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Abstract 

Functional imaging of 18F-Fluorocholine PET holds promise for the detection of dominant 

prostatic lesions. Quantitative parameters from PET-CT Perfusion may be capable of 

measuring choline kinase activity, which could assist in identification of the dominant 

prostatic lesion for more accurate targeting of biopsies and radiation dose escalation. 

The objectives of this thesis are: 1) investigate the feasibility of using venous TACs in 

quantitative graphical analysis, and 2) develop and test a quantitative PET-CT Perfusion 

imaging technique that shows promise for identifying dominant prostatic lesions. 

Chapter 2 describes the effect of venous dispersion on distribution volume measurements 

with the Logan Plot. The dispersion of venous PET curves was simulated based on the 

arterio-venous transit time spectrum measured in a perfusion CT study of the human 

forearm. The analysis showed good agreement between distribution volume measurements 

produced by the arterial and venous TACs.  

Chapter 3 details the mathematical implementation of a linearized solution of the 3-

Compartment kinetic model for hybrid PET-CT Perfusion imaging. A noise simulation 

determined the effect of incorporating CT perfusion parameters into the PET model on the 

accuracy and variability of measurements of the choline kinase activity. Results indicated 

that inclusion of CT perfusion parameters known a priori can significantly improve the 

accuracy and variability of imaging parameters measured with PET.  

Chapter 4 presents the implementation of PET-CT Perfusion imaging in a xenograft mouse 

model of human prostate cancer. Image-derived arterial TACs from the left ventricle were 



 

ii 

 

corrected for partial volume and spillover effects and validated by comparing to blood 

sampled curves. The PET-CT Perfusion imaging technique produced parametric maps of 

the choline kinase activity, k3. The results showed that the partial volume and spillover 

corrected arterial TACs agreed well with the blood sampled curves, and that k3max was 

significantly correlated with tumor volume, while SUV was not. 

In summary, this thesis establishes a solid foundation for future clinical research into 18F-

fluorocholine PET imaging for the identification of dominant prostatic lesions. 

Quantitative PET-CT Perfusion imaging shows promise for assisting targeting of biopsy 

and radiation dose escalation of prostate cancer. 
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myth or made-up mystery or miracle. Science has its own magic: the magic of reality.” 
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Chapter 1  

1 Introduction 

1.1 Prostate Cancer 

1.1.1 Prevalence 

 Approximately 1 in 7 Canadian men will develop prostate cancer and 1 in 27 men 

will die from the disease. Prostate cancer is the most common cancer in Canadian men and 

accounts for 23.9% of new cancer cases in Canada. [1] On average, 66 men will be 

diagnosed with prostate cancer every day and 11 men will die from prostate cancer every 

day. It is estimated that there were 24,000 new cases and 4,100 deaths caused by the disease 

in 2015. [1] 

1.1.2 Potential Causes 

 Causes of prostate cancer are complex and multifactorial. The data regarding the 

causes of prostate cancer are not conclusive, however there have been some indications 

from epidemiological studies that the typical Western diet may play a role. [2-4] 

Specifically, high calcium, high fat diets as well as dairy products and red and processed 

meats have emerged as potential causative factors in epidemiological studies. [5] In 

addition to dietary factors, lifestyle factors such as exercise may also play a role. [6] 

1.1.3 Mechanisms 

 Healthy prostate tissue and androgen-dependent prostate cancer depend on 

androgen hormones such as testosterone as regulators of growth and proliferation. [7]  
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 Androgen-dependent prostate cancer depends on androgen receptors for growth 

and survival. [8] After crossing the cell membrane, testosterone is converted by the enzyme 

5α-reductase to dihydrotestosterone, an active hormone with a 5 to 10 fold increased 

affinity for the androgen receptor. Dihydrotestosterone binds to androgen receptors in the 

cytoplasm before translocating into the nucleus where it binds to androgen-response 

elements in the DNA, leading to activation of genes that mediate cell growth and survival. 

[7] 

 Androgen-independent prostate cancer is less dependent on the presence of 

androgen because it develops alternate cellular pathways to compensate for an androgen-

depleted environment. Alternatively, cancer cells may develop a pathway that is 

hypersensitive to androgen and use these low levels of androgen for growth. [9-11] This 

type of cancer is castration resistant. 

 Chromosomal alterations and the altered expression of oncogenes have been 

identified as other potential factors that contribute to the development of prostate cancer. 

[12] 

1.2 Anatomy of the Prostate 

 The prostate is a gland that secretes seminal fluid and expels it via the urethra during 

ejaculation. The base of the prostate is located at the neck of the bladder and its apex is 

found at the urogenital diaphragm. [13, 14] The prostate is situated anterior to the rectum, 

with a thin layer of connective tissue known as Denonvilliers’ fascia separating it from the 

latter. [13] There are skeletal muscle fibres that extend from the urogenital diaphragm into 

the apex of the prostate and terminate at the anterior mid-prostate. [15] The entire prostate 
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gland is covered in a layer of connective tissue called the prostatic capsule. The anterior 

fibromuscular stroma forms the external surface of the anterior prostate, contributing to its 

convex shape. [13] 

1.2.1 Zonal Anatomy 

 McNeal was the first to characterize the prostate into distinct zones. [16] (Figure 

1.1) The peripheral zone contains 75% of the glandular tissue in the prostate. It includes 

all of the glandular tissue near the apex and runs superiorly along the capsule to encompass 

all of the tissue at the apex. This zone has shown to have a higher prevalence of post-

inflammatory atrophy, chronic prostatitis and carcinoma. [13]  

 The central zone is a cone-shaped zone that runs from the apex at the concourse of 

the ejaculatory ducts to the prostatic urethra at the mid-prostate. Contrary to the peripheral 

zone, carcinoma rarely develops in the central zone. [17] 

 The transition zone is located laterally to the urethra at the midgland. This zone is 

the main site of development of benign prostatic hyperplasia (BPH) and less frequently it 

can also develop adenocarcinoma. [13] 
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Figure 1.1: Zonal anatomy of the prostate. (Reproduced with permission [18]) 

1.3 Prostate Cancer Screening 

1.3.1 Digital Rectal Examination 

 Digital Rectal Examination (DRE) is an exam in which the physician palpates the 

prostate gland via the rectum to determine whether any abnormal enlargement of the gland 

is present. The efficacy of DRE for the detection of prostate cancer is generally poor, with 

a positive predictive value ranging between 17-38%, depending on the age of the patient, 

since older patients are more likely to present with advanced disease. [19] 

 The DRE can often be confounded by the presence benign prostatic hyperplasia 

(BPH), an enlargement of the gland that worsens with age. It is generally not recommended 
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to screen for prostate cancer with DRE alone, as it has been found that DRE has no effect 

on morbidity or mortality in men with prostate cancer. [20] Indeed, only pathologically 

advanced cancers can be detected by DRE alone. [21] 

1.3.2 Prostate Specific Antigen Screening 

 Prostate specific antigen (PSA) is a glycoprotein secreted by the epithelial cells of 

the prostate. PSA levels are often elevated in individuals with prostate cancer, since 

malignant tissue exhibits increased PSA production and the tortuous nature of cancerous 

cells results in disruptions to the barrier between the capillaries and prostate lumen, 

resulting in increased release of PSA into the serum. 

 Studies estimate that PSA levels can be elevated as much as 5 to 10 years prior to 

diagnosis of prostate cancer [22, 23] and perhaps even longer. [24] Unfortunately, high 

PSA levels may also be due to asymptomatic inflammation [25, 26] or bacterial prostatitis. 

[27] BPH is a confounder as well, since its presence is also associated with elevated PSA 

levels. [26] PSA levels are also influenced by urinary retention, ejaculation, DRE, and 

trans-rectal ultrasound-guided biopsy. [28, 29] 

 The traditional cut-off for PSA screening is a PSA level of greater than 4.0 ng/ml. 

[30-33] The majority of prostate cancer cases in the range of 4.0 to 10.0 ng/ml are organ-

confined and potentially curable cases, while the proportion of organ-confined cases is less 

than 50% at levels higher than 10.0 ng/ml. [34] The positive predictive value for PSA levels 

greater than 4.0 ng/ml is only 30%, signifying that less than a third of patients with positive 

PSA screening will truly have the disease. 
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 The advent of PSA testing has resulted in an increased detection of prostate cancer 

with stage migration towards lower stage disease. This has greatly increased the risk of 

over-diagnosis and over-treatment of low-risk patients. These factors have led a recent 

review to conclude that the risks of PSA screening outweigh the benefits. [35] 

1.3.3 Staging: Gleason Grading System 

 In 1966, Gleason [36] proposed a classification system that assigns a grade to 

histopathological prostate specimens with the goal of stratifying prostatic carcinoma 

according to varying degrees of malignancy. The system relies on visual assessment of 

general histologic patterns observed in H&E stained sections rather than any specific 

criteria. [37] It is widely recognized that the grade of a tumour is related to its degree of 

malignancy. [38] 
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Figure 1.2: Standard drawing illustrating different Gleason grades. (Reprinted by 

permission from Macmillan Publishers Ltd: Modern Pathology [37], copyright 

(2004).) 

 The lowest Gleason grade is 2 and the highest is 10. The Gleason grade is the sum 

of two individual scores ranging from 1 to 5. The individual scores are used to classify any 

of the nine different patterns (consolidated into 5 scores) that are seen in prostate histology 
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specimens. Scores are assigned to the primary pattern, which is the predominant pattern 

seen throughout a lesion, and the secondary pattern, which is the second most common 

pattern in the lesion. To achieve a Gleason grade, the scores from the primary and 

secondary patterns are summed. If only one pattern is present, that pattern is assigned a 

score and multiplied by two to achieve the Gleason grade. A Gleason score of 3 represents 

discrete, well-formed, infiltrative glands. A score of 5 indicates very poorly differentiated 

glands with high potential for proliferation. A Gleason grade of 2-4 is not a candidate for 

intervention, because in many cases these tumours are actually benign prostatic hyperplasia 

and classification of these grades has shown poor reproducibility among experts. [39, 40] 

Higher Gleason grade may be candidates for either active surveillance or treatment.   

1.3.4 Trans-Rectal Ultrasound-Guided Biopsy 

Transrectal ultrasound guided biopsy (TRUS-GBS) of the prostate is used to 

diagnose prostate cancer (PCa). Focal disease is challenging to detect with medical imaging 

and with ultrasound in particular. Many types of prostate cancer are not visible on grayscale 

ultrasound and other detectable lesions are benign in nature. Further, TRUS has a number 

of potential side effects, including hematuria, hemorrhage and infection. [41] Despite these 

disadvantages, TRUS-GBS remains in widespread use due to its low cost, simplicity and 

high quality images.  TRUS-GBS targets broad sectors of the prostate rather than specific 

localized lesions. In recent years, there has been a trend toward acquiring a larger number 

of biopsy specimens with some studies recommending up to 12 individual biopsy cores. 

[42] This “random biopsy” approach has been shown to miss 35% of cancers on first 

attempt and it also underestimates Gleason grade in 46% of cases. [43, 44] In these cases, 
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repeat biopsies must be performed if a diagnosis is to be made, which adds to the patient’s 

psychological stress and discomfort, and postpones diagnosis and treatment. [45] 

In addition, TRUS-GBS has difficulty detecting anterior prostate tumours until they 

grow to within 15-20mm of the posterior margin. [46] This causes delayed diagnosis of the 

disease. Hence, there is substantial motivation to develop an imaging technique with good 

sensitivity and specificity that could overcome these issues and aid targeting for TRUS-

GBS. 

1.4 Prostate Cancer Management 

 Management options for prostate cancer include active surveillance, androgen 

deprivation therapy, brachytherapy, chemotherapy and external beam radiation therapy. 

1.4.1 Active Surveillance 

 Active surveillance (AS) is a management strategy for low-risk prostate cancer in 

routine surveillance and is implemented with the purpose of identifying any significant 

progression in the cancer that may be clinically significant. [47] The use of AS for indolent 

tumours helps to reduce the prevalence of overtreatment and over-diagnosis, sparing the 

patient from potentially unnecessary side effects and risks as a result of treatment. 

Guidelines established by the National Comprehensive Cancer Network (NCCN) state that 

AS is suitable for prostate cancer with Gleason score ≤ 6, PSA ≤ 10 ng/ml, fewer than three 

positive biopsy cores, less than 50% cancer in any core, and life expectancy ≥ 20 years. 

[47] 
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1.4.2 Androgen Deprivation Therapy 

 Androgen-dependent prostate cancer requires the presence of androgen hormones 

such as testosterone in order to grow. Androgen deprivation therapy (ADT) is an anti-

hormonal therapy that functions to block the ability of prostate cells to benefit from 

androgen hormones. 

 Testosterone is synthesized in the testicles. The simplest, most cost-effective and 

most radical method to prevent synthesis of testosterone is to surgically remove the testicles 

in a procedure known as an orchiectomy. However, the most common method of ADT 

employs chemical means and can achieve the effect of castration without the use of surgery. 

 Chemical ADT can be delivered using gonadotropin-releasing hormone (GnRH) 

agonists that temporarily disable production of testosterone in the testicles. Another 

method is to use anti-androgen medications to block the body’s ability to use androgens 

for the production of testosterone. 

 Treatment of advanced prostate cancer with ADT usually leads to remission lasting 

2 to 3 years, but in most cases the prostate cancer progresses to an androgen-independent 

state and leads to widespread metastases. [48-50] 

1.4.3 Chemotherapy 

 The most common chemotherapy for prostate cancer involves intravenous 

administration of the drugs docetaxel or cabazitaxel. The goal of chemotherapy is to slow 

or stop the growth of cancer cells. The treatment’s side effects involve hair loss, nausea 

and vomiting, and loss of white blood cells, which increases the risk of infection. 
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 Chemotherapy offers therapeutic potential for androgen sensitive prostate cancer 

but has been shown to be ineffective for androgen-independent prostate cancer. [51] 

1.4.4 Radiation Therapy 

Accurate localization of prostatic lesions is challenging, therefore standard 

radiation therapy of the prostate targets the entire prostate, irradiating both cancer and 

healthy prostate tissue. Clinical trials have shown that treatment with higher radiation doses 

may improve overall and progression-free survival but also increase the occurrence of side 

effects. [52] In light of this issue, there has recently been interest in radiation therapy 

techniques using integrated radiation boosts to the dominant prostatic lesion, which can 

spare healthy tissue from radiation dose. [53] This technique has shown potential to 

increase biochemical control, improve the therapeutic ratio and deliver individualized 

treatment. [54-57] Hence, there is need for a medical imaging technique that is capable of 

accurate localization of the dominant prostatic lesion that would allow for intra-prostatic 

radiation dose escalation. 

1.4.4.1 Brachytherapy 

 The goal of brachytherapy is to deliver an ablative radiation dose to the tumour 

while sparing surrounding healthy tissues. There are two types of brachytherapy: high dose 

rate (HDR) and low dose rate (LDR). In HDR brachytherapy, a radioactive source is 

temporarily placed (i.e. during one visit to the hospital) in the prostate via implanted 

needles. In LDR brachytherapy, radioactive seeds are permanently implanted into prostate 

tissue. [58] 
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 Patient selection for brachytherapy focuses on patients with at least 10 years of life 

expectancy who are at low or medium risk, as per NCCN guidelines. [59] Brachytherapy 

can also be used as an adjuvant to external beam radiation therapy or ADT in medium to 

high-risk patients. Brachytherapy only treats intra-prostatic tumours and is therefore 

contraindicated in patients with metastatic disease. Other contraindications include urinary 

obstruction, previous pelvic irradiation, previous trans-urethral resection, prostate volume 

> 50 cm3, and inflammatory bowel disease. 

1.5 Medical Imaging of Prostate Cancer 

 The role of imaging in the diagnosis and management of prostate cancer is 

becoming very important, given its potential for guiding treatment selection and planning. 

Multiple prostate cancer imaging modalities have been investigated, including ultrasound, 

magnetic resonance imaging (MRI), computed tomography (CT) and positron emission 

tomography (PET). The issue of which imaging modality is optimal in terms of sensitivity 

and specificity is still up for debate and is not clear given the available data. 

 Imaging has the potential to improve the diagnosis and management of prostate 

cancer. A modality that enables sensitive and specific diagnosis relative to TRUS would 

reduce the need for repeat biopsies by assisting in the localization of dominant prostatic 

lesions and improving biopsy targeting. An imaging modality with a high specificity would 

assist the identification of high PSA patients eligible for active surveillance and thus reduce 

the number of unnecessary biopsies that are performed due to false positives, thereby 

reducing health care costs and reduce patients’ psychological distress. 
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 Such an imaging modality would also improve prostate cancer management by 

assessing the patient’s response to treatment and identifying dominant lesions eligible for 

intra-prostatic radiation boosts, enabling more conformal radiation dose delivery and 

reducing the incidence and severity of toxicity to the urinary tract. More accurate 

localization of prostate cancer would also enable better targeting for focal ablative 

treatment with high dose rate brachytherapy. 

1.5.1 Multi-Parametric MRI 

 Multi-parametric MRI (mp-MRI) uses a combination of parametric MRI 

techniques. These include magnetic resonance spectroscopy (MRS), T2-weighted imaging 

(T2W), dynamic contrast-enhanced imaging (DCE-MR) that can analyze tissue 

microvascular properties and diffusion-weighted imaging (DWI) that is sensitive to 

restricted diffusion of water molecules. [60] Combinations of DWI and DCE-MR imaging 

have shown great potential for distinguishing malignant from benign prostate tissues. [61] 

The advent of widespread PSA screening has increased the detection of prostate cancer in 

low-risk patients, who are eligible for active surveillance rather than aggressive treatment 

[62]. It has been shown that mp-MRI may be useful for detecting bilateral involvement of 

prostate cancer in these patients. [63] Mp-MRI has shown promise for image guidance of 

biopsies and DWI-MR image intensity has been shown to be negatively correlated with 

Gleason scores. [64] Mp-MRI has also shown promise for detecting clinically significant 

prostate cancer with sensitivity comparable to that of biopsy; therefore mp-MRI may be 

able to reduce the number of biopsies required. [65] 
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 A meta-analysis has shown mp-MRI to have a sensitivity and specificity of 0.74 

and 0.88 with a negative predictive value of between 0.65 and 0.94. [66] While other 

studies have found that mp-MRI is useful for the detection of prostate cancer in the 

peripheral zone, [67-69] detection in the transition zone is more challenging due to the 

confounding effects of BPH and the heterogeneous nature of tumours in this zone. [70] 

 A few studies have found that mp-MRI has shown promise for the detection of 

cancer after negative biopsy, with a mean prostate cancer detection rate of 37.5%. [71]  

 Despite the promise of mp-MRI, there is currently no consensus as to the optimal 

use of the modality for staging or monitoring prostate cancer. In addition, the modality 

cannot be used in patients with metallic implants or pacemakers. 

1.5.2 Ultrasound Imaging 

 Conventional ultrasound imaging is comparable to DRE in terms of sensitivity and 

specificity in detecting prostate cancer [72]. To further improve its diagnostic capability, 

there has been interest in enhanced ultrasound imaging techniques, which are briefly 

described here. 

 Prostate perfusion can be measured using color-Doppler ultrasound imaging, by 

detecting the Doppler frequency/phase shift reflected from moving blood. [73-75] Power 

Doppler techniques are capable of measuring the amplitude of the reflected ultrasound 

signal and are more sensitive to small changes in flow velocity. [76] However, Doppler 

ultrasound imaging techniques are not sufficiently sensitive to eliminate the need for 

systematic biopsy sampling. [77] A study of Japanese men found that Power Doppler 

detected prostate cancer with a sensitivity of 98%, negative predictive value of 99%,  and 
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a positive predictive value of 57%, leading the authors to suggest that the technique may 

be most useful in men with smaller prostates. [78]  

 As prostate cancer is associated with increased microvessel density, the use of 

contrast enchanced ultrasound (CE-US) imaging has potential for early detection of 

prostate cancer. Microvessels in malignant prostate cancer have been shown to be more 

uniform than in benign tissue. [79] The disadvantage of ultrasound imaging is poor 

resolution such that detection of flow in microvessels is difficult. This disadvantage can be 

somewhat overcome with the use of microbubble contrast agents because they intensely 

reflect and amplify the ultrasound signal from within the microvessels. These CE-US 

techniques have shown promise for the detection of diffuse prostatic cancer in the absence 

of a dominant lesion and may be useful for identifying patients that do not require a repeat 

biopsy or a systematic 12-core biopsy. [80] 

1.5.3 Computed Tomography Imaging 

1.5.3.1 Non-contrast CT 

 The use of non-contrast CT for the detection and staging of prostate cancer is non-

existent due to poor contrast between different structures both within and outside of the 

prostate. The role of non-contrast CT for prostate cancer imaging is limited to treatment 

planning and PET-CT, where it can be helpful for attenuation & scatter correction of PET 

images and the localization of certain anatomical structures when co-registered with PET 

images. [81]  
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1.5.3.2 CT Perfusion 

 CT Perfusion (CTP) or dynamic contrast enhanced CT (DCE-CT) is a dynamic 

imaging technique that measures hemodynamic information and functional parameters 

such as blood flow (BF), blood volume (BV), and permeability surface-area product (PS). 

It involves the intravenous injection of an iodinated contrast agent during a set of serially 

acquired CT images to measure delivery of contrast via blood flow and its uptake into the 

extravascular space. 

 CT measures the attenuation coefficient of tissue, expressed in Hounsfield Units 

(HU), a linear transformation of the radio-density such that the value for water at standard 

temperature and pressure is 0 HU, and air is -1,000 HU. The value of HU measured is 

linearly proportional to the concentration of contrast in tissue. Hence, the dynamic 

acquisition of time density curves (TDC) provides direct insight into temporal changes to 

the contrast concentration in a given voxel. A rule of thumb is that when scanning at 80kVp, 

1 mg of iodine per ml is equivalent to an enhancement of 32 HU. [82] 

 The Johnson and Wilson model [83, 84] assumes that tissues consist of capillary 

and interstitial tissue. The capillaries are modeled as a cylinder of length L and volume Vb 

in which blood enters at the arterial end and exits at the venous end. The interstitial tissue 

is represented as an annulus around the capillary cylinder. (Figure 1.3) As the solute (CT 

contrast agent) travels along the cylinder from the arterial to the venous end, it diffuses into 

the interstitial space and thus the concentration Cb of the solute in the capillaries is 

dependent upon the axial position x of the given solute molecule and time t. The interstitial 

compartment is assumed to be a well-mixed compartment and hence the interstitial solute 
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concentration Ce is only a function of time, t. The justification for this approximation is 

that the arterial and venous end of capillaries are randomly oriented in tissue and thus 

would appear to be uniform since a CT voxel encompasses a large number of capillaries. 

