45 research outputs found

    Payoffs and pitfalls in using knowledge‑bases for consumer health search

    Get PDF
    Consumer health search (CHS) is a challenging domain with vocabulary mismatch and considerable domain expertise hampering peoples’ ability to formulate effective queries. We posit that using knowledge bases for query reformulation may help alleviate this problem. How to exploit knowledge bases for effective CHS is nontrivial, involving a swathe of key choices and design decisions (many of which are not explored in the literature). Here we rigorously empirically evaluate the impact these different choices have on retrieval effectiveness. A state-of-the-art knowledge-base retrieval model—the Entity Query Feature Expansion model—was used to evaluate these choices, which include: which knowledge base to use (specialised vs. general purpose), how to construct the knowledge base, how to extract entities from queries and map them to entities in the knowledge base, what part of the knowledge base to use for query expansion, and if to augment the knowledge base search process with relevance feedback. While knowledge base retrieval has been proposed as a solution for CHS, this paper delves into the finer details of doing this effectively, highlighting both payoffs and pitfalls. It aims to provide some lessons to others in advancing the state-of-the-art in CHS

    Text Mining the History of Medicine

    Get PDF
    Historical text archives constitute a rich and diverse source of information, which is becoming increasingly readily accessible, due to large-scale digitisation efforts. However, it can be difficult for researchers to explore and search such large volumes of data in an efficient manner. Text mining (TM) methods can help, through their ability to recognise various types of semantic information automatically, e.g., instances of concepts (places, medical conditions, drugs, etc.), synonyms/variant forms of concepts, and relationships holding between concepts (which drugs are used to treat which medical conditions, etc.). TM analysis allows search systems to incorporate functionality such as automatic suggestions of synonyms of user-entered query terms, exploration of different concepts mentioned within search results or isolation of documents in which concepts are related in specific ways. However, applying TM methods to historical text can be challenging, according to differences and evolutions in vocabulary, terminology, language structure and style, compared to more modern text. In this article, we present our efforts to overcome the various challenges faced in the semantic analysis of published historical medical text dating back to the mid 19th century. Firstly, we used evidence from diverse historical medical documents from different periods to develop new resources that provide accounts of the multiple, evolving ways in which concepts, their variants and relationships amongst them may be expressed. These resources were employed to support the development of a modular processing pipeline of TM tools for the robust detection of semantic information in historical medical documents with varying characteristics. We applied the pipeline to two large-scale medical document archives covering wide temporal ranges as the basis for the development of a publicly accessible semantically-oriented search system. The novel resources are available for research purposes, while the processing pipeline and its modules may be used and configured within the Argo TM platform

    Disease Ontology: a backbone for disease semantic integration

    Get PDF
    The Disease Ontology (DO) database (http://disease-ontology.org) represents a comprehensive knowledge base of 8043 inherited, developmental and acquired human diseases (DO version 3, revision 2510). The DO web browser has been designed for speed, efficiency and robustness through the use of a graph database. Full-text contextual searching functionality using Lucene allows the querying of name, synonym, definition, DOID and cross-reference (xrefs) with complex Boolean search strings. The DO semantically integrates disease and medical vocabularies through extensive cross mapping and integration of MeSH, ICD, NCI's thesaurus, SNOMED CT and OMIM disease-specific terms and identifiers. The DO is utilized for disease annotation by major biomedical databases (e.g. Array Express, NIF, IEDB), as a standard representation of human disease in biomedical ontologies (e.g. IDO, Cell line ontology, NIFSTD ontology, Experimental Factor Ontology, Influenza Ontology), and as an ontological cross mappings resource between DO, MeSH and OMIM (e.g. GeneWiki). The DO project (http://diseaseontology.sf.net) has been incorporated into open source tools (e.g. Gene Answers, FunDO) to connect gene and disease biomedical data through the lens of human disease. The next iteration of the DO web browser will integrate DO's extended relations and logical definition representation along with these biomedical resource cross-mappings

