
Saarland University
Faculty of Mathematics and Computer Science
Department of Computer Science

Knowledge-driven Entity Recognition and
Disambiguation in Biomedical Text

Amy Siu

A dissertation submitted towards the degree
Doctor of Engineering
of the Faculty of Mathematics and Computer Science of
Saarland University

Saarbrücken, May 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Acronym

https://core.ac.uk/display/196652198?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Dean: Prof. Frank-Olaf Schreyer

Colloquium: 4 September 2017

Examination Board

Supervisor and Prof. Gerhard Weikum
First Reviewer:

Second Reviewer: Prof. Klaus Berberich

Third Reviewer: Prof. Ulf Leser

Chairman: Prof. Dietrich Klakow

Research Assistant: Dr. Luciano Del Corro



i



ii



iii

Abstract

Entity recognition and disambiguation (ERD) for the biomedical domain are notori-
ously difficult problems due to the variety of entities and their often long names in
many variations. Existing works focus heavily on the molecular level in two ways.
First, they target scientific literature as the input text genre. Second, they target
single, highly specialized entity types such as chemicals, genes, and proteins. How-
ever, a wealth of biomedical information is also buried in the vast universe of Web
content. In order to fully utilize all the information available, there is a need to tap
into Web content as an additional input. Moreover, there is a need to cater for other
entity types such as symptoms and risk factors since Web content focuses on consumer
health.
The goal of this thesis is to investigate ERD methods that are applicable to all

entity types in scientific literature as well as Web content. In addition, we focus
on under-explored aspects of the biomedical ERD problems – scalability, long noun
phrases, and out-of-knowledge base (OOKB) entities.
This thesis makes four main contributions, all of which leverage knowledge in UMLS

(Unified Medical Language System), the largest and most authoritative knowledge
base (KB) of the biomedical domain. The first contribution is a fast dictionary
lookup method for entity recognition that maximizes throughput while balancing the
loss of precision and recall. The second contribution is a semantic type classification
method targeting common words in long noun phrases. We develop a custom set of
semantic types to capture word usages; besides biomedical usage, these types also
cope with non-biomedical usage and the case of generic, non-informative usage. The
third contribution is a fast heuristics method for entity disambiguation in MEDLINE
abstracts, again maximizing throughput but this time maintaining accuracy. The
fourth contribution is a corpus-driven entity disambiguation method that addresses
OOKB entities. The method first captures the entities expressed in a corpus as latent
representations that comprise in-KB and OOKB entities alike before performing entity
disambiguation.
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Kurzfassung

Die Erkennung und Disambiguierung von Entitäten für den biomedizinischen Bereich
stellen, wegen der vielfältigen Arten von biomedizinischen Entitäten sowie deren oft
langen und variantenreichen Namen, große Herausforderungen dar. Vorhergehende
Arbeiten konzentrieren sich in zweierlei Hinsicht fast ausschließlich auf molekulare
Entitäten. Erstens fokussieren sie sich auf wissenschaftliche Publikationen als Genre
der Eingabetexte. Zweitens fokussieren sie sich auf einzelne, sehr spezialisierte En-
titätstypen wie Chemikalien, Gene und Proteine. Allerdings bietet das Internet neben
diesen Quellen eine Vielzahl an Inhalten biomedizinischen Wissens, das vernachläs-
sigt wird. Um alle verfügbaren Informationen auszunutzen besteht der Bedarf weitere
Internet-Inhalte als zusätzliche Quellen zu erschließen. Außerdem ist es auch erforder-
lich andere Entitätstypen wie Symptome und Risikofaktoren in Betracht zu ziehen, da
diese für zahlreiche Inhalte im Internet, wie zum Beispiel Verbraucherinformationen
im Gesundheitssektor, relevant sind.
Das Ziel dieser Dissertation ist es, Methoden zur Erkennung und Disambiguierung

von Entitäten zu erforschen, die alle Entitätstypen in Betracht ziehen und sowohl
auf wissenschaftliche Publikationen als auch auf andere Internet-Inhalte anwendbar
sind. Darüber hinaus setzen wir Schwerpunkte auf oft vernachlässigte Aspekte der
biomedizinischen Erkennung und Disambiguierung von Entitäten, nämlich Skalier-
barkeit, lange Nominalphrasen und fehlende Entitäten in einer Wissensbank.
In dieser Hinsicht leistet diese Dissertation vier Hauptbeiträge, denen allen das

Wissen von UMLS (Unified Medical Language System), der größten und wichtigsten
Wissensbank im biomedizinischen Bereich, zu Grunde liegt. Der erste Beitrag ist eine
schnelle Methode zur Erkennung von Entitäten mittels Lexikonabgleich, welche den
Durchsatz maximiert und gleichzeitig den Verlust in Genauigkeit und Trefferquote
(precision and recall) balanciert. Der zweite Beitrag ist eine Methode zur Klas-
sifizierung der semantischen Typen von Nomen, die sich auf gebräuchliche Nomen
von langen Nominalphrasen richtet und auf einer selbstentwickelten Sammlung von
semantischen Typen beruht, die die Verwendung der Nomen erfasst. Neben biomedi-
zinischen können diese Typen auch nicht-biomedizinische und allgemeine, informa-
tionsarme Verwendungen behandeln. Der dritte Beitrag ist eine schnelle Heuristik-
methode zur Disambiguierung von Entitäten in MEDLINE Kurzfassungen, welche den
Durchsatz maximiert, aber auch die Genauigkeit erhält. Der vierte Beitrag ist eine
korpusgetriebene Methode zur Disambiguierung von Entitäten, die speziell fehlende
Entitäten in einer Wissensbank behandelt. Die Methode wandelt erst die Entitäten,
die in einem Textkorpus ausgedrückt aber nicht notwendigerweise in einer Wissens-
bank sind, in latente Darstellungen um und führt anschließend die Disambiguierung
durch.
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Summary

In recent years, the amount of biomedical information disseminated in textual form is
growing at an ever increasing pace. In response, text mining has emerged as a major
research area to harness this information. A text mining system consists of a pipeline
of tasks, of which entity recognition and disambiguation (ERD) are indispensable ones
early in the pipeline. However, biomedical ERD is notoriously difficult since there
are many entity types such as chemicals, genes, proteins, disease, and symptoms,
etc., and each type features its own nomenclature. Furthermore, biomedical entities
encompass proper nouns as well as compound noun phrases, many of which are long
with numerous variations. Most existing works focus on named entities in individual
entity types, as well as on PubMed scientific publications. As soon as text mining taps
into Web content such as encyclopedic health portals and patient discussion forums,
existing methods fall short of handling entity types beyond the molecular level such as
symptoms and lifestyle risk factors. Longer noun phrases are mostly neglected, and,
to the best of our knowledge, there are no ERD tools that can cope with large-scale
corpora.
This thesis makes four contributions that address these limitations. A common

theme of the contributions is leveraging of a knowledge base (KB), namely UMLS
(Unified Medical Language System). This preeminent KB of the biomedical domain
contains entity names, definitions, semantic types, and entity-entity relations that are
essential ingredients throughout this thesis. Below we summarize each contribution.

Fast entity recognition. Of the existing entity recognition (ER) methods, few
are applicable to all entity types. In order to devise a method that addresses all
types, we turn to a comprehensive dictionary covering all aspects of biomedicine, and
devise a dictionary lookup method. That dictionary is UMLS, which contains 3.4
million entities, and is rich in lexical variants of entity names. By minimizing time-
consuming natural language processing (NLP), and by speeding lookups up with
Locality Sensitive Hashing and MinHash, our method aims to maximize throughput
while balancing the loss of precision and coverage. When compared to MetaMap, the
de facto standard tool, our method is two orders of magnitude faster while maintaining
comparable precision, though at the cost of losing 13% coverage.

Semantic type classification of common words. Long noun phrases are ubiq-
uitous in biomedical text, but they are largely disregarded. We observe that not all
words in a noun phrase are equally information-bearing. We also observe that some
words even carry non-biomedical meanings; this phenomenon becomes more com-
monplace as we go beyond scientific literature and venture into Web content. For
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information extraction tasks, it is important to consider common nouns only when
they carry crucial biomedical meaning. Therefore we devise a method to classify the
semantic type of common nouns. Besides biomedical meanings, the semantic types
explicitly include the negative case when nouns are used in a generic, non-informative
sense, as well as non-biomedical meanings. We demonstrate the usefulness of the
method with 50 common nouns and a custom set of fine-grained semantic types.

Fast entity disambiguation in topically annotated texts. Most existing en-
tity disambiguation (ED) methods focus on single entity types such as chemicals,
genes, proteins, and diseases. Of the few methods that do address all entity types,
MetaMap is the only practical option as it is publicly available with an easy setup.
Unfortunately, MetaMap is known to employ heavy NLP machinery, and its disam-
biguation module has limited functionality. The former renders the tool unsuitable
for large-scale use, and the latter negatively affects disambiguation quality. This spurs
us to devise an entity-type-agnostic, heuristics method for topically annotated texts,
such as MEDLINE abstracts. The method first exploits the expert-assigned indexing
with MeSH (Medical Subject Headings) terms and the presence of unambiguous en-
tity names in UMLS, to determine unambiguous text mentions. These intermediate
results then become extra cues that can be leveraged by ED methods. Experiments
demonstrate that our method is one order of magnitude faster as well as more accurate
than MetaMap.

Corpus-driven entity discovery and disambiguation. Existing ED methods
are KB-driven – a text mention is disambiguated to one of the candidates selected
from a KB. These methods either implicitly assume that the correct entity is always
one of the candidates, or they declare that the text mention maps to a NIL placeholder
when no correct candidate is found. The implicit assumption is unsatisfactory since
no KB can be complete; there are always emerging entities waiting to be incorporated
into the KB. The NIL placeholder is also unsatisfactory since no further information is
available about the description-less, out-of-KB (OOKB) entity. Contrary to existing
approaches, we devise a corpus-driven method. The method first discovers the latent
topics an ambiguous entity name expresses in a corpus; each topic describes a latent
entity, whether it exists in the KB or not. Then the method maps a text mention
to a latent entity, which is in turn mapped to an in-KB or OOKB entity. To the
best of our knowledge, our method is the first attempt in the biomedical domain to
represent OOKB entities via their latent descriptions. We further demonstrate the
applicability of the method for the political domain.
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Chapter 1

Introduction

1.1 Motivation

Biomedical information is discovered and disseminated at an extraordinary pace, and
much of this dissemination is accomplished by publishing unstructured text, or free
text. Two communities spreadhead this trend. The first community is the scientific
community, who publish their research results in scientific literature. PubMed, the
preeminent indexing service dedicated to the biomedical domain, contains to date over
26 million citations, and continues to grow at over 1 million new citations per year.
The second community is the online community, who comprises experts and medical
doctors, as well as patients and layman consumers. This community publishes a range
of contents, from professional resources such as UpToDate.com that are written by
experts for experts, to encyclopedic health portals such as Mayo Clinic and Medline
Plus that are written by experts for patients, to online discussion forums in which
only patients participate. Buried within these two universes of texts is a wealth of
knowledge, but due to their sheer size and unstructured nature, automated methods
are required to extract this knowledge.
The biomedical natural language processing (BioNLP) community employs text

mining as a solution to automatically analyze the aforementioned texts. Text mining
spans a range of information extraction (IE) tasks, from extracting protein-protein in-
teractions, to drug-disease relations, to pharmacogenomics networks. Common to all
these tasks, entity recognition and disambiguation (ERD) are the indispensable first
steps in a text mining pipeline. Not only does the quality of downstream processes
depend on the quality of entities extracted, these downstream analyses may not even
begin without the entities as input. Besides fully automated text mining pipelines,
there are also semi-automated ones such as indexing PubMed citations and curating
knowledge bases, where entities are first automatically extracted to be manually se-
lected and refined by experts. There is a large body of existing work addressing ERD;
however, limitations exist.

Coverage in entity types. Biomedical text mining has to date focused heavily
on extracting information at the molecular level, such as information about proteins,
genes, chemicals, drugs, their derivatives such as protein sequences and gene muta-
tions, and their interactions such as protein pathways. This focus leads to two norms.
First, existing ERD works target named entities, which are well cataloged in dictio-
naries. Common nouns, long noun phrases, and in general entities not found in a
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dictionary are largely neglected despite being ubiquitous in biomedical text. Second,
the entity types addressed revolve around the few entity types corresponding to said
proteins, genes, chemicals, and so on. Furthermore, the majority of existing ERD
methods specialize in only one entity type. There is relatively little effort to develop
methods that address all entity types simultaneously. The most prominent solution is
MetaMap, the method implemented as a software tool that performs dictionary-based
ERD. While it is the de facto standard tool for biomedical text mining, its limitations
in processing speed and disambiguation power render it infeasible in PubMed-scale
projects.

Coverage in text genres. Focusing on IE tasks at the molecular level naturally
in turn focuses the source texts to scientific literature, where the relevant information
abounds. Consequently, the abstracts and full-length articles curated by PubMed
have been the de facto standard corpus for biomedical text mining. The vast universe
of Web contents mentioned above has been largely neglected. While much informa-
tion is contained only in these non-scientific texts, they also contain fragments of text
that stray away from a strictly biomedical focus. As soon as one mines texts beyond
PubMed, it becomes mandatory to distinguish the non-biomedical content in order to
disregard them. Since existing ERD methods are developed only with scientific liter-
ature in mind, they implicitly assume that all the entities in text are of a biomedical
nature, and do not address the presence of non-biomedical entities.

1.2 Problem Statement

In this thesis, we consider the problems of entity recognition and disambiguation
for the biomedical domain. Entity recognition is the task of identifying, from un-
structured text, mentions that refer to entities. Entity disambiguation is the task of
selecting for these mentions the correct underlying entity from a pool of candidates.
The proposed solutions should address the following requirements.

• The solution should go beyond single proper nouns for named entities and ad-
dress compound noun phrases also.

• The solution should be applicable across all sub-domains of biomedicine. We
intentionally depart from the norm of specializing in selected sub-domains, and
opt to investigate sub-domain-agnostic approaches.

• The solution should be applicable to both scientific texts and Web content.
Where the text contains non-biomedical entities, the solution should be able to
distinguish them as such.

• The solution should be fast, so that it is feasible to apply it to large-scale
corpora.

1.3 Challenges

In order to propose solutions addressing the above requirements, the following chal-
lenges must be overcome.
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Diversity of entity names. Biomedical entity names are notoriously difficult to
recognize and disambiguate because they are often long with many variations; this
applies to named entities and noun phrases alike. A comprehensive ERD method
must also go beyond nouns and consider verbs, as verbs also provide crucial cues and
can be leveraged as an entity also.

Incomplete dictionary. No dictionary can be 100% complete with all named en-
tities, and further cannot be expected to catalog biomedical noun phrases in all their
myriad variations. UMLS (Unified Medical Language System), the largest metathe-
saurus boasting 3.4 million entities sourced from 199 individual dictionaries (as of
version 2016AB), still lacks entries such as meds the colloquial term for medicines,
and arm the physical branch of a protein molecule.

Heterogeneous assortment of resources. The preeminent lexical resource for
biomedical text mining, UMLS, is actually a potpourri of many heterogeneous re-
sources. Each of the 199 contributing dictionaries specializes on its sub-domain, with
entities defined at different levels of granularity, and complete with dictionary-specific
entity-entity relationships. Overarching this motley collection of entities is the UMLS
semantic network, which is in itself three separate types of information: a set of 133
semantic types that form a taxonomy; 15 semantic groups that do not align with the
taxonomy; and relationships between semantic types. Since each entity in UMLS is
assigned at least one semantic type, any pair of entities can also be viewed through
the lens of the semantic network, that is, orthogonal to the dictionary-specific rela-
tionships. Additional resources such as the BioLexicon and the symptom terms in
OMIM (Online Mendelian Inheritance of Man) further add to this tangled landscape.
Putting all these together, judicious selection of resources that best suits the needs
of a specific task is required.

Transcending sub-domains. Entities in each sub-domain has different nomencla-
tures. For instance, genes are often a mixture of English letters and numerical digits,
while chemicals are often formulaic expressions involving chemical symbols. In order
to go beyond sub-domains, we must also go beyond, for instance, the lexicographic
features that apply only to one sub-domain. In other words, we must seek approaches
that generalize to all sub-domains.

Transcending text genres. Different text genres have different language styles.
Scientific literature, especially abstracts, are terse with convoluted sentence struc-
ture and specialized jargon. Web contents, on the other hand, have a more relaxed,
everyday English style. In addition, biomedically themed Web contents are often
“contaminated” with non-biomedical content. We must seek approaches that work
for a range of language styles and can compensate for the presence of non-biomedical
content.

Minimizing manual intervention. Manual intervention, such as labeling data
samples and selecting seed data, is expensive. Where a method cannot be completely
automated, we aim to at least minimize the manual intervention needed.
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Maintaining quality while being fast. Processing speed and output quality are
goals at odds with each other; higher speed is achieved by sacrificing quality, and vice
versa. As mentioned, high quality entities are crucial for text mining. Therefore, in
the pursuit of fast processing speed, we need to at least maintain quality comparable to
a more sophisticated but slower method. Specifically for ERD tasks, that translates
to maintaining good precision and good recall while achieving high throughput at
PubMed-scale.

1.4 Contributions

A common theme of the various methods devised in this thesis is going beyond con-
ventional specializations on corpora and sub-domains. Another theme is that each
method leverages knowledge in UMLS according its respective goal. Specifically, we
make the following contributions.

Fast entity recognition. To address the lack of entity recognition software tool
that can process texts fast enough to handle PubMed-scale corpora, we devise and
implement a dictionary lookup method that uses UMLS as the underlying dictionary.
The method also uses Locality Sensitive Hashing with MinHash to quickly estimate
string similarity between text mentions and dictionary entries. When compared to
MetaMap, this method achieves comparable precision at a throughput that is two
orders of magnitude faster, though at the expense of losing 13% in entity coverage.
The speedup is the critical improvement that makes other large-scale text mining
projects possible, namely, KnowLife (knowledge base construction) [41] and DeepLife
(search and analytics application for up-to-date health information) [40]. The result-
ing implementation has been released as open source software.

Semantic type classification of common words. As an effort towards disam-
biguating long and complex noun phrases, we propose to disambiguate the semantic
types of common nouns found in such phrases. We develop fine-grained, custom se-
mantic types that encompass biomedical and non-biomedical types, as well as the
non-informative type that denotes nouns used only in a generic way without carrying
critical information. Using label propagation, a semi-supervised graph-based method,
we demonstrate that only a small percentage of labeled seed nodes suffices to suc-
cessfully label the rest of the nodes, hence minimizing manual effort in identifying
seeds. The node-node relatedness in the graph reflects the similarity between the
corresponding noun phrases, which is in turn derived by leveraging UMLS semantic
types. To the best of our knowledge, this contribution is the first work in BioNLP
that addresses general-domain content mingled in a biomedical-themed document.

Fast entity disambiguation in topically annotated texts. We devise an au-
tomatic and light-weight entity disambiguation method that exploits two key char-
acteristics of biomedical resources: the indexing terms, or MeSH (Medical Subject
Headings) terms, assigned by experts in all PubMed citations, and the lexical rich-
ness as well as heterogeneity of UMLS. Using two heuristics, the method first identifies
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anchors, or non-ambiguous text mentions. Then using the anchors and five further
heuristics based on linguistic cues, co-occurrence statistics, and prior distributions of
entities estimated from UMLS, the method disambiguates the remaining mentions.
When compared to MetaMap’s disambiguation module, our method is up to 11% more
accurate at a throughput one order of magnitude faster. Not only is this method par-
ticularly amenable to PubMed the de facto corpus, it is also sub-domain-agnostic.
The implementation of the method has also been released as open source software.

Corpus-driven entity discovery and disambiguation. We address the incom-
pleteness of dictionary by first performing entity discovery in a corpus-driven ap-
proach. Using dimensionality reduction, we model a corpus of text snippets all con-
taining an ambiguous entity name as a low-dimension latent topic space. Each latent
topic corresponds to an entity expressed in the corpus; in other words, each entity
has a latent description. Such a latent entity can either be mapped to an entity
in the dictionary, thereby achieving entity disambiguation, or can be declared out
of knowledge base (OOKB). To the best of our knowledge, this work is the first in
the biomedical domain to cater for OOKB entities by representing them via their
latent descriptions. We further demonstrate the generalizability of the method via
experiments in the politics domain.

1.5 Publications

Parts of this thesis have been published or are in the process of attaining publication.
We list here the relationships between the contributions and their publications:

Contribution Publication title and authors Publication venue or under review

Fast entity recognition Fast entity recognition in biomedical text [187]
Amy Siu, Dat Ba Nguyen, Gerhard Weikum

Workshop on Data Mining for Healthcare (DMH) at the
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), 2013

Semantic type
classification of common
words

Semantic type classification of common words in
biomedical noun phrases [188]
Amy Siu, Gerhard Weikum

BioNLP Workshop at the Annual Meeting of the
Association for Computational Linguistics (ACL), 2015

Fast entity
disambiguation in
topically annotated
texts

Disambiguation of entities in MEDLINE abstracts by
combining MeSH terms with knowledge [186]
Amy Siu, Patrick Ernst, Gerhard Weikum

BioNLP Workshop at the Annual Meeting of the
Association for Computational Linguistics (ACL), 2016

Corpus-driven entity
discovery and
disambiguation

Corpus-driven entity discovery and disambiguation
Amy Siu, Patrick Ernst, Gerhard Weikum

Under review

Table 1.1: Publications directly resulting from contributions in this thesis

Methods developed in this thesis have also contributed to further publications, for
which the author of this thesis is a co-author:
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Publication title and authors Publication venue or under review

KnowLife: A knowledge graph for health and life sciences [39]
Patrick Ernst, Cynthia Meng, Amy Siu, Gerhard Weikum

System Demonstration at the International Conference on
Data Engineering (ICDE), 2014

KnowLife: A versatile approach to constructing a knowledge graph for biomedical
sciences [41]
Patrick Ernst, Amy Siu, Gerhard Weikum

BMC Bioinformatics, 2015

DeepLife: An entity-aware search, analytics and exploration platform for health
and life sciences [40]
Patrick Ernst, Amy Siu, Dragan Milchevski, Johannes Hoffart, Gerhard Weikum

System Demonstration at the Annual Meeting of the
Association for Computational Linguistics (ACL), 2016

HighLife: Higher-arity fact harvesting
Patrick Ernst, Amy Siu, Gerhard Weikum

Under review

Table 1.2: Publications using methods devised in this thesis

Finally, we also list here other prior publications of the author of this thesis:

Publication title and authors Publication venue

eFIP: A tool for mining functional impact of phosphorylation from literature [4]
Cecilia N. Arighi, Amy Siu, Catalina O. Tudor, Jules A. Nchoutmboube, Cathy
H. Wu, Vijay K. Shanker

Book chapter in Methods in Molecular Biology –
Bioinformatics for Comparative Proteomics, 2011

Knowledge discovery on incompatibility of medical concepts [57]
Adam Grycner, Patrick Ernst, Amy Siu, Gerhard Weikum

International Conference on Intelligent Text Processing
and Computational Linguistics (CICLing), 2013

Findings of the WMT 2017 biomedical translation shared task [85]
Antonio Jimeno Yepes, Aurélie Névéol, Mariana Neves, Karin Verspoor, Ondřej
Bojar, Arthur Boyer, Cristian Grozea, Barry Haddow, Madeleine Kittner, Yvonne
Lichtblau, Pavel Pecina, Roland Roller, Rudolf Rosa, Amy Siu, Philippe Thomas,
Saskia Trescher

Conference on Machine Translation (WMT) at the
Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2017

Table 1.3: Prior publications of the author of this thesis

1.6 Thesis Outline

The remainder of this thesis elaborates on the aforementioned contributions. In Chap-
ter 2, we begin by visiting background concepts, preliminaries, and characteristics of
the biomedical texts that lead to challenges specific to the domain. Chapter 3 presents
the state of the art in both the general and biomedical domains. The next four
chapters each presents one contribution: Chapter 4 presents the dictionary-lookup
method for entity recognition; Chapter 5 presents the classification of semantic types
in long and complex noun phrases; Chapter 6 presents the disambiguation of entities
in PubMed abstracts via heuristics; and Chapter 7 presents the discovery as well as
disambiguation of entities using a corpus-driven approach. Finally, in Chapter 8 we
summarize all contributions presented in this thesis and give an outlook on future
directions.
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Chapter 2

Background

2.1 Domain and Sub-Domain

Domain. A domain, according to the Oxford English Dictionary and the Merriam-
Webster Dictionary, is “a sphere of knowledge.” In terms of research, a domain is
often the topic of a research community. Biomedicine, computer science, linguistics,
politics, and psychology are all example domains.

Sub-domain. Just as a research community has a subset of researchers focusing
on a narrower topic within the larger, overarching topic, so a domain also has sub-
domains. Within the biomedicine domain, in particular, are the sub-domains of bio-
chemistry, diseases (of animals, humans, and plants), drugs, genetics, molecular bi-
ology, cell biology, systems biology, and more. In biomedical literature, sub-domains
are also referred to as disciplines, fields, and specialties [28].

General domain. The term general domain describes when no particular domain
is in focus.

Using Wikipedia1 as an example, it is an encyclopedia in the general domain since
it does not focus on any particular domain. The portals therein, however, such as
the Biology, Medicine, Linguistics, Political Science, and Psychology Portals, corre-
spond to domains. Some portals such as the Alternative Medicine Portal and the
Dentistry Portals correspond to sub-domains as they are even more specialized than
the Medicine Portal.

2.2 Repositories of Knowledge

Knowledge, be it in the general or biomedical domain, can be stored in different kinds
of repositories.

