both types of kinetic analysis, i.e. descriptive and pharmacokinetic, could benefit
from validated signal calibration to minimize the influence of the MR system and the
applied imaging protocol on lesion assessment. To provide patient-specific calibration,
we propose the use of a reference phantom that is scanned concurrently with the
patient. An advantage of concurrent scanning is that variations induced by the presence
of the patient can be incorporated into the calibration.

Several studies describe the use of reference phantoms to calibrate the
relationship between contrast agent concentration and signal intensity. In 1994,
Hittmair et al. (sequence: 2D spoiled gradient echo) introduced their ‘enhancement
factor’ which scales linearly with contrast uptake and is independent of native tissue T;
and sequence parameters. The method requires a proton-density weighted (low-flip-
angle) image, and calibration of the enhancement factor for the applied acquisition
sequence. This calibration was performed with a series of phantoms varying in T; and
proton density. This procedure was also applied in Walker-Samuel et al. 2007a. The
mismatch between acquisition theory and acquisition practice was nicely demonstrated
by Parker et al. (1997) (sequence: 2D spoiled gradient echo), who calibrated a T;-
mapping procedure — based on the ratio between the T;-weighted series and a
precontrast PD-weighted image volume, under assumption of the spoiled gradient echo
signal model — with gels doped with various amounts of contrast agent. A similar
procedure was reported in Galbraith et al. 2002, and in Liney et al. 1999. In the latter
study (sequence: 3D fast spoiled gradient echo), it was pointed out that a dual-flip angle
T,-estimation method (Fram et al. 1987, Wang et al. 1987) can reproduce T; values
between 125 ms and 600 ms fairly accurately (with less than 10% error), but for longer
T, values the error increases dramatically. Typically, T; values of normal breast
parenchyma and breast lesions are longer than 600 ms; they can even be longer than
900 ms (Bottomley et al. 1987). With an empirical calibration, however, they obtained a
small error (within 4%) in T; both for short (140 ms) and long T; values (925 ms).
Henderson et al. (2000) (sequence: 2D saturation-prepared spoiled gradient echo)
showed a mismatch between theory and practice as well. Via calibration using a series
of reference phantoms, they found a match between theory and practice if the nominal
flip angle applied during the T;-weighted dynamic series was divided by a factor of 1.5.
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In this context, is it worth mentioning the Quantitative Imaging Biomarkers Alliance
(QIBA, Radiological Society of North America), as the DCE-MRI section of this alliance has
set out to reduce variation in parameters characterizing tumor vascular functioning due
to differences between patients (systemic circulation), scanners, scan protocols, and
institutions. A special phantom was designed and built to rotate between institutions.
Data acquired from prescribed phantom-only experiments are centrally analyzed and
factors resulting in different outcomes are investigated.

In the above-mentioned studies, calibration is performed ‘offline’: a calibration
factor or look-up table is derived from a phantom-only experiment and applied to all
patient data acquired with the calibrated sequence. It is not tested whether calibration
translates well from patient to patient. Also, if the acquisition protocol is changed, the
phantom-only experiment has to be repeated. A few studies considered concurrent
scanning of the subject and a reference phantom.

Although for the Hittmair approach (Hittmair et al. 1994) reference phantoms
within the field of view are not necessary, it was recommended to use a single reference
phantom to prevent drift. If two reference phantoms are present, the enhancement
factor can be determined for each acquisition. The calibration used by Pradel et al.
(2003) (sequence: 2D spoiled gradient echo) is based on a phantom-only scan performed
at the end of each experiment; however, one of the phantom tubes is also present while
scanning the animal. In a later study from the same group (De Bazelaire et al. 2005)
(sequence: 2D spoiled gradient echo) sixteen phantom tubes with different contrast
agent dilutions were scanned concurrently with the animal. Via assumption of the
spoiled gradient echo signal model, proton density and scanner gain were eliminated
from the calibration. Eliat et al. (2004) (sequence: 2D spoiled gradient echo) placed five
calibration phantoms (T; between 120 ms and 2174 ms at 1.5 T) next to the breast in
the coil. They used the ratio between the T;-weighted (high-flip-angle) image series and
a precontrast PD-weighted (low-flip-angle) image to estimate T; in the tissue. Here, it is
not assumed that scanner gain is the same between the different types of acquisitions.
To obtain an estimate of the scanner gain ratio, a single reference phantom is used with
known T;. The complete set of reference phantoms is subsequently used to calibrate
the signal model. In this paper it is explicitly mentioned that the calibration is not
reproducible from experiment to experiment.

In this chapter we will discuss the development and characterization of a
reference phantom that fits easily into a standard breast coil; as well as its use to
improve quantitative measurements of T;, contrast agent concentration, and proton
density. In the “Materials” section we will mainly address the trial-and-error process to
arrive at the final design of the reference phantom (Section 4.2.2). The “Methods”
section consists of three main parts. In the first part we will discuss three approaches to
quantify native T} (= Tyo): (i) a time-consuming approach making use of variable-
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inversion-time inversion recovery imaging, which will provide us with gold standard
phantom T; values (Section 4.3.1); (ii) a fast approach making use of variable-flip-angle
spoiled gradient echo imaging including a reference-phantom-based correction (Section
4.3.2); and (iii) another fast approach based on empirical signal calibration (Section
4.3.3). As they are fast, approaches (ii) and (ii) can be performed as an addition to a
clinical DCE-MRI exam. In the second part of the “Methods” section we will briefly
discuss tissue proton density mapping (Section 4.4). The “Methods” section ends with a
discussion of different ways to convert from signal intensity to contrast agent
concentration (Section 4.5). In the “Results” section we will return to the same three
main topics as in the “Methods” section. First, the native T; quantification methods are
addressed (Sections 4.6.1, 4.6.2, and 4.6.3). Subsequently, tissue apparent proton
density maps and concentration images will be shown and discussed in Sections 4.7 and
4.8, respectively. In Section 4.9 we will briefly touch upon imaging artifacts observed in
the clinically applied DCE-MRI series. At the end of this chapter (Section 4.10) we will
discuss and compare all the proposed quantification methods.

Note: The results shown in this chapter may differ from previously published
results because we re-analyzed some of the data using improved routines. All
experiments were performed at 1.5 T on a Philips Achieva scanner. As relaxation times
and relaxivity depend on field strength (Lerski and de Certaines 1993), the proposed
methods cannot be transferred to other field strengths without further investigation. All
patients (contrast agent administered) and healthy volunteers (no contrast agent
administered) that participated in this study were scanned under University of Chicago
Institutional Review Board approval.

To summarize the investigated approaches to obtain T;, and subsequent
contrast agent concentration for clinical practice, we show a schematic representation
of the two main pathways in Figure 4.1. The parallelograms represent acquired or
calculated data, whereas the rectangles define actions. We also pointed out in which
steps the calibration phantom is of use. The concentration series that are obtained at
the end can be used for quantitative kinetic, as well as morphologic, image analysis.
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4.2 Materials

In studying signal calibration we made use of two different phantoms. Protocols
were often first tested with a commercial phantom, i.e. the Eurospin phantom
(Diagnostic Sonar, Livingston, UK), with known properties. For concurrent scanning with
patients we developed a new — breast-coil insertable — reference phantom; its
development will be described in Section 4.2.2.

4.2.1 Eurospin phantom

The Eurospin set of phantoms was developed to provide a general tool for
scanner performance assessment and quality control. It consists of five objects designed
to test, for instance, image uniformity and resolution. Their use is thoroughly described
in Lerski and De Certaines 1993. In this study we made use of test object # 5 (TO5),
which consists of eighteen gel phantoms and is meant for assessing T;- and T,-mapping
procedures. The T; values of the gel phantoms were measured using a spectroscopic
inversion recovery sequence at manufacture, providing a gold standard (within 3% error).
Table 4.1 lists the gold standard T; and T, values at room temperature (292 K), at 1.5 T.
Figure 4.2 shows the phantom tubes together with the Perspex disc in which they can be
placed to facilitate scanning.

Table 4.1 Gold standard T, and T, values of the Eurospin TO5 at room
temperature (292 K),at 1.5 T.

Tube # T (ms) T, (ms) Tube # T4 (ms) T, (ms)
1 199 52 10 739 157
2 298 73 11 892 137
3 295 113 12 1440 390
4 455 53 13 959 223
5 446 94 14 1023 167
6 442 154 15 1149 214
7 597 95 16 1261 204
8 592 136 17 1246 183
9 745 116 18 1392 174
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Figure 4.2 Eurospin TO5, twelve out of eighteen tubes can be placed in the
Perspex disc.

4.2.2 Breast-coil insertable reference phantom
Ring-shaped phantom

The development of a practical and comfortable reference phantom went
through several phases. The first design considered a ring-shaped tube (inner diameter
of 10 mm) that could be placed around the breast. It contained several gel
compartments, separated by Teflon plugs. The ultra-pure agar (1%) gel compartments
covered the following range of contrast agent concentrations: 0.0 mM, 0.1 mM, 0.2 mM,
0.5 mM, 1.0 mM (Omniscan, GE Healthcare, Piscataway, NJ, USA). The gel was flushed
with helium under vacuum suction to remove air bubbles (Mustafi et al. 2009), because
their presence causes susceptibility gradients. Food coloring was used to color-code the
different compartments. In Figure 4.3 we show a photo of the actual phantom, a
schematic drawing of how the phantom is positioned around the breast, and its
appearance on a T,- and a T;-weighted MR image.

Using the ring-shaped phantom during several volunteer scans, it turned out to
be too delicate. To place the ring around the breast and to make sure it would not drop
to the bottom of the coil, the MRI technologist had to slightly squeeze the soft tubing.
This caused cracks in some of the gel compartments. Note that the use of rigid tubing
would compromise patient comfort. The color-coding was useful in enabling a
reproducible protocol, i.e. with always the same compartment at the same side of the
breast. However, in the practical setting, this turned out to not be very convenient and
the phantom was usually scanned at an arbitrary angle. Retracing which compartment
corresponded to which contrast agent concentration in the MRI data was doable (based
on expected order of signal intensities), but cumbersome. In addition, the phantom
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geometry did not suit all scan orientations. A coronal scan could capture all the
compartments in a single slice, although usually the phantom was slightly tilted. In this
orientation, the phantom therefore does not help to calibrate inter-slice variation. In an
axial or transverse scan, cross-sections of tube segments are imaged across slices. In
these orientations, you have a reference in a fair amount of slices, but at maximum two
compartments can be imaged in the same slice (as shown in Fig. 4.3), which is not
optimal to construct a calibration curve.

Cup-shaped phantom

The second prototype considered a larger phantom, consisting of a plastic cup
mounted with six circumferential and six vertical tubes (inner diameter of 4.8 mm).
Every tube was completely filled with a single agueous solution containing Omniscan at
the following concentrations: 0.0 mM, 0.1 mM, 0.2 mM, 0.3 mM, 0.4 mM, 0.5 mM. We
lowered the maximum concentration level from 1.0 mM to 0.5 mM for several reasons:
(i) it is not expected that the contrast agent concentration in breast tissue greatly
exceeds 0.5 mM; (ii) it is more important to have an extra measurement in between 0.2
mM and 0.5 mM than at 1.0 mM, and the number of tubes is limited; (iii) at a
concentration level of about 1.0 mM or higher, T, -effects may start to play a significant
role; and (iv) the presence of a very bright object (1.0 mM tube) in the T;-weighted MR
images affects the automatic windowing level on the diagnostic work station, making
the breast look very dark. Note that T, -effects cannot be easily accounted for with
either theoretical signal modeling or empirical signal calibration. Of course, in arteries,
the contrast agent concentration can exceed 1.0 mM. However, the phantom is not
developed for the purpose of calibrating a directly measured arterial input function.

Several attempts to water-tight sealing led to the use of rubber stoppers. The
tubes could be easily removed, switched, and reattached to the plastic cup due to the
use of Velcro. Because of its fragility we did not proceed with gel solutions. This means
that the phantom compartments could suffer from air bubbles and should not be shaken.
The specific arrangement of phantom compartments was chosen to have a range of
references present in most slices, irrespective of scan orientation. A coronal scan shows
cross-sections of the vertical tubes, whereas axial and transverse scans cut through the
circumferential tubes. This enables the construction of a calibration curve, and
adjustment of this calibration curve to inter-slice variation. A photo of the phantom and
a schematic drawing of how it is placed inside the breast coil, together with a T,- and T; -
weighted image are shown in Figure 4.4.

Figure 4.4 (next page) The cup-shaped color-coded calibration phantom. The
upper edge of the cup is slid between the breast coil (dark grey) and the soft
padding (light grey). The two cups are identical. In the schematic
representation we show the circumferential tubes as well as the vertical tubes.
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During data acquisition the breast is hung in the phantom cup. Because there is
some space needed to add the phantom cup in the coil, this phantom is not appropriate
for large-size patients. We attempted to make the phantom as thin as possible.
However, as it turned out in analyzing data acquired with this reference phantom (voxel
size: 1.3 x 1.3 x 1.5 mm), the tubes were slightly too narrow to perform good region-of-
interest (ROI) measurements, i.e. the ROI had to be very small to avoid partial-volume
effects. With a small ROl noise may not be averaged out. We therefore switched to
tubing with a slightly larger inner diameter of 6.4 mm, and later on also to smaller
imaging voxels. We will refer to the first version (inner diameter of 4.8 mm) as phantom
“A” and to the second version (inner diameter of 6.4 mm) as phantoms “B1” and “B2”,
as we made two of those; one for each side. Ultimately, the phantom could be
incorporated into the detector.

While testing the cup phantom with several volunteers, we noticed that during
the fast spin echo T,-weighted sequence (specific absorption rate, SAR: high) there was
mild heat dissipation in the breast area. This turned out to be caused by the specific
scanner / receiver coil combination (Philips 1.5 T Achieva plus 7-channel Invivo phased-
array biopsy breast coil), as it was only marginal with a different combination (Philips 1.5
T Achieva plus 16-channel Philips MammoTrak phased-array breast coil), and did not
differ in absence / presence of the phantom. Still, to increase ventilation, we drilled
holes in the bottoms of the plastic cups. As the latter scanner / receiver coil
combination is used for patient scanning, patient comfort was not compromised.

4.3 Methods: T;,-mapping

4.3.1 Gold standard T,, quantification:
inversion recovery with variable TI

To use a phantom for calibration, the T; values of its compartments have to be
accurately measured. We used a variable-TI (inversion time) inversion recovery (IR)
sequence for this purpose, which is well-accepted as a gold standard measurement
(Tofts 2003). This sequence takes too long to be applied in a clinical setting (e.g. the
data presented in Section 4.3.1 took about an hour to acquire) and was therefore
applied in a phantom-only setting.

The spin-echo IR signal model is defined as:
S=My(1—2-e T/ 4 ¢~ TR/T), [4.1]

This model was fitted to the data using an internal nonlinear least squares routine in
Matlab (Mathworks, Natick, MA, USA) which is based on a trust-region reflective
Newton minimization (global search method, Coleman and Li 1992). The sign of the data
was taken into account because use of the absolute signal would complicate estimating
uncertainty on the fitted parameters. To know the sign of the data, both the real and
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imaginary part of the image data have to be available. In our experiments this was not
the case and the sign was estimated afterwards.

As we extracted each measurement on the signal-versus-Tl curve from an ROI,
we also obtained the standard deviation of each sample. Plotting the standard deviation,
as well as the residuals (S;easured — Smodetea) Of @ non-weighted fit of the model,
revealed that the measurement uncertainty on the samples is not constant (i.e.
hetereoscedastic, Kirkup 2002), as can be seen in Figure 4.5. With non-constant
measurement uncertainty, weighted fitting is required. Weighting was incorporated
according to the y2-criterion which is a maximum likelihood estimator:

¥2 = ?I:l (Smeasuredazsmodeled)z’ [4.2]
in which N is the number of inversion times applied and g; the standard deviation
corresponding to each ROl measurement. Measurements with a high precision receive a
large weight, while measurements with a large uncertainty receive a small weight. Using
the y2-criterion, we can approximate the uncertainty on the obtained parameter
estimates quadratically (Bevington and Robinson 2003):

-1
2 _ o (9%%x
9 = 2<aza,-> ! 14.3]

in which a; are the model parameters and g; the standard deviations on these
parameters, in our case My and T;. This uncertainty estimate is based on the same
principle as mentioned in Section 2.6 (Fisher information matrix), except here we know
the standard deviation of the samples.

For the phantom compartments with a short T;, the long-TI measurements at the
end do not provide additional information about T; (flat phase, e.g. see 0.5 mM curve in
Figure 4.5), but do add noise (largest standard deviation at longest Tl) and therefore
uncertainty on the parameter estimates. For both experiments presented in Section
4.6.1 we estimated T; without these ‘tail’ points.
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inversion time (ms)

Figure 4.5 Measurements in phantom compartments (symbols) and non-
weighted least-squares fits (lines). The standard deviation on the measured
samples as well as the residuals after fitting show a pattern of an initial
decrease followed by an increase.

4.3.2 Clinical T4, quantification:
fast spoiled gradient echo with variable flip angle

The first method we discuss to obtain precontrast T;in a patient scan (available
additional time ~ 5 min) is based on knowledge about the applied acquisition sequence,
i.e. signal-model based. The second method is empirical, i.e. calibration via the
reference phantom, and will be discussed in the next section. In this section, we will
explain how the phantom can be used to verify / correct deviations from model-
behavior. The acquisition concerns a fast spoiled gradient echo series with a varying flip
angle (8). The signal model for this sequence is as follows:

sin@(1—e~TR/T1
S = M, ( _ )'
1-cos 0-e~TR/T1

[4.4]

in which §is the measured signal intensity; My is a scaling factor that depends on
scanner gain and proton density; @ (°) is the flip angle; TR (ms) is the repetition time; and
T, (ms) is the longitudinal relaxation time. In this equation we neglected T, -attenuation
(see Eqg. 1.2); however, in a heavily T, -weighted regime (TE < T, ), this term
approximates a value of one and varies little (~5%) for tissues outside the brain (Medved
et al. 2004).

Below, we will discuss the different steps that we perform in estimating T; from a
variable flip angle series. We start with a linear fit to a rearranged version of Equation
4.4. Subsequently, we will discuss a repetition-time- and T;-dependent selection of the
optimal flip angle range. Finally, we will fit the nonlinear model (Eq. 4.4) to the signal-
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versus-angle curves, using the parameter estimates from the linear fit as starting values.
The data that will be used to illustrate this approach concerns two Eurospin phantom
tubes, one with a short T; (199 ms) and one with a long T; (1392 ms). For this phantom-
only experiment we used more flip angles, a higher number of averages, and larger
voxels than in case the phantom would be scanned concurrently with a patient (see
“Additional scans for quantification in practice” towards the end of this subsection). The
acquisition settings were: repetition time / echo time = 25/1.11 ms, flip angle = 3, 5, 10,
15, 20, 25, 30, 35, 40, 50°, NA (number of averages) = 4, acquisition matrix = 88 x 87,
pixel spacing = 2.60 mm x 2.60 mm, thickness = 4 mm, spacing 4 mm.

Linearization

We start with a linear regression of a linearized version of the variable flip angle
data because linear regression is less error-prone than fitting the signal versus the flip
angle according to Eq. 4.4. The latter is for example sensitive to the choice of starting
values, whereas the former is not.

Linear fitting is especially popular in combination with a dual-flip angle approach.
This is a ‘minimalistic’ version of the variable flip angle approach. With only two samples
available, it makes more sense to fit a straight line than a curve. A common way to
reduce the number of additional scans needed for quantification even more, is to
acquire one flip angle before the start of the dynamic sequence, the other during the
dynamic series. The precontrast part of the dynamic sequence can then be used to fit
T, in conjunction with the first flip angle data. In this study, however, a variable flip
angle sequence consists of 6 flip angles or more. In the “Signal-versus-angle curve
fitting” part of this section we will show that more than two flip angles are needed in
case the expected variation in tissue T; is large.

Via rearrangements of the terms, Eq. 4.4 can be written as (Fram et al. 1987,
Wang et al. 1987):

S o RISy (1= e-TRIY, 5]

sin 8 tan 6

y=a-x+b,

withy = ——, x=——, a= ¢ TR/M, b = My(1— e TR/T),

sin 8 " tan6’

Alternatively, the terms can also be rearranged in the following way (S. Lobregt,
personal communication):

S _ S _ (p-TR/Ty _ S _ ,-TR/T
sin6 tan@ (e ' 1) tan @ + M0(1 € 1)’ [4-6]
y'=a -x+b,

aha =S S =_9 1 = ,—TR/Ty _ = _ o-TR/T.
with y = o * T @ =e 1 1,b_M0(1 e 1).
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In Figure 4.6 we show the originally measured curves, S versus 8; the curves after Fram-
Wang linearization, S/sin 6 versus S/tan 6; as well as after the alternative linearization
proposed in this work, (S/sin 8 — S/tan @) versus S/tan 6. Note that after linearizarion
the samples corresponding to high flip angles end up at the lower end of the x-axis and
vice versa. The uncertainty in the measured signal (+ one standard deviation) is
displayed with an error bar. Here, the flip angles are assumed equal to the nominal
values (as set on the scanner console) and uniform across the slice. Their uncertainty (at
a fixed position) is assumed to be relatively small. Because after linearization the signal
is present on both the y- and x-axis, Figs. 4.6(b) and (c) display error bars along both
axes (difficult to see because they are small). We see two interesting differences
between the two types of linearization. First, in (b) the straight lines that could be fit to
the data sets would be fairly similar, whereas in (c) the data sets look very different.
Secondly, in (c) the data corresponding to the long-T; tube do not seem to display a
linear patter, whereas this deviation from the expected (model-based) shape is invisible
in (b). We will address this deviation from model-behavior next.
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Figure 4.6 Variable flip angle data for a short-T; (199 ms, squares) and a
long-T; (1392 ms, circles) phantom tube. (a) S versus 6, (b) S/sin 8 versus
S/tan@, (c) S/sin@ — S/tan 6 versus S/tan 6.

Selection of flip angle range

The deviation from the linear pattern, as seen in Fig. 4.6(c), points out that
possibly some flip angles should not be included in fitting certain T; values. In case of
the above example, the large flip angles do not display ‘model behavior’ for the long-T;
tube. Because the alternative linearization displays such deviations from the model
more clearly than the Fram-Wang linearization, we chose the former over the latter.

To demonstrate the need for flip angle selection more clearly, we fitted the T; of
the long-T; tube (T; = 1392 ms) from the above experiment using linear regression with
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a x2 merit function (Flannery and Teukolsky 1992). In Fig 4.7(a) we see the linear fit to
the alternative linearization (Eq. 4.6) of the data. As you can see, the initial rise of the
curve (high-flip angle measurements) causes a bias in the linear regression of the
downward slope. If we plot the same fit on top of the signal-versus-angle data (b), we
can see that the peak of the data is underestimated because of this effect.
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Figure 4.7 Linear fit, (a) visualized on top of alternative linearization, and (b)
on top of S versus 6.