The transport and exchange of solute is described by the following equation: 

 𝜕𝐶𝑏(𝑥, 𝑡)

𝜕𝑡
+

𝐹𝐿

𝑉𝑏
∙
𝜕𝐶𝑏(𝑥, 𝑡)

𝜕𝑥
+

𝑃𝑆

𝑉𝑏

[𝐶𝑏(𝑥, 𝑡) − 𝐶𝑒(𝑡)] = 0 (1.1) 

Where F is the capillary blood flow in ml/min/g and PS is the permeability-surface area 

product, which is the total diffusional flux across all capillaries per unit mass of tissue. 

The concentration of the interstitial compartment is defined by:  

 

𝑉𝑒

𝑑𝐶𝑒(𝑡)

𝑑𝑡
=

𝑃𝑆

𝐿
∫[𝐶𝑏(𝑥, 𝑡) − 𝐶𝑒(𝑡)]

𝐿

0

𝑑𝑥 (1.2) 

The extraction efficiency E defines the fraction of solute that diffuses from the capillaries 

into the interstitial space during a single pass between the arterial and venous ends of the 

capillaries. It can be shown that E is related to F and PS by: [85, 86] 

 
𝐸 =

𝐶𝑎(𝑡 − 𝑇𝑐) − 𝐶𝑣(𝑡)

𝐶𝑎(𝑡 − 𝑇𝑐) − 𝐶𝑒
= (1 − 𝑒−

𝑃𝑆
𝐹 ) (1.3) 

where Tc is the capillary transit time and Ca and Cv are the solute concentrations at the 

arterial and the venous end of the capillaries, respectively.  
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Figure 1.3: Johnson and Wilson model for solute exchange between capillaries and 

the interstitial space. Symbols are defined in the text. 

 The solution to the Johnson-Wilson model in the form of Equation (1.1) can only 

be expressed in the frequency domain through Laplace transforms. For this reason, it is not 

useful. However, by applying the adiabatic approximation developed by Lee & St. 

Lawrence [87], a time domain solution for the quantity of solute per unit mass of tissue 

Q(t) can be expressed as:  

 𝑄(𝑡) = 𝐶𝑎(𝑡) ∗ 𝐹 ∙ 𝑅(𝑡) (1.4) 

where * is the convolution operator and R(t) is the impulse residue function (IRF) defined 

as the fraction of solute that remains in tissue after an instantaneous administration of 

solute. (Figure 1.4) It is defined as:  

 
𝑅(𝑡) = {

1, 𝑡 < 𝑇𝑐

𝐸𝑒
−

𝐹𝐸
𝑉𝑒

(𝑡−𝑇𝑐), 𝑡 ≥ 𝑇𝑐

 (1.5) 

where Ve is the interstitial volume of solute per unit mass of tissue. The quantity 𝐹 ∙ 𝑅(𝑡) 

is the blood flow-scaled IRF. 
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Figure 1.4: The blood-flow scaled impulse residue function based on the Johnson and 

Wilson model. Symbols are defined in the text. When a bolus of contrast agent is 

injected into the arterial inlet,  the blood flow scaled IRF, which measures the total 

contrast mass in tissue,  remains constant at a value of F up to the tissue transit time 

Tc (𝑽𝒃/𝑭), according to the Central Volume Principle [88]). The area under this 

constant section of the blood flow scaled IRF is equal to Vb. When t > Tc, non-

extracted contrast agent leaves the tissue. 

 The arterial time density curve Ca(t) and tissue time density curve Q(t) can be 

measured from the dynamic images obtained from a dynamic CT study. The blood flow 

scaled IRF can then be obtained via deconvolution of Equation (1.4), and subsequently, the 

hemodynamic parameters can be obtained. 
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 CTP has recently been of interest for the detection of prostate cancer, however 

preliminary studies have shown inconsistent results. Cullu and colleagues reported a study 

of 25 patients and found significant BF and PS differences between prostate carcinoma and 

surrounding prostate tissue. [89] Luczynska et. al. found in a prospective study of 94 

patients that prostate cancer exhibited higher BF and BV compared to normal prostate 

tissue. [90] A later study by the same group found correlations between CTP parameters 

and Gleason score as well as PSA level. Huellner et. al. also found similar results, however 

they concluded that the correlations were not clinically significant. [91] 

1.5.4 Positron Emission Tomography 

 PET imaging with 18F-fluorodeoxyglucose (FDG) can be used to image glucose 

metabolism in the prostate. FDG PET imaging of prostate cancer is based on the increased 

glucose metabolism by anaerobic glycolysis that is observable in malignant cancer cells. 

This phenomenon is known as the Warburg effect. [92] While it is not clear why cancer 

cells have a proclivity for producing large amounts of ATP relative to normal cells, this 

mechanism can nevertheless be used as a biomarker for the presence of malignancy. [93] 

 In tissue, FDG is phosphorylated into FDG-6-phosphate, which becomes 

irreversibly bound to cells because the enzyme required for the reversible step, is not 

widely present in most cancers. [94] This cell-trapping mechanism is exploited by 18F-FDG 

PET, allowing for the localization of tumour cells with functional imaging. 

 FDG PET is not without limitations. In some cases, FDG has been known to 

accumulate in prostatitis, normal prostate tissue and benign prostatic hyperplasia (BPH). 

[95-97] The tracer can also accumulate in the urinary bladder, whose elevated signal can 
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obscure measurement of uptake in the prostate. [98, 99] These factors adversely affect the 

sensitivity and specificity of the modality such that 18F-FDG PET is not recommended for 

diagnosis or staging of organ-confined prostate cancer. [93] 

Positron Emission Tomography (PET) provides metabolic information for a variety 

of applications via quantification of the uptake of a radiolabeled molecule of interest in 

tissue. Recently, PET imaging with 18F-fluoromethylcholine (FCH) has been under 

investigation for the detection and localization of both de-novo and recurrent prostate 

cancer (PCa) as well as distant metastatic disease. [100] 

1.6 Animal Models of Prostate Cancer 

 Animal models of prostate cancer include genetically engineered and xenograft 

mouse models, rat models and canine models. [101] This section briefly discusses the 

various animal models as well as the prostate cancer cell lines that are most commonly 

used. 

1.6.1 Transgenic Mouse Model 

 Transgenic mice are genetically engineered to develop prostate carcinoma. The 

advantage of these models is that they reflect the full progression of prostate cancer, from 

the development of pre-invasive lesions through to the progression of metastatic disease in 

the presence of a fully functional immune system. The disadvantage is that the lesions are 

engineered to begin formation early in the life of the mouse, which results in significant 

biological differences when compared to humans since humans develop prostate cancer at 

later stages in life [102]. Additionally, the mouse prostate is quite small and therefore 
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difficult to resolve accurately due to the limited resolution of imaging modalities such as 

PET. Finally, transgenic mouse models are often more costly when compared to xenograft 

mouse models. 

1.6.2 Xenograft Mouse Model 

 In xenograft mouse models, prostate cancer cells are subcutaneously or 

orthotopically implanted into immune-deficient or nude mice. Xenograft mouse models 

have been useful for studying mechanisms of immune cells in therapeutic resistance [103], 

and for identifying potential biomarkers for imaging studies. The disadvantage of this 

technique is that there are a limited number of cell lines currently available, all of which 

represent advanced disease. Hence, xenograft mouse models are not suitable for prevention 

studies of prostate cancer. The tumor microenvironment may also be different from in-situ 

prostate cancer due to either the location of the tumor or its growth in the context of a 

compromised immune system. 

1.6.2.1  Prostate Cancer Cell Lines 

 The two most common prostate cancer cell lines are PC-3 cells and LNCaP cells. 

[104] PC-3 cells do not express an androgen receptor and their growth is androgen 

independent. They are most similar to prostatic small cell neuroendocrine carcinoma 

(SCNC), which is extremely aggressive and not responsive to hormonal therapy. Patients 

with SCNC typically present with locally advanced and metastatic disease. [105, 106] 

Conversely, LNCaP cells are androgen dependent cells that resemble prostate 

adenocarcinoma, which is responsive to hormonal therapy. 
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1.6.3 Rat & Canine Models 

 Rat models of prostate cancer are available, with certain rat strains possessing high 

rate of spontaneous carcinoma and other strains providing the potential for induced 

carcinoma. [107] The larger size of rats holds potential for more accurate imaging of the 

prostate with lower resolution imaging modalities. The disadvantage is that these models 

are less common, and hence there are far fewer analytical reagents available for the 

histological tumour analysis of these models, therefore their use and applicability are 

limited. 

 Canines spontaneously develop prostate cancer, providing the opportunity to 

perform prostate cancer imaging studies in a natural environment. Similar to rats, their 

much larger size compared to mice can improve imaging accuracy with lower resolution 

modalities. However, producing tumors via implantation of tumor cell lines or genetic 

means in canines is much more difficult, hence the use of canine models of prostate cancer 

has been less common. Nevertheless, the larger size and natural tumor environment holds 

promise for more clinically translatable animal studies of prostate cancer and for 

identifying the potential clinical utility of novel molecular imaging biomarkers. [108] 

1.7 Imaging of Choline Metabolism 

1.7.1 The Kennedy Pathway 

 The Kennedy Pathway, named after Eugene Kennedy who elucidated it in 1956, 

describes the de novo synthesis of phosphatidylcholine and phosphatidylethanolamine, two 

of the most abundant phospholipid species in eukaryotic cells. [109, 110] In particular, 

phosphatidylcholine is a phospholipid that is incorporated into the cell membrane. 
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 The phosphorylation of choline is catalyzed by the enzyme choline kinase (CK), 

which is widely distributed in eukaryotic cells. [111] Choline is carried into the cell via 

choline transporters.  Once inside, the ATP-dependent phosphorylation by the CK enzyme 

phosphorylates the choline into phosphocholine (PC). [112] (Figure 1.5) PC undergoes 

further steps and is eventually incorporated into the cell membrane as phosphatidylcholine.  

 

Figure 1.5: ATP-dependent phosphorylation of choline by choline kinase. 

The CK enzyme is overexpressed in a variety of cancer cells, including those of the 

prostate. [113] In addition, it has been shown that malignant prostate tissue contains more 

phosphocholine when compared to benign or healthy prostate tissue. [114] For these 

reasons, choline uptake has been of interest as a potential endogenous marker of tumour 

proliferation. 

1.7.2 18F-Fluorocholine PET Imaging 

It is possible to use PET imaging to investigate the metabolism of choline in 

different tissues. This is accomplished by synthesizing a radiolabeled choline molecule 

such as 18F-Fluorocholine (FCH), also known as 18F-Fluoromethylcholine. This 

radiolabeled choline molecule can then be administered and its uptake in the prostate 

visualized with PET imaging.   
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Investigations of 18F-FCH PET for the initial staging of PCa have produced mixed 

results. [115-117] The modality has been found to be useful for the staging and restaging 

of PCa in patients with elevated PSA, however accurate staging of smaller lesions and 

patients with lower PSA has been challenging. [118-120] Identification of de-novo 

dominant prostatic lesions with 18F-FCH-PET has proved difficult due to the low contrast 

between PCa and other tissues exhibiting similar levels of tracer uptake, such as benign 

prostatic hyperplasia (BPH). [121, 122] This is counter-intuitive given that, as mentioned 

previously, the CK enzyme is overexpressed in prostate cancer and there is more 

phosphocholine in prostate cancer vs. benign tissue.  

These studies used the standardized uptake value (SUV), a semi-quantitative 

technique that is common in the analysis of PET studies. The mixed findings regarding the 

efficacy of prostate cancer detection with FCH PET may be due to the limitations of the 

SUV. 

1.8 Quantitative Analysis of PET 

1.8.1 Standardized Uptake Value 

The majority of clinical PET studies utilize the most common PET analysis metric, 

the semi-quantitative standardized uptake value (SUV), which is a measure of the 

normalized voxel radioactivity concentration weighted by both the patient weight and the 

injected radiopharmaceutical dose. [123] The primary reason for its frequent clinical use is 

that it does not require any arterial blood sampling, which is clinically cumbersome. A 

group of voxels contained within a region of interest (ROI) is typically used for the 

analysis. The most common quantification methods include determination of the mean 



26 

 

 

 

SUV of voxels within the ROI, which is subject to inter and intra observer variability, [124] 

and determination of the maximum SUV over all voxels, which is subject to image noise. 

[125] In addition, the SUV carries the assumption that the time integral of the arterial time 

activity curve, which governs the quantity of tracer available to tissue, is similar from 

patient to patient. While this generally holds true, it is not valid for many cases, such as in 

a patient that has impaired renal clearance of the radiotracer as a result of a prior treatment. 

[126] In this case, more radiotracer would be available to the tissue resulting in 

overestimation of the SUV. For these reasons, the use of the SUV as a quantitative index 

is generally discouraged and it is subject to large variability when used in multicenter trials. 

[127] Finally, while SUV correlates well with the metabolic influx constant Ki obtained 

from graphical methods, it may lead to opposite conclusions regarding progression of 

disease. [128] 

Another drawback of the SUV is that it does not discriminate between tracer 

molecules that are in different physiological states. For instance, it cannot determine what 

proportion of the tracer molecules are in blood vessels, in the interstitial space surrounding 

cells, or bound to cells. This decreases the ability to discriminate between regions that 

demonstrate similar tracer activity, yet exhibit different tracer kinetic properties. This is 

illustrated in Figure 1.6.  

FCH is of interest because choline is phosphorylated by the enzyme choline kinase 

into phosphocholine, which is incorporated into the cell membrane [129] and it is known 

that malignant tumours exhibit an increased rate of membrane synthesis. [130] Malignant 

prostate tumours also possess high levels of phosphocholine relative to benign prostate 
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tissues, [114] and phosphocholine levels are higher in human prostate cells derived from 

metastases than in normal prostate epithelial and stromal cells. [131] These data would lead 

one to expect lower choline kinase activity in BPH compared to malignant tissue, which 

cannot be discriminated using the SUV. The poor discriminating capability of SUV is 

potentially due to pooling of the tracer in the interstitial space of BPH contributing to the 

SUV signal, or the inability of the SUV to identify TAC’s with different kinetics when 

measured at time frames during which SUV in both regions is similar. Nevertheless, this 

is a plausible explanation for why similar SUV is seen in BPH and malignant tissues. 

 

Figure 1.6: Sample TAC’s from two different regions with different kinetics. The SUV 

produces different conclusions at time points I, II and III. (Data source: [132]. 

©Institute of Physics and Engineering in Medicine.  Reproduced by permission of 

IOP Publishing.  All rights reserved.) 
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1.8.2 Kinetics Modeling 

Quantitative tracer kinetic modeling allows for the determination of the conversion 

rate constants of the radiolabeled molecule into its different physiological states in-vivo. 

One common technique is compartment modeling in which unique physiological states are 

each represented as different, well-mixed compartments. Each compartment is assigned a 

differential equation defining the rate of change of the compartment’s activity 

concentration per unit time. Tracer can be exchanged between compartments, and a rate 

constant specifies the rate at which the activity concentration in a given compartment will 

be altered by this exchange. 

The arterial time activity curve (TAC) serves as input for the compartment model. 

Mathematically, this input function is not technically a compartment given that it is a 

measured quantity and not solved for, however some authors nevertheless include it as a 

compartment in the model. This work will follow this convention from this point forward. 

Compartment models include a number of assumptions. The compartments are 

assumed to be well-mixed; there is no spatial concentration gradient within individual 

compartments. The second assumption is that the amount of tracer injected is small enough 

that it does not alter the system physiologically. Third, the system must be in a steady-state 

where the inter-compartmental rate constants are not changing with time. The final 

assumption is that labeling the molecule of interest does not significantly affect its 

properties. 
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1.8.2.1 The 2-Compartment Model 

The 2-compartment model can describe tissue uptake for solute that is inert (not 

metabolized) such as a CT contrast agent. This model is shown in Figure 1.7 and is defined 

by the following equations: 

 𝑑𝐶𝑒(𝑡)

𝑑𝑡
= 𝐾1𝐶𝑎(𝑡) − 𝑘2𝐶𝑒(𝑡) (1.6) 

 𝑄(𝑡) = 𝑉𝑏𝐶𝑎(𝑡) + 𝐶𝑒(𝑡) (1.7) 

Where Ce(t) is the concentration in the interstitial compartment, K1 is the forward rate 

constant from the intravascular to the interstitial space, k2 is the backflux rate constant from 

the interstitial space to the intravascular space, Ca(t) is the arterial concentration of solute, 

and Vb is the solute volume per unit volume of blood. 

 

Figure 1.7: The 2-compartment model for an inert solute. Symbols defined in text. 

 The solution and operational equation for the 2-compartment model is:  

 

𝑄(𝑡) = 𝑉𝑏𝐶𝑎(𝑡) + 𝐾1 ∫𝐶𝑎(𝑢)𝑒−𝑘2(𝑡−𝑢)𝑑𝑢

𝑡

0

 (1.8) 
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where u is the convolution variable for the convolution integral. Note that this equation is 

similar to Equation (1.4), in that  

 𝐾1 = 𝐹𝐸 (1.9) 

 
𝑘2 =

𝐾1

𝑉𝑒
=

𝐹𝐸

𝑉𝑒
 (1.10) 

The difference here is that the intravascular compartment is assumed to be well-mixed and 

hence its concentration is uniform and not spatially dependent. The parameters for the 2-

compartment model can be obtained by solving Equation (1.8) using a variety of non-linear 

regression methods. [133] 

1.8.2.2  The 3-Compartment Model 

 The 2-compartment model can be extended to accommodate the case of a tracer 

that is bound in the tissue by a target process (e.g. phosphorylation by choline kinase for 

18F-FCH) by adding an additional compartment. This 3-compartment model is shown in 

Figure 1.8 and requires two added rate constants: k3 is the binding rate constant of the target 

process and k4 is the dissociation rate constant. The binding rate constant can have varying 

physiological meanings depending on the type of tracer molecule under study. For instance, 

in the case of FCH, k3 represents the rate at which radiolabeled choline permeates cell 

membrane and then becomes phosphorylated. The enzyme choline kinase catalyzes this 

phosphorylation reaction, therefore k3 represents the activity of choline kinase. 
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Figure 1.8: 3-Compartment model for metabolized tracers. 

 The equations governing the 3-compartment model are as follows:  

 𝑑𝐶𝑒(𝑡)

𝑑𝑡
= 𝐾1𝐶𝑎(𝑡) − (𝑘2 + 𝑘3)𝐶𝑒(𝑡) + 𝑘4𝐶𝑚(𝑡) (1.11) 

  𝑑𝐶𝑚(𝑡)

𝑑𝑡
= 𝑘3𝐶𝑒(𝑡) − 𝑘4𝐶𝑚(𝑡) (1.12) 

 𝑄(𝑡) = 𝑉𝑏𝐶𝑎(𝑡) + 𝐶𝑒(𝑡) + 𝐶𝑚(𝑡) (1.13) 

where Cm(t) is the concentration of the bound pool. The solution and operating equation of 

the 3-compartment model is: 

 𝑄(𝑡) = 𝑉𝑏𝐶𝑎(𝑡) + 𝐶𝑎(𝑡) ∗ [𝐺𝑒−𝛼𝑡 + 𝐻𝑒−𝛽𝑡] (1.14) 

where  

 
𝐺 = 𝐾1 (

𝑘4 + 𝑘3 − 𝛼

𝛽 − 𝛼
) (1.15) 

 
𝐻 = 𝐾1 (

𝑘4 + 𝑘3 − 𝛽

𝛼 − 𝛽
) (1.16) 
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𝛼 =

𝑘2 + 𝑘3 + 𝑘4 + √(𝑘2 + 𝑘3 + 𝑘4)2 − 4𝑘2𝑘4

2
 (1.17) 

 
𝛽 =

𝑘2 + 𝑘3 + 𝑘4 − √(𝑘2 + 𝑘3 + 𝑘4)2 − 4𝑘2𝑘4

2
 (1.18) 

 A non-linear regression can be performed to fit Equation (1.14) and determine the 

parameters that give the best fit to the measured data.  

1.8.3 Graphical Analysis 

 Graphical analysis is a simple, model-independent method for quantifying the net 

uptake of a particular tracer in tissue. There are two well-known graphical methods: the 

Patlak Plot and the Logan Plot. The Patlak plot is applicable to tracers that bind irreversibly 

to the target process, and the Logan Plot applies to reversible tracers. 

1.8.3.1 Patlak Plot 

 The Patlak Plot applies to irreversible tracers and measures the influx constant Ki 

of the tracer. The influx constant is the amount of tracer that has been taken up in tissue 

relative to the amount available in the plasma. 

 In the context of the 3-compartment model, Ki is defined as:  

 
𝐾𝑖 = 𝐾1 (

𝑘3

𝑘2 + 𝑘3
) (1.19) 

where variables are as described in Section 1.8.2.2. 

 In the case of an irreversible tracer, any tracer that becomes bound to the target is 

irreversibly trapped in the bound pool (k4  = 0). Patlak et. al. showed that in this case, the 

graphical analysis equation for the Patlak Plot is: [134, 135]  



33 

 

 

 

 𝑄(𝑡)

𝐶𝑎(𝑡)
= 𝐾𝑖

∫ 𝐶𝑎(𝑇)𝑑𝑇
𝑡

0

𝐶𝑎(𝑇)
+ (𝑉𝑒 + 𝑉𝑝) (1.20) 

The arterial and tissue TAC’s can be used to create a Patlak plot, where after some time 

the system reaches equilibrium and the curve becomes linear. The slope of this curve is Ki 

with intercept (Ve + Vp). This equilibrium is achieved once the extravascular distribution 

volume of free tracer in tissue water, Ve, becomes constant. 

1.8.3.2 Logan Plot 

 The Logan Plot applies to reversible tracers and measures the distribution volume 

Vd of the tracer. The distribution volume is defined as the ratio of tracer mass in tissue to 

tracer concentration in arterial blood at equilibrium. 