    Knowledge-driven entity recognition and disambiguation in biomedical text

    Get PDF
    Entity recognition and disambiguation (ERD) for the biomedical domain are notoriously difficult problems due to the variety of entities and their often long names in many variations. Existing works focus heavily on the molecular level in two ways. First, they target scientific literature as the input text genre. Second, they target single, highly specialized entity types such as chemicals, genes, and proteins. However, a wealth of biomedical information is also buried in the vast universe of Web content. In order to fully utilize all the information available, there is a need to tap into Web content as an additional input. Moreover, there is a need to cater for other entity types such as symptoms and risk factors since Web content focuses on consumer health. The goal of this thesis is to investigate ERD methods that are applicable to all entity types in scientific literature as well as Web content. In addition, we focus on under-explored aspects of the biomedical ERD problems -- scalability, long noun phrases, and out-of-knowledge base (OOKB) entities. This thesis makes four main contributions, all of which leverage knowledge in UMLS (Unified Medical Language System), the largest and most authoritative knowledge base (KB) of the biomedical domain. The first contribution is a fast dictionary lookup method for entity recognition that maximizes throughput while balancing the loss of precision and recall. The second contribution is a semantic type classification method targeting common words in long noun phrases. We develop a custom set of semantic types to capture word usages; besides biomedical usage, these types also cope with non-biomedical usage and the case of generic, non-informative usage. The third contribution is a fast heuristics method for entity disambiguation in MEDLINE abstracts, again maximizing throughput but this time maintaining accuracy. The fourth contribution is a corpus-driven entity disambiguation method that addresses OOKB entities. The method first captures the entities expressed in a corpus as latent representations that comprise in-KB and OOKB entities alike before performing entity disambiguation.Die Erkennung und Disambiguierung von EntitĂ€ten fĂŒr den biomedizinischen Bereich stellen, wegen der vielfĂ€ltigen Arten von biomedizinischen EntitĂ€ten sowie deren oft langen und variantenreichen Namen, große Herausforderungen dar. Vorhergehende Arbeiten konzentrieren sich in zweierlei Hinsicht fast ausschließlich auf molekulare EntitĂ€ten. Erstens fokussieren sie sich auf wissenschaftliche Publikationen als Genre der Eingabetexte. Zweitens fokussieren sie sich auf einzelne, sehr spezialisierte EntitĂ€tstypen wie Chemikalien, Gene und Proteine. Allerdings bietet das Internet neben diesen Quellen eine Vielzahl an Inhalten biomedizinischen Wissens, das vernachlĂ€ssigt wird. Um alle verfĂŒgbaren Informationen auszunutzen besteht der Bedarf weitere Internet-Inhalte als zusĂ€tzliche Quellen zu erschließen. Außerdem ist es auch erforderlich andere EntitĂ€tstypen wie Symptome und Risikofaktoren in Betracht zu ziehen, da diese fĂŒr zahlreiche Inhalte im Internet, wie zum Beispiel Verbraucherinformationen im Gesundheitssektor, relevant sind. Das Ziel dieser Dissertation ist es, Methoden zur Erkennung und Disambiguierung von EntitĂ€ten zu erforschen, die alle EntitĂ€tstypen in Betracht ziehen und sowohl auf wissenschaftliche Publikationen als auch auf andere Internet-Inhalte anwendbar sind. DarĂŒber hinaus setzen wir Schwerpunkte auf oft vernachlĂ€ssigte Aspekte der biomedizinischen Erkennung und Disambiguierung von EntitĂ€ten, nĂ€mlich Skalierbarkeit, lange Nominalphrasen und fehlende EntitĂ€ten in einer Wissensbank. In dieser Hinsicht leistet diese Dissertation vier HauptbeitrĂ€ge, denen allen das Wissen von UMLS (Unified Medical Language System), der grĂ¶ĂŸten und wichtigsten Wissensbank im biomedizinischen Bereich, zu Grunde liegt. Der erste Beitrag ist eine schnelle Methode zur Erkennung von EntitĂ€ten mittels Lexikonabgleich, welche den Durchsatz maximiert und gleichzeitig den Verlust in Genauigkeit und Trefferquote (precision and recall) balanciert. Der zweite Beitrag ist eine Methode zur Klassifizierung der semantischen Typen von Nomen, die sich auf gebrĂ€uchliche Nomen von langen Nominalphrasen richtet und auf einer selbstentwickelten Sammlung von semantischen Typen beruht, die die Verwendung der Nomen erfasst. Neben biomedizinischen können diese Typen auch nicht-biomedizinische und allgemeine, informationsarme Verwendungen behandeln. Der dritte Beitrag ist eine schnelle Heuristikmethode zur Disambiguierung von EntitĂ€ten in MEDLINE Kurzfassungen, welche den Durchsatz maximiert, aber auch die Genauigkeit erhĂ€lt. Der vierte Beitrag ist eine korpusgetriebene Methode zur Disambiguierung von EntitĂ€ten, die speziell fehlende EntitĂ€ten in einer Wissensbank behandelt. Die Methode wandelt erst die EntitĂ€ten, die in einem Textkorpus ausgedrĂŒckt aber nicht notwendigerweise in einer Wissensbank sind, in latente Darstellungen um und fĂŒhrt anschließend die Disambiguierung durch

