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Abstract

Purpose: Iron deposition has been shown to occur following myocardial infarction (MI). We investigated whether such focal
iron deposition within chronic MI lead to electrical anomalies.

Methods: Two groups of dogs (ex-vivo (n = 12) and in-vivo (n = 10)) were studied at 16 weeks post MI. Hearts of animals
from ex-vivo group were explanted and sectioned into infarcted and non-infarcted segments. Impedance spectroscopy was
used to derive electrical permittivity (e) and conductivity (s). Mass spectrometry was used to classify and characterize tissue
sections with (IRON+) and without (IRON-) iron. Animals from in-vivo group underwent cardiac magnetic resonance imaging
(CMR) for estimation of scar volume (late-gadolinium enhancement, LGE) and iron deposition (T2*) relative to left-ventricular
volume. 24-hour electrocardiogram recordings were obtained and used to examine Heart Rate (HR), QT interval (QT), QT
corrected for HR (QTc) and QTc dispersion (QTcd). In a fraction of these animals (n = 5), ultra-high resolution
electroanatomical mapping (EAM) was performed, co-registered with LGE and T2* CMR and were used to characterize
the spatial locations of isolated late potentials (ILPs).

Results: Compared to IRON- sections, IRON+ sections had highere, but no difference ins. A linear relationship was found
between iron content and e (p,0.001), but not s (p = 0.34). Among two groups of animals (Iron (,1.5%) and Iron (.1.5%))
with similar scar volumes (7.28%61.02% (Iron (,1.5%)) vs 8.35%62.98% (Iron (.1.5%)), p = 0.51) but markedly different iron
volumes (1.12%60.64% (Iron (,1.5%)) vs 2.47%60.64% (Iron (.1.5%)), p = 0.02), QT and QTc were elevated and QTcd was
decreased in the group with the higher iron volume during the day, night and 24-hour period (p,0.05). EAMs co-registered
with CMR images showed a greater tendency for ILPs to emerge from scar regions with iron versus without iron.

Conclusion: The electrical behavior of infarcted hearts with iron appears to be different from those without iron. Iron within
infarcted zones may evolve as an arrhythmogenic substrate in the post MI period.
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Introduction

The electrical behavior of chronically infarcted myocardium is

not well understood. Conventionally, infarcted myocardium is

identified on electroanatmoical maps (EAMs) on the basis of

significantly reduced bipolar voltage (below 0.5 mv) [1,2]. While a

significant portion of the scarred myocardium is thought to be

electrically inert, the presence of non-zero voltage points within

the infarct zone has been associated with surviving myocytes [3,4].

However, several other studies have shown direct evidence for

significant passive electrical activity within the dense scar that is

free of viable myocytes [5,6]. Nevertheless, the substrate mediating

the electrical activity within the infarcted tissue devoid of surviving

myocyte bundles remains to be explored.

Observational studies in patients with pathological iron (hemo-

siderin) overloading in the heart, from non-ischemic origins

(hemochromatosis [7,8], thalassemia [9,10], siderosis [11], and

sickle-cell anemia [12]), have long documented evidence of

significant incidence of ventricular arrhythmias [13–16]. Imaging

studies in the same patient population have also suggested that the

incidence of arrhythmias to be directly related to the extent of

myocardial iron deposition [16]. Moreover, carefully controlled

animal studies have shown that cardiac iron overloading leads to

progressively worsening electrical conductivity with increasing iron

(hemosiderin) deposition, even in the absence of myocardial

contractility changes [14]. Notably, these studies showed that

approximately 1 in 3 animals with chronic iron overloading

succumbed to sudden cardiac death (SCD) attributable to cardiac

arrhythmias. More recently, magnetic resonance imaging based

histological examination of human hearts of SCD victims have

shown significant loss of T2-weighted signals within the chronic

infarcted territories, consistent with hemosiderin accumulation

[17,18].

The relationship between myocardial iron deposition and

electrical changes may be explored on the basis of existing

biophysical findings. It has been shown that the introduction of

highly conductive particulates (such as magnetite with conductivity

of 2.56104 S/m at the physiologic temperature) [19] into an

otherwise poor dielectric medium (such as the myocardium with

conductivity ,1 S/m) [20] acts to enhance the bulk electrical

permittivity of the medium [21,22]. Hence, the pathological

elevations of iron within localized regions of the heart may be a

substrate that alters the electrical milieu of myocardial regions

containing iron.

Recent studies in humans and animals have demonstrated that

chronic iron (hemosiderin) overloading within the scar tissue may

occur following myocardial infarctions due to pooling of blood

within the infarcted territories [23]. Based on biophysical

principles alone, it is expected that the electrical permittivity of

post-infarction scar with iron deposits can be significantly greater

than those scars without iron deposits. If such changes in the

electrical features of the infarcted myocardium manifest in the

same manner as in the case of iron overloading from the non-

ischemic pathologies, one is expected to observe global and local

electrical changes that are different between infarcted hearts with

and without iron depositions.