 For the 2-compartment (one tissue) model, it is equivalent to the extravascular 

distribution volume Ve of free tracer in tissue water:  

 
𝑉𝑑 = 𝑉𝑒 =

𝐾1

𝑘2
 (1.21) 

The distribution volume for the 3-compartment (two tissue) model is not equivalent to Ve 

since it also includes tracer that is specifically bound to the target, while Ve is the 

distribution volume of non-displaceable (free + non-specifically bound) tracer. [136] The 

distribution volume for the 3-compartment model is: 

 𝑉𝑑 = 𝑉𝑒 (1 +
𝑘3

𝑘4
) + 𝑉𝑏 (1.22) 

 The distribution volume can be calculated with a Logan Plot. [137] In the context 

of a 3-compartment model with arterial and tissue TAC’s Ca(t) and Q(t), respectively, the 

Logan Plot is based on the following equation:  
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 ∫ 𝑄(𝑡′)𝑑𝑡′
𝑡

0

𝑄(𝑡)
= 𝑉𝑑

∫ 𝐶𝑎(𝑡′)𝑑𝑡′
𝑡

0

𝑄(𝑡)
+ 𝑖𝑛𝑡 (1.23) 

The integral of the tissue TAC is plotted vs. the integral of the arterial TAC and both 

normalized to the tissue TAC. After a time t*, the steady-state condition is met and the 

curve is linear where Vd represents the slope of the linear portion of the curve. The steady 

state condition occurs when the ratio of tracer in tissue to tracer in arterial blood becomes 

constant over time. For the 3-compartment model, the steady state condition occurs when  

 𝐶𝑒(𝑡) + 𝐶𝑚(𝑡)

𝐶𝑎(𝑡)
 (1.24) 

 

 

becomes constant. [137]  

1.8.4 Kinetics Modeling of FCH PET: Motivation 

 The k3 rate constant represents the rate at which tracer molecules are binding to 

their target. As mentioned in Section 1.7.1, in the case of FCH, this binding rate constant 

represents the activity of choline kinase, which may be different for benign vs. malignant 

prostate tissues. 

 Obtaining a robust estimate of the binding rate constant is challenging due to PET 

image noise as well as the covariance between model parameters. [138] To reduce these 

effects, it is possible to estimate “macroparameters” that are dependent on multiple model 

parameters, such as the distribution volume Vd [137] or the influx constant Ki [134] that 

depends on the binding rate constant. However, these are not pure measures of target 
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binding because they are subject to confounding effects, such as blood flow in the local 

vasculature. 

A standard 3-compartment model solution consists of five different model 

parameters: Vb, K1, k2, k3 and k4. It is possible to reduce the effect of parameter covariance 

by reducing the number of estimated parameters in the model, which can be achieved if 

one or more parameter values are measured by other means. With PET-CT scanners 

currently available, it is possible to perform a dynamic contrast enhanced CT (DCE-CT) 

scan immediately prior to an 18F-FCH PET scan. Kinetic analysis of DCE-CT data enables 

calculation of local vascular blood volume (BV) and blood flow (BF) in tissue, which are 

factors that confound the measurement of the binding rate constant. [139] By incorporating 

these measured values from DCE-CT, it is possible to reduce the 3-compartment 18F-FCH 

PET model from five to only two parameters to be estimated, which could result in a more 

robust and accurate estimate of the binding rate constant. 

Kinetic analysis of DCE-CT and dynamic PET data often involves the minimization 

of a cost function, the sum of squared differences between the fit and the true data, using 

nonlinear regression methods. The primary limitation of nonlinear optimization 

algorithms, such as the Levenberg-Marquardt algorithm, [140, 141] is the heavy 

dependence of the solution on the choice of starting parameter values, since the algorithm 

will terminate if it finds a local minimum – regardless of whether it is the optimal solution. 

This directly leads to an increase in the bias and standard deviation of parameter estimates, 

particularly when noise is present in the PET imaging data. The most robust nonlinear 

optimization method involves an exhaustive search in the entire parameter space to 
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determine the combination of parameter values which gives the absolute minimum of the 

cost function. The principal drawback of this approach is that it is computationally 

intensive and time consuming, making it impractical when timely results are critical in the 

clinic. 

1.9 Objectives and Outline 

1.9.1 Hypothesis 

 I hypothesize that PET studies of prostate cancer can be significantly improved 

through quantitative tracer kinetic analysis using 3-compartment models that incorporate 

quantitative data from DCE-CT studies. Importantly, these two imaging techniques can be 

acquired with a single PET-CT scan. Specifically, I posit that this hybrid imaging technique 

will allow more accurate and less variable measurement of the binding rate constant, k3, in 

PET imaging studies using reversible tracers. Exploiting this hybrid imaging technique to 

obtain more accurate measurements of k3 may be useful to quantify the phosphorylation 

rate of 18F-FCH in tissue, which could allow for the differentiation of malignant prostate 

cancer from benign or atrophied prostate tissue. This could improve targeting of the 

dominant prostatic lesion when using TRUS guided biopsy and could potentially reduce 

the number of cores that need to be sampled from the prostate. In addition, more accurate 

targeting of the dominant prostatic lesion would be useful in assisting targeting of intra-

prostatic radiation dose escalation and focal ablative therapy. 
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1.9.2 Research Objectives 

The primary objective of this thesis was to improve upon quantitative tracer kinetic 

modelling techniques, in terms of ease of implementation, accuracy and variability of 

parameter estimates. This objective was met through the following aims: 

1. Investigation of the feasibility of using venous TAC’s instead of arterial TAC’s 

for the measurement of distribution volume with the Logan Plot. The effect of 

venous dispersion between the arterial and venous sampling sites of the human 

forearm on the venous TAC was simulated and used to compare distribution 

volume measurements obtained using both arterial and simulated venous 

TAC’s. 

2. Implementation of linearized versions of compartment models to reduce 

computation time, and to simulate what effect incorporating functional 

parameters from DCE-CT would have on the accuracy and variability of 

estimates of the binding rate constant, k3. 

3. Investigation of the use of hybrid DCE-CT/PET imaging in a mouse model of 

PC-3 human prostate cancer to demonstrate the feasibility of creating functional 

maps of the k3 parameter in a short amount of time, as well as to determine 

whether there is a correlation between the k3 parameter and tumor volume or 

the expression of the choline kinase enzyme as demonstrated by 

immunohistochemistry staining. 
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Chapter 2  

2 Simulating the effect of venous dispersion on distribution volume 

measurements from the Logan Plot 

2.1 Introduction 

 There exist various techniques for the analysis of Positron Emission Tomography 

(PET) data. One technique that is common, but not limited, to the field of neuroreceptor 

imaging is graphical analysis via the Logan Plot. [1] This technique involves plotting a 

linear relationship between the normalized integral of the arterial time activity curve (TAC) 

and that of the tissue TAC. Under equilibrium conditions, the slope of this relationship is 

equal to the distribution volume, which is a quantitative index of metabolic uptake that is 

related to the number of free binding sites for a radioligand of interest. [2] 

 An arterial TAC showing the time course of arterial activity concentration during 

the study is required for the Logan Plot. An image-derived arterial TAC can be obtained 

by sampling the acquired images of a dynamic PET study with a user-defined region of 

interest (ROI) in an artery; this method underestimates the true activity in small diameter 

arteries (relative to the spatial resolution of the PET scanner) due to partial volume 

averaging. [3] Presently, the gold standard for measuring arterial activity concentrations is 

arterial blood sampling, in which the patient's radial artery is cannulated and blood is 

continuously drawn or discretely sampled in order to measure the activity concentration at 

various times during the study. 

 A disadvantage of arterial blood sampling is that it is often much more difficult to 

cannulate an artery compared to a vein, and it can be painful for the patient. In addition, 
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arterial cannulation is not without risk, as it may lead to permanent injury to the patient, 

including arterial occlusion and ischemic damage. [4-7] Additionally, the high arterial 

pressure of an artery increases the risk of excessive bleeding. On the contrary, this is less 

of a concern for venous cannulation given the lower venous pressure, and venous sampling 

is much more common in clinical use compared to arterial sampling. [8]  

 Some studies have examined the feasibility of using venous blood in the place of 

arterial blood for a variety of applications. Some of these applications include measurement 

of glucose metabolism [9, 10], metabolite analysis following administration of 11C-Acetate 

and 11C-Palmitate [11] and quantification of serotonin receptors [12]. 

 Venous TACs differ from arterial TACs due to the distance that the tracer must 

travel between arterial and venous sampling sites. Not only is the venous curve's arrival 

delayed compared to the arterial one, but it is also subject to dispersion effects due to the 

number of possible routes between the arterial and venous sampling sites. [13] While 

traversing this distance, different tracer molecules will take different paths through the 

vascular network and hence travel different path lengths, which results in an underestimate 

of the peak activity concentration due to broadening of the TAC’s peak. Additionally, the 

extraction efficiency of the PET tracer will affect the amount of leakage that occurs 

between the sampling sites. The backflux of the leaked tracer into the vascular space would 

lead to further dispersion of the venous TAC relative to that of the artery.  It is expected 

that these factors could affect the measurement of the distribution volume with the Logan 

plot when the venous TAC is used instead of the arterial TAC, depending on the extent of 

the dispersion. This work aims to investigate using computer simulations the relationship 



53 

 

 

 

between the extent of venous dispersion from differential path lengths and leakage and the 

distribution volume measurement with the Logan Plot.  

2.2 Methods 

2.2.1 Tissue Curve Simulation 

A representative arterial TAC, Cp(t), was obtained from an in vivo dynamic 18F-

Fluorocholine (FCH) PET human prostate study with acquisition intervals of: 10 x 10 

seconds, 5 x 20 seconds, 4 x 40 seconds, 4 x 60 seconds, and 4 x 180 seconds, for a total 

scan time of 22 minutes. This image-derived TAC was obtained from a mean ROI in the 

left external iliac artery. For the purposes of this work, this TAC served as a representative 

instantaneous (as opposed to averaging over the acquisition interval) arterial time activity 

curve. 

 The tissue curves in this investigation were generated from the arterial TAC for a 

variety of parameter sets using a kinetic model. The Johnson & Wilson model for tracer 

delivery and capillary exchange with parenchymal tissue [14] was modified to include a 

bound pool compartment connected to the extra-vascular (interstitial) space along with the 

corresponding rate constants k3 and k4, representing reversible binding of the tracer to cells 

or other targets. The equations governing the system are:  
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where Cp(t), Ce(t), and Cm(t) are the arterial, interstitial, and bound pool activity 

concentrations, respectively. A description of the remaining model parameters can be 

found in Table 2.1. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Kinetic model used to produce the simulated tissue curves. Tracer flows 

from the arterial end to the venous end of the capillaries and leaks by passive diffusion 

into the interstitial space of tissue and then exchange with the tissue bound pool. 

 

 By solving Equations (2.3) & (2.4), it can be shown that the impulse residue 

function R(t) for this model is: 
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𝑡0 is the delay in arrival of tracer at the tissue relative to that at the artery and 𝑀𝑇𝑇 is the 

vascular mean transit time. 

 The tissue TAC was obtained by convolving the arterial TAC with the blood flow-

scaled R(t): 

 ( ) ( ) ( (t))pQ t C t F R    (2.7) 

 

where blood flow (F) was related to blood volume (Vp) and mean transit time (MTT)  by 

the central volume principle [15]: 
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Table 2.1: Description of the parameters and parameter values used in the 3-

compartment, digital phantom simulation in order to produce simulated tissue TACs. 

 

Parameter Description Value Units 

F Blood Flow 
Multiple 

Values 
ml/min/g 

E 
Extraction 

Efficiency 
0.4 unitless 

Vp Blood Volume 0.1 ml/g 

Ve 
Interstitial 

Volume 

Multiple 

Values 
ml/g 

K1 Influx constant 
Multiple 

Values 
ml/min/g 

k2 

Interstitial 

space to blood 

backflux 

constant 

Multiple 

Values 
min-1 

k3 

Interstitial 

space to bound 

pool constant 

Multiple 

Values 
min-1 

k4 

Bound pool to 

interstitial 

space backflux 

constant 

0.05, 0.1, 0.3 min-1 

MTT 

Mean transit 

time through 

capillary bed 

Multiple 

Values 
min 

t0 
Tracer bolus 

arrival time 
5 seconds 

 

2.2.2 Simulation of Venous Dispersion 

 To simulate the venous dispersion, a transit time spectrum of the dispersion of 

tracer from arterial to venous sampling sites was derived from a dynamic contrast enhanced 

CT study of the forearm as described in the following. The forearm of a supine patient was 
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placed above the liver and scanned repeatedly at intervals of using 120 kV, 50 mAs and 5 

mm slice thickness.  The arterial time density curve (TDC) came from a region of interest 

in the radial artery. The venous TDC came from a region in a vein which was adjacent to 

the radial artery. The TDCs were smoothed with a moving average filter. The arterial and 

venous TDCs were then deconvolved to obtain the transit time spectrum hCT(t), using the 

model in Figure 2.1 with k3 and k4 set to zero, since CT contrast agent is inert. Knowing 

that the transit time spectrum hCT(t) is related to R(t) such that:  

 ( )
( )CT

dR t
h t

dt
   (2.9) 

the venous TAC is given by the following equations. 

 ( ) ( ) ( ) ( )m

vCT vCT aCT CTSC C t C t C t h t     (2.10) 
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

  
    

 


 (2.11) 

where ( )m

vCTC t and ( )vCTC t  are the measured and actual venous TAC’s, respectively, ( )aCTC t  

is the arterial CT TAC from the radial artery, ℎ𝐶𝑇(𝑡) is the transit time spectrum of CT 

contrast agent, SC is the scaling factor due to partial volume averaging, ECT is the extraction 

efficiency of CT contrast agent, k2CT is the backflux rate constant for CT contrast agent 

from tissue to vascular space, and W is the combined delay time and vascular mean transit 

time, which excludes the transit time of leaked contrast into the tissue, between the arterial 

and venous sampling sites. The extraction efficiency ECT, arterio-venous delay W, and 

scaling factor SC were calculated by iterative deconvolution using Equations (2.10) and 

(2.11). 
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To relate ECT of x-ray contrast agent to that of PET tracers, it is noted that the 

permeability surface area product of a permeable membrane to molecules is inversely 

proportional to their molecular weight. [16] Thus, 

 
1

2

av CT

m
E E

m
  (2.12) 

Where m1 and m2 are the molecular weights of iopamidol (777.08 Da) and the PET tracer, 

respectively. For the case of FCH (157.6 Da), Eav = 2.22ECT, and k2av = 2.22k2CT since k2av 

= FEav/Ve. An additional case was simulated for a PET tracer with a higher extraction 

efficiency, where Eav = 6.57ECT, which corresponds to a molecular weight of 18 Da (water). 

Molecules larger than 100 Daltons are related by a cubic root rather than the square root 

seen above. [17] However, Danielli’s theoretical work suggests that for liquid medium, the 

square root relationship holds. [18] Therefore, we conservatively assumed a square root 

relationship since this results in a larger difference between the iopamidol and FCH 

extraction efficiencies. 

With the parameters of the PET tracer transit time spectrum, hav(t),  evaluated as 

above, the PET venous curve can be simulated by the following convolution:  

 ( ) ( ) ( )v p avC t C t h t   (2.13) 

where Cv(t) denotes the venous PET TAC, and Cp(t) is the PET image derived arterial TAC 

from the iliac artery, and hav(t) is analogous to Equation (2.11) for the CT case, which 

gives: 
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 (2.14) 

 Note that the transit time spectrum used here was derived from the Johnson-Wilson 

model without a bound compartment, since the amount of tracer binding to targets in the 

forearm is negligible, given the quiescent nature of the forearm’s muscles during the PET 

study. 

2.2.3 Digital Phantom 

Noise was added to the instantaneous arterial, venous and tissue TACs. 

Instantaneous activity measurements are based on the number of counts recorded by the 

PET scanner and hence these measurements will follow a Poisson distribution, given the 

intrinsic random nature of radioactive decay. The variance of Poisson noise is equal to the 

number of counts. However, this distribution is not sufficient to describe the noise in the 

image-derived TAC, since the PET scanner introduces other sources of noise and the data 

is reconstructed with a noise suppressing filter. This makes it impossible to know the 

variance at a discrete instantaneous time point. [19] Nevertheless, this work employs a 

noise model that is based on a Gaussian distribution. The decay of the radioisotope over 

the time course of the imaging study is also accounted for, assuming an 18F labeled tracer. 

This model has previously been used by other investigators. [20, 21] Here, the only 

differences are notational. The noisy TAC is given by: 

 '
( ' ) ( ' ) (0,1) ( ' ) kt

n k k kQ t ROI t G ROI t e
     (2.15) 
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where 'kt  is the midpoint time of the kth acquisition frame, nQ  is the noisy activity 

concentration, (0,1)G is a random number based on Gaussian distribution of zero mean 

and variance equal to one,   is a scale factor that determines the magnitude of the noise, 

and  is the decay constant of the radioisotope which is equal to ln(2) divided by its half-

life. ( ' )kROI t is the time-weighted  average concentration for the kth  acquisition frame, such 

that: 

 

1

1
( ' ) ( )

k

k

t

k

k t

ROI t Q t dt
t




   (2.16) 

where ( )Q t is the instantaneous TAC, kt is the endpoint of the kth interval, and kt  is the 

length of the frame. The same procedure was used to obtain ( ' )pn kC t  and ( ' )vn kC t , which 

denote the noisy time-weighted average arterial and venous TACs, respectively. 

Noise ,

Q

N N tf  was quantified in the same manner as that used by Logan. [20]  

 
,

( ( ) ( ))

( )

Q n
N N t

abs Q t Q t
f avg

Q t

 
    

 
 (2.17) 

where ( )Q t  is the original data and Qn(t) is the noisy data. The average over all data points 

and all curves was taken. 

The arterial and venous Logan methods were compared for a wide range of kinetic 

parameters. A digital phantom (Figure 2.2) was constructed consisting of 21 groups of 

parameter sets, covering three different k4 values and seven F values. Each group consisted 

of a 7x7 grid where each square represented a unique kinetic parameter set, achieved by 

varying the parameters k3 and Ve. Each square had a unique distribution volume, 
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determined by its unique parameter set. For the noisy case, each square of the grid 

contained 10x10 pixels for a total of 100 noise runs. An unpublished phantom study of our 

eXplore VISTA small animal PET scanner (GE Healthcare) showed a noise level 

equivalent to ,

Q

N N tf  = 0.19, therefore this digital phantom was constructed with this 

noise level to simulate a realistic case. In addition, two additional noise levels of ,

Q

N N tf   

= 0.11 and ,

Q

N N tf   = 0.29 were simulated to cover a wider range of noise cases. All 

other model parameters were fixed (Table 2.1). For every parameter set, the true 

distribution volume was calculated as: 

 
31

2 4

1d p

kK
V V

k k

 
   

 
 (2.18) 



62 

 

 

 

 

Figure 2.2: Digital phantom used to produce tissue TACs. The phantom is organized 

into 21 (three k4 values x seven F values) groups of parameter sets. Each individual 

group consists of 49 (seven k3 values x seven Ve values) unique parameter sets. In the 

noiseless case, each square on the grid represents a parameter set that produces a 

different tissue TAC and hence a different distribution volume. In the noisy case, each 

square (parameter set) is divided into a set of 10 x 10 = 100 pixels, each representing 

a unique noise case. 
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2.2.4 Logan Graphical Analysis 

 Graphical analysis was performed using the Logan method. [1] Keeping notation 

consistent with the Logan equation, which is a straight line of transformed tissue activity 

vs time, it can be written: 

 
' '

1 1

' '

( ) ( )

( ) ( )

N N

n k k pn k k

k k
d

n k n k

Q t t C t t

V I
Q t Q t

 

 

 
 

 
(2.19) 

where Vd is the slope, I is the intercept and k is the image frame number. 

Logan plots were generated for nQ  with both 1) the arterial TAC pnC and 2) the venous 

TAC vnC . Linear regression was performed on the linear portion of the Logan plot to 

determine Vd, using the perpendicular regression method described by Varga and Szabo. 

[21] 

 An automated algorithm was developed to determine the linear portion of the Logan 

Plot. For a Logan curve with endpoint pN, the radius of curvature r for points pN, pN-1, and 

pN-2 was calculated. This was done iteratively, by decreasing N by 1 at each iteration, until 

r differed from the previous calculation by more than 1%. The noisy case resulted in a 

Logan curve with bigger variations between data points, therefore the stopping criteria for 

all noisy cases was 50%. Once this stopping criterion was satisfied, the linear range for the 

Logan Plot was chosen to run from the most recent pN-1 to the last point of the curve. 
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2.2.5 Statistical Analysis 

 For each parameter set, the difference between arterial and venous Logan 

distribution volumes was calculated as a percentage difference:[Vd(arterial) - Vd(venous)] 

/ Vd(arterial) x 100. For the noisy case, this difference represents a mean percentage 

difference over all 100 noise runs for that parameter set. Finally, the mean and standard 

deviations of the differences over all parameter sets were calculated for the given values of 

k4. 

  Linear regression was performed to compare Logan distribution volume 

measurements between the arterial and venous methods. Bland-Altman analysis [22] was 

used to assess the agreement between the arterial and venous methods. Since the difference 

between the arterial and venous methods depends on Vd, the percentage difference (instead 

of the absolute difference) was plotted against the mean of the two methods. [22] 

2.3 Results 

2.3.1 Simulated Venous Curves 

 The radial artery and median cubital vein TDCs are shown in Figure 2.3. 

The deconvolution  between the two curves produced transit time spectrum parameter 

estimates of ECT = 3.8%, k2CT = 0.001 sec-1, W = 6 sec, and SC = 0.457. Translating this to 

the FCH PET case resulted in Eav = 8.4% and k2av= 0.0022 sec-1. For the 18 Daltons PET 

tracer case, Eav = 25% and k2av = 0.0065 sec-1. 
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Figure 2.3: a) Measured radial artery along with measured and fitted median cubital 

vein TDCs from the DCE-CT forearm study. Curves were smoothed using a moving 

average filter. b) Measured FCH PET arterial TAC from the iliac artery along with 

simulated venous curves for PET tracers of 157.6 and 18 Daltons. The venous curves 
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were simulated based on the transit time spectrum measured with DCE-CT in the 

forearm which was transformed to the PET case based on the relationship between 

extraction efficiency and molecular weight. 

 

2.3.2 Arterial and Venous Logan Analyses 

 The true distribution volumes for the k4 = 0.05 min-1 case ranged from 0.4 to 6.4 

ml/g. Qualitative results are shown for the noiseless case in Figure 2.4 and the noisy case 

in Figure 2.5. For the noiseless case of E = 0.084 (FCH), the mean percent difference ± 

standard deviation between the arterial and venous graphical distribution volumes was 

2.77±1.88%. For the noisy case of ,

Q

N N tf 
 = 0.19, the result was -3.44 ± 2.98%. For the 

largest extraction efficiency (Eav = 25%) investigated, the result was 3.27±2.37% and 

4.33±10.2% for the noiseless and ,

Q

N N tf 
 = 0.19 cases, respectively. Results for the 

remaining cases are outlined in Table 2.2. The mean percent difference was proportional 

to the extraction efficiency and decreased as k4 increased. 
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Figure 2.4: Results for k4 = 0.05 min-1 and Eav = 8.4% (FCH) noiseless case. The first 

two rows show maps of the Vd's calculated for the arterial (A) and venous (V) methods 

as well as the true Vd values in ml/g. The blood flow F is in ml/min/g and the vascular 

mean transit time MTT is in seconds. Difference maps show the percentage difference 

between the arterial and venous methods, with the arterial method as reference: 

(arterial - venous / arterial) x 100. 
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Figure 2.5: Results for the k4 = 0.05 min-1 and E = 8.4% (FCH) noise case, with 

,

Q

N N tf    = 0.19. Setup is the same as in Figure 2.4. 
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Table 2.2: Mean percent differences for the Logan distribution volume 

measurements, shown as mean percent difference (SD) in %. For noisy cases, the 

difference was calculated as the mean percentage difference over all 100 runs of each 

parameter set. Values in this table represent the mean of the 343 (7 x 49) individual 

parameter set differences. 

