182 research outputs found

    Dissociating memory networks in early Alzheimer's disease and frontotemporal lobar degeneration - a combined study of hypometabolism and atrophy

    Get PDF
    Introduction: We aimed at dissociating the neural correlates of memory disorders in Alzheimer’s disease (AD) and frontotemporal lobar degeneration (FTLD). Methods: We included patients with AD (n = 19, 11 female, mean age 61 years) and FTLD (n = 11, 5 female, mean age 61 years) in early stages of their diseases. Memory performance was assessed by means of verbal and visual memory subtests from the Wechsler Memory Scale (WMS-R), including forgetting rates. Brain glucose utilization was measured by [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) and brain atrophy by voxel-based morphometry (VBM) of T1-weighted magnetic resonance imaging (MRI) scans. Using a whole brain approach, correlations between test performance and imaging data were computed separately in each dementia group, including a group of control subjects (n = 13, 6 female, mean age 54 years) in both analyses. The three groups did not differ with respect to education and gender. Results: Patients in both dementia groups generally performed worse than controls, but AD and FTLD patients did not differ from each other in any of the test parameters. However, memory performance was associated with different brain regions in the patient groups, with respect to both hypometabolism and atrophy: Whereas in AD patients test performance was mainly correlated with changes in the parieto-mesial cortex, performance in FTLD patients was correlated with changes in frontal cortical as well as subcortical regions. There were practically no overlapping regions associated with memory disorders in AD and FTLD as revealed by a conjunction analysis. Conclusion: Memory test performance may not distinguish between both dementia syndromes. In clinical practice, this may lead to misdiagnosis of FTLD patients with poor memory performance. Nevertheless, memory problems are associated with almost completely different neural correlates in both dementia syndromes. Obviously, memory functions are carried out by distributed networks which break down in brain degeneration

    How predictive are temporal lobe changes of underlying TDP-43 pathology in the ALS-FTD continuum?

    Get PDF
    Detection of underling proteinopathies is becoming increasingly important across neurodegenerative conditions due to upcoming disease intervention trials. In this review, we explored how temporal lobe changes in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) can potentially predict underlying TDP-43 pathology subtypes in FTD. To date, emphasis has been given to frontal lobe changes in the study of the cognitive and behavioural impairments in both syndromes but an increasing number of pathological, imaging and neuropsychological studies suggest how temporal lobe changes could critically affect the cognition and behaviour of these conditions. In this current article, we reviewed pathological, imaging as well as clinical/neuropsychological findings of temporal involvement in the ALS-FTD continuum, how they relate to temporal lobe changes and the underlying TDP-43 pathology in FTD. Findings across studies show that TDP-43 pathology occurs and coincides in many structures in ALS and FTD, but especially in the temporal lobes. In particular, anterior and medial temporal lobes atrophy is consistently found in ALS and FTD. In addition, memory and language impairment as well as emotional and Theory of Mind (ToM) processing deficits that are characteristics of the two diseases are highly correlated to temporal lobe dysfunction. We conclude by showing that temporal lobe changes due to TDP-43 type B might be particular predictive of TDP-43 type B pathology in behavioural variant FTD (bvFTD), which clearly needs to be investigated further in the future

    Structural anatomical investigation of long-term memory deficit in behavioural frontotemporal dementia

    Get PDF
    Although a growing body of work has shown that behavioral variant frontotemporal dementia (bvFTD) could present with severe amnesia in approximately half of cases, memory assessment is currently the clinical standard to distinguish bvFTD from Alzheimer's disease (AD). Thus, the concept of "relatively preserved episodic memory" in bvFTD remains the basis of its clinical distinction from AD and a criterion for bvFTD's diagnosis. This view is supported by the idea that bvFTD is not characterized by genuine amnesia and hippocampal degeneration, by contrast to AD. In this multicenter study, we aimed to investigate the neural correlates of memory performance in bvFTD as assessed by the Free and Cued Selective Reminding Test (FCSRT). Imaging explorations followed a two-step procedure, first relying on a visual rating of atrophy of 35 bvFTD and 34ADpatients' MRI, contrasted with 29 controls; and then using voxel-based morphometry (VBM) in a subset of bvFTD patients. Results showed that 43% of bvFTD patients presented with a genuine amnesia. Data-driven analysis on visual rating data showed that, in bvFTD, memory recall & storage performances were significantly predicted by atrophy in rostral prefrontal and hippocampal/perihippocampal regions, similar to mild AD. VBM results in bvFTD (p(FWE)<0.05) showed similar prefrontal and hippocampal regions in addition to striatal and lateral temporal involvement. Our findingsDistALZ CONICET CONICYT/FONDECYT 1170010 1160940 FONCyT, PICT 2012-0412 2012-1309 CONICYT/FONDAP 15150012 INECO Foundatio

    Semantic Dementia: a specific network-opathy

    Get PDF
    Semantic dementia (SD) is a unique syndrome in the frontotemporal lobar degeneration spectrum. Typically presenting as a progressive, fluent anomic aphasia, SD is the paradigmatic disorder of semantic memory with a characteristic anatomical profile of asymmetric, selective antero-inferior temporal lobe atrophy. Histopathologically, most cases show a specific pattern of abnormal deposition of protein TDP-43. This relatively close clinical, anatomical and pathological correspondence suggests SD as a promising target for future therapeutic trials. Here, we discuss outstanding nosological and neurobiological challenges posed by the syndrome and propose a pathophysiological model of SD based on sequential, regionally determined disintegration of a vulnerable neural network