Through controlled experiments in a canine model, this study

investigates whether infarcts with chronic iron deposition,

identified on the basis of mass spectrometry, preferentially alters

the electrical features of myocardial tissue in ex-vivo preparations.

In addition, it also examines whether there are differences in

global and local electrical characteristics of the infarcted hearts

with different levels of iron deposition, determined on the basis of

cardiac magnetic resonance imaging (CMR). In particular, this

study explores whether the established parameters derived from

surface electrocardiograms (ECG) and EAMs are altered in a

manner that is dependent on the extent of iron deposition.

Methods

Ethics Statement
Mongrel dogs were studied according to the protocols approved

by the Animal Care and Use Committee of Northwestern

University (IACUC number: 2007–1286) and Cedars-Sinai

Medical Center (IACUC number: 0003674). The Animal Care

and Use Committee of Northwestern University and Cedars-Sinai

Medical Center approved the studies described below.

Animal Preparation and Overview of Methods
Myocardial infarction (MI) was created by permanently ligating

the left anterior descending (LAD) artery distal to the first diagonal

in 22 dogs (20–25 kg), and allowed to recover for 16 weeks. In the

first group (Group ex-vivo, n = 12), 10 animals survived into the

chronic phase of the infarction and 2 animals died during the

acute phase of MI. Animals from Group ex-vivo were sacrificed and

their hearts were harvested, and sectioned into 1 cm thick slices.

Figure 1. Schematic three-dimensional drawing of a custom-
made capacitor cell used for measuring bulk electrical
impedance of ex-vivo tissue. The capacitor cell consisted of a
transparent tubular glycol-modified polyethylene teraphthalate (PETG)
body that is closed at one end and fitted with a removable Delrin cap at
the other end. Two square silver electrodes, each of 1.5 cm2 surface
area, were enclosed in the tubular body. One electrode was affixed to
the closed end, while the other electrode was affixed to a PETG disk
that can move through the tubular body. The electrodes were soldered
to the inner conductors of copper coaxial cables, which in turn were
connected to the impedance analyzer. The outer conductors were
connected to electrical ground.
doi:10.1371/journal.pone.0073193.g001
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Infarcted and non-infarcted (Remote) segments on each slice were

delineated on the basis of ex vivo triphenyl tetrazolium chloride

(TTC) staining [24], and 0.5–0.8 cm3 samples of tissue were

isolated from the respective segments. Representative samples

were selected for histological staining (Perl’s stain). Samples from

infarcted segments were further classified as those with and

without iron deposition (IRON+ and IRON2 respectively) based

on mass spectrometric analysis (details below). Prior to mass

spectrometric analysis, bulk electrical impedance spectroscopy

measurements were performed on tissue samples from all the three

groups (IRON+, IRON2 and Remote).

The animals from Group in-vivo were fitted with a Holter

monitor and ECG measurements were recorded over a 24-hour

period (details below). Subsequently the animals from this group

underwent CMR studies (within a week of the ECG recordings) to

determine the extent of iron deposition within the myocardial

infarct territories (details below). Following CMR exams, 5

animals from this group underwent ultra-high resolution endo-

cardial left ventricular electroanatomical mapping (EAM, details

below).

Ex vivo Bulk Electrical Impedance Measurements
The bulk electrical impedance of each tissue sample was

measured using the two-terminal electrode technique as previously

described by Schwan [25]. A capacitor cell consisting of two

parallel square electrodes (each of 1.5 cm2 surface area) with

variable distance between them [26] was custom built to measure

bulk electrical impedance of each sample using alternating-current

(AC) impedance spectroscopy (Fig. 1).

Each sample was incubated at 37uC in phosphate buffer

solution for 15 minutes prior to use. The sample was then

sandwiched between the two electrodes of the capacitor cell and

10 mA of alternating current was passed parallel to the myocardial

fibers. The voltage that developed across the sample was measured

using Solartron 1260 impedance/gain-phase analyzer (Solartron

Instruments, Hampshire, UK) and acquired using ZPlot data

acquisition software (version 3.3, Scribner Associates Inc., NC,

USA). The complex AC-impedance (Z in ohms) of the sample was

estimated as a quotient of the induced voltage and the current

supplied to the sample. The impedance values were measured at

frequencies ranging from 100 Hz to 10 MHz with 10 measure-

ments in each frequency decade. Stray effects in the measurements

were corrected using methods described by Schwan [25]. To

minimize the effects of a-dispersion at lower frequencies (below

0.1 MHz) and b-dispersion (above 1 MHz) [27] from undesirable

myocardial sample preparation errors (such as, partial volume

effects from samples containing both infarcted tissue and

surrounding viable myocardium), all analyses were limited to

impedance data acquired at 1 MHz. Based on the impedance

measurements, electrical permittivity and conductivity were

estimated as previously described [28]. Refer to File S1.

