606 research outputs found

    Simple non-mydriatic retinal photography is feasible and demonstrates retinal microvascular dilation in Chronic Obstructive Pulmonary Disease (COPD).

    Get PDF
    BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) is associated with an increased risk of myocardial infarction and stroke but it remains unclear how to identify microvascular changes in this population. OBJECTIVES: We hypothesized that simple non-mydriatic retinal photography is feasible and can be used to assess microvascular damage in COPD. METHODS: Novel Vascular Manifestations of COPD was a prospective study comparing smokers with and without COPD, matched for age. Non-mydriatic, retinal fundus photographs were assessed using semi-automated software. RESULTS: Retinal images from 24 COPD and 22 control participants were compared. Cases were of similar age to controls (65.2 vs. 63.1 years, p = 0.38), had significantly lower Forced Expiratory Volume in one second (FEV1) (53.4 vs 100.1% predicted; p < 0.001) and smoked more than controls (41.7 vs. 29.6 pack years; p = 0.04). COPD participants had wider mean arteriolar (155.6 ±15 uM vs. controls [142.2 ± 12 uM]; p = 0.002) and venular diameters (216.8 ±20.7 uM vs. [201.3± 19.1 uM]; p = 0.012). Differences in retinal vessel caliber were independent of confounders, odds ratios (OR) = 1.08 (95% confidence intervals [CI] = 1.02, 1.13; p = 0.007) and OR = 1.05 (CI = 1.01, 1.09; p = 0.011) per uM increase in arteriolar and venular diameter respectively. FEV1 remained significantly associated with retinal vessel dilatation r = -0.39 (p = 0.02). CONCLUSIONS: Non-mydriatic retinal imaging is easily facilitated. We found significant arteriole and venous dilation in COPD compared to age-matched smokers without COPD associated with lung function independent of standard cardiovascular risk factors. Retinal microvascular changes are known to be strongly associated with future vascular events and retinal photography offers potential to identify this risk. TRIAL REGISTRATION: clinicaltrials.gov NCT02060292

    Automated Fovea Detection Based on Unsupervised Retinal Vessel Segmentation Method

    Get PDF
    The Computer Assisted Diagnosis systems could save workloads and give objective diagnostic to ophthalmologists. At first level of automated screening of systems feature extraction is the fundamental step. One of these retinal features is the fovea. The fovea is a small fossa on the fundus, which is represented by a deep-red or red-brown color in color retinal images. By observing retinal images, it appears that the main vessels diverge from the optic nerve head and follow a specific course that can be geometrically modeled as a parabola, with a common vertex inside the optic nerve head and the fovea located along the apex of this parabola curve. Therefore, based on this assumption, the main retinal blood vessels are segmented and fitted to a parabolic model. With respect to the core vascular structure, we can thus detect fovea in the fundus images. For the vessel segmentation, our algorithm addresses the image locally where homogeneity of features is more likely to occur. The algorithm is composed of 4 steps: multi-overlapping windows, local Radon transform, vessel validation, and parabolic fitting. In order to extract blood vessels, sub-vessels should be extracted in local windows. The high contrast between blood vessels and image background in the images cause the vessels to be associated with peaks in the Radon space. The largest vessels, using a high threshold of the Radon transform, determines the main course or overall configuration of the blood vessels which when fitted to a parabola, leads to the future localization of the fovea. In effect, with an accurate fit, the fovea normally lies along the slope joining the vertex and the focus. The darkest region along this line is the indicative of the fovea. To evaluate our method, we used 220 fundus images from a rural database (MUMS-DB) and one public one (DRIVE). The results show that, among 20 images of the first public database (DRIVE) we detected fovea in 85% of them. Also for the MUMS-DB database among 200 images we detect fovea correctly in 83% on them

    AutoMorph: Automated Retinal Vascular Morphology Quantification Via a Deep Learning Pipeline