To obtain a better fit, we would like to use a criterion to exclude certain flip
angles from the T;-mapping procedure. Such a criterion has been defined by Deoni et al.
(2003). Although they defined their criterion to select two optimal flip angles for a dual-
flip angle approach, we found that it also serves the purpose of selecting a range of flip
angles to be included in the fitting procedure. We will refer to this range as the Deoni
range. The criterion is based on balancing the distance from the midpoint (peak signal)
of the linearized data with the measurement uncertainty. A large distance between the
outer angles provides a better fit than a short distance, however, the uncertainty in the
measurements increases moving away from the midpoint. For the equations defining
this tradeoff we refer to the original paper. Interestingly, we find not only a larger
measurement uncertainty moving away from the midpoint, but also a bias from model-

behavior. The Deoni criterion usually adequately excludes such biased samples.

The proposed flip angle selection, as described in Deoni et al. 2003, depends on
the repetition time and T;. Since T; is the parameter we are fitting, we apply the flip
angle selection in an iterative way. We first use all the flip angles to fit T;. Using this T;
value we estimate the Deoni range. Subsequently, we repeat the fitting procedure, this
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time excluding flip angles outside the Deoni range. In case the found T; is very different
from the initial T;, repetition(s) of the fitting cycle may be necessary to find a stable
solution. In Figure 4.8 we demonstrate this selection procedure for the same example
as in Fig. 4.7. For this example the Deoni range is defined by 8; = 3.9°,0, = 22.2°. In
Fig. 4.8(a) this range is marked by the black bars. In both (a) and (b) the dashed line
shows the linear fit using all data points, whereas the solid line shows the linear fit only
using the data points within the Deoni range. By excluding the flip angles outside the
Deoni range, the T; estimate for the long-T; phantom tube (linearized) changes from
2053 ms to 1659 ms, which is an improvement if we compare these T; values to the gold
standard T; value of 1392 ms. The new Deoni range is defined by 8, = 4.1°,6, = 23.6°.
This new range does not lead to a different inclusion of flip angle data, so another
iteration is not needed.
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Figure 4.8 (a) Alternative linearization, the dashed line represents the linear
fit using all data points, the solid line using only the data points within the
Deoni range (as marked with vertical bars). (b) The same fits as in (a), drawn
as S versus 6.

Looking at the dual-flip angle protocol applied in Liney et al. 1999 as mentioned
in the introduction, we can verify that with the applied repetition time of 10.9 ms and
angles of 6° and 35°, it is indeed not possible to cover a range from 125 ms (Deoni angles:
9.9° and 53.2°) to 900 ms (Deoni angles: 3.7° and 21.2°). It is in fact surprising that they
obtained fairly accurate estimates for a T; as short as 125 ms. This also illustrates that
with only two angles, the range of estimable T; values is limited.
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Signal-versus-angle curve fitting

We could have performed a linear fit with data from just two flip angle
acquisitions — i.e. with a dual-flip angle approach — instead of ten acquisitions (or, in case
of patient data 6 — 7 acquisitions). So, what would be a reason to use more than two flip
angles? The most important one would be to cover the full native-T; range in the
breast. Using the Deoni method, we can calculate that with a repetition time of 25 ms,
the two optimal flip angles to measure the T; in fatty tissue, which is approximately 260
ms (Stark and Bradley 1999), would be 10.4° and 55.5°. Tumors, on the other hand, can
have T; values as high as 1300 ms (Bottomley et al. 1987). In that case, we would need
flip angles of 4.7° and 26.5°. To cover the whole 260 ms — 1300 ms T; range, we would
need flip angles spanning from 4.7° to 55.5°. Another reason is that due to linearization
of the spoiled gradient echo model, we have the measured signal —and its uncertainty —
present on both axes. This makes a calculation of the uncertainty on the estimated
parameters complex; even more so, because the properties of the noise are affected by
the transformation to a linear function. That is why a linear fit does not give the same
result as a signal-versus-angle fit. We therefore do not provide standard deviations for
T, values estimated with a linear fit. When we fit the measured signal-versus-angle data
(according to the y2-criterion, Eq. 4.2, because of heteroscedasticity), the measurement
noise is only present on the y-axis and we can provide a measure of estimate
uncertainty (Eq. 4.3).

Using the fitted T; and M, of the alternative linearization as starting values for
this signal-versus-angle fit, we can often slightly improve the fit to the data; i.e. the root-
mean-square deviation between the fitted curve and the measured data (signal versus
angle) decreases. The signal-versus-angle fit only performs well with more than two
data points, and well-selected starting values. For the Eurospin example tube (T; = 1392
ms) we then find aT; of 1659 + 30 ms (Deoni range applied). For voxel-wise T;
estimation in the tissue we apply the same fitting routine except for assuming equal
(unknown) uncertainty on the measurements. In that case, an estimate of parameter
uncertainty can be supplied by estimating o (g; = o) in Eq. 4.2 from the residuals via

IS -S )?
2 _ &i=1\Wmeasured”>modeled [4.7]

o
N-p ’

in which N is the number of samples and p the number of free parameters.
Subsequently, Eq. 4.3 can be applied and the parameter uncertainty estimate is
obtained.

Additional scans for quantification in practice

In practice, it may be hard to cover a flip angle range from 4.7° to 55.5°
(corresponding to a repetition time of 25 ms, as described above). It is a large range
and, in our experience, large (6 > 40°) and small (6 < 3°) flip angles are difficult to
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achieve in practice. Therefore, a repetition time of 25 ms appears as too long. A
repetition time of 5 ms, which is frequently used in practice because a short repetition
time reduces scan time, appears too short; in that case the flip angle range would be 2.1
— 26.5°, requiring a very small flip angle. For patient scanning we therefore decided to
use a repetition time of 10 ms, which corresponds to a flip angle range of 3.0 — 36.8°.
The full additional sequence description is then as follows: 3D fast spoiled gradient echo,
repetition time / echo time = 10/2.0 ms, 6 = 2.5, 5, 10, 15, 20, 25, 30°, NA = 1,
acquisition matrix = 376 x 375, pixel spacing = 0.98 mm x 0.98 mm, thickness = 1 mm,
spacing =1 mm. The added value of increasing the repetition time from 5 ms to 10 ms is
also an increased signal-to-noise ratio (SNR), as well as a more accurate representation
of very long T; components. Note that the volunteers were scanned with a repetition
time of 5 ms (older data).

Use of reference phantom: flip angle correction factor

The advantage of scanning a reference phantom concurrently with the patient is
that we can verify if the variable flip angle T;-mapping approach produces accurate T;
values, and — if this is not the case — apply a correction. The main source of error leading
to an experimental departure from the theoretical spoiled gradient echo model is due to
a non-uniform distribution of flip angles (Brookes et al. 1996). Possible causes are
deviations in the flip angle calibration, non-linearity of the RF-amplifier / incomplete RF-
spoiling, and imperfect flip angle profiles (Liney et al. 1999, Parker et al. 1997).
Especially in 2D acquisitions the flip angle can show significant within-slice variation,
which results in location-dependent deviations. In this study we used 3D acquisitions,
since this is also the trend in clinical practice. As a first-order flip-angle calibration we
propose to apply a single per-slice correction factor to the flip angles. We grant that,
even though the acquisitions are in 3D, this leaves some within-slice variation as a
potential source of error.

In the signal-versus-angle relationship the Ernst angle (65) defines the position of
the peak, as the spoiled gradient echo signal reaches it maximum at

cosO = e TR/Tt — @, = cos ' e TR/M, [4.8]

The position of the peak dominantly determines T;. We therefore need to apply a
correction factor to the flip angles that shifts the peak to the right position; i.e. to the
position that results in the T; estimates that we expect to find in the phantom
compartments (gold standard T; values from IR experiment). We assume that the
correction factor A; that is applied to flip angles 8;, withi = 1,...,N, depends on
position [.  Knowing the true T; at that position, Ty, gives the true Ernst angle Og, ;.
We can then use the ratio of the true Ernst angle and the measured Ernst angle to
obtain the correction factor
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Ogt;  cos™t e TR/T1t1
Al = =

[4.9]

OE, cos—1e~TR/T11’

which we apply to all nominal flip angles 6; ... 8y to obtain the effective flip angles.

To attain an approximate per-slice correction factor in the tissue, we assume that
the correction that holds for position [, holds for a larger region than the confined region
of the phantom compartments and can therefore be applied to the signal-versus-angle
curves extracted from the breast tissue as well. In case the calculated correction factors
display a consistent pattern across phantom compartments (in vertical direction 6
samples, in horizontal direction 2 x 2 samples, see axial scan in Fig. 4.4) we could
potentially model the effective flip angle profile (such interpolation could also be applied
to the gross Bl-field, if available). In this study, we will use a first-order-calibration
making use of the mean correction factor found on the inner side of the breasts (more
homogeneous than towards the edges of the field of view). The approach presented
here is similar to the one proposed by Yang et al. (2006).

4.3.3 Clinical T, quantification:
empirical calibration

An alternative to the variable flip angle approach presented above is to calibrate
T, empirically using the signal intensities measured in the phantom compartments as
reference. We will follow the approach as presented in Medved et al. 2004; except that
here we will use the phantom as a reference instead of a healthy tissue. We call this
approach empirical because the underlying model is very basic. It is assumed that in
approximation:

S - T, = constant, [4.10]

therefore it holds

Stissue T1iref

~
~

Sref Ty tissue

[4.11]

As a consequence of using the phantom we do not have to assume an
approximate T; value for the reference tissue; instead, we use the known T; values of
the phantom compartments to estimate the constant factor in Eq. 4.10. Moreover, as
the phantom contains a range of T; values, it can first be tested if this equation holds for
the acquisition under study.

In a test experiment this approach was compared to the use of variable flip angle
T,-mapping (Litjens et al. 2009). The Eurospin phantom was scanned (T; range: 281 ms
— 1384 ms) with the following settings: (i) 3D spoiled gradient echo, repetition time /
echo time = 25/1.1 ms, 8 = 3, 5, 10, 15, 20, 25, 30, 35, 40°, NA = 4, acquisition matrix =
128 x 129, pixel spacing = 2.60 mm x 2.60 mm, thickness = 4 mm, spacing 4 mm; and (ii)
3D spoiled gradient echo, repetition time / echo time = 25/1.1 ms, 8 = 40°, other
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settings same as in (i). Variable flip angle T;-estimation was applied to (i), whereas the
reference approach was applied to (ii). In the latter approach, signal intensities
measured in 9 tubes were used to estimate T; in the remaining tube. With the variable
flip angle approach, the average error in T; was 5.7% with a standard deviation of 3.8%.
With the reference approach the average error was 8.5% with a standard deviation of
6.1%. A two-sided Student’s t-test could not demonstrate a statistically significant
difference in the performance of the two methods (p = 0.52, N = 10).

Note that in this test experiment there was no difference in proton density
between the ‘tissue of interest’ and the reference material. Therefore, in practice, a
proton density correction factor should be obtained before application of this empirical
T, quantification method. Such a PD factor could be estimated from a single low-angle
spoiled gradient echo acquisition, as discussed next.

We can conclude that, provided proper PD-correction, empirical calibration
according to Equation 4.10 can be used in practice.

4.4 Methods: tissue proton density mapping

A spoiled gradient echo acquisition acquired with a low flip angle exhibits little
T, -weighting because cos 6 in Eq. 4.4 approaches a value of 1, reducing the equation to
(Walker-Samuel et al. 2007a):

S = M, -sin#f. [4.12]

As all phantom compartments contain the same aqueous solution, in theory they display
the same signal intensity in a PD-weighted scan, under the assumption that the presence
of the contrast agent does not alter proton density (Parker et al. 1997). With the
calibration phantom present in the image we can use the ratio of the signal intensities of
the phantom and the tissue to obtain an estimate of relative proton density in the tissue:

Stissue __ Scanner gain-PDijssyeSin@  PDgissye

= , — = , [4.13]
Sphantom Scanner gain-PDppantom sin %] PDphantom

If we assume the proton density in the phantom compartments to equal that of pure
water (100%), we have an absolute measure of proton density in the tissue. We can
thereby map proton density with the use of a single low-flip-angle acquisition. Note that
the obtained proton density represents the apparent proton density, as it is dependent
of the applied acquisition sequence.

4.5 Methods: conversion to contrast agent concentration
A common model-based approach to convert signal intensity to contrast agent
concentration is via T; in combination with Equation 1.1, repeated over here

AR(t) = R,(t) — Ry =1, - C(2), [4.14]
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in which ry (mM™? s) is the longitudinal relaxivity and C (mM) the contrast agent
concentration. For this approach it is needed to obtain a precontrast T; map (Rio =
1/T,,) for every patient with methods such as discussed in Sections 4.3.2 and 4.3.3. The
dynamic T; (t) can then be derived from the measured signal S(t) under assumption of
the spoiled gradient echo model (Haacke et al. 2007):

Mo ===y [4.15]

x—y-cos 6

1-e~TR/T10 cos 9
1—e-TR/T10

withy = 5(t)/Sy and x =

Another model-based approach is to use the ratio of the T;-weighted dynamic
series (6;) with a PD-weighted precontrast image volume (6,). As pointed out in Section
4.4, the spoiled gradient echo signal is PD-weighted in case of a low flip angle. Using the
approximation given in Eq. 4.12, this ratio is described by (Walker-Samuel et al. 2007a):

So, sin 91(1—6_TR/T1(t))

R =251 — [4.16]

Sg,  sinB(1-cos e TR/T1OY

As this ratio is solely weighted by T; it can be used to derive contrast agent
concentration via Eq. 4.14, providing both T;, (use of precontrast T; -weighted
dynamics) and T, (t):

~TR
Tl(t) = 1 ( sinf1—R-sin 6, )' [417]

sinf1—R-sinf; cos 61

Note that this method thereby also provides a model-based T;y-mapping approach. In
this study, we did not further investigate this method as we picked the more popular
model-based approach, i.e. the variable flip angle method (Section 4.3.2).

Both of the above methods are under the assumption of the spoiled gradient
echo model, or in any case a known signal model. However, current T;-weighted fast
dynamic protocols can often not be described with the spoiled gradient echo model. In
our case, dynamic data is acquired with a T;-turbo field echo sequence (eTHRIVE, Philips
Healthcare, Best, The Netherlands). This sequence enables time-efficient fat-
suppression but cannot be easily described with an equation such as Equation 4.4
because it is a transient (non-steady-state) acquisition. In addition, even if acquisitions
are spoiled-gradient-echo-based, there can be a mismatch in practice due to advanced
scan and filtering techniques. For this reason, we did not pursue calculation of
concentration images under assumption of the spoiled gradient echo model. Therefore,
the bottom part of the left branch in Figure 4.1 displays dashed arrows.

In case of no applicable signal model, the use of a reference phantom offers a
practical solution: we can calibrate tissue T; by making use of the signal intensities
measured in the phantom compartments. In the same way as was explained in Section
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4.3.3, under assumption of Eq. 4.10, both the pre- and postcontrast T; (t) can be derived
thereby providing a way to quantify the contrast agent concentration (Eq. 4.14):

PDphantom 1
C(t) = phant : (Stissue (t) - Stissue (0))1 [4-18]

PD¢issue constant-ry

in which the constant is derived from the signal intensities measured in the phantom
compartments. The proton density ratio is estimated from a low-flip angle image
volume.

In brief, for quantification of contrast agent concentration in a clinical setting we
discussed two main pathways (see Figure 4.1): one model-based pathway requiring
several additional scans with different flip angles (~ N = 6, acquired in ~ 7 min for 15
slices); the other making use of the reference phantom to empirically estimate the
calibration factor between T; and signal intensity, requiring one additional scan with a
low flip angle (< 1 min for 15 slices).

4.6 Results: T{o-mapping

4.6.1 Gold standard T,, quantification:
phantom characterization

This experiment was performed to determine gold standard T; values for the
phantom compartments, as described in Section 4.3.1. The acquisition settings were: (i)
repetition time / echo time = 6000/10 ms, inversion time = 50, 100, 200, 400, 800, 1600,
2400, 3200, 4000, 5000 ms, NA = 1, acquisition matrix = 360 x 352, pixel spacing = 0.70
mm x 0.70 mm, thickness = 3 mm, spacing = 3 mm; and (ii) repetition time / echo time =
5000/28 ms, inversion time = 50, 100, 200, 400, 800, 1500, 2500, 3500, 4500 ms, NA =1,
acquisition matrix = 364 x 363, pixel spacing = 0.71 mm x 0.71 mm, thickness = 2 mm,
spacing = 2 mm. The former was used to characterize phantom A, the latter to
characterize phantoms B1 and B2.

Fitting of the variable inversion time (TI) turbo spin-echo (TSE) acquisitions
resulted in the phantom T; estimates reported in Table 4.2. For these data, the
empirically determined cut-off for inclusion of ‘tail’ points lies at 15.5% of M,/s. We
determined this value by fitting the curves both with and without these ‘tail’ points and
inspecting the effect on the estimate of T; and on its uncertainty. Addition of data
points beyond this cut-off did not affect T; but increased the uncertainty.
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Table 4.2 Gold standard Tyvalues in the phantom compartments estimated
from TSE IR data.

Compartment (mM) Phantom A Phantom B1 Phantom B2

T4 (ms) T4 (ms) T1 (ms)

0 2519+ 40 2487 +79 2247 +53

0.1 1298 + 18 1194 + 24 1235+ 23

0.2 847 +12 834 +16 818+19

0.3 648 + 8 565+ 11 619 + 13
0.4 497 +7 488+ 8 487 +8
0.5 423 +5 392+8 406 £ 6

Assuming a relaxivity value of 4.3 mM™ s (Rohrer et al. 2005), we can simulate
the expected T; as a function of contrast agent concentration in the phantom
compartments, using the first estimate (0 mM) as the baseline. For all three sets of
phantom compartments, we plotted both the measured as well as the expected T;
values as a function of contrast agent concentration in Figure 4.9. All measured T;
values are in close agreement with each other and with the theoretically expected T;
values. We conclude that we can use these estimates as the gold standard.

® Phantom A
2500 '5 —————— theoretical
«él‘\
2000_ ",‘ 0] Phantom B1
N theoretical
= 1500 \ A Phantom B2
= Ny 0 ewses theoretical
= -3
1000+ R
4 R
500- T,
0 1 ¥ I I . 1

00 01 02 03 04 05
concentration (mM)

Figure 4.9 Measured (symbols) as well as theoretically expected (lines) Ty
values as afunction of compartment contrast agent concentration. All
measured T, values are in close agreement with the theoretically expected
values.
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4.6.2 Clinical T, quantification:
variable flip angle approach and flip angle correction

Proof of principle

To test if the proposed correction to the flip angles — calibrated with use of the
reference phantom — leads to more accurate estimation of T; in the tissue, we
performed an experiment with test objects representing the breasts. These test objects
were part of the above-described TSE IR experiment and therefore their T; values are
known. In Figure 4.10 we show the setup. The image is acquired with a repetition time
of 5 ms and a flip angle of 10°. The tubes are ordered from top to bottom, from low to
high concentration (0, 0.1, 0.2, 0.3, 0.4, 0.5 mM). At the right-breast position (left in
image) we placed a bottle of non-sparkling drinking water (long T;), on the other side a
standard phantom bottle (shortT;). From the IR recovery experiment we obtained
respective gold standard T; values of: 1913 + 42 ms and 334 £ 6 ms.

0.0 mM
0.1 mM
0.2 mM
0.3 mM
0.4 mM
0.5 mM

Phantom B1 Phantom B2

Figure 4.10 Test experiment with two test objects. The image was acquired
with a repetition time of 5 ms and a flip angle of 10°.

We performed two variable flip angle experiments; one with a repetition time of
5 ms, and one with a repetition time of 25 ms. We did this to find out how much T;
estimation is influenced by the repetition time, and to see if such a dependency can be
corrected for via a correction to the flip angles. The acquisition settings were: (i)
repetition time / echo time = 5/1.7 ms, 8 = 3, 5, 10, 15, 20, 30°, NA = 3, acquisition
matrix = 364 x 365, pixel spacing = 0.71 mm x 0.71 mm, thickness = 2 mm, spacing = 2
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mm; and (ii) repetition time / echo time = 25/1.9 ms, 6 = 5, 10, 15, 20, 30, 40, 55°, NA =
1, other settings as in (i).

The T; estimates in the phantom compartments as well as in the test objects are
listed in Table 4.3. We can remark three things: (i) the T; estimates obtained with a
repetition time of 25 ms are usually higher than those obtained with a repetition time of
5 ms, (ii) for the short-T; object this difference is more than a factor of two, and (iii) for
the long-T; object we obtain an unrealistically large T; of about 10 s with a repetition
time of 25 ms.

Table 4.3 Variable flip angle T, estimates in phantom compartments and test

objects.
Repetition time =5 ms Repetition time =25 ms
Compartment Phantom B1 Phantom B2 Phantom B1 Phantom B2
(mM) T4 (ms) T, (ms) T, (ms) T, (ms)
0 1643 £ 197 2321+ 259 1879 £ 90 2174 + 161
0.1 1018 + 106 932 £ 65 1000 + 75 1035 £ 69
0.2 593 +43 574 £ 42 791+42 793142
0.3 449 £ 21 433+20 564 + 27 556 +28
0.4 369 £ 22 371+ 16 447 + 24 480 £ 23
0.5 328+17 318+ 17 413 +20 391+22
Long-T; test object 1776 £ 115 - 10211 £563 -
Short-T; test object - 2717 - 63012

Looking at the measured curves in the test objects (Figure 4.11), we can see that
with a repetition time of 5 ms both objects display a pattern close to model behavior,
except for the large-flip-angle measurements of the long-T; object. Using the Deoni flip
angle range, we can obtain a reasonable fit of the spoiled gradient echo model for both
objects. With a repetition time of 25 ms we see a very different pattern; the linear
display shows two nonlinear curves. In addition, in the signal-versus-angle display, the
measurements for the long-T; object appear to start post-peak. These effects result in
erroneous fits, even when the flip angles are limited to the Deoni range.

As the true T; values of the test objects are, respectively, 1913 £ 42 ms and 334 +
6 ms (as measured with TSE IR), the Deoni range corresponding to a repetition time of 5
ms equals 1.7° — 23.5°, and the range corresponding to a repetition time of 25 ms equals
3.9°-49.8°. In both series smaller flip angles could have been included (5 ms: started at
3°, 25 ms: started at 5°), but both acquired series should have been suitable to at least
approximate the long and shortT;. It is the unexpected non-model behavior that
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hinders us from fitting the data acquired with a repetition time of 25 ms. As this
behavior is especially apparent for large flip angles, this may indicate that the larger flip

angle pulses are inadequate.
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Figure 4.11 Variable flip angle measurements (symbols) for long-T; (left in
Figure 4.10) and short-T; (right in Figure 4.10) test objects. The fits (lines) are
performed making use of the Deoni flip angle range. Top: repetition time of 5

ms, bottom: repetition time of 25 ms. With a repetition time of 25 ms the

measurements show a large deviation from model behavior (model behavior
would produce a straight line in the right-bottom plot). Here the fitting
routine fails.