  

k4 (min-1) 

Mol. 

Weight 

(Da) 

Eav Noiseless ,

Q

N N tf 

=0.11 

,

Q

N N tf 

=0.19 

,

Q

N N tf 

=0.29 

0.05 

157.6 8.4% 
2.77 

(1.88) 
3.25 (1.69) 3.44 (2.98) 1.56 (26.3) 

18 25% 
3.27 

(2.37) 
4.63 (1.71) 4.03 (10.2) 4.43 (15.8) 

0.1 

157.6 8.4% 
0.86 

(0.96) 
1.57 (1.01) 1.47 (1.11) 1.54 (1.80) 

18 25% 
0.92 

(1.03) 
2.93 (1.03) 2.83 (1.09) 2.79 (1.87) 

0.3 

157.6 8.4% 
-0.49 

(0.25) 
0.15 (0.40) 0.15 (0.56) 0.07 (0.80) 

18 25% 
-0.52 

(0.27) 
1.47 (0.36) 1.36 (0.54) 1.36 (0.71) 

 

 Linear regressions comparing Vd's for both methods in the noiseless case resulted 

in fitted slopes with R2 values close to unity. Bland-Altman analysis indicated good 

agreement between methods for all noiseless cases, with the majority of points falling 

within the 95% limits of agreement. (Figure 2.6) The limits of agreement were from -0.97% 

to 6.63%, -1.04% to 2.79% and -0.98 to 0% for k4 = 0.05, 0.1 and 0.3 min-1, respectively. 
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Figure 2.6: Noiseless case. (top) Linear regressions for the a) k4 = 0.05 min-1, b) k4 = 

0.1 min-1  and c)  k4 = 0.3 min-1, E = 8.4% (FCH). (Bottom) Bland-Altman analyses, 

plotting % difference vs. average between Vd's calculated with both methods for d) k4 

= 0.05 min-1, e) k4 = 0.1 min-1 and f) k4 = 0.3 min-1. The majority of the data points falls 

within the limits of agreement (± 1.96 SD of the mean), suggesting good agreement.  

 

 For the noisy case, the regression fit between the two methods had an R2 of 0.99. 

On the Bland-Altman plot, the majority of the data points fell within the 95% limits of 

agreement, indicating good agreement. (Figure 2.7) The limits of agreement were from -

0.76% to 7.56%, -0.72% to 3.70% and -0.96 to 1.25% for k4 = 0.05, 0.1 and 0.3 min-1, 

respectively. 
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Figure 2.7: Noisy case, with ,

Q

N N tf   equal to 0.19.  (Top) Linear regressions for the 

a) k4 = 0.05 min-1, b) k4 = 0.1 min-1  and c)  k4 = 0.3 min-1. (Bottom) Bland-Altman 

analyses, plotting % difference vs. average between Vd's calculated with both methods 

for d) k4 = 0.05 min-1, e) k4 = 0.1 min-1 and f) k4 = 0.3 min-1, noisy cases. The majority 

of the data points falls within the limits of agreement (± 1.96 SD of the mean), 

suggesting good agreement.  

2.4 Discussion 

 In the current study, our simulation demonstrates that the effects of arterial TAC 

dispersion on Logan distribution volume measurement are small. We simulated these 

effects over a range of different arterio-venous transit times and performed in-depth 
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analysis of different leakage rates into forearm tissue representative of both FCH and a 

theoretical tracer with higher extraction efficiency. Arterial blood sampling is typically 

performed from the radial artery and venous samples are usually obtained from a vein in 

the antecubital fossa. Given the similarity in shape between the arterial and venous TACs, 

especially at times beyond the recirculation phase, it can be inferred that the leakage from 

the blood vessel to the tissue in between the arterial and venous sampling sites is not 

significant for FCH. This is supported by the fitted arterio-venous transit time spectrum of 

contrast agent which has an extraction efficiency of 3.8%, which translates into an FCH 

extraction efficiency of ~8%. Moreover, some of this tracer will travel back into the 

vasculature, further reducing the amount of tracer lost due to leakage as well as the total 

mean transit time through the tissue (equivalently, the area underneath hav(t).) 

 The results can be largely explained by the fact that the Logan Plot relies on the 

integral of the input TAC and is thus less sensitive to variations caused by dispersion. [23] 

This was also observed by Guo et. al. [24]. It follows that dispersion effects may be more 

noticeable in parameters estimated from kinetic modeling with compartment models. 

 The percentage difference between distribution volumes measured with the arterial 

and venous methods was proportional to the extraction efficiency of the PET tracer. In 

addition, this difference tended to increase as k4 approached zero, which is expected given 

that the Logan graphical analysis is more accurate under equilibrium conditions and a small 

k4 will increase the time it takes for this equilibrium to be achieved. Previous studies have 

shown that the magnitude of the bias in Logan graphical analysis Vd estimates is inversely 

proportional to k4. [25, 26] 
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Theoretically, each denominator in the Logan equation (2.19) is the instantaneous 

tissue TAC at the end-time of the respective time integral in the numerator. In practice, 

tissue TACs obtained from dynamic PET studies are averaged over the acquisition frame 

intervals. This simulation accounted for this effect by using an instantaneous arterial (input) 

TAC to first generate the corresponding  instantaneous venous and tissue TACs with 

known parameters (hence known distribution volume ) of the three-compartment model. 

Frame averaging as in dynamic PET imaging was then applied to the tissue TACs prior to 

distribution volume calculation with the Logan Plot as implemented in Equation (2.19). 

The fact that in the noise free case, the ‘true’ distribution volume was recovered in each 

simulated case suggests that the modified Logan analysis has minimal effect on the 

accuracy of the calculated distribution volume.  

One of the noise cases investigated here had a signal-to-noise ratio (SNR) of 

roughly 6 to 1, corresponding to ,

Q

N N tf 
 = 0.19. This is consistent with the SNR 

observed in one of our unpublished phantom studies of the GE Healthcare eXplore VISTA 

Dual-Ring Small Animal PET Scanner. However, the SNR is dependent upon a number of 

factors, including scanner characteristics and the type of image reconstruction algorithm 

that is used. [27] Hartung-Knemeyer et. al. found the mean SNR of a clinical scanner to be 

between 2.6 and 3.6, which is approximated by the ,

Q

N N tf 
 = 0.29 in our study. [28] 

The applicability of this simulated dispersion to other tracers depends on the 

tracer’s molecular weight (and hence extraction efficiency) and is highly dependent on that 

tracer’s uptake in muscle, since this study assumed negligible uptake into tissue between 

the arterial and venous sampling sites. This study investigated FCH, which has generally 
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low uptake in muscle [29], especially when compared to the peak activity of the arterial 

TAC. For FDG, muscle uptake in the forearm appears to be dependent on the amount of 

muscle exertion prior to the PET scan [30], therefore this may be an important factor to 

consider. Regardless, the use of venous blood samples for Logan Analysis with different 

tracers must be validated in future human patient studies. 

This study has some limitations. The simulation used an automated algorithm to 

define the linear region of the Logan Plot, and this algorithm may be highly susceptible to 

noise effects by adding error to the calculation of the radius of curvature. This is a possible 

explanation for the presence of the outlier data points in Figure 2.7. Despite this added 

source of error, the agreement was good between the two methods for the noisy case. It is 

worth noting that in scenarios where mean TACs from a region of interest are being used, 

the user would likely manually specify the linear range of the Logan Plot and would 

therefore avoid any errors resulting from the use of an automated algorithm. Another 

limitation is that the venous TDC measured from DCE-CT was taken from a vein in 

proximity to the radial artery rather than the median cubital vein. This was done because 

the median cubital vein has a very small diameter and was difficult to distinguish in the 

images. However, given the short distance between the venous ROI and the median cubital 

vein, we have no reason to believe that the differences in mean transit time and extraction 

efficiency between these two locations would have any significant effect on the 

conclusions of this study. Finally, further studies are required in order to evaluate whether 

the conclusions of this simulation are applicable in vivo.   
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2.5 Conclusions 

 Our simulations suggest that venous blood sampling may be a feasible alternative 

to arterial blood sampling for measurement of the distribution volume with the Logan Plot 

for the range of kinetic parameters that were simulated. The use of venous blood samples 

for this purpose must be clinically validated in future research. For quantitative dynamic 

PET studies, this method has the potential to reduce patient discomfort and greatly reduce 

the risks that are typically associated with arterial cannulation. 
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Chapter 3  

3 Noise Study of Linear and Non-Linear Solutions of a DCE-

CT/PET Hybrid Imaging Technique 

3.1 Introduction 

 Positron emission tomography (PET) allows for quantitative imaging of 

biochemical processes and can provide functional, metabolic or molecular information in 

imaging of diseases, e.g. cancer and neurodegeneration, involving different body organs 

[1, 2]. In these imaging applications, a non-pharmacological dose of a specific radiolabeled 

molecule of interest (tracer) is injected into the patient and a static or dynamic acquisition 

is performed to measure tissue tracer uptake at a fixed time after injection or as a function 

of time or time-activity curves. The one-time uptake or time-activity curve is then used to 

assess the rate of tracer binding to targets which can in turn be used to infer the activity of 

specific functional, metabolic or molecular processes in tissue. 

 The simplest and most common analysis metric used in PET is the standard uptake 

value (SUV) which normalizes the measured activity in a given region to the dose injected 

and the patient’s weight [3]. The SUV is a semi-quantitative metric because it is not a pure 

measure of the tracer-target binding rate. While it does account for target bound tracer, it 

also includes free unbound tracer present in the vasculature and in the interstitial space 

(tissue water) which confounds the measurement of the target binding rate. It also fails to 

account for the effect of tracer delivery via tissue blood flow, which may make inter-patient 

comparisons [3] and longitudinal comparisons within a single patient difficult if blood flow 

is different between subjects or changes over time in the same patient. [4] The SUV is 
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commonly used clinically as it does not require complicated tracer kinetic (e.g. 

compartmental) analysis which would require arterial blood sampling to measure the 

arterial tracer concentration curve over time. However, given its limitations, its use is 

generally discouraged for multicenter trials [5]. 

 Quantitative measurement of the tracer-target binding rate is possible with the use 

of compartment models such as the 3-compartment model [6]. These models describe the 

different processes, represented by rate constants, involved in the distribution of the tracer 

into different tissue compartments: blood plasma, tissue water and bound target pool. 

Estimating the model rate constants would typically involve fitting of the measured tissue 

time activity curve (TAC) to a model in which the arterial TAC serves as the model’s input. 

However, reproducible estimates of these model rate constants are difficult to obtain due 

to the covariances among them. For example, Slaets et. al. [7] found high variability of rate 

constant estimates using a 3 compartment (two tissue) model of FCH in nude mice and 

Muzi et. al. [8] found high covariance between rate constants using the same compartment 

model in an analysis of FLT uptake in glioma patients. 

 One way of dealing with model parameter variance is to estimate composite 

parameters that are functions of the basic model rate constants. Examples of composite 

parameters include the influx constant Ki and the distribution volume Vd, which can also 

be measured using a Patlak plot and a Logan plot, respectively [9, 10]. Another example is 

in the study of Muzi et. al., where the model was reparametrized to measure the composite 

parameter K1/k2 instead of estimating K1 and k2 individually [8]. The trade-off of this 

approach is that a composite parameter is a function of multiple model rate constants. 
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Frequently, the rate constants included in the composite parameter’s functional definition 

are related to blood flow and blood volume in the local vasculature. Therefore, the 

improvement in reproducibility of the composite parameter is to a certain extent offset by 

the implicit dependence on other model rate constant(s). 

 It may be possible to reduce the variability resulting from parameter covariance by 

reducing the number of estimated parameters (model rate constants). This could be done 

by measuring a subset of parameters by means of a different imaging modality that is better 

in terms of accuracy and precision at measuring these parameters and then incorporating 

those parameter values into the compartment model of interest, effectively reducing the 

number of parameters to be estimated. This approach can be implemented with relative 

ease using PET/CT scanners. Using these scanners, a dynamic contrast enhanced CT 

(DCE-CT or CT Perfusion) study can be performed which is automatically registered with 

the dynamic PET study either before or after the DCE-CT study.  In a DCE-CT study, an 

iodinated, inert (does not bind to tissue targets) contrast agent is injected into the patient 

and dynamic CT scanning of the tissue is used to measure the tissue time-density curve 

(TDC) which is a record of the accumulation and wash-out of contrast in the plasma and 

tissue water compartment, driven by blood flow, over time. CT Perfusion software (GE 

Healthcare) is then used to analyze the tissue TDC with respect to the arterial TDC to 

estimate blood flow, blood volume and flow extraction product of the PET tracer and hence 

the influx and efflux rate constant of tracer between the plasma and tissue water 

compartment, which can be related using a scaling factor to account for differences in 

molecular weight between the CT contrast agent and PET tracer [11]. The influx and efflux 
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rate constant could be incorporated into the PET tracer model to reduce the number of 

parameters to be estimated and hence reduce covariance among or increase the 

reproducibility of the remaining parameters. This hybrid DCE-CT/PET imaging technique 

is the subject of this work. 

 Non-linear optimization techniques are often used to fit the PET model curve to the 

measured PET TAC. Another potential disadvantage to compartment modeling is the 

lengthy computation time taken to estimate the model rate constants with non-linear 

optimization techniques. In certain clinical settings, it may be desirable to create functional 

maps of the model rate constants. For a dynamic PET study using 128x128 image format 

there are over 10,000 non-linear curve fits, which would take several hours to compute. 

Linear solutions of the 3-compartment model have been developed which permit much 

faster computation of curve fits [12, 13]. Making use of these linear solutions alongside the 

hybrid DCE-CT/PET imaging technique may allow for rapid generation of functional 

parametric maps of the target binding rate constant. This work simulates the use of PET/CT 

scanning and a linearized solution of the 3-compartment model to investigate the effect of 

TAC noise on the bias and variation of the estimated target binding rate constant from the 

3-compartment model. 

3.2 Methods 

3.2.1 Generation of Simulated Tissue Time Activity Curves 

 The 3-compartment model was used to represent the uptake of bound tracer in tissue 

(Figure 3.1). The equations governing the model are the following:  
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 𝑑𝐶𝑖

𝑑𝑡
= 𝐾1𝐶𝑎(𝑡) − (𝑘2 + 𝑘3)𝐶𝑖(𝑡) + 𝑘4𝐶𝑚(𝑡) (1) 

 𝑑𝐶𝑚

𝑑𝑡
= 𝑘3𝐶𝑖(𝑡) − 𝑘4𝐶𝑚(𝑡) (2) 

 𝑄(𝑡) = 𝑉𝑏𝐶𝑎(𝑡) + 𝐶𝑖(𝑡) + 𝐶𝑚(𝑡) (3) 

   

where Ca(t) is the arterial TAC, Ci(t) is the interstitial concentration of free tracer, K1 is the 

influx rate constant in min-1, k2 is the efflux rate constant for the return of tracer from the 

interstitial space back into blood vessels, k3 is the binding rate constant in tissue, k4 is the 

dissociation rate constant, Cm(t) is the concentration of bound tracer and Q(t) is the tissue 

TAC. The non-linear solution of Q(t) from these equations is  

 

 𝑄(𝑡) = 𝑉𝑏𝐶𝑎(𝑡) + 𝐶𝑎(𝑡) ∗ [𝐺𝑒−𝛼𝑡 + 𝐻𝑒−𝛽𝑡] (4) 

   

where * denotes the convolution operator. G, H, α, and β are defined as: 

 

 
𝛼 =

𝑘2 + 𝑘3 + 𝑘4 + √(𝑘2 + 𝑘3 + 𝑘4)2 − 4𝑘2𝑘4

2
 (5) 

 
𝛽 =

𝑘2 + 𝑘3 + 𝑘4 − √(𝑘2 + 𝑘3 + 𝑘4)2 − 4𝑘2𝑘4

2
 (6) 

 
𝐺 = 𝐾1

(𝑘3 + 𝑘4 − 𝛼)

(𝛽 − 𝛼)
 (7) 

 
𝐻 = 𝐾1

(𝛽 − 𝑘3 − 𝑘4)

(𝛽 − 𝛼)
 (8) 
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Figure 3.1: The 3-Compartment kinetic model of tracer uptake in tissue. 

 A simulated tissue TAC was generated by convolving the arterial TAC with the 

impulse response function of the kinetic model. This was accomplished with the use of 

JSim software. [14] The model parameters used to simulate the tissue curve were based on 

measurements in a mouse study with the tracer 18F-fluorocholine which is phosphorylated 

by choline kinase and becomes trapped in the cell membrane. 

 An athymic nude mouse was injected with PC-3 human prostate cancer cells and 

the tumor was imaged at day 54 (post-injection). Dynamic 18F-Fluorocholine PET scanning 

was performed on a GE Healthcare eXplore VISTA dual-ring small-animal PET scanner. 

Data was acquired in list mode and images were reconstructed using the ordered subset 

expectation maximization algorithm.  

 Images were binned into acquisition frames of 8 x 15 s, 9 x 60 s, 10 x 120 s, and 6 

x 300 s for a total scan time of one hour. An image-derived arterial TAC was used for 

kinetic analysis, which was obtained from a region of interest (ROI) in the left ventricle 

cavity. The TAC was corrected for metabolites based on the method of  Slaets et. al. [7]. 
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 The mouse tumour was segmented and the mean TAC was obtained from this ROI. 

Fitting was performed by using the non-linear trust-region-reflective algorithm in 

MATLAB [15, 16]. The parameters obtained were used to generate the simulated tissue 

curve (Table 3.1). The fit of the tissue TAC is shown in Figure 3.2.  

Table 3.1: Parameters obtained from fitting of mean ROI TAC in a PC-3 mouse 

tumour.  

Vb (ml/g) K1 (ml/min/g) k2 (min-1) k3 (min-1) k4 (min-1) 

0 0.12 0.56 0.23 0.03 

 

Figure 3.2: Fit of the tumour tissue TAC of a PC-3 mouse model to obtain parameters 

for the simulated TACs. 

3.2.2 Linear Solutions of 3-Compartment Model 

 With the use of the Laplace transform, the solution of the 3-compartment model 

can be written in a linearized form:  
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*

3

*
4

     
        

     

 
 
 

   

 

t t T t

b a 1 2 a
0 0 0 0

t T

a
0 0

Q(t) = V C (t) - P Q(u)du - P Q(u)dudT + P C (u)du ...

+P C (u)dudT

 (9) 

where the coefficients Vb, P1, P2, P3
*, and P4

* can be solved for using a non-negative least 

squares (NNLS) [17] algorithm by constructing a system of linear equations where there is 

one equation for each time point of Q(t). The rate constants can be calculated as K1 = P3, 

k2 = P1 –(P4/P3), k4 = P2/k2, and k3 = P1 – k2 – k4, where P3=P3
*-P1Vb and P4=P4

*-P2Vb. 

This formulation is outlined by Feng et. al. [12] and similar to the linear least squares 

solution developed by Blomqvist [13] for the irreversible 3-compartment model. 

 This model was simplified to the case of Vb=0 given the finding that the smallest 

sum of squared deviations fit in a mouse tumor produced a value of zero for this parameter. 

This is consistent with an assumption made in another kinetic modeling study of FCH in 

mice [7] as well as observations by other investigators that FCH has extremely rapid uptake 

relative to PET frame length. [18, 19]  

 Equation (9) served as the foundation from which all other linearized model 

solutions were developed in this study. These models assume a Vb of zero and some models 

include parameters known a priori from CT Perfusion functional maps. The different 

models are outlined in Table 3.2. 
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Table 3.2: Linearized solutions of the 3-Compartment model assuming zero blood 

volume. Some models assume known parameters from CT Perfusion functional maps. 

Coefficients of the linearized solutions were solved for using a non-negative least 

squares algorithm in Matlab and rate constants were calculated from the coefficients. 

Constraints were used to prevent negative rate constants. 

Model 

Name 
3C-LIN 

Known 

Parameters 

from CT 

Perfusion 

None 

Estimated 

Parameters 
K1, k2, k3, k4 

Linearized 

Equation 

     
     
     

 
 
 

   

 

t t T t

1 2 3 a
0 0 0 0

t T

4 a
0 0

Q(t) = -P Q(u)du - P Q(u)dudT + P C (u)du ...

+P C (u)dudT

 

Constraints P1 ≥ P4 

Coefficients 

P1=k2+k3+k4 

 P2=k2k4 

P3=K1 

P4=K1(k3+k4) 

Rate 

Constant 

Equations 

K1=P3 

k2=P1-(P4/P3) 

k4=P2/k2 

k3=P1-k2-k4 

Model 

Name 
3C-LIN-K1 

Known 

Parameters 

from CT 

Perfusion 

K1 

Estimated 

Parameters 
k2, k3, k4 

Linearized 

Equation 
1 1

0

t

K
     
     
          

t t T t T

a 1 2 4 a
0 0 0 0 0

Q(t) - K C (u)du = -P Q(u)du - P Q(u)dudT + P C (u)dudT  

Constraints P1 ≥ P4 

Coefficients P1=k2+k3+k4 
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P2=k2k4 

P4=k3+k4 

Rate 

Constant 

Equations 

k2=P1-P4 

k4=P2/k2 

k3=P4-k4 

Model 

Name 
3C-LIN-K1K2 

Known 

Parameters 

from CT 

Perfusion 

K1,k2 

Estimated 

Parameters 
k3,k4 

Linearized 

Equation 

1 2 1
0

2

t

K

k

 
 

 

 
 
 

    

 

t t T t

a 1 a
0 0 0 0

t T

2
0 0

Q(t) - K C (u)du + k Q(u)du = P C (u)dudT Q(u)du ...

-P Q(u)dudT

 

Constraints P1 ≥ P2 

Coefficients 
P1=k3+k4 

P2=k4 

Rate 

Constant 

Equations 

k4 = P2 

k3=P1 – P2 

 

3.2.3 Non-Linear Solutions of 3-Compartment Model 

 The non-linear solution of the 3C model was performed by using the non-linear 

trust-region-reflective algorithm in MATLAB 2015b [15, 16] to fit Equation (4) (with no 

blood volume term). Different sets of initial values for the model parameters were used. 

