1,055 research outputs found

    Prompt and accurate diagnosis of ventricular arrhythmias with a novel index based on phase space reconstruction of ECG

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Aim To develop a statistical index based on the phase space reconstruction (PSR) of the electrocardiogram (ECG) for the accurate and timely diagnosis of ventricular tachycardia (VT) and ventricular fibrillation (VF). Methods Thirty-two ECGs with sinus rhythm (SR) and 32 ECGs with VT/VF were analyzed using the PSR technique. Firstly, the method of time delay embedding were employed with the insertion of delay “τ” in the original time-series X(t), which produces the Y(t) = X(t − τ). Afterwards, a PSR diagram was reconstructed by plotting Y(t) against X(t). The method of box counting was applied to analyze the behavior of the PSR trajectories. Measures as mean (μ), standard deviation (σ) and coefficient of variation (CV = σ/μ), kurtosis (β) for the box counting of PSR diagrams were reported. Results During SR, CV was always 0.05. A similar pattern was observed with β, where < 6 was considered as the cut-off point between SR and VT/VF. Therefore, the upper threshold for SR was considered CVth = 0.05 and βth < 6. For optimisation of the accuracy, a new index (J) was proposed: J=wCVCVth+1−wββth. During SR the upper limit of J was the value of 1. Furthermore CV, β and J crossed the cut-off point timely before the onset of arrhythmia (average time: 4 min 31 s; SD: 2 min 30 s); allowing sufficient time for preventive therapy. Conclusion The J index improved ECG utility for arrhythmia monitoring and detection utility, allowing the prompt and accurate diagnosis of ventricular arrhythmias

    Prompt and accurate diagnosis of ventricular arrhythmias with a novel index based on phase space reconstruction of ECG

    No full text
    Aim: to develop a statistical index based on the phase space reconstruction (PSR) of the electrocardiogram (ECG) for the accurate and timely diagnosis of ventricular tachycardia (VT) and ventricular fibrillation (VF).Methods: thirty-two ECGs with sinus rhythm (SR) and 32 ECGs with VT/VF were analyzed using the PSR technique. Firstly, the method of time delay embedding were employed with the insertion of delay “?” in the original time-series X(t), which produces the Y(t) = X(t ? ?). Afterwards, a PSR diagram was reconstructed by plotting Y(t) against X(t). The method of box counting was applied to analyze the behavior of the PSR trajectories. Measures as mean (?), standard deviation (?) and coefficient of variation (CV = ?/?), kurtosis (?) for the box counting of PSR diagrams were reported.Results: during SR, CV was always &lt; 0.05, while with the onset of arrhythmia CV increased &gt; 0.05. A similar pattern was observed with ? , where &lt; 6 was considered as the cut-off point between SR and VT/VF. Therefore, the upper threshold for SR was considered CV th = 0.05 and ?th &lt; 6. For optimisation of the accuracy, a new index (J ) was proposed: View the MathML sourceJ=wCVCVth+1?w??th.During SR the upper limit of J was the value of 1. Furthermore CV, ? and J crossed the cut-off point timely before the onset of arrhythmia (average time: 4 min 31 s; SD: 2 min 30 s); allowing sufficient time for preventive therapy.Conclusion: the J index improved ECG utility for arrhythmia monitoring and detection utility, allowing the prompt and accurate diagnosis of ventricular arrhythmias

    Iron Deposition following Chronic Myocardial Infarction as a Substrate for Cardiac Electrical Anomalies: Initial Findings in a Canine Model

    Get PDF
    Purpose: Iron deposition has been shown to occur following myocardial infarction (MI). We investigated whether such focal iron deposition within chronic MI lead to electrical anomalies. Methods: Two groups of dogs (ex-vivo (n = 12) and in-vivo (n = 10)) were studied at 16 weeks post MI. Hearts of animals from ex-vivo group were explanted and sectioned into infarcted and non-infarcted segments. Impedance spectroscopy was used to derive electrical permittivity () and conductivity (). Mass spectrometry was used to classify and characterize tissue sections with (IRON+) and without (IRON-) iron. Animals from in-vivo group underwent cardiac magnetic resonance imaging (CMR) for estimation of scar volume (late-gadolinium enhancement, LGE) and iron deposition (T2*) relative to left-ventricular volume. 24-hour electrocardiogram recordings were obtained and used to examine Heart Rate (HR), QT interval (QT), QT corrected for HR (QTc) and QTc dispersion (QTcd). In a fraction of these animals (n = 5), ultra-high resolution electroanatomical mapping (EAM) was performed, co-registered with LGE and T2* CMR and were used to characterize the spatial locations of isolated late potentials (ILPs). Results: Compared to IRON- sections, IRON+ sections had higher, but no difference in. A linear relationship was found between iron content and (p1.5%)) with similar scar volumes (7.28%Âą1.02% (Iron (1.5%)), p = 0.51) but markedly different iron volumes (1.12%Âą0.64% (Iron (1.5%)), p = 0.02), QT and QTc were elevated and QTcd was decreased in the group with the higher iron volume during the day, night and 24-hour period (p<0.05). EAMs co-registered with CMR images showed a greater tendency for ILPs to emerge from scar regions with iron versus without iron. Conclusion: The electrical behavior of infarcted hearts with iron appears to be different from those without iron. Iron within infarcted zones may evolve as an arrhythmogenic substrate in the post MI period