In this “Proof of principle” section, the aim is to find out if a flip angle correction
calibrated with the use of the reference phantom results in improved T; estimates.
Because we did not find valid T; estimates for the data acquired with a repetition time
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of 25 ms, we applied the correction only to the data acquired with a repetition time of 5
ms. We were not able to verify if the repetition-time-dependent bias in T; estimates
(see Table 4.3, longer repetition time results in higher T; estimates) can be corrected for
via a correction of the flip angles.

In Figure 4.12 we plotted the variable flip angle T; estimates (repetition time: 5
ms) versus the gold standard T; values of the phantom compartments. We can see that
on average the estimates are too low.

B Phantom B1
2500 © Phantom B2

y=Xx

2000+

1000+

500+

T, (ms, variable flip angle estimate)
&
o
?

o

0 500 1000 1500 2000 2500
T, (ms, gold standard, TSE IR)
Figure 4.12 Variable flip angle T, estimates (repetition time: 5 ms) versus the

gold standard T, values. In general the estimated are biased towards lower
values.

We calculated the flip angle correction factor according to Equation 4.9 for each
phantom compartment and we obtained the factors as displayed in Table 4.4. The
factors are all fairly similar except for a value of 1.02 for the 0 mM compartment of
phantom B2. As the T; of the 0 mM compartment is hard to estimate because it is
relatively long and displays low SNR, this could be due to an error in the measurement /
fitting of the corresponding curve. Applying the mean correction factor to the flip angles
and re-fitting the measurements of the test objects (using the Deoni range, this time
applied to the effective flip angles instead of the nominal flip angles), resulted in a T;
estimate of 2295 + 148 ms for the long-T; object and of 343 + 8 ms for the short-T;
object. As the true values are, 1913 + 42 ms and 334 + 6 ms, respectively, and the values
before correction were 1776 + 115 ms and 271 = 7 ms, the correction introduces a larger
deviation from the standard for the long-T; object (from 7.2% underestimation to 19.9%
overestimation) and a smaller deviation from the standard for the short-T; object (from
18.8% underestimation to 2.7% overestimation). Unfortunately, these results are rather
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inconclusive and further testing with the use of known test objects is required.
Preferably, an intermediate repetition time would be used (e.g. of 10 ms as suggested in
Section 4.3.2), and objects defining the range from T; ~260 ms to ~1300 ms to mimic
breast tissue. However, please note that in determining contrast agent concentration
(EQ. 4.14) the scale of R, (t) is larger than that of R, for long T;,. Therefore a 20% error
in a long T, estimate has less effect on the calculated contrast agent concentration than
a 20% error in a short T;, estimate.

Table 4.4 Flip angle correction factors calculated for the phantom
compartments B1 and B2.

Compartment (mM) Correction factor Correction factor
(Phantom B1) (Phantom B2)

0 (top) 0.81 1.02

0.1 0.92 0.87

0.2 0.84 0.84

0.3 0.87 0.84

0.4 0.89 0.87

0.5 (bottom) 0.91 0.89

mean t standard deviation 0.88 +0.04 0.89 £ 0.07

Volunteer scans

By scanning the reference phantom concurrently with a patient / volunteer we
can verify if the variable flip angle T;-mapping approach produces accurate T; values in
the presence of a patient / volunteer. As the above experiment did not provide
convincing evidence to advocate the use of the proposed flip angle correction method
(introduced in Section 4.3.2), we will limit ourselves to making a comparison between
the estimated T; values in the phantom compartments — using a variable flip angle
method — and the true values (IR gold standard).

Four volunteers (age 24 — 52, no contrast agent injected) were scanned with
reference phantom A present in the breast coil. The acquisition settings were: 3D fast
spoiled gradient echo, repetition time / echo time = 5.0/1.5ms, 6 =3, 5, 10, 15, 20, 30°,
NA = 3, acquisition matrix = 268 x 267, pixel spacing = 1.30 mm x 1.30 mm, thickness =
1.5 mm, spacing = 1.5 mm. In Figure 4.13 we show example images from the spoiled
gradient echo variable flip angle series acquired with an angle of 10°. For volunteers (a)
and (c) the compartments were arranged from low to high concentration in the chest-to-
nipple direction. In order to be able to distinguish location-dependent effects from
concentration-dependent effects, the arrangement was reversed for volunteers (b) and
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(d). We can see in the images that the 0 mM compartment has a low SNR and that the
tube diameter was fairly small.

Figure 4.13 Example images from variable flip angle series, 6 = 10°.
Volunteers (a) and (c) have the tubes arranged from low to high concentration
in the chest-to-nipple direction, while for volunteers (b) and (d) the
arrangement is reversed.

Fitting the signal-versus-angle curves measured in the phantom compartments,
we found T; estimates as provided in Table 4.5. As the compartments of phantom A
were too small to measure the standard deviation of each sample, we fitted the data
under the assumption of equal uncertainty on the samples (homoscedasticity), using Eq.
4.7. As the residuals equal zero for a two-point estimate we cannot provide an
uncertainty estimate for the T; estimates of the 0 mM compartment (Deoni range
limited to the two smallest flip angles). We can observe that the variation in found T}
values between volunteers is rather large. The variation seen in the provided
uncertainty estimates is due to the fact that long T; values are more difficult to estimate
(Haacke et al. 2007), but probably also due to differences in the number of included flip
angles (Deoni range).
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Table 4.5 Variable flip angle T, estimates in the phantom A compartments as
obtained for four volunteers.

Compartment Volunteer (a) Volunteer (b) Volunteer (c) Volunteer (d)

(mM) T4 (ms) T4 (ms) T4 (ms) T4 (ms)
0 3097 + - 2721 +- 3746 * - 4077 £ -

0.1 161512 1463 £ 24 1599 + 116 1353+ 169
0.2 1130+ 77 1005 + 25 938+4 845 + 58
0.3 692 + 65 795+ 14 487 £ 5 851+ 46
0.4 462 +7 638+ 14 486+ 4 629 +17
0.5 635+21 566 + 8 374+ 10 478 +4

In Figure 4.14 we plotted the variable flip angle T; estimates versus the gold
standard T; values. Considering the scale of the y-axis we again see rather large
differences between the volunteers, whereas the trends are similar. This similarity in
the trends — volunteers (a) and (c) versus (b) and (d) — indicates that there is no (strong)
location-dependent effect. We suspect that the T; estimates for the 0 mM
compartment are invalid due to insufficient SNR. As such long T; values (> 2 s) are not
expected in tissue, we can conclude that variable flip angle T; estimation works for
these data sets, but with limited accuracy; excluding the 0 mM compartment, the mean
deviation equals 19%. Interestingly, here we found T; values higher than the gold
standard values, whereas in the experiment with the test objects we found T; values
lower than the gold standard. A possible explanation may be the difference in tube size,
but it could also be the presence of a volunteer. Loading from the volunteer could have
reduced the efficiency with which the receive coil can detect signals and increased
spatial variation in B1. There was no difference in scanner or receive coil (Philips 1.5 T
Achieva plus 7-channel Invivo phased-array biopsy breast coil).
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Figure 4.14 Variable flip angle T, estimates for volunteers a-d (phantom A)
versus the gold standard values.

Patient scans

In later experiments we used phantom(s) with larger compartments (B1, B2) and
a longer repetition time (10 ms). Both factors should improve variable flip angle T;
estimation. If we can find accurate estimates in the compartments, the spoiled gradient
echo model assumption holds and we can have confidence in the T; estimates in the
tissue.

Here we present data for two patients: (a) a 55-year old woman and (b) a 50-year
old woman. Patient (a) had a small focus in the right breast and had a second-look scan.
With this patient only one of the phantom cups was used (B2). Because we could not
cover the whole breasts with the variable flip angle series, we did not capture the focus.
Patient (b) was scanned in the context of the high-risk screening program. She has a
personal history of cancer in the left breast and had had a biopsy in the right breast, that
had proved benign. With this patient both phantom cups were in place (B1, B2). The
additional scans were as follows: 3D fast spoiled gradient echo, repetition time / echo
time = 10/2.0 ms, 6 = 2.5, 5, 10, 15, 20, 25, 30°, NA = 1, acquisition matrix = 376 x 375,
pixel spacing = 0.98 mm x 0.98 mm, thickness = 1 mm, spacing = 1 mm. These scans
were also performed on a Philips 1.5 T Achieva scanner, but with a 16-channel Philips
MammoTrak phased-array breast coil, instead of a 7-channel Invivo phased-array biopsy
breast coil. The T; values as measured on the inner side of both breasts are reported in
Table 4.6. In Figure 4.15 we plotted the variable flip angle T; estimates against the gold
standard. Interestingly, the variable flip angle T, estimates are fairly accurate for patient
(b), i.e. close to the liney = x (mean deviation with 0 mM compartment excluded:
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14%), but for patient (a) we find a deviating trend, i.e. a relatively large overestimation
of T; (mean deviation with 0 mM compartment excluded: 53%). This may indicate that
patient-specific calibration is required (Eliat et al. 2004).

Table 4.6 Variable flip angle T, estimates in the phantom compartments (B1,

B2) as obtained for two patients.

Compartment Patient (a), right breast, Patient (b), right breast, Patient (b), left breast,
(mM) (Phantom B2) (Phantom B1) (Phantom B2)

Ty (ms) T, (ms) Ty (ms)

0 5085 + 746 2589 +330 2143 +330

0.1 2225 +218 1306 + 96 1283 +100
0.2 1170+ 79 896 + 61 886 + 34
0.3 948 + 58 711 +48 686 + 54
0.4 711+ 25 558 + 27 583 +37
0.5 578 +10 485+ 21 478 £ 20

5000 - B Patient (a), right breast, B2 n
© Patient (b), right breast, B1
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Figure 4.15 Variable flip angle T, estimates for two patients. Patient (a) was

scanned in the presence of one phantom (black symbols), patient (b) in the

presence of two phantoms (grey symbols).

For both patients we applied the T;-mapping procedure to the whole image data.

In Figure 4.16 we show the maps for patient (a) with use of all acquired flip angles (top)

and with use of the Deoni flip angle range (bottom). Per row the images are the same

but we applied different windowing. For patient (b) the same maps are displayed in
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Figure 4.17. For patient (a) the breasts appear symmetric (Fig. 4.16), while for patient (b)
the right breast displays higher T; values than the left breast. Possibly this is due to the
earlier-mentioned biopsy she had. If we look at the zoomed-in portion of the breast we
see that with the use of selected flip angles (bottom) we obtain a slightly sharper
contrast between voxels. In the corresponding histograms we see that the Deoni
selection results in a similar width, but shifts the distribution a bit towards lower values.
Especially in Figure 4.17 this shift appears a sensible correction, as the T; values, fitted
with use of all flip angles, are extremely high; i.e. in the range of pure water. As we have
extensively inspected the effects of the Deoni flip angle selection with phantom
solutions and found it to improve T; estimation, we conclude that its use also here
improves T; mapping. Note that in the tubes we found overestimation of T; for patient
(a), whereas looking at the tissue it is patient (b) showing very high T; values; as
mentioned, this could be pathologic.

In the next section, we will derive T; maps for these same two patients making
use of the empirical approach, as introduced in Section 4.3.3. We will then compare
these maps to those presented over here.
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Figure 4.16 Precontrast variable flip angle T; maps for patient (a). Top row:
all flip angles are used to fit T;; the same map is displayed twice with different
windowing, on the left the structure in the fatty tissue is emphasized, on the
right in parenchymal tissue. Bottom row: Deoni flip angle range is used,
windowing is the same as for the top row. The insets show a zoom of healthy
parenchyma in the right breast (left in image), as well as a histogram
corresponding to the drawn ROI. There is little difference between the
methods, except for slightly higher contrast with use of the Deoni selection.
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Figure 4.17 Precontrast variable flip angle T; maps for patient (b). Same type
of maps as in Figure 4.16. Note that the right breast — that was biopsied —
displays a higher T; than the left breast; we therefore placed the ROl in this

potentially pathologic area. Here the difference between the two methods is

more distinct than for patient (a); with the Deoni selection we see more
variation in T;.
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4.6.3 Clinical T, quantification: empirical calibration

Here, we empirically calibrate the relationship between signal intensity and T;
for the same two patients as in the previous section by making use of the reference
phantom. We use a combination of Equations 4.11 and 4.13 to estimate precontrast T;
in the tissue:

PD¢issue Sref Tiref

Tl,tissue -

PDphantom Stissue [4.19]
in which PDyjsye/PDppantom is estimated as a single factor from a low-flip angle
acquisition. Its settings were: 3D fast spoiled gradient echo, repetition time / echo time
=10/2.0 ms, 6 = 2.5°, NA = 1, acquisition matrix = 376 x 375, pixel spacing = 0.98 mm x
0.98 mm, thickness = 1 mm, spacing = 1 mm (same as in the above patient experiment).
The T;-weighted image that represents a precontrast dynamic was acquired with the
same settings except for 8 = 20°. In Figure 4.18 we show for both patients the acquired
signal versus the contrast agent concentration for both these acquisitions to
demonstrate that the low-angle images show little T;-weighting, whereas the weighting
is clearly present in the higher flip angle images. For display purposes we scaled the
signals in between 0 and 1 (the PD-weighted images will be shown in the next section).
To extract the PD-correction factor (PDyssye/PDpnantom) from the low-angle image, we
used the mean signal in the phantom compartments and a large ROl in one of the
breasts. For patients (a) and (b) we found a factor of 0.27 and 0.25, respectively.

| Patient (a), right breast, B2: ==
1.0+ B 0=25 0 0=20° é
1 Patient (b), right breast, B1:
08_ ® 0=25" 0o =20
T | Patient (b), left breast, B2: %
E} 1 A 0=25 A p=20°
»n 0.6
o > B
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S04l =1
@® < :
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= E = 2
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0.2 §
0
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Figure 4.18 For both patients: low-flip-angle images show litte variation with

increasing contrast agent concentration (decreasing T;), whereas higher flip
angle images demonstrate a signal increasing with concentration.
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The main assumption in the proposed empirical calibration of T; (Section 4.3.3,
Medved et al. 2004) is that we can find a constant that equals S - T; (Eq. 4.10). In the
phantom compartments we found S - T; to be constant with a standard deviation of 16%
(both patients). Deviations did not appear to be a function of T;. We therefore
conclude that Equation 4.19 is applicable.

In Figures 4.19 (patient a) and 4.20 (patient b) we show the obtained T; maps.
They can be directly compared to Figures 4.16 and 4.17, respectively, as they consider
the same patients, the same slices, and are displayed with the same windowing.
Comparing the maps obtained for patient (a), we obtain a smoother map with a more
narrow distribution and a lower mean value (37% lower compared to Deoni variable flip
angle map). For patient (b) we obtain a smoother map as well, but here the T;
distribution is more similar to the one presented in Fig. 4.17. The narrowing of the
distribution can be a sign of less error propagation — the empirical method does not
require a fit like the variable flip angle method — but it could also mean a loss of contrast
due to the assumption of a constant factor describing S - T;. Note that the distinct
asymmetry we saw for patient (b) is no longer present using the empirical calibration.

s 6T o
)
cpt¥¥

“mﬂ.lknﬂl L |l

1000 2000 2000 4000

Figure 4.19 Empirical T, map for patient (a). The same map is displayed twice
with different windowing, on the left the structure in the fatty tissue is
emphasized, on the right in parenchymal tissue. The insets show a zoom of
the right breast with the corresponding histogram. The ROl is placed at the
same position as in Figure 4.16.
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Figure 4.20 Empirical T, map for patient (b). The ROl is placed at the same
position as in Figure 4.17.

As we assumed tissue proton density for the whole image, the signal intensities
displayed in the phantom compartments are not representative of their T; values. This
is because we applied the PD-correction as a single factor, but this could also be done in

a voxel-wise manner.

Finally, to enable a comparison of the estimated T; values to literature, we listed
some references for estimates obtained at 1.5 T in Table 4.7. Looking for instance at the
T, estimates we obtained for patient (a) in normal parenchyma (focus not present in this
slice), with the variable flip angle method the majority of the voxels in the ROI displays a
T, above 1000 ms, whereas with the empirical approach the majority lies below 1000 ms.
In literature T; values in normal parenchyma are below 1000 ms (e.g. Merchant et al.
1993 and Liney et al. 1999), so for patient (a) the empirical approach produces T;
estimates that are more consistent with literature. For patient (b) we found with both
approaches a mean T; larger than 2's. Compared to the values listed in Table 4.7, this is
extremely high.
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Table 4.7 Breast tissue T, values reported in literature.

Tissue type T4 (ms) Reference
Fibrous breast tissue 932 (Bottomley et al. 1987)
Normal parenchyma 796 (Merchant et al. 1993)

774 (Liney et al. 1999)
Adipose breast tissue 509 (Bottomley et al. 1987)
265 (Merchant et al. 1993)

227 (Liney et al. 1999)
Miscellaneous breast 988 (Bottomley et al. 1987)

tumors

Breast carcinoma 961 (Bottomley et al. 1987)
Malignant breast tumor 876 (Merchant et al. 1993)
Fibroadenoma 1093 (Bottomley et al. 1987)
Benign breast tumor 1049 (Merchant et al. 1993)

4.7 Results: tissue proton density mapping

As explained in Section 4.4 and applied in the previous section, we can measure
the apparent tissue proton density by extracting the ratio between the tissue signal and
the phantom solution signal from a low-flip-angle image (Eq. 4.13). The acquisition
settings for the low-flip-angle images for patient (a) and (b) were listed in the previous
section. Here, we show the acquired images in Figure 4.21.

As mentioned in the previous section, we found PDy;ssye/PDpprantom ratios of
0.27 and 0.25 for patients (a) and (b), respectively. In other experiments (not reported
here) we found consistent values in the range from 0.25 to 0.30 as well. If we assume
our phantom compartments to represent pure water proton density, this would mean
that the apparent mobile water content of breast tissue equals ~30%. This is remarkably
low. There is limited literature available, but for instance Stark and Bradley (1999)
report 90% proton density for fat and 75% for muscle tissue. This matter therefore
requires more investigation. However, if this is what we measure in our setup (i.e. a low
apparent proton density), the ratio may well be applicable to images acquired with the
same setup, even if the ratio is not a correct measure of proton density.
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Figure 4.21 Low-angle image (6 = 2.5°); left for patient (a), right for patient

(b). Phantom compartments display similar signal intensities because there is
little to no T,-weighting. There is also little contrast in the tissue.

4.8 Results: concentration images

To convert the dynamic contrast-enhanced series to contrast agent
concentration we make use of the empirical approach as discussed in Section 4.5. As
mentioned, the dynamic sequence used in our practice is not purely spoiled-gradient-
echo based, and therefore the model-based approach was not pursued. For the same
two patients as above, the series was acquired with: 3D fat-suppressed T;-TFE (turbo
field echo, eTHRIVE), repetition time / echo time = 5.5/2.7 ms, 8 = 12°, NA = 1,
acquisition matrix = 472 x 472, pixel spacing = 0.75 mm x 0.75 mm (patient a) / 0.69 mm
x 0.69 mm (patient b), thickness = 2 mm, spacing = 1 mm, number of slices = 200,
parallel reduction factor in plane / out of plane = 3/2, temporal resolution = 65 s, 7
dynamics. We used the same proton density ratios as presented in Section 4.6.3 to
correct for a difference in proton density between the tissue and the phantom
compartments. We analyzed the slices corresponding to the earlier presented spoiled
gradient echo data.

To extract a constant for S - Ty, here, all volumes of the dynamic series were used,
providing a mean estimate. For patient (b), due to the presence of artifacts, this
constant was estimated from the phantom compartments in a different slice than the
one presented below. In addition, due to the same artifacts, not all phantom
compartments could be used (both patients). We will return to this matter in the next
section. The signal intensity measurements (as well as the artifacts) demonstrated little
variation between dynamics. We found S - T; to be constant with a standard deviation
of 18% (patient a, using compartments: 0, 0.1, 0.2 mM) and 19% (patient b, using
compartments: 0.1, 0.2, 0.4 mM). Deviations appeared to show a downward trend with
increasing contrast agent concentration (decreasing T;), but not yet significant. We
therefore proceeded under assumption of a constant factor.
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The precontrast volume of the dynamic series was used to derive the precontrast
T, map (in Section 4.6.3 we used a spoiled gradient echo image acquired with 6 = 20° to
represent a precontrast volume), as presented in Figure 4.22. Note that here the
distribution is more narrow than those presented in Figures 4.16 (patient a) / 4.17
(patient b) where we applied variable flip angle T;-mapping, as well as those presented
in Figures 4.19 (patient a) / 4.20 (patient b) where we applied the empirical approach to
a spoiled gradient echo image. In addition, the mean value is lower. Due to suppression
of the fat component, the T; estimates in fatty areas are unreliable.

To recapitulate the different T; estimation methods, we listed the means and the
standard deviations (std) of the T, distributions for patients (a) and (b) in Table 4.8.
Here we can also see that with use of the dynamic sequence (turbo field echo) we do
not find a distinct difference between the two patients, as was seen with the other
approaches. As the T; estimates are proportional to PDy;ssye/PDpnantom (EQ- 4.19), the
reason for lower values can be due to the fact that the ratio found there (spoiled
gradient echo) may not be applicable to the sequence applied over here (turbo field
echo). In addition, the estimates are also proportional to Sy * Ty 5 (EQ. 4.19). The
assumption of a constant value could have led to a more narrow distribution; i.e. in case
S - T, really has a downward relationship with concentration, high T; values are
underestimated whereas low T; values are overestimated. Then again, the mean T}
values as found in this section are in agreement with those reported in the literature
(Table 4.7), so we cannot assume that these outcomes are aberrant, only because they
differ from the earlier presented results. Therefore, we continue to use the obtained
precontrast T; maps (empirical calibration applied to turbo field echo precontrast data)
to demonstrate their usage for the conversion to contrast agent concentration.

Table 4.8 Summary of estimated T, distributions for patients (a) and (b) with
different approaches.

T, estimation Type of date Patient (a) Patient (b)
method T, (mean * std ms) T1 (mean * std ms)
Variable flip angle using T,-w SPGE 1406 + 791 2518 + 976
all angles
Variable flip angle using T,-w SPGE 1361 + 940 2104 +988
Deoni range
Empirical calibration T,-w SPGE 862 + 601 2081 + 1015
Empirical calibration T;-w TFE 655.9 + 388.9 685+ 374
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Figure 4.22 Empirical precontrast T, maps derived from the precontrast
dynamic volume. Top: patient (a), bottom: patient (b). Note the narrow
distribution compared to those presented in Figures 4.16 / 4.17 (variable flip
angle approach) and Figures 4.19 / 4.20 (empirical approach applied to spoiled
gradient echo image).

To calculate postcontrast T;-maps we apply the same equation (4.19) as for the
calculation of the precontrast T; -maps. Using Equation 4.18 we can derive
concentration images making use of both the pre- and postcontrast maps. In Figure 4.23
we display the calculated concentration images for patient (b) side by side with the
subtraction images, i.e. signal(postcontrast) — signal(precontrast). The
subtraction images are provided to enable a comparison to the current clinical method
of assessing enhancement. The first dynamic is shown in signal intensity as the
concentration level equals zero at time zero. We see a comparable level of detail
between the concentration images and the subtraction images, while the enhancing
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structures appear slightly more distinct in the concentration images. The similar
(smooth) image quality can be addressed to the fact that the empirical approach does
not require fitting of curves. Here we cannot make the comparison — although we see a
distinct difference in smoothness in the T;, maps — but likely empirically calculated
concentration images are more suitable for quantitative morphology than those
obtained via a model-based approach, as the latter requires fitting. For (pharmaco-)
kinetic analysis the smoothness may be less important.