(Table 3.3) The set that led to a fit with the smallest sum of squared deviations (SSD) was 

accepted as the final (optimal) fit. 
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Table 3.3: Initial parameter sets and constraints used for the non-linear fitting of the 

tissue TACs. 

 Starting Values   

Parameter Set 1 Set 2 Set 3 Set 4 

Lower 

Bound 

Upper 

Bound 

K1 (ml/min/g) 0.01 1.00 0.5 0.2 0 1 

k2 (min-1) 0.01 1.00 0.5 0.3 0 1 

k3 (min-1) 0.01 1.00 0.5 0.25 0 1 

k4 (min-1) 0.01 1.00 0.5 0.01 0 1 

 

 The absence of the LIN identifier in the model name represents the non-linear 

solution of that model. Hence, the non-linear models are 3C, 3C-K1, and 3C-K1K2. In 

models where some parameters are assumed to be known a priori from CT Perfusion, those 

parameters were held fixed in the fitting procedure. 

3.2.4 Sensitivity Analysis 

 The TAC values measured at different time points of an imaging study can be 

described using the compartment model above. To robustly estimate a parameter, the TAC 

must be sensitive to changes in the parameter value during some time interval of the study. 

Sensitivity analysis produces time-dependent sensitivity functions for each parameter that 

indicate the response of the TAC to perturbations in parameter values. This analysis can be 

carried out numerically or analytically. 

 The numerical method involves altering a given parameter by a small value (say 

1%) and calculating the change in the model TAC, Q(t) for each time point in the study. 

This is the method of finite differences. The sensitivity function for a given parameter P is 

given by  
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 𝑆(𝑡, 𝑃𝑖) =
𝛿𝑄(𝑡, 𝑃𝑖)

𝛿𝑃𝑖
=

𝑄(𝑡, 𝑃0) − 𝑄(𝑡, 𝑃0 + ∆)

∆
 (10) 

 

where 𝑃0 is the value of parameter 𝑃𝑖 and ∆ is equal to 1% of 𝑃0. For an experiment with 

N time points and M parameters, the NxM sensitivity matrix S is then constructed:  

 

 

𝑺 =

[
 
 
 
 

𝑆(𝑡1, 𝑃1) 𝑆(𝑡1, 𝑃2) … 𝑆(𝑡1, 𝑃𝑀)

𝑆(𝑡2, 𝑃1) 𝑆(𝑡2, 𝑃2) … 𝑆(𝑡2, 𝑃𝑀)
⋮ ⋮ … ⋮

𝑆(𝑡𝑁−1, 𝑃1) 𝑆(𝑡𝑁−1, 𝑃2) … 𝑆(𝑡𝑁−1, 𝑃𝑀)

𝑆(𝑡𝑁, 𝑃1) 𝑆(𝑡𝑁 , 𝑃2) … 𝑆(𝑡𝑁 , 𝑃𝑀) ]
 
 
 
 

 (11) 

   

 In order to compare the effect of different parameters on the model solution, S(t,Pi) 

was normalized such that  

 
𝑆𝑁(𝑡, 𝑃𝑖) = 𝑆(𝑡, 𝑃𝑖) ∙

𝑃0

𝑄(𝑡)
 (12) 

   

 The analytical method involves the determination of the sensitivity matrix S in 

which each column is the partial derivative of the model solution taken with respect to a 

model parameter. For the 3-compartment model and a tissue TAC with N time points, S is 

given by  
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𝑺 =

[
 
 
 
 
 
 
 

𝜕𝑄(𝑡1)

𝜕𝐾1
…

𝜕𝑄(𝑡1)

𝜕𝑘4

⋮ … ⋮
𝜕𝑄(𝑡𝑁−1)

𝜕𝐾1
…

𝜕𝑄(𝑡𝑁−1)

𝜕𝑘4

𝜕𝑄(𝑡𝑁)

𝜕𝐾1
…

𝜕𝑄(𝑡𝑁)

𝜕𝑘4 ]
 
 
 
 
 
 
 

 (13) 

The partial derivatives are not defined here, for brevity. 

 In this work, JSim software [14] was used to perform sensitivity analysis. It uses 

the numerical method of finite differences. The sensitivity matrix obtained numerically 

from equation (11) was used to calculate the covariance and correlation matrices (Section 

3.2.5). The normalized sensitivity functions from (12) were plotted versus time for each 

parameter. The sensitivity functions obtained via the numerical and analytical methods 

were compared to verify agreement. 

3.2.5 Identifiability Analysis 

 While the TAC must be sensitive to a parameter in order to estimate it, this property 

alone does not guarantee robust estimates. Identifiability tells us whether a parameter can 

be estimated without the variance being large and without being confounded by other 

model parameters by examining the correlations among the parameters. If two parameters 

are highly correlated, then it is difficult to estimate each parameter independently because 

similar perturbations in those parameters would produce similar responses in the TAC. 

This reduces the reliability of those parameter estimates. The Fisher information matrix, F, 

which gives the variances and covariances of the model parameters, has elements  
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𝐹𝑖𝑗 = ∑

1

𝜎2

𝛿𝑄(𝑡)

𝛿𝑃𝑖

𝛿𝑄(𝑡)

𝛿𝑃𝑗
𝑡

 (14) 

   

Where i and j go from 1 to M parameters and 𝜎2 is the estimate of the noise variance in the 

measured TAC which is fitted by the model solution. F is an MxM symmetric matrix. 

Based on the previous definition of S, it follows that the Fisher matrix can be expressed in 

terms of the sensitivity matrix as  

 

 
𝑭 =

1

𝜎2
[𝑺′𝑺] (15) 

 

where 𝑺′ is the transpose of 𝑺. Inverting F gives the covariance matrix V: [20] 

 

 𝑽 = 𝑭−1 = 𝜎2 ∙ [𝑺′𝑺]−𝟏 (16) 

  

 The lower bound of the variance of the parameter estimates, the Cramér-Rao bound 

[21, 22], is represented by the diagonal matrix elements of V. The lower bound of the 

coefficient of variation (COV) was calculated for each parameter by first taking the square 

root of these diagonal elements (equal to the standard deviation for each parameter) and 

then dividing those by the true parameter value. The covariance matrix was converted to 

the correlation matrix C by dividing each element by the square root of the product of the 

corresponding diagonal elements: 
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𝐶𝑖𝑗 =

𝑉𝑖𝑗

√𝑉𝑖𝑖 ∙ 𝑉𝑗𝑗

 (17) 

   

 In this work, noise in the measured TAC is assumed to follow a Gaussian 

distribution with a variance of 𝜎2 (note that a Poisson distribution with mean > 15 can be 

closely approximated by a Gaussian distribution). 

3.2.6 Simulating PET Frames 

 Data from dynamic PET acquisitions are binned into image frames of varying 

temporal length. The noise-free activity for a PET frame is determined by integrating the 

activity over the length of the PET frame and dividing by the length of the frame: [23] 

 𝐶𝑎(𝑡𝑘) =
1

∆𝑡𝑖
∫ 𝐶𝑖𝑛𝑠𝑡(𝑇)𝑑𝑇

𝑡𝑖

𝑡𝑖−1

 (18) 

Where Cinst(t) is the instantaneous TAC, Ca(tk) is the TAC averaged over the PET frame, 

ti-1 is the start time of the ith frame, ti is the end time of the ith frame, Δti=ti-ti-1 is the length 

of the frame and tk is the midpoint of the ith frame (ti = ti - Δti/2). 

 The instantaneous arterial TAC and the simulated instantaneous tissue TAC were 

averaged according to the above equation. The image bins used for the simulation were as 

follows: 8 x 15 s, 9 x 60 s, 10 x 120 s, and 6 x 300 s. (Figure 3.3) All simulations in this 

work used the time averaged arterial and tissue TACs as shown in equation (18). 
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Figure 3.3: Instantaneous and simulated averaged arterial TACs. The full acquisition 

duration (3,600 s) is shown on the left, and an expanded time scale (0-500s) is shown 

on the right. This frame averaging schedule was also applied to the tissue TAC. 

3.2.7 Effect of Omitting Blood Volume Term 

 To determine the effect of omitting the blood volume term in Equation (4) on the 

estimate of the k3 parameter, tissue TAC’s were generated with the parameters found in 

Table 3.1 with 50 different blood volume values ranging from 0 to 0.1 ml/g. Each tissue 

TAC was fitted with the 3C-LIN solution (no Vb term) to obtain an estimate of k3. 

3.2.8 Simulating Noise of Time Activity Curves 

 Noise was added to the tissue TACs based on the PET noise model 

described by Logan et. al. [24, 25]. The noisy TAC is given by: 

 

 
( ) ( ) (0,1) ( ) k

t

n k k k
Q t ROI t G ROI t e


     (19) 
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where tk is the midpoint time of the kth acquisition frame, Qn is the noisy activity 

concentration, G(0,1) is a random number based on Gaussian distribution of zero mean and 

variance equal to one, ε is a scale factor that determines the magnitude of the noise, λ is the 

decay constant of the radioisotope which is equal to ln(2) divided by its half-life, and 

ROI(tk) is the time-weighted  average concentration for the kth  acquisition frame, as defined 

in Equation (18). The noise level was defined as 

 

 
,

( ( ) ( ))

( )

Q n
N N t

abs Q t Q t
f avg

Q t

 
    

 
 (20) 

 

where ( )Q t  is the original data and Qn(t) is the noisy data, generated with the 3-

compartment model using parameters in Table 3.1. The average over all data points and all 

curves is taken. Noise levels investigated were ,

Q

N N tf   = 0.05, 0.1, 0.25 and 0.5, which 

represent SNRs of roughly 20, 10, 4, and 2, respectively.  

3.2.9 Linearity of k3 Estimates 

 The linearity of the k3 estimates over a wide range of k3 values was investigated. A 

range of tissue TACs were generated using 20 different k3 values at equal intervals between 

0.01 and 0.5 min-1. The other model parameter values were the ones described above. 

(Table 3.1) Each tissue TAC was fitted with every linearized or non-linear model solution 

and the estimated k3
 was plotted vs. the true k3. For the noisy TACs, 250 noise runs were 
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performed for each value of k3 and the means and standard deviations of the k3 estimates 

were calculated for each. 

3.2.10 Effect of Bias in a priori K1 and k2 

 The presence of CT image noise in the TDC introduces uncertainty into the K1 and 

k2 parameters measured with CT Perfusion, in the form of bias and/or variation. Therefore, 

it is important to understand the effect of this uncertainty on the k3 parameter estimate in 

the 3-compartment model of Figure 3.1. To obtain a realistic estimate of bias on K1 and k2, 

an arterial time density curve (TDC) was measured with a CT Perfusion study of a mouse 

heart. The curve was measured using an ROI drawn in the left ventricle of the mouse heart. 

A simulated tissue TDC was generated using a 2-compartment model with parameters K1 

and k2 equal to 0.12 ml/min/g and 0.57 min-1, respectively, which was the same as in the 

simulations of the 3-compartment model. 

 A cylindrical phantom with diameter of 35 mm and length of 100 mm (to 

approximate the size of a mouse) was filled with water and scanned with the same CT 

Perfusion protocol as in our mouse studies (FOV 10cm, 80kVp, 200mA, 0.5s per rotation 

of the gantry and 1.25mm slice thickness.) The phantom was scanned 70 times. A 451–

voxel ROI was drawn in the phantom images. The variance of the 70 measurements was 

calculated for each voxel, and then the mean of the variances of all 451 voxels was 

calculated. 

 The central limit theorem indicates that many additive sources of noise together, as 

found in DCE-CT, will produce noise with a Gaussian distribution. [26] A Gaussian noise 

model was used to add noise to the generated tissue TDC with variance equal to the mean 
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variance measured with the phantom (19.4 HU). 250 noisy TDC’s were generated and each 

was fitted using the 2-compartment model with the non-linear trust regional reflective 

algorithm in Matlab. The estimates of K1 and k2 from each of the noisy TDC were then 

carried over and used as the a priori parameter estimates in the 3-compartment model 

simulation. 

3.2.11 Parameter Accuracy and Best Fit 

 The simulated frame-averaged PET TACs with simulated noise were fitted with 

each of the linear and non-linear model solutions and the k3 estimates for each model 

solution were compared to the true value to calculate the bias. 250 noisy curves were 

generated and the mean and standard deviation of the estimates were calculated to 

determine the coefficient of variation of the estimates, equal to the standard deviation 

divided by the mean. This was repeated for the case of simulated bias added to the K1 and 

k2 parameters based on the CT phantom measurement described above. 

 The Akaike information criterion for small sample sizes (AICc) was used to  

compare the different  model solutions [27]. The AICc determines the best model for the 

fit by taking into account the SSD’s of the fit and the model complexity in terms of the 

number of parameters. The AICc can only be compared for different model fits of the same 

observation. The model fit that produces the lowest AICc is considered to be the best fit. 

The Akaike weights were calculated in order to determine the probability that a given 

model was the best model available to fit the data. For example, a model with an Akaike 

weight of 0.5 has a 50% chance of being the best model for the given data. By definition, 
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the sum of Akaike weights from all solutions is 1. The Akaike weights were determined 

for the noiseless case. 

3.3 Results 

3.3.1 Sensitivity 

 The normalized sensitivity functions for the 3-Compartment model are shown in 

Figure 3.4. The sensitivity functions obtained using the numerical method proved to be 

identical to those obtained with the analytical method. The most sensitive parameters after 

30 minutes are K1 and k2, followed by k3. The sensitivity curve for k3 indicated that this 

parameter becomes increasingly sensitive for approximately the first 15 minutes of the 

scan, while there is only a modest improvement in sensitivity beyond this time. 

 

Figure 3.4: Normalized sensitivity curve calculated for each parameter of the 3-

Compartment model as a function of time. 
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 Identifiability analysis for the simulated case yielded the correlation matrix (Table 

3.4) which indicated that parameters K1 and k2 as well as k2 and k3 were highly correlated.  

Table 3.4: Correlation matrix for the 3-Compartment model. Highly correlated 

parameters are in bold. Values in the upper right triangular region are omitted given 

that it is a symmetric matrix. 

 K1 k2 k3 k4 

K1 1 - - - 

k2 0.89 1 - - 

k3 0.61 0.88 1 - 

k4 0.04 0.26 0.60 1 

3.3.2 CT Noise Simulation 

 The 2 compartment CT noise simulation resulted in mean (±SD) estimates for K1 

of 0.116 ± 0.009 ml/min/g and k2 of 0.54 ± 0.1 min-1 or a bias and COV for K1 of -3.3% 

and 7.5%, respectively, and -5.4% and 18.6%, respectively for k2. 

3.3.3 k3 Linearity 

 For the noise-free TAC case plus no error in K1 and k2, estimated k3 vs. true k3 for 

all model solutions was linear with a slope of 1 and the estimates had negligible bias. 

 Results for noise ,

Q

N N tf   = 0.25 (SNR = 4) are shown in Figure 3.5. The 3C-

LIN and 3C-LIN-K1 solutions were more biased as k3 increased compared to their non-

linear counterparts. The 3C-LIN-K1k2 solution was the only linear solution that showed a 

consistent linear trend over the range of k3 values investigated. 
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Figure 3.5: Estimated vs. true k3 for all the model solutions. (Left) No error in K1 and 

k2. (Right) K1 and k2 with simulated bias. (Top) SNR = 20, (Middle) SNR = 10, 

(Bottom) SNR = 4. Solid and dashed lines represent the linear and non-linear 

solutions, respectively. 
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3.3.4 Model Selection 

 The parameters estimated using the time-averaged TACs in the noise-free case are 

shown in Table 3.5 along with the AICc and Akaike weights wi. The sum of squared 

deviations was very similar for all the model solutions, therefore the Akaike weights 

indicated that the 3C-LIN-K1k2 and 3C-K1k2 solutions were likely the best solutions 

because these solutions used the smallest number of parameters. 

Table 3.5: Parameter estimates as well as Akaike information criterion for small 

samples sizes (AICc) and Akaike weights for the different models in the noiseless case. 

These data show the effect of frame averaging on the model fitting. The 3C-K1k2 and 

3C-LIN-K1k2 solutions had the highest probability of producing the best fit because 

their SSD’s were similar to other model solutions and they use the least number of 

parameters. (SSD = sum of squared deviations between the fit and the tissue TAC) 

Model K1  

(ml/min-1/g) 

k2  

(min-1) 

k3  

(min-1) 

k4  

(min-1) 

SSD AICc wi 

Truth 0.12 0.56 0.23 0.03    

3C-LIN 0.120 0.568 0.228 0.027 12.7 -19.3 0.03 

3C-LIN-K1  0.570 0.229 0.027 13.0 -21.3 0.08 

3C-LIN-K1K2   0.228 0.027 13.1 -23.7 0.27 

3C 0.118 0.556 0.227 0.027 11.4 -22.8 0.17 

3C-K1  0.577 0.232 0.027 12.5 -22.5 0.15 

3C-K1K2   0.228 0.027 13.0 -23.9 0.30 

 

3.3.5 Effect of Omitting Blood Volume Term 

 The k3 estimates produced by the 3C-LIN solution (with no Vb term) with different 

true values of Vb are shown in Figure 3.6. The bias in k3 increased as the true Vb increased. 
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For Vb < 0.02 ml/g, the bias in the k3 estimate was < 4%. At Vb = 0.05 ml/g, the bias was 

14%. For Vb = 0.1 ml/g, the bias was 29%. 

 

Figure 3.6: k3 estimates produced by the 3C-LIN model solution (with no Vb term) 

for different values of Vb. 

3.3.6 k3 Accuracy and Variability 

 The coefficients of variation for the different parameter estimates calculated with 

the covariance matrix are shown in Figure 3.7. The COV of the k3 parameter improved 

when K1 was imputed from CT Perfusion and improved further when both K1 and k2 were 

imputed from CT Perfusion. 

 The mean k3 estimates (±SD) and coefficient of variation (COV) for the 250 noise 

runs are shown in Figure 3.8 for the bias-free K1 and k2 as well as with addition of simulated 

bias. The non-linear 3C solution had the most accurate mean k3 estimate, while the 3C-

K1k2 and 3C-LIN-K1k2 solutions had the smallest variation under all noise levels. This 
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simulation was also performed with PMod software (PMod Technologies) for the 3C 

model and similar results were produced. These results also apply to the linear solutions, 

given that the linear solutions are based on the same model as the non-linear solutions. The 

COV for k3 with the 3C-K1k2 solution was similar to the one obtained with noise 

simulations of the 3C-K1k2 and 3C-LIN-K1k2 solutions in Figure 3.8 (top row, noise level 

= 0.25). 

 

Figure 3.7: The coefficients of variation of model parameters with TAC SNR = 4 

calculated using the covariance matrix represent the Cramér-Rao Bound. The COV 

of k3 improves as more parameters are measured a priori. 



104 

 

 

 

 

 

 

 

Figure 3.8: k3 estimates (top row), bias2 + variance (middle row), and COV (bottom 

row) for 250 noise runs with no K1 and k2 error (left column), and simulated error 
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(right column). Error bars represent standard deviation. The horizontal dashed line 

indicates the true value of k3. (0.23 min-1) 

3.4 Discussion 

 This study simulated the use of a hybrid DCE-CT/PET imaging technique that uses 

functional parameters estimated from CT Perfusion as a priori information to increase the 

precision of the estimated binding rate constant, k3 in a 3-comparment model. Linearized 

and non-linear solutions of the 3-compartment model were compared in terms of bias and 

variation of the k3 estimate. 

 Compared to the non-linear solutions, k3 estimates from the linearized solutions 

suffered more bias. The reason being the linearized solution depends not only on the tissue 

TAC, Q(t), but also the time integrated and doubly time integrated Q(t) as shown in 

Equation (9). As such, noise in Q(t) is accumulated in its time integrals as time progresses 

through integration. It also means that whereas noise in Q(t) is independent, the same is 

not true for noise in its time integrals. The correlation of noise in the time integrals of Q(t) 

is the main reason why biases occur in parameters estimated from the linearized solution. 

This finding is consistent with the results of Feng et. al. [12] who developed a generalized 

least squares technique to fit the linearized solution of compartmental models to Q(t) that 

minimize biases in the estimated model parameters. Feng et. al. showed mathematically 

that the increased bias present in the linearized model solution is because the noise in the 

TAC is coloured (i.e. correlated) by the estimates of parameters P1 and P2, and hence of k2, 

k3 and k4. Because of this correlation, poor precision in these parameter estimates will 

result in increased bias in the parameter estimates. It therefore follows that increasing the 
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precision of the parameter estimates by measuring parameters a priori will also reduce the 

magnitude of the bias in the linearized model. Our results confirm that the bias effect is 

mitigated by the introduction of known parameters as shown in Figure 3.5 where the 3C-

LIN-K1k2 solution maintained a linear trend over the range of k3 values investigated. This 

is because the inclusion of K1 and k2 parameters measured a priori was sufficient to increase 

the precision of parameter estimates such that the bias due to correlated noise became 

insignificant. 

 The AICc indicated that the best model solutions to fit the time-averaged data were 

the 3C-K1k2 and 3C-LIN-K1k2 solutions. This was expected given the reduction of 

parameter covariance resulting from the use of a priori measured parameters. The Akaike 

weights indicated a 30% probability that the 3C-K1k2 model solution produced the best fit 

compared to 27% for the 3C-LIN-K1k2 solution in the noiseless case. Practically, this 

difference will be insignificant under noisy conditions that are typical of PET images. 

 The simulation results presented here illustrate the reason why it has been difficult 

to independently estimate model parameters with 3-compartment (two tissue) models. The 

identifiability analysis shows that the K1 and k2 parameters are highly correlated with each 

other (0.89), and that k2 has a high correlation with k3 (0.88). The effect of this correlation 

is evident in the extremely high COV of the estimated k3 parameter under noisy conditions 

(Figure 3.8). However, the COV can be very much improved with the hybrid DCE-CT/PET 

technique wherein K1 and k2 will be estimated from DCE-CT as in the 3C-LIN-K1k2 and 

3C-K1k2 solutions. 
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 Besides the injected dose (activity), the SNR observed in PET depends on a variety 

of factors, including the bore size, attenuation and randoms corrections, the temporal 

protocol and the size of the ROI. Under low SNR conditions, it would be possible to 

improve the SNR by spatially averaging pixels in a region or by temporal averaging by 

using a temporal protocol with longer acquisition time per image. The COV results can 

serve as a guide when using the hybrid DCE-CT/PET technique to give a sense of the 

precision of the k3 parameter estimate under noisy conditions. Our simulations found that 

the COV of the k3 parameter produced by the covariance matrix for SNR = 4 were of the 

same order of magnitude as those from noise simulations. This demonstrates that the 

covariance matrix can be used instead of time-consuming noise simulations in order to 

estimate the reliability of compartmental model parameter estimates. 

