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Featured Application: Automated External Defibrillation (AED) and Implantable Cardioverter
Defibrillators (ICD) require accurate algorithms to detect arrhythmias and discriminate among
them. This work proposes specific features for algorithms implemented in such devices.

Abstract: A rapid and accurate detection of ventricular arrhythmias is essential to take appropriate
therapeutic actions when cardiac arrhythmias occur. Furthermore, the accurate discrimination
between arrhythmias is also important, provided that the required shocking therapy would not be
the same. In this work, the main novelty is the use of the mathematical method known as Topological
Data Analysis (TDA) to generate new types of features which can contribute to the improvement of the
detection and classification performance of cardiac arrhythmias such as Ventricular Fibrillation (VF)
and Ventricular Tachycardia (VT). The electrocardiographic (ECG) signals used for this evaluation
were obtained from the standard MIT-BIH and AHA databases. Two input data to the classify are
evaluated: TDA features, and Persistence Diagram Image (PDI). Using the reduced TDA-obtained
features, a high average accuracy near 99% was observed when discriminating four types of rhythms
(98.68% to VF; 99.05% to VT; 98.76% to normal sinus; and 99.09% to Other rhythms) with specificity
values higher than 97.16% in all cases. In addition, a higher accuracy of 99.51% was obtained when
discriminating between shockable (VT/VF) and non-shockable rhythms (99.03% sensitivity and
99.67% specificity). These results show that the use of TDA-derived geometric features, combined in
this case this the k-Nearest Neighbor (kNN) classifier, raises the classification performance above
results in previous works. Considering that these results have been achieved without preselection of
ECG episodes, it can be concluded that these features may be successfully introduced in Automated
External Defibrillation (AED) and Implantable Cardioverter Defibrillation (ICD) therapies.

Keywords: electrocardiography analysis; ventricular arrhythmia detection; ventricular fibrillation
detection; ventricular tachycardia detection; ECG signal classification; Topological Data Analysis;
representation of point cloud; persistent diagram representation; landscape representation; silhouette
representation

1. Introduction

A rapid and accurate detection of ventricular arrhythmias is essential to taking appro-
priate therapeutic actions. These pathologies are very common, being considered one of the
main causes of death in developed countries, given that even weak episodes of Ventricular
Fibrillation (VF) eventually cause sudden death.

Although arrhythmias have different origins, they can be considered a consequence
of changes in cellular electrophysiology of the heart. Moreover, in most cases of sudden
cardiac death, arrhythmogenic cardiac disorders appear as the main causes of death without
showing evidence of pathological abnormalities of the heart.
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To revert VF, the current protocol is the electrical defibrillation of the heart using an
Automatic External Defibrillator (AED) [1], which can be commonly found nowadays in
public places such as airports, shopping centers, sports arenas, etc. This process involves an
external application of a high-energy electrical shock through the chest wall of the patient
to allow the reinstatement of the normal rhythm. Some studies [2–4] have established that
defibrillation success is conversely proportional to the time interval between the start of
the Ventricular Fibrillation episode and the time when the electrical discharge is applied.

However, similar pathologies exist, like Ventricular Tachycardia (VT), requiring a
different treatment than VF. In these cases, the signal may share some characteristics (lack
of organization, irregularity, etc.) with VF, but the administration of an electrical shock to a
patient not suffering VF could result in serious injuries or even bring about VF itself. This
is why an accurate detection and classification of ventricular arrhythmias is so relevant.

The electrocardiogram (ECG) is an inexpensive and noninvasive tool used in the
diagnosis of cardiac conduction disorders. It enables the analysis of the heart rate and mor-
phology of different cardiac electrical waves, which, in turn, may permit the identification
of various types of heart diseases. Because of this, ECG signals are considered an important
and reliable source of information [5,6].

Many statistical methods have been applied to detect VF or VT using ECG data.
However, following these manual methods, it is difficult to make a feature extraction
capable of capturing the deep characteristics of ventricular arrhythmias. This is the reason
why machine learning techniques have been effectively applied for the recognition of
cardiac arrhythmias. In this sense, Orozco et al. [7] used the Wavelet method to detect ECG
arrhythmias with three types of episodes (Normal, VT, and VF). In [8], Pooyan et al. used an
SVM with Gaussian Kernel to detect ventricular abnormalities with morphological features.
Tripathy et al. [9] detected and classified shockable (VF/VT) arrhythmias using Variational
Mode Decomposition with Random Forest (RF) decision trees. In [10], Jekova et al. used
fixed thresholds to implement a real-time detection of shockable episodes (VF/VT). In
addition, in the same manner, other works harnessed other machine learning techniques
for the detection and recognition of ventricular arrhythmias, as in Mohanty et al. [11], who
used a C4.5 classifier; Jothiramalingam et al. [12], who employed a k-Nearest Neighbor
(kNN) classifier; Tang et al. [13], who used Bayesian decision; or Kuzilez et al. [14], who
employed Independent Component Analysis (ICA) and Decision Trees.

Over the last few years, there has been a general surge in the use of algebraic topology
to analyze statistical data. Using this method, complicated data shapes can be categorized.
Specifically, a commonly used topological method very used to extract features from a Point
Cloud (a set of data points in space) is the Topological Data Analysis (TDA). TDA employs
tools from algebraic and combinational topology to draw out properties that express data
shapes. It can be considered a key method in attempting to interpret and comprehend
characteristics that are otherwise unattainable through the use of other practices due to
noise, dimension, or incompletion. It is so unique in its nature that TDA bridges the way
between geometry and topology.