We have demonstrated an empirical approach to calculation of contrast agent
concentration. We conclude that the approach produces high-quality concentration
images that can be used for both morphologic and kinetic analysis. The empirical model,
i.e. S - T, = constant, may need adaptation to the specific dynamic sequence, for
instance, it could be approximated with a linear or exponential function. Certain
suppression or filter techniques can hinder use of the reference phantom for empirical
calibration, as discussed next.
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Figure 4.23 Calculated concentration images (left) and subtraction images for

patient (b). The level of detail is comparable. Contrast appears better in the
concentration images (less background enhancement).
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4.9 Artifacts arising in DCE-MRI series

As mentioned in the previous section, we could not always perform ROI
measurements in the phantom compartments as they were sometimes obscured due to
artifacts. We found that compartments situated further away from the body were more
often suppressed than those near the body. Probably, approaching the edges of the
field of view, inhomogeneity of the BO field causes the compartment signal to shift into
the fat-frequency band that is suppressed. In Figure 4.24 we show two examples, i.e.
volunteers (c) and (d) (see Section 4.6.2). For volunteer (c) both the bottom (exceptional)
and top compartments are affected, whereas for volunteer (d) the top three
compartments are affected, causing ghosting artifacts.

Figure 4.24 ‘Precontrast’ (no contrast agent was administered) dynamic scans
of volunteers (c) and (d) with an acquisition comparable to the one presented
in this section.

It also appears that these artifacts are worse with smaller patients; as the
distance between the breasts and the phantoms increases it is more likely that filters
suppressing noise outside the breasts act on the phantom signal. In Figure 4.25 we
show an extreme case (patient b) for which we investigated the separate roles of fat-
suppression and noise-suppression (CLEAR). The images are displayed as with the
automatic windowing on the workstation. As you can see, the combination of fat- and
noise-suppression can make the phantom compartments practically invisible. Using only
fat-suppression we can see the compartments, but they appear ‘empty’ (we stress that
this is the most extreme case we have seen). In case fat-suppression is not applied
(bottom row), we obtain useable images. Interestingly though, the balance between the
signal intensities in the tissue and in the compartments is very different with or without
noise-suppression. Caution for such effects is needed in the application of the empirical
approach.
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+ fat-suppression + fat-suppression
+ noise-suppression - noise-suppression

- fat-suppression - fat-suppression

+ noise-suppression - noise-suppression

Figure 4.25 Dynamics as acquired for patient (b) (at the end of the true
dynamic series), with /without fat-suppression, as well as with / without noise
suppression. Especially fat-suppression plays a large role.

4.10 Discussion

In this chapter we have discussed and demonstrated two main pathways (Figure
4.1) towards quantification of contrast agent concentration. A central role was given to
the reference phantom that was developed in-house at the University of Chicago.

4.10.1 Clinical T, quantification

As both the model-based as well as the empirical pathway require precontrast
T;-mapping, we thoroughly investigated the best way to apply a variable flip angle
approach, e.g. by flip angle selection and verification / correction with use of the
reference phantom, as well as an empirical approach making use of a calibration
constant derived from the reference phantom. The methods produced different results:
the mean T; estimates in the parenchyma were higher with the model-based approach
and showed a broader distribution, especially in comparison to the empirical T; maps
derived from the precontrast dynamic volume (sequence: turbo field echo). At current
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time, we do not have the means to assess if one pathway produces more accurate maps
than the other.

Selection of flip angle range

In test experiments the flip angle selection method improved T; estimation by
excluding uncertain or biased samples (samples: flip angles) from the variable flip angle
fitting process. We therefore believe that application of the Deoni selection results in
improved T; estimation in tissue as well. In our data we did not always encounter a
clear pattern of increasing uncertainty while moving away from the Ernst angle; more
pronounced was the appearance of biased samples. The Deoni selection however also
worked well to exclude these biased samples. Their cause is unclear, they occur both in
the lower as well as in the higher angle range.

Flip angle correction factor

The variable flip angle correction method did not prove to produce more
accurate T; estimates, but deserves a closer look as the validation experiment was
suboptimal. The presence of the phantom was still useful for variable flip angle T;
quantification, as it provided a way to assess T; accuracy, which varied from patient to
patient; e.g. for patient (a) we found a mean error of 53%, whereas for patient (b) we
found a mean error of 14%. With a larger group of patients it would be possible to
assess the robustness of variable flip angle T;-estimation making use of the reference
phantom. Moreover, it could be studied if a potential (location-dependent) correction
factor should be determined per patient (Eliat et al. 2004), or if such a factor translates
well from patient to patient. In the latter case, it would not be necessary to scan the
phantom with every patient.

Empirical calibration

The empirical approach was inspired by the fact that current clinical DCE-MRI
sequences are often not (purely) spoiled-gradient-echo-based. The advantage of an
empirical approach is that the theoretical signal model does not need to be known. In
literature, phantom calibration is often combined with a signal-model-based approach
(De Bazelaire et al. 2005), but, as we have shown here, it does not need to be. As
mentioned, the empirical relationship can be adapted to match the specific dynamic
sequence. A calibration based on a phantom-only experiment does not account for the
presence of the patient and the (semi-)automated shimming procedure, we therefore
advocate concurrent scanning of the phantom with the patient. In comparison to the
model-based variable flip angle T; -estimation approach, the empirical approach
produces smoother T; maps. If the cause for this difference is less noise propagation,
the use of empirical T; maps in the subsequent calculation of concentration images has
the advantage of visually better interpretable concentration images. Because in the
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empirical approach we compare signal intensities measured at different locations (i.e.
phantom location versus locations within the tissue) it could be beneficial to estimate
the sensitivity profile of the breast coil and to use this profile in the calculations.

4.10.2 Concentration images

The concentration images as produced with the empirical approach show the
same level of detail as subtraction images, with slightly better perceived contrast
between enhancing and non-enhancing structures. Further testing should point out if
the concentration images are really of equal quality as the subtraction images. If that is
the case they can be used to assess morphology, in addition to kinetics. We propose a
multicenter study, where the participants explicitly are not asked to match their DCE-
MRI acquisitions, but instead to place the reference phantoms in the breast coil and to
add a few (at least one) scans for the purpose of quantification to the clinical protocol.
The conversion from signal intensity to contrast agent concentration with use of the
reference phantom should result in inter-institute comparable data.

Some studies advocate that there is no need to measure precontrast T; for the
conversion to contrast agent concentration; that it is sufficient to assume a mean T; and
use that in the calculation (e.g. Li et al. 2009). However, the often-cited paper by
Haacke et al. (2007) clearly mentions that this only holds for relative measures, for
instance comparing pre- and post-treatment status. The reason for choosing a fixed T;
is to save scan time and to reduce error propagation from the fitted variable flip angle T;
maps. As we have shown in this chapter, empirical calibration may offer an attractive
alternative.

4.10.3 Study limitations

A limitation of the final design of the reference phantom is the use of an aqueous
solution; ideally air-bubble free agar would be used (Mustafi et al. 2009). This however
asks for a design in which the tubes are well-protected, which may take up too much
space in the phantom coil. That is in any case a problem; with some patients it is not
possible to add a phantom in the coil. A possible solution would be to integrate the
phantom with the coil. Another reason to switch to agar is that with agar it would
become possible to mimic tissue in more aspects than just T, for instance also in the
aspect of magnetization transfer between water and macromolecules.

An important limitation of the acquisition protocol was that the scans for
guantification consisted usually of only 15 slices. We could therefore not cover the
whole breasts. We chose this number of slices to limit the additional scan time to
approximately 5 minutes. The applied scans were relatively slow (~ 1 minute per flip
angle) because for quantification purposes we wanted to apply very basic sequences (no
parallel imaging for instance), to produce data matching the spoiled gradient echo
model. To make the protocol applicable for clinical practice the number of slices has to
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be increased and the acquisition has to be speeded up. It should however be tested first
how this affects signal quantification.

4.10.4 Recommendations

To improve the calculation of contrast agent concentration images, it could be
beneficial to correct for receiver coil inhomogeneity, for instance by correcting for the
variation in a breast coil / body coil ratio map, which is especially important for the
empirical approach. In addition, B1-mapping or use of a multi-transmit coil could help to
correct for B1-inhomogeneity.

As mentioned in Jansen et al. 2009b, another factor contributing to the
appearance of a contrast uptake curve is the k-space profile ordering of the acquisition.
We demonstrated in Heisen et al. 2007b, that different k-space profile orderings lead to
differences in descriptive curve type classification (but this just as well holds for
pharmacokinetic analysis). The influence of the profile ordering cannot be assessed with
a static phantom and therefore remains an open issue to be solved.

4.10.5 Conclusion

In conclusion, we developed a reference phantom that can be used routinely to
verify, correct, or calibrate the relationship between contrast agent concentration and
the acquired signal intensity. We suggested different approaches, model-based as well
as empirical, requiring a few (~ 6) or one additional scan, respectively. With only very
limited time available, we would recommend choosing the empirical calibration method
over the dual-flip-angle approach. As standardization of the DCE-MRI protocol is
unrealistic, the acquired signal should be standardized via a conversion to contrast agent
concentration.
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Abstract

We investigated the influence of the temporal resolution of dynamic contrast-
enhanced MRI data on pharmacokinetic parameter estimation. Dynamic gadodiamide-
enhanced MRI data of implanted prostate tumors on rat hind limb were acquired at 4.7
T, with a temporal resolution of ~¥5 s. The data were subsequently downsampled to
temporal resolutions in the range of 15 s to 85 s, using a strategy that involves a
recombination of k-space data. A basic two-compartment model (Tofts) was fit to the
contrast agent uptake curves. The results demonstrated that as temporal resolution
decreases, the volume transfer constant (K"%") is progressively underestimated (~4%
to ~25%), and the fractional extravascular extracellular space (v,) is progressively
overestimated (~1% to ~10%). The proposed downsampling strategy simulates the
influence of temporal resolution more realistically than simply downsampling by
removing samples.
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5.1 Introduction

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) plays an
essential role for cancer detection and characterization. Ideally, DCE-MRI data would be
acquired with high spatial and high temporal resolution to fully exploit both the
morphologic and kinetic information. However, there is always a trade-off between
spatial and temporal resolution with currently available equipment and techniques (Kuhl
et al. 2005a). Therefore, a wide range of temporal resolutions is encountered for clinical
DCE-MRI. For instance, according to the European Society of Breast Imaging (Mann et
al. 2008), a sampling time (T) of 60 s — 120 s is recommended for high spatial resolution
bilateral acquisitions.

A widely used pharmacokinetic model to fit DCE-MRI data and extract physiologic
parameters is the basic Tofts model (Tofts et al. 1999). To accurately fit this model to
DCE-MRI data, Henderson et al. (1998) recommended that contrast agent uptake in the
breast be sampled every 16 s to estimate the volume transfer constant (K*"%"%) and the
fraction of extravascular extracellular space (v,). For the extended model — taking the
blood plasma fraction (13,) into account — their recommendation was to sample every 4
s. The arterial input function (AIF), however, was suggested to be sampled every
second. Other work usually did not make a distinction between contrast agent uptake
sampling and AIF sampling (Aref et al. 2007, Ramirez et al. 2007) or focused on AlF
sampling (Aerts et al. 2008). Most previous studies investigated the effect of low-
temporal resolution on pharmacokinetic parameter estimation by downsampling high-
temporal-resolution data while assuming an instantaneous collection of k-space data
(Aref et al. 2007, El-Khouli et al. 2008, Gal et al. 2007, Henderson et al. 1998); except for
Ramirez et al. 2007, who used a sliding temporal window.

The purpose of this study is to investigate the effect of the temporal resolution of
DCE-MRI data on pharmacokinetic parameter estimation. Because the contrast agent
concentration is changing during a low-temporal-resolution acquisition, the contrast
agent uptake observed in the tissue is influenced by the k-space profile ordering. To
mimic this effect and simulate DCE-MRI data at different temporal resolutions, a realistic
downsampling strategy is introduced that involves a recombination of k-space data. The
method is applied to high-temporal-resolution rodent DCE-MRI data acquired with a 4.7
T animal scanner.

5.2 Theory

5.2.1 Downsampling strategy

In our downsampling strategy, the transient effect of contrast agent uptake is
incorporated by mimicking an MRI data acquisition. To simulate a linear k-space profile
ordering, equal fractions of k-space data are taken from a series of successive high-
temporal-resolution k-space images. For instance, using 5 s resolution k-space data to
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simulate the first image ‘acquired’ at a T of 15 s, we recombine the first one-third of k-
space lines from the 5 s image, the second one-third from the 10 s image, and the third
one-third from the 15 s image. The second image at T of 15 s is derived from the k-
space images acquired at 20 s, 25 s, 30 s, etc. The recombination for the above example
is defined as:

St =S35(k=1,..,Ny/3) + S3i-1(k =N,/3+1,...2N,,/3) +
Ssi(k=2N,/3+1,..,N,), [5.1]

where S#(i = 1, ..., Ng/3) is the i*®downsampled k-space image; Ny is the number of
dynamic repetitions; S;(k) is the k" phase-encoding line of the it" original k-space
image; and N, is the total number of phase-encoding lines. We call this strategy “k-
space-based sampling”.

The results obtained with k-space-based sampling are compared to the results of
downsampling by omitting intermediate time points of the contrast agent uptake
curves, which implies the assumption of instantaneous k-space data collection (Gal et al.
2007, Henderson et al. 1998). This strategy is referred to as “direct sampling” in the
remainder of this work.

5.2.2 Pharmacokinetic model
In this study, the basic Tofts model (Tofts et al. 1999) is applied:

dcC(t) — Ktrans (Cp(t) _

Ce(t)
dt Ve

). [5.2]
where v, is the fraction of extravascular extracellular space (EES); K™ (min™) is the
volume transfer coefficient between blood plasma and EES; C, (mM) is the contrast
agent concentration in the blood plasma space; and C; (mM) is the contrast agent
concentration in the tissue of interest. We found in Chapter 3 that this model is the only
model that is fairly robust against low-temporal resolution.

For the data used in this research, Cp(t) is derived from the contrast agent
uptake in skeletal muscle, using the reference tissue approach, assuming literature
values for K% (= 0.11 min™) and v, (= 0.20) (Kovar et al. 1998). To minimize noise
propagation, the muscle curve was fit with an empiric mathematical model (Fan et al.
2004) prior to this derivation.

To investigate the effect of a varying temporal representation of the contrast
agent uptake in tissue as the only changing variable, we exclude the effect of a
temporally downsampled AIF in this study (we will return to this matter in Chapter 6).
Therefore, the original high-temporal-resolution AlFs are used across all temporal
resolutions.
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5.3 Materials and methods

5.3.1 Animals and imaging protocol

Copenhagen rats (n = 6) with implanted AT6.1 prostate tumors on the hind limb
were used in this study. Multi-slice T;-weighted gradient echo images (repetition time /
echo time = 40/3.5 ms, matrix size = 128 x 128, field of view = 40 mm x 40 mm, flip angle
= 30°, k-space profile ordering = linear, slice thickness = 1 mm, number of slices = 3)
were acquired through the center of the tumor along the long axis of the leg with a
temporal resolution of 5 s at 4.7 T (Bruker, Billerica, MA, USA), before and after
gadodiamide (Omniscan, GE Healthcare, Piscataway, NJ, USA) injection, for a total
duration of ~10 min. The contrast agent was manually injected as a bolus (duration < 5
s). Each rat received the same amount of contrast agent, i.e. 3.2 x 102 mmol,
corresponding to a dose of 0.2 mmol kg™ for a weight of 160 g. To account for variations
in rat weight, the contrast agent concentration was normalized to this typical dose. The
exchange of contrast agent on the microvascular scale was assumed to be similar
between rats and humans.

Animals were anesthetized prior to imaging experiments, and anesthesia was
maintained during imaging at 1.5% isoflurane. The temperature was maintained at 37 °C
with a warm air blower. Heart rate, respiration rate, and temperature were monitored
during the MRI experiments. All the data were acquired at the University of Chicago and
procedures were carried out in accordance with the institution’s Animal Care and Use
Committee approval.

5.3.2 Calculation of contrast agent concentration

All data processing was performed in Matlab (Mathworks, Natick, MA, USA). To
apply the pharmacokinetic model, DCE-MRI signal intensity curves were converted to
contrast agent concentration curves (C.(t)) using a previously published reference
method (Medved et al. 2004). The precontrast reference was taken from a user-defined
region of interest in muscle (9 x 9 voxels) that was not directly neighboring the tumor. A
precontrast T; value of 1285 ms for muscle (Marzola et al. 1999) and a relaxivity value of
4.3 mM* s (Furman-Haran et al. 1996) were used in the calculations.

5.3.3 Enhancing tumor segmentation

A single slice, showing most of the tumor area, was selected for further analysis
and simulations. A background mask, based on a largest-connected-component and
hole-filling algorithm, was first applied. Secondly, an image was constructed consisting
of the maximum concentration level encountered in each voxel during the time course
of the dynamic series. During the time course of 10 min, necrotic enhancement was not
expected. Finally, a semi-automated connected-component algorithm was applied to
this image to obtain a contiguous segmentation of the enhancing tumor tissue. The
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threshold was manually adjusted to ensure inclusion of most of the enhancing tumor
tissue, resulting in a threshold range of 0.034 mM to 0.070 mM.

5.3.4 Fitting routine

To fit the pharmacokinetic model to the data, a golden section search method
was implemented (Press et al. 1996, see Chapter 2, Section 2.6.1). The driving force of
the golden section search was the minimization of the goodness-of-fit measure R%. To
facilitate the calculation of R?, the temporal resolution of C,(t) was increased to the
temporal resolution of C,(t) by linear interpolation; i.e., in the event that C,(t) had a
lower temporal resolution than C,,(t) (C,(t): Ts =5, C;(t): Ts = 55— 855s). The starting
section for K79 was [0.001 min™ — 1.0 min™] and for v, it was [0.01 — 1.0]. The search
section was narrowed down for Kt"3" and v, until the difference between the lower
and upper boundary was less than 10 min™ or less than 107, respectively. The fitting
routine was applied to voxels with significant contrast agent uptake, i.e., to voxels with a
maximum uptake higher than 0.02 mM.

5.4 Results

5.4.1 Enhancing tumor segmentation

Figure 5.1 shows precontrast T;-weighted images and postcontrast subtraction
images for all six cases. The enhancing tumor segmentations are shown in the last
column. Except for case 6, all tumors developed a non-enhancing, possibly necrotic,
core. Therefore, only the periphery of the tumor was segmented for cases 1 to 5. The
enhancement patterns vary from primarily early rim enhancement (case 2) to more
global enhancement (case 4).

5.4.2 k-space-based downsampling

The k-space-based sampling strategy (Eqg. 5.1) is illustrated in Figure 5.2 for case
1. In this example we demonstrate downsampling from Tg =5 s to Tg = 15 s. The three
consecutive sections of k-space data (top row images) add up to a new k-space image,
which is equivalent to a k-space image acquired with T, = 15 s. Each section of k-space
data, as well as the summation of the three, can be Fourier transformed to form an
image (bottom row images). As expected, the central part of k-space data (low
frequencies) is dominant in determining the overall signal intensity, whereas the outer
parts of k-space data (high frequencies) define the details. In an equivalent way, smaller
sections were combined to form new data sets at temporal resolutions of 30 s, 45 s, 60
s, and 85 s.

For the same example (case 1), the mean contrast agent uptake curves (all
temporal resolutions) for the enhancing tumor segmentation are shown in the plot (Fig.
5.2). As anticipated, low-temporal resolution had more effect on the early phase than
on the late phase. The k-space-based sampling strategy demonstrates that low-
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temporal-resolution curves do not necessarily consist of points taken from the original
curve at regular intervals, as is assumed by direct sampling.

case 1, precontrast post{1 min) - pre post(S min) - pre post(10 min) - pre segmentation

Figure 5.1 For six cases (rows), from left to right: precontrast image,
subtraction image at 1 min, subtraction image at 5 min, subtraction image at
10 min, and the enhancing tumor segmentation. The in-plane resolution is
0.31 mm x 0.31 mm. Images were cropped to a height of ~2.1 cm for display
purpose. Except for case 6, all tumors developed a non-enhancing core.

5.4.3 Pharmacokinetic analysis

The k-space-based and direct sampling strategies were both applied to all six
DCE-MRI experiments. The original 5 s and the equivalent lower-temporal-resolution
(15 s up to 85 s) contrast agent uptake curves were all fitted with the same
pharmacokinetic model to estimate Kt"%" and v,. Tables 5.1 and 5.2 show the results
of fitting the mean contrast agent uptake curves for, respectively, k-space-based and

direct sampling. It can be seen (Table 5.1) that the underestimation of Kt"4"s

as a
function of temporal resolution is quite consistent. It varies from ~3% (T; = 15 s) to

~25% (T = 85 s). For v,, the overestimation varies from ~1% to ~10%.
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Figure 5.2 |llustration of the downsampling strategy (from T; =5 s to Tg = 15
s) mimicking a linear k-space profile ordering, applied to case 1. First row of
images: three consecutive parts of k-space data add up to a new set; second
row: the corresponding images. Plot: the mean contrast agent uptake in the
enhancing tumor segmentation for case 1 at all temporal resolutions.
Especially during the initial phase, the uptake curves do not overlap.
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Although the central k-space portion did not necessarily come from one 5 s k-space
image (e.g., at T, = 30 s), this did not affect the overall tendency of the estimation
errors. While direct sampling (Table 5.2) roughly shows underestimation of Kt"%"S and
overestimation of v,, the influence of temporal resolution appears smaller than with k-
space-based sampling. This implies that the assumption of instantaneous k-space data
collection (direct sampling) is inappropriate, as it prevents us from fully simulating the
effect of low-temporal resolution. For all fits, R?-values were within a range of 0.77 —
1.00 (mean R? = 0.93 + 0.05).

Table 5.1 k-space-based sampling: change in K% (top) and v, (bottom)
estimated from the mean contrast agent uptake in the enhancing tumor tissue
across all temporal resolutions.

5s 15s 30s 45s 60s 85s
Case # K'ans (min™) Percentage change — K" (%)

1 0.21 -3.4 -9.7 -14.3 -19.5 -27.2
2 0.16 -33 -9.7 -13.2 -17.3 -22.8
3 0.15 -3.0 -8.0 -13.0 -16.0 -22.5
4 0.32 -4.0 -9.0 -13.0 -18.0 -26.0
5 0.21 -3.2 -8.6 -13.2 -18.0 -24.9
6 0.23 -4.2 -12.0 -14.8 -20.8 -28.8

v, Percentage change - v, (%)
1 0.54 0.7 2.1 3.4 5.0 8.8
2 0.69 14 4.4 6.5 9.1 14.2
3 0.58 0.8 3.0 5.6 8.1 12.8
4 0.83 1.1 2.1 3.2 5.0 8.7
5 0.62 0.8 2.1 3.8 5.4 8.8
6 0.49 0.6 1.7 2.4 4.6 7.1
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Table 5.2 Direct sampling: change in K"%" (top) and v, (bottom) estimated
from the mean contrast agent uptake in the enhancing tumor tissue across all
temporal resolutions.