    Get PDF
    Purpose: To externally validate a deep learning pipeline (AutoMorph) for automated analysis of retinal vascular morphology on fundus photographs. AutoMorph has been made publicly available, facilitating widespread research in ophthalmic and systemic diseases. Methods: AutoMorph consists of four functional modules: image preprocessing, image quality grading, anatomical segmentation (including binary vessel, artery/vein, and optic disc/cup segmentation), and vascular morphology feature measurement. Image quality grading and anatomical segmentation use the most recent deep learning techniques. We employ a model ensemble strategy to achieve robust results and analyze the prediction confidence to rectify false gradable cases in image quality grading. We externally validate the performance of each module on several independent publicly available datasets. Results: The EfficientNet-b4 architecture used in the image grading module achieves performance comparable to that of the state of the art for EyePACS-Q, with an F1-score of 0.86. The confidence analysis reduces the number of images incorrectly assessed as gradable by 76%. Binary vessel segmentation achieves an F1-score of 0.73 on AV-WIDE and 0.78 on DR HAGIS. Artery/vein scores are 0.66 on IOSTAR-AV, and disc segmentation achieves 0.94 in IDRID. Vascular morphology features measured from the AutoMorph segmentation map and expert annotation show good to excellent agreement. Conclusions: AutoMorph modules perform well even when external validation data show domain differences from training data (e.g., with different imaging devices). This fully automated pipeline can thus allow detailed, efficient, and comprehensive analysis of retinal vascular morphology on color fundus photographs. Translational Relevance: By making AutoMorph publicly available and open source, we hope to facilitate ophthalmic and systemic disease research, particularly in the emerging field of oculomics

    Supervised machine learning based multi-task artificial intelligence classification of retinopathies

    Full text link
    Artificial intelligence (AI) classification holds promise as a novel and affordable screening tool for clinical management of ocular diseases. Rural and underserved areas, which suffer from lack of access to experienced ophthalmologists may particularly benefit from this technology. Quantitative optical coherence tomography angiography (OCTA) imaging provides excellent capability to identify subtle vascular distortions, which are useful for classifying retinovascular diseases. However, application of AI for differentiation and classification of multiple eye diseases is not yet established. In this study, we demonstrate supervised machine learning based multi-task OCTA classification. We sought 1) to differentiate normal from diseased ocular conditions, 2) to differentiate different ocular disease conditions from each other, and 3) to stage the severity of each ocular condition. Quantitative OCTA features, including blood vessel tortuosity (BVT), blood vascular caliber (BVC), vessel perimeter index (VPI), blood vessel density (BVD), foveal avascular zone (FAZ) area (FAZ-A), and FAZ contour irregularity (FAZ-CI) were fully automatically extracted from the OCTA images. A stepwise backward elimination approach was employed to identify sensitive OCTA features and optimal-feature-combinations for the multi-task classification. For proof-of-concept demonstration, diabetic retinopathy (DR) and sickle cell retinopathy (SCR) were used to validate the supervised machine leaning classifier. The presented AI classification methodology is applicable and can be readily extended to other ocular diseases, holding promise to enable a mass-screening platform for clinical deployment and telemedicine.Comment: Supplemental material attached at the en

    Towards Complete Ocular Disease Diagnosis in Color Fundus Image

    Get PDF
    Non-invasive assessment of retinal fundus image is well suited for early detection of ocular disease and is facilitated more by advancements in computed vision and machine learning. Most of the Deep learning based diagnosis system gives just a diagnosis(absence or presence) of a certain number of diseases without hinting the underlying pathological abnormalities. We attempt to extract such pathological markers, as an ophthalmologist would do, in this thesis and pave a way for explainable diagnosis/assistance task. Such abnormalities can be present in various regions of a fundus image including vasculature, Optic Nerve Disc/Cup, or even in non-vascular region. This thesis consist of series of novel techniques starting from robust retinal vessel segmentation, complete vascular topology extraction, and better ArteryVein classification. Finally, we compute two of the most important vascular anomalies-arteryvein ratio and vessel tortuosity. While most of the research focuses on vessel segmentation, and artery-vein classification, we have successfully advanced this line of research one step further. We believe it can be a very valuable framework for future researcher working on automated retinal disease diagnosis

    Retinal Image Analysis: A Review

    Get PDF
    Images of the eye ground or retina not only provide an insight to important parts of the visual system but also reflect the general state of health of the entire human body. Automated retina image analysis is becoming an important screening tool for early detection of certain risks and diseases like diabetic retinopathy, hypertensive retinopathy, age related macular degeneration, glaucoma etc. This can in turn be used to reduce human errors or to provide services to remote areas. In this review paper, we discuss some of the current techniques used to automatically detect the important clinical features of retinal image, such as the blood vessels, optic disc and macula. The quantitative analysis and measurements of these features can be used to better understand the relationship between various diseases and the retinal features
    • …
    corecore