    Ventricular Fibrillation and Tachycardia Detection Using Features Derived from Topological Data Analysis

    Get PDF
    A rapid and accurate detection of ventricular arrhythmias is essential to take appropriate therapeutic actions when cardiac arrhythmias occur. Furthermore, the accurate discrimination between arrhythmias is also important, provided that the required shocking therapy would not be the same. In this work, the main novelty is the use of the mathematical method known as Topological Data Analysis (TDA) to generate new types of features which can contribute to the improvement of the detection and classification performance of cardiac arrhythmias such as Ventricular Fibrillation (VF) and Ventricular Tachycardia (VT). The electrocardiographic (ECG) signals used for this evaluation were obtained from the standard MIT-BIH and AHA databases. Two input data to the classify are evaluated: TDA features, and Persistence Diagram Image (PDI). Using the reduced TDA-obtained features, a high average accuracy near 99% was observed when discriminating four types of rhythms (98.68% to VF; 99.05% to VT; 98.76% to normal sinus; and 99.09% to Other rhythms) with specificity values higher than 97.16% in all cases. In addition, a higher accuracy of 99.51% was obtained when discriminating between shockable (VT/VF) and non-shockable rhythms (99.03% sensitivity and 99.67% specificity). These results show that the use of TDA-derived geometric features, combined in this case this the k-Nearest Neighbor (kNN) classifier, raises the classification performance above results in previous works. Considering that these results have been achieved without preselection of ECG episodes, it can be concluded that these features may be successfully introduced in Automated External Defibrillation (AED) and Implantable Cardioverter Defibrillation (ICD) therapie

    A Review of Atrial Fibrillation Detection Methods as a Service

    Get PDF
    Atrial Fibrillation (AF) is a common heart arrhythmia that often goes undetected, and even if it is detected, managing the condition may be challenging. In this paper, we review how the RR interval and Electrocardiogram (ECG) signals, incorporated into a monitoring system, can be useful to track AF events. Were such an automated system to be implemented, it could be used to help manage AF and thereby reduce patient morbidity and mortality. The main impetus behind the idea of developing a service is that a greater data volume analyzed can lead to better patient outcomes. Based on the literature review, which we present herein, we introduce the methods that can be used to detect AF efficiently and automatically via the RR interval and ECG signals. A cardiovascular disease monitoring service that incorporates one or multiple of these detection methods could extend event observation to all times, and could therefore become useful to establish any AF occurrence. The development of an automated and efficient method that monitors AF in real time would likely become a key component for meeting public health goals regarding the reduction of fatalities caused by the disease. Yet, at present, significant technological and regulatory obstacles remain, which prevent the development of any proposed system. Establishment of the scientific foundation for monitoring is important to provide effective service to patients and healthcare professionals

    Combined Nonlinear Analysis of Atrial and Ventricular Series for Automated Screening of Atrial Fibrillation

    Full text link
    [EN] Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice. It often starts with asymptomatic and short episodes, which are difficult to detect without the assistance of automatic monitoring tools. The vast majority of methods proposed for this purpose are based on quantifying the irregular ventricular response (i.e., RR series) during the arrhythmia. However, although AF totally alters the atrial activity (AA) reflected on the electrocardiogram(ECG), replacing stable P-waves by chaotic and time-variant fibrillatory waves, this information has still not been explored for automated screening of AF. Hence, a pioneering AF detector based on quantifying the variability over time of the AA morphological pattern is here proposed. Results from two public reference databases have proven that the proposed method outperforms current state-of-the-art algorithms, reporting accuracy higher than 90%. A less false positive rate in the presence of other arrhythmias different from AF was also noticed. Finally, the combination of this algorithm with the classical analysis of RR series variability also yielded a promising trade-off between AF accuracy and detection delay. Indeed, this combination provided similar accuracy than RR-based methods, but with a significantly shorter delay of 10 beats.This work was supported by the Spanish Ministry of Economy and Competitiveness (Project TEC2014-52250-R).Rodenas, J.; Garcia, M.; Alcaraz, R.; Rieta, JJ. (2017). Combined Nonlinear Analysis of Atrial and Ventricular Series for Automated Screening of Atrial Fibrillation. Complexity. (2163610):1-13. doi:10.1155/2017/2163610S113216361
    • …
    corecore