Successful and remarkable applications have been made in a varied selection of fields,
and the range of applications continues to expand. Some of these applications include
neuroscience [15], materials science [16], detection and quantification of periodic patterns
in data [17,18], analysis of turbulent flows [19], natural language processing [20], or even
detection and classification of breast cancers [21]. However, it has been used in image
processing [22], computer vision [23], or signal and time series analysis [24,25].

Specifically, over the past few years, researchers have also begun to use TDA along
with Machine Learning methods [26,27].

Within TDA, there is an important method called Persistence Homology that can be
considered the main tool of TDA. As well as being a modification of the representation of
homology using Point Cloud data, this method computes the homological characteristics
of datasets.
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In addition, TDA uses Persistence Diagrams and Persistence Barcodes to represent
the abundant homological information about the shape of data. However, note that the
use of algorithms of Machine Learning along with Persistence Diagrams or Barcodes is
an area of TDA under research, looking for a way to alter these diagrams to be adaptable
and congruous with Machine Learning methods. An alternative approach to these two
diagrams is Persistence Landscapes.

In this work, we hypothesized that using Topological Data Analysis (TDA), some
geometric features condensing relevant information about the ‘shape of data’ can be very
valuable for the detection and discrimination of VF and VT rhythms, even in noisy and
complex signals. Extracted features can then be applied to machine learning classifiers.

Thus, the goal of this work is to assess the improvement of the classification per-
formance to detect and discriminate VF and VT episodes, when incorporating a set of
TDA-derived geometric features in the feature extraction and selection stage. Note that
the main difference with previous works is that these kinds of features have been never
applied before in the analysis and classification of ventricular arrhythmias.

The main contributions of this work are

• The proposal of a novel classification procedure using features derived from Topologi-
cal Data Analysis (TDA).

• The application of the proposed classification procedure to the detection and discrimi-
nation of VF and VT. Specifically, an accuracy near 99% is obtained.

• The application of the proposed classification procedure to the detection of shockable
(VF/VT) and non-shockable rhythms. In this case, a 99.5% accuracy is obtained, the
highest in the bibliography.

• The evidence that features derived from Topological Data Analysis can overcome
conventional feature selection limitations by providing information about the ‘shape
of data’ to the classifier.

• The high performance obtained without preselection of episodes shows that geometric
features are good candidates to be incorporated into Automated External Defibrillator
(AED) and Implantable Cardioverter Defibrillation (ICD) devices.

The paper is organized as follows. Section 2 is dedicated to the description of funda-
mental TDA. Section 3 introduces the dataset, explains the proposed methodology and
details the used classification procedure. The results of the analysis and a discussion of
these are presented in Sections 4 and 5, respectively. Finally, Section 6 concludes the paper.

2. Fundamental Concepts of TDA

This section outlines a simplified description of the mathematics behind Homology
and Persistent Homology (PH). In TDA, cloud data are frequently seen as a simplicial
complex, which is a set of points, lines, segments, triangles, and its n-dimensional coun-
terparts. This allows one to use the methods from simplicial homology to quantify the
shape of the data in terms of connections [28] and enables us to make a topological feature
extraction. The process of topological feature extraction using PH can be summarized in
the following steps:

• Data Point Cloud χ ∈ Rn is employed as an input.
• For each data point (or vertex) vi ∈ χ, make B(vi) a ball of radius ε centered at each vi,

where ε ∈ R+.
• Raise the value of ε.
• A simplicial complex is built for each ε using Vietoris Rips and filtration.
• Measure PH and take note of its appearance and disappearance.
• Plot the (εbirth, εdeath) appearance and disappearance coordinates for each PH on an

extended real plane R2 ⋃ {±∞}. The Persistence Diagram comes as an output.
• Lastly, the topological features are extracted.

In terms of mathematics, the input to a PH are the Point Cloud data. In the case of
ECG, the input data are the time series. Taken’s Delay Embedding Theorem can be used in
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the conversion of time series data to point cloud data without losing topological properties.
The approach consists of transforming a time series xt, where t ∈ {1, 2, . . . , T}, into its
phase space representation. A point cloud or a set of points is obtained according to the
following equation where i = (1, 2, . . . , T + nτ) and τ is a delay parameter and n specifies
the dimension of the point cloud [29]:

vi = xi, xi+τ , . . . , xi+nτ (1)

Simplicial complexes are essential in the extraction of topological features from point
cloud data. A single data point may define 0-Simplex. A line between two points denotes
1-Simplex. A triangle is a 2-Simplex. Tetrahedra represent 3-simplices (see Figure 1).
Finally, a combination of simplices gives way to a Simplicial Complex called Vietoris Rips
Complex [30–32].

Figure 1. Gradual construction of various simplices (0-Simplex, 1-Simplex, 2-Simplex, . . .) eventually
gives way to a Simplicial Complex.

A simplicial complex can be taken from a dataset using the Vietoris− Rips construc-
tion. Being X = (x1, . . . , xn) a point cloud in an euclidean space Rn, for each distance
ε > 0, represented by VR(X; ε), there is a simplicial complex with vertex set in X where
x0, x1, . . . , xk spreads a k− simplex if the reciprocal distance between any pair of its varieties
is smaller than ε, where d(x, x) ≤ ε, for all 0 ≤ i, j ≤ k.

When building a Simplicial Complex with Point Cloud data, it is needed to follow a
set of rules. Firstly, a circle should be drawn with radius ε for each point in a point cloud.
Then, when two circles intersect with each other and the radius is increased, a line is drawn
to link the two points, which can be seen in Figure 2.