For a given heart from an infarcted dog, mean conductivity

(s0Remote) and permittivity (e0Remote) of its remote myocardium were

calculated by weight-averaging the conductivities and permittiv-

ities of all of its constituent remote samples as follows:

s0Remote~

P
(sRemote|WRemote)
P

WRemote

e0Remote~

P
(eRemote|WRemote)
P

WRemote

where, sRemoteand eRemoteare the individual conductivity and

permittivity of each constituent remote sample of a heart and

Figure 2. Representative specific impedance spectra from
Remote, IRON-, and IRON+ myocardial samples. Note that for a
given AC frequency, the specific impedance of IRON+ samples is higher
than that of the Remote and IRON2 samples.
doi:10.1371/journal.pone.0073193.g002

Figure 3. Electrical consequences of iron deposition in ex-vivo myocardium. (A) Mean e measured from Remote, IRON2, and IRON+ infarct
sections showed significantly greater e (*, p,0.001) in IRON+ compared to Remote and IRON2 sections; (B) however, mean s measured from
Remote, IRON2, and IRON+ infarct sections did not show any statistical difference in s between the different sections.
doi:10.1371/journal.pone.0073193.g003
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WRemote is its corresponding sample weight. Normalized conduc-

tivity (ssample) and permittivity (esample) of each IRON+, IRON2

and Remote sample from the heart were then derived as follows:

ssample~
ssample

s0Remote

esample~
esample

e0Remote

Also, per-slice normalized conductivity (sslice) and permittivity

(eslice) were calculated for the IRON+, IRON2, and Remote

groups by weight averaging ssample and esample respectively from

their constituent samples.

Inductively Coupled Plasma – Mass Spectrometry (ICP-
MS)

Iron deposition within each myocardial sample from Group ex-

vivo ([Fe]sample in mg per g of tissue) was measured using a

quadrupole-based X Series 2 ICP-MS (Thermo-Fisher Scientific,

USA). Infarcted sections with [Fe]sample ,0.05 mg/g [23] of tissue

were labeled as IRON2 and those with [Fe]sample $0.05 mg/g

were labeled as IRON+. In all, 293 sections from a total of 11 dogs

were analyzed, where 228 sections were infarcted and 67 sections

were non-infarcted.

Holter ECG Recordings and Surface ECG Analysis
24-hour Holter ECG recordings were made 16 weeks post MI

in animals from Group in-vivo (n = 10) using a three-channel

recorder (DigiTrak XT Holter Recorder, Philips Zymed Holter

System, Philips Healthcare, MA, USA). Protective bandages and

custom-made jackets were used to secure the Holter over the

animals. The derived 12-lead ECG was recorded continuously

using five adhesive leads placed (a) over the lower sternum, level

with the fifth intercostal space; (b) at the level of the fifth intercostal

space, on the left midaxillary line; (c) on the upper part of the

sternum; (d) at the fifth intercostal space, on the right midaxillary

line; and (e) on the manubrium of the sternum (reference/ground

electrode).

All ECG recordings underwent automated retrospective anal-

ysis using the dedicated Holter software (DigiTrak XT Holter

Recorder, Philips Zymed Holter System Philips Healthcare, MA,

USA). The analysis of heart rate (HR) and repolarization

parameters (QT, QTc) was performed after adjusting all

recordings to the 24-hour clock. Only recordings with duration

of 24 hours were considered for analysis. An operator blinded to

the MR details of the infarct characteristics analyzed the Holter

recordings. The morphology of the beats was monitored and only

normal beats (sinus rhythm) were selected for further analysis.

ECG segments with excessive noise or artifact were eliminated

from the analysis. The hourly mean values of each measurement

were automatically calculated. QT intervals corrected for heart

rate (QTc) were automatically calculated using Bazett’s formula

[29]. QTc dispersion (QTcd) was computed as the difference

between the maximum and the minimum QTc interval across the

12 derived leads.

CMR Exam and Image Analysis
Prior to imaging, canines were fasted for 18 hours, sedated,

anesthetized, intubated, transferred to the scanner table and were

connected to a ventilator for mechanical ventilation. Animals were

maintained on gas anesthesia (2–2.5% isoflurane and 100%

oxygen). CMR studies were performed on a clinical 3T system

(MAGNETOM Verio, Siemens Medical Solutions, Erlangen,

Germany) within one week of ECG recordings being taken. Multi-

gradient echo T2*-weighted (TR = 12 ms, 6 TEs = 2.0 ms –

9.5 ms with DTE = 1.5 ms, flip angle = 10u and BW = 930 Hz/

pixel) and late-gadolinium enhancement (LGE) images (inversion-

recovery prepared FLASH, TR / TE = 3.0/1.5 ms, flip angle

= 25u and BW = 586 Hz/pixel) of contiguous short-axis sections

covering the entire left ventricle (LV) and the three long-axis views

were acquired at mid-diastole. Commonly used imaging param-

eters were: in-plane resolution = 1.361.3 mm2, slice thickness

= 6 mm and number of averages = 1.