Knowledge base. A knowledge base (KB) stores knowledge in some structured
manner. A common structure is the triple, where a subject–predicate–object con-
struct represents a binary relation between two entities. Major knowledge bases in

1wikipedia.org

wikipedia.org
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the general domain such as DBpedia [104], Freebase [16] (now discontinued), Wikidata
[216], and YAGO [199], as well UMLS (United Medical Language System) [15], the
largest and most authoritative knowledge base in the biomedical domain, all follow
this triple format.

Ontology. An ontology mandates a formal delineation between concepts as classes,
and objects as instances of classes. Besides relations, additional formal constructs
such as attributes, axioms, and rules enable logical reasoning to be performed upon
the classes and objects [58].

Taxonomy. A taxonomy aims at arranging entities in categories in a tree-like man-
ner, such that each category is subsumed by a more general category. Another way
to characterize this subsumption is the is-A relation; for instance, lung cancer is a
kind of cancer, which in turn is a kind of disease.

Dictionary. A dictionary, also called controlled vocabulary [27] and terminology
[55], aims at exhaustively collecting all the words and names used in a domain or
sub-domain.

The precise characterization of various kinds of knowledge repositories is a matter of
ongoing discussion [55, 58]. What is certain, however, is that knowledge resources in
the biomedical domain often exhibit characteristics of multiple kinds of repositories.
OMIM (Online Mendelian Inheritance of Man) [63] is a typical example: Primarily,
it is a repository of human genetic disorders and the relevant genetic information.
However, the detailed catalog of disease symptoms have often been leveraged as a
dictionary [31, 137]. Similarly, while MeSH (Medical Subject Headings)2 is primarily
a taxonomy and the NCI (National Cancer Institute) Thesaurus [185] a dictionary,
they have been leveraged beyond their categories [35, 137] and dictionary entries [49],
respectively.
Many sub-domains have their own ontologies, such as the Foundational Model

of Anatomy [168], the Human Disease Ontology [174], the Drosophila Phenotype
Ontology [142], among many others. The OBO Foundry3 provides an online, one-stop
service to search or browse the ontologies individually. Many of these ontologies as
well as other knowledge resources – altogether 199 of them in the 2016 version – have
been combined by human experts to produce UMLS, the authoritative metathesaurus
for the biomedical domain. The major biomedical repositories have been surveyed and
their contents compared by [76].

2.3 Entity Discovery, Recognition, and Disambiguation

Entity discovery. The task of determining whether a entity expressed in some text
is not yet registered in some KB is entity discovery. Such “newly discovered” entities
are often new from a temporal point of view, such as emerging entities, but that is

2www.nlm.nih.gov/mesh
3www.obofoundry.org



9 2.3. Entity Discovery, Recognition, and Disambiguation

not the default case. Other entities may be absent from a KB because the entities
belong to the “long tail” and therefore are neglected or even intentionally omitted.

Entity recognition. Given a piece of text, the words that express an occurrence
of an entity is a text mention. Entity recognition, also known as entity tagging, is the
task of identifying text mentions. Notice that entity recognition does not require a
KB, though leveraging one for dictionary lookup is a common approach.

Entity disambiguation. A text mention is ambiguous when it may refer to multi-
ple candidate entities; for instance, “FISH” may refer to the gene, the animal, or the
laboratory technique called Fluorescence in situ Hybridization. The task of selecting
the correct entity from multiple candidates is then entity disambiguation. Given a
text mention, the candidates are often selected from a KB, for example based on high
string similarity to entity names. In this case, the selected candidate is the canonical
entity; the task is further known as entity linking, entity normalization, and entity
resolution, to emphasize the making of a connection between the text mention and
the canonical entity. When the KB (such as UMLS) contains further information
about the entity (such as entity type and entity definition), reaching the canonical
entity means attaining this extra information.

The inherent differences in texts in the general and biomedical domains lead to
many differences in their handling of entities. Table 2.1 below compares these differ-
ences.
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General domain Biomedical domain

What constitutes an
entity?

Proper nouns for named entities. Proper nouns and composite noun phrases.

Named entities are generally mutually exclusive. For
example, President Bush is ambiguous and may refer
to either George Bush the senior or his son. However,
when President Bush appears in context, only one of
the two Bush’es can be the correct person intended.

Entities are not always clearly mutually exclusive. In
UMLS, entities are very fine-grained such that different
shades of the same underlying entity are cataloged as
different entities. This phenomenon is often seen in
entities with modifiers, such that, for example, lung
cancer at onset and lung cancer at end stage are separate
entities from the same underlying disease. Therefore,
depending on the text mining task, the desired
granularity in disambiguation results may differ.

Entity names Named entities are easily distinguished since each
word starts with an upper case letter.

Named entities may or may not feature upper case letters;
for example, while commercial drug names (such as
Tylenol) start with an upper case letter, the corresponding
chemicals (acetaminophen) are written in all lower case.

Synonyms are generally fixed and known. Both proper nouns and composite noun phrases are
written in many variations. This phenomenon comes in
many styles. For example, the same wet lab procedure
can have different word orders (X-ray emission
spectrometry and spectrometry of X-ray emission).
Chemical names have inconsistent word divisions (one or
more of the hyphens in
18-Hydroxy-11-Deoxycorticosterone can be omitted). Long
entity names may be abbreviated in multiple ways (DNC,
D&C, and D and C all mean dilation and cutterage).
Clinical texts in particular feature many abbreviations
that are often hospital- or even doctor-specific.

Vocabularies Apart from names, regular English words are
sufficient.

On top of domain-specific names, domain-specific jargon
is used in addition to regular English words. Some words
exist only in the biomedical vocabulary (e.g.
methylation), while other English words take up
additional biomedical meaning. For example, expression
means a textual utterance in the regular English sense,
but additionally means a gene causing some effect.

Resources Off-the-shelf software tools are available to
disambiguate named entities.

MetaMap is the de facto software tool for entity
disambiguation that can handle all sub-domains. In
addition, different sub-domains have their own specific
software tool.

A few large KB’s such as DBpedia, FreeBase, and
YAGO serve as the pool of entities.

UMLS is the de facto KB covering all sub-domains. Many
sub-domains have their own individual and smaller KB’s.

Entity disambiguation
vs. word sense
disambiguation (WSD)

Entity disambiguation and WSD are separate
research topics.

There is no clear-cut distinction between entity
disambiguation and WSD, since noun phrases are often
long and complex and words therein have ambiguous,
biomedical word senses. For instance, expression have two
senses, namely, the process of a gene effecting changes,
and the facial expression reflecting an emotional state.

Prior probability
distribution

Some named entities have a strong prior probability. Most entities have a prior distribution heavily lopsided
towards the dominant entity. In the NLM WSD dataset
[219], the average prevalence of the dominant word sense
is 78%.

Determining correctness Since entities are named and mutually exclusive, it is
clear whether the disambiguated entity is correct.

Since UMLS is a heterogeneous KB with very fine-grained
entities from different source dictionaries, and since both
proper nouns and compound noun phrases require
disambiguation, exact disambiguation is often difficult
even for humans. For example, whether children is the
the human being entity, age group entity, or family
member entity can be difficult to discern even when
textual context is provided.

Table 2.1: Comparisons regarding entities between general and biomedical domains
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2.4 Text Mining

Text mining refers to a broad range of information extraction tasks, such as text
categorization, sentiment analysis, linguistic trends analysis, entity extraction, and
relation extraction. In the biomedical domain, text mining concentrates on relation
extraction, where the relations are itself a broad range, such as protein-protein interac-
tions, gene-disease correlations, drug-adverse-effect relations, and pharmacogenomics
(i.e. gene-drug-response relations). Regardless of the kind of relations, biomedical
text mining tasks share one common processing mode, namely, the processing of a
large amount of input text in a pipeline fashion. Modules in a pipeline depends on
the exact IE task, though most pipelines adopt the following order: segmenting the
text into sentences, performing syntactic analyses such as part-of-speech and depen-
dency parsing, recognizing and disambiguating entities, ending with analysis modules
such as incorporating KB knowledge and reasoning that produce the final, desired
information.
There are again differences between text mining in the general and biomedical

domains. Table 2.2 below compares these differences.

General domain Biomedical domain

Text genres There is no dominant focus on
a single genre.

Scientific literature is the dominant genre. Since PubMed is the
preeminent indexing service for biomedical literature, PubMed is the de
facto corpus, which comprises MEDLINE abstracts and PMC (PubMed
Central) full-length articles.

Frequently mined genres
include:
• News
• Encyclopedia, especially Wikipedia
• Microblogs, especially tweets
• Query logs
• Fiction
• Conversation transcripts

Other mined genres include:
• Encyclopedic health portals on the Web
• Patient discussion forums on the Web
• News
• Microblogs, especially tweets
• Drug labels
• Clinical texts such as patient records

and clinical transcriptions
• Clinical trial documents
• Patents

Language
style

Text is written in regular
English prose.

Language style varies from genre to genre. Scientific literature deviates
greatly from regular norm of English grammar. An extreme example is the
use of more than 10 consecutive words in a compound noun phrase to
describe a very specific cell line complete with relevant gene, mutation,
species, and laboratory treatment information. In addition, MEDLINE
abstracts feature compact and convoluted language to fit the limited
document length. Other genres deviate from regular prose according to
their communication formats. Drug labels often arrange texts in tables.
Social media on the Web feature colloquial utterings, poor grammar,
incomplete sentences, misspellings, and excessive use of punctuation.

Table 2.2: Comparisons regarding text mining between the general and biomedical
domains
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2.5 Natural Language Processing Preliminaries

Synonym, abbreviation, and acronym. Figure 2.1 depicts the relationship be-
tween synonyms, abbreviations, and acronyms, which are different ways to describe
identical items.

  

e.g. FISH =
Flourescent in 
situ Hybridization

Synonyms

Abbreviations

Acronyms
e.g. meds =
medicines

e.g. skin =
epidermis

Figure 2.1: The relationships between synonym, abbreviation, and acronym.

Two textual expressions are synonyms if they refer to the same item, be it abstract
or physical. For instance, skin and epidermis are synonyms.
Some synonyms are abbreviations, where a longer word or phrase is shortened.

Abbreviations are typically noun phrases and entity names. For instance, meds is the
abbreviation of medicines.
Some abbreviations are acronyms where, in a multi-word expression, the first letters

in each word are singled out and taped together. For instance, FISH is the acronym
of Fluorescent in situ Hybridization.

Hypernym and hyponym. Figure 2.2 depicts the relationship between hypernyms
and hyponyms, which are hierarchical relations.

  

is a

Hypernym
e.g. cancer

Hyponym
e.g. lung cancer

Figure 2.2: The relationships between hypernym and hyponym.

Hypernym is a broader category in which a hyponym is a member. For instance,
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cancer is the hypernym of lung cancer ; equivalently. lung cancer is the hyponym of
cancer.

Part-of-speech and dependency. Figure 2.3 shows the grammatical analysis of
a sample sentence, computed by the Stanford CoreNLP tool4 [116], the standard as
well as state-of-the-art tool.

Figure 2.3: POS tags and dependencies of a sample sentence.

Each word in a sentence can be assigned a part-of-speech (POS) tag, which de-
scribes the word’s syntactic function. Noun, pronoun, verb, adjective, adverb, and
preposition are the main parts-of-speech. In the sample sentence, POS tags are the
colored boxes above each word.
From a syntactic point of view, words within a sentence relate to each other in

predefined relations called dependencies. In the sample sample sentence, dependencies
are marked with arrows; for instance, headache depends on relief with a “compound”
dependency. Dependencies are directed from one word to another, forming a tree.
Dependency parsing is the process of determining such a dependency tree, and having
first determined the POS tags is a prerequisite.

Morphology. The same underlying word in the English language can be spelled in
different ways. Morphology describes how a root word (e.g. the verb inject in the
infinitive form) should be modified in its various grammatical forms (injected as past
tense and injecting as the gerund form). Modification can also be applied to a noun
(e.g. organization) to obtain its adjective form (organizational). This modification
process is called inflection and, in the case of verbs, it is specifically called conjugation.

Lemmatization. The lemma of a word is its prefix letters such that various forms
all share that prefix. For instance, the lemma of writes and written is writ. As
demonstrated by this example, lemmas are often themselves incomplete words.

Orthography. Orthography is the convention of using spelling, hyphenation, cap-
italization, word breaks, emphasis, and punctuation. For instance, Non-Hodgkin’s
Lymphoma and non Hodgkin lymphoma are the same disease written orthographi-
cally differently. Therefore one common strategy in unifying such differences is by
transforming all letters to lower case and replacing non-letters with spaces. On the
other hand, such differences are exactly the cues for recognizing certain entity types
such as gene names. The combination of upper letters, digits, slashes, and italics (e.g.
EGFR/HER1 ) is a strong indicator for gene name.

4stanfordnlp.github.io/CoreNLP
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Chapter 3

State of the Art

Entity recognition and disambiguation are research problems in both the general and
the biomedical domains. However, domain-specific characteristics of biomedical text
lead to additional challenges, such that solutions in the general domain, if applicable
at all, must be adjusted to address those challenges. In this chapter, we present the
state of the art first in the general domain and then in the biomedical domain. Table
3.1 below provides an overview of this chapter.

General domain Biomedical domain

Entity
recognition

Well studied for named entities. Well studied for named entities
in sub-domains.

Noun phrases are also entities
but under-explored.

Entity typing Well studied for coarse-grained
types (person, organization,
geographic location, and
miscellaneous).

There are fewer methods for
fine-grained types based on KB
categories.

Entity typing is integrated into
entity recognition.

Explicit typing methods are
scarce.

Entity
disambiguation

Well studied for named entities. Well studied for selected
individual sub-domains.

There are few methods that
address all sub-domains.

Entity-centric
competitions

The few events are auxiliary to
the research community.

Plentiful events are core to the
research community, as well as
trailblazer of research directions.

Table 3.1: The state of the art for the general and biomedical domains
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3.1 General Domain

3.1.1 Entity Recognition

Entities of interest in the general domain are named entities. Works in named en-
tity recognition (NER) go as far back as the late 1990’s [32], and progressed through
the next decade as language-independent shared tasks at the CoNLL (Computational
Natural Language Learning) conference [205, 206]. The bulk of proposed methods em-
ploy machine learning to assign, for each word in a passage, one of three labels – B to
indicate the beginning of a named entity, I for “inside” or the continuation of a named
entity, and O for “outside” of the named entity. Features for the machine learning
include word-level ones (such as part-of-speech tags, orthographic patterns, lexical in-
formation, and previous word) as well as document-level ones (such as gazetteers and
document meta-information). Yet still later, as social media became a genre avail-
able for text mining, there has been efforts [165, 198] to refine existing approaches
to address the corresponding language style. Overall, this line of research recognizes
entities and simultaneously classifies them into 4 types: persons, organizations, geo-
graphical locations, and miscellaneous [155]. The Stanford CoreNLP toolkit [116] has
emerged as the de facto method as well as software tool that is currently the state of
the art.

3.1.2 Entity Typing

Four coarse types. As alluded to above, the task of entity recognition already
implicitly determines 4 coarse entity types (persons, organizations, geographical lo-
cations, and miscellaneous).

Fine-grained types. Other existing works explicitly determine fine-grained types,
also often using entity recognition as a means of achieving that aim. From as few as 9
[164] to as many as 500 [234] types, various start-of-the-art methods address different
levels of granularity.
FIGER [113] augments the 4 entity types by expanding each of them to more

than a dozen types. It further introduces other types related to products, arts, and
events to reach a total of 112 fine-grained types. In comparison, PEARL [133] and
ClusType [164] use types that are more and less fine-grained, respectively. These two
systems share two common themes in their methodologies. First, they both leverage
relational phrases to infer the types of the entities involved in those relations. Second,
they are both data-driven. By using efficient algorithms (integer linear programming
for PEARL, and label propagation plus clustering for ClusType), both systems can
process large amounts of data so that the system can accumulate a critical mass of
information to draw meaningful conclusions.

Hierarchical types. Entity types do not need to be mutually exclusive. In par-
ticular, when they are arranged in a hierarchy of categories, an entity belonging to
a more fine-grained sub-type (for instance, fruit) also belongs to the more coarse-
grained super-type (food) simultaneously. Such is the premise for Rahman and Ng’s
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method [153] and HYENA [234]. The former system arranges 92 sub-types in 29
super-types in a two-tier manner. The latter system goes as far as using 5 trees of
100 sub-types each, such that a tree can be up to 9 tiers deep. While both systems
perform multi-label classification, the underlying algorithms employed are disparate.
Rahman and Ng’s method constructs factor graphs and performs inference, while
HYENA formulates the problem as a Support Vector Machine (SVM) instance. In-
terestingly, despite the different choices of algorithm, the feature sets have much in
common. Most notably, they include unigrams in the text mention, grammatical
features such as part-of-speech and nearest verbs, as well as gazetteers.

3.1.3 Entity Disambiguation

Classic three-pronged approaches. There is a large body of prior works [112,
181] for named entity disambiguation (NED). State-of-the-art methods include AIDA
[70], Babelfy [127], Spotlight [123], TagMe [46], and Wikifier [156]. All of these meth-
ods draw upon three types of ingredients, as summarized by [109]. First, popularity
or prior probability or an entity assumes that the most prominent candidate is the
most likely underlying entity. Such a choice can be described as an educated guess
that does not require any further information from the text mention or the document
in which it occurs. The second ingredient, context similarity, takes the document
into account. It stipulates that similarity between the document containing the text
mention and a definitional document that describes the candidate (for example, the
candidate’s Wikipedia article) must be high. The third ingredient, coherence, lever-
ages further text mentions in the same document to stipulate that their underlying
entities should all be related to the same topic. This is typically achieved by leverag-
ing a KB, such that given a candidate, its categories, keywords, and related entities
can be used to compare topic similarity.
Most of these state-of-the-art methods are also available as software tools. From a

user’s point of view, they offer a range of choices, where one can “shop around” for
the most suitable tool or combine results of multiple tools.

Approach based on word embeddings. Another recent method [230] deviates
from the above three-thronged approach, and opts for extending the popular skip-
gram word embeddings to jointly model word-word, word-entity, and entity-entity
similarities. A knowledge base (Wikipedia in this case) is still the backbone of the
model, where link statistics are used to model the latter two similarities involving
entities.

Joint NER and NED. Although NER and NED are separate tasks, each can
provide cues for the other. Jointly performing entity recognition and disambiguation
in a combined manner can therefore enhance the performances of both tasks. Such
a joint approach is investigated in three methods, namely NEREL [183], a method
by Durrett and Klein [37], and J-NERD [140]. While the NEREL uses a re-ranking
model based on relations, Point-wise Mutual Information (PMI), and co-occurrence
information extracted from Freebase and Wikipedia, the latter two methods both
converge on using Conditional Random Field (CRF). Specifically, in the method by



Chapter 3. State of the Art 18

Durrett and Klein, a classic linear chain CRF is enhanced with 3 more types of edges
to model relationships introduced by NER, coreference resolution, and NED. On the
other hand, J-NERD constructs a CRF to reflect the dependency parse tree of a
sentence, and adds extra edges to model coreferences across sentences.

3.1.4 Competitions

In contrast to the biomedical domain, entity-related competitions are fewer and are
less prominent in the general domain. The CoNLL shared tasks take place yearly
covering a wide range of topics, though only the two aforementioned ones concern
named entities. Another yearly-recurring event is the Text Analysis Conference –
Knowledge Base Population (TAC KBP)1, which offers the Entity Discovery and
Linking (EDL) track. Apart from that, there are only one-off events such as the
Cross-Device Entity Linking Challenge2 at the 2016 Conference on Information and
Knowledge Management (CIKM), and even smaller events targeting languages such
as Chinese [44], Dutch3, and German [11].

3.2 Biomedical Domain

The big picture of text mining in the biomedical domain has been comprehensively
presented in surveys such as [71, 54, 167, 184, 241]. Under the umbrella of text mining
is a range of tasks. We focus here on the entity-centric tasks.

3.2.1 Entity Recognition

Applicable to a Single Sub-domain

NED methods that target only a single sub-domain are the bulk of NED efforts in the
community. Not only are there many methods proposed, the variety of sub-domains
is also wide. Here we present a selection of the dominant sub-domains.

Genes and proteins. The two most prominent sub-domains are undoubtedly genes
and proteins, which are often tackled simultaneously since, conventionally, a gene and
its protein product bear the same name. Among the many methods developed, BAN-
NER [100] is a prominent one based on CRF using orthographic and morphological
features, and shallow syntax features. A recent work by Sheikhshab et al. [179] also
uses CRF, but further combines it with techniques borrowed from graph-based label
propagation to model prior knowledge. Recognizing gene names in patents [59] is
another recent development that to date is an under-studied area.

Derivatives of gene and protein. These entities have a nomenclature different
enough from regular genes and proteins that they require tailored methods to be rec-
ognized. In addition to genes, GNormPlus [222] also recognizes protein domains. For

1tac.nist.gov/tracks
2competitions.codalab.org/competitions/11171
3wordpress.let.vupr.nl/clin26/shared-task
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gene mutations, tmVar [220] uses extensive word shape features to harness this nomen-
clature and train a CRF, followed by applying regular expressions as post-processing
to both pick up mentions missed by the CRF and filter out false positives. SETH
[203] instead harnesses nomenclature grammar guidelines and regular expressions to
pick up the mentions.

Chemicals. Being entities at the molecular level interacting with genes and pro-
teins, chemicals is another prominent sub-domain. The most popular underlying
algorithm is CRF by far, as features such as word stem, prefix, suffix, word shape,
and the use of Greek letters and Roman numbers are amenable to analyzing a chain
of word tokens. Works such as the method by Grego et al. [56], ChemSpot [166],
CheNER [212], and tmChem [103] all follow this line of methodology. Patents, as
an under-studied text genre, are especially important for the pharmaceutical indus-
try. Habibi et al. [60] investigate the efficacy of two of these tools (ChemSpot and
tmChem) originally designed for regular biomedical text on this genre.

Drugs. Drug names have much overlap with chemicals, but they also have many
standardized names curated in dictionaries such as the DrugBank [228]. Therefore
Korkontzelos et al. [96] develop an ensemble system that aggregates results from
individual NER methods that leverage a dictionary, word token-level features taken
from chemical NER, regular expressions, as well as statistics gleaned from existing
gold standard corpora. They report that results aggregated by a maximum entropy
model generally outperform those by a perceptron classifier.

Cell lines. In order to evaluate the performance of existing methods against a new
corpus, Kaewphan et al. [87] specifically include entities related to synthetic, lethal
genes that appear in cancer literature. They also include a novel method based on
CRF, and investigate the impact of dictionary and background corpus used in training
the CRF.

Species. A closely related sub-domain to cell lines is species. However, unlike cell
line names, species names are relatively few and well cataloged in dictionaries. There-
fore systems such as LINNAEUS [51] and SF4GN [221] adopt a dictionary lookup
approach.

Anatomical parts. Anatomical entities have been well established and cataloged
in dictionaries. Moreover, their textual expressions have limited variations. Anato-
myTagger [151] thus uses two dictionaries as the primary features for a CRF model,
namely the species-independent Common Anatomy Reference Ontology (CARO) [61],
and the human-centric Foundational Model of Anatomy (FMA) [168].

Diseases. Named entities such as Down’s Syndrome and Alzheimer’s Disease are
well cataloged in dictionaries. On the other hand, unnamed noun phrases such as
inherited male breast metastatic cancer are also abundant. Although their exact
expressions vary greatly, part of the phrases are often cataloged in dictionaries as well.
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Despite these observations, Sahu and Anand [171] take a decidedly different approach
and investigate the feasibility of avoiding sub-domain-specific features. Their work
investigates instead the contributions of character- and word-level embeddings to
multiple types of neural networks.

Phenotypes. A phenotype is an organism’s observable trait under the influence
of the organism’s genes and its environment. Like diseases, phenotypes encompass
both named entities (for example Crouzon syndrome) and composite noun phrases
(abnormality of head and neck). Therefore despite the existence of dictionaries such
as the Human Phenotype Ontology [94], the ultimate goal of recent works is the
construction of new dictionaries [2, 31] or expansion of existing ones [93], for which
recognizing phenotypes in text is a means to achieving that goal.

Symptoms. Symptoms are closely related to phenotypes, since a symptom is a par-
ticular bodily trait that surfaces due to a disease or some environmental disturbance.
There are relatively few existing works that focus on recognizing symptom entities.
As a step towards fully recognizing text mentions of symptoms, Sondhi et al. [190]
propose to identify whole sentences that contain symptom descriptions using word-
and sentence-level features in separate CRF and SVM approaches. The recent intro-
duction of the Micromed corpus [82] will be useful for future symptom recognition
works since it provides annotations of symptom text mentions in tweets.

Applicable to Multiple Specific Sub-domains

Common sub-domain combinations. The set of sub-domains targeted by one
single NED method is often influenced by gold standards, which in turn reflects the
focus of the research community at the molecular level. One popular corpus is the
GENIA corpus [90], which contains text mentions annotated with 6 entity types:
proteins, DNA”s, RNA”s, chemicals, cells, and cell lines. Another popular corpus is
the CRAFT corpus [215], which contains text mentions annotated with entities from 7
ontologies about proteins, genes, chemicals, cells, and taxonomy. Proteins, chemicals,
and cells are therefore a staple combination.
Funk et al. [48] compare two such methods, the ConceptMapper [201] and the

NCBO Annotator [178], against the CRAFT corpus. Another two prominent systems
are ABNER [177] and Gimli [20], both of which use CRF to recognize the 6 GENIA
entity types. A survey by Neves and Leser [139] examines further annotation methods
that target the same line of entity types.
Since PubMed abstracts are the standard corpus, and the sub-domains of interest

are commonly shared amongst the research community, the team in the University of
Turku has taken the initiative to provide a public service to the rest of the community
[62]. They have applied NERsuite4 to the entire PubMed corpus and made the results
publicly available. NERsuite is a tool built upon a fast CRF implementation called
CRFsuite5 and, in this case, CRF models specifically trained for the few selected
biomedical sub-domains are plugged into the tool.