 Other investigators in the literature have omitted the blood volume term of the 3-

compartment model [7]. Our simulations show that the blood volume term can be omitted 

without any significant bias in the k3 estimate if Vb < 0.02 ml/g. To keep k3 bias resulting 

from omission of the Vb term to no more than 10%, the no-Vb model solution should be 

limited to applications where Vb ≤ 0.04 ml/g is expected. For tissues where Vb is larger, a 

realistic way to account for the effect of blood volume would be to include a vascular 

operator that incorporates the effect of transit time between arterial and venous ends of the 

capillaries. This vascular operator is employed in the Johnson-Wilson model [28, 29] and 

is evident when comparing the impulse-residue functions (which represent the fraction of 

tracer remaining in tissue as a function of time) of the Johnson-Wilson vs. compartmental 

models (Figure 3.9). The vascular operator would need to be added to the compartmental 
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model to account for the Vb term. However, this would require a reformulation of the 

linearized solution to account for the effects of capillary transit time and may increase the 

required computation time. 

 

Figure 3.9: (Top) Example of impulse residue functions (IRF) of the Johnson-

Wilson (J-W) and 3-compartment models. The vascular operator accounting for the 
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transit time in the capillaries is represented by the flat, step portion of the J-W 

model’s IRF. This vascular operator is absent in the 3-compartment IRF, which 

assumes instantaneous transfer and therefore cannot properly account for the 

effects of blood volume in the vasculature. The blood volume is equal to the area 

under the step portion of the J-W model’s IRF. (Bottom) Example of tissue TACs 

produced by convolution of the arterial input TAC with the flow-scaled IRF using 

the same parameters, highlighting the differences resulting from the omission of the 

vascular operator. 

 The linearized solution of the 3-compartment model should permit rapid generation 

of parameter functional maps. For example, the linearized solution performed roughly 20 

times faster than the non-linear solution. A 128x128 k3 parameter map could be generated 

in less than 30 minutes. 

 There are some limitations to this study. The CT noise was simulated from 

measurements taken with a phantom which may not accurately represent the noise present 

in all cases given that CT noise depends on a variety of factors, such as tube current and 

patient size. Secondly, the simulation studies were generated with a compartment model 

which does not account for sources of uncertainty introduced by the potential 

inapplicability of the compartmental model to certain specific pathologies or tissue types, 

or uncertainties inherent in the corrections applied to the real world arterial TAC’s such as 

dispersion or metabolite corrections. Finally, differences in molecular weight between the 

CT contrast and PET tracer would need to be accounted for in the real world case since 

these would have different rates of diffusion into the extravascular space. This should be 
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possible with the use of a scalar correction factor based on a cubic root relationship between 

the two molecular weights. [11] The correction factor could be used to correct the K1 and 

k2 parameters for the effect of diffusion before they are imputed into the PET model. In 

addition, the dependence of molecular weight on the interstitial and osmotic pressures may 

also need to be accounted for because these effects may be significant in certain tumor 

pathologies [30]. This area warrants further investigation. 

 This hybrid imaging technique has a wide range of potential applications for 

different pathologies and different tracers for which quantification of the binding rate 

constant k3 for the 3-compartment (two tissue) model is of interest. 

3.5 Conclusions 

 A hybrid DCE-CT/PET imaging technique has been developed that allows for more 

accurate and reliable quantification of the binding rate constant in compartment models. 

The linearized solution of this model can be used for much more rapid generation of 

functional maps compared to the standard non-linear approach. This technique may be 

useful for applications or pathologies where one wishes to quantify the binding rate 

constant of the 3-compartment (two tissue) model. 
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Chapter 4  

4 A quantitative hybrid PET-CT Perfusion technique for measuring 

the binding rate constant of 18F-Fluorocholine in a mouse model 

of prostate cancer 

4.1 Introduction 

 18F-Fluorocholine (FCH) PET imaging has been used for imaging prostate cancer 

(PCa) [1, 2]. Choline is of interest because it is phosphorylated by the enzyme choline 

kinase into phosphocholine via the ATP-dependent Kennedy pathway before being 

incorporated into the cell membrane as phosphatidylcholine [3, 4]. Malignant PCa 

overexpresses choline kinase [5, 6] and has been shown to contain more phosphocholine 

compared to benign or healthy prostate tissues [7], making the phosphorylation of choline 

a potentially useful biomarker for localizing PCa with 18F-FCH PET imaging. 

 Results of previous studies investigating the use of 18F-FCH PET for detection of 

PCa have been mixed [8-13]. These studies quantify uptake of FCH using the standardized 

uptake value (SUV), a semi-quantitative analysis metric that scales the measured activity 

by the injected radiopharmaceutical activity and the patient’s weight. The general finding 

has been that it is difficult to differentiate malignant PCa from surrounding prostate tissue, 

such as benign prostatic hyperplasia (BPH), when using the SUV. This suggests that the 

SUV is not reflective of the phosphocholine levels in tissue nor the choline kinase activity. 

One potential reason for this is that the SUV cannot differentiate between 18F-FCH 

molecules which are specifically bound to cells (phosphorylated) and those that are present 

in the unbound state in the vasculature or in tissue water. 
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 The aim of tracer kinetic analysis with compartmental models is to quantify the 

rates of exchange between different physiological compartments. Theoretically, this 

approach would be capable of quantifying the phosphorylation rate of choline or the 

activity of choline kinase by measuring the binding rate constant, k3. In practice, there are 

a number of challenges with this approach. Kinetic analysis of compartmental models 

entails nonlinear curve fitting with multiple parameters. The curve fitting algorithm must 

be provided with initial guesses or starting model parameters, and the algorithm may 

converge and terminate in one of many local minima. Nonlinear optimization is also 

computationally intensive, such that generation of parametric maps is a time-consuming 

process and inconvenient in clinical settings. Finally, obtaining a robust, accurate estimate 

of k3 is difficult because of the high variability from the significant covariance between 

model parameters, which makes the model even more susceptible to PET image noise [14]. 

 These challenges may be overcome with multiple approaches. First, it is possible 

to derive a linearized solution to the 3-compartment model, which has been previously 

described by other investigators [15-17]. The linearized solution enables fast computation 

of functional maps, does not require any starting parameters, and converges to a single 

solution. Secondly, it is possible to use a hybrid PET-CT Perfusion (PET-CTP) imaging 

technique in which two (K1, k2) of the four model parameters are imputed from a separate 

CT Perfusion study so that only the remaining two model parameters (k3, k4) need to be 

estimated from the PET data [17]. This results in reduced parameter covariance and more 

robust estimates of the k3 parameter. 
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 The objectives of this work are to determine whether quantitative graphical analysis 

of PET or hybrid PET-CTP imaging can provide better tumor contrast compared to the 

SUV in a mouse model of human prostate cancer. It has previously been found that choline 

uptake as measured by SUV is not correlated with tumor proliferation [18] and hence 

volume. We investigated whether PCa tumor volume in mice was significantly correlated 

with SUV as well as other quantitative parameters measured by PET-CTP imaging. Finally, 

preliminary immunohistochemistry was performed with a choline kinase α (ChKα) 

antibody to determine whether there was any correlation between the k3 parameter and 

choline kinase expression. 

4.2 Methods 

4.2.1 Mouse Model 

 Twenty athymic nude mice were subcutaneously injected with 106 PC-3 human 

PCa cells in the left flank. Mice were observed weekly and the presence of a tumor was 

ascertained via palpation. The tumor was imaged bi-weekly at one or several time points 

post-injection, depending on the growth rate of the tumor. Mice were euthanized once 

tumors significantly affected the quality of life of the mice, as judged by veterinary staff. 

All experimental procedures were approved by the Animal Use Subcommittee of the 

Canadian Council on Animal Care of our institution. 

4.2.2 PET Imaging Protocol 

 For imaging, each mouse was masked with 1.5-2% isoflurane. A dose of 18F- FCH 

(11.4-15.4 MBq in < 0.4 mL, specific activity 543-963 Ci/μmol, radiochemical purity > 
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99%, supplied by Centre for Probe Development and Commercialization, McMaster 

University, Hamilton, Ontario) was injected into a tail vein. Dynamic PET scanning, 

started 10 s before the injection was performed with a GE healthcare eXplore VISTA dual-

ring small-animal PET scanner in list mode.  After correction for scatter and random 

coincidences, images were reconstructed using the ordered subset expectation 

maximization algorithm and binned into frames of 8 x 15 s, 9 x 60 s, 10 x 120 s, and 6 x 

300 s for a total scan time of one hour. Image-derived time-activity curve (TAC) from a 

region of interest (ROI) placed in the left ventricle was corrected for partial volume and 

spillover effects (see below) and used as the arterial TAC for subsequent kinetic analysis. 

 At the conclusion of each PET scanning session, the bed together with the mouse 

was removed and transported to the CT scanner, taking care not to move the mouse and 

keep it anesthetized with 1.5-2% isoflurane during the transfer. These precautions ensured 

minimal movement of the mouse between dynamic 18F-FCH PET and CT Perfusion (CTP) 

scans. 

4.2.3 CT Perfusion Scanning Protocol 

 CT Perfusion (CTP) studies were performed on a clinical PET-CT scanner (GE 

Healthcare, Waukesha, WI). Each mouse was masked with 1.5-2% isoflurane as in the 

dynamic 18F-FCH PET scan. The CTP study began with an infusion of 0.25 ml of iodinated 

contrast agent (Conray 43, Mallinckrodt Pharmaceuticals, Dublin, Ireland) diluted to 50% 

with saline into the same tail vein as in the PET study at a rate of 3 ml/min. The CTP 

acquisition was performed with settings of FOV 10cm, 80kVp, 200mA, 0.5s per rotation 

of the gantry, and 16 slices each of 1.25 mm thickness in two phases. In the first phase, 60 
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scans were acquired at 0.5 second intervals, and in the second phase 10 scans were acquired 

at intervals of 15 seconds, for a total scan time of 210 seconds. Functional maps of blood 

flow (BF), blood volume (BV), vessel permeability surface product (PS), and extravascular 

volume (Ve) were generated for each study using CT Perfusion software (GE Healthcare, 

Waukesha, WI) [19]. The arterial time density curve was acquired with a ROI in the left 

ventricle of the mouse heart. 

4.2.4 Partial Volume & Spillover Correction of Image-Derived PET 

TACs 

 18F-FCH exhibits notable uptake in the myocardium of the mouse heart due to the 

presence of muscarinic acetylcholine receptors [20]. A portion of the myocardial activity 

can spill over into the left ventricle due to positron travel (mean 18F positron range = 0.64 

mm, max = 2.4 mm [21]) before the annihilation event, and radial movement of the 

myocardium resulting from cardiac motion can also contribute myocardium activity to the 

left ventricle region. This contributes to an overestimation of the image-derived arterial 

TAC (ID-ATAC) from the left ventricle. In addition, the diameter of the ventricle is of the 

same magnitude (see below) as the spatial resolution of the micro-PET scanner (~ 1.5 mm), 

so the ID-ATAC will also be subject to underestimation of the true activity, due to partial 

volume averaging. These partial volume and spillover effects can affect the accuracy of 

quantitative measurements derived with the ID-ATAC. 

 A mouse heart phantom was designed to correct for partial volume and spillover 

effects (Figure 4.1). To ensure accurate dimensions, a mouse heart was removed at the 

conclusion of a PC-3 imaging study, and the myocardium thickness and left ventricle 
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diameters were measured with a set of calipers. The left ventricle diameter was found to 

be 3 mm and the myocardium thickness was 1 mm. The phantom consisted of an inner 

cylindrical left ventricle (LV) chamber of 3 mm external diameter to approximate the left 

ventricle with chamber wall thickness of 0.8 mm. Surrounding this chamber was a 

myocardium wall in the shape of a cylindrical shell of internal thickness 1 mm and outer 

wall thickness of 0.8 mm. This chamber was surrounded by a larger cylindrical shell of 

external thickness 10 mm to represent the thorax of the mouse. An extra chamber with 

external diameter of 10 mm (much larger than the PET scanner resolution) and wall 

thickness of 0.8 mm was added as a control chamber just outside of the phantom. The 

phantom was made of Acrylonitrile butadiene styrene (ABS) plastic and constructed with 

a LulzBot TAZ 5 3D printer (Aleph Objects, Inc., Loveland, Colorado, USA). 
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Figure 4.1: (Top) Cross-Section of the mouse heart phantom (not to scale, to 

emphasize the LV and myocardium chambers). The control chamber is located 
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outside the main phantom cylinder. All chamber walls are 0.8 mm thick. (Bottom) 

External view of the mouse heart phantom. The black thumb screw on top of the 

phantom provides access to the mouse thorax chamber. The center white screw 

accesses the LV chamber, and the other white screw accesses the control chamber. 

On the opposite side, another screw (not shown) provides access to the myocardium 

chamber. 

 The theory described by Shoghi et. al. [22] was used to characterize the relationship 

between the left ventricle and myocardium TACs and the partial volume and spillover 

coefficients: 

 
𝐶𝑚𝑦𝑜̃(𝑡) = 𝑟𝑚𝐶𝑚𝑦𝑜(𝑡) + 𝑠𝑏𝑚𝐶𝐿𝑉(𝑡) (1) 

 𝐶𝐿𝑉̃(𝑡) = 𝑟𝑏𝐶𝐿𝑉(𝑡) + 𝑠𝑚𝑏𝐶𝑚𝑦𝑜(𝑡) (2) 

   

Where 𝐶𝐿𝑉(𝑡) and 𝐶𝑚𝑦𝑜(𝑡) are the true left ventricle and myocardium curves, respectively, 

𝐶𝐿𝑉̃(𝑡) and 𝐶𝑚𝑦𝑜̃(𝑡) are the left ventricle and myocardium curves measured by the PET 

scanner, 𝑟𝑏 and 𝑟𝑚 are the partial volume recovery coefficients for the left ventricle and 

myocardium, respectively, 𝑠𝑏𝑚 is the fraction of  myocardium activity spilling into the left 

ventricle, and 𝑠𝑚𝑏 is the fraction of  left ventricle activity spilling into the myocardium. By 

rearranging equations (1) and (2), one can solve for the true left ventricle TAC: 

 

 𝐶𝐿𝑉(𝑡) =
𝑟𝑚

𝑟𝑚𝑟𝑏 − 𝑠𝑏𝑚𝑠𝑚𝑏
𝐶𝐿𝑉̃(𝑡) −

𝑠𝑚𝑏

𝑟𝑚𝑟𝑏 − 𝑠𝑏𝑚𝑠𝑚𝑏
𝐶𝑚𝑦𝑜̃(𝑡) (3) 
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This equation can be simplified by defining variables α and β that represent the coefficients 

of the two terms, such that:  

 

 𝐶𝐿𝑉(𝑡) = 𝛼𝐶𝐿𝑉̃(𝑡) − 𝛽𝐶𝑚𝑦𝑜̃(𝑡) (4) 

   

In order to utilize this equation, the partial volume and recovery coefficients must be 

calculated. 

 Two scans of the mouse heart phantom were obtained. In the first scan, the 

myocardial wall and the control chamber were filled with an 18F-FDG solution, ensuring 

that the total activity in the phantom was  < 18.5 MBq  to not saturate the scanner. The LV 

and thorax chamber were filled with distilled water. The phantom was scanned using a 

static 30 minute scan to reduce the effect of noise. To ensure consistent segmentation of 

the LV chamber and myocardial wall in phantom images and real mouse heart images and 

to remove the element of operator variability, an in house automated algorithm was 

developed to segment these two regions of interest (ROIs) using the full width at half 

maximum of radial activity profiles drawn through the centre of the LV. The inner region 

encircled by the myocardium was used as the LV ROI. (Figure 4.2) The myocardium 

partial volume recovery coefficient 𝑟𝑚 was calculated by dividing the mean myocardium 

ROI activity by the mean ROI activity of the control chamber. The myocardium to LV 

spillover 𝑠𝑚𝑏 was calculated by dividing the mean LV ROI activity by the mean control 

chamber ROI activity. 
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Figure 4.2: Axial slice of a mouse phantom PET scan with the myocardium chamber 

filled with FDG. The myocardium ROI produced by the automated segmentation 

algorithm is shown in green. The LV ROI was defined by the space  surrounded by 

the myocardium ROI. 

 In the second scan, the LV and control chambers were filled with the same 18F-

FDG solution (again ensuring not to saturate the scanner) and the remaining chambers were 

filled with water. The first scan was manually registered to the second scan using a rigid 

registration by lining up the control and left ventricle chambers. (Figure 4.3) The ROI’s 

generated in the first scan were then used for quantification in the second scan, to ensure 
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consistency. The LV partial volume recovery coefficient 𝑟𝑏 was calculated by dividing the 

mean LV ROI activity by the mean ROI activity of the control chamber. The LV to 

myocardium spillover 𝑠𝑏𝑚 was calculated by dividing the mean myocardium ROI activity 

by the mean control chamber ROI activity. 

 

Figure 4.3: Registered images of the LV and myocardium phantom scans. The 

images were registered by aligning the control chambers from both scans. The 

activity from the LV scan is shown in yellow and the myocardium scan activity is 

shown in grey. The control chamber appears yellow because the images from both 

scans are superimposed. 
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4.2.5  Dispersion Correction 

 As blood travels between the arterial blood sampling catheter and then through the 

PE10 tubing to the arterial blood counter’s detector, relative to the outlet of arterial catheter, 

the tracer bolus is delayed in arrival and is dispersed because the boundary layer at the 

PE10 tubing wall creates a radial velocity gradient that slows the speed of plasma 

depending on its proximity to the wall. This dispersion causes a broadening of the arterial 

time activity curve as measured by the arterial blood counter and will add uncertainty to 

the estimated model parameters if it is not corrected. 

 The arterial TAC at the outlet of the arterial catheter can be recovered by 

deconvolving the measured TAC with the blood counter’s dispersion function according 

to the following equation: 

 
𝐶𝑎̃(𝑡) = 𝐶𝑎(𝑡) ∗ 𝐷(𝑡) (5) 

where 𝐶𝑎̃(𝑡) is the arterial TAC measured by the blood counter, 𝐶𝑎(𝑡) is the arterial TAC 

at the outlet of the arterial catheter, D(t) is the dispersion function of the blood counter and 

* denotes the convolution operator [23]. 

 The blood counter dispersion function was obtained by measuring the response of 

the blood counter to an abrupt increase of activity delivered at the PE10 tubing’s inlet. Two 

solutions were prepared: 1) A ‘cold’ 40% sucrose solution in order to approximate the 

viscosity of blood [24] and 2) a similar ‘hot’ solution with 18F-FCH added. The same 50.8 

cm long PE10 tubing line used in our mouse experiments was also used in this dispersion 

experiment. First the line was filled with the ‘cold’ sucrose solution with care not to 

introduce any air bubbles. Next, one end of the line was connected to the blood counter 
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while the other end was submerged in the ‘hot’ sucrose solution and acquisition with the 

blood counter was started. The hot solution was withdrawn at a speed of 10 µl/min, the 

same as in our mouse studies, and the activity passing through the blood counter was 

measured for a time period until an obvious plateau was achieved. This same experiment 

was repeated for a pumping speed of 50μl/min because one mouse in the experiment had 

blood sampled at this rate. The measured TAC was corrected for radioactive decay of 

Fluorine-18 and normalized to a peak value of 1. The normalized TAC was fitted to an 

inverted exponential curve: 

 

 
𝑆(𝑡) = {

0, 𝑡 < 𝜏

1 − 𝑒−𝑘(𝑡−𝜏), 𝑡 ≥ 𝜏
 (6) 

   

where k is an exponential decay constant and 𝜏 is the delay in arrival of activity at the 

detector of the blood counter. The dispersion function D(t) is the derivative of 𝑆(𝑡) and is 

evaluated as: 

 

 
𝐷(𝑡) = {

0,                       𝑡 < 𝜏 

𝑘𝑒−𝑘(𝑡−𝜏), 𝑡 ≥ 𝜏   
 (7) 

   

D(t) can then be used for the deconvolution in Equation (5) to obtain the arterial TAC at 

the outlet of the arterial catheter [23]. 

 A common technique to correct for dispersion by the PE 10 tubing used in the blood 

counter is the model-based correction proposed by Munk et. al. [25] employed in the 
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popular PMod software. This model-based deconvolution is not applicable to this work 

because it is invalid in cases where the fraction of tracer molecules λ (defined as α in 

Munk’s paper) interacting with the catheter wall approaches 1. This is the case for our 

experiments, given the small inside diameter (0.28 mm) of PE10 tubing and the slow 

pumping speed that was required. Fitting the measured dispersion curve with Munk’s 

method confirmed that λ approaches 1 in our experiments. Therefore, a model-independent 

deconvolution was used to deconvolve the measured TAC with the dispersion function. 

Unconstrained deconvolution presents a number of challenges [26] due to oscillatory noise 

that results from small singular values that arise in the singular value decomposition of the 

convolution matrix. The deconvolution technique used applies a constraint on the second 

derivative of the solution, ensuring that the deconvolved arterial TAC is smooth. 

4.2.6 Validation of Partial Volume and Spillover Correction 

 To validate the accuracy of the partial volume and spillover correction, six acute 

studies were performed using athymic nude mice injected with 18F-FCH. Blood was 

continuously sampled from the carotid artery at a withdrawal rate of 10μl/min (50μl/min 

for one of the mice) using heparinized PE10 tubing to prevent blood clotting and the 

sampled activity was measured using a blood counter (Swisstrace Twilite Blood Sampling 

System) at intervals of one second. The blood sampled TACs were corrected for 

radioactive decay of 18F, background subtracted and corrected for dispersion in the PE10 

tubing line as described above. Acquisitions were no longer than 20 minutes due to the 

small available blood volume of mice. Concurrently, imaging was performed using the 

same protocol as described (vide supra). The automated algorithm described above was 
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used to segment the LV and the myocardium of the mouse heart. The mean values of the 

ROI’s in each PET frame were used to construct the LV and myocardium TACs. Partial 

volume and spillover corrected (PVSC) curves were calculated based on the recovery and 

spillover coefficients calculated in the phantom study. The PVSC curves were compared 

to the dispersion and delay-corrected curves to determine the accuracy of the partial volume 

and spillover correction. A certain amount of uncorrectable physiological dispersion would 

be expected between the two curves, given the distance that must be traveled between the 

left ventricle and the blood sampling site in the carotid artery. This would result in the peak 

of the blood sampled TAC being broader and the peak activity underestimated compared 

to the LV TAC. However, the amount of tracer delivered in the first pass and subsequent 

recirculation phases, which is measured by the area under the TAC (AUC), should be the 

same. Therefore, the AUC ratio of the corrected blood sampled and PVSC image-derived 

curves were compared (AUCimage-derived / AUCblood sampled). 