Image analyses were performed using cmr42 (v4.0, Circle

Cardiovascular Imaging Inc., Canada). Remote myocardium was

defined as the region showing no hyperintensity on LGE images. A

reference region-of-interest (ROI) was drawn in the remote

myocardium on both LGE and T2*-weighted images. Infarcted

territory was defined as the hyperintense region on LGE images

with mean signal intensity (SI) of at least 5 standard deviations

(SD) above that of the reference ROI [30]. An infarction with

Table 1. Relationship between Normalized Permittivity and Iron Content.

Normalized
Conductivity Coefficient Standard Error Z P.Z Lower 95% CI Upper 95% CI

[Fe] in mg/g of tissue 0.23 0.24 0.96 0.337 20.24 0.71

Constant 0.86 0.09 9.97 ,0.001 0.69 1.02

doi:10.1371/journal.pone.0073193.t001

Table 2. Relationship between Normalized Permitivity and Iron Content.

Normalized
Permittivity Coefficient Standard Error Z P.Z Lower 95% CI Upper 95% CI

[Fe] in mg/g of tissue 1.34 0.31 4.33 ,0.001 0.73 1.95

Constant 0.94 0.10 9.30 ,0.001 0.74 1.13

doi:10.1371/journal.pone.0073193.t002
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chronic iron deposition (IRON+) was defined as infarcted territory

containing hypointense signal on the T2*-weighted image

acquired at TE of 6.5 ms with mean SI of at least 2SDs below

that of the reference ROI [31,32]. An infarction without iron

deposition (IRON2) was defined as the region positive for

infarction on LGE images, but negative for hypointense signal on

the corresponding T2*-weighted images. The percentage of the

infarcted myocardium (Scar Volume) and myocardium with chronic

iron deposition (Iron Volume) were computed by summing up the

respective slice measures and normalizing by the total left-

ventricular volume.

Electroanatomical Mapping, Analysis and Registration
with CMR Images

Electrophysiological studies were performed within 3–7 days of

the CMR studies in 5 animals under general anesthesia and

mechanical ventilation (protocol same as during CMR). The left

femoral artery was cannulated, and a 64-electrode basket catheter

(nominal diameter 18 mm) with 8 splines, each containing 8 tiny

electrodes (0.4 mm2) spaced at 2.5 mm, center-to-center (Rhyth-

mia Mapping System, Boston Scientific, MA, USA) was

introduced into the left ventricle using the retro-transaortic

approach. The catheter was used to generate ultra-high resolution

endocardial contact electrograms (EGMs; within 2–3 mm spatial

resolution). The surface geometry was mapped using the location

of the outermost electrodes. Only EGMs recorded within 2 mm of

the surface geometry were utilized. Scar areas were defined as

bipolar voltage less than 1 mV [33].

At least three clinical electrophysiology experts analyzed the

EAMs from each animal offline. Given the large number of data

points within and surrounding the scarred myocardium, only

points separated by 1.5–2 mm of one another were manually

validated. The validation process included ensuring catheter

contact and identifying and marking each point of interest for

the presence or absence of isolated late potentials (ILPs). An ILP

was defined as a voltage spike following an isoelectric interval

observed after the end of the QRS complex [34–36].

The LGE and T2* CMR data were registered with the EAMs

using a custom-developed software. The registration process

involved (a) manually segmenting the blood pool of both LGE

and T2* images; (b) constructing a surface that encloses the

segmented blood pool; and (c) manually registering both the LGE

and T2* blood pool surface to the EAM surface using anatomical

landmarks (apex, papillary muscle grooves and aortic root). The

gray scale CMR data was resampled at the vertices of the CMR

blood pool mesh and displayed as a colored 3D surface with colors

corresponding to signal intensity.

Figure 4. Relation between scar features and chronic iron deposition. (A) Representative short-axis LGE and T2*-weighted (TE = 6.5 ms)
images from two canines subjected to MI from Group in vivo – one with chronic iron deposition within the scar territory (Iron (.1.5%)) and another
without chronic iron deposition (Iron (,1.5%)) are shown. Red arrows point to the site of myocardial scar on the LGE images in both the cases and to
chronic iron deposition on the T2*-weighted image. (B) A significant sigmoidal relation was found between scar volume and iron volume (both
computed as a percentage of total LV myocardium; R2 = 0.75, p ,0.001).
doi:10.1371/journal.pone.0073193.g004

Figure 5. Histological Findings. The presence of infarction apparent on TTC staining (A) and iron (B, blue Perl’s stains; black arrows) within
chronic MI and its absence (C, Perl’s stain) in remote sections are shown. Note that the iron deposits are typically found in the interstitial/extracellular
space. The blue and red boxes within the TTC images correspond to the histology sections from infarcted and remote (non-infarcted) regions.
doi:10.1371/journal.pone.0073193.g005
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After registration with the EAMs, the T2* blood pool mesh was

used to manually count the number of ILPs occurring in and

around the infarcted regions with and without iron. This

information was used to derive values for the overall incidence

of ILPs, which were computed as a percentage of ILPs from

regions with and without iron relative to the total number of ILPs

in the infarct territory. To examine the relationship between the

number of ILPs and substrate type and extent, values normalized

by the volume fraction of substrate type in each heart were

computed and averaged across all animals. In particular, the

following calculations were performed: (a) ILP counts from regions

with iron normalized by Iron Volume; (b) ILP counts from regions

without iron normalized by the percentage scar volume without

iron (i.e. Scar Volume – Iron Volume); and (c) the total ILP count

normalized by the percentage of total scar volume (with and

without iron) relative to the total volume of myocardium.