4nersuite.nlplab.org
5www.chokkan.org/software/crfsuite
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Ensemble Web service. Very recently (in 2016), the National Library of Medicine
(NLM) constructed a Web service [224] that combines 5 existing state-of-the-art NED
methods targeting separate sub-domains. These individual methods have already
been mentioned above (DNorm, GNormPLus, SF4GN, tmChem, tmVar). As a result,
it is a one-stop Web-based tool that caters for the usual molecular-centric entity types
(chemicals, genes, gene mutations, proteins) as well as diseases and species.

The BeCalm initiative. The “next big thing” may be the BeCalm online tool6

which, at the time of writing this thesis, is in the initial stage of the project. BeCalm
TIP (Technical Interoperability and Performance of annotation servers) is a task for
recognizing chemicals, genes, and proteins in the upcoming BioCreative 5 competition.
Task participants place their NED implementation into a Web server, and different
implementations will be compared against the same gold standard. The vision is that
future users can request NED results from one or more implementations.

Applicable to All Sub-domains

MetaMap. There is no question that MetaMap [5, 6] is the de facto software tool
for the last decade. Its dominance can be attributed to its availability as a stand-
alone, easy-to-use software, and to its applicability to all sub-domains. The latter
is achieved by taking UMLS, the largest metathesaurus, as the dictionary. A major
disadvantage of MetaMap is its slow speed. The publisher of the PubMed corpus and
the owner of MetaMap, the National Library of Medicine (NLM), has responded by
preprocessing the entire corpus with MetaMap7.

Other dictionary-based approaches. Besides MetaMap, other NED implemen-
tations are also available. The BioPortal API8 is a Web service that offers to annotate
text mentions against dictionaries chosen by the user. MaxMatcher [238] implements
an approximate entity name matching method with UMLS as the dictionary, taking
into account that an entity in UMLS has multiple, often similar lexical variants.

Dictionary-less approaches. There are also methods proposed to perform NED
without attempting to tie the entities to any entity type. These methods generally
forego the dictionary, and instead aim to more accurately delineate the text mentions
that truly express named entities. For instance, Kim et al. [91] focus on linguistic
cues such as head words and word patterns. Their method uses a SVM classifier, and
considers noun phrases as named entities.

3.2.2 Entity Typing

As an integration in NER or NED. The study of explicitly typing biomedical
entities is scarce. We observe that entity type is often implicitly determined as an
integrated part of an NED or NER method. In the case of NED, recall that a text

6www.becalm.eu
7ii.nlm.nih.gov/MMBaseline
8Accessible via http://data.bioontology.org/annotator?text=[insert text]
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mention is often recognized for one the 6 GENIA entity types. For many biomedical
text mining tasks focused on the molecular level, those 6 types are already sufficient.
In the case of NER, text mentions are generally mapped to UMLS entities. Every
entity has at least one expert-assigned UMLS semantic type. Therefore by virtue of
using UMLS as the KB, NER always provides the corresponding entity types.

Explicit typing approaches. Nevertheless, there exist works that study entity
typing as the primary concern. Stenetorp et al. [192] propose a machine-learning-
based method and enhance it with approximate string matching. Depending on
the gold standard, their method can disambiguate up to 97 entity types, which are
therefore fine-grained like sub-cellular structure, multi-tissue structure, and developing
structure.
The DIEBOLDS method [13] uses label propagation to disambiguate entities be-

tween only two types, namely diseases and drugs. In this work, the source texts are
semi-structured Web pages; a typical page contains headings like Symptoms, Side Ef-
fects, and Precautions which provide important cues to the entity types therein. The
label propagation graph harnesses these document structures and relations in a KB
to build the edges.

3.2.3 Entity Disambiguation

Difficulty aspects. That biomedical entity disambiguation is a difficult task is only
a blanket statement. Besides the better known reasons such as numerous synonyms
and long noun phrases with diverse lexical variations, the task is also difficult in
other aspects. For instance, different sub-domains have different levels of difficulty,
which is reflected in highly varied disambiguation performances across sub-domains
under the same method. Besides the inherent characteristics between entity names,
other contributors include the abundance and distribution of training data [81, 235]
as well as the quality and completeness of the KB being harnessed [79, 242]. From
another point of view, textual style such as terms with regular English words and
abbreviations also cause a rift in disambiguation performance [194].

Applicable to Single Sub-domain

Genes and proteins. Similar to entity recognition, genes and proteins are the
most prominent sub-domains for entity disambiguation. Rebholz-Schuhmann et al.
[161] review various methods trained on different KB resources against multiple gold
standards. The methods fall into two broad categories, namely machine-learning-
based and lexical-resources-based.

Diseases. As mentioned, named diseases are well cataloged in dictionaries. DNorm
[101] and its clinical-text variant DNorm-C [102] exploit this unique arrangement by
using pairwise learning to learn similarities between text mentions and dictionary
entity names. Another work that targets clinical texts is a method by Zuccon et
al. [240]. It first applies MetaMap to gather a first round of results. Knowing that
many disease mentions are missed by MetaMap, it further applies CRF to pick up
any remaining mentions. Jimeno-Yepes et al. [80] also leverage MetaMap, and use
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MetaMap as one of three voting modules in an ensemble. The second module is
a dictionary lookup method, and the third module is adapted from an information
theory-based method [50] that models the specificity of KB entities. In a completely
different approach, Islamaj Doğan and Lu [75] use a series of rules in a decision-tree-
like manner, comparing a text mention’s similarity to an entity’s primary name and
synonyms, as well as leveraging scoring functionality provided by Lucene9, a standard
indexing and search engine software tool.

Clinical texts. Although clinical texts are not an entity type, as a sub-domain
they have recently seen a spate of works aimed at tackling the peculiar textual style.
Besides the two aforementioned works [102, 240] that disambiguate disease names,
other works focus on entities especially abundant in clinical texts. For instance, Wu
et al. [229] address abbreviations, and they show that word embedding features im-
prove the performance of an SVM using only conventional unigram and orthographic
features. Kreuzthaler and Schulz [97] go as far as disambiguating only period char-
acters. When the context to the left and right of a period is fed to a decision tree,
the rules decide whether the period ends a sentence, ends an abbreviation, is part of
a number, or is part of some special code from a controlled vocabulary.
Gradable terms are characterizations such as normal and severe, which have dif-

ferent meanings when applied to different entity types (for example measurement vs.
disease), as well as different meanings between entities of the same type (for exam-
ple normal systolic dysfunction vs. normal anemia). Shivade et al. [182] propose a
probabilistic model not only to cluster related gradable terms, but also to order them
by ordinal relationships and provide concrete numerical ranges of the corresponding
clinical observations.

Applicable to Multiple Specific Sub-domains

Unlike entity recognition, entity disambiguation methods either address one sub-
domain, or have no sub-domain limitations; to the best of our knowledge, there are no
existing methods that specifically target a certain set of sub-domains. One likely rea-
son is the specificity of individual sub-domains. As mentioned, different sub-domains
present different challenges, so that it is sensible to tackle one sub-domain at a time,
and combine separate solutions as needed.
Another likely reason is the availability of gold standards. To the best of our

knowledge, the CRAFT corpus [215] is the only multi-sub-domain gold standard that
contains annotations with KB entity identifiers pooled from multiple KB’s including
UMLS. Of the sub-domains featured (chemicals, genes, proteins, cells, and taxonomy),
only a small portion of the annotations point to UMLS entities.

Applicable to All Sub-domains

MetaMap and alternatives. Despite its limited functionality in the disambigua-
tion module, MetaMap remains the de facto standard software tool for the task due
to its availability and easy setup. Other proposed methods employ a variety of ap-

9lucene.apache.org
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proaches. For instance, Zheng et al. [236] build a graph for each document using the
rich semantic information and structure of many KB’s, perform collective inference,
and finally rank the entity candidates. Zwicklbauer et al. [243] use a query-based
approach. Documents describing entities are transformed into a document-centric
KB, so that a text mention and its context can be turned into a query and retrieve
KB items via Learning to Rank. Kim and Yoon [92] focus on disambiguating abbre-
viations by modeling word-topic, document-topic, and word-link distributions with
an adaptation of Latent Dirichlet Allocation (LDA).

Designed for novel corpora. Texts from social media on the Web, in particular
tweets and blog posts, are the focus of Limsopatham and Collier [110]. Their work
compares the efficacy of Convolutional and Recurrent Neural Networks (CNN and
RNN, respectively), where word embeddings are the primary feature. The CLEF-ER
laboratory shared task [158] provides parallel corpora in 5 European languages, and
the participating methods must disambiguate entities using the English corpus plus
one or more non-English corpora.

Word Sense Disambiguation

Recall that entities of interest for the biomedical domain include noun phrases, which
contain words that carry multiple biomedical meanings. Therefore word sense disam-
biguation (WSD) is a closely related problem to entity disambiguation, and the line
between these two tasks is blurry.

Two gold standards. Most existing works are driven by two prominent gold stan-
dards, NLM WSD [219] and MSH WSD [83], which both contain judiciously selected
and ambiguous words to reflect a range of underlying entity types (such as molecular
processes, anatomical parts, and therapies) and word types (spelled-out terms and
abbreviations).

Methods evaluated against the two gold standards. A wide variety of ap-
proaches have been evaluated against these two gold standards. Lin and Verspoor
[111] construct an n-gram language model that incorporates semantic information.
DALE [148] uses word lemmas to build feature vectors for candidates and text men-
tions before comparing them via cosine similarity. Stevenson et al. [193] specifi-
cally target PubMed abstracts for their indexing terms, or MeSH (Medical Subject
Headings) terms, from which that the topic of the abstract can be determined and
leveraged in the subsequent Personalized PageRank method. Jimeno-Yepes et al. [84]
extract multiple kinds of word collocation statistics from text mentions, and use them
as features for a Naïve Bayes classifier and separately for a vector-based similarity
comparison method. Finally, Jimeno-Yepes [77] investigates the combination of lo-
cal features derived from a text mention’s context and global features in the form of
word embeddings, and apply them to a recurrent neural network with long short-term
memory.
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3.2.4 Competitions

In the biomedical text mining community, competitions are important events and
they occupy a significant proportion of the community’s collective effort. As a fur-
ther effect, these competitions impact the research directions of the community over
the years not only by proposing new research problems, but also by providing gold
standards as staple benchmarks. Driven by real-life information needs of “wet lab”
scientists and professional knowledge base curators, various competitions elicit solu-
tions that aim to satisfy those needs. While a survey by Huang and Lu [72] presents a
comprehensive list of competitions, here we highlight the recent ones that emphasize
working with entities.

For Biomedical Text Genre

BioASQ10 is a competition about finding answers to biomedical questions. Of
particular interest are factoid questions, whose answers are named entities. Other
types of questions have answers in the form of text snippets and RDF (Resource
Description Framework) triples from KB’s.

BioCreative11 hosts over the years entity recognition competitions for chemicals
and genes, as well as entity disambiguation competitions for genes, Gene Ontology
terms, and genes with corresponding species.

BioNLP shared tasks feature named entity recognition tasks for very specific
sub-domains, and further requires participating methods to connect the recognized
entities into relations. For instance, in the bacteria biotope task [34], entities of
types hosts, body parts of the host, environments (food, medical, soil, and water),
and geographical locations are to be recognized with the correct type. Another task,
SeeDev [21], is about plant seed development. There are 16 entity types spanning
from genes, metabolic pathways, genotypes, to environmental factors for recognition,
to be followed by extraction of genetic and molecular mechanisms.

CALBC Challenge [162] uses the CALBC silver standard [159] as its evalua-
tion corpus. Results of participating systems are evaluated against a portion of the
annotations for 4 specific sub-domains.

For Clinical Text Genre

ShARe / CLEF eHealth Challenges include tasks that focus on the recognition
and disambiguation of diseases [147], and the disambiguation of abbreviations [128].

i2b2 features an entity recognition task [214] that focuses on 3 entity types, namely
medical problems, tests, and treatments. In another task [213], medications are to
be recognized as named entities, together with the extraction of related information
such as dosage and duration.

10www.bioasq.org
11www.biocreative.org
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SemEval features one task [146] for the recognition and disambiguation of diseases.
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Chapter 4

Fast Entity Recognition

MetaMap, the de facto standard software tool for biomedical entity recognition, em-
ploys much Natural Language Processing (NLP) machinery to recognize entities in
UMLS (Unified Medical Language System), the largest metathesaurus. Knowing that
NLP machinery is time-consuming, and that UMLS is rich in lexical variations, we
investigate whether a fast, string-similarity-based method can achieve results compa-
rable to those of MetaMap. We implement an NLP-light method that performs fast
MinHash lookups via character trigram features. When compared to MetaMap, our
method achieves comparable precision and 13% less coverage using less than 1% of
the time.

4.1 Introduction

4.1.1 Motivation

In recent years, the amount of biomedical information has grown tremendously, and
much of this information is disseminated in a variety of free texts. Besides PubMed1,
the preeminent resource for scientific literature, the Web features many health portals
and patient discussion forums for the layman. The Biomedical Natural Language
Processing (BioNLP) community has responded by developing and applying various
text mining techniques in order to extract this information buried in the texts.
Biomedical text mining spans a range of information extraction (IE) tasks such as

extracting protein-protein interactions [105], drug-adverse-effect correlations [89, 226,
227], and pharmacogenomics networks [33, 154]. Regardless of the goal of the IE task,
text mining is a pipeline of processes or sub-tasks, where the final sub-task produces
the desired information. Entity recognition (ER) often serves as an early sub-task,
upon which other downstream sub-tasks depend. A typical sub-task immediately
following entity recognition is entity disambiguation. Extracting relations between
two entities in a dictionary, for instance, requires text mentions to be mapped to
entities in the dictionary before relations between them can be analyzed. Downstream
sub-tasks not only depend their success on the quality of the entities recognized, they
may not even begin before the entity recognition task is completed. Therefore, it is
crucial that a biomedical entity recognition method provides high quality results.

1www.ncbi.nlm.nih.gov/pubmed
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ER in the biomedical domain presents unique obstacles uncommon to the general
domain, such that providing high quality results is already a challenge. Biomedical
texts, especially scientific literature geared towards professionals, are steep in spe-
cialized jargon. Biomedical concepts are often expressed in long phrases with a large
number of variations. In the general domain, entities are often named and easily
distinguished as noun phrases; in the biomedical domain, however, even verbs may
be considered entities when they, for example, describe specific medical procedures
as in diagnosed and injected.
Since the amount of aforementioned free texts is published at an ever increasing

pace, a second challenge in biomedical ER is to provide high throughput. PubMed
comprises over 26 million citations and is growing at more than one million new ci-
tations per year. As for Web content, existing health portals constantly have their
contents updated and expanded, while patient discussion forums naturally only grow
in size. Indeed, maintaining high quality while yielding high throughput is a prereq-
uisite for any ER method that aims to support text mining at PubMed-scale.
To counter these challenges, ER has been a major area of research within the

BioNLP community. Since entity names in different sub-domains exhibit character-
istics consistent within its own sub-domain that are different from those in other
sub-domains, the vast majority of efforts address entities of individual sub-domains
such as chemicals, genes, and proteins. Of the efforts that address all sub-domains,
there are relatively few works. Since its launch in 2001, MetaMap [6] has become
the de facto standard software tool for general-purpose biomedical ER. MetaMap is a
software installed on the user’s own local machine. It takes the entire UMLS2 as the
dictionary; in other words, MetaMap considers all entity names from all sub-domains
present in UMLS. Employing much Natural Language Processing (NLP) machinery,
MetaMap trades off higher quality with lower throughput. As text collections grow in
size, this lower throughput gradually becomes the bottleneck of a text mining pipe-
line. In our experience, without parallelization, processing 600k PubMed abstracts
– a small portion of over 16m English abstracts in the entire collection – takes 26
days (3.8s per abstract using a single instance of MetaMap). Apart from MetaMap,
few publicly and freely available alternatives exist. One possibility is the BioPortal
API3, an entity annotation service accessible over the Web, though the dependence
on network connectivity again limits throughput and renders the option unsuitable
for large-scale use.
Knowing that MetaMap takes UMLS as its dictionary of entities, we further observe

that UMLS is the largest metathesaurus, rich in entity names, their synonyms, and
their lexical variations. This observation spurs us to investigate an alternative ER
method that is fast and exploits this lexical richness.

4.1.2 Contribution

We devise a string-similarity-based method for biomedical ER aimed at minimizing
the use of NLP machinery and thus processing time. Specifically, the method achieves
high quality and high throughput.

2www.nlm.nih.gov/research/umls
3Accessible via http://data.bioontology.org/annotator?text=[insert text]
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High quality is achieved by exploiting the rich collection of lexical variations of
entity names in UMLS, as this collection is amenable to a string-similarity-based
approach. We observe, however, that this collection is still incomplete. We augment
the collection with the missing variations, namely the plural forms of existing nouns
as well as the full set of conjugations of existing verbs.

High throughput is achieved by turning to MinHash [19] as the key ingredient.
MinHash is a variant of the Locality Sensitive Hashing (LSH) [22] algorithm that
transforms a dictionary lookup into a hash lookup with high probability of success.
In terms of NLP processing, the method uses at most part-of-speech tagging, which
is a fast process, and avoids any further processing such as dependency parsing.

Together with judicious selection of a subset of the UMLS dictionary and simple
heuristics in selecting which text mentions to perform lookups for, the method achieves
up to 83% precision and 78% coverage under a strict rating scheme that penalizes
failure in Word Sense Disambiguation (WSD), at a throughput of 1,720 PubMed
abstracts or 175 Web pages per minute. The resulting code has been released as
an open source software, and has made it possible to process large corpora in other
biomedical text mining works [39, 40, 41].

4.2 Related Work

Biomedical ER for a Single Sub-domain

ER in the biomedical domain often focuses on a specific sub-domain. Proteins and
genes are the most popular sub-domains, and the BioCreative initiative has been
driving the BioNLP community with various gene mention recognition [189, 233]
and normalization tasks [67, 115, 126]. Out of a large body of works, there are a
number of software tools publicly available, where Gimli [20] and ABNER [177] are
two notable ones. Since gene and protein names are written in a highly specific but
non-standardized manner, recognizing their text mentions continues to be a research
challenge. As recent as 2016, Sheikhshab et al. [179] propose to use a graph-based
method to leverage a two-word window around a gene name in order to improve
precision. Recognizing protein-centric entities such as sequence variants has been
studied as well [220].
Chemicals are another popular sub-domain for ER because chemical names are

written in a completely different but just as specific and non-standardized manner.
Chemical names are a mixture of established names (e.g. ferric oxide), chemical el-
ements and their symbols (Fe2O3), and other established words such as prefixes and
suffixes, all jumbled up as multi-word or long formulaic expressions (Amylo-(1,4,6)-
transglycosylase). Therefore for chemicals, orthographic features are an important
ingredient for recognizing entities, as evidenced in two existing works [9, 103]. And
since chemical names are too variable, no dictionary can hope to exhaustively list all
possible names. As a result, there are existing works [9, 166, 212] that leverage a
dictionary as a starting point, and refine the intermediate results with more sophis-
ticated machinery such as Conditional Random Fields (CRF’s). There has also been
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effort [95] to draw upon multiple methods and combine their results in an ensemble
manner.
Besides recognizing proteins, genes, and chemicals, there are also works focusing

on other sub-domains such as anatomical parts [151], cell lines [87], diseases [106,
138, 171, 240], drugs [96], malignancies [86], organisms and species [51, 132], as well
as entities related to a single, highly specific biological system (bacterial type IV
secretion system) [3].

Biomedical ER for Multiple Sub-domains

A number of existing approaches [91, 135, 176, 180, 191, 208, 235] are in principle
applicable to all entity types. In practice, however, these approaches study their
performances using one dominant gold standard, the GENIA corpus [90]. This cor-
pus contains annotated text mentions belonging to 6 entity types: proteins, DNA’s,
RNA’s, chemicals, cells, and cell lines. As a result, how generalizable these approaches
are beyond these 6 entity types remain to be studied. A review by Funk et al. [48]
provides a detailed analysis of further ER approaches targeting these entity types,
using the larger and more recent CRAFT corpus [7].
Biomedical ER methods that truly tackle all sub-domains are relatively sparse. The

seminal work by Frantzi et al. [47] propose the C-value / NC-value method to recog-
nize multi-word terms in an unsupervised manner. BANNER [100], a method based
on CRF that decidedly forgoes a dictionary, is another milestone contribution that
becomes a building block for later, bigger systems. For general-purpose biomedical
ER, however, MetaMap remains the most widely used software tool and is widely
regarded as the de facto standard tool. Other alternatives such as the BioPortal API,
MaxMatcher [238], and NOBLE [209] do exist to tackle any text genre, while cTakes
[173]4 is specifically designed to tackle clinical text. A survey by Neves and Leser
[139] offers a comprehensive overview of entity annotation tools. The League Table
[160] was an effort to supply an online platform to compare and benchmark differ-
ent annotation tools against multiple gold standards; this service seems to have been
decommissioned. At the time of writing of this thesis, BeCalm5 has just begun as a
new initiative to provide an annotation metaserver.

Dictionary Construction and Enrichment

Apart from the task of looking up entities, there has also been efforts to enrich the
dictionary upon which lookups are performed. Such is the contribution of BioLexi-
con [204] – this linguistic resource is a catalog of over 2.2m lexical entries featuring
entity names, as well as words specific to the biomedical domain in all their lexical
variations. Other sub-domain-specific efforts include enriching a dictionary for ab-
breviations [141], and constructing dictionaries from scratch for chemical names [66]
and human phenotypes [31, 93].

4Latest version available at ctakes.apache.org
5www.becalm.eu
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Approaches Employing String Similarity

String-similarity-based methods are frequently employed to perform various text-
oriented tasks in the biomedical domain. Yamaguchi et al. [231] compare the per-
formances of four different string similarity metrics for the task of clustering chemical
and non-chemical abbreviations. Wellner et al. [225] combine an adaptive string sim-
ilarity model with CRF’s to pick up protein names in free text. String similarity
metrics can be cast as a machine learning problem, as Tsuruoka et al. [210] propose –
given protein names, learn the metric via logistic regression. The resulting metric is
later used to look strings up from a dictionary of protein names. In the general do-
main, SpotSigs [202] extracts word signatures as delimited by determiners, and apply
a Jaccard-similarity-based algorithm on these signatures to detect near duplicates in
a large Web archive.

Approaches Employing LSH

LSH is a proven technique used in numerous applications, especially when one requires
speed in working with large datasets. Ravichandran et al. [157] present an NLP
example, where nouns from a Web corpus are clustered based on cosine similarity.
More recently, Boytsov et al. [18] uses LSH to approximate k-nearest neighbor search
to increase recall in an information retrieval task. Chum et al. [26] present another
prominent example in the area of computer graphics. The authors extend the hashing
algorithm with weighted set similarity measures. The resulting algorithm is capable
of detecting near duplicate images and videos, and is highly scalable. As for the
biomedical domain, however, no other ER method employs LSH to the best of our
knowledge.

4.3 Methodology

4.3.1 Dictionary Construction

UMLS is made of up entities, called concepts in UMLS documentation, where one
entity is represented by one or frequently multiple entity names bearing the lexical
variations from different dictionary sources. Since the ultimate goal is to look up entity
names via a hash table, where a hash signature is based on the entity name’s exact
spelling, the intermediate goal is to compile a collection of entity names complete in
its lexical variations.

Preprocessing. Being a potpourri of different dictionaries with heterogeneous norms,
many entity names in UMLS are unsuitable for a string-similarity-based method be-
cause they are highly unlikely to appear verbatim in free text. Therefore we apply
two rounds of preprocessing in order to filter out unsuitable entity names.
In the first round of preprocessing, each entity name is checked against some 177

suffixes and any suffix occurrence is removed. All but 7 of these suffixes are enclosed
in brackets, which already denote their supplementary nature; removing these suffixes
does not affect the information content of the entity names. The suffixes belong to a
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few categories. Table 4.1 shows the categories and sample suffixes, and the entire list
can be found in Appendix A.

Category Sample suffixes

Entity type (cell structure)
[Chemical/Ingredient]
(person)

Detailed species (H1N1)
(H3N2)

Discoverer and year of discovery (Hensel, 1867)
(Linnaeus, 1758)

Measurement unit (__ degrees)
(GRAMS)

Dictionary-source-specific attributes [Ambiguous]
[dup]
-RETIRED-

Table 4.1: Categories of UMLS entity name suffixes

In the second round of preprocessing, entity names featuring long strings are dis-
carded. For instance, stage I Hodgkin’s lymphoma lymphocyte depletion type below the
diaphragm and pyrithione zinc 2% topical application shampoo are long names that
are highly unlikely to appear as-is in any scientific or Web document. Since we aim
to construct a hash table for looking up entity names, including such long names in
the hash table clogs it with unproductive signatures and increases collisions. There-
fore, we take only those entity names in UMLS that are 5 words or shorter, and 100
characters or shorter. Using the freely available (category 0) portion of the 2012AB
dataset (the STR column in MRCONSO table), the subset of UMLS thus obtained
features 2.7m unique <entity, entity name> pairs.

Augmenting lexical variations. Many entities in UMLS already provide ample
lexical variations such as singular and plural forms (for example in entity C0020974
immunoglobulin injection, immunoglobulin injections, and immunoglobulins injection),
verb conjugations (C0021107 implant, implanted, and implanting), and different word
orders (C0021943 chromosome inversion and inversion chromosome). Some entities,
however, do not contain such information. Since the implementation of hash table
lookup relies heavily on exact spelling and hence the completeness of lexical variations,
we augment our subset of UMLS by generating missing variations.
The first augmentation concerns plural forms of nouns. We use WordNet [43] to

detect entity names that end with an English noun, and then use MorphAdorner6 to
generate the noun’s plural form. The entity C0751248 M’Naghten rule, for instance,
is augmented with the additional entity name M’Naghten rules. This procedure gen-
erates 439k entity names.

