189 research outputs found

    Mixed convolutional and long short-term memory network for the detection of lethal ventricular arrhythmia

    Get PDF
    Early defibrillation by an automated external defibrillator (AED) is key for the survival of out-of-hospital cardiac arrest (OHCA) patients. ECG feature extraction and machine learning have been successfully used to detect ventricular fibrillation (VF) in AED shock decision algorithms. Recently, deep learning architectures based on 1D Convolutional Neural Networks (CNN) have been proposed for this task. This study introduces a deep learning architecture based on 1D-CNN layers and a Long Short-Term Memory (LSTM) network for the detection of VF. Two datasets were used, one from public repositories of Holter recordings captured at the onset of the arrhythmia, and a second from OHCA patients obtained minutes after the onset of the arrest. Data was partitioned patient-wise into training (80%) to design the classifiers, and test (20%) to report the results. The proposed architecture was compared to 1D-CNN only deep learners, and to a classical approach based on VF-detection features and a support vector machine (SVM) classifier. The algorithms were evaluated in terms of balanced accuracy (BAC), the unweighted mean of the sensitivity (Se) and specificity (Sp). The BAC, Se, and Sp of the architecture for 4-s ECG segments was 99.3%, 99.7%, and 98.9% for the public data, and 98.0%, 99.2%, and 96.7% for OHCA data. The proposed architecture outperformed all other classifiers by at least 0.3-points in BAC in the public data, and by 2.2-points in the OHCA data. The architecture met the 95% Sp and 90% Se requirements of the American Heart Association in both datasets for segment lengths as short as 3-s. This is, to the best of our knowledge, the most accurate VF detection algorithm to date, especially on OHCA data, and it would enable an accurate shock no shock diagnosis in a very short time.This study was supported by the Ministerio de Economía, Industria y Competitividad, Gobierno de España (ES) (TEC-2015-64678-R) to UI and EA and by Euskal Herriko Unibertsitatea (ES) (GIU17/031) to UI and EA. The funders, Tecnalia Research and Innovation and Banco Bilbao Vizcaya Argentaria (BBVA), provided support in the form of salaries for authors AP, AA, FAA, CF, EG, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the author contributions section

    Electrocardiogram Monitoring Wearable Devices and Artificial-Intelligence-Enabled Diagnostic Capabilities: A Review

    Get PDF
    Worldwide, population aging and unhealthy lifestyles have increased the incidence of high-risk health conditions such as cardiovascular diseases, sleep apnea, and other conditions. Recently, to facilitate early identification and diagnosis, efforts have been made in the research and development of new wearable devices to make them smaller, more comfortable, more accurate, and increasingly compatible with artificial intelligence technologies. These efforts can pave the way to the longer and continuous health monitoring of different biosignals, including the real-time detection of diseases, thus providing more timely and accurate predictions of health events that can drastically improve the healthcare management of patients. Most recent reviews focus on a specific category of disease, the use of artificial intelligence in 12-lead electrocardiograms, or on wearable technology. However, we present recent advances in the use of electrocardiogram signals acquired with wearable devices or from publicly available databases and the analysis of such signals with artificial intelligence methods to detect and predict diseases. As expected, most of the available research focuses on heart diseases, sleep apnea, and other emerging areas, such as mental stress. From a methodological point of view, although traditional statistical methods and machine learning are still widely used, we observe an increasing use of more advanced deep learning methods, specifically architectures that can handle the complexity of biosignal data. These deep learning methods typically include convolutional and recurrent neural networks. Moreover, when proposing new artificial intelligence methods, we observe that the prevalent choice is to use publicly available databases rather than collecting new data

    Global ECG Classification by Self-Operational Neural Networks with Feature Injection