From the EAMs registered with T2* images, number of ILPs

occurring in and around the infarcted regions with and without

iron were manually counted. This information was used to derive

the overall incidence of ILPs, which was computed as a percentage

of ILPs from regions with and without iron relative to the total

number of ILPs. To examine the relationship between number of

ILPs and substrate type and extent, values normalized by the

volume fraction of substrate type in each heart were computed and

averaged across all animals. In particular, the following calcula-

tions were performed: (a) ILP counts from regions with iron

normalized by Iron Volume; (b) ILP counts from regions without

iron normalized by percentage scar without iron (i.e. Scar Volume –

Iron Volume); and (c) the total ILP count normalized by Scar Volume

(i.e. myocardial volume normalized scars with and without iron).

Statistical Analysis
All statistical analyses were performed using SPSS (IBM SPPS

Statistics v21.0, New York, NY, USA). A p value ,0.05 was

considered statistically significant. Bonferroni correction was used

to adjust the significance level for multiple comparisons. Data

normality was assessed using the Shapiro-Wilk test and quantile-

quantile plots. Student’s t-test or mixed-model ANOVA with

Tukey’s post-hoc analysis was used to compare data with normal

distributions. For the mixed model, animals were entered as

random effects, while repeated measurements from the same

animal or heart were entered as fixed effects. Repeated

measurements from a single animal or heart were nested. For

comparing non-normal data, non-parametric Friedman’s test was

used. Mann-Whitney U test was used for pairwise comparisons

among non-normal data.

For the canines from Group ex vivo, ssample and esample were

compared among IRON+, IRON2, and Remote tissue sections.

Mixed-model linear regressions was used to evaluate the

Figure 6. Mean values of important surface ECG parameters over day, night and a 24-hour period from Iron (.1.5%) and Iron
(,1.5%) dogs. The mean values from dogs with and without iron over the period of interest for heart rate (A), QT (B), QTc (C) and QTcd (D) are
shown.
doi:10.1371/journal.pone.0073193.g006
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relationships of ssample and esample with [Fe]sample. A nonlinear

regression analysis was used to examine the relationship between

Iron Volume and Scar Volume.

In order to examine the effect of Iron Volume on the ECG

parameters (HR, QT, QTc and QTcd) with minimal/no

contribution from Scar Volume, animals were divided into two

groups, those with Iron Volume ,1.5% (denoted as Iron (,1.5%))

and those with Iron Volume .1.5% (denoted as Iron (.1.5%)). Only

those animals that showed a direct relationship between Iron

Volume and Scar Volume were included in the analysis (details below).

Mean hourly, day (10:00 hrs to 21:00 hrs), night (21:00 hrs to

09:00 hrs) and 24-hour measurements of HR, QT, QTc, and

QTcd were computed for Iron (,1.5%) and Iron (.1.5%) groups

and compared, as above.

Regression analysis was used to assess the quality of the

registration between CMR and EAMs on the basis of concordance

between scar territories identified on LGE CMR and low voltage

(,1 mV) vertices on bipolar EAMs. The incidence of ILPs was

compared between scar regions with iron and without iron. The

number of ILPs per volume of substrate for scars with only iron

and without iron was also compared.

Results

Effect of Iron Deposition on the Ex-vivo Electrical
Capacitance of Myocardial Infarcts

Of 228 infarcted sections, mass spectrometry analysis identified

177 sections as IRON+ and the remaining 51 sections as IRON2.

There was no significant difference in [Fe]sample between IRON2

and Remote samples (p = 0.31). A set of sample impedance spectra

from IRON+, IRON2, and Remote sections from an animal are

shown in Fig. 2. Mean esample for IRON+ sections was significantly

different from mean esample for IRON2 and Remote tissues

(p,0.001), while esampleof IRON2 and Remote sections were not

statistically different from 1 (p = 0.69; Fig. 3A). Mean ssample was

not significantly different among the different tissue types (Remote

vs IRON+: p = 0.46; Remote vs IRON2: p = 0.77; Fig. 3B).

Averaged across all studies, a mean increase in esample of

approximately 25% in the infarcted territories with iron deposition

was observed, while no change was observed in remote or

infarcted territories without iron. Mixed-effects multi-linear

regression analysis showed a statistically significant relation

between esample and [Fe]sample (esample = 1.34 [Fe]sample +0.93;

p,0.001; Table 1), but not between ssample and [Fe]sample (p = 0.34;

Table 2).