    Knowledge base integration in biomedical natural language processing applications

    Get PDF
    With the progress of natural language processing in the biomedical field, the lack of annotated data due to regulations and expensive labor remains an issue. In this work, we study the potential of knowledge bases for biomedical language processing to compensate for the shortage of annotated data. Accordingly, we experiment with the integration of a rigorous biomedical knowledge base, the Unified Medical Language System, in three different biomedical natural language processing applications: text simplification, conversational agents for medication adherence, and automatic evaluation of medical students' chart notes. In the first task, we take as a use case simplifying medication instructions to enhance medication adherence among patients. Given the lack of an appropriate parallel corpus, the Unified Medical Language System provided simpler synonyms for an unsupervised system we devise, and we show a positive impact on comprehension through a human subjects study. As for the second task, we devise an unsupervised system to automatically evaluate chart notes written by medical students. The purpose of the system is to speed up the feedback process and enhance the educational experience. With the lack of training corpora, utilizing the Unified Medical Language System proved to enhance the accuracy of evaluation after integration into the baseline system. For the final task, the Unified Medical Language System was used to augment the training data of a conversational agent that educates patients on their medications. As part of the educational procedure, the agent needed to assess the comprehension of the patients by evaluating their answers to predefined questions. Starting with a small seed set of paraphrases of acceptable answers, the Unified Medical Language System was used to artificially augment the original small seed set via synonymy. Results did not show an increase in quality of system output after knowledge base integration due to the majority of errors resulting from mishandling of counts and negations. We later demonstrate the importance of a (lacking) entity linking system to perform optimal integration of biomedical knowledge bases, and we offer a first stride towards solving that problem, along with conclusions on proper training setup and processes for automatic collection of an annotated dataset for biomedical word sense disambiguation

    Information Systems and Health Care IX: Accessing Tacit Knowledge and Linking It to the Peer-Reviewed Literature

    Get PDF
    Clinical decision-making can be improved if healthcare practitioners are able to leverage both the tacit and explicit modalities of healthcare knowledge, yet at present there do not exist knowledge management systems that support any active and direct mapping between these two knowledge modalities. In this paper, we present a healthcare knowledge-mapping framework that maps (a) the tacit knowledge captured in terms of email-based discussions between pediatric pain practitioners through a Pediatric Pain Mailing List (PPML), to (b) explicit knowledge represented in terms of peer-reviewed healthcare literature available at PubMed. We report our knowledge mapping strategy that involves methods to establish discussion threads, organize the discussion threads in terms of topic-specific taxonomy, formulate an optimal search query based on the content of a discussion thread, submit the search query to PubMed and finally to retrieve and present the search results to the user

    Automatic analysis of medical dialogue in the home hemodialysis domain : structure induction and summarization