6morphadorner.northwestern.edu
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The second augmentation concerns verb conjugations. Starting from entities fea-
turing a single word, we first use WordNet to check that it is an English verb. Then
we verify that the corresponding entity belongs to UMLS-defined semantic groups
that feature verbs. We choose Activities & Behaviors, Concepts & Ideas, Phenom-
ena, Physiology, and Procedures as the qualifying semantic groups, such that, for
instance, a gene named CASH is disqualified. After passing these tests, we apply
MorphAdorner to conjugate the verbs. Care is taken not to incorporate a generated
variation when such an entity name already exists in UMLS, because a pre-existing
entity may well represent a semantically different entity. For instance, although from
C0175735 shear the medical device we could generate shearing, that entity name al-
ready exists as entity C0205013 the therapeutic procedure. In this case, shearing is
not used to augment the medical device entity. This procedure generates 4,614 entity
names.

In summary, the entire dictionary construction procedure compiles a total of 3.1m
unique <entity, entity name> pairs.

4.3.2 Locality Sensitivity Hashing and MinHash

Locality Sensitivity Hashing (LSH) [22] is a probabilistic method that reduces
the dimensions of a high-dimensional dataset. Intuitively speaking, similar items in
the dataset are hashed with high probability to the same bucket. Formally speaking,
an LSH scheme is a distribution on a family F of hash functions π’s operating on a
collection of objects, such that for two objects x and y:

Pπ∈F [h(x) = h(y)] = sim(x, y)

where sim(x, y) ∈ [0, 1] is some similarity function defined on the collection of objects.

MinHash (min-wise independent permutations) [19] is often employed as the
hash functions π’s since one MinHash scheme is itself a family of permutations. In
addition, these permutations operate on objects that are sets. Formally speaking, F
is a min-wise independent if, for any set S ⊆ [n] and any s ∈ S, when π is chosen at
random in F , the following condition holds:

P
(
min

{
π(S)

}
= π(s)

)
=

1

|S|

In other words, the condition requires that all the elements of any fixed set S have
an equal chance to become the minimum element of the image of S under π.
[19] shows an additional property of LSH, namely, that the probability of two sets

S1 and S2 being hashed to the same bucket is exactly their Jaccard similarity:

Jaccard(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

In our implementation of MinHash, we encode a string as the set S of character
trigrams of the string. Let π1, π2, . . .πk be hash functions from k independent min-
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wise permutations, such that each π maps trigrams to integers. Then π(S) is the set
of integers thus mapped, and let min{π(S)} be the smallest integer in this set. The
hash value, or signature, of the string is a concatenation of these smallest integers
from each permutation:

min(π1(S))⊕min(π2(S))⊕ · · · ⊕min(πk(S))

The concatenation operator is implemented as simple arithmetic summation. [19]
further shows that, for each permutation π:

P
(
min

{
π(S1)

}
= min

{
π(S2)

})
= Jaccard(S1, S2)

4.3.3 Dictionary Lookup via String Similarity

Precomputing MinHash tables. Given two highly similar strings and one Min-
Hash scheme or one MinHash table, there is still a probability of 1− Jaccard(S1, S2)
that the two strings are not hashed to the same bucket. Therefore to increase re-
call, we employ multiple MinHash tables for the same collection of entity names in
the constructed dictionary. When looking up text mentions at runtime, we take the
union of matching dictionary entity names from all MinHash tables.
The bulk of computation is in the setting up of the MinHash tables, namely, the

selection of random permutations in the form of trigram-to-integer mappings, as well
as the hashing of signatures. This computation, however, is invariant to the text
mentions to be looked up, and can be precomputed ahead of time.

False positive pruning. Due to the probabilistic nature of MinHash, collisions of
different entity names being hashed to the same bucket are inevitable, leading to false
positives. We detect false positives by comparing the Jaccard similarity of character
trigram sets between a text mention and a dictionary entity name. When the Jaccard
similarity scores below a threshold, the entity name is discarded as a false positive.

4.3.4 Selecting Text Mentions for Lookup

Fast and robust dictionary lookups contribute to only half of the success. The other
half comes from the module that selects text mentions for lookups. We present two
strategies that adhere to the theme of minimizing NLP machinery.

Consecutive words. This strategy is nearly NLP-free: Simply take consecutive
words as text mentions, and use heuristics to trim the text mentions or discard un-
desirable ones. We start with the word length of 1, or every single word. Discard
the word when it is a stop word, or when the word has only 3 or fewer characters.
When looking at word lengths of 2 or more, remove any leading stop words. Discard
the text mention when there is a punctuation dividing the words, as this indicates
the text mention would not represent a coherent entity. Since the dictionary only
contains entity names up to 5 words long, we also limit the length of text mentions
to 5 words. Despite the large number of text mentions generated, this strategy is
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viable because it is fast, and the accuracy of mapped entities is taken care of by the
dictionary lookup module.

Noun phrases. This strategy is NLP-light: Take only noun phrases as text men-
tions. We use the Stanford CoreNLP tool [207] to assign part-of-speech tags, and
then use OpenNLP7 to perform noun phrase chunking. We further identify complex
noun phrases in the form of:

noun group – preposition – noun group

where a noun group is in the form of:

[[optional adverb] – optional adjective] – noun

Complex noun phrases allow us to capture text mentions like shortness of breath
and left lower lobe of lung, as well as lobe of lung when the optional adjectives left
lower are omitted. Notice that this strategy generates strictly a subset of those text
mentions from the consecutive words strategy. This distinction addresses the question
regarding the balance between precision and recall, as we want to investigate whether
using more selective text mentions improves precision.

4.4 Evaluation

4.4.1 Data and Software Setup

Parameter tuning. To tune the MinHash parameters, we performed preliminary
experiments. Besides reviewing precision and recall, we also wanted to minimize
lookup time and bucket collisions, or false positives. We applied MinHash to UMLS
dictionary entities, and looked up 500 random entity names. The optimal parameters
that yielded the best results were as follows: choose k=30 from 14k permutations,
project the dataset into 12m dimensions, use 2 MinHash tables to increase recall, and
set the Jaccard similarity threshold for pruning false positive at 0.8.

Software implementation and hardware. We programmed the aforementioned
MinHash method in Java, and ran the experiments in standard Linux machines with
8 Intel Xeon CPUs at 2.4GHz and 48Gb of main memory. The entire precomputa-
tion, including dictionary construction and the building of MinHash tables, took 30
minutes. To maximize lookup speed, the program loads the precomputed MinHash
tables in main memory, at a one-off cost of 20 seconds when the program starts up.

Test documents. The collection of test documents are randomly selected from
both biomedical scientific literature and layman-oriented health portals on the Web
(see Table 4.2).

7opennlp.apache.org
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Corpus Genre Number of
documents
selected

Average
number of
words in one
document

PubMed MEDLINE
abstracts from 2011 Scientific

literature

5,000 181.47

PubMed Central
full-length articles from 2011

500 3,038.01

MayoClinic Health portal
on the Web

500 1,793.47
UpToDate 500 2,570.94
Wikipedia Health Portal 500 510.05

Table 4.2: Composition of test documents

MetaMap. MetaMap is the baseline system against which we compared perfor-
mances, and we took care to ensure that MetaMap achieved the best possible perfor-
mance. Specifically, we loaded the MetaMap program and all of its associated data
files into shared memory (shm). We cut MetaMap’s runtime by half by issuing one
request per document rather than one per sentence. In addition, MetaMap used the
UMLS 2012AB base dataset, which corresponded to the same portion of UMLS we
constructed our dictionary from. Finally, MetaMap provides scored entities for each
text mention. We only used the top-scoring entity in our evaluation; where multiple
entities shared the same top score, all of those entities were taken into consideration.

4.4.2 Precision

UMLS entity names sharing the same lexical form often represent semantically dif-
ferent entities. The text mention medicine can be mapped to entity C0013227 the
pharmacological substance, and to entity C0025118 the occupational discipline. While
our string-similarity-based method lacks the power to discern between these semantic
differences, MetaMap has a WSD module that removes incorrect entities. In order
to assess how much WSD contributes to the final mappings, we evaluated precision
using two rating schemes. In the lenient rating scheme, as long as a text mention is
mapped to at least one correct entity, we rated this text mention as correct. In the
strict rating scheme, the presence of any incorrect entity would rate the text mention
as incorrect. In other words, the strict rating scheme penalizes failure in WSD.
Table 4.3 shows the precision results of our program under various combinations

of experimental setups. In the table’s headers, UMLS denotes the UMLS-subset
dictionary; +P and +V denote augmenting it with the plural nouns and verb conju-
gations, respectively. sci and web denote the genres of the test documents, namely
scientific literature and health portals on the Web, respectively. Each cell in the table
presents the precision evaluated from 100 randomly sampled text mentions. Overall,
the MinHash method trails behind MetaMap in precision, though in a few settings
their precision results are comparable (between 4% worse to 2% better). A few trends
are observed and elaborated below.
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UMLS UMLS+P UMLS+V UMLS+PV MetaMap
sci web sci web sci web sci web sci web

Consecutive words 0.94 0.98 0.97 0.96 0.94 0.99 0.96 0.99 0.94 0.96Noun phrases 0.91 0.96 0.94 0.99 0.94 0.97 0.92 0.96

(a) Lenient rating scheme

UMLS UMLS+P UMLS+V UMLS+PV MetaMap
sci web sci web sci web sci web sci web

Consecutive words 0.71 0.81 0.74 0.71 0.67 0.80 0.75 0.83 0.79 0.81Noun phrases 0.73 0.78 0.78 0.83 0.64 0.79 0.74 0.81

(b) Strict rating scheme

Table 4.3: Precision of the MinHash method and MetaMap

Lenient vs. strict rating scheme. Under the lenient rating scheme, the MinHash
method scores consistently over 90% in precision. This result is expected, as MinHash
finds, for a text mention, all entity names in the dictionary spelled similarly. Almost
all the time, at least one of these entity names would be the entity expressed in the text
mention. In fact, MinHash fails when the text mention is spelled similarly to unrelated
entity names and when the correct entity does not offer a lexical variation similar to
the text mention. For instance, the word architecture in the phrase interfere[nce] with
sleep architecture is mapped to entity C0003737 the occupation, the only entity name
in the dictionary with that spelling.
Naturally, both the MinHash method and MetaMap lose precision under the strict

rating scheme. While the MinHash method loses between 15% to 30%, MetaMap only
loses 15% across all settings. MinHash’es heavier loss can be attributed to its lack
of WSD. Although the WSD machinery of MetaMap has never been explicitly pub-
lished, an oblique reference [78] hints at a disambiguation method based on Journal
Descriptor Indexing [73]. After years of using MetaMap, our empirical experience sug-
gests that MetaMap has a preference for certain semantic types. The word medicine,
for instance, is always disambiguated to C0013227 of semantic type Pharmaceutical
Preparations, thus discarding C0025118 of semantic type Biomedical Occupation or
Discipline. As the prior distribution of such ambiguous entity names coincide with
the semantic type preferences, it is reasonable that MetaMap makes the right choices
more often than not.

Consecutive words vs. noun phrases. The precision of text mentions selected
via the noun phrases strategy is generally lower than that via the consecutive words
strategy. We find this result surprising, as one would expect noun phrases to be
text mentions whose lexical variations are likely to be found in the dictionary. Upon
closer examination, it turns out that the root of the problem lies in the noun chunks
identified by the chunking tool. Many such chunks are acronyms, numbers spelled
out as English words, and single words high in ambiguity such as form and system –
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precisely the types of text mentions a simple string-similarity-based approach does not
handle well. Compared to the consecutive words strategy, the noun phrases strategy
uses a higher proportion of such problematic text mentions, dragging the precision
down.

Corpus genre. Precision observed in layman-oriented documents generally outper-
forms that in scientific ones. One contributing factor is the lack of acronym detection
across multiple sentences, as scientific literature features acronyms more frequently.
More importantly, we observe that sentences in scientific documents – especially ab-
stracts – are often long with convoluted sentence structures. As soon as a text men-
tion does not adequately express the full nature of the corresponding entity, a simple
string-similarity-based lookup would fail. A common example is the listing of multiple
items, as in cell proliferation, differentiation and migration, where differentiation and
migration are incomplete text mentions, and only cell proliferation fully expresses the
entity.
One key observation here is that noun phrase chunking does not rectify this situa-

tion. We conjecture that a better solution lies in leveraging the sentences’ dependency
parse trees, such that text mentions may be properly constructed before looking up
the dictionary.

4.4.3 Coverage

To the best of our knowledge, although there are corpora annotated for highly focused
sub-domains such as proteins and their interactions, there is none annotated with all
types of biomedical entities. To provide an indication of recall, then, we rated every
text mention in 30 random PubMed abstracts from the test documents. We took the
union of all correct text mentions mapped by either the MinHash method or MetaMap,
and let this larger set of text mentions be an estimation of complete coverage. Using
the lenient and strict rating schemes, the 30 abstracts covered a total of 2,481 and
2,401 text mentions, respectively.

MinHash
consecutive

words

MinHash
noun phrases

MetaMap

Lenient 0.8420 0.2048 0.9105
Strict 0.7839 0.1930 0.9138

Table 4.4: Coverage of the MinHash method and MetaMap

Table 4.4 shows the coverage of the MinHash method and MetaMap for these
30 abstracts. Since augmenting the UMLS subset dictionary with verb and noun
variations yielded the best precision, here we used only this UMLS + PV dictionary
for the MinHash method. Again, some trends are observed and elaborated below.
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Low coverage of noun phrases strategy. The most glaring observation in Table
4.4 is the low coverage of the noun phrases strategy. Although disappointing, the
numbers are not surprising. In the 30 abstracts, only 13% of all words are chunked as
noun phrases, and thus further taken as text mentions for lookups by the MinHash
method. Compare this with the consecutive words strategy, where all words regardless
of parts-of-speech are considered, and verbs in particular contribute to many text
mentions. Under the consecutive words strategy, 65% of all words are eventually
included in text mentions with (both correctly and incorrectly) mapped entity names.
MetaMap is capable of analyzing text mentions syntactically thanks to its heavy

NLP machinery, such that “less important” words within a text mention may be
skipped. Consider the text mentions aerobic anoxygenic phototrophic bacteria and
drug-endogenous substance interaction. They are mapped to aerobic bacteria and
drug interactions respectively, which are indeed correct entities despite losing some
specificity. The MinHash method only considers a sequence of words in its entirety,
and would never have found such coarser-grained entity names, further contributing
to a loss in coverage.

MinHash and MetaMap complement each other. Regardless of the lenient or
strict rating scheme, MetaMap achieves a stable coverage at 91%. As with precision,
the MinHash method with consecutive words strategy also trails behind MetaMap in
coverage, but is no rival here due to a gap of up to 13%. Notice that neither the
MinHash method nor MetaMap finds every text mention in our estimated complete
coverage. Let us visit some notable patterns that allude to the strengths and weak-
nesses of both programs, which may shed some light on why both programs pick up
entities the other does not.
As mentioned, MetaMap is capable of analyzing text mentions syntactically in

order to skip “less important” words. This syntactic analysis is not accurate all the
time, however. Where it makes a mistake is where the MinHash method may prove
complementary. Perhaps due to chunking errors, text mentions like shortness of
breath and pain breakthrough do not always remain intact; MetaMap may split the
text mention into shorter text mentions of single words. Consequently, single words
are mapped to their own, separate entities, causing the original, longer text mention as
a whole to miss out on getting mapped to more applicable entities. (Using the “term
processing” option, one can force MetaMap to take a text mention as-is without
splitting it, but this requires the user to provide the text mentions, which in turn
requires the user to precompute some linguistic analysis.) The MinHash method’s
consecutive words strategy, being blind to syntactic analysis, would always attempt
to lookup all text mentions consisting of a sequence of words.
Finally, MetaMap has built-in support for acronym detection, a feature that the

MinHash method does not provide. An acronym such as BAC represents four different
entities, and the correct entity can only be inferred from the spelled out entity name
usually appearing prior to the acronym in the same document. Similar cases con-
tribute to text mentions the MinHash method misses but are picked up by MetaMap.
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4.4.4 Throughput

We recorded the time required to apply the MinHash method and MetaMap to all the
test documents. Both text mention selection strategies, consecutive words and noun
phrases, were performed using the UMLS + PV dictionary. We report the average
processing time from 5 repeated runs in Table 4.5.

Number of
PubMed
abstracts per
minute

Number of
other
documents per
minute

Number of
words per
minute

MinHash consecutive words 1,720.19 175.15 339,508
MinHash noun phrases 863.22 85.42 166,533
MetaMap 15.26 1.41 2,786

Table 4.5: Throughput of the MinHash method and MetaMap

Employing almost no NLP machinery, the consecutive words strategy is the fastest.
The noun phrases strategy, which uses light NLP machinery, takes twice as long as
the consecutive words strategy. Given that the consecutive words strategy performs
better in precision and coverage, let us use this setting to revisit the scenario presented
in this Chapter’s Motivation (Sub-section 4.1.1). Instead of 26 days, processing 600k
PubMed abstracts now with the MinHash method will take less than 6 hours.

4.5 Summary

MetaMap is the de facto standard biomedical entity recognition (ER) software tool
that uses much NLP machinery. At the cost of higher quality, however, is its lower
throughput. In this chapter, we present an alternative, fast biomedical ER method,
with the aim of achieving near-MetaMap quality at a fraction of the time. This
alternative is a string-similarity-based method built upon the MinHash algorithm,
operating over a carefully constructed dictionary of entity names based on UMLS.
Our method’s precision is comparable to that of MetaMap (between 4% worse to 2%
better), though our coverage trails behind MetaMap by 13%. It appears that while
heavy NLP machinery does boost precision and coverage, only a minority of text
mentions benefit from it; the majority of text mentions can be accurately mapped to
entities using the MinHash method alone. With running speed two magnitudes faster
than MetaMap, our method makes it possible for other biomedical text mining tasks
to analyze PubMed-scale corpora.
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Chapter 5

Semantic Type Classification of Common Words

Complex noun phrases are pervasive in biomedical texts, but are largely under-
explored in entity discovery and information extraction. Such expressions often con-
tain a mix of highly specific names and common words. These words can have different
semantic types depending on their context in noun phrases. In this Chapter, we ad-
dress the task of classifying these common words onto fine-grained semantic types.
For information extraction tasks, it is crucial to consider common nouns only when
they really carry biomedical meaning; hence the classifier must also detect the nega-
tive case when nouns are merely used in a generic, uninformative sense. Our solution
harnesses a small number of labeled seeds and employs label propagation, a semi-
supervised learning method on graphs. Experiments on 50 frequent nouns show that
our method computes semantic labels with a micro-averaged accuracy of 91.34%.

5.1 Introduction

5.1.1 Motivation

In biomedical texts, entities are written as natural language phrases. Previous works
on information extraction (IE) in the biomedical domain have focused on short phrases
that work well, for instance, with dictionary-based approaches. A typical scenario is
to use the MetaMap tool [6], the most notable method, to recognize text mentions
that match dictionary entity names, disambiguate them to canonical entities, and then
apply further processing upon the resulting entities to extract entity-entity relations.
A limitation of this line of approach is that long phrases, which are not cataloged
in a dictionary, are neglected; an IE task would therefore miss out on information
expressed in these phrases.
We observe that long phrases are actually ubiquitous in biomedical texts. These

long phrases, however, have to date remain largely under-explored. Noun phrases
that are long are inherently more complex, and, in the biomedical domain, they are
often a mixture of domain-specific names (of diseases, symptoms, drugs, etc.) with
common nouns such as condition, degree or process.
In Table 5.1 are two examples of such complex phrases. In the first example,

process is a vital part of the phrase and carries biomedical meaning, namely, denoting
a body function. In the second example, processes is used in the generic sense of the
common noun and is relatively uninformative for the purpose of detecting biomedical
entities in text. Therefore, the first challenge in addressing long noun phrases is in
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Example phrase

1. monitoring of the carcinogenic process

2. development of processes for the prognosis of malaria

Table 5.1: Sample phrases containing process

determining whether a noun carries critical biomedical information or is used in a
generic, uninformative way. For information extraction tasks like entity discovery,
relation mining and knowledge base population, it is crucial to distinguish between
these two situations.
Moreover, in the case of information-bearing nouns, we would like to further an-

notate that noun with a semantic type. Since the semantic type captures the usage
of the word within the surrounding noun phrase, it is an invaluable asset for further
analysis of that phrase, for example in entity disambiguation. One possibility is to
adopt the UMLS (Unified Medical Language System) semantic types as the typing
system. For instance, the word reaction in the three example phrases in Table 5.2
could be annotated with UMLS semantic types. Since Chemical Reaction is not a
UMLS semantic type, the third example phrase can only use the broad Phenome-
non and Process type (which is the semantic type for the entity C0596319 chemical
reaction). In fact, with only a total of 133 semantic types to classify over 3.4 mil-
lion entities, UMLS has rather coarse-grained and sometimes fuzzy types. A second
possibility is to adopt WordNet senses, called synsets [43], as the typing system us-
ing techniques for word sense disambiguation [136]. Although WordNet synsets are
more fine-grained, they have limited coverage of the biomedical domain and cannot
adequately represent many essential biomedical semantic types. A second challenge,
therefore, is to identify semantic types with a suitable level of granularity as well as
adequate coverage.

Example phrase UMLS semantic type
of reaction

3. a hybrid material for oxygen reduction reaction Phenomenon and Process

4. asocial reaction related to a first-episode psychosis Mental Process

5. hypersensitivity reaction in cancer patients receiving carboplatin Pathological Function

Table 5.2: Sample phrases containing reaction and their UMLS semantic types

Text genre directly impacts the constitution of semantic types of nouns. PubMed
MEDLINE abstracts, being scientific in nature and written in terse prose, have a
sharp focus on biomedical content. As a result, words with non-biomedical meanings
are sparse; in other words, semantic types of nouns found in abstracts are gener-
ally of a biomedical nature. When we turn to PubMed Central full-length articles,
their contents still focus on biomedicine but the relaxation in article length allows
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the inclusion of verbose prose, English idioms, and other discussion that bring in
non-biomedical usage of nouns. As we go beyond scientific literature and tap into
Web content, this phenomenon of mixing non-biomedical content in a predominantly
biomedical-themed document becomes very common. Patient discussion forums are
at the extreme end of the spectrum regarding biomedical focus; discussion partici-
pants often ramble on about their personal life and personal problems before focusing
on medical issues. Since we aim to address all these aforementioned text genres, it
is mandatory that we address non-biomedical semantic types of common nouns as
well. A third challenge, therefore, is to distinguish the semantic type of a noun from
a mixture of both biomedical and non-biomedical types.
Addressing all three challenges simultaneously, our goal is to label common words

in complex noun phrases with the most appropriate semantic type (biomedical or
otherwise), or inferring that the word is merely used in a generic sense without spe-
cific biomedical meaning. We focus on a judiciously chosen list of 50 common nouns,
referred to as target nouns, that frequently appear within long noun phrases in bio-
medical texts. The resulting annotations – for example, labeling process inmonitoring
of the carcinogenic process as body function – can in turn enhance the coverage and
quality of information extraction tasks.

5.1.2 Contribution

We devise a semi-supervised method for labeling a target noun within a given noun
phrase with its most suitable semantic type or tagging it as biomedically unspecific
and uninformative. Our method is based on label propagation over a graph that
connects noun phrases and has a small number of manually labeled seed nodes. Each
distinct noun phrase becomes a node, and an edge connects two nodes that share a
target noun with a weight reflecting the similarity between the contexts of the respec-
tive target noun occurrences. We then apply the MAD label propagation algorithm
[200] to infer the best type labels for the target nouns in the graph’s nodes.
Experiments show that our method achieves 91.34% micro-averaged and 83.57%

macro-averaged accuracy over 50 frequently appearing target nouns. Moreover, our
method is capable of classifying both target nouns with and without an uninformative
semantic type. To the best of our knowledge, this contribution is the first work that
explicitly addresses general-domain semantic types mixed in biomedical text. The 50
commons words, their fine-grained custom semantic types, and their seed phrases are
released as an open dataset.

5.2 Related work

Long Noun Phrases

General domain. The semantic interpretation of complex phrases is a long-studied
problem in computational linguistics, and widely viewed as a very demanding task
[134, 170]. A solution to disambiguate entire noun phrases in the general domain is
the KODA system [129]. It implements a knowledge-driven method with a strong
focus on named entities. Entities in a knowledge base are first leveraged as RDF



Chapter 5. Semantic Type Classification of Common Words 44

(Resource Description Framework) resources. A co-occurrence matrix is built via
integer linear programming so as to maximize an objective function that reflects co-
occurrence amongst resource-resource pairs. The method further classifies a noun
phrase as highly ambiguous, ambiguous, or non-ambiguous based on the number of
RDF resources retrieved as candidate entities, and finally disambiguates the highly
ambiguous noun phrases using its context.
Bendersky and Croft [10] study long phrases of a different nature; instead of gram-

matically correct noun phrases, they focus on long queries sent to search engines.
Their goal is to identify key concepts in such long queries, so that these key concepts
can be given more weight when executing the query. The crux of their method is a
probabilistic model that incorporates query-dependent features (such as capitaliza-
tion of query words), corpus-dependent features (such as tf-idf (term frequency and
inverted document frequency) in a corpus of queries), and corpus-independent features
(term frequencies derived from external statistics like Google n-grams counts).

Biomedical domain. For biomedical texts, complex phrases are an infrequently
studied problem. Golik et al. [53] propose to handcraft rules based on linguistic cues
to identify longer noun phrases beyond dictionary entries. Similar to our method,
they are also motivated by the needs of a knowledge acquisition application. Their
work makes a point in analyzing “semantically poor” terms, some of which essentially
entail the uninformative semantic type we employ.
SimConcept [223] is a method that disambiguates composite biomedical named

entities, which is one kind of longer noun phrases. Such a noun phrase consists of more
than one entity; for example, BRAC1/2 refers to two genes, BRAC1 and BRAC2.
An interesting type of this composite phenomenon is exemplified in the example
COUP (chicken oval-bumin upstream promoter) transcription factor, where the two
individual entities refer to the same canonical entity. The authors of this system
propose to address 6 types of composite entities via a CRF model using patterns
based on orthographic features.