5s 15s 30s 45s 60s 85s
Case # K'ans (min™) Percentage change — K" (%)

1 0.21 -0.6 -3.0 -6.6 -11.8 -19.7
2 0.16 -0.5 -0.5 -1.7 -5.2 -11.8
3 0.15 0.5 -0.6 -4.3 -6.8 -15.8
4 0.32 -0.3 -2.2 -6.4 -12.4 -22.3
5 0.21 -0.6 -3.2 -6.8 -12.1 -19.3
6 0.23 -0.8 -3.1 -6.1 -12.8 -21.4

v, Percentage change - v, (%)
1 0.54 0.1 0.3 0.7 2.3 4.9
2 0.69 0.1 -0.1 0.4 1.9 5.9
3 0.58 -0.3 0.2 1.0 1.7 5.8
4 0.83 0.2 0.3 1.0 2.4 5.0
5 0.62 -0.2 0.3 1.0 2.7 5.0
6 0.49 -0.1 0.5 0.9 2.0 3.4

In addition to the above mean contrast agent uptake analysis for the tumor
region of interest, we also performed voxel-wise fitting using data derived with k-space-
based sampling. The parametric color maps of Kt"%" and v, for cases 4 and 6 were
selected as examples (see Fig. 5.3) to show the difference between a tumor with (case 4)
and without (case 6) a non-enhancing core. At first glance, the estimates of K% and
v, appear to be quite robust against temporal resolution, especially in muscle. A closer
look shows that the ‘hot spot’ areas present on the original K" maps become less
distinct with decreasing temporal resolution. The location of the tumor, however,
remains visible up to a temporal resolution of 85 s. For v,, there appears to be little
influence of temporal resolution. The high v, values in the tumor rim (case 4) indicate
the limitation of the model under study. For these curves, an unrealistically large v, is
required to obtain an accurate fit.
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Figure 5.3 Columns one and two show K% and v, for case 4. Columns three
and four show K% gnd v, for case 6. From top to bottom temporal
resolution decreases (T =5s, 155, 30s, 45 s, 60 s, and 85 s). These two cases
are selected to show the difference between a tumor with and without a non-
enhancing core.

Finally, to see if the observed trends for estimation errors in K"9"S and v, (Table
5.1) were statistically significant, one-sided sign tests (Gibbons and Chakraborti 2003)
were applied to the parametric difference maps for subsequent T;: (5 s, 15 s), (15 s, 30
s), (30s,455s), (45s,605s), (60s,85s). For each rat and each combination of subsequent
T;, the null hypotheses that the median of the difference map K”“”S(Ts_z) -
K”“”S(Ts_l) > 0, and the median of the difference map ve(TS,z) — ve(Ts,l) < 0 were
tested with T, > T ;. Both hypotheses were rejected for all tests (P < 0.00001). This

K trans

means that the progressive underestimation of and the progressive

overestimation of v, are statistically significant.
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5.5 Discussion

The influence of the temporal resolution of DCE-MRI data was investigated in the
context of the basic two-compartment model, while using a high-temporal-resolution
AIF. The original data were downsampled to lower temporal resolutions by making use
of a k-space-based recombination technique. The downsampled data, as well as the
original data, were fitted with the same pharmacokinetic model. According to both the
mean contrast agent uptake curve fitting and the voxel-wise fitting, K" is
progressively underestimated with decreasing temporal resolution, whereas v, is
progressively overestimated. The estimation errors are larger for Kt"3" than for v,
because the rapid uptake phase is especially affected by a drop in temporal resolution.
Even though the ‘true’ K" values (at Ty = 5 s) range from 0.15 min™ to 0.32 min™
(Table 5.1), the influence of temporal resolution appears to be consistent across all
cases. For v, this is less the case.

In comparing k-space-based sampling to direct sampling, the key difference is
that the first strategy takes the effect of transient contrast agent uptake into account,
while the latter does not. Consequently, the effect of low temporal resolution appears
smaller and less consistent with direct sampling than is actually the case. Using direct
sampling and the basic two-compartment model, Henderson et al. (1998) found that the
required sampling time for the uptake in tissue should be shorter than 16 s to obtain an
error smaller than 10% in either K" or v,. The sampling time at which we predict
the same error level is about twice as large using k-space-based sampling (T = 30 s), and
about three times as large using direct sampling (T = 45 s — 60 s). The discrepancy
between the two studies is probably due to the large differences in the experimental
setups.

Although we used a more realistic downsampling strategy than the one most
commonly used, there are several limitations to this study:

(i) The k-space-based sampling strategy presented in this study mimics a linear k-
space profile ordering, thus the conclusions reached here are not valid for other
acquisition schemes.

(ii) Temporal resolution was not reduced in exchange for higher image quality
and / or larger image volume. In a scanner experiment, a reduction of temporal
resolution (while keeping spatial resolution constant) would be expected to lead to an
increase in signal-to-noise ratio of each image in the series (more thoroughly discussed
in Chapter 6).

(iii) Variations in the relative alignment of the sampling grid (Cheng 2008,
Henderson et al. 1998, Laue et al. 2007) were not taken into account.
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(iv) The basic two-compartment model does not include a vascular contribution,
which could be significant for certain tumors. Its exclusion could have introduced biases
on the estimates of K" and v, (Buckley 2002b, Harrer et al. 2004).

(v) Emphasis was placed on the temporal resolution of the contrast agent uptake
in tissue, and therefore individual high-temporal- resolution AlFs were used. These high-
temporal-resolution AlFs would not be available in case of an actual low-temporal-
resolution acquisition. The use of individual AlFs extracted from low-temporal-
resolution data will be discussed in Chapter 6.

The study was designed to gain insight into estimation errors in K" and v, for
DCE-MRI data acquired at ‘suboptimal’ temporal resolutions. It is important to study the
modeling of contrast agent uptake at low-temporal resolution because, for instance,
clinical DCE-MRI data of the breast are commonly acquired at a temporal resolution of
about 60 s to 120 s. Under the applied model assumptions, we estimate that a temporal
resolution of 60 s would lead to an error margin of ~18% for K" and ~6% for v,.

Especially regions with very high Ktans

are significantly attenuated. However, the
blood circulation of rats is about three times faster than that of humans. A similar study
should therefore be performed using human DCE-MRI data. As we demonstrated by
comparing our k-space-based downsampling strategy to the direct sampling strategy,
the impact of the k-space profile ordering on the appearance of contrast agent uptake
curves should be considered in both simulation and acquisition methods. In the next
chapter, we will use the k-space-based downsampling strategy as introduced in this
chapter to investigate if we can decrease the error in the parameter estimates by

making use of a reference tissue AIF approach (as was applied in Chapter 3).
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Abstract

Pharmacokinetic modeling is a promising quantitative analysis technique for
cancer diagnosis. However, diagnostic dynamic contrast-enhanced magnetic resonance
imaging of the breast is commonly performed with low-temporal resolution. This limits
its clinical utility. We investigated for a range of temporal resolutions whether
pharmacokinetic parameter estimation is impacted by the use of data-derived arterial
input functions (AIFs), obtained via analysis of dynamic data from a reference tissue, as
opposed to the use of a standard AIF, often obtained from literature. We hypothesized
that the first method allows the use of data at lower temporal resolutions than the
second method. Test data were obtained by downsampling high-temporal-resolution
rodent data via a k-space-based strategy. To fit the basic Tofts model, either the data-
derived or the standard AIF was used. The resulting estimates of K"%"S and v, were
compared with the standard estimates obtained by using the original data. The
deviations in K" gnd v,, introduced when lowering temporal resolution, were more
modest using data-derived AlFs compared with using a standard AIF. Specifically,
lowering the resolution from 5 to 60 s, the respective changes in Kt"*"S were 2% (non-
significant) and 18% (significant). Extracting the AIF from a reference tissue enables
accurate pharmacokinetic parameter estimation for low-temporal-resolution data.
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6.1 Introduction

Pharmacokinetic modeling of dynamic contrast-enhanced magnetic resonance
imaging (DCE-MRI) data is a quantitative analysis technique employed for a variety of
clinical purposes, including cancer diagnosis and therapy assessment. Accurate
measurement of pharmacokinetic parameters requires data acquisition with high-
temporal resolution, but in the clinical setting this is often not practical because of the
need to image large volumes of tissue. Diagnostic DCE-MRI of the breast, for instance, is
generally performed with modest temporal resolution (about 1 min) to obtain full
bilateral coverage with adequate spatial resolution. Low-temporal resolution presents a
challenge; however as recently shown (Planey et al. 2009), it does not prevent
application of basic pharmacokinetic models.

Fundamental to pharmacokinetic modeling is the use of an arterial input function
(AIF) which describes the bolus of contrast agent passing through the blood circulation,
and serves as input to the contrast agent uptake in the tissue of interest. It is difficult to
extract an accurate AIF from data acquired with a modest temporal resolution. Direct
measurement of the bolus passage in an artery requires a sampling interval of
approximately 1 s (Henderson et al. 1998) and is therefore not feasible. A popular
alternative is the use of a standard AIF, which is often a population-averaged AIF,
derived from data acquired at a relatively high sampling rate; e.g. about 1 sample every
5 s (Parker et al. 2006). Another alternative is the use of a reference tissue AIF method,
as introduced into the field of DCE-MRI in 1998 (Kovar et al.). Key to this method is the
use of a reference tissue, such as muscle, that has gradual contrast agent uptake, and
can be sampled relatively slowly. Under the assumption of known (constant)
enhancement parameters for the reference tissue, analysis of its uptake curve can
provide a data-derived AIF — even at low temporal resolution.

Derivation of the AIF from a reference tissue shows reasonable repeatability
between two DCE-MRI studies of the same subject and the same region of interest (ROI)
without repositioning the subject in the scanner (Yankeelov et al. 2006), and
reproducibility between two DCE-MRI studies of the same subject at separate occasions
(Walker-Samuel et al. 2007b, Yang et al. 2009), as well as good correlation with direct
AIF measurement (Kovar et al. 1998, Yankeelov et al. 2007). It has been demonstrated
that in diagnostics the use of a data-derived AIF results in a larger area under the
receiver operating characteristic (ROC) curve, and thus performs better than the use of a
standard AIF (Huisman et al. 2006, Vos et al. 2009). In addition, standard AlFs are
commonly applied irrespective of the temporal resolution of the data at hand, and this
can lead to, respectively, under- and overestimation in the volume transfer coefficient
(Ktrans) and the distribution fraction (v,) (Chapter 5, Heisen et al. 2010a). This
temporal-resolution-dependent bias cannot be easily accounted for.
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Yankeelov et al. (2005) showed that contrast agent uptake measurements in
tissue require sampling intervals of 30 s — 60 s. They tested their reference tissue
method for its sensitivity to noise and incorrect assignment of reference tissue
pharmacokinetic parameter values via simulations at 1 min temporal resolution. More
recently, Planey et al. (2009) reported on temporal sampling requirements for
pharmacokinetic parameter estimation using reference tissue modeling in human breast
cancer. Their simulation study demonstrated a precision within £15% of the mean up to
a sampling interval of 29 s. With downsampled 32.8 s clinical breast data, they obtained
parameter estimates that were very similar to those obtained with the native 16.4 s
data, whereas downsampled 65.6 s data led to a systematic underestimation in K 7475,

Here, we systematically compare the use of a reference tissue AIF extracted from
data at various temporal resolutions (data-derived AIFs) with the use of a single
standard AIF for data at all temporal resolutions. The study is designed to focus on the
role of temporal resolution, i.e. to investigate its effect on pharmacokinetic parameter
estimation in isolation. We hypothesize that the use of data-derived AlFs enables
accurate parameter estimation at lower temporal resolutions than the use of a standard
AIF. Besides comparing the methods, we search for the ‘boundary resolution” at which
deviations due to low temporal resolution become significant in the pharmacokinetic
parameter estimates. Test data are obtained by downsampling high-temporal-
resolution (5 s) rodent DCE-MRI data, acquired with a 4.7 T animal scanner, via a k-
space-based downsampling strategy to obtain data at a range of temporal resolutions.
In this research, we choose to use the reference tissue AIF derived from the original 5 s
data as the ‘standard’ AIF. As a result, the standard AIF is matched to the original data,
but is mismatched with the downsampled data in terms of temporal resolution. Other
errors that are commonly introduced by the use of a standard AIF, for instance due to
variations in systemic circulation and injection protocol, are avoided with this approach.
To fit the pharmacokinetic model to the downsampled data, either the data-derived AIF
or the standard AIF is used. The resulting parameter estimates are compared with the
standard parameter estimates obtained from the original 5 s data.

6.2 Methods

6.2.1 Animals and imaging protocol

Copenhagen rats (n = 6) with implanted AT6.1 prostate tumors on the hind limb
were used in this study. Multi-slice T;-weighted gradient echo images were acquired
through the center of the tumor along the long axis of the leg with a temporal resolution
of 5s at 4.7 T (Bruker, Billerica, MA, USA), before and after gadodiamide (Omniscan, GE
Healthcare, Piscataway, NJ, USA) injection, for a total duration of ~10 min. The
exchange of contrast agent on the microvascular scale was assumed to be similar
between rats and humans. All the data were acquired at the University of Chicago and
procedures were carried out in accordance with the institution’s Animal Care and Use
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Committee approval. The detailed description of the acquisition protocol can be found
in Chapter 5.

6.2.2 Downsampling strategy

Low-temporal-resolution DCE-MRI data was derived from high-temporal-
resolution data via a k-space-based downsampling strategy. Details were presented in a
previous study (Chapter 5, Heisen et al. 2010a). Briefly, this strategy incorporates the
transient effect of contrast agent uptake by mimicking an MR acquisition with a linear k-
space profile ordering. Equal fractions of k-space data taken from a series of successive
high-temporal-resolution (5 s) k-space images are combined to form k-space images at
a lower temporal resolution. For instance, to simulate the first image ‘acquired’ at a
resolution of 15 s, we recombine the first one-third of k-space lines from the 5 s image,
the second one-third from the 10 s image, and the third one-third from the 15 s image.
The second image at a resolution of 15 s is derived from the k-space images acquired at
20, 25, 30 s, etc. Using this strategy we simulated low-temporal-resolution data sets at
15, 30, 45, 60, and 85 s resolution. This simulation strategy does not incorporate
changes in the signal-to-noise ratio (SNR) of the enhancement patterns due to changes
in temporal resolution. For all temporal resolutions, the SNR of the images is
comparable to the SNR of the high-temporal-resolution images produced from the
original k-space data.

The previous work demonstrated that this realistic simulation strategy reveals a
larger influence of temporal resolution than simple downsampling by omitting
intermediate time points of a contrast agent uptake curve.

6.2.3 Reference tissue AIF

The reference tissue method introduced by Kovar et al. (1998) was applied with
the skeletal muscle of the hind limb as a reference (user-defined ROI: 9 x 9 voxels). The
extracted muscle curve (C,,,sce(t)) was fitted with an empirical mathematical model
(EMM, Fan et al. 2004) — a single equation with five parameters — to minimize noise
propagation, giving

1+e V't
2

émuscle(t) =A-(1- e—a-t)q et ) [6.1]

where 4 (mM) is the upper limit of contrast agent concentration; & (min™) is the rate of
contrast agent uptake; g is related to the slope of early uptake and the curvature of the
transition from uptake to washout; and (min™) andy(min'l) are, respectively, the
overall and initial rate of contrast agent washout. The EMM-fitted curve (Cpyscie (£))
was used to derive the AIF (Cp(t)) via the differential form of the basic Tofts model
(Tofts et al. 1999) in combination with assumed literature values of K" (0.11 min™)
and v, (0.20) in rat muscle (Kovar et al. 1998) as follows:

Cp(t) = 1/Ktrans,muscle : démuscle (t)/dt + Emuscle (t)/ve,muscle' [6.2]
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where C,, (mM) is the contrast agent concentration in the blood plasma space, v, is the
fraction of extravascular extracellular space (EES), and K'"%"S (min™) is the volume
transfer coefficient between blood plasma and EES.

6.2.4 Data analysis

All data processing was performed in Matlab (Mathworks, Natick, MA, USA). A
single slice, showing most of the tumor area, was selected for analysis. Signal intensity
curves were converted to contrast agent concentration using a previously published
calibration method (Medved et al. 2004). The tumor ROl was obtained via a semi-
automated connected-component algorithm that resulted in a contiguous segmentation
of the enhancing tumor tissue. The basic Tofts model was fitted (2D golden section
search method, Press et al. 1996) both voxel-wise and ROI-wise.

A comparison was made between the use of reference tissue AlFs extracted at
each specific temporal resolution (data-derived AlIF), and the use of a single standard AIF
(irrespective of the temporal resolution). For each animal, the standard AIF was derived
from the original 5 s data. For both methods (data-derived versus standard AIF) the
pharmacokinetic parameter estimates obtained from the original 5 s data were
considered as the ‘standard’. Parameter estimates were compared with this standard
for data derived at 15 s, 30 s, 45 s, 60 s, and 85 s resolution. The regression slopes and
the Pearson correlation coefficients (r) were calculated, as well as the percentage of
deviation in the mean tumor parameter estimates as a consequence of a drop in
temporal resolution.

6.3 Results

Figure 6.1 shows a typical example of contrast agent uptake curves in muscle for
all temporal resolutions, and their fits. Most notable is that the reduction in the number
of data points results in a decline of the initial uptake slope, as the resolution becomes
coarser. Because of the limited number of data points at 85 s resolution, the EMM was
fitted as a four-parameter model, fixing g at a value of 2. This value was chosen to
prevent the model from fitting with an immediate steep rise that is not supported by the
data. The average EMM parameters over all animals are reported for all temporal
resolutions in Table 6.1. The large difference in ¢ between the 5 s data (q = 0.82) and
the other data sets (q = 2) indicates that at low temporal resolution there are too few
data points on the rising flank of the curve to fit an immediate steep rise. However, an
increased value of a (uptake rate) counteracts this effect for the 15 s and 30 s data.
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Figure 6.1 Contrast agent uptake curves in muscle extracted from data at 5 s,
15s,30s,45s, 60s, and 85 s temporal resolution (dots), together with the
EMM fits (lines). All curves originate from the same animal and identical ROIs.

Table 6.1 Mean empirical mathematical model parameters and their standard
deviation obtained by fitting the contrast agent uptake in muscle tissue.

Temporal A (mM) a (min™) q B (102 min™) Y (min™)
resolution (s)

5 0.09 +0.02 248 +1.13 0.82 £0.39 1.49+1.02 0.21+0.10
15 0.09 £ 0.02 3.24+0.34 2.07 £0.55 1.99+1.33 0.16 £0.11
30 0.09 £ 0.02 2.55+0.37 2.23 +0.49 1.42+£1.09 0.21+0.10
45 0.10 £ 0.02 2.16 £0.51 1.80+0.90 1.97+1.82 0.21+0.12
60 0.10+0.02 1.93+0.31 2.12 +0.59 1.51+1.33 0.22 £0.09
85 0.10 £ 0.02 1.73+0.21 2.00 (fixed) 3.38+2.68 0.15+0.13
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Figure 6.2 shows an example (same animal as in Fig. 6.1) of K" maps
obtained at all temporal resolutions with both data-derived AlFs and a single standard
AIF. The corresponding AlFs are shown as insets. As expected, the data-derived AlFs
became less sharp with decreasing temporal resolution due to a lack of high-frequency
information. In comparison to the K'"3" maps obtained with the original 5 s data,
those obtained with data-derived AlFs show less impact of a change in temporal
resolution than those obtained with the standard AIF. Use of the standard AIF resulted
in a visible loss of K" ‘hot spots’ in the tumor rim.

In Figure 6.3, the voxel-wise pharmacokinetic parameter estimates within the
tumor ROI obtained with (a) data-derived AlFs and (b) a single standard AIF are plotted
versus the 5 s standard parameter values for the same animal as in Figs. 6.1 and 6.2.
Temporal resolutions from left to right are: 15 s, 30 s, and 60 s. With the use of data-
derived AlFs (Fig. 6.3(a)) the regression slopes (dashed lines) match the lines of identity
(y = x, solid lines) more closely than with the use of a single standard AIF (Fig. 3(b));
for K9S there is an especially distinct difference.

In Figure 6.4(a), the regression slope data are summarized for all animals. The
average tumor ROl size was 544 voxels (range: 311 — 726). All regressions demonstrated
significant correlation between the voxel-wise parameter estimates from downsampled
data and original data (P << 0.05). With data-derived AlFs the regression slopes
remained closer to 1 with decreasing temporal resolution than with a single standard
AIF, both for Kt"2"S and v,. Looking at the whole range of temporal resolutions, there is
a significant effect of temporal resolution on the K" regression slope with both
methods, and on the v, regression slope with the standard AIF method (multiple-
comparison ANOVA: P < 0.05). Leaving out the 85 s data, the effect of temporal

resolution on the Kt7ens

regression slope became non-significant with the data-derived
AIF method. In Figure 6.4(b), the Pearson correlation coefficient (r) data were
summarized for all animals. For both methods (data-derived versus standard AlF), the
sharpness of the ellipsoid-shaped cloud of points along the regression line (see also Fig.
6.3) decreased slightly with decreasing temporal resolution. This is reflected in lower
r values. This decrease in 1 is significant for both methods with respect to K!"3"S, and

for the standard AIF method with respect to v,.
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Data-derived AlFs Standard AlF

Temporal Temporal Temporal Temporal Temporal
resolution:60 resolution:45 resolution:30 resolution:15 resolution:5 s

Temporal
resolution:85

Ktrans
0 0.2 04 0.6 min

Figure 6.2 For the same animal as in Fig. 6.1, K" color maps derived from
dataat5s, 15s,30s,45s, 60 s, and 85 s temporal resolution. The first
column demonstrates the use of data-derived AlFs, and the second column the
use of a single standard AIF. The corresponding AlFs are shown as insets. The
influence of temporal resolution, e.g. loss of hot spots, is more distinct with a
single standard AIF than with data-derived AlFs.
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Figure 6.3 (previous page) Scatter plots of pharmacokinetic parameter
estimates obtained from low-temporal-resolution data (y-axis: 15s, 30 s, and
60 s resolution) versus the standard parameter values set by the 5 s data (x-

axis). The line of identity (solid lines) and a straight fit through the data

(dashed lines) are included. Only tumor ROl voxels are included. (a) Data-
derived AlFs. (b) Single standard AIF. With the use of data-derived AlFs the
regression slopes match the line of identity more closely than with the use of a
single standard AIF; especially for K% there is a distinct difference.
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Figure 6.4 (a) Summary of regression slopes and (b) Pearson correlation
coefficients. The triangles represent the data (six animals) fitted with the
data-derived AlFs, whereas the circles represent the data (same six animals)
fitted with the single standard AIF. The same pattern as in Fig. 6.3 is seen for
all animals: with the use of data-derived AlFs the regression slopes are closer
to 1 than with the use of a single standard AIF. The Pearson correlation
coefficient is high in general, but decreases with decreasing temporal
resolution. This pattern is fairly similar for both methods. *Statistically
significant influence of temporal resolution (multiple-comparison ANOVA: p <
0.05), #statistically significant influence of temporal resolution, but non-
significant for the 15 s to 60 s resolution range.
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K" and v, values were also calculated for each segmented tumor ROl as a

whole, with both methods (data-derived vs. standard AIF). A marked difference was
that with the use of a single standard AIF we saw a pattern of progressive under- and
overestimation in K7 and v,, respectively, whereas with the use of data-derived AlFs
the pattern was not as consistent. In Figure 6.5, we therefore compared the absolute
deviations (mean of six animals) from the standard (5 s resolution data). This figure
shows that the use of a standard AlIF can introduce large deviations (e.g. mean deviation
at 60 s resolution in K7%"S: 18% in the range 15 — 20%), depending on the temporal
resolution of the data at hand. The deviations introduced with the use of data-derived
AlFs are more modest (e.g. mean deviation at 60 s resolution in Kt"3"5: 2% in the range
1-5%).