Figure 2. Diagram illustrating circular intersections and linked point clouds required to build a
Simplicial Complex.

As ε gets longer, the Vietoris-Rips complex of a Point Cloud does, too. This is a
filtration of simplicial complexes, i.e., a nested sequence of simplicial complexes, where
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VR(X; ε), ε ≥ 0 satisfying VR(X; ε1) ⊆ VR(X; ε2) if ε1 ≤ ε2. To represent the distance
between them, balls are drawn around each point. If two balls with radius ε intersect with
each other, the two points are at a distance at most 2ε.

The Persistence Diagram representation (PDR) is a standard way to represent PH [33,34].
K-dimensional features consist of persistence diagrams; 0-dimensional features represent
components that are connected, 1-dimensional features represent holes, 2-dimensional
features voids, etc. [35]. Concurrently, a PDR Wm is made of n features, Wmi = (bi, di),
with i = (1, 2, . . . , n). Each point corresponds to the lifespan of one topological feature,
where bi and di are its birth time and death time, respectively (birth time indicates when the
geometrical structure appears, while death time indicates when the geometrical structure
disappears). Points are entirely located in the half-plane above the diagonal [36] (Figure 3).

Figure 3. Representation of Point Cloud—RPC (left) on a Persistence Diagram representation—PDR
(right).

When it comes to machine learning and statistics, a Persistence Landscapes Repre-
sentation (LR) is more straightforward to work with than PDR and can be considered an
alternative representation [37]. The approach takes the topological information that was
previously encoded on a PDR and presents it as elements of a Hilbert space. Statistical
learning methods can then be applied directly. Additionally, Persistence Silhouette repre-
sentation (SR) [38] are constructed by mapping each point z = (d, b) of a PDR to a piecewise
linear function, namely the ‘triangle’ function Tz, which can be defined as follows:

Tz(y) = (y− b + d)l[b−d,b](y) + (b + d− y)l[b,b+d](y) (2)

where lA(x) is the standard indicator function: lA(x) = 1 if x ∈ A and lA(x) = 0, otherwise.
A triangle function binds the points of the diagram to the diagonal, with segments parallel
to the axes, and later they are rotated by 45 degrees. The triangles Tz can be merged
together in various manners, and if we take their kAmax, i.e., the kth largest value in the set
Tz(y), the kth persistence landscape λk = k−maxzgDTz(y), k ∈ N+ results. The Persistence
Landscape λD is the gathering of functions λk(y). Finally, the Power Weighted Silhouette
representation Ψp(t) (later named SR) is obtained by taking the weighted average of the
functions Tz(y), as the following equation shows.

SR = Ψp(t) =
∑zgD ωpTz(y)

∑zgD ωpZ
(3)

In Figure 4 we can see a representation of the PDR and the LR.
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Figure 4. A visual example of the transformation of a persistence diagram representation (PDR)
into a persistence landscape (PL). The horizontal axis represents birth time, while the vertical axis
represents death time on the persistence diagram (left). The horizontal axis is the average of the
homologies of the birth and death times, and the vertical axis is used for (d− b)/2 on the persistence
landscape (right).

Another means of persistence diagram transformation is Persistence Images (PI) [23].
This allows for representations to be simply vectorized. Persistence images can be infor-
mally considered as a type of heatmap coming from a Calculate Gaussian KDE [39], which
can be defined as follows:

f̂ (x) = ∑ αik(x− xi) (4)

where k is kernel function centered at the data points xi with i = (0, . . . , n), and αi are the
weighting coefficients.

3. Materials and Methods

To use the topological data features described above, the classification procedure
proposed in Figure 5 is used.

Figure 5. Schematic diagram illustrating the feature selection process proposed for the discrimination
of ventricular arrhythmias, normal sinus, and other types of rhythms.

To provide a clear and detailed explanation of data processing, this section has been
divided into different parts: Section 3.1 describes the used dataset; Section 3.2 details the
noise cancellation, baseline removal, and segmentation is done as preprocessing; Section 3.3
describes the feature extraction and selection, and Section 3.4 outlines the classification
procedure and parameters used to evaluate the performance of the classification.

3.1. Materials

Data records from two standard databases were used: MIT-BIH Malignant Arrhythmia
Database [40,41] and AHA (American Heart Association) 2000 series [42]. It is important to
note that no preselection of ECG episodes was done, i.e., all annotated segments from the
database were used. Thus, 24 patients were analyzed (i.e., 24 records), 22 of which were
from the MIT-BIH database and two additional patients from the AHA Database. Each
record contained half an hour of continuous ECG recordings. According to the database
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annotation, each segment was assigned to a class. Four classes of rhythms were established:
Ventricular Fibrillation (named VF), including Ventricular Fibrillation or Ventricular Flutter
episodes, Ventricular Tachycardia as VT class, sinus rhythms were assigned to the Normal
class, and lastly, any signal not labeled within the above classes (e.g., other non-ventricular
arrhythmias, noise, etc.) was assigned to class Others.

3.2. ECG Signal Preprocessing

The performance of machine learning algorithms can be brought down due to errors
that may appear due to noise interruption or other input data corruption leading to im-
proper feature values. Thus, a signal preprocessing is required to remove unwanted data
corruption of the ECG signals: breathing, skin interference, baseline wander, powerline in-
terference, motion artifact due to electrodes, muscle artifact, white Gaussian noise, etc. [43].
Since this work proposes the full data flow analysis from acquisition to classification as in a
real scenario, we add this data preprocessing step, too. The steps used in the preprocessing
stage to prepare signals for later processes are:

• Reduction of the baseline wandering, aiming to provide better quality and definition
of the temporal signal, which will later result in better feature extraction. This stage
involves the introduction of an 8th order infinite impulse response filter (IIR) with a
Butterworth bandpass type ranging from 1 Hz to 45 Hz [44,45]. Figure 6 shows the
effect of applying this bandpass filter, resulting in a reduction of the baseline.