Entity Typing

General domain. ClusType [164] is a method that classifies fine-grained entity
types, but that is only one of three goals of the elaborate machinery. The other two
goals are to recognize entities, and to mine and cluster entity-entity relational phrases.
To achieve the first goal, entity types for the clusters are determined, and the types are
propagated back to the individual text mentions. The entire problem is modeled as
a single graph-based optimization problem to be solved via block coordinate descent,
where the objective function incorporates all three goals.

Biomedical domain. Jimeno-Yepes et al. [81] propose a method to disambiguate
single words to 6 UMLS semantic groups. This work takes a major departure from
mainstream approaches, in that noise is introduced into a corpus of biomedical texts
by mixing in texts from bioinformatics and computer science domains. The 6 UMLS
semantic groups are, however, very coarse-grained; they are CHED (chemicals and
drugs), CONC (concepts and ideas), DISO (disorders), LIVB (living beings), PHYS
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(physiology), and PRGE (proteins and genes). To the best of our knowledge, this work
is the only other existing work besides our own that actively combats non-biomedical
content regarding entity type classification.
DIEL [12] targets entities in lists; an example list is contained in get medical help

if you have chest pain, shortness of breath, slurred speech, or problems with vision.
The entities are disambiguated to 4 types, namely diseases, symptoms, drugs, and
drug ingredients. This method uses MultiRankWalk, a variant of label propagation
different from the one employed by our method. The underlying graph is bipartite;
candidate entities form one part, and the lists and text mentions form the other part.
DIEBOLDS [13] is a refinement from DIEL by the same research team, this time for
the disambiguation of two biomedical entity types, namely diseases and drugs. Again
the method targets entities in lists. The method retains label propagation as the
underlying algorithm, and uses document structure as an additional ingredient.

Word Sense Disambiguation

The problem setting closest to word usage detection is undoubtedly word sense dis-
ambiguation (WSD) of free text. For the general domain, the vast body of work has
been surveyed by Navigli [136], and mature software tools such as It Makes Sense [237]
covers most words. For the biomedical domain, the majority of previous works cen-
ter around two WSD datasets [83, 219] that together contain 253 ambiguous words,
multi-word terms, and abbreviations. In addition, multiple existing works [24, 42, 196]
have proposed methods to generate labeled data. As for methodologies, vector space
models [117, 172] are a common choice. Another common approach is to exploit the
rich knowledge embedded in UMLS. For instance, Agirre et al. [1] and Humphrey
et al. [73] leverage entity-entity relations and semantic type information in UMLS,
respectively.

Semantic Relatedness Metrics

One ingredient in the method we shall present shortly, the soft variant of the con-
text similarity between entity types, is calculated based on metrics designed for tax-
onomies. There are a number of metrics proposed in the general domain. In a series
of works, McInnes and colleagues [118, 119, 120, 121, 122] review how these metrics
describe entity-entity similarity and semantic relatedness for the biomedical domain.
Specifically, they arrange entities in UMLS as a taxonomy via the parent-child rela-
tions in UMLS. These works further use WSD to elucidate how the similarity and
relatedness measures for different UMLS semantic types as well as UMLS semantic
groups impact the difficulty of the WSD task.

5.3 Methodology

5.3.1 Outline

Our method operates on one target noun at a time, such that the methodology de-
scribed in this section is to be repeated for each target noun.
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On the one hand comes the manual preparation of the custom semantic types
and their seed phrases. On the other hand comes the automatic computation of
similarities of noun phrase pairs. This similarity is based on context – a window of
k words before and after the target noun in a noun phrase (for clarity purposes, we
denote by context words those words in the window surrounding the target). This
context, in turn, is captured by three features, namely word occurrences, part-of-
speech tags, and entity types (again for clarity purposes, we distinguish context entity
types that are precomputed, from custom semantic types that we want to classify).
Using the seed phrases and context similarities, we cast the the noun phrases into a
graph and apply the MAD label propagation algorithm [200].

5.3.2 Manual Preparation

Custom semantic types. As mentioned, neither UMLS semantic types nor Word-
Net synsets are satisfactory candidates for our purposes. UMLS semantic types
cover biomedical concepts, but are too coarse-grained and do not contain any non-
biomedical types. WordNet synsets are fine-grained, but are lacking in biomedical
coverage. Therefore, we devised a small collection of fine-grained custom semantic
types ourselves. The novelty of our custom types lies in the explicit provision for
non-biomedical types, as well as the uninformative type where applicable; Table 5.3
shows both of these elements in play for the target nouns culture and degree.

Target noun Custom semantic types

culture medical sample
social construct

degree metric for temperature
metric for bending
stage in progression (e.g. second degree burn)
academic degree
degree of freedom in statistics
edges out of a node in a graph
generic, uninformative

Table 5.3: Custom semantic types for the target nouns culture and degree

For each target noun, we manually specify its applicable custom semantic types
based on two criteria. First, a custom semantic type should have a discernible presence
in the corpus. Second, the contexts of custom semantic types should be amenable to
a learning algorithm, i.e. they should be sufficiently distinct from each other. Recall
that we would also like to identify the case when the target noun is used in a generic,
uninformative way. We facilitate this by adding a uninformative semantic type. We
observe, however, that not all target nouns require this uninformative type. For
instance, culture has two overwhelmingly dominant types (medical sample and social
construct) such that the rest is negligible and does not need an explicit representation.
This specification of custom semantic types is based on manual observation, over both
the corpus noun phrases and UMLS entries relevant to the target noun. Appendix B
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contains the complete list of target nouns and their corresponding custom semantic
types. In our compilation, one target noun has on average 3.78 custom semantic
types.

Seed phrases. Once the custom semantic types are set, we nominate a few rep-
resentative phrases as seed phrases. This process is again manual, where we aim
for phrases which are sufficiently prevalent, and which convey the custom semantic
type with high certainty. Table 5.4 shows all custom semantic types and all the seed
phrases for the target noun activity, and the complete list is in Appendix B. In our
compilation, one custom semantic type has on average 2.68 seed phrases.

Custom semantic type Seed phrases

physical activity fetal activity
physical activity

body & protein process catalytic activity
disease activity
inflammatory activity
kinase activity

generic, uninformative of activity of
of activity in

Table 5.4: Custom semantic types and seed phrases for the target noun activity

5.3.3 Node Construction

Noun phrase selection. From a text corpus comprising articles from PubMed and
encyclopedic Web portals, as well as discussions in patient forums on the Web, we
collect noun phrases that contain the target noun. Specifically, for each sentence,
we first use the Stanford CoreNLP [116] tool to determine part-of-speech tags and
dependency parse tree. Then we find, based on the parse tree, the largest noun
phrase sub-tree; in terms of CoreNLP data representation, such a sub-tree has either
NP (noun phase) or PP (prepositional phrase) as its root.

Noun phrases as nodes. We cast each selected noun phrase as a node. We further
say that the words in the node are either the target noun or the context words. In
other words, the target noun is surrounded by context words to its left and/or right.
When a noun phrase begins with the target noun, there is no left context; similarly,
when a noun phrase ends with the target noun, there is no right context.

Node labels. A node featuring a seed phrase inherits the corresponding custom
semantic type as the node label. We call such a node as seed node. All other nodes
do not have labels at this point.

Context entity type estimation. We would like to assign an entity type to each
context word. However, since a comprehensive entity disambiguation tool is not avail-
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able, we estimate the entity types by a popularity-based approach that exploits the
repetitiveness of dictionary entries and semantic assets in UMLS. First, we take note of
UMLS entity names that contain a single word. Next, for each distinct entity name,
we take note of the entities (distinct CUI’s), as well as the number of occurrences
(MRCONSO entries) represented. A few count-based heuristics determine which en-
tity is the most popular, and the corresponding CUI’s UMLS semantic type1 becomes
the word’s entity type. Taking cat as an example, it appears 16 times as a mammal,
3 times as the abbreviation for CAT scan, and 1 time as an enzyme. Therefore cat’s
entity type is Mammal, the UMLS semantic type for CUI 0007450 the mammal en-
tity. In essence, this approach approximates the entity type with the largest prior
distribution probability. Since biomedical word senses are often highly skewed [83],
we believe this approach is a reasonable interim substitute to a full-fledged entity
disambiguation tool.
In addition to the 1332 UMLS semantic types, we introduce an extra type to rep-

resent measurement units such as mg/kg and µmol.

Similarity between context entity types. We investigate two variants of context
entity type similarity. Under the hard variant, only the same entity type occurrences
contribute towards context similarity (e.g. Cell and Cell Component would therefore
be considered completely dissimilar). Under the soft variant, similar entity types also
contribute (Cell and Cell Component now have a similarity of 0.9375). The similarity
between two entity types A and B is:

0.5× group(A,B) + 0.5× lch(A,B)

where group() returns 1 if A and B belong to the same UMLS semantic group, and 0
otherwise. lch(A,B) is the similarity score between A and B in the UMLS semantic
type hierarchy according to Leacock and Chodorow’s method [99], normalized to
range between 0 and 1. The use of group() is necessary because some semantic type
pairs are highly similar but far apart in the hierarchy (e.g. Body System and Tissue).

5.3.4 Edge Construction

We connect every <node, node> pair with a weighted edge, whose weight is deter-
mined by context similarity, which is in turn computed via weighted Jaccard similar-
ities.

Weighted Jaccard similarity. Intuitively, Jw(S1, S2) captures not only the over-
lap between two sets of items S1 and S2, but also the significance or weight of the
items. In our setting, an item is a word, a part-of-speech (POS) tag, or a context
entity type, and the sets are multisets, i.e. sets where repeated elements are allowed.
The underlying computation operates on two vectors representing the two sets via

1Not to be confused with the custom semantic types in Sub-section 5.3.2. They are used inde-
pendently in this work.

2At the time of investigation, there were indeed 133 UMLS semantic types. UMLS has since then
retired 6 of them.
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element-to-element comparisons. We illustrate this computation using a running ex-
ample.
Suppose we have the following two noun phrases:

a e b target-noun d
c target-noun a b e

where a letter represents a context item. The corresponding sets containing the
context items are:

S1 = {a, b, d, e}
S2 = {a, b, c, e}

and the distances between the items and the target noun (i.e. the offset in number of
words) are:

for S1 − a : 3 b : 1 d : 1 e : 2
for S2 − a : 1 b : 2 c : 1 e : 3

Notice that it is possible to have two items sharing the same distance in the same
set; this happens when one item is to the left of the target noun and the other item
to the right. We make no distinction between left and right context items; in other
words, we let both contexts impact the similarity computation equally.
We compile vectors covering the union of all items in both sets; in our example,

such a vector has 5 elements from a to e. The value of each element is a weight that
depends on the corresponding item’s distance to the target noun – the smaller the
distance, the higher the weight. We choose the following weighting scheme:

weight =

{
1

distance to target noun if item exists in set

0 otherwise

since, based on preliminary experiments, the inverse of distance is found to be the
best weighting scheme.
We therefore compile the following two vectors, with their elements corresponding

to a, b, c, d, e in that order:

for S1 − −→v1 = < 1/3
1/1 0 1/1

1/2 >
for S2 − −→v2 = < 1/1

1/2
1/1 0 1/3 >

Finally, the weighted Jaccard similarity between S1 and S2 is:

Jw(S1, S2) =

∑
i min(v1i , v2i)∑
i max(v1i , v2i)

=
1/3 +

1/2 + 0 + 0 + 1/3
1/1 + 1/1 + 1/1 + 1/1 + 1/2

= 0.25926

For word, POS, and the hard variant of context entity type, only exact matches
count towards Jw() item overlap (singular/plural and American/British spellings of
the same word qualify as exact matches). For the soft variant of context entity type,
the 1/distance weight is further scaled by the similarity score between context entity
types.
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Context similarity. We model the similarity between two phrases by calculating
a similarity score between their contexts. Specifically, the similarity score is a linear
combination of the contributions from the contexts’ words, POS tags, and entity types
(either the hard or the soft variant):

sim(context1, context2) = α1 × Jw(words1, words2)
+ α2 × Jw(POS tags1, POS tags2)
+ α3 × Jw(entity types1, entity types2)

where α1 + α2 + α3 = 1.

5.3.5 Label Propagation

Intuition behind label propagation. Label propagation, also known as belief
propagation, has been independently proposed in two different research areas, namely
community structure discovery [152] and machine learning [239]. It is a semi-supervised,
iterative learning method on graphs. Some nodes, i.e. the seed nodes, in the graph
are initially labeled. Informally, over the iterations, the seed nodes exert influence
on their neighbors, whom in turn influence their neighbors, such that eventually all
nodes become labeled. The intensity of influence is determined by the edge weight
between two connected nodes.

Adsorption algorithm [8]. Formally, we start with an undirected graph G =
(V,E,W ) where V , E, andW are nodes, edges, and real-valued weights, respectively.
The weight wab between two nodes a and b reflects the similarity between them.
Let L be the set of possible m labels; each node either has a known label based
on prior knowledge, or is unlabeled prior to running the algorithm. For each node
v, this initialization is formally denoted as a row vector Yv ∈ Rm+ , where the l-th
element encodes prior knowledge about label l ∈ L. The higher the l-th value in
Yv, the stronger the prior knowledge points to l being the correct label; a value of
zero denotes no prior knowledge. An unlabeled node therefore has only zeroes in this
vector; such an all-zero vector with m elements is denoted by 0m. The goal of the
algorithm is to populate an analogous row vector Ŷv with non-zero values.
The algorithm can be viewed as performing a controlled random walk over the graph

G. This control is dictated by three possible actions: inject, continue, and abandon.
For each node v, with probability pinjv the random walk stops and returns the ini-
tialization vector Yv; with probability pcontv the walk continues to some neighbor v′

with a probability proportional to wvv′ ; with probability pabndv the walk is abandoned
and 0m is returned, i.e. no nodes, even those with prior knowledge, are labeled. In
addition, pinjv + pcontv + pabndv = 1 and pinjv , pcontv , pabndv ≥ 0. The output vector Ŷv is
then given by:

Ŷv = pinjv ×Yv + pcontv ×
∑

v′:(v′,v)∈E
p(v′|v)Ŷv′ + pabndv × 0m

MAD label propagation. MAD [200], for Modified Adsorption, is a state-of-the-
art variant of the Adsorption algorithm. The key improvement is that MAD guaran-
tees convergence via regularization.
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Specifically, MAD algorithm employs the following additional components:
• A dummy label to explicitly model ignorance, bringing the number of labels to
m+ 1

• Three hyperparameters µ1, µ2, µ3
• A matrix M

such that, at initialization time, Yv ∈ Rm+1
+ now includes an extra value for the

dummy label. For nodes with prior knowledge, this extra value is 0. For unlabeled
nodes, however, this extra value is 1; its initialization vector is denoted by rm+1 (all
values are zero except for the dummy label, where it is 1). The diagonal of matrix M
is defined as:

Mvv = µ1 × pinjv + µ2
∑
u6=v

(pcontv wvu + pcontv wuv) + µ3

and is used in scaling the output vector Ŷv:

Ŷv =
1

Mvv

(
µ1 × pinjv ×Yv + µ2 × pcontv ×

∑
v′:(v′,v)∈E

p(v′|v)Ŷv′ + µ3 × pabndv × rm+1

)
[200] shows that these modifications guarantee convergence of the algorithm.

Applying label propagation. Using the already constructed nodes and weighted
edges, we build a graph. To make this graph ready for label propagation, a small num-
ber of nodes containing seed phrases become the seed nodes, and the seed phrase’s
custom semantic type is the label. We apply the MAD label propagation algorithm
to label all the nodes, effectively classifying each node with the best custom seman-
tic type. Recall that each target noun requires its own graph and hence separate
application of MAD.

5.4 Evaluation

5.4.1 Dataset and Parameter Tuning

Corpus. Our corpus consists of documents from a diverse set of biomedical free
texts: PubMed abstracts and full-length articles, encyclopedic Web pages from health
portals, and online discussion forums. As a preprocessing step, each document is
segmented into sentences by the LingPipe tool3, and further tagged with POS and
parsed into dependency graphs by the Stanford CoreNLP tool [116].

Selection of target nouns. In our corpus, we observe that 90% of all noun oc-
currences come from 5000+ distinct nouns. Since it is infeasible to study so many of
them, we pick 50 highly common but semantically ambiguous ones to be our target
nouns. Specifically, we first compile a list of distinct nouns that have been observed
as head words in noun phrases, and rank them according to occurrence frequencies.
We then go through this ranked list, starting from the most frequent nouns, and se-
lect suitable nouns until we have 50 of them. To be suitable, a noun must fulfill two

3alias-i.com/lingpipe
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conditions. The first condition is that the noun must be ambiguous in nature. For
instance, virus and mRNA are not selected since they rarely occur in an ambiguous
way. The second condition is that the noun must not be used in a non-informative
way most of the time. For instance, kind and use as nouns appear virtually all the
time along the lines of a kind of and the use of. Not only it is very difficult to find
meaningful custom semantic types for them, it is even more difficult to come up with
sufficient seed phrases. Finally, in the selection process, we also take care to curate
a mixture of nouns exhibiting different characteristics, such as different levels of am-
biguity, nouns with predominantly biomedical usage as well as those with significant
non-biomedical usage, and nouns sometimes used in a non-informative way as well as
those that are practically never so used.

Selection of custom semantic types and seed phrases. As mentioned in Sub-
section 5.3.2, we manually nominate custom semantic types and their seed phrases.
This process is mostly a trial-and-error exercise. Having the 50 target nouns, we
sample the sentences in the corpus in which they occur. For the custom semantic
types, we use UMLS entities relevant to the target nouns as a guide, and keep track
of the types we encounter in the sample sentences. For the seed phrases, we select
them so that, for each custom semantic type, they embody just enough of a trend for
a machine learning method to generalize upon, while leaving enough non-seed phrases
to genuinely test the performance of the method.

Selection of complex noun phrases. Using the same corpus, we extract the
longest compound noun phrases that contain the target nouns. For each target noun,
we make one collection by randomly selecting noun phrases containing that noun.
The average noun phrase length across collections are relatively uniform from 13 to
17 words.

Label annotations. Two annotators annotated a random sample of selected noun
phrases with the correct custom semantic types. The value of Fleiss’ Kappa was 0.76,
which indicates substantial inter-annotator agreement.

MAD label propagation software. We use the junto software tool4, a java im-
plementation released by the authors of the MAD algorithm.

Parameter tuning via development dataset. Based on preliminary experi-
ments, µ1 = 10 × µ2 = 100 × µ3 were found to be the best hyperparameters for
MAD.
We tuned the method’s parameters using a development dataset of 1,000 randomly

selected noun phrases for each target noun. Keeping the proportion of seed nodes at
5%, we obtained the best parameter setting (the α’s in context similarity and window
size k) for each individual noun.

4github.com/parthatalukdar/junto
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Test dataset. In the test dataset, for each target noun, we further select another
10,000 random noun phrases not used in the development dataset. Here we also keep
the proportion of seed nodes at 5%, and apply the best parameters per target noun.
On average, 1428 and 437 noun phrases were evaluated for each target noun and for
each custom semantic type, respectively. Since a graph with n nodes contains O(n2)
edges, we prune low-weight edges to avoid excessively time consuming computations.

5.4.2 Accuracy

Table 5.5 lists the micro- and macro-averaged accuracy, as well as the best context
settings. Table 5.6 further showcases some sample classified noun phrases for the
target noun activity.

Target #Types Micro Macro Best Target #Types Micro Macro Best
word context word context

activity 3 0.91 0.91 WPH period 3 0.91 0.92 WPS
administration 2 0.93 0.84 WPS point 8 0.92 0.76 WP
area 6 0.92 0.89 WP pressure 6 0.79 0.89 WP
body 4 0.96 0.94 WPH problem 4 0.89 0.67 WP
case 5 0.83 0.88 WPS process 4 0.85 0.91 WPH
concentration 4 0.95 0.98 WPH product 6 0.95 0.91 WP
condition 2 0.95 0.96 WPH profile 3 0.98 0.84 WP
control 4 0.98 0.97 WPS program 5 0.92 0.85 WPH
culture 2 0.99 0.79 WP rate 3 0.95 0.78 WP
degree 7 0.76 0.72 WP reaction 5 0.97 0.94 WP
development 5 0.88 0.86 WP reduction 3 0.72 0.75 WPS
distribution 2 0.96 0.96 WPS region 4 0.90 0.50 WPS
effect 2 0.93 0.75 WPS report 2 0.99 0.97 WPH
expression 4 0.96 0.81 WPH resistance 3 0.98 0.66 WPS
factor 6 0.96 0.72 WP response 5 0.89 0.73 WPS
flow 5 0.83 0.90 WPH result 4 0.91 0.89 WPH
form 4 0.92 0.63 WPS role 3 0.98 0.99 WPH
function 3 0.94 0.94 WPS sequence 2 0.97 0.95 WPS
group 3 0.92 0.74 WPS set 2 0.98 0.97 WPS
information 4 0.95 0.95 WPH site 4 0.96 0.85 WPH
line 5 0.89 0.85 WPS solution 2 0.99 0.94 WPS
measure 2 0.90 0.80 WPS state 4 0.98 0.82 WP
mechanism 2 0.85 0.76 WPS strain 3 0.66 0.59 WPS
model 3 0.96 0.63 WPS system 4 0.92 0.85 WPS
pattern 6 0.77 0.81 WP technique 2 0.91 0.92 WPS

Table 5.5: Number of custom semantic types, micro- and macro-averaged accuracy,
and the best context setting of 50 target nouns. W, P, H, S denote word, POS, hard
and soft context entity types, respectively.

Micro-averaged accuracy. Micro-averaged accuracy reflects accuracy per target
noun without any further aggregation. The results are very encouraging, overall at
91.34% with only 5 lower-performing target nouns below 80%. Recalling that the
average number of custom semantic types is 3.78, and only 5% of nodes need to be
seeds, the results demonstrate that it is indeed feasible to use label propagation to
solve our classification problem while minimizing the use of labeled nodes.
Three of lower-performing target nouns (degree, pattern, and pressure) have higher

numbers (6 or 7) of custom semantic types. As the number of custom semantic
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Custom semantic
type

Sample classified noun phrases

physical activity instruction in self-directed exercises and activity diaries

day-to-day household activities that create the backbone of
healthy environments

body & protein process lower insulin-stimulated GS activity in PCOS patients
compared with controls

plasma anti-pneumococcal polysaccharide antibody activity
(serotypes 3, 6a and 23)

generic, uninformative dual activity of exploring karanjin isolation for medicinal
purposes

the orchestration of a set of activities that should be executed
in order to deliver an output

Table 5.6: Custom semantic types and sample classified noun phrases for the target
noun activity

types increases for one target noun, it becomes harder for the types’ contexts to be
sufficiently distinct from each other. This phenomenon leads to noisy edge weights in
the graph, which in turn leads to poorer classification results.
The remaining two lower-performing target nouns (reduction and strain) also have

weak micro-averaged accuracy despite having fewer (3) custom semantic types. In
both cases here, the dominant custom semantic type is used in such a broad way that
a few seed phrases are not sufficient to describe the context. Specifically, a reduction
of quantity can be about just anything; an organism strain can be described at the
population, experiment, organism, gene, or molecular level, or can be described via
the characteristic effect the strain causes.

Macro-averaged accuracy. This accuracy is averaged across custom semantic
types, i.e. it reflects the performance per type. Here, the overall accuracy of 83.68%
is 8% lower than its micro-averaged counterpart. Moreover, performance is less con-
sistent and varies across target nouns, ranging from 50% to 99%. These discrepancies
imply that some target nouns have custom semantic types that are difficult to classify
while occupying only a small proportion of all noun phrases.
Examination of our annotations reveals that the skew of the custom semantic types’

distribution is indeed the overriding contributing factor for the inconsistent perfor-
mance. The most frequent label of one target noun constitutes from 23% to 91% of
occurrences. When a sparse type is represented by few labeled examples in the graph,
naturally there is less generalization power to classify correctly.

5.4.3 Impact of Context Types

In terms of how much context words, POS, and context entity types contribute to-
wards the solution, we are surprised that the use of words and POS alone are sufficient
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for 28% of the target nouns to achieve the best experimental setting. While the rest
of the target nouns benefit to varying degrees the hard and soft variants of context
entity types, it is worth noting that even a rudimentary estimation of context entity
types based on UMLS empowers better context comparisons for the other 72% of
target nouns.

5.4.4 Other Sources of Error

Other errors in the classification stem from two main sources. The first source is the
omission of a critical cue, be it a word or a context entity type, in the context window.
For instance, when the window size k is 5, there are at most 10 words that lie within
the context window. Together with the target noun, there are at most 11 words
actively participating in our method. Recalling that the selected noun phrases are on
average between 13 to 17 words long, there are up to 6 words routinely disregarded
which would otherwise provide valuable cues. In other cases, a cue may lie much
earlier in the document, such that even considering the entire noun phrase would not
be of help. Consider the following example:

same way as a control protein with no retrovirus cytoplasmic domain

The control here could be the protein’s function to regulate some cellular process,
or it could refer a specific choice of protein used in a controlled experiment. Only
the detailed description in the document prior to this noun phrase can indicate the
correct choice.
The second source of error is that significant expert knowledge is needed to put the

puzzle together. Take the following noun phase as an example:

differences from subjects in PRL concentrations
related to stress, food or sleep

With mentions of stress, food or sleep, and not knowing what PRL is, one might be
inclined to conclude that concentration here means the mental facility. As it turns out,
PRL refers to prolactin, a hormone. An expert would undoubtedly say concentration
here refers to density of matter. In this particular example, context entity types would
even influence the label towards to the wrong custom semantic type since there are
three items (stress, food, sleep) semantically more related to mental facility and only
one item (PRL) to density of matter.