30 15
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Figure 6.5 Absolute percentage of deviation (mean taken over all six animals)
from the standard in parameter estimates as a function of temporal
resolution. In grey: use of data-derived AlFs; hatched: use of a single standard
AIF. The standard deviations (six animals) are depicted as well. The use of
data-derived AlFs results in a smaller and less temporal-resolution-dependent
deviation from the standard than the use of a single standard AlF.

6.4 Discussion

A comparison was made between K!""$

and v, estimates obtained with data-
derived AlFs and a single standard AIF. In this experimental design, the standard AIF was
mismatched only with the downsampled data sets in terms of temporal resolution. With
both methods, good correlation was obtained between the downsampled data and the
original 5 s data. However, with the single standard AIF we saw a consistent pattern of
increasing under- and overestimation in K% and v,, respectively, with decreasing
temporal resolution. This was reflected in the regression slopes (see Fig. 6.3) and the
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mean absolute deviations from the standard parameter values. This behavior was
expected because the slope of the contrast uptake versus time in the tumor cannot be
correctly captured at low-temporal resolutions, whereas the input (i.e. the standard AIF)
remains the same. Even though this temporal-resolution-dependent bias can be
expected, to our knowledge, it is not accounted for in fitting low-temporal-resolution
data when using a standard AIF. When the data-derived AlFs were used, there was a
significant temporal-resolution-dependent bias for the mean tumor uptake only at 85 s
resolution. Probably, this marks the transition to temporal resolutions that are too low
for the reference tissue AIF method to work well. For both methods, the Pearson
correlation coefficients decreased slightly, yet statistically significantly (except for v,
obtained with data-derived AlFs), with decreasing temporal resolution, resulting in less
precision. The use of data-derived AlFs led to more accurate results than the use of a
standard AIF. In addition, the use of a standard AIF comes at the price of being non-
specific.

It is surprising that, until sampling with a temporal resolution coarser than 60 s,
the pharmacokinetic parameter estimates obtained with data-derived AlFs deviate little
from the standard. We speculate that this is caused by a compensating effect: the
apparent contrast agent uptake rate in muscle (a in the EMM) becomes smaller as
temporal resolution decreases. The same happens for the tumor tissue. However, as
long as the degrees of underestimation match, the ratio Ktranstumor jgtransmuscle jg
fairly robust against a reduction in temporal resolution. We can show that this holds by
looking at the early phase of contrast agent exchange (t << 1 min), when reflux
(Ktrans /y,) from the EES to the blood plasma is negligible. During that initial phase, the
integral form of the basic Tofts model can be expressed as

Ci(t) — Ktransi fot Cp (0) - e_Ktrans,i(t—‘r)/Ve,i dt ~ Ktransi fot Cp (t)dr, fort<<1min,

[6.3]

where ‘i’ stands for either ‘tumor’ or ‘muscle’. Using Eq. 6.3, the following equality
holds:

Ctumor (t)/Cmuscle (t) — Ktrans,tumor/Ktrans,muscle’ for t << 1 min. [64]

For tumor tissue exhibiting a very high K" /v, = Cyyymor (t) thereby resembles C, (t) —
the first postcontrast measurement as part of a low-temporal-resolution acquisition may
be post-peak. In that case, it is likely that the degrees of underestimation in the uptake
rates of tumor and muscle tissue no longer match, and it is not possible to obtain a good
estimate of Ktrans:tumor - Thjs ‘houndary effect’ at high K"9"S /v, was also described by
Planey et al. (2009). Despite this effect, Li et al. (2009) demonstrated statistically
significant differences in K" values between different breast tumor grades using a
reference tissue AIF method at 88 s resolution. With our data we might have run into
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this boundary at 85 s resolution, because at this resolution we observed a significant
bias introduced into the pharmacokinetic parameters. However, the ‘unfavorable’
combination of large K" and small v, did not occur frequently in these data.

With respect to the limitations of this study, we would like to address four
themes as follows:

(i) Simulating low-temporal-resolution data. The applied downsampling strategy
focused on the temporal aspects of enhancement, and did not incorporate changes in
the SNR. In a real DCE-MRI scan, a reduction of temporal resolution (while keeping
spatial resolution constant) would be expected to lead to an increase in the SNR of each
image in the series. The effect of this increase in the SNR of individual images on the
precision with which a dynamic process can be sampled is difficult to predict, since the
SNR of the dynamic process (i.e. the enhancement of a specific feature) depends on the
spatio-temporal pattern of enhancement and the dynamics of the k-space sampling
pattern. This complicated issue was not addressed by the present simulations. By
keeping the SNR constant for all temporal resolutions, we have calculated the outer
bounds on deviations in K™% and v,. In addition, variations in the alignment of the
sampling grid relative to bolus arrival (Henderson et al. 1998, Laue et al. 2007) were not
taken into account. The time labels we attached to the downsampled images mark the
time in between bolus arrival and completion of the specific image (i.e. full coverage in
k-space). Other time labeling strategies could be applied; for instance using labels that
mark the time in between bolus arrival and the acquisition of the center of k-space. This
practice could however be hard to extrapolate to complicated 3D trajectories in the
clinical setting, where time labeling is usually performed irrespective of k-space profile
ordering. Because time labeling is closely coupled to AIF alignment and — in a clinical
setting — performed without exact knowledge of bolus arrival time, this matter is very
relevant with respect to the usage of a standard AIF, but is much less important with
respect to the usage of a data-derived AIF. The reference tissue and the tumor tissue
are acquired and labeled in the same fashion, therefore automatic alignment is
obtained.

(ii) Reference tissue AIF. The reference tissue AIF method employed here uses a
single reference tissue. AIF accuracy could be improved by using multiple reference
tissues (Yang et al. 2007, Yang et al. 2010), or by combining the reference tissue method
with a post-peak measurement in an artery (Fan et al. 2010b). An inherent assumption
of the reference tissue method is that the AIF is the same for the reference tissue as for
the tumor. This is not necessarily true, although the reference tissue is usually nearer to
the tumor tissue than the ‘feeding’ artery (for breast this is often the aorta) in which a
direct AIF measurement can be performed. In addition, recent research has
demonstrated that the reference tissue AIF can be adjusted to produce a local tumor AIF
(Fan and Karczmar 2009). In the present work, fixed literature values were assigned to
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K" and v, in the reference tissue, whereas in reality there is a natural range (for

human skeletal muscle, see Padhani et al. 2002). This assignment is not a necessity; but,
additional degrees of freedom in the fitting routine entail a greater potential variability.
The method fails in the instance that there is no reference tissue available, and needs
sensible constraints based on a priori knowledge about the expected shape of the
contrast uptake at very low temporal resolution, owing to a lack of data to define the
upslope.

(iii) Pharmacokinetic model. The basic Tofts model is assumed to model the
contrast agent uptake in muscle as well as in tumor. Inclusion of the vascular fraction in
the model (i.e. the extended Tofts model) would have required high-temporal resolution
(Chapter 3, Faranesh and Yankeelov 2008), but its exclusion could have led to biases in
K" and v,. In addition, the model is applied under assumption of the fast exchange
limit.

(iv) Animal model. The animal model used here has a systemic circulation time
that is approximately three times shorter than in humans, which likely makes low
temporal resolution more of a challenge for the analysis of rat data than of human data.
It is unlikely that this difference in systemic circulation affects K" and v, because
they describe tissue properties on the micro scale. The used tumor model, however,
only reflects a small portion of the large variety in tumor types.

The comparison between the use of data-derived AlFs and a single standard AlF
demonstrated a large difference in impact of a change in temporal resolution. The
pharmacokinetic parameter estimates for the mean tumor curve obtained with data-
derived AlFs were not biased as long as temporal resolution was 60 s or better, whereas
this was not the case for estimates obtained with a single standard AIF. The present
study was based on data acquired from model tumors in rodents, and therefore it
remains to demonstrate whether the conclusions hold for studies of patients.
Nevertheless, these preliminary results are promising, and show that it is advisable to
extract the AIF from a reference tissue when working with low-temporal-resolution
data.

Relating these results to those presented in Chapter 3, we find that indeed, for
this type of tumor, we can apply the basic Tofts model to data acquired with sampling
times longer than 20 s, as was already speculated. This suggests that for
pharmacokinetic analysis of diagnostic DCE-MRI breast data, the use of a reference
tissue AIF will result in more accurate parameter estimates than the use of a standard
AlIF.
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Abstract

Inflammation plays a prominent role in tumor growth propagation. Anti-
inflammatory drugs have therefore been proposed as potential anti-cancer therapeutics.
To reduce the high daily doses required for tumor growth inhibition and to reduce the
adverse side effects of the therapy with free drug, glucocorticoids have been
encapsulated in long-circulating liposomes. In the current study, we determined the
anti-angiogenic activity of a single dose of liposomal prednisolone phosphate (PLP-L), by
monitoring the tumor vascular functioning and tissue viability over a period of one
week.

C57BL/6 mice were subcutaneously inoculated with B16F10 murine melanoma
cells. Six animals were PLP-L-treated, whereas six served as control. In vivo tumor tissue
properties were probed using MRI before and at three time points after treatment.
Dynamic contrast-enhanced MRI data were used to provide measures of K" v,
time-to-peak, initial slope, and the fraction of non-enhancing pixels. Moreover, the
values of the apparent diffusion coefficient (ADC) and T,, as well as tumor size were
assessed with MRI. After one week, tumor tissue was histologically examined for
microvessel density and vessel wall characteristics.

Treatment with PLP-L resulted in significantly smaller tumor volumes compared
to the control group. Vascular effects of PLP-L were manifested by a significant drop in
tumor K% 48 h post-treatment, which was maintained until one week after drug
administration. However, this effect was not large enough to significantly distinguish
the treated from the non-treated animals. Therapy did not affect tumor tissue viability
but did prevent the increase in cellular density that was observed in the control group as
deduced from measurements of the ADC parameter. No evidence for PLP-L-induced
tumor vessel normalization was found.

We demonstrated that treatment with PLP-L alters tumour vascular function.
However, our results suggest that angiogenesis-related parameters are not sufficient to
reveal the therapeutic response to PLP-L.
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7.1 Introduction

Inflammation is a common feature of the tumor microenvironment, which,
according to recent findings, plays a prominent role in tumor growth propagation
(Coussens and Werb 2002, Mantovani et al. 2008). The close relationship between
cancer and inflammatory processes prompted the idea of silencing tumor-associated
inflammation for therapeutic purposes (Schiffelers and De Visser 2009). Consequently,
anti-inflammatory drugs, widely used in clinical practice, have been proposed as
potential anti-cancer therapeutics. One of these agents, celecoxib, has recently entered
clinical trials, promising a valuable contribution of anti-inflammatory therapy to cancer
prevention and treatment (Bhatt et al. 2010, Debucquoy et al. 2009, Mantovani et al.
2010, Sooriakumaran et al. 2009).

The anti-tumor activity of glucocorticoids (GCs), known as steroid anti-
inflammatory agents, has been demonstrated in mouse tumor models (Folkman et al.
1983, Penhaligon and Camplejohn 1985). However adverse effects, caused by high daily
doses necessary to achieve tumor growth inhibition, were found to be a major
limitation. Recently, encapsulation into long-circulating liposomes was demonstrated to
be an effective strategy to enhance intratumoral GC concentration (Schiffelers et al.
2005), as a result of favorable pharmacokinetic properties of liposomes (Drummond et
al. 1999, Drummond et al. 2008) and the enhanced permeability and retention effect
present in tumor tissue (Greish 2010). Importantly, the employment of the liposomal
drug delivery system dramatically decreased the therapeutic dose and the dosing
frequency compared to that of the free drug. For prednisolone phosphate (PLP), which
was found to have the most favorable therapeutic index among investigated liposome-
encapsulated GCs (Banciu et al. 2008a), a single intravenous injection of 20 mg
PLP/kg/week was sufficient to significantly inhibit tumor growth in B16F10 melanoma
and C26 colon carcinoma (Schiffelers et al. 2005).

Inhibition of angiogenesis was proposed to be a key effect of liposomal-GC
therapy, leading to tumor growth delay (Schiffelers et al. 2005). Findings that support
this hypothesis include a decreased expression of multiple pro-angiogenic factors
(Banciu et al. 2006) and the inhibition of macrophage activity in the tumor (Banciu et al.
2008b), both of which play an important role in the process of neovascularisation. In
addition, anti-proliferative effects of liposomal GC on endothelial cells were observed in
vitro (Banciu et al. 2006, Banciu et al. 2008a). However, the influence of liposomal GC
on the structure and the functioning of the tumor vasculature has not yet been
investigated. The evaluation of the tumor vascular response is essential to fully
characterize the anti-angiogenic activity of liposomal GC and to provide better
understanding of the anti-tumor mechanism.

In this study, we therefore aimed to determine the anti-angiogenic potency of
liposomal prednisolone phosphate (PLP-L) by studying its effect on the tumor
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vasculature. The efficiency of a single dose of PLP-L (20 mg PLP/kg) was investigated in
B16F10 murine melanoma during one week. For comprehensive characterization of the
vascular status, both in vivo magnetic resonance imaging (MRI) and histological analyses
were performed.

In vivo evaluation of the vascular changes induced by PLP-L was done using
dynamic contrast-enhanced MRI (DCE-MRI). This method enables non-invasive
characterization of the vessel functioning, based on the pharmacokinetics of a low-
molecular-weight gadolinium chelate (Jackson et al. 2007). Due to their sensitivity to
changes in vascular density and permeability, DCE-MRI-derived parameters, such as the
endothelial transfer coefficient K", serve as valuable in vivo markers of anti-
angiogenic effects (O'Connor et al. 2007).

Furthermore, we investigated the effect of PLP-L on the tumor viability, since the
expected vascular suppression may lead to cell death by limiting the availability of
oxygen and nutrients to the rapidly multiplying tumor cells. For characterization of
tissue viability, we used two DCE-MRI-derived parameters, i.e. the fraction of
extravascular extracellular space (v,) and the fraction of non-enhancing pixels; the
former a measure of cellular density, the latter identifying areas of poor perfusion.
Moreover, we assessed the apparent diffusion coefficient (ADC) and the transverse
relaxation time (T,), which are valuable complementary MR indicators of changes in the
cellular density and the occurrence of local hemorrhages (Carano et al. 2004, Moffat et
al. 2004).

As a final step of the vascular response assessment, we performed
immunohistochemical examination of tumor tissues after the in vivo measurements, at
the end of the study. Two aspects related to the anti-angiogenic activity of PLP-L were
investigated. First, we determined the microvessel density (MVD), which is the most-
established histological marker of the vascular status and response to anti-angiogenic
therapy (Bertolini et al. 2007, Weidner et al. 1991). Secondly, we investigated whether
PLP-L treatment induced tumor vessel normalization, an effect previously described for
anti-angiogenic agents (Jain 2005). As a marker of vessel normalization / maturation we
considered the presence of a smooth muscle layer around the vascular endothelium.

7.2 Materials and methods

7.2.1 Preparation and characterization of PLP-L

PLP-L were prepared as described previously (Metselaar et al. 2003). In short,
DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine), cholesterol, and PEG2000-DSPE
(1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-
2000]), obtained from Avanti Polar Lipids (Albaster, AL, USA), were mixed at a molar
ratio of 1.85/1/0.15. Subsequently, the lipids were dissolved in chloroform / methanol
1:1 (v/v) and dried by rotary evaporation. The dry lipid film was hydrated in an aqueous
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solution of 100 mg/mL of prednisolone phosphate (PLP) (Fagron, Nieuwerkerk a/d lJssel,
The Netherlands). The resulting multilamellar lipid vesicles were extruded (Lipofast
Extruder, Avestin, Toronto, Canada) 6 times through polycarbonate membrane filters
with a pore diameter of 200 nm and 100 nm (Costar, Cambridge, MA, USA) at 55° C.
Non-encapsulated PLP was removed using dialysis in HEPES buffered saline (pH 7.4)
(Sigma-Aldrich, St. Louis, MO, USA). A dialysis membrane with a molecular weight cut-
off between 12 kDa and 14 kDa (Spectrum Laboratories Inc., CA, USA) was used. During
24 h of dialysis the buffer was repeatedly replenished. The final PLP-L preparation was
stored at 4° C.

The mean diameter and size distribution of the liposomes were determined with
dynamic light scattering (Zetasizer Nano, Malvern, UK) at 25° C. The phospholipid
content in the liposome suspensions was assessed using phosphate analysis according to
Rouser et al. 1970 and the concentration of liposome-encapsulated prednisolone
phosphate was analyzed with high-performance liquid chromatography (Banciu et al.
2006). A mean diameter of 100 nm and a narrow size distribution (polydispersity index =
0.1) were determined for the prepared liposomes. The drug and the lipid concentrations
were 5 mg/mL and 60 umol/mL, respectively.

7.2.2 Murine tumor model

B16F10 murine melanoma cells were cultured as a monolayer at 37° C and 5%
CO,, in DMEM medium (1 g glucose/L) (Invitrogen, Breda, The Netherlands),
supplemented with 10% fetal bovine serum (Greiner Bio-One, Alphen a/d Rijn, The
Netherlands), 2 mmol/L L-glutamine (Lonza Bioscience, Basel, Switzerland), and 50 U/mL
penicillin / streptomycin (Lonza Bioscience). The cell line originates from American Type
Culture Collection (CRL-6475).

Six to eight week-old C57BL/6 mice (Charles River, Maastricht, The Netherlands)
were subcutaneously inoculated with 1x10° B16F10 cells in the right flank. Between day
7 and 9 after inoculation, the tumors became palpable in all mice. The animal
experiments were approved by the Institutional Ethical Review Committee for animal
experiments of Maastricht University (The Netherlands).

7.2.3 Study timeline

The timeline of the study is presented in Figure 7.1(a). The pre-treatment MRI
examination was performed on the day that tumors became palpable (Day 0). After the
pre-treatment MRI scans were acquired, the animals received a single intravenous dose
of either PLP-L (20 mg PLP/kg) (n = 6, PLP-L-treated group) or a corresponding volume of
saline (n = 6, control group). The post-treatment MRI examinations were performed on
Day 2, Day 4 and Day 6. The time frame of our study was chosen in view of the one-
week-long therapeutic efficacy of PLP-L (Schiffelers et al. 2005) and the fast growth of
B16F10 tumors. After MRI measurements on Day 6, the mice were sacrificed and the
dissected tumors were immunohistochemically analyzed.
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7.2.4 MRI acquisition

MRI measurements were performed with a 6.3 T scanner (Bruker, Biospin,
Ettlingen, Germany), using a 3 cm birdcage coil (Rapid Biomedical, Rimpar, Germany).
The mice were anesthetized with isoflurane and placed in a cradle equipped with a mask
for anesthetic gas and a warm water pad. An infusion line filled with contrast agent was
placed in the tail vein to enable injection during the MRI experiment. Respiration was
monitored with a balloon sensor connected to an ECG / respiratory unit (Rapid
Biomedical). The imaging protocol included a fat-suppressed multi-slice T,-weighted
spin-echo sequence (repetition time / echo time = 4200/35 ms, number of averages (NA)
= 4) and a multi-slice diffusion-weighted spin-echo sequence (repetition time / echo
time = 2000/35 ms, number of directions = 3, b-value = 0, 400 s/mm2, NA = 2).
Quantitative T, maps were obtained using a multi-echo method, consisting of a series of
T,-weighted spin-echo images with 16 different echo times varying from 9 ms to 144 ms
(repetition time = 2000 ms, NA =2). T;-weighted dynamic contrast-enhanced series
(radio-frequency-spoiled gradient echo, repetition time / echo time = 80/3.0 ms, flip
angle = 50°, number of slices = 8) were acquired for a duration of 25 min with NA =2 (n
=100, sampling time = 15.36 s), or NA = 1 (n = 200, sampling time = 7.68 s). A dose of
0.3 mmol/kg of Gadoteridol (Prohance, Bracco Diagnostics, Princeton, NJ, USA) was
manually injected as a bolus in the tail vein 80 s after the start of acquisition. All
acquired images had a matrix size of 128 x 128, field of view of 3 cm x 3 cm and 1 mm
slice thickness. The image iso-center and orientation were the same for all scans.

7.2.5 MRI data analysis

Analysis of T,- and diffusion-weighted images was performed in Mathematica 6.0
(Wolfram Research Inc., Champaign, IL, USA). Regions of interest (ROls) were manually
defined by drawing contours around the tumor area in every diffusion-weighted image
slice in which the tumor was visible. T,-weighted images served as an additional
reference. Tumor volumes were calculated by multiplying the number of pixels in the
tumor ROIs with the pixel volume. ADC maps were generated from fitting diffusion-
weighted imaging data according to the equation

ADC = —=1/b In(S/S,), [7.1]

where S and S, are the respective signals at b = 400 s/mm? and b = 0 s/mm?” (Stejskal
and Tanner 1965). T, maps were calculated in each slice from mono-exponential-decay
fitting of the multi-echo data.

DCE-MRI data processing was performed in Matlab (Mathworks, Natick, MA,
USA). The analysis included those pixels within the tumor ROI that showed significant
signal enhancement, i.e. enhancement equal to or greater than 5 times the noise level.
The standard deviation of the noise was determined in air and corrected for the Rician
distribution (Kaufman et al. 1989). The fraction of non-enhancing pixels in the total
tumor area was quantified and used as a tissue-viability parameter.
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The DCE-MRI signal intensity curves were converted to contrast agent
concentration curves (C;(t)) using a previously published reference method (Medved et
al. 2004). The pre-contrast reference was taken from a user-defined ROl in muscle (5 x5
voxels). A pre-contrast T; value of 1285 ms for muscle (Marzola et al. 1999) and a
relaxivity value of 3.7 mM™ s for Gadoteridol (measured at 6.3 T at 20° C) were used in
the calculations.