Figure 6. Bandpass filter application to a data segment from the Normal ECG class, and resulting
baseline reduction.

• Later, a Window Reference Marks (WRM) and a time window (tw) are obtained. The
mark indicates the start of each time window from which the features will be extracted.
Consecutive time windows are obtained to analyze all ECG data. As the values
between 50 and 120 beats per minute (bpm) can be considered a normal heart rate
range [46], the minimum and maximum distance values between any two consecutive
WRMs were established in 0.5 s and 1.2 s, respectively. Next, an algorithm already
developed by the authors in [47] was used to obtain the calculation of WRM reference
marks. A time window tw of 1.2 s (150 samples) in length was obtained, starting at each
WRM reference mark, as the following equation shows, with {j = 1, 2, . . . , NLMC}
where NLMC is the number of local maxima LM marks existing in the ECG signal:

twi = [WRMj, WRMj + 1.2s] (5)
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• For each time window, the Taken’s Delay Embedding Theorem is applied to convert
the ECG data (a time series) to a Representation of Point Cloud data (RPC), a Persis-
tence Diagram Representation (PDR), a Persistence Landscape (LR) and a weighted
Silhouette Representation (SR).

3.3. Feature Extraction and Reduction

The feature extraction stage can be regarded as the most essential stage in the detec-
tion of ventricular arrhythmias. Within the methodology proposed, several discriminatory
features from TDA were extracted. The temporal signal in each window was first trans-
formed into Point Clouds using delay embedding. Then, topological representations were
extracted: Persistence Diagram (PDR), Persistence Landscape (LR), and Power Weighted
Silhouettes (SR) (Tables 1 and 2).

Table 1. Columns a1, a2, a3 and a4 correspond to the original ECG time signal windows; columns
b1, b2, b3, b4 and c1, c2, c3 and c4 show RPC and PDR, respectively. Each row, from top to bottom,
corresponds to Normal, Other, VT and VF classes, respectively.

Parameter Extraction Time Representation of Persistence Diagram
Representation (TR) Point Cloud (RPC) Representation (PDR)

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4
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Table 1 illustrates the data point clouds (Representation of Point Cloud - RPC) and the
persistence diagram (Persistence Diagram Representation - PDR) for each class (Normal,
Other, VT, and VF). As seen, those representations provide a clear difference among classes.
Regarding Normal class, the points in RPC have a focused distribution with respect to the
rest of the arrhythmias where the points are scattered. Moreover, the point distribution
differs between VT and VF as a very heterogeneous cloud is observed in VF, in contrast with
VT. In the case of PDR, more points are located in a high birth-death ratio for VF, showing
a clear difference with the rest of the rhythms. In Table 2, Persistence Diagrams (PDR)
are compared with Persistence Landscapes Representation (LR) and Weighted Silhouettes
Representation (SR). For each class, LR and SR show different shapes.

Table 2. From top to bottom, left to right: a1, a2, a3 and a4 illustrate Persistence Diagrams (PDR). b1,
b2, b3 and b4 show Persistence Landscapes representation (LR), while c1, c2, c3 and c4 detail Weighted
Silhouette representation (SR). These all correspond to the four classes Normal, Other, VT and VF,
respectively.

Persistence Diagram (PDR) Landscape (LR) Silhouette (SR)

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4
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From each representation, a number of parameters are calculated, which will become
the input features to the classifier. Initially, 79 parameters are evaluated, combining the
most commonly used features in the bibliography with the proposed topological features.
However, a feature reduction stage was performed. This stage allows the removal of any
potentially redundant features existing, as well as reducing the computational complexity
of the data analysis. In addition, we combined these features with other usual time-domain
features representing statistical characteristics, such as variance, skewness, and kurtosis.

The feature selection was achieved using the Sequential Forward Selection (SFS)
method, an iterative method that adds the best feature iteratively to the model until
new additions do not improve the performance of the model. This method enables the
selection of the most relevant features. Finally, a total of 27 features from all representations
(time domain, RPC, PDR, LR, and SR) were selected amongst the 79 initial features. The
extracted features are detailed in Table 3. This selection allows to improve the computational
efficiency and reduce the generalization error of the model by removing irrelevant features
or noise.

Table 3. List of extracted features using TDA and other time-domain parameters used as an input
vector to the classifier.