5.5 Summary

In this chapter, we present a semi-supervised method that classifies a word’s semantic
type in complex noun phrases. With 50 common words, we demonstrate that a small
number of labeled seeds can enable a label propagation algorithm to assign both
conventional semantic type labels as well as the negative case of uninformative label.
The overall micro-averaged accuracy of 91.34% indicates that our method is suitable
for the problem setting. On the other hand, the overall macro-averaged accuracy of
83.68% indicates that some semantic types remain too difficult for our method to
overcome. To the best of our knowledge, this is the first work that explicitly includes
general-domain semantic types as part of the classification problem.
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Chapter 6

Fast Entity Disambiguation in Topically
Annotated Texts

Many existing works in biomedical entity disambiguation share a limitation, in that
their model training prerequisite and/or runtime computation are too expensive to be
applied to all ambiguous entities in real-time. We devise an automatic, light-weight
method that processes MEDLINE abstracts at large-scale and with high-quality out-
put. Our method exploits MeSH terms and knowledge in UMLS to first identify un-
ambiguous anchor entities, and then disambiguate remaining entities via heuristics.
Experiments showed that our method is 79.6% and 87.7% accurate under strict and
relaxed rating schemes, respectively. When compared to MetaMap’s disambiguation,
our method is one order of magnitude faster with a slight advantage in accuracy.

6.1 Introduction

6.1.1 Motivation

The ever-growing volume of biomedical literature is published at a phenomenal pace.
PubMed, the de facto corpus for biomedical text mining, is currently growing at
more than one million new citations per year. Text mining can unearth the rich
information buried in this corpus, but in light of this phenomenal growth of corpora
size, different modules in a text mining pipeline face additional challenges. The entity
disambiguation (ED) module faces in particular two challenges.
The first challenge is scalability – the ideal ED solution must cope with the sheer

volume of textual input. Most existing biomedical entity disambiguation methods
that do address all entities cannot be applied to a large corpus in practice for sev-
eral reasons. Methods based on machine learning [23, 77, 172, 197] must identify
in advance an exhaustive list of all ambiguous entity names. Where the training is
supervised, labeled examples must also be obtained, either by expensive manual an-
notation or by automatic curation [78]. Furthermore, the models must be trained
prior to disambiguation at runtime, and in general one individual model is required
for each ambiguous entity name. All these setup costs render the methods impractical
when all ambiguous entity names must be addressed. An alternative line of methods
[1, 236] generates at runtime an entire instance of the problem customized per input
text. This style of massive setup cannot cope with, for instance, real-time feeds of
new documents; one million new PubMed citations per year equates to one new ci-
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tation every 30 seconds, not to mention any additional new Web content. Finally,
although MetaMap [6], the de facto standard software tool for biomedical ED, does
disambiguate amongst all entity types, its disambiguation functionality is limited or,
as the authors put it, “arguably [MetaMap’s] greatest weakness.” Besides, MetaMap
relies heavily on time-consuming natural language processing (NLP) analysis such
that it is too slow for large-scale usage.
The second challenge is coverage of entity types – the ideal ED solution should

be able to tackle the full spectrum of entities without limiting its scope to narrow
specializations such as genes, chemicals, and diseases. For information extraction
tasks such as relation mining and knowledge base construction, it is crucial to go
beyond the few staple specializations so as to fully leverage all the knowledge expressed
in the text. Knowing that there are many existing biomedical ED methods that
address individual sub-domains only, one possible approach is to gather these methods
into an ensemble. For instance, there are ample methods available for disambiguating
entities such as genes, proteins, chemicals, and cells. However, one must continue
to ask which sub-domains are not yet addressed in the ensemble, and what new
disambiguation methods should be developed for them. Clearly, this line of approach
is feasible only when most if not all sub-domains have mature disambiguation methods
already at hand. That is unfortunately not the case currently, where specialties not
at the molecular level, for example drug side effects and lifestyle risk factors, are
particularly under-explored with regards to entity disambiguation.
In this work, we aim to tackle the the biomedical ED task with two overarching

directives that address the aforementioned two challenges. To ensure that the method
is fast, we aim for a light-weight approach. To ensure that the method addresses
all entity types, we aim for an entity-type-agnostic approach. In other words, we
intentionally investigate an approach that steers away from mainstream practices
that are computationally intensive and/or applicable to single sub-domains.
We choose PubMed MEDLINE abstracts1 and UMLS (Unified Medical Language

System) [15] as our corpus and knowledge base for this work, respectively, because
our method can then leverage the following unique characteristics of these biomedical
resources:

• MEDLINE abstracts are a large corpus indexed with rich, manually assigned
MeSH (Medical Subject Heading)2 terms; we safely consider all MeSH terms
to be accurate. In addition, since abstracts are very compactly written, their
content rarely strays away from the biomedical domain. In other words, non-
biomedical entities occur only rarely.

• UMLS is the authoritative and comprehensive knowledge base of the biomedical
domain covering all aspects of the domain, with a vast collection of entities plus
their lexical variations, semantic types, and inter-relationships.

• MeSH terms are themselves a crisp ontology that is already part of UMLS.

Putting these together: All the entities found in a MEDLINE abstract are of a
biomedical nature, and all of them can be disambiguated to some canonical entity in

1PubMed indexes multiple sources of citations, of which MEDLINE is the primary component.
2www.nlm.nih.gov/mesh
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UMLS. These observations lead us to devise an entity disambiguation approach effec-
tive on MEDLINE abstracts, keeping ever in mind that the approach must balance
quality with high throughput while addressing all entities.

6.1.2 Contribution

We devise an automatic and light-weight method that disambiguates all entities in
an indexed document by exploiting its indexing as well as domain knowledge. Specif-
ically, the indexed documents are MEDLINE abstracts, which are the bulk of sci-
entific literature in the biomedical domain. As for domain knowledge, the method
draws upon UMLS. Given an abstract, its MeSH terms as ground truth, and all the
text mentions in the abstract, the method first identifies unambiguous entities that
we shall call anchors. The remaining text mentions are then disambiguated using
the anchors as well as heuristics based on linguistic-semantic patterns and knowledge
base assets.
Under the best setting, our method achieves an average of 79.6% and 87.7% accu-

racy using the strict and relaxed rating schemes, respectively. In terms of throughput,
our method processes 240k abstracts containing 24.5m text mentions in 400 minutes.
We also present evaluations against established gold standards via a comparison to
MetaMap. To the best of our knowledge, this is the first work in the biomedical
domain that evaluates all text mentions found in an abstract. The resulting code has
been released as an open source software.

6.2 Related Work

Sub-domain-agnostic Entity Disambiguation

In the biomedical domain, the terms entity disambiguation (ED) and word sense
disambiguation (WSD) are often used interchangeably, since the distinction between
entity and sense is not always clear-cut. ED refers mostly to named entities. WSD
refers mostly to single words that may be a spelled out term (such as expression and
Astragalus) or an abbreviation (such as TMJ ); clearly, Astragalus is a named entity,
too. Existing methods may emphasize their ED or WSD aspect based on their choice
of gold standard.

Gold standards. Two gold standards, NLM WSD [219] and MSH WSD [83], are
widely used. As their names suggest, both emphasize the WSD aspect although their
annotations do include named entities, especially in MSH WSD. Both gold standards
feature ambiguous text mentions taken from MEDLINE abstracts.
NLM WSD contains 50 ambiguous terms. Each ambiguous text mention is an-

notated by at least four human experts, upon which a final annotation is reviewed
and harmonized manually. The distribution of senses has not been adjusted, so that
the relative proportions of annotated senses reflect the actual distribution in a large
corpus.
MSH WSD contains 203 ambiguous terms. In contrary to NLM WSD, which is the

culmination of substantial expert effort, the MSH WSD gold standard is constructed
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automatically. Specifically, the 203 terms are chosen so that each has multiple, cor-
responding MeSH terms. MEDLINE abstracts containing both a text mention of the
ambiguous term and one of the predefined MeSH terms are chosen, with the text
mention inheriting the MeSH term as its disambiguated entity. As another difference
to NLM WSD, the distribution of senses in MSH WSD are adjusted so that each
sense has the same number of annotations.
Fan and Friedman [42] also similarly generated a less often used gold standard

via co-occurring ambiguous text mentions and MeSH terms in MEDLINE abstracts.
This gold standard contains 59 ambiguous terms, and the authors divide them into 3
categories that reflect levels of disambiguation difficulties. The three categories are (1)
two senses related to two different UMLS semantic types, hence easy to disambiguate,
(2) two senses from two types that are known difficult cases, such as a pathogen and
the disease it causes, and (3) two senses with the same type, hence the most difficult
to disambiguate.

Knowledge-based methods. Existing works leveraging knowledge bases (KB’s)
generally select certain KB’s or certain elements in a KB amenable to the respective
methodology. The construction of a custom knowledge graph is the backbone of a
collective inference approach by Zheng et al. [236]. This graph is built using the 300
biomedical ontologies of the BioPortal. The approach ranks candidate entities based
on an entropy metric derived from the knowledge graph, and then disambiguates
multiple entities simultaneously via collective inference.
Agirre et al. [1] also use a graph-based approach. Recalling that UMLS is a collec-

tion of many heterogeneous resources, they opt to use the co-occurrence information
(encoded in the MRCOC table) and relations information (MRREL table) of UMLS
to build their custom knowledge graph. Then they cast the entity disambiguation
problem as an instance of the Personalized PageRank algorithm, and study the im-
pact of using different subsets of UMLS knowledge.
Stevenson and Guo [195] leverage UMLS assets to generate labeled examples for a

memory-based learning algorithm that operates over a vector space model. Specif-
ically, they define two types of entity-to-related-entity relations as features of the
model. The first type is co-occurrence relations based on UMLS co-occurrence infor-
mation. The second type is monosemous relations based on entity names that occur
only once in the entire UMLS.

Exploiting MeSH terms. Since MeSH terms in MEDLINE abstracts are expert-
assigned, they provide high quality clues when disambiguating entities in the ab-
stracts. Several existing methods exploit this arrangement. In a series of works,
Stevenson and colleagues [193, 195, 197] use MeSH terms as features in their vari-
ous machine-learning-based methods. Recall also that two the aforementioned gold
standards (MSH WSD and the one by Fan and Friedman) are also constructed by
exploiting MeSH terms as ground truth.

Machine-learning-based methods. Machine-learning-based methods, both su-
pervised and unsupervised, dominate existing works that address all entity types.
Apart from the three works exploiting MeSH terms just mentioned, the most recent
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work by Jimeno-Yepes [77] uses long short-term memory in a recurrent neural network
model. This method employs an extensive battery of features, including orthographic
and word-level features such as stemming, unigrams and bigrams, concept-level fea-
tures such as UMLS identifiers and UMLS semantic types extracted from MEDLINE
abstracts, and global features such as word embeddings. Chen et al. [23] apply active
learning to support vector machine (SVM). They consider three algorithms – least
confidence, margin, and entropy – when selecting the next round of instances for the
active learning. Finally, four further methods are compared by Jimeno-Yepes and
Aronson [78].

Sub-domain-specific Entity Disambiguation

When it comes to disambiguating only highly specialized entity types, a large body
of works exists. The most representative specializations are genes and proteins, the
major works for which have been compared in a survey [161]. Other specializations
include species of genes [64, 218], chemicals [9, 103], and diseases [36, 75, 88]. A
common theme amongst these works regardless of sub-domain is that their methods
address primarily named entities.

Rule-based Entity Disambiguation

Two existing methods [75, 88] use a rule-based approach to disambiguate disease
names. In [75], the rules are arranged in a decision tree manner, so that as soon as an
entity name matches a known synonym, or as soon as a search engine retrieval score
is beyond a threshold, the algorithm stops and declares a candidate entity correct. In
[88], however, the 5 rule modules function independently, and any number of them can
be employed simultaneously in a plug-and-play manner. The rules involved are not
about making the final yes/no decision as in [75], but are rather rules implementing
various natural language processing tasks, such as adjusting noun phrase boundaries,
performing coordination resolution, and filtering out false positives via a word overlap
measure.
To the best of our knowledge, the method we present in this Chapter is the only

other rule-based entity disambiguation method; as a corollary, it is also the only
rule-based method that addresses all entity types.

6.3 Methodology

6.3.1 Outline

The input to our method is a MEDLINE abstract and its MeSH terms. We use the
fast dictionary-based entity recognition presented in Chapter 4 to identify all longest
text mentions that match UMLS entity names. Then the method proceeds in two
phases. Phase 1 applies two heuristics to identify unambiguous anchors amongst the
text mentions. Phase 2 leverages the anchors as well as five further heuristics to
disambiguate the remaining text mentions.
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6.3.2 Phase 1: Identifying Unambiguous Anchors

A text mention becomes an anchor when the method determines that it has one
UMLS entity that underlies this text mention unambiguously. A text mention may
become an anchor via one or both of the following heuristics.

Heuristic 1 – MeSH term (MESH). Medical Subject Headings (MeSH) are
a crisp and concise ontology developed by the United States National Library of
Medicine, the same institution that maintains PubMed citations. In the 2016 version,
there are 27,883 entries called Descriptors in the ontology. They are arranged in a
taxonomy containing 16 trees such as Anatomy, Diseases, Phenomena and Processes,
and Analytical, Diagnostic and Therapeutic Techniques, and Equipment.
When a new scientific publication joins the PubMed collection, human experts

manually assign MeSH terms to that publication as a means of indexing it. This
allows us to assume that these MeSH terms are accurate ground truth, which is the
crux of this heuristic. When a text mention is also a MeSH term for the abstract,
this heuristic declares the text mention as an anchor. This strategy is similar to the
one used in MSH WSD [83], which selects abstracts via co-occurrence of MeSH term
and text mention to curate the gold standard.
We note that there are usually more MeSH terms than our method can leverage,

but the phenomenon does not affect our heuristic. As an indexing service, most
of the time only a publication’s abstract is retained as the PubMed citation. The
publication, however, is a full-length article, and the experts assign MeSH terms that
fully characterize the entire article. As a result, experts may and often do assign
MeSH terms that do not appear in or cannot be inferred from the abstract. A typical
example is the term D006801 Human; a scientific study about some human genes
generally do not explicitly mention the species in the abstract. Since this heuristic
is driven by text mentions, having extra MeSH terms that do not match any text
mentions do not cause any error.

Heuristic 2: Only one UMLS match (ONE). UMLS is the largest and most
authoritative metathesaurus of the biomedical domain. It contains 3.4 million entities,
each complete with its synonyms and lexical variations. We therefore assume, for
the purposes of this heuristic, that UMLS has complete coverage of all biomedical
entities. Under this heuristic, a text mention that matches only a single UMLS entity
is considered unambiguous.
In this work, due to license restrictions imposed by UMLS, we use only the license

level 0 subset of UMLS since it offers unrestricted usage. However, this heuristic
works the same way for larger subsets. For instance, researchers based in the USA
can incorporate the level 4 subset, which offers unrestricted use within USA.

Fixing anchors. At the end of phase 1, we consider all anchors already correctly
disambiguated. Their underlying canonical entities are final for the rest of the method.
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6.3.3 Phase 2: Disambiguating Non-anchor Entities

In phase 2, the method disambiguates any remaining, non-anchor text mentions.
Recall that the entity recognition tool already provides multiple matching UMLS
entities to such a text mention. Taking these UMLS entities as candidates, the method
selects one candidate using one or more of the following heuristics.

Heuristic 3: Singular/plural (SP). This heuristic embodies the famous one-
sense-per-discourse assertion [232]. Specifically in our problem setting, since abstracts
are very short documents, we assume that, within one abstract, text mentions sharing
the same surface string also share the same entity. Therefore, singular and plural
forms of the same word should refer to the same entity. In UMLS, when the plural
form is a unique entity, that same entity is extended to the singular form, and vice
versa.
For example, when diets is a unique entity (C0012155 food and drink consump-

tion), diet is disambiguated as the same entity, thus casting other candidates (such
as C0012159 food-based therapy, C1549512 food supply, among others) aside. This
heuristic exploits the popularity of an entity implicitly encoded in UMLS – the more
popular an entity is, the more dictionary sources will contain it, hence the more likely
the singular and plural forms are both captured by these dictionaries.

Heuristic 4: Linguistic-semantic pattern (PAT). This heuristic combines
three ingredients in a bigram – an anchor, the anchor’s UMLS semantic type, and
part-of-speech tag of the non-anchor word – into one pattern. Figure 6.1 depicts all
these ingredients in action.

  

warm water

cold water

POS: adjective       anchor:
        warm temperature
    (Natural Phenomenon)

candidates:
  ✔ cold temperature (Natural Phenomenon)
  ✗  cold (Disease or Syndrome)
  ✗  cold therapy (Therapeutic Procedure)
  ✗  cold sensation (Physiologic Function)

POS: adjective

Figure 6.1: The linguistic-semantic pattern heuristic

For example, the two bigrams are warm water and cold water. When one word
(water) appears in both bigrams in the same position, and when the other words
(warm and cold) have the same part-of-speech, warm and cold ought to share the
same linguistic function and some analogous meaning. Since warm is an anchor, this
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heuristic takes its UMLS semantic type (Natural Phenomenon), and pick for cold a
candidate with the same type (cold temperature the Natural Phenomenon).

Heuristic 5: Co-occurring semantic types (CO). The intuition behind this
heuristic is that objects of the same semantic type often co-occur in the same abstract.
This heuristic identifies the most prevalent UMLS semantic type in the abstract, and
selects, whenever possible, a candidate of the same type. As a corollary, when none
of an ambiguous text mention’s candidates has a matching, most-prevalent UMLS
semantic type, this heuristic cannot be applied.
For example, an abstract mentioning different fish species naturally also mentions

the word fish. However, the candidates for fish belong to different UMLS semantic
types (Fish, Gene or Genome, Organic Chemical (for fish extract), and Molecular
Biology Research Technique (for Fluorescence in situ Hybridization)). When the
entities in the abstract exhibit a predominant semantic type (such as Fish), this
heuristic picks the candidate (fish the animal) with the same type.

Heuristic 6: Ranked preferences of dictionary sources (RANK). UMLS
comes with a predefined preference list of dictionary sources. When a text mention
matches multiple candidates, each candidate’s dictionary source leads to a correspond-
ing rank number. This heuristic picks the candidate with the best rank.
More specifically in terms of how UMLS organizes its data, a single entity name is

listed separately for each dictionary’s contribution, corresponding to multiple entries
or rows in the MRCONSO table. In each row, we note the values in the SAB column
(for source name abbreviated, i.e. the dictionary) and the TTY column (for term
type). From the MRRANK table, using this <SAB, TTY> value pair, one can
look up the corresponding RANK column, which is an integer. The higher this rank
integer, the better the rank.
For example, HIV has 15 matching entries or rows in MRCONSO table. The best

ranked entry comes from the MTH (Metathesaurus) dictionary and the PN (preferred
name) term type, preferring HIV the virus over HIV the infection and HIV the
vaccine.

Heuristic 7: Prior probability (PRIOR). Thanks to the heterogeneous nature
of UMLS, the listing of entity names contains much redundancy. Recall that a single
entity name is listed separately for each dictionary’s contribution. A more popular
meaning of the word exists in more dictionaries, and hence appears in more rows of
the MRCONSO table than a less popular meaning. The prior probability distribu-
tion of candidates is thus estimated based on counts of entity name occurrences in
the MRCONSO table. The results in Chapter 5 show that even when rudimentar-
ily estimated in this way, prior probabilities contribute to enriching disambiguation
contexts 72% of the time. Here, the heuristic picks the candidate with the highest
estimated prior probability.
For example, cat the animal appears in 16 rows of the MRCONSO table, more so

than other less popular meanings (4 rows for the taxonomic family of the animal, 3
rows for the gene, 3 rows for the scan procedure, and 1 row for the enzyme). Therefore,
cat the animal is estimated to have the highest prior probability.
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6.4 Evaluation

6.4.1 Data and Software Setup

Development and test datasets. We used disjoint sets of MEDLINE abstracts
published in 2014 as the development and test datasets. The test dataset, in par-
ticular, consists of 20 randomly selected abstracts. We use the fast dictionary-based
entity recognition presented in Chapter 4 to identify all longest text mentions that
match UMLS entity names; we used the UMLS 2015AB version as the underlying
dictionary. In total, 2,549 text mentions were recognized in the 20 test abstracts.

Entity annotations. For the test dataset abstracts, two annotators evaluated all
the recognized text mentions, including the anchors, rating the candidates as “com-
pletely correct”, “partially correct”, or “completely wrong”. The inner-annotator agree-
ment, calculated as Cohen’s kappa, was 0.64, which indicates mostly substantial agree-
ment. The presence of fine shades of the same underlying entity in UMLS prompted
the “partially correct” annotation choice. For instance, children exists as two separate
entities with the semantic types Age Group and Family Group, and the exact dis-
tinction is difficult even for human judges. We therefore present results in two rating
schemes: Under the strict rating scheme, only “completely correct” annotations count
as correct; under the relaxed scheme, both “completely correct” and “partially correct”
annotations count as correct.

Software implementation and hardware. We implemented our method in java,
and ran the experiments in a standard linux machine with 8 Intel Xeon CPUs at
2.4GHz and 48Gb of main memory.

MetaMap When running experiments with MetaMap, we ensure that it is using
the same UMLS 2015AB dictionary, as well as the same linux machine. We further
ensure that MetaMap is set up to achieve the best possible performance. This is
achieved, firstly, by using the latest 2016 software release. Secondly, we issue a single
query to MetaMap per abstract rather than per sentence. This arrangement alone cut
MetaMap’s processing time by half. Thirdly, we enable the relevant MetaMap settings
so as to maximize its overall disambiguation performance; these settings enable the
use of a strict model, inclusion of all derivational variants, inclusion of all acronym
and abbreviation variants, and the use of the word sense disambiguation module. The
overall effect is that for each text mention, only one disambiguated entity is returned.

6.4.2 Ablation Study of Heuristics

In order to investigate the accuracy and contribution of each heuristic, we performed
an ablation study. Table 6.1 shows the results. An aggregated accuracy number is
generally not the sum of its contributing numbers because multiple heuristics may be
applicable to the same text mention.
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Anchors Non-anchors All text mentions
Heuristic(s) Strict Relaxed Strict Relaxed Strict Relaxed

MESH 0.160 0.169 not
applicable

0.089 0.094
ONE 0.833 0.850 0.465 0.475
MESH + ONE 0.903 0.930 0.504 0.519

MESH + ONE + CO

remains at
0.903 0.930

0.472 0.723 0.713 0.839
MESH + ONE + PAT 0.078 0.099 0.539 0.563
MESH + ONE + PRIOR 0.539 0.689 0.742 0.824
MESH + ONE + RANK 0.632 0.779 0.785 0.863
MESH + ONE + SP 0.186 0.221 0.586 0.617

Best successive filtering remains at
0.903 0.930

0.662 0.790 0.796 0.868
Best majority voting 0.643 0.811 0.788 0.877

Table 6.1: Contribution of different heuristics to accuracy

Heuristics for anchors. While MESH correctly identifies 16% to 17% of the an-
chors, ONE is by far the primary contributor identifying over 80% of the anchors.
Together, both heuristics identify over 90% of the anchors.
We note that over half of all text mentions are actually anchors; on average, 56%

of all text mentions in an abstract are anchors. In other words, while entity dis-
ambiguation is always described as a difficult problem as a whole, the proportion of
difficult cases is also an important aspect of the problem. Taking the distribution of
our anchors as a guide, roughly 56% of the time the disambiguation task is relatively
easy, which of course does not detract from the level of difficulty for the remaining
44%.
Since MESH is the only heuristic that relies on expert annotated MeSH terms,

and since its contribution is relatively small, one can consider applying the method
to texts that do not have indexing terms. Indeed, in the open source software we
released, the user can use any text as input, such that when there are no MeSH terms
available, the MESH heuristic remains inactive.

Heuristics for non-anchors. Recalling that these heuristics are applicable only
after the anchors are identified, we present therefore accuracy for MESH, ONE, plus
a single non-anchor heuristic. The non-anchor heuristics have a wide range of contri-
bution, from less than 10% for PAT to over 70% for RANK.
PAT and SP contribute relatively little because they are often not applicable. For

the PAT heuristic to fire, the text mention must fulfill all three requirements – match-
ing anchor, matching part-of-speech, and matching UMLS semantic type. Therefore
it is not surprising that PAT is the least used heuristic, which in turn leads to being
the least contributing heuristic. The SP heuristic exploits either incompleteness in
UMLS or linguistic usage of specific words; for instance, blacks in plural can only
refer to the population group and not the visual color. Since both conditions are
infrequent, naturally the SP heuristic is less used.
Of the remaining three heuristics, CO, PRIOR, and RANK, it is only possible for

CO to be not applicable once in a while; this happens when the most frequent UMLS
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semantic type in the abstract is not represented in any candidate of a given text
mention. PRIOR and RANK, being reliant only on UMLS, always suggests some
best candidate. Not only do these three heuristics fire often, they also contribution
much to accuracy.

Strict vs. relaxed rating schemes. Using the two different rating schemes have
little effect on anchor accuracy. This is not surprising, as anchors are relatively
uncontroversial or “easier” as noted earlier. Non-anchors, on the other hand, get
rather different accuracy to varying degrees. While going from strict to relaxed scheme
boosts the accuracy of PAT and SP by only 2% to 3%, the boost to other non-anchor
heuristics can be 15% for PRIOR and RANK, and even as high as 25% for CO. The
“partially correct” entities are often the very fine-grained ones such as the children
as Age Group and children as Family Group example mentioned above. When the
annotators withhold from assigning “completely correct” gold labels, naturally the
corresponding entities will only be considered correct under the relaxed rating scheme,
hence the big increase in accuracy.