The C.(t) curves of the selected pixels of the tumor ROl were first analyzed by
applying the basic two-compartment model by Tofts et al. (1999):

dCe(t) — Ktrans (Cp(t) _

Ce(t)
dt v,

. ) [7.2]

where v, is the fraction of extravascular extracellular space (EES); K™ (min™) is the
volume transfer coefficient between blood plasma and EES; C,, (mM) is the contrast
agent concentration in the blood plasma space, and C; (mM) is the contrast agent
concentration in the tissue of interest. The input function Cp(t) was derived from the
contrast agent uptake in skeletal muscle using the reference tissue approach (Kovar et
al. 1998), assuming literature values for K% (0.11 min™) and v, (0.20) (Kovar et al.
1998). To minimize noise propagation, the muscle curve was fitted with an empirical
mathematical model (Fan et al. 2004) prior to this derivation. We used the first 5 min of
the DCE-MRI scan. The fitting was performed with a golden section search method, by
minimizing the goodness-of-fit measure R? (Press et al. 1996, see Chapter 2, Section
2.6.1). In addition to the applied enhancement threshold (enhancement > 5 times the
noise level), we excluded erroneous fits by discarding pixels with a v, value equal to or
greater than 0.95.

Secondly, the descriptive parameters time-to-peak (Tpeqr) and initial slope
(Slope;) were derived from the C,(t) curves (Szabo et al. 2003). Tpeqx (min) is the time
elapsed between the start of enhancement and the time point at which the contrast
agent concentration reached its maximum (Cy eqx). Slope; (mM/min) approximates the
upslope of C.(t):

Slope; = Ct,peak/Tpeak- [7.3]
For consistency, also here only data acquired in the first 5 min were taken into account.

7.2.6 Immunohistochemical analysis of tumor tissues

Tumors were snap-frozen in isopentane and stored at -80° C. Five-um-thick
sections were cut and fixed with ice-cold acetone for 5 min. In order to assess
microvessel density (MVD), endothelial cells were stained with rat anti-mouse CD31
primary antibody (BioLegend, San Diego, CA, USA). FITC-conjugated rabbit anti-rat IgG
(Dako, Glostrup, Denmark) was used as a secondary antibody. For nuclear staining, DAPI
(4,6'-diamidino-2-phenylindole, Molecular Probes, Eugene, Oregon, USA) was applied.
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The tissue samples were examined with fluorescence microscopy (Zeiss, Sliedrecht, The
Netherlands). MVD was assessed according to the method described by Weidner et al.
(1991), i.e. by counting the number of vessels in five vascular regions of a section at
200x magnification. We also stained for smooth muscle cells, which are often lacking
around tumorous vessels, to investigate vessel normalization. Staining was done with
monoclonal anti-actin, a-smooth muscle-FITC antibody (Sigma-Aldrich). Co-staining was
done with rat anti-mouse CD31 antibody (BioLegend) and Alexa Fluor 350-conjugated
goat anti-rat IgG (Molecular Probes). The presence of normalized vessels was examined
using fluorescence microscopy (Zeiss).

7.2.7 Statistical analysis

All data are reported as mean * one standard deviation (SD). Statistical analysis
was performed in SPSS 16.0 (SPSS Inc., Chicago, lllinois, USA). A t-test was used to
assess the difference between tumor volumes of PLP-L-treated and control mice at
different study time points. Statistical analysis of DCE-MRI data was performed on
median, 25", 75", 95 percentile values and interquartile distance (distance between
25" and 75™ percentile values), determined from histograms of K"y, Tpeak and
Slope; for each data set (Furman-Haran et al. 2005). The comparison between the
results obtained at different time points after drug or saline administration and the
baseline readout was done using a paired t-test. The comparison of the longitudinal
data obtained for both treated and control animals was done using mixed-factors
ANOVA for repeated measures, where the within-subject factor was time and the
between-subject factor was treatment. For this analysis, we used the relative change in
the parameter with respect to its baseline value. The fraction of non-enhancing pixels,
as well as ADC and T, data were tested using the same statistical methods as described
above for the DCE-MRI-derived kinetic parameters. For ADC and T,, the median was
used as comparison parameter. The analysis of the MVD data was done using a t-test.
In all analyses, the difference was considered significant at P < 0.05.

7.3 Results

7.3.1 Effects of PLP-L on tumor growth

To evaluate the effect of PLP-L on tumor growth we monitored lesion size over
time, using high resolution MRI measurements. Tumor growth curves, which represent
summarized data obtained for the PLP-L-treated and the control group, are presented in
Figure 7.1(b). During the first days after PLP-L administration (Day 2 and 4), tumor
volumes were not significantly affected by the treatment. The growth-inhibiting effect
of PLP-L became evident on Day 6, which corresponds to previous findings (Banciu et al.
2008a, Schiffelers et al. 2005). At this time point, tumors of PLP-L-treated mice were on
average a factor of two smaller than those of the control group.
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Figure 7.1 (a) Timeline of the study, (b) tumor growth curves for PLP-L-treated
and saline-treated mice (control) (mean + SD, n = 6). *Significant difference in
tumor volumes between PLP-L treated and control mice on Day 6.

7.3.2 Evaluation of anti-angiogenic effects of PLP-L with DCE-MRI

As markers of vascular functioning we used K", T, and Slope;, estimated
via mathematical modeling of dynamic contrast-enhanced data. Because v, is a
measure of cellular density rather than vessel functioning, it is discussed in the next
section. All assessed parameters are summarized in Table 7.1, whereas representative
MR images and K" maps obtained for PLP-L and control mice are presented in Figure
7.2. Large variability in DCE-MRI parameters was observed already in the pre-treatment
measurements (Figure 7.3, Table 7.1), indicating natural inter-tumor differences in
vascular functioning. Therefore, we used baseline measurements as a reference for the
assessment of vascular effects.

Table 7.1 (next page) Summary of the parameters obtained from the analysis
of DCE-MRI data, expressed as mean + SD (n = 6). *Significant change
compared to baseline (Day 0) (P < 0.05).
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PLP-L Control
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DWI 60s post- Ktrans DWI 60s post- Ktrans
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Figure 7.2 Representative diffusion-weighted images (DWI), T;-weighted
images (Tyw) 60 s after start of enhancement, and corresponding K"*"S maps
obtained for a PLP-L-treated (left) and a control mouse (right) before (Day 0)

and at different time points after PLP-L or saline (Control) administration.

Within-group comparison

In all PLP-L-treated tumors, the first post-treatment examination revealed a
reduced median K% (27 + 14%) compared to the pre-treatment state (Figure 7.3(a)).
A significant drop in median Kt"%" continued on Day 4 and 6, resulting, on average, in a
40% and 45% decrease, respectively. The same trend was observed for the 25" and 75%
Ktrans percentiles (Table 7.1). For the 95™ percentile, which reflects the fraction of
Ktrans ‘hot spots’ often associated with intensive tumor growth (De Lussanet et al.
2005), no change was found at any time point (Table 7.1). Interestingly, the
interquartile range was significantly decreased on Day 2 (25 + 15%) and 4 (33 + 25%),
which indicates a more homogeneous distribution of K" values throughout the
enhancing tumor area (Table 7.1). Apparently, a large portion of the tumor is affected in
a positive sense, except for the ‘hot spot’ areas. However, as these high-K"%" areas
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are often aggressive, therapeutic success could stand or fall by the permanence of these
areas.

Time-to-peak (Tpeqx) Was also clearly affected by the therapy: after an initial
increase of 60% on Day 2, it was maintained at approximately the same level (Figure
7.3(c)). A significant therapy-induced drop in Slope; was observed only on Day 6. In
contrast, in the control group, no significant change in any of the DCE-MRI parameters
was observed, neither on Day 2 nor on Day 4 (Figure 7.3, Table 7.1). Surprisingly, on the
last measurement day (Day 6) a decrease in median K" (40 + 18%) and median
Slope; (48 £ 18%) became apparent in the control group (Figure 7.3(a), (d)).

Between-groups comparison

To test whether the assessed kinetic parameters could serve as non-invasive imaging
markers to distinguish responders from non-responders, we performed a statistical
comparison between the longitudinal data obtained for the PLP-L-treated and the
control group. The analysis revealed no significant influence of the PLP-L treatment on
DCE-MRI-based markers compared to the control. This result refers to all assessed
parameters, indicating that, under the present experimental conditions, DCE-MRI failed
to distinguish the response to PLP-L treatment from the normal tumor development.

7.3.3 Evaluation of the tumor viability
The effect of PLP-L treatment on the tumor tissue viability was characterized by
means of four MR parameters, i.e. v,, the fraction of non-enhancing pixels, ADC, and T5.

Within-group comparison

Both DCE-MRI-derived markers, i.e. v, and the fraction of non-enhancing pixels,
did not change significantly after administration of PLP-L (Figure 7.3(b), Table 7.1).
Similarly, in the control group they remained stable over time. The results of ADC and
T, measurements are summarized in Figure 7.4. Neither ADC nor T, were significantly
affected by the treatment with PLP-L. The constant median values of ADC and T, of
approximately 0.83x10° mm?/s and 62 ms, respectively, throughout the investigation
suggest that therapy did not cause necrotic changes in the tumor. Interestingly, for the
control group we observed a decrease in median ADC over time (Figure 7.4(a)). A
significant drop compared to the starting point was noted already on Day 2. The trend
of decreasing ADC observed throughout the experiment suggests that the normal tumor
growth is accompanied by an increase in cellular density. On the other hand, T,
remained relatively stable (Figure 7.4(b)).

Between-groups comparison

For neither of the aforementioned viability parameters we found a significant
influence of the PLP-L treatment compared to the control.
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Figure 7.3 Influence of PLP-L treatment on median (a) K%, (b) v,, (c) Theaks
and (d) Slope; in the tumor, compared to the control (mean + SD, n = 6).
*Significant difference compared to baseline (Day 0) for PLP-L; #significant
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Figure 7.4 Effect of PLP-L on median (a) apparent diffusion coefficient (ADC)

and (b) transverse relaxation time (T,) in the tumor compared to the control

(mean * SD, n = 6). *Significantly decreased median ADC values compared to
baseline measurements for control.
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7.3.4 Microvessel density and vessel normalization

Ex vivo analysis of tumor tissues was performed after MRI experiments, thus, one
week after administration of PLP-L or saline. First, we assessed the microvessel density
(MVD). The summarized results of this analysis are presented in Figure 7.5. The average
MVD of 34 vessels/mm? assessed in PLP-L-treated tumors was lower compared to 58
vessels/mm?” in the control group. Nevertheless, statistical analysis did not confirm a
significant difference in MVD. In addition, we investigated the correlation between MVD
and K9S peing important ex vivo and in vivo markers of the vascular status,
respectively. However, we did not find a significant correlation (r? = 0.23).

To investigate vascular maturation, tumor sections were examined for the
presence of a smooth muscle layer around the endothelium of tumor vessels. Both PLP-
L- and control tumor sections were analyzed and compared to normal muscle tissue,
which was used as a reference. In Figure 7.6(a), a normal vessel of the muscle is
presented. It is characterized by a continuous rim of smooth muscle cells around the
endothelium. We did not observe such well-formed vessels in both PLP-L-treated and
control tumors (Figure 7.6(b), (c)). Predominantly, tumor vessel walls were composed of
a bare endothelial cell layer. If smooth muscle staining was present in the tumor tissue,
it appeared to be disturbed and poorly defined (Figure 7.6(c)). This observation refers to
both the PLP-L-treated and the control group, which suggests that this is not a therapy-
induced effect.

Figure 7.5 (next page) (a) Representative fluorescence microscopy images of
tumor sections from control and PLP-L-treated mice. CD31-stained endothelial
cells are shown in green and cell nuclei in blue (DAPI). (b) Microvessel density
(MVD) assessed for control (white bar) and PLP-L-treated (grey bar) tumors.
Bars represent mean + SD (n = 6).

Figure7.6 (next page) Representative fluorescence microscopy images of the
tumor and surrounding muscle tissue. Anti-a-SMA staining for smooth muscle
cells is shown in green and CD31 staining of endothelial cells in blue. (a) An
example of a mature vessel in skeletal muscle, showing a ring of smooth
muscle cells around the endothelium. (b) The border region between the
tumor and the normal muscle tissue, containing anti-a-SMA-negative vessels
(tumor) and multiple vessels with pronounced anti-a-SMA staining (indicated
with white arrows in muscle tissue). (c) Tumor vasculature, among which a
single vessel was found to have a discontinuous smooth muscle layer
(indicated with white arrow and shown in a higher magnification in the inset).
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7.4 Discussion

In the current study, we evaluated the response of tumor vasculature to PLP-L
treatment using in vivo MRI and immunohistochemical analyses. DCE-MRI monitoring
revealed therapy-induced vascular alterations that were manifested by a significant
decrease in K% and concomitant increase in Tpeq- At the same time, the treatment
did not influence any of the MR parameters related to the tumor tissue viability.
Interestingly, PLP-L administration prevented a drop in ADC values over time, which was
observed in non-treated tumors. Surprisingly, the tumor growth in the control group
was also accompanied by a significant decrease in K"*"S and Slope; one week after the
start of the experiment. Moreover, at this time point, neither a statistically important
difference in MVD between the PLP-L-treated and the control group, nor signs of
therapy-induced tumor vessel normalization were found. The current findings provide a
rather complex picture of the vascular effects of PLP-L. On one hand, the DCE-MRI
results support the thesis on angiogenesis inhibition underlying tumor growth
suppression by PLP-L. However, we did not find a significant difference in vascular
parameters between PLP-L-treated and control tumors, which we attribute to high inter-
tumor variability and vascular alterations that accompany normal tumor development.
These results underline the importance of an experimental setup with both a treatment
and a control group.

In this study, we confirmed the previously reported inhibitory effect of PLP-L on
the growth of B16F10 melanoma. The mechanisms underlying this effect may involve
the complex interaction of the drug with the tumor microenvironment. Therefore,
versatile techniques, such as MRI, which provide extensive morphological and functional
information, are especially attractive for therapy evaluation. Moreover, the application
of non-invasive methods facilitates translation from the preclinical to the clinical setting.

7.4.1 Evaluation of anti-angiogenic effects of PLP-L

To monitor the response of the tumor vasculature to therapy with PLP-L, we used
DCE-MRI, which is currently the leading in vivo method for the assessment of anti-
angiogenic effects (Leach et al. 2005b, O'Connor et al. 2007). Generally, we observed a
large variability between individuals, starting already at the pre-treatment state. By
using baseline measurements as a reference, we found significantly reduced median
Ktrans after the PLP-L treatment. Moreover, a decreased interquartile distance of
Ktrans distribution on Day 2 and 4 indicated a more homogenous tumor vascular
functioning in PLP-L-treated mice. The suppressive effect on tumor vasculature was
further supported by significantly increased Tpeqr. However, when the summarized
data of the PLP-L-treated and the control mice were compared, no clear anti-angiogenic
effect of PLP-L was detected. We believe that this is due to the aforementioned inter-
tumor variability of vessel functioning, observed throughout the course of the
experiment. Moreover, we found that non-treated tumors followed eventually the
same trend of changes in vascular parameters as PLP-treated lesions. This occurred later

174



Anti-angiogenic effects of liposomal glucocorticoids

in time, on Day 6, indicating tumor growth-dependent factors as a source of the
decreased vascular functioning in the control group. We avoided the interference of
necrotic regions with these results, as non-enhancing pixels were excluded from DCE-
MRI analysis. However, another important tumor tissue property, the interstitial fluid
pressure, which is known to increase with tumor growth (Sevick and Jain 1989), could
have played a role in the observed effect. Interestingly, on Day 6, we also did not find a
significant difference in MVD between the PLP-L-treated and the control group. At the
same time, MVD did not correlate with median K!"®" assessed on Day 6. The
dissociation between MRI-based and histopathological parameters can be explained by
the different character of these measures (de Lussanet et al. 2005). Despite that, both
DCE-MRI and histological readout led to the same conclusion that PLP-L did not affect
the vasculature significantly compared to the control.

With the use of more complex pharmacokinetic modeling, the extraction of
separate estimates of blood flow and permeability, as well as the vascular fraction vy,
might provide additional insights into the vascular effects of PLP-L (Donaldson et al.
2010). The basic Tofts model, as applied in this study, does not incorporate v, as a
model parameter. According to Henderson et al. (1998), for human data, that would
require a temporal resolution of at least 4 s; and according to Chapter 3, at least 2 s
(reference tissue AIF approach in common with current study). Separate estimates of
flow and permeability instead of Kt"%™S require an even higher temporal resolution; e.g.
in Henderson et al. 2000, a temporal resolution of 0.5 s is used.

7.4.2 Evaluation of the tumor viability

As supportive parameters we used those related to the tumor tissue viability, i.e.
v,, the fraction of non-enhancing pixels, ADC, and T,. We found that the PLP-L
treatment did not result in significant changes in either of the aforementioned
parameters, indicating undisturbed tumor-cell density and stable necrotic fraction.
Interestingly, we reported a consistent decay of the tumor ADC over time in the control
group. Since this was not observed after PLP-L administration, we can conclude that the
treatment does not only affect the tumor size but also prevents an increase of tumor-
cell density.

7.4.3 Reported effects of glucocorticoid treatment measured with MRI
The effects of GC therapy have been previously assessed in brain tumors with MR
measurements, showing a significantly reduced mean diffusivity in peritumoral
edematous brain and ADC in the tumor, as well as a reduced blood-tumor-barrier
permeability after dexamethasone treatment (Bastin et al. 1999, Minamikawa et al.
2004). Armitage et al. (2007) observed significantly reduced Kt"9"S, v,, and vy, (the
fractional plasma volume) 48-72 h post-treatment in glioblastoma, however not in
meningioma and intracranial metastatic carcinoma, after treatment with the same drug.
The use of a low-molecular-weight contrast agent may be more advantageous in
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studying brain tumors than in studying tumors outside the brain, because of the much
more limited permeability in healthy brain tissue. In the study by Crokart et al. (2007) a
rapid-clearance blood pool agent P792 (Vistarem) was used instead; finding a
significantly lower fraction of perfused pixels 30 min after hydrocortisone administration
compared to the control. However, neither K", v, nor the redistribution rate
constant k., were affected.

7.4.4 Distinction between responders and non-responders

An important aim of our investigation was to determine whether angiogenesis-
related parameters are suitable markers of the therapeutic efficacy of PLP-L. Previous
studies on the anti-angiogenic effects of PLP-L focused predominantly on molecular
markers of angiogenesis. Banciu et al. (2006) reported a significantly reduced
expression of the basic fibroblast growth factor and a wide range of inflammatory
mediators involved in the process of angiogenesis. At the same time, the vascular
endothelial growth factor was not affected by the treatment. We hypothesized that the
diagnostic criteria used for angiogenesis inhibitors can be also applied for PLP-L.
However, we found that neither MR nor histopathological vascular markers were
capable of differentiating between the PLP-L-treated and the control tumors. This was
surprising, since the PLP-L treatment resulted in an over 40% decrease in median K 79",
which is often considered a true positive response to the anti-angiogenic treatment
(O'Connor et al. 2007). However, this was also observed for the control group on Day 6.
Therefore, the assessed vascular parameters appear to be of limited value as biomarkers
of the response to liposomal GC. Ideally, the biological endpoint should relate
specifically to the mechanism of the therapeutic action. However, due to a broad
spectrum of GC activities, the identification of a specific therapeutic marker might be
very challenging. Considering the previous findings (Banciu et al. 2006, Banciu et al.
2008b), the most promising markers appear to be those related to the silencing effects
of GC on the tumor-associated inflammation. The non-invasive assessment of this type
of information requires the use of cellular and molecular imaging techniques.

7.4.5 Conclusion

We provided evidence that treatment with PLP-L suppresses the functioning of
the tumor vasculature, which can subsequently lead to tumor growth inhibition. The
anti-angiogenic effects of PLP-L were manifested by a significant drop in tumor Kt4"s
48 h post-treatment, which was maintained until one week after drug administration.
However, we also observed naturally occurring vascular alterations in the control group.
The obtained results suggest that angiogenesis monitoring does not provide sufficient
information on the therapeutic efficacy of PLP-L. Therefore, more specific markers of
the anti-tumor activity of liposomal glucocorticoids are desired. Among the potential
candidates are those directly related to the suppression of inflammatory processes in
the tumor.
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7.5 Glucocorticoids as anti-cancer therapy:

an ongoing debate

Glucocorticoids (GCs) are among the most effective anti-inflammatory and
immunosuppressive agents (Franchimont 2004). In clinical oncology, they are included
in all therapeutic regimes of lymphatic tissue malignancies (Coleman 1992). Moreover,
they are used as a part of endocrine therapy in breast and prostate cancer, and as anti-
edema agents in brain tumors (Coleman 1992, Herr and Pfitzenmaier 2006). GCs are
also widely applied in prevention and treatment of chemotherapy-associated side
effects, such as nausea and allergic reactions. However, the influence of GC on the
growth of solid tumors is a topic of ongoing scientific debate. This is due to the unclear
role of the glucocorticoid receptor in the regulation of malignant cells and the still
controversial idea of anti-immune therapy as anti-cancer strategy (Coleman 1992, Herr
and Pfitzenmaier 2006). Nevertheless, the broad spectrum of GC activities, including
anti-inflammatory, anti-angiogenic, anti-edema, necrotic and apoptotic actions, appears
to be very attractive for the treatment of such a complex disease as cancer. In contrast,
other pre-clinical and, to some extent, clinical data suggest that GCs induce resistance to
chemo- and radio-therapy and increase metastatic potential (Herr and Pfitzenmaier
2006). From the current study we can confirm that GCs suppress the functioning of the
tumor vasculature, possibly leading to growth inhibition. However, as therapy did not
result in a significant difference in vascular markers between the treated and control
group, the significant effect of the PLP-L therapy on tumor growth suggests that the
agent acts through other pathways as well.
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In this work we provided a thorough discussion of the theoretical framework of
guantitative analysis of DCE-MRI data, as well as practical guidance for its use. Although
the application of the discussed models and methods is not limited to the context of
DCE-MRI of the breast, we performed our investigation with that perspective in mind. In
doing so, we focused on common clinical practice. A general discussion on issues that
were not addressed in the preceding chapters will be given here, including future
perspectives.

8.1 Standardization of quantitative analysis

As has been stressed previously, a wide-scale introduction of pharmacokinetic
analysis into clinical practice will require more standardization in the field. It is
somewhat ironic that pharmacokinetic modeling should be an answer to lacking
standardization in acquisition techniques, but suffers from limited standardization itself
as well. In addition, there is skepticism about the added value of pharmacokinetic
analysis to current diagnostic practice; which could be related to its limited
standardization. More research is needed to provide a larger body of evidence that
pharmacokinetic assessment can or cannot improve diagnostics in combination with
morphologic assessment. In this context it would be very interesting to (further)
investigate the kinetics of non-mass-like enhancement, because the current descriptive
curve-type modeling does not appear appropriate to assess such lesions.

8.2 Reference tissue AIF

From our work in Chapter 6 we conclude that with low-temporal-resolution data
the AIF should be derived from a reference tissue. In DCE-MRI of the breast, the
pectoralis muscles are the most likely candidates. However, the signal-to-noise ratio in
the muscle tissue is often low. This could hinder its use as a reference tissue. As the
muscle tissue is not of main interest, this aspect is usually not considered in the design

of acquisition sequences and the choice of acquisition parameter settings. We think it
should be.