    Clinical, anatomical and pathological features in the three variants of primary progressive aphasia : a review

    Get PDF
    Primary progressive aphasias (PPA) are neurodegenerative diseases clinically characterized by an early and relatively isolated language impairment. Three main clinical variants, namely the nonfluent/agrammatic variant (nfvPPA), the semantic variant (svPPA), and the logopenic variant (lvPPA) have been described, each with specific linguistic/cognitive deficits, corresponding anatomical and most probable pathological features. Since the discovery and the development of diagnostic criteria for the PPA variants by the experts in the field, significant progress has been made in the understanding of these diseases. This review aims to provide an overview of the literature on each of the PPA variant in terms of their clinical, anatomical and pathological features, with a specific focus on recent findings. In terms of clinical advancements, recent studies have allowed a better characterization and differentiation of PPA patients based on both their linguistic and non-linguistic profiles. In terms of neuroimaging, techniques such as diffusion imaging and resting-state fMRI have allowed a deeper understanding of the impact of PPA on structural and functional connectivity alterations beyond the well-defined pattern of regional gray matter atrophy. Finally, in terms of pathology, despite significant advances, clinico-pathological correspondence in PPA remains far from absolute. Nonetheless, the improved characterization of PPA has the potential to have a positive impact on the management of patients. Improved reliability of diagnoses and the development of reliable in vivo biomarkers for underlying neuropathology will also be increasingly important in the future as trials for etiology-specific treatments become available

    Contrasting prefrontal cortex contributions to episodic memory dysfunction in behavioural variant frontotemporal dementia and alzheimer's disease

    Get PDF
    Recent evidence has questioned the integrity of episodic memory in behavioural variant frontotemporal dementia (bvFTD), where recall performance is impaired to the same extent as in Alzheimer's disease (AD). While these deficits appear to be mediated by divergent patterns of brain atrophy, there is evidence to suggest that certain prefrontal regions are implicated across both patient groups. In this study we sought to further elucidate the dorsolateral (DLPFC) and ventromedial (VMPFC) prefrontal contributions to episodic memory impairment in bvFTD and AD. Performance on episodic memory tasks and neuropsychological measures typically tapping into either DLPFC or VMPFC functions was assessed in 22 bvFTD, 32 AD patients and 35 age- and education-matched controls. Behaviourally, patient groups did not differ on measures of episodic memory recall or DLPFC-mediated executive functions. BvFTD patients were significantly more impaired on measures of VMPFC-mediated executive functions. Composite measures of the recall, DLPFC and VMPFC task scores were covaried against the T1 MRI scans of all participants to identify regions of atrophy correlating with performance on these tasks. Imaging analysis showed that impaired recall performance is associated with divergent patterns of PFC atrophy in bvFTD and AD. Whereas in bvFTD, PFC atrophy covariates for recall encompassed both DLPFC and VMPFC regions, only the DLPFC was implicated in AD. Our results suggest that episodic memory deficits in bvFTD and AD are underpinned by divergent prefrontal mechanisms. Moreover, we argue that these differences are not adequately captured by existing neuropsychological measures

    Frontotemporal Dementias: A Review

    Get PDF
    Dementia is a clinical state characterized by loss of function in multiple cognitive domains. It is a costly disease in terms of both personal suffering and economic loss. Frontotemporal dementia (FTD) is the term now preferred over Picks disease to describe the spectrum of non-Alzheimers dementias characterized by focal atrophy of the frontal and anterior temporal regions of the brain. The prevalence of FTD is considerable, though specific figures vary among different studies. It occurs usually in an age range of 35–75 and it is more common in individuals with a positive family history of dementia. The risk factors associated with this disorder include head injury and family history of FTD. Although there is some controversy regarding the further syndromatic subdivision of the different types of FTD, the three major clinical presentations of FTD include: 1) a frontal or behavioral variant (FvFTD), 2) a temporal, aphasic variant, also called Semantic dementia (SD), and 3) a progressive aphasia (PA). These different variants differ in their clinical presentation, cognitive deficits, and affected brain regions. Patients with FTD should have a neuropsychiatric assessment, neuropsychological testing and neuroimaging studies to confirm and clarify the diagnosis. Treatment for this entity consists of behavioral and pharmacological approaches. Medications such as serotonin reuptake inhibitors, antipsychotics, mood stabilizer and other novel treatments have been used in FTD with different rates of success. Further research should be directed at understanding and developing new diagnostic and therapeutic modalities to improve the patients' prognosis and quality of life

    A cognitive chameleon: lessons from a novel MAPT mutation case.

    Get PDF
    We report a case of frontotemporal dementia caused by a novel MAPT mutation (Q351R) with a remarkably long amnestic presentation mimicking familial Alzheimer's disease. Longitudinal clinical, neuropsychological and imaging data provide convergent evidence for predominantly bilateral anterior medial temporal lobe involvement consistent with previously established neuroanatomical signatures of MAPT mutations. This case supports the notion that the neural network affected in MAPT mutations is determined to a large extent by the underlying molecular pathology. We discuss the diagnostic significance of anomia in the context of atypical amnesia and the impact of impaired episodic and semantic memory systems on autobiographical memory
    • …
    corecore