Figure 7. 24-hour Holter ECG recordings from Iron (.1.5%) and Iron (,1.5%) dogs. The mean 24-hour traces showing changes in heart
rate (A), QT (B), QT corrected for heart rate (C), and QTc dispersion (D) are shown for the two different groups of dogs with and without iron
deposition.
doi:10.1371/journal.pone.0073193.g007
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Figure 8. Representative co-registered CMR images and endocardial EAMs showing the association between ILPs and iron
deposition following myocardial infarction. Co-registered late-gadolinium enhancement images projected onto the segmented blood pool
surface (A) with infarcted territory (color coded in red), border zone (yellow and blue shades) and remote territories (purple)) with the corresponding
bipolar map (B, color-coded to indicate low voltage areas) are shown. For reference, an ILP deep within the scar tissue (white arrow) is shown. The
voltage traces from V1 and at the coronary sinus (CS), along with bipolar and unipolar mapping traces are also shown. Note the presence of an
isolated low-voltage sharp late potential in the bipolar and unipolar traces following the local ventricular activation (yellow arrow) in C. The activation
map (D), a map of the ILPs (E), and iron containing regions (in red, F) are also shown for reference. Note that iron-containing regions have a greater
incidence of ILPs and slow activation regions.
doi:10.1371/journal.pone.0073193.g008

Figure 9. Dependence on the probability of observing ILPs based on substrate type and number of ILPS relative to substrate
burden visualized on the basis of co-registered EAM and CMR images (LGE and T2*). (A) Shows the overall incidence of ILPs (fraction of
the total) that were coincident with regions containing iron (IRON+) and regions without iron (IRON2). (B) Shows the mean number of ILPs per
volume of substrate, with the substrate being the total scar (i.e., scar with and without iron), scarred regions with iron (IRON+) and scarred regions
without iron (IRON2).
doi:10.1371/journal.pone.0073193.g009
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In-vivo Studies
All 10 animals were positive for infarction and survived the

CMR study. CMR studies showed iron depositions to be within

the infarcted tissue. Specifically, the imaging studies showed that

the iron deposition began at the subendocardium but did not

extend beyond the mid wall. In addition, regression analysis

between the Scar Volume and Iron Volume showed a sigmoidal

relationship (R2 = 0.75, p,0.001, Fig. 4), indicating that Iron

Volume is small when Scar Volume is small (,5%), rapidly

increasing at intermediate levels of scar (5–12%) and reaching

a plateau with any additional increases in Scar Volume.

Representative results from gross TTC staining and histological

staining for iron are shown in Fig. 5.

Surface ECG Recordings. To minimize the confounding

effects of Scar Volume on ECG parameters [37,38], in total 7 out

of the 10 animals that underwent surface ECG recordings (n = 3 in

Iron (,1.5%) and n = 4 in Iron (.1.5%)) were studied. The

animals with the extreme values of Scar Volume (i.e. on the

plateau regions of the sigmoidal response curve, Fig. 4) were not

included as part of the analysis. The mean Iron Volume of the two

groups were: 1.12%60.64% (Iron (,1.5%)) vs 2.47%60.64%

(Iron (.1.5%)), p = 0.02; and the mean Scar Volume of the two

groups were: 7.28%61.02% (Iron (,1.5%)) vs 8.35%62.98%

(Iron (.1.5%)), p = 0.51. Mean HR, QT, QTc, and QTcd values

obtained during day, night, and over 24 hours are shown in Fig. 6.

Mean hourly tracings of HR, QT, QTc, and QTcd over the 24-

hour period are shown in Fig. 7. QT, QTc and QTcd showed

statistically significant differences between Iron (,1.5%) and Iron

(.1.5%) groups. In particular, mean HR was not different

between Iron (.1.5%) and Iron (,1.5%) groups during the day

(77.9617.0 beats/min vs 78.1617.1 beats/min, p = 0.51), night

(88.767.4 beats/min vs 86.9613.4 beats/min, p = 0.73), or 24-

hour period (83.3614.0 beats/min vs 82.6615.8 beats/min,

p = 0.72). Mean QT was significantly different between Iron

(.1.5%) and Iron (,1.5%) during the day (263.067.2 ms vs

255.969.17 ms, p,0.001), night (278.8610.9 ms vs

265.969.3 ms, p,0.001), and 24-hour period (270.9612.1 ms

vs 260.9610.4 ms, p,0.001). Similarly, mean QTc was signifi-

cantly different between Iron (.1.5%) and Iron (,1.5%) during

the day (321.867.1 ms vs 308.9613.1 ms, p,0.001), night

(302.369.5 ms vs 289.1612.8 ms, p,0.001), and 24-hour period

(312.0612.9 ms vs 298.9616.1 ms, p,0.001). In addition, mean

QTcd was also significantly different between Iron (.1.5%) and

Iron (,1.5%) during the day (92.4625.8 ms vs 114.969.17 ms,

p,0.01), night (100.4635.0 ms vs 115.4625.3 ms, p = 0.04), and

24-hour period (96.4630.3 ms vs 115.1623.5 ms, p,0.001).