4.2.7 Metabolite and Plasma Fraction Correction 

 To correct for radiolabeled metabolites, the correction established by Slaets et. al. 

[27] in studies of nude mice with 18F-FCH was applied to the PVSC corrected arterial 

TACs. Correction (also from Slaets) for whole blood to plasma fraction was also applied 

to correct for the fraction of 18F-FCH that was bound to red blood cells. 

4.2.8 Image Registration 

 CT Perfusion software was used to generate blood flow (BF), blood volume (BV), 

permeability surface-area product (PS), and extravascular volume (Ve) maps from the CT 
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Perfusion study. The dynamic average CT maps were then registered to the images 

acquired from the last acquired PET frame (55-60 min after injection of 18F-FCH). The 

rigid registration was performed in 3D Slicer software (http://www.slicer.org) [28] and the 

CT functional maps were resampled to the PET space using the bilinear spline algorithm 

in 3D Slicer.  

4.2.9 Kinetic Model 

 Uptake of 18F-FCH in tissue was analyzed with the 3-compartment model. (Figure 

4.4) The governing equations of the model are as follows: 

 

 𝑑𝐶𝑖

𝑑𝑡
= 𝐾1𝐶𝑎(𝑡) − (𝑘2 + 𝑘3)𝐶𝑖(𝑡) + 𝑘4𝐶𝑚(𝑡) (8) 

 𝑑𝐶𝑚

𝑑𝑡
= 𝑘3𝐶𝑖(𝑡) − 𝑘4𝐶𝑚(𝑡) (9) 

 𝑄(𝑡) = 𝑉𝑏𝐶𝑎(𝑡) + 𝐶𝑖(𝑡) + 𝐶𝑚(𝑡) (10) 

   

where Ca(t) is the arterial TAC, Ci(t) is the interstitial concentration of free tracer, K1 is the 

influx rate constant in min-1, k2 is the efflux rate constant for the return of tracer from the 

interstitium back into blood vessels, k3 is the binding rate constant to choline kinase in 

tissue, k4 is the dissociation rate constant from the enzyme, Cm(t) is the concentration of 

phosphocholine (i.e. the phosphorylated 18F-FCH by choline kinase), and Q(t) is the tissue 

TAC. 

 A linearized solution for the 3-Compartment model was derived based on the 

method described by Feng and Blomqvist [15, 16]. The different linearized solutions are 
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outlined in Table 4.1. The hybrid PET-CT Perfusion imaging technique imputes 3-

compartment model parameters from an independent CT Perfusion study as discussed 

below. 

Table 4.1: Linearized solutions of the 3-Compartment kinetic model.  

Solution LIN-K1 

Imputed 

Parameters 

from CT 

Perfusion 

K1 

Estimated 

Parameters 
k2, k3, k4 

Linearized 

Equation 
1 1

0

t

K
     
     
          

t t T t T

a 1 2 4 a
0 0 0 0 0

Q(t) - K C (u)du = -P Q(u)du - P Q(u)dudT + P C (u)dudT  

Constraints P1 ≥ P4 

Coefficients 

P1=k2+k3+k4 

P2=k2k4 

P4=k3+k4 

Rate 

Constant 

Equations 

k2=P1-P4 

k4=P2/k2 

k3=P4-k4 

Solution LIN-K1K2 

Imputed 

Parameters 

from CT 

Perfusion 

K1,k2 

Estimated 

Parameters 
k3,k4 

Linearized 

Equation 

1 2 1
0

2

t

K

k

 
 

 

 
 
 

    

 

t t T t

a 1 a
0 0 0 0

t T

2
0 0

Q(t) - K C (u)du + k Q(u)du = P C (u)dudT Q(u)du ...

-P Q(u)dudT

 

Constraints P1 ≥ P2 

Coefficients 
P1=k3+k4 

P2=k4 

Rate 

Constant 

Equations 

k4 = P2 

k3=P1 – k4 
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 The LIN-K1 and LIN-K1k2 solutions impute functional parameters K1 and k2 from 

an independent CT Perfusion study. The K1 parameter was calculated knowing that K1 = 

FE, where F is the blood flow (obtained from BF maps) and E is the extraction efficiency. 

E was calculated from CT functional maps of BF and PS: [29] 

 𝐸 = 1 − 𝑒
−𝑃𝑆
𝐹  (11) 

 The extraction efficiency of CT contrast agent and 18F-FCH are different because 

diffusion is dependent on the molecular weight of the solute. Prior membrane permeability 

experiments by Danielli [30] showed that a cubic root relationship exists between the 

diffusion of a solute in water and its molecular weight. Therefore, based on the molecular 

weight of contrast agent (Conray 43, 809.1 Da) and FCH (157.6 Da), the extraction 

efficiency was scaled by a scale factor Esc:  

 𝐸𝑠𝑐 =
√809.1
3

√157.6
3 = 1.725 (4.12) 

The K1 parameter in the 3-compartment model was therefore calculated as: 

 
𝐾1 = 𝐹 ∙ 𝐸 ∙ 𝐸𝑠𝑐 (4.13) 

 The k2 parameter was calculated from the CT functional maps knowing that k2 = 

K1/Ve, where Ve is obtained from the extravascular volume map. 
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Figure 4.4: The 3-compartment kinetic model for uptake of 18F-FCH in tissue. 

4.2.10 Parametric Maps 

 The goodness of fit of both linearized solutions of the 3-compartment model to 

mean tumor TACs was assessed initially. The K1 and k2 parameters were obtained from the 

mean ROI values of the appropriate CT Perfusion functional maps (see above). The 

linearized solution that produced the best fit to the mean tissue ROI TAC was used to 

calculate parametric maps of the 3-compartment model parameters for all mouse PET 

studies. 

 To improve the signal-to-noise ratio (SNR) of voxel TACs for the kinetic analysis, 

a 3x3 box-filter was applied to the all dynamic PET images. For each voxel, a 3x3 grid is 

placed with the voxel as its center, and the original voxel value is replaced by the average 

value of all voxels within the grid. TAC noise can be quantified such as described by 

Logan: [31] 

 ,

( ( ) ( ))

( )

Q n
N N t

abs Q t Q t
f avg

Q t

 
    

 
 (4.14) 
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Where the noise factor < 𝑓𝑁
𝑄 >𝑁,𝑡 is the average difference between the measured and 

fitted curves, averaged over all time points and curves. A noise simulation showed that 

with a TAC SNR = 10, the k3 parameter can be estimated with a coefficient of variation of 

roughly 10% compared to approximately 25% for SNR = 4. To estimate the noise in a 

voxel TAC, an unpublished phantom study of our eXplore VISTA small animal PET 

scanner showed that the noise factor of a single voxel TAC is approximately 0.19, 

equivalent to an SNR of roughly 5. The study was performed with a dynamic scan of a 

cylindrical phantom filled with a 12 MBq/ml solution of FDG to approximate the FDG 

concentration in a mouse study, using the mouse imaging protocol described (vida supra) 

and the SNR was quantified by calculating the mean and variance of the images for each 

voxel TAC. It was determined using a noise simulation that averaging 9 TACs with SNR 

= 5 produced an averaged TAC with a SNR approximately equal to 10. Therefore, dynamic 

images were smoothed with a 3x3 box filter because its size was a reasonable trade-off 

between k3 precision and spatial resolution. 

 All PET image analysis was performed with in-house software written in MATLAB 

2015b (The MathWorks Inc., Natick, Massachusetts, United States). Parametric maps of 

k3 and k4 were generated by fitting dynamic TACs from the smoothed PET images with 

the hybrid PET-CTP technique, imputing the K1 and k2 parameters from the corresponding 

voxels of the registered CT Perfusion functional maps. Graphical analysis using the Logan 

Plot [32] was performed on the dynamic PET images to produce parametric maps of the 

distribution volume Vd.  The linear range of the Logan Plot analysis was manually specified 

for each study according to the plot produced from the mean tumor ROI TAC. Finally, 
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images of the standardized uptake value (SUV) were calculated using PET frames acquired 

between 10-12, 28-30 and 55-60 minutes from initial injection of 18F-FCH, denoted by 

SUV12, SUV30, and SUV60, respectively. 

 Axial slices of the registered CT maps were used to manually segment tumors into 

2-dimensional regions of interest (ROIs). The ROIs could then be overlaid onto the PET 

images for kinetic analysis. Tumor volume was calculated by multiplying the number of 

voxels in the ROI by the PET voxel volume. 

4.2.11 Preliminary Immunohistochemistry 

 At the completion of all imaging studies, tumors in three mice were excised and 

formalin-fixed for 24 hours. Prior to excision, a needle was inserted into the tumor in the 

superior-inferior direction to keep track of orientation. Tumors were then embedded in 

paraffin and later sliced perpendicular to the needle track for immunohistochemistry 

analysis. The analysis was conducted using a primary polyclonal anti-choline kinase alpha 

(ChKα) antibody (Sigma Aldrich) stain at 1:10 dilution and without antigen retrieval 

because this processing condition provided sufficient signal without background 

saturation. Bronchial tissue was used as a positive control and the intensity of cytoplasmic 

and nuclear staining in the tumor cells was ranked as 1+, 2+ or 3+ for low, moderate and 

high intensity including nuclear staining, respectively.  

4.2.12 Statistical Analysis 

 GraphPad Prism version 6.05 for Windows (GraphPad Software, La Jolla 

California USA, www.graphpad.com) was employed to examine correlations between 
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tumor volume and maximum ROI values: BFmax, BVmax, PSmax, K1max, k2max, k3max, k4max, 

Vdmax, SUV12max, SUV30max and SUV60max. Maximum values were investigated instead of 

mean ROI values because tumor tissue is highly heterogeneous and maxima would select 

the most active clone. The Shapiro-Wilk test for normality [33] indicated that the SUV 

variables followed a normal distribution, while the other functional parameters and tumor 

volume did not. The nonparametric Spearman correlation was utilized to calculate the 

Spearman correlation coefficient r between each functional parameter and tumor volume. 

Statistical significance for the correlations was set to p < 0.05. 

 The immunohistochemistry scores were compared to the k3max values obtained from 

the tumor ROI’s that were imaged prior to the excision of the tumor. 

4.3 Results 

4.3.1 Validation of Partial Volume and Spillover Correction 

 The parameters obtained for the fit to the measured blood counter TAC in response 

to a step change in activity were k = 0.025 s-1, t0 = 308 s for the 10µl/min case and k = 

0.1307 s-1 for the 50 μl/min case (Figure ). The partial volume and spillover coefficients 

calculated with the mouse heart phantom were rm = 0.42, smb = 0.18, rb = 0.68 and sbm = 

0.17, giving α = 1.64 and β = 0.70. The dispersion-corrected blood sampled TAC of one 

mouse for the 10 μl/min case is shown in Figure 4.6 along with the image-derived TACs 

for the same mouse and the PVSC-TAC. A sample of corrected image-derived and blood 

sampled curves is shown in Figure 4.7. 

 The mean AUC ratios between the six PVSC image-derived TACs and blood 

sampled curves indicated that the area under the PVSC curves was roughly twice as large 
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as the blood sampled curves because the tail end of the PVSC curves was higher than that 

of the blood sample curves. (Figure 4.7) Given that the phantom partial volume and 

spillover correction did not yield good agreement in the AUC, an alternate approach was 

taken. In order to obtain experimentally derived values of α and β that implicitly corrected 

for the effect of partial volume, spillover, cardiac motion, and other sources of error, the 

LV and myocardium TACs were fitted to the dispersion corrected blood sampled TACs of 

the six mice using non-linear least squares regression and equation (4) as the operating 

equation. This technique determined the linear combination of scaled LV and myocardium 

TACs that would most accurately represent the blood sampled curves, which serve as the 

gold standard. This method resulted in values (mean ± SD) of α = 1.46 (± 0.1) and β = 0.86 

(± 0.04). An example of a PVSC TAC using these values is shown in Figure 4.8. The mean 

AUC ratio for curves corrected with this method was 0.98 ± 0.09 (max = 1.12, min = 0.88). 

These mean values of α and β were used to correct the image derived LV TACs in the PET 

study. 
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Figure 4.5: (Top) Blood counter TAC in response to a step change in activity 

measured at withdrawal speeds of 10 and 50μl/min along with the fitted exponential 

curves. Curves are shifted to aid visualization. (Bottom) Dispersion function D(t) of 
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the blood counter corresponding to the measured TAC shown at top: 10 μl/min (solid, 

k = 0.025 s-1) and 50 μl/min (dashed, k = 0.1307 s-1). 
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Figure 4.6: (Top) Blood-sampled arterial TAC at 10 μl/min and dispersion corrected 

TAC for one mouse study. (Bottom) Image-derived TACs from LV and myocardium 

ROIs as well as the partial volume and spillover corrected TAC from the same mouse. 

 

Figure 4.7: Example of image-derived, partial volume and spillover corrected arterial 

TAC from LV and dispersion corrected blood sampled arterial TAC from one tail 

artery at 10μl/min. 
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Figure 4.8: Image-derived PVSC TAC obtained using fitted values of α and β. 

4.3.2 Selecting the Best Model 

 The PVSC arterial TAC and the mean tumor ROI TAC are shown in Figure 4.9 

along with the fits from both the LIN-K1 and LIN-K1k2 model solutions. The LIN-K1k2 

model did not produce a good fit since it was unable to properly fit the initial portion of the 

tumor TAC. An explanation for this is provided in the Discussion. The Akaike information 

criterion [34] confirmed that the LIN-K1 model produced a better fit. The K1 measured by 

CT Perfusion was 0.09 ml/min/g and the fit produced the following parameter values: k2 = 

0.37 min-1, k3 = 0.25 min-1, k4 = 0.01 min-1.  
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Figure 4.9: Model fits of a mean tumor ROI TAC from a PC-3 hybrid PET-CTP 

study, produced by both linearized model solutions. The tumor TAC and the fitted 

TACs are scaled up by a factor of 8 to aid visibility. The LIN-K1k2 model was unable 

to fit the initial portion of the tumor ROI TAC, leading to a poor fit for the entire 

curve. The LIN-K1 model solution produced a good fit to the data. 

4.3.3 Parametric Maps 

 Example CT Perfusion functional maps for one mouse are shown in Figure 4.10. In 

this example, the tumor volumes at days 64, 69 and 94 were 0.18, 0.23 and 0.43 cc, 

respectively. At day 94, a hypovascular tumor core was visible, indicated by low values of 

BV and PS. The BF in the tumor was heterogeneous when the hypovascular core was 

discernible on the BV and PS maps. 

 The SUV60 and Vd parametric maps for the same slices are shown in Figure 4.11 

and the 3-compartment parametric maps are shown in Figure 4.12. The SUV60 map showed 
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generally poor contrast throughout the tumor. The Logan distribution volume map was 

generally uniform throughout the tumor, however there were small regions with elevated 

Vd at days 69 and 94. The K1 map showed elevated blood flow throughout the tumor at the 

earliest time point, while at later time points the elevated K1 was located around the 

hypovascular core, on the tumor rim. The k2 and k3 parameters were generally higher on 

the tumor rim and low in the necrotic core. The k4 parameter was negligible at the earliest 

time point, but increased at later time points. Generally, tumor features were more 

discernible on parametric maps compared to SUV maps, owing to the more favorable 

contrast in the parametric maps. 

 

Figure 4.10: CT Perfusion functional maps of a PC-3 tumor at days 64, 69 and 94 post 

implantation. The tumor’s necrotic core is visible on the PS map at day 94. Tumor is 

outlined by the green contour in axial CT images. (BF = blood flow (0-100 
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ml/min/100g), BV = blood volume (0-10 ml/min/100g), PS = permeability (0-60 

ml/min/100g), Ve = extravascular volume (0-100 ml/min/g)) 

 

Figure 4.11: Maps showing SUV60 and the distribution volume (Vd) from the Logan 

Plot analysis. (SUV60 = standardized uptake value from 55-60 minutes (0-2), Vd (0-10 

ml/g) ) 
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Figure 4.12: PET parametric maps of the same PC-3 mouse tumor as Figure 4.10 and 

Figure 4.11 at days 64, 69 and 94. The SUV60 and Vd parametric maps show poor 

tumor contrast, while the tumor core and rim are much more discernible on the rate 

constant maps. (K1 (0-0.5 ml/min/g), k2 (0-2 min-1), k3 (0-0.5 min-1), k4 (0-0.1 min-1)) 

4.3.4 Tumor Volume Correlation 

 Statistical analysis with the Spearman correlation showed that out of all functional 

parameters, tumor volume was the most significantly correlated with k3max (r = 0.63, p < 

0.001). (Figure 4.13) Tumor volume was also significantly correlated with k2max (r = 0.59, 

p < 0.001), K1max (r = 0.51, p < 0.01), Vdmax (r = 0.57, p < 0.01), k4max (r = 0.43, p < 0.05), 

BFmax (r = 0.49, p < 0.01), BVmax (r = 0.43, p < 0.05), and PSmax (r = 0.42, p < 0.05). No 

significant correlation was found between tumor volume and any of the SUV parameters 

tested. (Figure 4.13) 
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Figure 4.13: a) Plot of k3max vs. tumor volume. The Spearman correlation coefficient 

was r = 0.63, p < 0.001. b) No significant correlation was found between tumor volume 

and b) SUV60max , c) SUV30max and d) SUV12max. 

4.3.5 Immunohistochemistry 

 No correlation was found between ChKα expression from immunohistochemistry 

and the k3max parameter from parametric maps in the three samples tested. In one sample, 

there appeared to be a geographic correspondence between an area of higher ChKα 

expression and a high k3 region of the tumor’s rim as indicated on the parametric map. 

(Figure 4.14) 
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Figure 4.14: (Top left) Post-imaging, a needle (yellow arrow) was inserted into the 

tumor to serve as the fiducial in orienting the immunohistochemical stain with the 

imaging results. Both histology and image slices were cut perpendicularly to the 
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needle track. The image plane (yellow line) marks the approximate location of the 

axial slice seen in the histology image. (Left) ChKα stained slide. An arrow (blue) 

indicates the needle track and the red arrow indicates an area of relatively high ChKα 

expression on the medial side of the tumor. The skin (blue arrows) marks the outer 

edge of the tumor. (Right) The middle k3 map (0-0.5 min-1) corresponds to the 

histology slide.  The red arrow indicates an area of relatively high k3. Superior and 

inferior slices are located above and below the middle slice, respectively (slice 

thickness = 0.8 mm). The estimated location of the needle track is indicated in the k3 

maps. 

4.4 Discussion 

 This work demonstrates the feasibility of rapidly generating PET parametric maps 

from hybrid PET-CT Perfusion imaging. This technique has potential applications for the 

measurement of choline kinase activity with 18F-FCH PET imaging as well as for other 

PET tracer imaging studies in which the k3 parameter may be of interest. 

 Poor agreement was observed in terms of the AUC between the image-derived 

phantom-based PVSC TACs and the dispersion corrected blood sampled TACs. This 

suggests that the phantom-based partial volume and spillover correction does not 

accurately represent the true effects observed in the mouse heart during a PET study. The 

mouse heart phantom does not account for cardiac motion, an effect that causes the 

myocardium to move radially in and out very rapidly. The result is that the temporal 

averaging over the length of time of the PET frame causes smearing of the myocardium 

activity in the image, leading to an overestimated myocardium thickness and hence a 
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smaller observed LV diameter compared to those measured ex-vivo with calipers. Given 

that the phantom did not account for cardiac motion, a new approach was used. This effect 

was accounted for by fitting equation (4) to the data and obtaining estimates of α and β. 

This technique represents an experimentally derived way to implicitly account for the 

effects of partial volume, spillover, cardiac motion, and any other sources of error that 

might be present. For this method, the AUC ratio between the corrected image-derived 

curves and blood sampled curves was close to unity, suggesting that this technique holds 

promise for obtaining image-derived arterial TACs in studies of mice. However, the 

dispersion corrected blood sampled TAC is still wider than the image-derived PVSC TAC 

suggesting there is still additional dispersion or other sources of error that are not corrected 

for. These unaccounted factors include: 1) physiological dispersion that occurs between 

the LV and arterial blood sampling site (carotid artery), 2) the shorter PET acquisition 

frames in the first phase of the image-derived curves are noisy, reducing the accuracy of 

these measurements, and 3) the myocardium chamber in the phantom surrounds a 

cylindrical LV chamber, while a real LV more closely approximates an ellipsoid. 

 We sampled arterial blood at a withdrawal speed of 10 µl/min given the small blood 

volume available in a mouse. The dispersion experiment with the blood counter at this slow 

withdrawal speed resulted in a TAC which was not monotonically increasing as expected, 

but rather had three flat sections where the measured activity remained the same for a short 

time (see Figure 4.15). This was due to the slow pumping speed in combination with the 

design of the detector insert of the blood counter in which the tubing looped back around 

three times within the insert. While the straight portions of the loops are within the field of 
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view (FOV) of the detector, the curvilinear part of the loops are outside as shown in Figure 

4.15. When activity reaches each of these curvilinear portions of the loop, it will exit from 

the field of the detector and result in a short equilibrium (plateau) in the TAC. The cause 

of this effect was confirmed by running the experiment with a faster withdrawal speed of 

50 μl/min, in which the bolus rounded the three curvilinear portions of the loop fast enough 

to produce a smooth monotonically increasing TAC (Figure 4.5). 

 

Figure 4.15: The progression of blood flow through PE10 tubing in the blood counter 

insert, ordered from steps 1 to 4. Red arrows indicate the direction of flow and the 

yellow lines indicate a rough estimate of the edge of the FOV of the blood counter 

detector. The number of counts increases as more blood enters the detection area. 

The number of counts detected by the counter reaches a plateau when the front end 

of the flow passes beyond the yellow line and into the curvilinear portion of the tubing. 

The number of counts in the TAC begins to increase again when the front end of the 

flow passes beyond the curvilinear portion and back into the detector range. 

 The kinetic models investigated here did not include a blood volume term, since 

previous work as well as work by other investigators have found that blood volume in FCH 
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imaging of tumors is small enough for its influence on the model fit to be negligible. [27] 

This is not likely due to an actual lack of blood volume in tissue, but rather because the 

averaging of activity over the length of a typical first-phase acquisition frame (10-15 

seconds) causes underestimation of the peak activity of the bolus. This was confirmed by 

generating an instantaneous TAC with the 3-compartment model with a small blood 

volume (Vb = 0.05 ml/g) and then simulating the effect of the frame averaging on the 

model’s estimate of blood volume. It was found that the frame averaging reduced the 

estimated blood volume to zero in the majority of cases. Nevertheless, the correlation 

results in this work (Figure 4.13) were re-run with parametric maps calculated with a blood 

volume term, and it was found that there was no discernable difference in the results. 