Representation or Domain Parameter

Time Domain Std (Standard deviation along the specified
axis) [48]
Permutation entropy [49]
Spectral entropy [50]
Singular Value decomposition entropy [51]
Aproximate entropy [52]
Sample entropy [53]
Lempel-Ziv complexity [54]
Shannon entropy [55]
Petrosian fractal dimension [56]
Katz fractal dimension [57]
Higuchi fractal dimension [58]
Detrended fluctuation analysis [59]

Representation of Point Cloud (RPC) Std (Standard deviation along the specified
axis) [53]
Tsem (trimmed standar error of the mean) [60]
Nanmean [61]
Tvar (Tail value at risk) [62]

Persistence Diagram Representation (PDR) Persistence Weighted Gaussian Kernel [63]
Approximate PWG kernel [63]
Persistence Scale SpaceKerne [64]
Approximate PSS kernel [64]
Sliced Wasserstien Distance [27]
Sliced Wasserstein Kernel [27]

Landscape Representation (LR) Tsem (Trimmed standard error of the mean) [60]
Tstd (Trimmed sample standard deviation) [53]
Wasserstien distance [65]
Heat kernel distance bottleneck [53]

Silhouette Representation (SR) RMS (Root Mean Square) [66]

In addition, another input feature set was obtained. In this case, the Calculate Gaussian
KDE was applied to the Persistence Diagram, and then an image-like was obtained (Table 3).
The obtained image will be used as a direct input to the classifier, in a similar form as in [47].
Table 4 shows the resulting Gaussian KDE from a PDR.
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Table 4. Persistence Diagrams (left) a1, a2, a3, a4 and representation of Calculate Gausssian KDE
(right) b1, b2, b3, b4 for classes Normal, Other, VT and VF, respectively. The representation of KDE is
used as input to the kNN classifier in the proposed PDI method.

Scatterplot from Persistence Diagram Calculate Gaussian KDE

a1 b1

a2 b2

a3 b3

a4 b4

3.4. Classification Procedure and Performance Evaluation

This work used supervised learning. The input to the classifier was formed by a
feature vector linking together all the selected features calculated from consecutive ECG
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time windows. The only classifier used in this work was the k-Nearest Neighbor (kNN)
algorithm, which is commonly used in the bibliography [12,67]. And the used distance is
the Euclidean distance. In addition, two different input sets are evaluated. The first input
set corresponds to the features described in Table 3, named the TDA method. The second
input set is based on the Gaussian KDE bidimensional representation, named Persistence
Diagram Image - PDI.

It has been used as a repeated random sub-sampling validation technique. Thus, for
each class, 67% of data was randomly selected for training and the remaining 33% for
testing. The kNN training process was done, and then the testing dataset was used to
evaluate the classification performance by measuring the Sensibility (Sen), Specificity (Spe),
and Accuracy (Acc). This cross-validation approach was repeated five times at random,
and the performance of the classifiers was evaluated overall by taking this five iterations
average. This number of iterations was chosen after some trials as it showed the lowest
generalization error.

Standard statistical parameters were followed to assess the performance in accurate
classification of the ECG signal into the VF, VT, Normal, or Others classes. These include
the Sensitivity (Sen), Specificity (Spe), and Accuracy (Acc), which are calculated using the
following equations where TP, TN, FP, and FN represent the number of true positives, true
negatives, false positives, and false negatives, respectively:

Sensitivity =
TP

TP + FN
× 100% (6)

Speci f icity =
TN

TN + FP
× 100% (7)

Accuracy =
TP + TN

TP + FP + TN + FN
× 100% (8)

4. Results

The experiments were carried out using signals from the MIT-BIH and AHA standard
databases, Section 3.1. They were divided into four classes, namely VF, VT, Normal and
Others. The preprocessing stage carries out an 8th order bandpass (1 Hz to 45 Hz) Butter-
worth IIR filter to denoise and reduce the baseline variation, Section 3.2, and calculates the
window reference marks (WRM) of the signal, marks indicating the beginning and end of
the 1.2 s time window from the temporal signals.

At the feature extraction, we have proposed two different topological techniques to ex-
tract the parameters feeding the classifier: Topological Data Analysis (TDA) and Persistence
Diagrams (PDI). In the case of the TDA method, each window of temporal signals were
converted first into a Point Clouds representation, using delay embedding, and then into
Persistence Diagrams, Persistence Landscapes, and Power Weighted Silhouettes. Finally,
some parameters were extracted from these diagrams, Section 3.3, and then combined to
create the features vector feeding the input of the classifier. Concerning the PDI method,
the gaussian KDE was applied to the Persistence Diagram and the whole resulting image
was used as a direct input to the classifier.

The k-Nearest Neighbor (kNN) classifier was the only classifier used for both proposals.
For each class, 67% of data was randomly selected for training and the remaining

33% for testing. The kNN training process was calculated and then the testing dataset
was used to evaluate the classification performance by measuring the Sensibility (Se),
Specificity (Sp), and Accuracy (Acc). This approach was repeated five times at random,
and the performance of the classifiers was evaluated overall by taking this five iterations
average. This number of iterations was chosen after some trials because it showed the
lowest generalization error.
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Table 5 shows the confusion matrix for one of these iterations. It shows a great
classification performance. Nevertheless, the values represented in the following tables
(Tables 6–9) indicate the average performance values obtained from the repeated random
validation used in this work.

Table 5. Confusion matrix for classification of VF, VT, Others, and Normal classes using the TDA
topological method.

Algorithms
TDA

VF VT Normal Other

VF 1701 36 12 3

VT 45 601 9 1

Normal 15 3 4957 28

Other 0 2 55 1940

Thus, Tables 6–9 show the testing classification results for TDA and PDI feature
selection methods. As it can be seen, the TDA method shows better classification results
than the PDI. On the one hand, the PDI method results in values of accuracy above 92%
for all classes, having better accuracy values for VT and Other classes (97.38% and 96.19%,
respectively), but curiously falling to 92.65% for the detection of Normal sinus rhythms. The
sensitivity widely varies depending on the case, ranging from 82.25% for VT to 93.09% for
the Normal classes, being more sensitive to Normal and Others classes (around 93%) than to
VT and VF (around 84%). Except for the Normal case, the global specificity (Spe) becomes
greater than sensitivity, reaching the value of 98.53% for the VT class.