Electroanatomical Mapping Measurements. Of the 5

animals that underwent EAMs, one animal died during the

mapping procedure from spontaneous and sustained ventricular

tachycardia, despite cardioversion efforts. Regression analysis of

the scar size and location performed between CMR and EAM

were highly correlated (R2 = 0.77, p,0.05), indicating that the

registration between the two imaging modalities was significant.

Averaged across all animals, 770562212 electrograms (EGMs)

were recorded and 15776982 EGMs were manually validated on

each map in and around the scar. A representative set of EAMs

(bipolar voltage, bipolar activation and ILP maps) co-registered

with CMR (LGE and T2*) is shown in Fig. 8. On average, a total

of 158679 ILPs were observed in each dog, and 99658 of them

were co-registered with scar regions containing iron and 59628

were from scar regions without iron. The overall mean incidence

of ILPs in scar regions containing iron was greater than that from

regions without iron (Fig. 9A), but did not reach statistical

significance (p = 0.21). Similarly, the mean number of ILPs from

regions containing iron, normalized by the percentage of scar

volume containing iron, was larger than the mean number of ILPs

from regions not containing iron, normalized by percentage of scar

volume without iron; and the same observation was made for the

mean number of total ILPs normalized by total scar volume

(Fig. 9B). However these metrics also did not reach statistical

significance (p = 0.12).

Discussion

In this work, we investigated the effect of chronic iron

deposition within infarcted myocardium on the electrical behavior

of the heart. From ex-vivo electrical measurements in canine

myocardium, we showed that one of the consequences of chronic

iron deposition within the infarcted zones is the elevation in

electrical permittivity (e) of the infarcted myocardium, which is

commensurate with the extent of iron deposition. The bulk

electrical measurements also showed that the iron deposition

within the infarcted tissue leads to an elevation in electrical

permittivity, without a concomitant change in electrical conduc-

tivity (s). From surface ECG recordings of animals with different

Iron Volume but similar Scar Volume, we found that QT and QTc

interval were consistently longer in Iron (.1.5%) group compared

to Iron (,1.5%) during the 24-hour period, day, and night; but

QTcd was reduced during day, night and the 24-hour period in

Iron (.1.5%) group compared to Iron (,1.5%) group. Ultra-high

resolution LV endocardial EAMs, co-registered with CMR

images, showed a greater incidence of ILPs in regions of scar

with iron accumulation than those without iron accumulation.

Moreover, there was a tendency for the mean number of ILPs

observed per unit volume of scar with iron to be greater than those

observed per unit volume of scar without iron or total scar burden.

Biogenic magnetite (hemosiderin) is known to have the highest

electrical conductivity of any cellular material [39]. Thus, based

on previous reports on composite material properties [19], we

expected to find that scar tissue with iron deposits to have a greater

e compared to scar tissue without iron (a dielectric). Since the

observed changes in e were not accompanied by changes in s, it

appears that the effect of iron deposition is to transform the

infarcted territory into a capacitor [40]. Currently it is unclear how

these alterations in electrical tissue properties mediate the observed

changes in surface ECG parameters and EAMs. We anticipate

that theoretical modeling may provide mechanistic insight into

how or whether these tissue-specific electrical changes mediate

alterations in electrical activity in-vivo. Such models need to take

into account that the iron deposits following MI are found in the

interstitial space and that measurements of e and s that are

reported here were collected in ex-vivo preparations. Moreover,

since iron has been known to induce an inflammatory burden on

the surrounding myocardium [23], factors other than changes in e
may also explain the electrical changes observed in vivo.

Additional studies are needed to explore the mechanism by which

iron mediates electrical anomalies in vivo.

We observed the rise in the heart rate during the early morning

hours was slower in Iron (.1.5%) dogs than in Iron (,1.5%) dogs

(Fig. 7A). In addition, we also found marked prolongation in QT

and QTc among Iron (.1.5%) dogs hearts during the day, night

and 24 hours compared to Iron (,1.5%) dogs. These differences

may be examined in the context of previous studies that attempted

to discriminate between sudden cardiac death (SCD) victims and

MI survivors in the post infarction period. First, the slow rate of

increase in heart rate in SCD victims compared to MI survivors

has been reported in the waking hours [41]. Second, marked

changes in QTc patterns between SCD victims and MI survivors
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PLOS ONE | www.plosone.org 9 September 2013 | Volume 8 | Issue 9 | e73193



have also been reported. In fact, prolongation in QTc has been

strongly associated with SCD [42]. These collective observations

suggest that hearts with significant iron deposition (Iron(.1.5%))

may be more susceptible to arrhythmias than hearts with minimal

or no iron (Iron (,1.5%)).