 The LIN-K1 model solution was used to produce parametric maps because the LIN-

K1k2 was unable to produce a good fit to the tumor ROI tissue curve. The K1 and k2 

parameters govern the shape of the initial part of the tissue TAC, while the k3 and k4 

parameters affect the later phase of the TAC. (Figure 4.16) The LIN-K1k2 could not 

produce a good fit because of a discrepancy between the K1 and k2 parameters measured 

by the Johnson-Wilson model from a CT Perfusion study and the ones measured by the 

PET compartmental model. This discrepancy is due to a difference in the impulse residue 

functions (IRF) of the Johnson-Wilson model and the compartment model. The difference 

is that the Johnson-Wilson model accounts for mean transit time through the capillary bed, 

while the compartment model assumes that this transit is instantaneous. This effect can be 

seen in Figure 4.17.  



151 

 

 

 

 

Figure 4.16: A tissue TAC measured with PET. The dashed curves use K1 and k2 

parameters (scaled to account for differences in extraction efficiency) measured with 

the Johnson-Wilson model from an independent CT Perfusion study, and show the 

effect of varying k3. With K1 and k2 held fixed, a good fit cannot be achieved because 

the k3 parameter only affects the later part of the curve. (k3 is in min-1) 
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Figure 4.17: (Top) Impulse residue functions for the Johnson-Wilson and 

compartment models. The Johnson-Wilson model accounts for mean transit time 

through the capillary bed, while the compartment model assumes instantaneous 

passage. (Bottom) Resulting tissue curves using the same parameters with different 
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models. The Johnson-Wilson model results in a higher peak activity in the tissue 

curve. 

 Previous studies on the detection of PCa with FCH PET have shown poor contrast 

between malignant and benign or healthy prostate tissues. [11-13] These findings are 

consistent with the results of our work. SUV maps of PC-3 human prostate tumors in mice 

showed poor contrast between tumor core and rim as well as with surrounding tissue. 

Parametric maps of the PET parameters showed more tumor contrast than the SUV maps. 

In addition, the lack of any observed significant correlation between the SUV and tumor 

size adds further strength to the suggestion that SUV may not be useful in this application. 

Results of this work show that parametric maps show more tumor details and that there 

was a significant correlation between the k3max parameter and tumor volume. This suggests 

that quantitative analysis may prove more useful for detection of PCa with 18F-FCH PET. 

In addition, the hybrid PET-CT Perfusion imaging technique shows promise for providing 

more accurate targeting for biopsy and radiation dose escalation. 

 The Logan Plot distribution volume was also significantly correlated with tumor 

volume, though the correlation was not as strong as with k3max. This is not surprising, since 

by definition, Vd depends on all rate constants K1 through k4. [35] Graphical analysis with 

the Logan Plot may be useful for quantitative analysis of 18F-FCH PET studies on PCa, 

particularly in centers which are not equipped with the ability to perform CT Perfusion 

scans. Further investigations are warranted to determine the sensitivity and specificity of 

this analysis in vivo. 
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 Previous studies investigating radiolabeled choline tracers have assumed 

irreversible binding (k4 = 0) and have performed analysis with the Patlak Plot. [27, 36, 37] 

While the influx constant Ki from the Patlak Plot has been found to be correlated with 

SUV, [37] our results show that for larger tumor volumes, k4 was non-zero and in some 

instances was as high as 0.1 min-1 in PC-3 tumors. This signifies that FCH may undergo 

reversible binding in larger prostate tumors and that the Logan Plot is likely more 

appropriate since it is intended for reversible tracers (while the Patlak Plot is for irreversible 

tracers). In addition, it may be important to include the k4 parameter in the kinetic model 

when the goal is to quantify k3. Failure to do so when k4 is non-negligible would result in 

bias in the estimates of other model parameters due to the inability of the model to 

accurately describe the measured data. 

 Preliminary immunohistochemistry results were mixed. In the three samples tested, 

there was no correlation between the k3max parameter in the tumor ROI and ChKα 

expression.  However, in one sample there appeared to be a correspondence between these 

two variables in the medial portion of the tumor’s rim. This may indicate that ChKα is 

overexpressed in localized regions of the tumor rim. No firm conclusions can be drawn due 

to the small sample size, and further investigation is required to determine if the k3 

parameter is an accurate measure of choline kinase activity. 

4.5 Conclusions 

 This work presents a novel implementation of kinetic modeling with hybrid PET-

CT Perfusion imaging. Image-derived arterial time activity curves can be measured using 

partial volume and spillover coefficients measured with a mouse phantom and these curves 
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show good agreement with blood sampled curves. The hybrid imaging technique enables 

fast generation of PET parametric maps, which can be used to improve tumor contrast and 

has the potential for differentiating malignant from benign or healthy prostate tissue. 

Further investigation is required to determine whether the k3 parameter is an accurate 

measure of choline kinase activity. This PET-CT Perfusion hybrid imaging technique has 

many other potential applications other than PCa imaging, specifically for measuring the 

binding rate constant k3 for other PET tracers in a variety of pathologies. 
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Chapter 5  

5 Conclusions and Future Work 

5.1 Summary 

 The primary goals of this thesis were to investigate the effect of venous dispersion 

on the distribution volume measurement with the Logan Plot, and to simulate and 

implement a hybrid PET-CT Perfusion (CTP) imaging technique with a linearized solution 

of the 3-compartment model in an effort to accurately quantify the binding rate constant k3 

and generate parametric maps in a timely manner. In the case of 18F-FCH PET, the k3 

parameter is related to the activity of choline kinase or the phosphorylation rate of choline 

that leads to incorporation of choline into the cell membrane. 

 This chapter will outline the main findings of this thesis and discuss the clinical 

implications of its results. In addition, it will include a discussion of future work required 

to determine the utility of these techniques in a clinical setting. 

5.2 Venous TACs for the Logan Plot 

 Results from Chapter 2 showed that venous dispersion does not have a significant 

effect on 18F-FCH distribution volume measurements with the Logan Plot. While these 

were simulated results and must be validated in vivo, they show promise for the use of 

venous TACs for graphical analysis of in vivo 18F-FCH PET studies. In addition, the results 

would likely be similar for PET tracers that have a similar extraction efficiency, such as 

tracers with a similar molecular weight like 18F-FCH. This would improve patient comfort 
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in quantitative PET studies in which there is no viable reference region or large arteries 

available in the images. 

 Results show that the distribution volume measured with the Logan Plot was also 

correlated with PC-3 tumor volume in mice. This warrants further investigation in patient 

imaging studies of prostate cancer (PCa) because it may be useful in centers that are not 

equipped to do CTP scans. 

 Previous investigations of 18F-FCH PET imaging of PCa have employed graphical 

analysis with the Patlak Plot under the assumption that the dissociation constant k4 is 

negligible. [1-3] In Chapter 4, PET-CT Perfusion parametric maps were generated with the 

LIN-K1 model. Maps of the k4 parameter showed that this parameter was low in small 

tumours and higher in larger tumours. This finding suggests that the assumption of 

irreversible binding of 18F-FCH may be invalid for larger tumours. The Logan Plot is a 

graphical analysis that is applicable to reversibly bound tracers and thus may be more 

appropriate for this application. The potential mechanism for this phenomenon may 

involve prostatic acidic phosphatase, an enzyme that catalyzes the dephosphorylation of 

choline phosphate. Like PSA today, plasma levels of this enzyme were previously of 

interest as a blood marker for prostate cancer. [4] More recently, there has been interest in 

reviving the prostatic acidic phosphatase test with the goal of identifying patients with 

intermediate to high risk prostate cancer. [5] The results of this thesis indicated that k4 was 

non-zero and that k4max was significantly correlated with tumour volume, possibly due to 

increased acidic phosphatase activity in larger tumours. This is an interesting finding and 

builds a strong case for the investigation of the hybrid PET-CT Perfusion imaging 
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technique developed in this thesis, as it may be useful to obtain an independent, precise 

estimate of the k4 parameter as a biomarker for prostatic acidic phosphatase activity. 

5.3 Robust Measurement of the Binding Rate Constant 

 Historically, it has been very challenging to obtain accurate estimates of the binding 

rate constant k3 using compartment models. Parameter estimates have shown high 

variability [1] and the covariance between model parameters has proven to be a significant 

barrier to robust parameter estimation. [6] The results in Chapter 3 confirm that k3 

parameter estimates are subject to high variability when derived from PET scans alone. 

This thesis demonstrates that robust and accurate measurements of the k3 parameter can be 

obtained with PET-CTP imaging by imputing functional parameters from CTP as a priori 

parameters in the PET compartment model. 

   

5.4 Hybrid PET-CTP Imaging for Prostate Cancer 

 Previous clinical studies of 18F-FCH PET for the detection of PCa have shown 

disappointing results when using the SUV. [7-12] Specifically, the SUV has generally 

shown poor contrast between malignant and benign prostate tissue. This thesis confirms 

that the SUV from 18F-FCH PET is not correlated with PC-3 tumor volume in mice and 

that there is generally poor contrast both for features within the tumor as well as in 

surrounding tissue. Hybrid PET-CTP imaging may be useful for detecting dominant 

prostatic lesions in patients by providing a more accurate measure of the choline kinase 

activity. Further study is warranted to determine the sensitivity and specificity of this 
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technique. Specifically, the use of the k3max parameter may be useful for assisting targeting 

for TRUS-guided biopsy and radiation dose escalation, as evidenced by the significant 

correlation with tumor volume that was observed. 

5.5 Future Work 

 This thesis serves as a foundation for future investigations of hybrid PET-CT 

imaging. The following sections outline potential research avenues and novel hypotheses 

that have been generated by this work. 

5.5.1 Mean Transit Time in Compartment Models 

 Chapter 4 examined the use of two different model solutions: the LIN-K1 model 

solution incorporates the K1 parameter calculated from CTP blood flow and permeability 

maps, while the LIN-K1k2 also incorporates the k2 parameter calculated using blood flow, 

permeability and extravascular volume functional maps. In Chapter 3, it was found that the 

LIN-K1k2 solution produced the k3 estimate with lower bias and variation compared to the 

solution that does not impute parameters from CT Perfusion. However, in Chapter 4, the 

LIN-K1k2 model could not produce a good fit to the tumor tissue curves. This was because 

the Johnson-Wilson model, used in CTP, accounts for the mean transit time (W) between 

the arterial and venous ends of the capillary bed, while the compartment model assumes 

instantaneous transfer across the capillary bed. These differences are evident in the impulse 

residue functions (IRF) for both models, where W causes a flat step in the initial phase of 

the Johnson-Wilson IRF. This difference causes the initial bolus phase of the PET tissue 

TAC to conform poorly to the one generated with CTP parameters. This is an interesting 
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finding because the assumption of instantaneous transfer is implicit in the compartment 

models described in the literature. This lack of delay could be accounted for by deriving a 

linearized solution of the 3-compartment model that accounts for the mean transit time W. 

Future investigations will examine the feasibility and usefulness of this implementation. 

This approach may require a brute force search over the W domain to determine the best 

fit, which would increase computation time and negate a portion of the speed benefit that 

was gained from the use of the linearized model solution. 

5.5.2 Choline Kinase Expression in Prostate Cancer 

 Chapter 4 found that the binding rate constant k3 is correlated with PC-3 human 

PCa tumor volume in mice. Conversely, the SUV was not correlated with tumor volume. 

This indicates that the transfer of choline from the interstitial space into cells is an 

important biomarker for the localisation of malignant PCa. The most likely mechanism for 

this uptake in cells is phosphorylation of choline via the choline kinase enzyme that is the 

first step toward the incorporation of phosphorylated choline into the cell membrane. [13] 

 Results of immunohistochemistry with a choline kinase α (ChKα) antibody did not 

correlate with the k3max parameter in the three samples tested, however there was a 

geographical correlation between a region of high antibody expression and high k3 on 

parametric maps located on the tumor rim. This finding suggests that elevated choline 

kinase activity may be isolated to certain regions of the tumor rim. It also suggests that 

mean comparisons of the entire tumour are not meaningful because of tumour 

heterogeneity. Future studies should focus on the correlation between the maximum k3 and 
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the maximum histological staining intensity and determine whether there is a spatial 

correlation between the k3 parameter and the ChKα activity in a larger sample of tumours.  

 In Chapter 4, a single fiducial needle was inserted into the tumour post-imaging in 

order to find the axial image slice that corresponded to the histology slice. The limitation 

to this approach is that the needle spans more than one axial image slice, hence it is difficult 

to find the axial slice of the k3 maps that corresponds to the histology slice. In future studies, 

this limitation can be rectified by the insertion of a second needle at an angle that is oblique 

to the first one. Thus, the distance between the needle tracks in each axial slice would be 

unique, therefore this distance could be used to determine the precise axial location of the 

histological slice in the image space. An additional CT scan can be performed immediately 

following the CT Perfusion scan, with the needles inserted in the tumour, and this scan 

could be registered to the CT Perfusion study. This would allow the needles to be rendered 

in three dimensions on the k3 maps, which would further assist selection of the histological 

slice that corresponds to the image slice. 

5.5.3 Effect of In Vivo Signal to Noise Ratio on k3  

 The accuracy and variability of the k3 measurement with in vivo PET-CTP imaging 

is subject to the noise in the time activity curves (TAC). In Chapter 4, a 3x3 pixel box-filter 

was employed on the mouse PET images in order to improve the signal to noise ratio (SNR) 

of the individual voxel TAC’s. Clinical PET scanners have poorer resolution (~5 mm) 

compared to small animal PET scanners (~1 mm) due to the larger crystal and bore size 

and the increased detection of scatter events resulting from the larger volume of the subject 

being imaged. Therefore, the use of a box filter on images from a clinical scanner will 
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result in a larger extent of spatial smoothing relative to animal studies, which will increase 

the minimum size of lesion that can be localized. 

 Future work will focus on determining the ideal combination of PET sampling 

interval length and image smoothing techniques to produce a reliable estimate of k3 in vivo 

while preserving the ability to accurately detect dominant prostatic lesions. A covariance 

matrix analysis using realistic model parameters from in vivo PET studies can be performed 

to determine the PET sampling protocol that increases the precision of the k3 estimate. 

5.5.4 Correlation of k3 from In Vivo PET-CTP with Histopathology 

 Patient studies are currently underway which aim to correlate functional imaging 

parameters from PET, CT Perfusion, and MR studies with co-registered histopathology of 

prostate specimens obtained via radical prostatectomy. After the prostate is removed, ex-

vivo MR images are obtained and are registered to the histology slices using a deformable 

registration and the aid of fiducial markers [14]. The ex-vivo MR images serve as a 

reference for the registration of PET, CT Perfusion and MR images. The histology slides 

are Gleason graded and the label maps of the different grades can be superimposed on the 

registered ex-vivo MR, in-vivo MR, PET and CT Perfusion images so that geographical 

agreement between regions of malignancy and functional parameters can be assessed. 

 This registration pipeline offers the opportunity to investigate whether k3 

measurements from hybrid PET-CTP imaging offer a viable way to differentiate malignant 

from benign prostate tissue in-vivo and to examine the use of the k3max parameter as a tool 

to improve the targeting accuracy of dominant prostatic lesions for the purposes of biopsy 

and radiation dose escalation. 
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5.5.5 Clinical Applications 

 Presently, the detection of dominant prostatic lesions is performed via Gleason 

scoring of pathological samples obtained from biopsy. However, prostate cancer is a 

multifocal disease characterized by the presence of smaller intra-prostatic lesions in 

addition to the dominant lesion. This thesis shows that functional and molecular imaging 

with 18F-fluorocholine PET-CTP imaging may assist in the localization of dominant lesions 

by assessing multiple characteristics of the tumour microenvironment. Hybrid imaging 

allows for more accurate and precise estimates of individual compartmental model 

parameters, which may serve as markers of hypoxia, proliferative activity, and other 

surrogate markers of advanced disease. This information may assist in assessing multi-

focal prostate cancer, which would lead to more accurate stratification of patients into 

various risk groups. This would result in more aggressive treatments for patients that 

require them and would help spare patients with low-risk disease from undergoing invasive 

and ultimately unnecessary procedures. 

 The potential applications of the hybrid PET-CTP imaging technique are not 

limited to 18F-FCH PET imaging of PCa, but indeed any quantitative radiopharmaceutical 

PET study where the binding rate constant k3 from the 3-compartment model would be of 

interest. This opens the door to a plethora of potential applications of hybrid PET-CTP 

imaging with the use of linearized solutions of the 3-compartment model. In addition, the 

technique has the potential to improve upon applications where previous results have 

shown that the SUV has little diagnostic value. 
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Appendix A: Coefficients in the 3-Compartment Model 

 

 
𝛼 =

𝑘2 + 𝑘3 + 𝑘4 + √(𝑘2 + 𝑘3 + 𝑘4)2 − 4𝑘2𝑘4

2
  

 
𝛽 =

𝑘2 + 𝑘3 + 𝑘4 − √(𝑘2 + 𝑘3 + 𝑘4)2 − 4𝑘2𝑘4

2
  

 
𝐺 = 𝐾1

(𝑘3 + 𝑘4 − 𝛼)

(𝛽 − 𝛼)
  

 
𝐻 = 𝐾1

(𝛽 − 𝑘3 − 𝑘4)

(𝛽 − 𝛼)
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Appendix B: Partial Derivatives of Q(t) 

 The partial derivatives of the tissue time activity curve Q(t) with respect to the 

parameters of the 3-Compartment model are:  

 𝛿𝑄(𝑡)

𝛿𝑉𝑏
= 𝐶𝑎(𝑡) 

𝛿𝑄(𝑡)

𝛿𝐾1
= [

𝑘3 + 𝑘4 − 𝛼

𝛽 − 𝛼
]𝐶𝑎(𝑡) ∗ 𝑒−𝛼𝑡 + [

𝛽 − 𝑘3 − 𝑘4

𝛽 − 𝛼
]𝐶𝑎(𝑡) ∗ 𝑒−𝛽𝑡 

𝛿𝑄(𝑡)

𝛿𝑘2
=

𝛿𝐺

𝛿𝑘2

[𝐶𝑎(𝑡) ∗ 𝑒−𝛼𝑡] − 𝐺 [𝐶𝑎(𝑡) ∗
𝛿𝛼

𝛿𝑘2
𝑡𝑒−𝛼𝑡]

+
𝛿𝐻

𝛿𝑘2
[𝐶𝑎(𝑡) ∗ 𝑒−𝛽𝑡] − 𝐻 [𝐶𝑎(𝑡) ∗

𝛿𝛽

𝛿𝑘2
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𝛿𝑄(𝑡)
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𝛿𝛼

𝛿𝑘3
𝑡𝑒−𝛼𝑡]
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𝛿𝐻

𝛿𝑘3
[𝐶𝑎(𝑡) ∗ 𝑒−𝛽𝑡] − 𝐻 [𝐶𝑎(𝑡) ∗

𝛿𝛽

𝛿𝑘3
𝑡𝑒−𝛽𝑡] 

𝛿𝑄(𝑡)
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Where * denotes the convolution operator and where 

 𝛿𝐺
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𝛿𝛼
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(𝛽 − 𝛼) − (𝑘3 + 𝑘4 − 𝛼) (
𝛿𝛽
𝛿𝑘2

−
𝛿𝛼
𝛿𝑘2

)

(𝛽 − 𝛼)2
]  



171 

 

 

 

𝛿𝐻

𝛿𝑘2
= 𝐾1 [

−
𝛿𝛽
𝛿𝑘2

(𝛽 − 𝛼) − (𝛽 − 𝑘3 − 𝑘4) (
𝛿𝛽
𝛿𝑘2

−
𝛿𝛼
𝛿𝑘2

)

(𝛽 − 𝛼)2
] 

𝛿𝛼

𝛿𝑘2
=

1

2
[1 −

𝑘2 + 𝑘3 − 𝑘4

√(𝑘2 + 𝑘3 + 𝑘4)2 − 4𝑘2𝑘4

] 

𝛿𝛽

𝛿𝑘2
=

1

2
[1 +

𝑘2 + 𝑘3 − 𝑘4

√(𝑘2 + 𝑘3 + 𝑘4)2 − 4𝑘2𝑘4

] 

𝛿𝐺

𝛿𝑘3
= 𝐾1 [

(1 −
𝛿𝛼
𝛿𝑘3

) (𝛽 − 𝛼) − (𝑘3 + 𝑘4 − 𝛼) (
𝛿𝛽
𝛿𝑘3

−
𝛿𝛼
𝛿𝑘3

)

(𝛽 − 𝛼)2
] 

𝛿𝐻

𝛿𝑘3
= 𝐾1 [

(
𝛿𝛽
𝛿𝑘3

− 1) (𝛽 − 𝛼) − (𝛽 − 𝑘3 − 𝑘4) (
𝛿𝛽
𝛿𝑘3

−
𝛿𝛼
𝛿𝑘3

)

(𝛽 − 𝛼)2
] 

𝛿𝛼

𝛿𝑘3
=

1

2
[1 −

𝑘2 + 𝑘3 + 𝑘4

√(𝑘2 + 𝑘3 + 𝑘4)2 − 4𝑘2𝑘4

] 

𝛿𝛽

𝛿𝑘3
=

1

2
[1 +

𝑘2 + 𝑘3 + 𝑘4

√(𝑘2 + 𝑘3 + 𝑘4)2 − 4𝑘2𝑘4

] 

𝛿𝐺

𝛿𝑘4
= 𝐾1 [

(1 −
𝛿𝛼
𝛿𝑘4

) (𝛽 − 𝛼) − (𝑘3 + 𝑘4 − 𝛼) (
𝛿𝛽
𝛿𝑘4

−
𝛿𝛼
𝛿𝑘4

)

(𝛽 − 𝛼)2
] 

𝛿𝐻

𝛿𝑘4
= 𝐾1 [

(
𝛿𝛽
𝛿𝑘4

− 1) (𝛽 − 𝛼) − (𝛽 − 𝑘3 − 𝑘4) (
𝛿𝛽
𝛿𝑘4

−
𝛿𝛼
𝛿𝑘4

)

(𝛽 − 𝛼)2
] 

𝛿𝛼

𝛿𝑘4
=

1

2
[1 −

−𝑘2 + 𝑘3 + 𝑘4

√(𝑘2 + 𝑘3 + 𝑘4)2 − 4𝑘2𝑘4

] 



172 

 

 

 

𝛿𝛽

𝛿𝑘4
=

1

2
[1 +

−𝑘2 + 𝑘3 + 𝑘4

√(𝑘2 + 𝑘3 + 𝑘4)2 − 4𝑘2𝑘4

] 

 

 

  



173 

 

 

 

Appendix C: Animal Ethics Approval for the work contained in 

Chapter 4 entitled “A quantitative hybrid PET-CT Perfusion 

technique for measuring the binding rate constant of 18F-

Fluorocholine in a mouse model of prostate cancer” 
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