8.3 Bolus arrival time

An under-exposed research topic in pharmacokinetic analysis is the bolus arrival
time (Henderson et al. 1998, Kershaw and Buckley 2006, Laue et al. 2007). Especially
with data at low-temporal resolution, a good estimate of bolus arrival time could
improve pharmacokinetic parameter estimation. As it is likely that contrast agent will be
arriving at the tissue of interest while acquiring for instance a 1 min image volume, bolus
arrival time will usually not coincide with the start of a new dynamic volume.
Intermediate readings of k-space, so before the full volume is acquired, could provide
more detailed information about bolus arrival time.
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8.4 Combining high-spatial and high-temporal resolution

To settle the ‘battle’ between spatial and temporal resolution, acquisition
protocols incorporating both by use of smart k-space sampling schemes, like time-
resolved imaging of contrast kinetics, or smart alternation between high / low spatial /
temporal resolution should be considered. However, with partial k-space sampling it
should be thoroughly tested what the implications are of low-temporal-resolution
sampling of outer k-space in combination with high-temporal-resolution scanning of
central k-space. Indeed, most information lies in the center of k-space, but not all
information. Failure to detect enhancement in smaller structures such as foci or tumor
rim could affect diagnostics.

8.5 Representative curve and Kinetic maps

In this work we computed pharmacokinetic parameter values per voxel, as well
as per region-of-interest using the mean uptake curve. The exception is Chapter 7, in
which we investigated different measures derived from the histograms of the parameter
distributions per lesion to assess treatment response. We however did not discuss how
to find a summary measure of tumor kinetics for diagnostics.  Especially a
heterogeneous tumor will display many different contrast agent uptake patterns for
different voxels within the tumor. So, how to represent tumor kinetics with a single
descriptor in such a case? The BI-RADS guidelines (American College of Radiology 2003)
recommend to place a region-of-interest (at least 3 pixels) on the most suspicious part
of the tumor. As there is no consensus on whether this is the area with fastest
enhancement or strongest wash-out, both are allowed. Some workstations will have
software to provide a color-coded map of the three descriptive curve types, each type
represented with a color and the color intensity reflecting the degree of initial
enhancement. With such software an ROI can often be interrogated for statistics of
kinetics. The step of manual ROl placement is likely to introduce inter-observer
variability in the final diagnostic outcome. However, Baltzer et al. (2009) could not
improve diagnostic performance by making use of computer-aided selection of the
most-suspicious curve.

The use of pharmacokinetic analysis software is not (yet) wide-spread. With the
automatic generation of pharmacokinetic maps, the radiologist may be confronted with
several color-coded images, one for each model parameter. Probably, few radiologists
have enough experience with pharmacokinetic modeling to combine the information
from the different maps in their minds and use it for radiological assessment. An
intuitive and user-friendly way of providing pharmacokinetic information will be
necessary to enable wide-scale clinical use of such kinetic analysis techniques.

8.6 Motion artifacts

We did not address the correction of motion artifacts in this work. However, the
absence / correction of motion during the acquisition of the dynamic contrast-enhanced
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series is crucial for kinetic analysis. With motion, possibly many pixels will display
erroneous enhancement patterns that could be mistakenly assessed as malignant /
benign. Of course, pixel-wise kinetic mapping will suffer more from motion artifacts
than ROI-wise interrogation of kinetics.

8.7 (Quantitative morphologic assessment

We mentioned in the introduction that quantitative analysis is not necessarily
restricted to kinetic analysis. The assessment of morphologic features using
concentration images instead of signal intensity images would be interesting to pursue
further. Such a study could be performed with a radiologist assessing the images or with
automated calculation of morphologic features.

8.8 Signal calibration: model versus practice

In most literature, DCE-MRI signal quantification appears a ‘done deal’. Usually a
precontrast T; map is obtained making use of a variable flip angle approach and the
spoiled gradient echo model is used to convert signal intensity to T;(t). In our view,
there is however a large discrepancy between literature and clinical practice; many
current dynamic acquisition protocols cannot be described with the spoiled gradient
echo model. This issue is under-exposed in literature. Even if in theory the acquisition
should be spoiled-gradient-echo based, likely there is a mismatch in practice because of
advanced scan and filtering techniques. In most work it is not verified if the assumed
signal model truly applies to the acquired data. This is also why we pursued the use of a
calibration phantom; with such a phantom the theoretical signal model can be
corrected, or the signal can be calibrated empirically.

8.9 Contrast agent relaxivity

To convert T; (t) to contrast agent concentration we make use of the relaxivity of
the contrast agent. By using a fixed value, we assume that the effect of the contrast
agent is the same on all protons regardless of their environment. However, it has been
demonstrated that the relaxivity is affected by the concentration of macromolecules
(Stanisz and Henkelman 2000), which can differ between different tissues / modeling
compartments. Likely, the relaxivity in the calibration phantom compartments (Chapter
4) also differs from the relaxivity in tissue. In addition, magnetization transfer effects
are also different in the presence of macromolecules. Both effects should be further
investigated.

Despite the neglect of inter-tissue differences in relaxivity, the use of a fixed
value could provide a certain level of standardization. However there is another issue,
i.e., varying relaxivity values are reported for the same agents at the same field strength.
Take gadodiamide (Gd-DTPA-BMA) as an example. Although the GE web pages
(Omniscan, GE Healthcare, Piscataway, NJ, USA, product monograph) report that the
relative image contrast was found to be independent of the applied field strength in the
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range from 0.15 T up to 1.5 T (no relaxivity values reported), Rohrer et al. (2005) found
significant dependency of gadodiamide (among other agents) relaxivity on the field
strength and solvents. In water (37°C), they measured a relaxivity of 3.5 mM™ s™ at 0.47
T,0f3.3mM" s at1.5T, and of 3.2 mM™ s* at 3 T. Comparing water to other solvents
at 1.5 T, they found a relaxivity of 4.3 mM™ s in plasma (37°C), and of 4.6 mM™ s in
blood (37°C). Examples of other reported relaxivity values for gadodiamide are: 4.5 mM"
st at 1.5 T (Yang et al. 2010), 3.9 mM* s at 1.0 T (www.mr-tip.com), 3.3 mM™ s at
1.5 T (Park et al. 2008). For gadopentetate dimeglumine (Gd-DTPA, Magnevist, Berlex,
Fairfield, NJ, USA), Donahue et al. (1994) reported no significant influence of different

solvents (saline, plasma, cartilage) on the relaxivity at 8.45 T. The mean value was 4.0
mM™ s, However, Rohrer et al. (2005) reported a significant dependency on the field
strength and solvents for this contrast agent as well. A more standardized use of
relaxivity values could improve reproducibility and inter-institute comparisons.

8.10 Contrast agent size

One of the tissue properties probed with DCE-MRI is capillary vessel wall
permeability. Permeability is a function of the wall pore size as well as the size of the
contrast agent. The agent is most sensitive to permeability differences if the size of the
agent closely matches the pore size (Henderson et al. 2000). Common gadolinium-based
contrast agents are on the smaller end of the spectrum (< 1 kDa). Several preclinical
studies have indicated that in tissues outside the brain larger contrast agents (~10-100
kDa, i.e. blood pool agents) are more effective to detect differences in vessel wall
permeability (Adam et al. 1996, Brasch and Turetschek 2000, Daldrup et al. 1998). In
this work, we studied DCE-MRI as performed in current practice, i.e. with a low-
molecular-weight contrast agent. According to the above, this may mean that we did
not use the most sensitive technique.

An additional advantage of the use of larger contrast agents would be less strict
temporal sampling requirements, although the duration of the dynamic acquisition has
to be increased (Jaspers et al. 2009). At present, there is only limited approval for the
use of blood pool agents, but their use could potentially boost diagnostics. With these
new agents the applicability of pharmacokinetic models has to be reinvestigated.

In studying the distribution of circulating low-molecular-weight drugs,
conventional contrast agents are ideal, because they match the drugs in size (Brix et al.
2004). This is of particular interest for drug delivery to solid tumors as the systemically
administered drug often cannot reach all target cells due to for instance poor perfusion
and high interstitial pressure, which forms a major challenge for anti-cancer drug
therapy (Jain 1997).
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Chapter 8

8.11 Assessment of treatment effects

In the assessment of treatment response, especially in case anti-vascular / anti-
angiogenic agents are used, the common use of the basic Tofts model is probably not
justified (Donaldson et al. 2010). In this model, the vascular contribution to the signal is
ignored as well as the mean transit time. As it is the vascularity that the agents act
upon, the data should be acquired in such a way that at least the extended Tofts model
can be applied, providing a measure of the capillary fraction v,. Moreover, to
understand the mechanisms through which the vasculature is affected, it may be
important to distinguish perfusion from permeability (Brix et al. 2010). With the use of
higher temporal resolution data and an extended pharmacokinetic model we possibly
could have found more clues about the mechanisms of the anti-inflammatory drug
investigated in Chapter 7.

8.12 Use of animal data

In Chapters 5, 6, and 7 we made use of preclinical animal data. The rat data used
in Chapters 5 and 6 were acquired for a study that assessed the anti-angiogenic effect of
green tea (Fan et al. 2010a). The protocol was approved by the Animal Care and Use
Committee of The University of Chicago. As in the current work these data were used in
a simulation experiment to study the effect of low-temporal resolution which is not
directly beneficial to patients — but provides a valuable indication that at low-temporal
resolution the use of a reference tissue AIF method enables pharmacokinetic analysis —
we consider it justifiable to ‘recycle’ data that were acquired for the assessment of an
anti-cancer therapeutic. The therapeutic could be directly beneficial to patients,
especially since green tea is widely available. By deriving simulated data at lower
temporal resolutions from the original high-temporal-resolution data, there was no need
for additional animal experiments.

In Chapter 7 we used mouse data to establish the best imaging markers for early
evaluation of anti-cancer therapy with liposomal prednisolone phosphate. The protocol
was approved by the Institutional Ethical Review Committee for animal experiments of
Maastricht University. As cancer drug resistance is a severe problem in oncology and
the novel therapeutic under study has already demonstrated to inhibit tumor growth,
we think it important to study the mechanisms underlying this effect. As cell-stromal
interaction is crucial for angiogenesis, these mechanisms cannot be studied in an in vitro
environment. MRI allows for painless therapy monitoring and the use of in vivo imaging
markers greatly reduced the number of animals necessary to perform a longitudinal
study. Because such therapy monitoring with MRI is applicable to humans, it could be
directly beneficial to patients. In a clinical setting these markers are important to
distinguish responders from non-responders at an early time, preventing unnecessary
treatment, resulting in a tailored therapy.
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General discussion

8.13 Concluding remarks
Challenges to arrive at meaningful clinical application of quantitative DCE-MRI of
the breast are in particular:

- customized application of pharmacokinetic models, which is dictated by the quality
of the data and the specifics of the pathology,

- standardization of pharmacokinetic parameter estimation methods,

- facilitation of reference tissue AIF methods,

- validated signal calibration,

- intuitive representation of the estimated tissue properties.

In this work we studied many aspects of DCE-MRI in great detail, in order to pave
the road towards further clinical application. The presented results call for further
testing in practice. We believe that pharmacokinetic analysis of common DCE-MRI
breast data is achievable, and will improve diagnostic accuracy. The next step would be
to demonstrate its added value to morphologic analysis as an alternative for descriptive
kinetic analysis. Quantitative analysis will improve the much needed standardization, so
we can provide all women undergoing DCE-MRI of the breast with an adequate and
consistent diagnosis.
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Samenvatting

Borstkanker is een ziekte waar één op de acht vrouwen in geindustrialiseerde
landen mee te maken krijgt. Sinds 2001 neemt het aantal nieuwe gevallen in een land
als de Verenigde Staten gestaag af. En, sinds 1990, neemt ook het aantal sterfgevallen
ten gevolge van borstkanker af. Deze laatste daling wordt deels aan vroegtijdige
detectie en deels aan betere behandelingen toegeschreven. Nog steeds is de impact van
deze ziekte op de samenleving groot. Dit proefschrift gaat over vroegtijdige detectie van
borstkanker door MRI beelden op een kwantitatieve wijze te analyseren (MRI: magnetic
resonance imaging).

Preventief screenen (bevolkingsonderzoek) en ook het stellen van een diagnose
gebeurt in het algemeen met behulp van réntgen-mammografie. MRI is een
alternatieve beeldvormende techniek die steeds belangrijker wordt, bijvoorbeeld voor
het screenen van vrouwen die een erfelijke aanleg voor borstkanker hebben. 0ok kan
het voorkomen dat rontgen-mammografie niet in een duidelijke uitslag resulteert. In
dat geval kan MRI uitkomst bieden. MRI is ook een veelgebruikte techniek om de
effecten van een behandeling tegen kanker te meten. Een MRI onderzoek van de borst
bestaat onder andere uit een dynamische serie beelden: een contrastmiddel wordt
geinjecteerd en vervolgens enkele minuten gevolgd door een ‘filmpje’ van de borst op te
nemen. Het opnemen en analyseren van de dynamische MRI-serie zijn uitvoerig
onderzocht in dit proefschrift.

In de dynamische data kan voor een stukje weefsel een T;-gewogen curve
worden gemeten (T;: weefseleigenschap die verschillend is voor elk type weefsel).
Meestal bekijkt de radioloog — naast een aantal andere weefseleigenschappen — het
verloop van deze curve om in te schatten of het weefsel gezond is of niet. Bijvoorbeeld:
als het contrastmiddel eerst snel wordt opgenomen om vervolgens ook weer snel ‘uit te
spoelen’ dan is dat een teken van kwaadaardigheid; dit in tegenstelling tot een langzame
opname zonder ‘uitspoeling’, wat een teken is van goedaardigheid. Dit verschil in
contrastopname-curve komt voort uit fysiologische veranderingen die het weefsel
ondergaat wanneer er zich een tumor ontwikkelt. Dit verschil is gebleken in de klinische
praktijk door grote aantallen patiénten te bestuderen; deze manier van curve-type
classificatie is niet gebaseerd op kennis van de fysiologie.

Een andere manier om deze contrastopname-curves te analyseren komt voort uit
de farmacokinetische modellering. De contrastopname wordt met deze methode
beschreven in fysiologische termen. Dit schept de mogelijkheid om niet alleen vast te
stellen dat het weefsel pathologisch is, maar ook om vast te stellen wat er dan precies
anders is in vergelijking met gezond weefsel. Ook zorgt gebruik van deze methode
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ervoor dat ongewenste invloeden geen effect hebben op het karakteriseren van de
contrastopname-curves.

In dit proefschrift hebben we de fysiologische modelaannames van verschillende
farmacokinetische modellen uitvoerig besproken en vergeleken. Ook hebben we een
aantal praktische aspecten bekeken zoals het verkrijgen van een arteriéle input-functie
(beschrijving van hoe het contrastmiddel wordt ‘aangeboden’ aan het weefsel) en het
schatten van modelparameters. In een simulatiestudie hebben we gekeken naar wat
een beperkte tijdsresolutie of een hoog ruisniveau betekent voor de toepassing van een
drietal farmacokinetische modellen (verschillend in complexiteit). Slechts één van deze
modellen (basic Tofts) bleek toepasbaar te zijn op dynamische MRI-data zoals die van de
borst wordt opgenomen. Omdat de beperkte tijdsresolutie van dergelijke borstdata
(vaak duurt de opname van één beeldvolume 1 minuut of langer) een belemmering
vormt voor de toepassing van farmacokinetische modellering, hebben we het tijdsaspect
nog verder onderzocht. Hieruit volgde dat farmacokinetische modellering toegepast kan
worden op data met een tijdsresolutie van ongeveer 1 minuut, mits de arteriéle input-
functie op een slimme manier verkregen wordt; namelijk indirect afgeleid uit de
contrastopname-curve gemeten in een gezond weefsel.

Een belangrijke voorwaarde voor het betekenisvol toepassen van
farmacokinetische modellering is dat de contrastopname-curves de concentratie van het
contrastmiddel in de tijd weergeven. De gemeten signaalintensiteit is namelijk
afhankelijk van allerlei instellingen en daarom op zichzelf niet betekenisvol en moeilijk te
vergelijken. Wat het omrekenen van gemeten signaalintensiteit naar concentratie
moeilijk maakt is dat een verandering in signaalintensiteit een indirect effect is van de
contrastmiddelconcentratie in het weefsel. Het is dus noodzakelijk om ofwel een
theorie aan te nemen die het verband tussen de concentratie en de gemeten intensiteit
beschrijft, ofwel een empirische kalibratie uit te voeren. Beide hebben wij onderzocht,
gebruikmakend van een kalibratie-object ontwikkeld aan The University of Chicago. Dit
object is zo ontworpen dat het met de patiént meegescand kan worden en omsluit als
een ‘bakje’ de borst.

Naast het gebruik van farmacokinetische modellering voor diagnostiek, hebben
we in een dierstudie ook gekeken naar het kwantificeren van het effect van een nieuwe
therapie. We hebben gekeken hoe een ontstekingsremmer ervoor kan zorgen dat een
tumor langzamer groeit.

Het in dit proefschrift gepresenteerde onderzoek draagt bij aan een betekenisvolle
toepassing en interpretatie van kwantitatieve dynamische MRI borstdata.
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Na 4 jaar eenzaam ploeteren pas weer je donkere kantoortje uitkomen? Niets
bleek minder waar... Samenwerken was de sleutel tot dit proefschrift en ik heb met veel
plezier mijn rol hierin vervuld. |k wil dan ook graag een aantal mensen hartelijk
bedanken voor hun bijdragen aan de totstandkoming van dit proefschrift. Bart, bedankt
dat je me hebt gestimuleerd om voorbij de horizon te kijken, om een tijd in Chicago te
werken en om mezelf tot een all-round onderzoeker te ontwikkelen. Jouw
belangstelling voor niet alleen de onderzoeker maar ook de mens achter de onderzoeker
is hartverwarmend. Hans, jij hebt me alle ruimte gegeven om een eigen draai aan mijn
onderzoek te geven. Met jouw kritische houding wist je me steeds op de medische
praktijk te attenderen: “Ok, heel interessant, maar wat heeft de patiént hier aan?” Ook
heb ik de kunst van het ‘beinvioeden’ een beetje van je kunnen afkijken. Natal, jouw
kennis van systeemtheorie en signaalanalyse in combinatie met dit vakgebied heeft tot
uiterst nuttige inzichten geleid. Je enthousiasme is aanstekelijk. Greg, your ‘brainstorm-
way-of-life’ has been very inspiring and led to many new research questions as well as
solutions. When | asked you to discuss the focus of my project, your answer was: “You
want to talk about focus? With me?” Need | say more? Luckily, Fan was there assuring
that | actually produced material. Hearing every morning: “Marieke, did you finish your
paper?” was a surprisingly effective way to help me focus on what really mattered. |
would like to thank you both for receiving me at The University of Chicago and for
providing guidance during the project. Not to mention the many laughs we had, it was
great to be part of your team. |k wil ook graag Klaas Nicolay, Jelle Barentsz en Kenneth
Gilhuijs hartelijk danken voor het plaatsnemen in mijn commissie.

Over de jaren heen heb ik aan een tiental bureaus gezeten. lk dank hier dan ook
in één keer al mijn kamergenoten en collega’s voor een mooie tijd (I thank all my office
mates and colleagues for a great time!). Frans, dank je voor een rustige plek bij jou op
de kamer die ik tegen het eind goed kon gebruiken! Geert, ik kijk met veel plezier terug
op onze samenwerking. lk viel met mijn neus in de boter met jou als Master student.
Zonder jouw werk waren de hoofdstukken 2 en 3 niet geworden tot wat ze nu zijn.
Thorsten, thank you for your help and continuing interest. | hope you’ll be pleasantly
surprised by the end result. Ewelina, it was great working with you. The combination of
our very different writing styles led to a paper we can be proud of. Alessandro, thanks
for being so funny and making me rethink the Dutch way of organizing everyone and
everything... Ellen en Roy, bedankt voor alle gezelligheid, stoom-afblaas-gelegenheden
en plezier. Justus, nooit eerder kreeg iemand me zo gek om Hollandse Nieuwe te eten!
Dat Barts groep een heel bijzondere plek is om te werken blijkt ook steeds tijdens de
onvergetelijke Ardennenweekendjes, bedankt allemaal!
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Ook bij Philips Healthcare wil ik al mijn collega’s bedanken voor de fijne en open
sfeer. Frans, ik heb veel geleerd van jouw stiltes die steevast gevolgd werden door een
zeer terechte kritische vraag. Arjan, bedankt voor je input en enthousiasme! Steven, op
de valreep heb jij nog een belangrijke rol gespeeld voor het werk beschreven in
hoofdstuk 4. Na: “Zeg, ik heb daar nog eens naar gekeken”, volgde meestal een
belangrijke optimalisatie van onze methoden. Bedankt! Iwo, dank je voor je hulp bij
last-minute klussen. Ursula, het was gezellig om in Chicago met een ‘Nederlandse’
collega op te trekken. Marcel, bedankt voor goede raad.

Of course, I'd also like to thank my dear colleagues in Chicago. A big thank you to
Abbie, Liz, and Fred, whose contributions to chapter 4 are invaluable. It has been great
working with you guys! Dev, Chad, Cheng, Liz, Milica, Sunny, Marta, Sean, Erica, Jim, and
John, thanks to all of you | had an incredible time in Greg’s lab. Liz, you are the most
environmentally-friendly American I've ever met! Milica, | enjoyed exchanging
‘European’ (= sarcastic) jokes with you. Abbie, I'll miss our chats at the scanner console.
Gillian, your interest in this research has been an important motivation, thank you.
Marko, I've always highly appreciated your input into this research.

Buiten mijn werk prijs ik me zeer gelukkig met mijn vrienden waarmee ik
honderduit klets en veel lol mee beleef. Bedankt voor alle steun en afleiding, Jennifer,
Gaby, Hanneke, Arend, José, Carola, Mirjam, Marian, Jutta, Evelinda, Marloes, Renske,
Kim, Bram en Marleen. Ellen en Renske, geweldig dat jullie mijn paranimfen zijn!
Douwe en Evelinda, bedankt voor jullie spectaculaire design van het omslag. I'd also like
to thank my dear friends that | met in Chicago, Tayo, Van, Christina, and Ellen. | hope to
see you again.

Beste schoonfamilie, ik vind het geweldig dat jullie zoveel interesse tonen! Pap,
mam, Job, Vivian, Janneke, Harrie, Elly, bedankt voor jullie onvoorwaardelijke steun!
Het is jullie Marie (snel uitgesproken: ‘MRI’, grapje van pa) toch maar mooi gelukt...
Lieve Jurgen, dankzij jou was het laatste jaar ook het mooiste jaar. Jij wist op de juiste
momenten een adempauze in te lassen, maar me ook liefdevol doch resoluut uit bed te
duwen wanneer ik op een zondag geen zin meer had me te houden aan de goede
voornemens van de vorige avond: “dat maak ik morgenvroeg nog wel even af...”. Die
spreekwoordelijke laatste loodjes hadden zonder jouw steun veel zwaarder gewogen.
Terecht kun je zeggen: “Wij hebben het af!”
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