Putting all the heuristics together. We experimented with two types of ensem-
bles, namely majority voting and applying heuristics as successive filters similar to
D’Souza and Ng [36]. Under the relaxed rating scheme, majority voting consistently
performed better. The best ensemble used, as expected, all heuristics to reach 87.7%
accuracy. Under the strict rating scheme, on the other hand, successive heuristic
filters consistently performed better. The best ensemble scored 79.6% accuracy using
the following order of heuristics: MESH, ONE, SP, RANK, PRIOR, PAT, CO.
Figure 6.2, showing some sample disambiguation outcomes taken from MEDLINE

abstract 24188907, illustrates our method at work under majority voting. In the
Figure, underlined and overlined text mentions are anchors and non-anchors, respec-
tively. A green tick and a red cross indicate that our method selects the correct and
incorrect entity, respectively. We highlight in particular the following observations.

• One or both of the anchor heuristics, MESH and UMLS, may be applicable to
the same text mention, as indicated by the heuristic abbreviations in the gray
boxes. As evidenced by these sample outcomes, anchors are in general highly
accurate.

• For the non-anchor text mentions, the ratio in the gray box indicates the number
of heuristics voting for the correct entity to that voting for an incorrect entity.
Not all 5 heuristics are always applicable, since only PRIOR and RANK rely
purely on information in UMLS and that information is available to all entities.
Most of the time, however, 3 to 4 heuristics are applicable, and occasionally all
5 heuristics are applicable (such as the case for morbidity in the sample).

• The non-anchor heuristics sometimes vote unanimously for the correct entity,
and sometimes vote for different entities. The strength of our method is the
combined effect that the 81% of the time, more heuristics vote for the correct
entity than otherwise.
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PubMed abstract 24188907

Title:

A review of  childhood  and  adolescent  craniopharyngiomas with particular

attention  to  hypothalamic  obesity.

Sentence 5:

We  reviewed  24  cases  of  craniopharyngiomas  treated  from 1992 to 2010 in

patients <18  years  of  age  regarding  clinical presentation,  recurrence,

morbidity, and  mortality, with particular  attention  to  hypothalamic  obesity.

MESH, UMLS

UMLS

UMLS

3:1

✘

MESH, UMLS

MESH, UMLS

✔

✔ ✔ ✔

✔ ✔

3:0✔

3:1✔

UMLS✔ MESH, UMLS✔ UMLS✔

UMLS✔ UMLS✔ UMLS✔

3:1✔

4:1✔ 4:0✔

UMLS✔ MESH, UMLS✔

3:0✔

1:2
✔ relaxed

strict

Figure 6.2: Sample disambiguation outcomes taken from MEDLINE abstract
24188907

• For the text mention age, RANK votes for entity C0001179 for number of years
elapsed since birth; this entity has the UMLS semantic type of Organism At-
tribute. On the other hand, PRIOR votes for entity C1114365 for a specific
point in time; this entity has the UMLS semantic type of Clinical Attribute.
CO becomes the tie breaker – since the most prevalent UMLS semantic type of
this abstract is Clinical Attribute, CO also votes for the specific point in time.
The 2-to-1 vote declares that the Clinical Attribute entity is the final selection,
which is still considered correct under the relaxed rating scheme. This outcome
would be considered incorrect under the strict rating scheme, further highlight-
ing how fine-grained UMLS entities can be, and how determining the exact
disambiguated entity can be difficult. Finally, notice that none of the three
applicable heuristics votes for a completely incorrect entity, such as C0162574
the protein product.

• Since our method does not treat text mentions differently according to their
relative positions in an abstract, occurrences of the same text mention within
the same abstract always share the same outcome. As an implementation detail,
for each abstract, the method caches disambiguation results (e.g. for cranio-
pharyngiomas and obesity in the title) so that a text mention occurring for the
second time (the same two mentions in sentence 5) requires only a fast cache
lookup. This arrangement further improves our method’s processing time.
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6.4.3 Comparison with MetaMap and Other Datasets

We compared the best setting of our method with MetaMap using the aforementioned
custom test dataset as well as 3 other datasets. Table 6.2 shows the accuracy for both
systems.

Custom Custom NLM EBI CRAFT
strict relaxed WSD disease subset

Our method 0.796 0.877 0.399 0.873 0.388
MetaMap 0.681 0.761 0.337 0.784 0.330

Table 6.2: Comparison of accuracy between our method and MetaMap

Selection of gold standards. In the selection of existing gold standards, we face
some constraints. First, the text must be MEDLINE abstracts, since our method relies
on MeSH terms. Second, the annotated gold labels must go beyond identifying an
entity type (such as those proliferated by the GENIA corpus, namely genes, proteins,
chemicals, DNA’s, RNA’s, cells, and cell lines) to pinpoint an exact entity. Third,
this exact entity must be from the UMLS, so that our UMLS-specific heuristics can be
applicable. Finally, as much as possible, the gold standard should address all entities
and not only those from certain sub-domains.
Under these constraints, we identified three gold standards.

• NLM WSD [219]: Although this dataset is geared towards word sense dis-
ambiguation, there are 203 ambiguous abbreviations and terms representing a
good range of entities.

• EBI disease corpus [80]: Although this corpus features only diseases, it com-
plements the other two gold standards’ coverage of entity types.

• Subset of the CRAFT corpus [7, 29]: The complete corpus contains text
mentions annotated with entities from 7 different biomedical ontologies focus-
ing on entity types such as chemicals, genes, proteins, cells, and species. Of the
7 ontologies, only the Gene Ontology and NCBI Taxonomy provide mappings
to equivalent UMLS entities. Therefore we used the subset of the annotations
that can be traced to UMLS entities. This subset features 4 sub-domains: bio-
logical processes, cellular components, and molecular functions based on Gene
Ontology, as well as species based on NCBI Taxonomy.

Notice that the MSH WSD dataset [83] was not used here because it was essen-
tially constructed with the MESH heuristic; using this dataset would not offer further
insight.

Comparison in accuracy. In terms of accuracy, both systems showed analogous
trends for each dataset, though our method outperformed MetaMap by 5% to 11%.
Both systems performed poorly over the NLM WSD and CRAFT datasets due to
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their wide variety of highly ambiguous entity names. The disambiguation module
in MetaMap is known to be a weaker module in the system [6], while our method’s
heuristics are too simplistic for sophisticated cases. For example, in the excerpt the
hypothesis is that the protein is localized to these vesicle membranes, the word local-
ized is referring to a specific cellular process that fixes a protein at a cellular location.
The correct entity, C1744691 establishment and maintenance of cellular component
localization, has its entity name much more detailed than the single word localized.
While a human expert can easily infer from the rest of the excerpt that vesicle mem-
branes implies a cellular location, our method and MetaMap both disregarded this
information, and simply gravitated towards the only but incorrect UMLS entity with
an exact string match (C0392752 localized, in the generic sense that an object is
localized in some area). The same rationale explains why accuracy in EBI disease
corpus was high, because disease names are much less ambiguous in general.

Comparison in throughput. We recorded the time required to process the same
datasets for our method and for MetaMap, disregarding any time spent on prepro-
cessing dictionary (for our method) or loading data into main memory (for both
methods). For both methods, the reported time reflect the processing from text in-
put to disambiguated entities; in other words, determining text mentions and entity
recognition are included in this processing time.
In terms of throughput, our system and MetaMap processed 600 and 11 abstracts

per minute, respectively. MetaMap is known to employ much NLP machinery that
is time consuming. On the other hand, not only does our method perform entity
recognition quickly via our fast dictionary-based method, entity disambiguation is also
fast since the heuristics employs zero or minimal NLP machinery. Consequently, as
MetaMap remains unsuitable for large-scale text mining, our method makes handling
PubMed-scale corpus and other real-time processing tasks possible.

6.4.4 Distribution of Entity Types

Now that we are armed with an entity disambiguation method that applies to all
entity types, we can analyze the distribution of entity types in different genres of
input text. Specifically, we can apply the best setting of our method (majority voting
using all heuristics) to three genres, namely scientific literature, encyclopedic Web
portals, and online discussion forums. As mentioned earlier, when no MeSH terms
are available, the MESH heuristic remains inactive; such is the case for Web portals
and discussion forums. Table 6.3 shows the summary by grouping entity types into
coarse-grained UMLS semantic groups. The detailed breakdown per corpus and per
finer-grained UMLS semantic types is provided in Appendix C.
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UMLS semantic Scientific Encyclopedic Online
group literature Web portals discussion

forums

Activities & Behaviors 4.46% 3.27% 5.13%
Anatomy 4.31% 3.42% 4.89%
Chemicals & Drugs 13.19% 22.81% 7.54%
Concepts & Ideas 47.26% 38.92% 44.62%
Devices 0.77% 0.61% 0.93%
Disorders 5.69% 12.67% 11.44%
Genes & Molecular Sequences 3.46% 0.59% 1.88%
Geographic Areas 0.59% 0.29% 0.51%
Living Beings 5.01% 5.07% 4.71%
Objects 2.70% 1.94% 3.72%
Occupations 0.42% 0.34% 0.20%
Organizations 0.42% 0.53% 0.39%
Phenomena 1.28% 0.89% 0.96%
Physiology 4.81% 3.59% 9.21%
Procedures 5.62% 5.06% 3.89%

Table 6.3: Distribution of entity types in different genres

Different genres feature different mixes of entity types. Not surprisingly, sci-
entific literature, being oriented towards science at the molecular level, features more
genes and molecular sequences than the other two genres. In contrast, encyclopedic
Web portals, being oriented towards disease and drug information for consumers and
laymen, feature more of those entities instead.
We note that, according to our method, online discussion forums feature genes

and molecular sequences 3 times as often as encyclopedic Web portals. This result
exposes a limitation of our method, namely that it assumes all textual content is of a
biomedical nature. Text mentions that are both common English words as well as gene
names are often incorrectly identified as gene entities, since our method disregards
the possibility that non-biomedical content may be present.

Prominence of Concepts & Ideas. In each of the three genres, the UMLS se-
mantic group Concepts & Ideas is by far the most prevalent. This phenomenon can be
attributed to the UMLS semantic types belonging to this group, especially the three
types Qualitative Concept, Quantitative Concept, and Temporal Concept. Qualitative
Concept includes expressions such as high risk, minor, severe, and stabilized. Quanti-
tative Concept includes numbers, measurement units such as mm and count/minute,
as well as items that can be measured such dose, score, and volume. Finally, Temporal
Concept include expressions such as late stage, yearly, and even often. Since these
expressions occur very frequently, they make up a large part of the overall entity type
distribution.
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6.5 Summary

We present a large-scale, high-quality, and automatic method that disambiguates en-
tities in MEDLINE abstracts by exploiting MeSH terms as well as applying heuristics
based on linguistic cues and knowledge assets in UMLS. The method first identifies
unambiguous text mentions as anchors, and then disambiguates the remaining text
mentions by further leveraging the anchors as additional cues. Not only is the method
one order of magnitude faster than MetaMap, the overall accuracy is also slightly su-
perior to that of MetaMap. These improvements position our method as a viable
alternative for processing PubMed-scale corpus and for tasks that require real-time
responses.
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Chapter 7

Corpus-driven Entity Discovery and
Disambiguation

Named entity disambiguation (NED) is the task of mapping ambiguous text mentions
to entities in a knowledge base (KB). Out-of-KB (OOKB) entities are either disre-
garded, or become description-less NIL placeholders. We address this limitation of
prior works by devising a corpus-driven approach. By computing latent embeddings
with Latent Dirichlet Allocation (LDA) or word2vec, our method first discovers the
latent topics an ambiguous name expresses in a corpus; each topic then describes
an entity, whether it exists in the KB or not. This way, an ambiguous mention is
mapped to the best fitting entity in a KB, or to a latent entity with an embedding-
based description. We demonstrate the viability of our corpus-driven NED method by
experiments in the biomedical domain, where micro-averaged accuracy reaches 81.6%.
We further demonstrate that our method can generalize to the politics domain with
a micro-averaged accuracy of 77.1%.

7.1 Introduction

7.1.1 Motivation

Named entity disambiguation (NED) is the task of taking an ambiguous mention in a
text document, and selecting the correct underlying entity from multiple candidates.
To date, NED has been predominantly driven by knowledge bases (KB’s). Some KB
is first hailed as ground truth, the candidates are chosen from this KB, and then the
ambiguous mention is mapped to one of the candidates. This approach works well due
to two implicit assumptions. First, the KB has good coverage of entities, especially
those that are widely known and occur frequently. Second, the vast majority of
ambiguous text mentions refer to such entities. Therefore the overall disambiguation
outcome is satisfactory, since most of the time the correct entity is present as one of
the candidates. In the general domain, a popular choice of KB is Wikipedia, especially
the English version thereof, where each Wikipedia article is taken as an entity. As
an encyclopedia collaboratively curated by the public, it coalesces knowledge from
numerous individuals to reach expansive coverage. In the biomedical domain, UMLS
(Unified Medical Language System) is the default KB since it is the largest and most
authoritative metathesaurus built by expert contributors.
Two limitations immediately arise concerning out-of-KB (OOKB) entities, which
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is when a text mention does not have a corresponding entity in the KB. First, no
KB can be complete. New or emerging entities are constantly being created but they
will be incorporated into the KB only after a time lapse. As an example, the hashtag
#brexit was first tweeted in 2012 but the Wikipedia page for Brexit was established
in October 2015. As another example, the Bourbon virus was discovered in 2014 but
was introduced into UMLS as entity C4005701 in 2015.
The second limitation is that state-of-the-art NED methods handle OOKB cases

by mapping them to a placeholder NIL. This is typically based on a threshold for
the confidence that a text mention corresponds to any entity in the KB. Such a NIL
label is description-less; there is no further information about the underlying entity.
In addition, when one entity name refers to multiple OOKB entities, these entities
are lumped together to share the same NIL label, losing any clue that they could be
further distinguished.
Thus far we have considered the NED problem from a KB-driven perspective. While

KB’s are repositories that systematically catalog entities (among other knowledge),
we observe that a corpus of unstructured text is also a repository, only that the
entities are obscured in a disorganized manner. The crucial difference between these
two kinds of repositories is that a corpus also contains OOKB entities.
We therefore devise a new approach by making NED corpus-driven to overcome

the aforementioned limitations. Given an ambiguous entity name, we first observe its
mentions and their contexts in a corpus, and then determine how many underlying
entities are in play, and finally map the mentions to entities in the KB or to OOKB
entities with descriptions derived from their corpus contexts. The goal of this work
is to improve the quality of NED while also making the output more informative –
higher recall for OOKB entities with descriptions, while maintaining high precision
for KB entities.
The main challenge of a corpus-driven approach lies in the discovery of entities. We

do not know in advance how many entities are represented by the same entity name
in the corpus. To meet this challenge, we consider applying dimensionality reduction
techniques to the corpus. These techniques condense the entire corpus into a vector
space model with a small, predefined number of dimensions, where each dimension
can be viewed as embodying a latent topic. Each latent topic can then be further
viewed as an entity in latent form.
While there has been prior works that follow this line of approach, they stop short at

bridging the gap between the latent topic and KB entities. That is the next challenge
– to marry up latent entities with KB entities, keeping in mind to cater for the case
when the latent entity is OOKB. This way, each OOKB entity has its own latent
description, thus overcoming the limitations regarding the NIL label.
Finally, when mapping latent entities to KB entities, there is one more party in-

volved beyond these entities: the text snippet that contains the ambiguous text men-
tion, i.e. the context. How to leverage this context is a further issue to be investigated.
In this work, we restrict our scope to studying ambiguous entity names that have a

few different meanings, for example, 5 to 10 different entities in the KB or OOKB. We
do not consider cases where a name can be mapped to hundreds of different entities
(e.g., a common person name like Smith). For this reason, we choose to work with
domain-specific texts.
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7.1.2 Contribution

We devise an NED method that uses latent topic models as the crux, and context
enrichment as a further aid. Specifically, to discover entities in a corpus, regardless
of whether they are in-KB or OOKB, we harness methods for computing latent topic
models, i.e., embeddings. We use Latent Dirichlet Allocation (LDA) [14] and skip-
gram word embeddings, popularly known as word2vec [124]. As opposed to typical
LDA or word2vec models, in our case the number of dimensions (i.e., latent topics)
is low and should reflect the number of different entities with the same surface name
(i.e., the degree of ambiguity of a mention). Our method computes a vector signature
for each ambiguous name and candidate entity. We further enrich the signatures of
each name with contexts of highly similar mentions. These are precomputations on a
given corpus. The output is a set of <name, entity> pairs where some of the entities
correspond to KB entities and others are OOKB entities along with embedding-based
descriptions. Later, when we are presented with a new (i.e., previously unseen) text
document, our method applies the precomputed signatures to compute similarity
scores between a mention and the candidate entities. The highest similarity score
determines the disambiguated entity, either in the KB or a latent OOKB entity.
We present experimental results that demonstrate the viability of our corpus-driven

NED method with a biomedical corpus. Our method achieves micro-averaged accu-
racy of 81.6%. To the best of our knowledge, this work is the first in the biomedical
domain that applies a corpus-driven approach in NED as well as the first that provides
latent descriptions to OOKB entities.
We also demonstrate that our method is applicable beyond the biomedical domain.

Using a news corpus focused on political organizations and politicians, the same
method achieves micro-averaged accuracy 77.1%, with significant improvements over
a baseline that does not consider the underlying corpora.

7.2 Related Work

Biomedical Entity Disambiguation

Related works addressing biomedical entity disambiguation has already been discussed
at length in the previous Chapter (see Section 6.2). Here we only summarize that the
large body of existing works divides into two main flavors (sub-domain-agnostic and
sub-domain-specific), and that a wide range of methodologies have been proposed.

Corpus-driven Approaches for Dictionary Construction

Although we are not aware of other corpus-driven entity disambiguation methods in
the biomedical domain, there are several works that do take a corpus-driven approach
for constructing a dictionary. These works aim at deriving a complete collection
of all the domain- or sub-domain-specific terms expressed in the corpus. However,
further enrichment of the collected terms, such as reconciliation between terms and
KB entities, or categorization of the terms, are out of scope in these works.
The C-value / NC-value method [47] is a seminal work for deriving multi-word

terms from a corpus. It first uses part-of-speech tags to filter for noun phrases in the
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corpus, and then leverages relative frequencies of these noun phrases and their n-gram
substrings to determine which n-grams are terms. The output is a list of terms ranked
in their C-values, which indicate likelihoods of being a term.
In other works, Li et al. [107] propose the i-SWB topic model. It is a generative

model inspired by LDA, and it captures three kinds of topics, namely background,
general, and document-specific topics. Besides applying the model to molecular biol-
ogy, other domains studied include electrical engineering and metallurgy. Two further
works [38, 131] focus on texts from the consumer health sub-domain. Both works de-
rive equivalent pairs of specialist and layman terms, and the latter work additionally
extracts definitions of the specialist terms.

Distributed Word Representations and Topic Models

Various models of a distributional nature are applicable in a number of biomedical
text mining tasks. Prior to the rise of word embeddings, Cohen and Widdows [30]
provide an overview of the effectiveness of Latent Dirichlet Allocation (LDA) and
other topic models in capturing semantic relatedness. Later, with the advent of
word embeddings [124], Muneed et al. [130] demonstrate that word2vec (the skip-
gram variant of word embedding models) is a better model for capturing biomedical
concepts than than GloVe [145], which is another vector space model that captures
word contexts. Two works [25, 143] further consider word2vec as the state-of-the-
art model, and investigate the quality of models derived from different corpora and
corpus sizes via both intrinsic and extrinsic evaluations.
As word embeddings gain popularity, a number of methods use them as a build-

ing block for various biomedical-entity-centric tasks. For entity recognition, Segura-
Bedmar et al. [175] enhance standard features of a Conditional Random Field (CRF)
model with embeddings for recognizing drug names. For word sense disambiguation
(WSD), Tulkens et al. [211] incorporate embeddings in an adaptation of the 2-MRD
(second order Machine Readable Dictionary) approach. Sabbir et al. [169] derive em-
beddings for UMLS entities using the entities’ definitions and related entities; their
approach is the closest to our construction of candidate signatures. For disambiguat-
ing abbreviations in clinical text, Liu et al. [114] incorporate embeddings in a ranking
algorithm for prioritizing the abbreviation expansions. Wu et al. [229] take a more
conventional approach and incorporate embeddings in an Support Vector Machine
(SVM) classifier.
As for using LDA as the modeling approach, two domain-oriented works, though

outside of the biomedical domain, leverage LDA to perform WSD. Boyd-Graber et
al. [17] propose to extend LDA with the WordNet hierarchy to build the LDAWN
model. Their algorithm performs probabilistic posterior inference to determine simul-
taneously word senses and their respective domains. Preiss and Stevenson [149] also
propose to extend LDA with WordNet, but this time with WordNet senses. Their
model captures not only word-topic distributions but also sense-topic distributions.
This model is domain-specific, and has been studied for the finance and sports do-
mains.
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Sense Discovery and Entity Discovery

To be able to discover new word senses or new entities, one must first have a collection
of known senses and entities. Moreover, one must be able to compare the new item
against the existing collection in order to claim that a discovery has indeed been
made. Seen in this light, the new items are often described as emergent.
In the general domain, Lau et al. [98] propose an LDA-based method to detect

emerging senses. Their method first learns the number of topics before building
either a regular or a hierarchical LDA model. In order to identify the emerging
senses, an older corpus and a newer one (in terms of publication timestamp) are
compared against the LDA model, such that the new senses can be picked up via the
new corpus.
Also in the general domain, state-of-the-art general-purpose NED methods such as

AIDA [70], Spotlight [123], TagMe [46], and Wikifier [156] are all KB-driven. In other
words, the collection of entities come from some KB, and that emerging entities are
OOKB entities. The case of OOKB entities is handled by setting a threshold for the
confidence for when a given mention corresponds to any of the existing entities in
the KB (see, e.g., [68]). When the confidence is below the threshold, NED methods
merely declare mentions as unknown entities, using a generic placeholder NIL and
without giving any further cues about the different entities. A recent work on named
entity recognition (NER) and NED for emerging entities [69] has proposed to put
the human KB curator in the loop, with interactive support from the system by
showing candidate contexts to the curator. In a multi-lingual setting, the Entity
Discovery and Linking task at the TAC-KBP (Text Analysis Conference Knowledge
Base Population) competition requires participating methods to not only identify
NIL’s, but also cluster them as a step towards fully disambiguating OOKB entities.

Context Enrichment

Improving disambiguation results by exploiting the context of similar documents is
proposed by Li et al. [108, 109], whose method incrementally enriches the context
with the most similar documents before proceeding to less similar ones. On the other
hand, Wang et al. [217] perform context enrichment in two ways. With a fixed
number of instances in their LDA-inspired model, word embeddings are incorporated
to inject more context. Alternatively, by incorporating external corpora into the same
model, the number of instances can be expanded so as to enrich contexts captured by
the overall model.

7.3 Methodology

Recall that we assume an ambiguous entity name (e.g. Brexit) expresses only a few
entities (the referendum in the United Kingdom to decide whether to withdraw from
the European Union, the ensuing withdrawal, and the movie). Under this assumption,
the method operates on a per-entity-name basis in two stages. In the preparation
stage, entities are discovered from a background corpus by means of latent topic
models. Signature vectors of ambiguous text mentions as well as candidates are
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derived from the resulting model. In the application stage, the similarities of these
signatures are compared to select the best entity candidate (in the KB or OOKB).

7.3.1 Preparation Stage

Compiling background corpus. This stage takes as input a set of ambiguous
entity names and a large collection of text documents. From this collection, we
retrieve all text snippets within a window of s sentences surrounding the same entity
name. Here, a dictionary of entity names is used to locate their occurrences by
string matching. The resulting snippets are the background corpus, and there is one
background corpus for each entity name. We compute a latent topic model for each
background corpus using either LDA or word2vec.

LDA. Latent Dirichlet Allocation (LDA) is a generative probabilistic model inde-
pendently proposed by Blei et al. [14] and Pritchard et al. [150]. When applied to
natural language processing, it is a designed to model the documents, or multiple se-
ries of words, in a text corpus. Intuitively, LDA posits that there are K latent topics,
and each topic has a probability distribution of generating words. A document, in
turn, is a mixture of topics with different probabilities. Using a combination of these
probabilities, the words of the document are generated, thus forming the document.
Using the actual words in the corpus as observed outcomes, LDA computes a model
that generates those outcomes.
Formally, the generative process with smoothing is as follows.

First, for each topic:

1. Choose φk ∼ Dir(β) , where k ∈ {1, . . . ,K} for the distribution of words

Then, for each of the M documents in the corpus:

2. Choose N ∼ Poisson(ξ) for the number of words in the document

3. Choose θ ∼ Dir(α) for the distribution of topics

4. For each word in the document:

(a) Choose a topic zk ∼ Multinomial(θ)
(b) Choose a word wn ∼ Multinomial(φzk)

Using plate notation, the above generative process is depicted in Figure 7.1.

[14] details the derivations in full. We note here especially the two hyperparameters,
α and β, which are parameters for the two Dirichlet distributions for per-document
topics and per-topic words, respectively. We note also that the number of topics K
is a number predetermined in some other manner; the model itself does not attempt
to derive one K or the best K. In other words, in order to apply LDA, it is our
responsibility to come up with a judicious combination of α, β, and K.
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Figure 7.1: Plate notation of smoothed LDA

Constructing latent topic models with LDA. Under the assumption that one
entity name can represent at most a few entities, we aim to construct models with
low numbers of latent topics. Therefore, the goal is to find an LDA model with
K topics such that 2<K<10 and the model has the best discerning power. This is
achieved by picking the model with K topics and the lowest perplexity while max-
imizing the increase in perplexity in analogous models with K–1 and K+1 topics.
The hyperparameters α and β are determined by preliminary experiments.

word2vec. The continuous skip-gram model [124], also known as word2vec, cap-
tures the context of individual words. Intuitively, given one word in the middle of
a sentence, the model predicts its context, namely the words before and after it. A
corpus of sentences is required to construct the model, so that the word sequences
in the corpus can be leveraged to form such predictions. Under this model, similar
words cluster close together in the resulting latent topic space.
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Figure 7.2: Model architecture of word2vec

Formally, word2vec is model using two kinds of classifiers, and Figure 7.2 depicts its
architecture. The current word wn in a sentence is the input to a log-linear classifier,
which projects not to the current word position n, but to a predefined window of
words before and after n. During model construction, K log-linear classifiers are
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employed in the projection layer, and softmax classifiers are employed in the output
layer. At the end of model construction, the weight matrix recorded in the log-linear
classifiers encodes the latent topic space.
Both the original creators of word2vec [124, 125] and other researchers [52] have

presented details of the model and its parameters in full. Here, we note that K is a
predetermined number; similar to LDA, the word2vec model itself does not attempt
to derive one K or the best K. It is again our responsibility to come up with a
judicious K.