    Get PDF
    Objective: Global (inter-patient) ECG classification for arrhythmia detection over Electrocardiogram (ECG) signal is a challenging task for both humans and machines. The main reason is the significant variations of both normal and arrhythmic ECG patterns among patients. Automating this process with utmost accuracy is, therefore, highly desirable due to the advent of wearable ECG sensors. However, even with numerous deep learning approaches proposed recently, there is still a notable gap in the performance of global and patient-specific ECG classification performances. This study proposes a novel approach to narrow this gap and propose a real-time solution with shallow and compact 1D Self-Organized Operational Neural Networks (Self-ONNs). Methods: In this study, we propose a novel approach for inter-patient ECG classification using a compact 1D Self-ONN by exploiting morphological and timing information in heart cycles. We used 1D Self-ONN layers to automatically learn morphological representations from ECG data, enabling us to capture the shape of the ECG waveform around the R peaks. We further inject temporal features based on RR interval for timing characterization. The classification layers can thus benefit from both temporal and learned features for the final arrhythmia classification. Results: Using the MIT-BIH arrhythmia benchmark database, the proposed method achieves the highest classification performance ever achieved, i.e., 99.21% precision, 99.10% recall, and 99.15% F1-score for normal (N) segments; 82.19% precision, 82.50% recall, and 82.34% F1-score for the supra-ventricular ectopic beat (SVEBs); and finally, 94.41% precision, 96.10% recall, and 95.2% F1-score for the ventricular-ectopic beats (VEBs)

    Wavelet Transform and Convolutional Neural Network Based Techniques in Combating Sudden Cardiac Death

    Get PDF
    Sudden cardiac death (SCD) is a global threat that demands our attention and research. Statistics show that 50% of cardiac deaths are sudden cardiac death. Therefore, early cardiac arrhythmia detection may lead to timely and proper treatment, saving lives. We proposed a less complex, fast, and more efficient algorithm that quickly and accurately detects heart abnormalities. Firstly, we carefully examined 23 ECG signals of the patients who died from SCD to detect their arrhythmias. Then, we trained a deep learning model to auto-detect and distinguish the most lethal arrhythmias in SCD: Ventricular Tachycardia (VT) and Ventricular Fibrillation (VF), from Normal Sinus Rhythm (NSR). Our work combined two techniques: Wavelet Transform (WT) and pre-trained Convolutional Neural Network (CNN). WT was used to convert an ECG signal into scalogram and CNN for features extraction and arrhythmias classification. When examined in the MIT-BIH Normal Sinus Rhythm, MIT-BIH Malignant Ventricular Ectopy, and Creighton University Ventricular Tachyarrhythmia databases, the proposed methodology obtained an accuracy of 98.7% and an F-score of 0.9867, despite being less expensive and simple to execute

    Ventricular Fibrillation and Tachycardia Detection Using Features Derived from Topological Data Analysis

    Get PDF
    A rapid and accurate detection of ventricular arrhythmias is essential to take appropriate therapeutic actions when cardiac arrhythmias occur. Furthermore, the accurate discrimination between arrhythmias is also important, provided that the required shocking therapy would not be the same. In this work, the main novelty is the use of the mathematical method known as Topological Data Analysis (TDA) to generate new types of features which can contribute to the improvement of the detection and classification performance of cardiac arrhythmias such as Ventricular Fibrillation (VF) and Ventricular Tachycardia (VT). The electrocardiographic (ECG) signals used for this evaluation were obtained from the standard MIT-BIH and AHA databases. Two input data to the classify are evaluated: TDA features, and Persistence Diagram Image (PDI). Using the reduced TDA-obtained features, a high average accuracy near 99% was observed when discriminating four types of rhythms (98.68% to VF; 99.05% to VT; 98.76% to normal sinus; and 99.09% to Other rhythms) with specificity values higher than 97.16% in all cases. In addition, a higher accuracy of 99.51% was obtained when discriminating between shockable (VT/VF) and non-shockable rhythms (99.03% sensitivity and 99.67% specificity). These results show that the use of TDA-derived geometric features, combined in this case this the k-Nearest Neighbor (kNN) classifier, raises the classification performance above results in previous works. Considering that these results have been achieved without preselection of ECG episodes, it can be concluded that these features may be successfully introduced in Automated External Defibrillation (AED) and Implantable Cardioverter Defibrillation (ICD) therapie