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references (p. 129-134).Spoken medical dialogue is a valuable source of information, and it forms a foundation for diagnosis, prevention and therapeutic management. However, understanding even a perfect transcript of spoken dialogue is challenging for humans because of the lack of structure and the verbosity of dialogues. This work presents a first step towards automatic analysis of spoken medical dialogue. The backbone of our approach is an abstraction of a dialogue into a sequence of semantic categories. This abstraction uncovers structure in informal, verbose conversation between a caregiver and a patient, thereby facilitating automatic processing of dialogue content. Our method induces this structure based on a range of linguistic and contextual features that are integrated in a supervised machine-learning framework. Our model has a classification accuracy of 73%, compared to 33% achieved by a majority baseline (p<0.01). We demonstrate the utility of this structural abstraction by incorporating it into an automatic dialogue summarizer. Our evaluation results indicate that automatically generated summaries exhibit high resemblance to summaries written by humans and significantly outperform random selections (p<0.0001) in precision and recall.(cont.) In addition, task-based evaluation shows that physicians can reasonably answer questions related to patient care by looking at the automatically-generated summaries alone, in contrast to the physicians' performance when they were given summaries from a naive summarizer (p<0.05). This is a significant result because it spares the physician from the need to wade through irrelevant material ample in dialogue transcripts. This work demonstrates the feasibility of automatically structuring and summarizing spoken medical dialogue.by Ronilda Covar Lacson.Ph.D

    Concept graphs: Applications to biomedical text categorization and concept extraction

    Get PDF
    As science advances, the underlying literature grows rapidly providing valuable knowledge mines for researchers and practitioners. The text content that makes up these knowledge collections is often unstructured and, thus, extracting relevant or novel information could be nontrivial and costly. In addition, human knowledge and expertise are being transformed into structured digital information in the form of vocabulary databases and ontologies. These knowledge bases hold substantial hierarchical and semantic relationships of common domain concepts. Consequently, automating learning tasks could be reinforced with those knowledge bases through constructing human-like representations of knowledge. This allows developing algorithms that simulate the human reasoning tasks of content perception, concept identification, and classification. This study explores the representation of text documents using concept graphs that are constructed with the help of a domain ontology. In particular, the target data sets are collections of biomedical text documents, and the domain ontology is a collection of predefined biomedical concepts and relationships among them. The proposed representation preserves those relationships and allows using the structural features of graphs in text mining and learning algorithms. Those features emphasize the significance of the underlying relationship information that exists in the text content behind the interrelated topics and concepts of a text document. The experiments presented in this study include text categorization and concept extraction applied on biomedical data sets. The experimental results demonstrate how the relationships extracted from text and captured in graph structures can be used to improve the performance of the aforementioned applications. The discussed techniques can be used in creating and maintaining digital libraries through enhancing indexing, retrieval, and management of documents as well as in a broad range of domain-specific applications such as drug discovery, hypothesis generation, and the analysis of molecular structures in chemoinformatics

    Natural Language Processing and Graph Representation Learning for Clinical Data

    Get PDF
    The past decade has witnessed remarkable progress in biomedical informatics and its related fields: the development of high-throughput technologies in genomics, the mass adoption of electronic health records systems, and the AI renaissance largely catalyzed by deep learning. Deep learning has played an undeniably important role in our attempts to reduce the gap between the exponentially growing amount of biomedical data and our ability to make sense of them. In particular, the two main pillars of this dissertation---natural language processing and graph representation learning---have improved our capacity to learn useful representations of language and structured data to an extent previously considered unattainable in such a short time frame. In the context of clinical data, characterized by its notorious heterogeneity and complexity, natural language processing and graph representation learning have begun to enrich our toolkits for making sense and making use of the wealth of biomedical data beyond rule-based systems or traditional regression techniques. This dissertation comes at the cusp of such a paradigm shift, detailing my journey across the fields of biomedical and clinical informatics through the lens of natural language processing and graph representation learning. The takeaway is quite optimistic: despite the many layers of inefficiencies and challenges in the healthcare ecosystem, AI for healthcare is gearing up to transform the world in new and exciting ways
    corecore