On the other hand, the TDA method results in very high results of accuracy, around
99% for all classes, with little differences between them. The sensitivity remains above 97%
except for the VT class, falling to 92.72% and getting the maximum sensitivity value for the
Normal case (99.05%), with 97.07% for the VF class. Finally, the global specificity achieves
high values: near 99% for the Normal class and above 99% for the rest of the classes, hitting
a maximum of 99.53% for the VT class.

Table 6. Results obtained for VF class classification in testing.

Type VF

Algorithms
Sensitivity% Specificity% Accuracy%

VF Global VT Other N Total

TDA 97.07 99.25 93.78 99.90 99.68 98.68

PDI 84.34 96.77 89.70 99.14 96.68 94.26

Table 7. Results obtained for VT class classification in testing.

Type VT

Algorithms
Sensitivity% Specificity% Accuracy%

VT Global VF Other Normal Total

TDA 92.72 99.53 97.93 99.89 99.94 99.05

PDI 82.25 98.53 94.85 99.62 99.36 97.38
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Table 8. Results obtained for Normal class classification in testing.

Type Normal

Algorithms
Sensitivity% Specificity% Accuracy%

Normal Global VF VT Other Total

TDA 99.05 98.45 99.27 98.88 97.16 98.76

PDI 93.09 92.14 90.22 91.65 93.95 92.65

Table 9. Results obtained for Other class classification in testing.

Type Other

Algorithms
Sensitivity% Specificity% Accuracy%

Other Global VT Normal VF Total

TDA 97.43 99.54 99.88 99.40 99.82 99.09

PDI 92.86 97.15 99.02 96.76 97.72 96.19

5. Discussion

The same as with any other classification problem, the detection of ventricular arrhyth-
mias normally uses a feature extraction and selection stage to optimize the class separation
capabilities of the classifier. This feature selection stage aims at gathering the relevant
aspects of the ECG signal based on TDA. Among a wide set of features, a reduction stage is
done to lower the number of features used as input to the classifier.

In this work, we hypothesized that, by using Topological Data Analysis (TDA), some
geometric features containing information about the ‘shape of data’ could be extracted.
This method condenses the relevant information about the shape of the data, resulting in
very valuable for the detection and discrimination between shockable VF and VT rhythms,
even in noise and complex signals cases.

The obtained results (Tables 6–9) use the kNN classifier with the input features ob-
tained by using two topological methods (TDA and PDI). Results show that the TDA
features provide better results. For this reason, the TDA method is compared with other
works in the bibliography. We have used the kNN classifier, given that it is enough to prove
the improvement in classification results compared to other works. Nevertheless, using
other classifiers is an open topic, which may lead to reach even better classification results.

As it can be seen from Tables 6–9, the use of the proposed TDA method provides
an average accuracy of 98.9% for multiclass discrimination, which differentiates VF and
VT ventricular arrhythmias but also Normal and Other types of rhythms. On the other
hand, Table 10 shows a two-class classification approach to show that the proposed TDA
method provides an accuracy of 99.5% when used to discriminate shockable (VT or VF)
and non-shockable rhythms (rest of cardiac rhythms).

Thus, it can be established that the TDA method provides a very high classification
performance. Nevertheless, we show a comparison of results with other works in the
bibliography. Note, however, that this comparison is difficult due to the differences in the
source signals used by different works; or even in the type of discrimination, they carry out:
some works discriminate between ventricular arrhythmias and non-ventricular rhythms,
others between ventricular fibrillation rhythms and non-ventricular fibrillation, others
between shockable rhythms and non-shockable rhythms (considering as shockable both
VT and VF).

For this reason, we divide the comparison into two separate blocks: the first block
focuses on the comparison with works performing rhythm discrimination, while the second
focus on the comparison with those works performing shockable vs. non-shockable signal
discrimination.
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Table 11 shows a group of works distinguishing between VF and non-VF rhythms.
In this group, Roopaei et al. [68] obtained an accuracy of 88.60% using chaotic-based
reconstructed phase space features to detect VF episodes. Arafat et al. [69] achieved a high
value in the specificity of detecting VF episodes (Sp = 98.51%) using an improved version
of the Threshold Crossing Interval (TCI) algorithm, called TCSC, and the MIT-BIH and
CUDB databases. However, this detection was carried out with a sensitivity as low as
80.97%. Later, Alonso-Atienza et al. [70] obtained high values of specificity and accuracy
(Spe = 97.10% and Acc = 96.80%) for the discrimination of VF episodes, with their specific
feature selection and SVM classifiers. In their case, the sensitivity got a moderate value
of 91.90%. Further, Li and Rajagopalan [71] used a genetic algorithm to make the feature
selection for classifying VF episodes, achieving high-performance values: Sen = 98.40%,
Spe = 98.00%, and Acc = 96.30%. Next, Acharya et al. [72] obtained high-performance
values of specificity (Spe = 98.19%) and accuracy (Acc = 97.88%) using a Convolutional
Neural Network (CNN) for the detection of VF. However, they achieved an extremely low
value of sensitivity (Sen = 56.44%). Finally, in 2019 Ibtehaz et al. [73] got the highest results
in this group, using a scheme of incorporating Empirical Mode Decomposition (EMD) and
SVM classifiers (Sen = 99.99%, Spe = 98.40%, Acc = 99.19%) for the classification of VF and
non-VF episodes.