    A Review of Atrial Fibrillation Detection Methods as a Service

    Get PDF
    Atrial Fibrillation (AF) is a common heart arrhythmia that often goes undetected, and even if it is detected, managing the condition may be challenging. In this paper, we review how the RR interval and Electrocardiogram (ECG) signals, incorporated into a monitoring system, can be useful to track AF events. Were such an automated system to be implemented, it could be used to help manage AF and thereby reduce patient morbidity and mortality. The main impetus behind the idea of developing a service is that a greater data volume analyzed can lead to better patient outcomes. Based on the literature review, which we present herein, we introduce the methods that can be used to detect AF efficiently and automatically via the RR interval and ECG signals. A cardiovascular disease monitoring service that incorporates one or multiple of these detection methods could extend event observation to all times, and could therefore become useful to establish any AF occurrence. The development of an automated and efficient method that monitors AF in real time would likely become a key component for meeting public health goals regarding the reduction of fatalities caused by the disease. Yet, at present, significant technological and regulatory obstacles remain, which prevent the development of any proposed system. Establishment of the scientific foundation for monitoring is important to provide effective service to patients and healthcare professionals

    HEART RHYTHM CLASSIFICATION FROM STATIC AND ECG TIME-SERIES DATA USING HYBRID MULTIMODAL DEEP LEARNING

    Get PDF
    Cardiovascular arrhythmia diseases are considered as the most common diseases that cause death around the world. Abnormal arrhythmia diseases can be identified by analyzing heart rhythm using an electrocardiogram (ECG). However, this analysis is done manually by cardiologists, which may be subjective and susceptible to different cardiologist observations and experiences, as well as to noise and irregularities in those signals. This can lead to misdiagnosis. Motivated by this challenge, an automated heart rhythm diagnosis approach from ECG signals using Deep Learning has been proposed. In order to achieve this goal, three research problems have been addressed. First, recognize the role of each single-lead of a 12-lead ECG to classify heart rhythms. Second, understanding the importance of static data (e.g., demographics and clinical profile) in classifying heart rhythms. Third, realizing whether the static data can be combined with the ECG time series data for better classification performance. In this thesis, different deep learning models have been proposed to address these problems and satisfactory results are achieved. Therefore, using this knowledge, an effective hybrid deep learning model to classify heart rhythms has been proposed. As per knowledge obtained from relevant literature, this is the first work to identify the importance of individual lead and combined lead as well as the importance of combining static data with ECG time series data in classifying heart rhythms. Extensive experiments have been performed to evaluate this algorithm on a 12-lead ECG database that contains data from more than 10,000 individual subjects and obtained a high average of accuracy (up to 98.7%) and F1-measure (up to 98.7%). Moreover, in this thesis, the distribution of heart rhythms from the database based on heart rhythm type, gender, and age group have been analyzed, which will be valuable for further improvement of classification performance. This study will provide valuable insights and will prove to be an effective tool in automated heart rhythm classification and will assist cardiologists in effectively and accurately diagnosing heart disease

    Empowering AI-Diagnosis: Deep Learning Abilities for Accurate Atrial Fibrillation Classification

    Get PDF
    Artificial intelligence (AI) is a powerful technology that can enhance clinical decision-making and the efficiency of global health systems. An AI-enabled electrocardiogram (ECG) is an essential tool for diagnosing heart abnormalities such as arrhythmias. The most prevalent arrhythmia globally is atrial fibrillation (AF), which is an irregular heart rhythm that originates in the atria and can lead to other heart-related complications. A trusted AI classification of AF is explored in this study. Deep learning (DL) has been used to analyze large amounts of publicly available ECG datasets in order to classify normal sinus rhythm (NSR), AF, and other types of arrhythmias. A convolutional neural network (CNN) has been proposed to extract ECG features and classify ECG signals. Based on a 10-fold cross-validation strategy, we conducted experiments involving three scenarios for AF classification: (i) a balanced set, an imbalanced set, and an extremely imbalanced set; (ii) a comparison of ECG denoising algorithms; and (iii) the classification of AF, NSR, and other arrhythmia types (15 classes). As a result, we have achieved 100% accuracy, sensitivity, specificity, precision, and F1-score for the AF, NSR, and non-AF classifications, both for balanced and imbalanced sets. In addition, for the classification of AF, NSR, and other types of arrhythmia (15 classes), the performance results achieved an accuracy of 99.77%, sensitivity of 96.48%, specificity of 99.87%, precision of 97.03%, and F1-score of 96.68%. The results can empower AI diagnosis and assist clinicians in classifying AF on routine screening ECGs
    corecore