ILPs have been shown to be substrates for ventricular

arrhythmias in the post infarction phase [43–45]. In particular,

ILPs are known to emerge from border zones and within the dense

scar [46,47]. The source of such ILPs has been associated with

surviving myocardial bundles within the infarct region, but

whether these bundles are indeed the only source of arrhythmias

is unclear. In this study, based on CMR and EAM, we

demonstrated that dense scar regions with iron deposits have a

greater prevalence of ILPs than scarred regions without iron. In

addition, this study showed that the number of ILPs per

percentage volume of substrate (total scar, scar without iron and

scar with iron) is greatest when the substrate is scar with iron. The

mechanistic underpinnings contributing to the association between

iron accumulations and ILPs in dense scar is not clear. While we

speculate that changes in electrical capacitance may explain the

isolated potential in the repolarization phase of the cardiac cycle,

further studies are necessary to understand how the iron deposits

couple with the endogenous electrical activity of the heart to

mediate the observed electrical anomalies.

Finally, recent studies [37,38,48–50] have shown that although

infarct volume is a predictor of arrhythmias, the incidence of

arrhythmias measured as percentage of arrhythmia-related deaths

or implantable cardio-defibrillator (ICD) discharge, plateaus

beyond a particular scar volume. Specifically, these studies have

shown that the incidence of arrhythmias at a Scar Volume of less

than 5% to be small, increasing rapidly between 5–10% and then

plateauing above 10%. Importantly, these studies showed that the

risk of developing arrhythmias increases from 10% (for scar

volume ,5%) to approximately 40–50% (for scar volume 5–10%).

Our analysis showed that for animals within this domain (i.e, 5%

, scar volume ,10%), it is possible to resolve two groups of dogs

with similar scar volumes but with markedly different iron

volumes. In fact, our study showed that when animals are

dichotomized on the basis of iron volume within this range of scar

volumes, the critical ECG parameters of repolarization in animals

with markedly higher iron content showed significant prolongation

of QT and QTc, as well as shortening of QTcd. Notably, such

directional changes, particularly in QTc, have been previously

associated with increased risk of ventricular arrhythmias in

humans [41,42]. In addition, it is has been shown that

arrhythmogenic substrate is typically found between the sub-

endocardium and the mid-wall [51,52], an observation that is

consistent with the spatial distribution of iron deposits in the

chronic infarction. These observations suggest that the extent of

iron deposition may be a better predictor of arrhythmias.

However, further studies are necessary to translate our findings

to the clinical arena.

Collectively taken, our findings from these studies showed that

the electrical behavior of infarcts with iron is different from infarcts

without iron. These observations point to the plausibility that iron

within myocardial scar may serve as a substrate for ventricular

arrhythmias in the chronic phase of the infarction period.

Additional studies are warranted to understand the mechanism

by which iron can potentially mediate arrhythmias. In this respect,

it would be of significant interest to understand whether and/or

how the iron deposits within the infarcted zones can electrically

interact with the surrounding healthy myocardium.

Limitations
This is the first study to evaluate the effects of iron in the post-

infarction scar using ex-vivo measurements, surface ECG record-

ings and EAM. However, this study has some limitations. First,

given the lack of a better method, electrical measurements of the

tissue samples isolated from the same slice were weight averaged in

order to examine relationships between e and s with iron. Implicit

in these estimated relationships are that the iron is uniformly

deposited within IRON+ infarcts, which may not be accurate. To

what extent the heterogeneity of iron deposition affects the local

electrical measures remains to be investigated. Topographic

current density images of infarcted tissues would be ideally suited

to such an investigation. However, the standard conductive atomic

force microscopy (C-AFM) typically used for generating current

density maps in spatially extended media has practical limitations

for use with fragile biological tissues such as the myocardium.

Moreover, measurements of e and s in tissue with and without

iron were made from ex-vivo sections, which only account for the

extracellular characteristics. Further studies are needed to address

the in-vivo effect of iron burden on electrical impedance. Third,

this study did not explore mechanistic insight into how the iron

deposition in the post infarction period mediates electrical

anomalies. Additional studies are needed to explore this limitation.

Fourth, the surface ECG recordings were limited to a 24-hour

period but longer recordings have the potential to further confirm

our 24-hour observations. In addition, while the metrics used to

evaluate the mean difference in the overall incidence of ILPs and

ILP count relative to substrate burden tended to be greatly

influenced by the presence and extent of iron deposits, they did not

reach statistical significance, likely because of small sample size.

Studies with larger sample size may establish statistical signifi-

cance. Finally, while this study demonstrated the possibility that

iron depositions in the chronic infarction induce electrical

anomalies in dogs, its effect on the electrical behavior in humans

following myocardial infarction remains to be investigated.

However, if these findings can be extended to humans, iron may

evolve as a novel arrhythmogenic substrate and T2* CMR can be

used to noninvasively guide appropriate patient selection for ICD

placements.
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