As it can be seen, the results of the TDA proposal in this work achieve one of the best
results (Sen = 97.07%, Spe = 99.25%, and Acc = 98.68%) compared with other works of
the VF-discriminating group, with the only exception of Ibtehaz [73], that obtained better
results. However, to establish a fair comparison, note that Ibtehaz obtained slightly higher
results (i.e., a difference of 0.51% in Accuracy) at the expense of preselecting and rejecting
the noise episodes, while in this work, there was not any preselection of ECG episodes.

Furthermore, another group of works in the bibliography can be compared, distin-
guishing between VT and VF rhythms (Table 11). In this group, Xie et al. [74] proposed
a fuzzy similarity-based approximate entropy approach, distinguishing between VT and
VF and obtaining high-performance ratios (Sen = 97.98% and Spe = 97.03% to VF and
Sen = 97.03% and Spe = 97.98% to VT). However, to establish a fair comparison, it must
be considered that Xie was selected as input data representative and clean episodes of
VF and VT, while our work was done without preselection of ECG episodes. This kind
of preselection is usual in the literature, as in Kaur and Singh [75], that used a selection
of VF and VT episodes from the MIT-BIH database, using Empirical Mode Decomposi-
tion (EMD) and Approximate Entropy. Kaur and Singh obtaining moderate values for
classification performance (Sen = 90.47%, Spe= 91.66%, and Acc = 91.17%). Later, Xia
et al. [76] obtained high performance values (Sen = 98.15% and Spe = 96.01% to VF, and
Sen = 96.01% and Spe = 96.01% and Spe = 98.15% to VT) using Lempel-Ziv and Empirical
Mode Decomposition (EMD). In this case, a selection of clean episodes of VT and VF was
made too. Finally, the authors of the present work achieved high values of classification
performance [47] feeding the complete time-frequency image as the input of different
classifiers (e.g., Sen = 92.8% and Spe = 97.0% to VF and Sen = 91.8% and Spe = 98.7% to VF,
using an Artificial Neural Network Classifier, ANNC).

In any case, the results of the TDA method in this work achieve the best results when
compared with the rest of the works in the bibliography aiming to discriminate between
VF and VT rhythms (despite the preselection of ECG episodes done by some works).

Table 10 shows a comparison focused on detecting VT/VF episodes, i.e., shockable
and non-shockable. This set of works usually targets its implementation on external
defibrillators (AED) and implantable cardioverter defibrillators (ICD). Thus, these works
distinguish between shockable and non-shockable rhythms (considering shockable both VT
and VF). In this group, Li et al. [71] achieved an Accuracy of Acc = 98.1% (Sen = 98.4% and
Spe = 98.0%) using a Genetic Algorithm (GA) for feature selection and a SVM classifier. The
same year, Alonso-Atienza et al. [70] also achieved high classification performance values
(Acc = 98.6, Sen = 95.0%, and Spe = 99.0%) using a selection of features and a Support Vector
Machine (SVM) classifier. This work obtained one of the highest accuracy and specificity
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values in this group. In 2016, Tripathy et al. [9] used the Variational Mode Decomposition
(VMD) and the Random Forest (RF) classifier to detect and classify shockable and non-
shockable ECG episodes, achieving high values of accuracy, sensitivity, and specificity of
97.23%, 96.54%, and 97.97%, respectively. Later, in 2018, Mohanty et al. [11] detected and
classified ventricular arrhythmias using cubic support vector machine (SVM) and C4.5
classifiers and achieving an Accuracy of Acc = 97.02% (Sen = 90.97% and Spe = 97.86%).
Acharya et al. [77] brought forward an eleven-layer Convolutional Neural Network (CNN)
for the classification of shockable and non-shockable arrhythmias. They obtained a 93.18%
accuracy (Sen = 91.04% and Spe = 95.32%). Finally, Mohanty et al. [11] detected and
classified ventricular arrhythmia using cubic support vector machine (SVM) and C4.5
classifiers, achieving high accuracy of Acc = 97.02% (Sen = 90.97% and Spe = 97.86%).

As it can be seen, the results of the TDA proposal in this work show the highest
performance values also in this group of works, achieving an accuracy of 99.51%, 99.03%
sensitivity, and 99.67% specificity.

Thus, the benefits of using the geometric features extracted from Topological Data
Analysis (TDA) in the classification procedure are clear. Then, we can state that TDA, and
the geometric features derived from it, can be successfully used both in the detection and
classification of ventricular arrhythmias and in the classification of shockable episodes.
It proves that the geometric features derived from Topological Data Analysis provides a
good description of the signal. Moreover, it also foresees a successful application of these
features in both Automated External Defibrillation (AED) and Implantable Cardioverter
Defibrillation (ICD) therapies.

Table 10. Performance results comparison with other works discriminating shockable and non-
shockable rhythms.

Types Shockable (VT+VF)
Data Base

Method: Sens% Spe% Accu%

This work, TDA 99.03 99.67 99.51 AHA, MITBIH

This work, PDI 89.63 96.96 95.12 AHA, MITBIH

[77] Convolutional neural network (CNN) (2018) 91.04 95.32 93.18 CUDB, MITBIH

[11] C4.5 classifier (2018) 90.97 97.86 97.02 CUDB, MITBIH

[78] Adaptive variational and boosted CART (2018) 97.32 98.95 98.29 CUDB, MITBIH

[71] SVM and bootstrap (2013) 98.40 98.00 98.10 AHA, CUDB, MITBIH

[9] VMD with Random Forest (2016) 96.54 97.97 97.23 CUDB, MITBIH

[70] FS and SVM (2013) 95.00 99.00 98.60 CUDB, MITBIH

AHA: American Heart Association ECG Database (200 series); MIBIH: MIT-BIH Malignant Ventricular Arrhythmia
Database; CCU: Registers from Coronary Care Unit (CCU) of the Royal Infirmary of Edinburgh; CUDB: MIT
’cudb’ (Creighton University Ventricular Tachyarrhythmia Database).

It should be taken into account that these good results occur even in the absence of
preselected ECG episodes. This work performs data classification in the same form as an
Automated External Defibrillator (AED) operating in an emergency situation, following
the AHA recommendations for Automated External Defibrillator (AED) algorithm per-
formance [79]. That is, data can be continuously analyzed in time windows as they are
received from the electrocardiograph.

To conclude, the success of using the TDA-derived geometric features suggests that
this method may overcome conventional feature selection limitations by better describing
the ‘shape of data’ and, thus, enabling us to build better performance arrhythmia detectors.
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Table 11. Performance results comparison with other rhythm-discriminating works.

Types VF VT Other Normal
Data Base

Method: Sens% Spe% Accu% Sens% Spe% Accu% Sens% Spe% Accu% Sens% Spe% Accu%

This work, TDA 97.07 99.25 98.68 92.72 99.53 99.05 97.43 99.54 99.09 99.05 98.45 98.76 AHA, MITBIH

This work, PDI 84.34 96.77 94.26 82.25 98.53 97.38 92.86 97.15 96.19 93.09 92.14 92.65 AHA, MITBIH

[47] time-frequency, L2-RLR (2017) 89.60 96.70 91.00 98.10 92.50 98.10 94.90 96.40 AHA, MITBIH

[47] time-frequency, ANNC (2017) 92.80 97.00 91.80 98.70 92.90 99.00 96.20 96.70 AHA, MITBIH

[47] time-frequency, SSVR (2017) 91.00 97.00 92.80 98.70 92.30 99.20 96.60 96.30 AHA, MITBIH

[47] time-frequency, BAGG (2017) 95.20 96.40 88.80 99.70 88.60 99.80 96.60 94.10 AHA, MITBIH

[75] EMD and App Entropy (2013) 90.47 91.66 91.17 90.62 91.11 90.80 MITBIH

[69] TCSC algorithm (2011) 80.97 98.51 98.14 CUDB, MITBIH

[76] Lempel-Ziv and EMD (2014) 98.15 96.01 96.01 98.15 CUDB, MITBIH

[68] Chaotic based (2010) 88.60 CCU, MITBIH

[73] EMD and SVM (2019) 99.99 98.40 99.19 CUDB, MITBIH

[72] CNN neural network (2017) 56.44 98.19 97.88 CUDB, MITBIH

[70] FS and SVM (2013) 91.90 97.10 96.80 CUDB, MITBIH

[71] Genetic algorithm, SVM (2014) 98.40 98.00 96.30 AHA, CUDB

[74] Approximated entropy (2011) 97.98 97.03 97.03 97.98 CUDB, MITBIH

AHA: American Heart Association ECG Database (200 series); MIBIH: MIT-BIH Malignant Ventricular Arrhythmia Database; CUDB: MIT ‘cudb’ (Creighton University Ventricular
Tachyarrhythmia Database).
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6. Conclusions

The rapid and reliable detection of VT and VF is fundamental in patient monitoring,
but also in Automated External Defibrillation (AED) or Implantable Cardioverter Defibril-
lation (ICD) therapies. Any incorrect interpretation of a ventricular arrhythmia, or even the
confusion between VF and VT, can be dangerous for the life of the patient.

In this paper, we propose a feature extraction method based on Topological Data
Analysis (TDA) that provides near 99% accuracy in the discrimination of ventricular
arrhythmias, normal and other rhythms (98.68% to VF; 99.05% to VT; 99.09% to Other;
and 98.76% to Normal episodes). It also provides very high accuracy of 99.5% when
discriminating between shockable (VT/VF) and non-shockable rhythms.

The novelty of this work is the incorporation of geometric features proceeding from
Topological Data Analysis to the detection and classification of ventricular arrhythmias.
Note also that these powerful results were obtained without preselection of episodes.
Taking into consideration the obtained results, we can conclude that TDA, and the geometric
features derived from it, can be successfully used both in the detection and classification of
ventricular arrhythmias and in the classification of shockable rhythms. Moreover, it proves
that the geometric features derived from Topological Data Analysis (TDA) provide valuable
features easing the task of the classifier. Finally, we can conclude that TDA features can be
beneficial in other classification tasks.
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The following abbreviations are used in this manuscript:

TDA Topological Data Analysis
PH Persistent Homology
VF Ventricular Fibrillation
VT Ventricular Tachycardia
AED Automated External Defibrillator
ICD Implantable Cardioverter Defibrillator
ECG Electrocardiogram
RF Random Forest
kNN k-Nearest Neighbor
ICA Independent Component Analysis
DT Decision Tree
PC Point Cloud
RPC Representation of Point Cloud
PD Persistence Diagram
PDI Persistence Diagram Image
KDE Kernel Density Estimation
PI Persistence Images
WRM Window Reference Mark
TR Time Representation
PDR Persistence Diagram Representation
SFS Sequential Forward Selection
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AHA American Heart Association
CUDB Creighton University Ventricular Tachyarrhythmia Database
CCU Coronary Care Unit
TCI Threshold Crossing Interval
CNN Convolutional Neural Network
EMD Empirical Mode Decomposition
VMD Variational mode decomposition
SVM Support Vector Machine
ANNC Artificial Neural Network Classifier
GA Genetic Algorithm
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