Constructing latent topic models with word2vec. For word2vec, the notion of
inherent perplexity as in LDA does not apply. Therefore we set the number of topics
K to 5, 10, 15, or 20. We consider all four word2vec models (for each ambiguous
entity name), and later report on the one that gives the best NED performance in
experiments. Since multiple latent topics may map to the same entity later, having as
many as 20 topics does not violate the assumption that there are only a few entities
for the same name.

Constructing latent entity signatures. Regardless of the dimensionality reduc-
tion algorithm used, the result is aW -by-K matrix, whereW is the number of unique
words in the corpus. The columns of matrix are the signature vectors of the K latent
entities that are associated with the same ambiguous name.

Linking latent entities to KB entities. Entities in the KB have textual descrip-
tions, which we cast into the same latent topic space as the latent entities. This
yields signature vectors for K latent entities and, say, K ′ in-KB entities where K ′≤K
(assuming our choice of K was reasonable).
We now try to link each of the latent entities to one of the in-KB entities, using the

cosine similarity between signature vectors. For latent entity j, we choose the in-KB
entity e with the highest similarity if it is above a specified threshold. If none of
the in-KB entities has a similarity above the threshold, we keep j as a latent OOKB
entity, but with a latent-model description and clearly distinguishable from other
OOKB entities with the same ambiguous name. The output of this step is a partial
linking of latent entities to in-KB entities.

Constructing mention signatures. Given a text mention in a previously unseen
document, we fold it into the latent topic space. We again take a snippet of text
within a window of s sentences surrounding a text mention. Suppose a sentence in
this snippet is Elderly voters decry shocking Brexit poll results. Intuitively, we want
to encapsulate this sentence’s orientation in the latent topic space by combining the
information embodied in all the words in the sentence.
Formally, we construct a base signature by taking all the words’ corresponding

vectors in the latent topic space, and averaging them. Although averaging vectors
is a simplistic approach, it has been shown to be competitive against other more
complicated alternatives [74].
This signature can be further enriched or contextualized by incorporating a weighted

version of signatures from other highly related snippets containing the same mention.
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Specifically, we consider the most related snippets from the background corpus, and
set their relatedness to their word overlap. The final signature of a mention is:

sigmen = a0 × sigbase + a1 × sig1 + a2 × sig2 + . . .

where sigi’s are signatures of the other snippets from the most related to least related,∑
ai = 1, and a0>a1>a2 . . . , implicitly constraining a0>0 to ensure that the base

signature is always present and always the dominant contributor. The values for
the ai parameters are tuned based on a withheld development set. We use up to 10
related snippets under the condition that each snippet must be reasonably related to
the base snippet; this is achieved by discarding “related” snippets whose word overlap
with the base snippet is below a threshold.

Constructing candidate signatures. Each entity candidate has a description
consisting of words (from the KB or from the latent topic model). In addition, each
in-KB candidate has semantic relations with further entities in the KB. By adding the
names of these related entities to the description, we construct an informative pseudo-
document for each entity. This document can then be transformed into a candidate
signature the same way as the text mention signature (without contextualization). In
our Brexit example, three candidate signatures are computed for the referendum, the
withdrawal, and the movie.

7.3.2 Application Stage

Mapping mentions to candidates. When presented with a new document con-
taining an ambiguous name, our method compares the signature of the ambiguous
mention to each candidate signature and computes the following similarity score:

similarity = (1− b)× cos(sigmen, sigcand) + b× priorcand

where cos() is the cosine similarity function, priorcand is the candidate’s prior prob-
ability according to AIDA [70], and 0 ≤ b < 1. The candidate with the highest
similarity score becomes the disambiguated winner.

7.4 Evaluation

7.4.1 Dataset and Parameter Tuning

Dataset. Table 7.1 summarizes the dataset that we used for experimental evalua-
tion.
For the background corpora, we extracted text snippets from a wide range of genres

from scientific literature to encyclopedic Web pages to online discussion threads. The
background corpora have on average ca. 31,000 snippets per ambiguous name. A
sentence window size s of 5 was used.
As knowledge base, we tap into UMLS, the authoritative KB of the biomedical

domain, as it provides both candidate descriptions as well as entity-entity relations.
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Background corpus Collected from PubMed scientific literature,
encyclopedic Web portals, online discussion forums

Knowledge base UMLS

Test dataset

MSH WSD
Distribution of 203 ambiguous entity names:
106 abbreviations, 88 terms,
9 mixture of both

Table 7.1: Summary of biomedical dataset

For the test dataset, we use an established gold standard, the MSH WSD dataset
[83] which features a mixture of abbreviations and terms. The average number of
candidates per ambiguous entity name is 2.08.

Disambiguation priors. Since entity prior information is not available in the bio-
medical domain, we set the weight b to zero in the mention-vs.-candidate signature
similarity comparison; in other words, no disambiguation priors were applied.

LDA software and parameter tuning. We use arbylon1, a java implementa-
tion of the LDA algorithm. The specific method used to perform inference is Gibbs
sampling; the implementation’s accompanying technical report [65] contains the full
derivation. We set aside a randomly chosen 20% subset of the test dataset for param-
eter tuning. Recalling that since each ambiguous entity name requires its own latent
topic model, the parameter combinations of α, β, K are per-entity-name.

word2vec software and parameter tuning. We use the java implementation of
word2vec provided by deeplearning4j2. Since [25] shows that quality of the resulting
model is higher when the sentences in the background corpus are shuffled randomly,
we took care to do the same. Recalling that we have, for each ambiguous entity
name, 4 word2vec models with K = 5, 10, 15, and 20, we report the best choice of
the dimensionality K, as determined post-hoc by the experimental evaluation.
We used preliminary experiments to determine other model parameters, and found

that the best combination does not vary from one ambiguous entity name to another.
Therefore we reached the following combination: negative sampling is always enabled;
window size and minimum word frequency are both set to 10.

Parameter tuning for thresholds. Our method uses two thresholds, namely the
threshold that determines whether a latent entity is OOKB, and the threshold that
determines whether a related text snippet is similar enough for the contextualization
of text mention signature. Both thresholds were tuned using the same 20% subset of
the test dataset, similarly on a per-entity-name basis.

1www.arbylon.net
2deeplearning4j.org/word2vec
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7.4.2 Disambiguation of In-KB Entities

Table 7.2 shows the micro-averaged accuracy (on the 80% subset of the test dataset,
not used in parameter tuning). The best performing setting is the one based on
word2vec with contextualization, reaching 81.6% accuracy. These results are very
encouraging, especially since the biomedical domain is notoriously difficult in entity
disambiguation. To the best of our knowledge, there is no software tool that provides
genuine disambiguation for comparison as baseline here.

Abbrev. Terms Both Overall

LDA 0.742 0.672 0.739 0.711
LDA + context 0.748 0.674 0.741 0.714
word2vec 0.869 0.722 0.885 0.805
word2vec + context 0.882 0.730 0.905 0.816

Table 7.2: Micro-averaged accuracy results for biomedical dataset

Impact of dimensionality reduction technique. We observe that using word2vec
as the dimensionality reduction technique consistently and significantly outperforms
using LDA. We believe this performance boost comes from the additional information
of word order captured by word2vec models; in contrast, LDA is a bag-of-words model
that disregards word order.

Impact of context enrichment. We observe that context enrichment also con-
sistently improves accuracy, though not by as big a margin as using word2vec over
LDA. This result confirms the intuition that more context means more information,
which in turn means more discriminative power. On average, 3.60 similar contexts
were used in constructing text mention signatures.

Impact of ambiguity type. Ambiguous entity names in the test dataset come in
three types: abbreviations, terms that have their words completely spelled out, and
names that exhibit both aspects (e.g. STEM is an abbreviation for science, technol-
ogy, engineering, and mathematics, while stem is an anatomical part of a plant). En-
tities sharing the same abbreviation are generally starkly different; for instance, PVC
stands for both polyvinyl chloride the common plastic, and for premature ventricular
contractions the medical condition. On the other hand, terms tend to reflect multiple
shades of the same underlying entity; for instance, Pneumocystis refers to both the
genus of yeast, as well as the specific form of pneumonia the yeast causes. In other
words, the differences in context between abbreviation candidates are larger than
those between term candidates. This observation explains the significantly higher
accuracy in abbreviations than in terms.

Sample outcomes. Table 7.3 shows some sample outcomes of correctly disam-
biguated ambiguous entity names using our method. Although in this Table we show
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only the sentences that contain the text mentions, we note that each sentence is
surrounded by the rest of the text snippet bearing more context.

Abbreviation: EMS

Entity Sample disambiguated sentences

Emergency medical
service

Of EMS, by EMF, for EMS. Let’s stop the abuse & improve relations
between field and in-hospital providers.

Ethyl methanesulfonate In vivo genotoxicity of EMS: statistical assessment of the dose
response curves.

Term: Hybridization

Entity Sample disambiguated sentences

Crossbreeding of species We also tested the hypothesis that hybridization may contribute to
PA diversity within plants, by comparing PA expression in parental
species to that in artificially generated F(1) hybrids, and also in later
generation natural hybrids between S. jacobaea and S. aquaticus.

Hybridization of nucleic
acids

Samples were collected from infected leaves before treatment, 7 and
15 days after treatment for DNA and molecular hybridization
analysis.

Both abbreviation and term: Ice

Entity Sample disambiguated sentences

Interleukin-1 converting
enzyme

LPS increases the expression levels of IL-18, ICE and IL-18 R in
mouse testes.

Water in solid state Molecular cloning and expression analysis of a cytosolic Hsp70 gene
from Antarctic ice algae Chlamydomonas sp.

Methamphetamine Smokable (“ice”, “crystal meth”) and non smokable amphetamine-type
stimulants: clinical pharmacological and epidemiological issues, with
special reference to the UK.

Table 7.3: Sample outcomes of ambiguous biomedical entity names

7.5 Applying the Methodology in the Politics Domain

Although the method described in this Chapter is designed for domain-specific usage,
it is not designed only for the biomedical domain. In order to demonstrate the appli-
cability of the method to other domains, in this Section we present an evaluation of
the method against the politics domain. We begin with a brief discussion of relevant
existing works.



85 7.5. Applying the Methodology in the Politics Domain

7.5.1 Related Work

To the best of our knowledge, there is no existing work that addresses NED specifically
in the politics domain. We can, however, consider the news domain. News cover
current events, many of which are of a political nature, and so the news domain can
be said to encompass the politics domain. For NED in the news domain, however,
there are still few previous works. Fernández et al. [45] and Redondo García et al.
[163] both propose ranking-based approaches that leverage meta-data that come with
news. The method in [45] leverages new articles’ temporal tags to detect trends such
as a certain sports event, so that news articles deemed to share the same trend can
provide extra contextual coherence to each other. On the other hand, the method
in [163] leverages Google relevance scores and even news video’s subtitles to provide
extra cues for the NED task.

7.5.2 Methodology

As the methodology is not domain-specific, the same procedures for the biomedical
domain were applied to data in the politics domain.

7.5.3 Evaluation

Dataset and parameter tuning Table 7.4 summarizes the dataset that we used
for experimental evaluation.

Background corpus Collected from gigaword5

Knowledge base Freebase

Test dataset

Custom constructed from Wikipedia
Distribution of 100 ambiguous entity names:
25 abbreviations, 25 organizations,
25 persons, 25 places

Table 7.4: Summary of political dataset

For the background corpora, we extracted text snippets from gigaword5 [144]. It
is a collection of English news articles published between 1994 and 2010 by 7 news
outlets from 4 countries. A sentence window size s of 5 was used.
As knowledge base, we use Freebase [16] so as to leverage its entity-entity relations.
For the test dataset, there is no established gold standard for the political domain

to the best of our knowledge. We therefore constructed a custom test dataset from
Wikipedia’s Politics Portal. From a Wikipedia disambiguation page, persons and
organizations of a political nature, geographical places, as well as their abbreviations
are selected as candidates. Hyperlinks in a content page are taken as annotated
ambiguous mentions, where the link destinations are the disambiguated entities. The
opening section of a candidate’s Wikipedia article is used as its description. Since
the background corpora covered news only up to 2010, we took care to select only
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candidates that were established entities by that year. The full list of ambiguous
entity names and their candidates is in Appendix D.
The average number of candidates per ambiguous entity name is 5.32. The back-

ground corpora have on average ca. 17,000 snippets per ambiguous name; the number
of snippets is much lower than that for biomedical domain (ca. 31,000) since giga-
word5 is smaller than the biomedical text collection. Disambiguation priors from
AIDA [70] were applied.
We performed parameter tuning analogous to that for the biomedical domain. Here,

we note a key difference from the biomedical domain: In word2vec, the minimum word
frequency is 5 (instead of 10) to adjust for the smaller background corpora.

Disambiguation of in-KB entities. Table 7.5 shows the micro-averaged accuracy
(on the 80% subset of the test dataset, not used in parameter tuning). Similar to the
biomedical domain, the best performing setting is the one based on word2vec with
contextualization, reaching 77.1% accuracy.

Abbrev. Org. Persons Places Overall

LDA 0.614 0.668 0.603 0.699 0.648
LDA + context 0.620 0.676 0.623 0.701 0.655
word2vec 0.762 0.702 0.660 0.794 0.742
word2vec + context 0.788 0.735 0.696 0.818 0.771
AIDA 0.619 0.648 0.679 0.695 0.656

Table 7.5: Micro-averaged accuracy results for political dataset

For the political domain, achieving an accuracy of 77.1% is quite good given that
the average number of candidates is 5.32. For instance, the candidates for Bush
include both ex-presidents of USA as well as Jeb Bush. Under this difficult setting,
the best setting of our method achieved an accuracy of 75%.
The two trends we observed in the biomedical domain are repeated in the political

domain. Specifically, results derived from word2vec models outperform those from
LDA models, and using context enrichment boosts performance. These repeated
observations confirm that additional information, captured as word order in word2vec
models and as extra contexts, translates to additional cues for the NED task.
As a baseline for the political domain, we used a state-of-the-art NED tool out of

the box, namely AIDA [70] which uses YAGO as its KB. This comparison is a bit
unfair, as AIDA is not customized to the domain and its KB contains a large number
of entity candidates that are irrelevant for the dataset. The observation that our
method drastically outperforms AIDA shows that corpus-aware NED has inherent
advantages in such domain-specific situations.
Table 7.6 show some sample outcomes of correctly disambiguated ambiguous entity

names using our method. Although in this Table we show only the sentences that
contain the text mentions, we note that each sentence is surrounded by the rest of
the text snippet bearing more context.
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Abbreviation: DNC

Entity Sample disambiguated sentences

Democratic National
Committee

Labor Party founded the National Democratic Policy Committee
(NDPC), a political action committee whose name drew complaints
from the DNC, who saw these efforts as infiltration.

Democratic National
Convention

He returned to his law practice and in 1868 served as a delegate to
the DNC.

Organization: Democratic Progressive Party

Entity Sample disambiguated sentences

Political party in Malawi Chimombo is a member of the DPP and a former member of the
UDF.

Political party in Taiwan The first national election to be held after Chen Shui-bian’s victory
in the 2000 presidential election, the election resulted for the first
time in the Kuomintang (KMT) losing its majority and President
Chen’s DPP emerging as the largest party in the legislature.

Person: Gallup

Entity Sample disambiguated sentences

David Gallup Mr. Gallup, delegate to the Republican National Convention 1860,
Connecticut State Senator 1869, Lieutenant Governor of Connecticut
1879-1881.

George Gallup Ogilvy cites Gallup as one of the major influences on his thinking,
emphasizing meticulous research methods and adherence to reality.

Place: Bombay

Entity Sample disambiguated sentences

City in India The cave temples of Elephanta Island (near Mumbai or Bombay, as it
was known formerly), Ajanta, and Ellora (in Maharashtra), and
structural temples of Pattadakal, Aihole, Badami in Karnataka and
Mahaballipuram and Kanchipuram in Tamil Nadu are enduring
legacies of otherwise warring regional rulers.

State in India The Deccan States Agency, also known as the Deccan States Agency
and Kolhapur Residency, was a political agency of British India,
managing the relations of the British government of the Bombay
Presidency with a collection of princely states.

Bombay in New York
State in USA

The Mohawk Tribe views the reservation as a “sovereign nation,” but
shares jurisdiction with the State of New York, the United States,
and the Town of Bombay, in which it is located.

Table 7.6: Sample outcomes of ambiguous political entity names
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7.6 Summary

We present a corpus-driven approach to named entity disambiguation, as an alterna-
tive to the knowledge-base-driven (KB-driven) mainstream line of prior works. Using
dimensionality reduction techniques such as LDA and word2vec, we model a back-
ground corpus in a low-dimensional topic space, such that each topic becomes a
latent entity. The key advantage of our method is that it handles the case of out-of-
KB (OOKB) entities in a more informative way, by distinguishing different OOKB
entities and by providing them with entity descriptions derived from latent embed-
dings. Experiments using ambiguous entity names from the biomedical and political
domains demonstrate that our method is an alternative to mainstream, KB-based
NED approaches. To the best of our knowledge, out method is the first work to
address OOKB entities in the biomedical domain by transforming them into latent
representations.
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Chapter 8

Conclusion

Entity recognition and disambiguation (ERD) for the biomedical domain are difficult
research problems due to many and diverse challenges. The variety of sub-domains
and their nomenclature, the mixture of proper names and compound noun phrases,
the heterogeneous text genres, only to name the main challenges – all contribute to
the complexity and difficulty. In this thesis, we devise solutions that address some
aspects of the overall problems.

8.1 Contributions

The first contribution of this thesis is a fast dictionary lookup method for entity
recognition. Our method balances the trade-off between small losses in precision
and coverage in exchange for huge gains in throughput. The second contribution
is a semantic type classification method for common nouns in long noun phrases.
By incorporating the generic, non-informative type and non-biomedical types, our
method distinguishes crucial words with biomedical meanings as a precursor towards
better information extraction. The third contribution is a fast entity disambigua-
tion method applicable across all entity types in MEDLINE abstracts. The method
leverages expert-assigned indexing MeSH (Medical Subject Headings) terms, UMLS
(Unified Medical Language System) knowledge, and fast heuristics to produce high
quality results at high throughput. The fourth contribution is a corpus-driven entity
disambiguation method that addresses out-of-knowledge base (OOKB) entities. The
method first captures entities in a corpus as latent representations before mapping
text mentions to entities either in-knowledge base or OOKB.

8.2 Outlook

Despite the contributions of this thesis, there are still further aspects of the biomedical
ERD problem that remain to be tackled.

Entities with attributes. The methods presented in this thesis all leverage UMLS
as the underlying knowledge base. However, when only 13% of UMLS entities ap-
pear in MEDLINE abstracts [91], we must question how much of that rich knowledge
– entities and their accompanying information – our and other UMLS-based meth-
ods have truly harnessed. Viewing from a different angle, the entities not found in
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MEDLINE are long, composite entity names with multiple attributes (for example,
acquired deformity of left forearm excluding fingers). These two perspectives are two
sides of the same coin, in that entities with highly specific attributes are in demand
by the nature of the profession. How to bring these perspectives together and forge
a solution capable of handling the myriad entities and their myriad details will be a
daunting task.

Text genres such social media and patents. To date, biomedical text mining,
and hence biomedical ERD, have focused heavily on scientific literature. In this
thesis, we make some inroads into Web content such as encyclopedic health portals
and patient discussion forums. Dissemination of information, however, has evolved
beyond these relatively static and formal forms of communication. Microblogs such
as tweets offer a continuous stream of texts, but they are short and therefore lacking
in context, not to mention the heavy use of layman terms cluttered in non-biomedical
content. Instead of having most of the text focusing on biomedicine and a small
portion of the text on out-of-domain content, the reverse distribution will be the
norm. How to winnow out the irrelevant content, separate the cases when the same
term is used in a biomedical way and otherwise, and compensate for the lack of
context will be a major theme.
Patents are yet another neglected text genre. They are especially important to

pharmaceutical companies, where combing through existing patents to identify con-
flicts and opportunities are very much part of the drug development process. Here,
besides the need to adapt to the genre’s specific language style, high recall will be a
key requirement.

Conjunctions in noun phrases. Conjunctions are a common linguistic phenom-
enon not addressed in this thesis. Specifically, resolving the scope of conjunction
reveals the entity implied by the writer. Consider, for example, non-activated Factors
II, IX, and X, and one sees immediately with high confidence that IX and X are
also non-activated Factors. But in another example, side effects from chlorothiazide
and methyldopa therapy, without prior knowledge one cannot tell if chlorothiazide is
a drug, or if chlorothiazide therapy is a standard procedure and hence the intended
entity, or even if both cases apply. Despite being a fundamental problem, to the best
of our knowledge there has been no prior study on conjunctions in biomedical text.

One text mention, multiple entities. Both entity disambiguation methods pro-
posed in this thesis offer black-and-white answers: A text mention is mapped to
exactly this entity or that entity. However, natural language is inherently imprecise,
leading to different readings of the same text by different readers. Using the same
chlorothiazide example, indeed both readings (being a drug, and being a specific drug
therapy) are valid. Consider also a text mention as simple as children, for which
there are very fine-grained UMLS entities referring to the age group and the familial
function. In such cases, it can be beneficial to allow multiple answers with different
levels of confidence or with different reasons for the decision. There is no question
that the “one text mention, multiple entities” phenomenon exists; the question is how
to incorporate multiple answers in a disambiguation method.
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Appendix A

List of suffixes removed from entity names in UMLS

(+)
(-)
(+-)
(+/-)
(#___)
[#/volume]
(___cm)
(___ cm)
(___ degree.)
(___ degrees)
(___ min)
(___ mm)
(& level)
(1)
(1:1)
(1-4)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(14)
(2010)
(2011)
(2012)
(a)
(activity)
(allelic variant)
[Ambiguous]
(Approved Lists 1980)
(assessment scale)
(attribute)
(b)
(Base Equivalent)
[BAU]
(biological function)
(body structure)
(Bulk)

(cell)
(cell structure)
[Chemical/Ingredient]
(combined site)
(context-dependent category)
(count/vol)
(CT Scan)
(D)
[D]
(diagnosis)
(diagnostic)
[Disease/Finding]
(discontinued)
(disorder)
(documented clinically or microbiologically)
(Drosophila)
[dup]
(E)
(EA)
(ENTERIC COATED)
(environment)
[EPC]
(etiology)
(event)
[FACIT]
(FC)
(FINAL DOSE FORM)
(finding)
(function)
(geographic location)
(GM)
(GRAM)
(GRAMS)
(H1N1)
(H3N2)
(HARD, SOFT, ETC.)
(Hensel, 1867)
(HDR)
(history)
[hp_C]
[hp_X]
[Identifier]
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(I)
(II)
(III)
(INHALATION)
(IR)
[iU]
(L)
(L.)
(lab test)
(LDR)
(Linnaeus, 1758)
(M)
[M]
[Mass]
[Mass ratio]
[Mass/mass]
[Mass/time]
[Mass/volume]
(mammal)
(manifestation)
(mechanical)
(medication)
(MeSH Category)
(MILLILITERS)
(ML)
[MoA]
[Molar ratio]
[Moles/volume]
(morphologic abnormality)
(MRI)
(N)
(nail)
(navigational concept)
(non-specific)
nos
NOS
[nos]
[NOS]
(nos)
(NOS)
not otherwise specified
(observable entity)
(Obsolete)
(obsolete)
(occupation)
of unspecified site
(or disorder)

(organism)
[PE]
(person)
(pdr for recon)
[PhenX]
(physical finding)
(physical force)
(physical object)
[PNU]
[Presence]
(procedure)
(product)
(qualifier value)
(R)
[Ratio]
(regime/therapy)
-RETIRED-
(S)
(s)
(S/I)
(S. cerevisiae)
(SDV,MDV OR ADDITIVE)
(situation)
(specimen)
(structure)
(substance)
[Susceptibility]
(symptom)
(systemic)
(T)
(Titer)
[Titer]
[TREATMENT]
(treatment)
(tumor staging)
(unintentional)
[Units/volume]
unspecified
unspecified site
(USP)
[USP’U]
[V]
[VA Drug Interaction]
[VA Product]
[X]
(Z)
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Appendix B

List of target nouns, custom semantic types, and seed phrases

Target noun Custom semantic types Seed phrases

activity body and protein process catalytic activity
disease activity
inflammatory activity
kinase activity

non-informative movement in of activity in
general of activity of

physical activity fetal activity
physical activity

administration applying medicine intravenous administration
medication administration
topical administration

bureaucracy hospital administration
safety administration

area division of abstract entity area of study
priority area
problem area
research area

division within a location perioperative area
work area

geographical location endemic area
geographical area
rural area
urban area

geometric surface area under the curve

location in body part frontal area
skin area
tumor area
tumour area

physical surface surface area
total area
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Target noun Custom semantic types Seed phrases

body anatomical part mandibular body
vitreous body

part of a cell apoptotic body
ketone body
lewy body
pineal body
polar body

rhetorical collection body of research
regulatory body

whole physical being body odor
body odour
body weight
foreign body
human body
upper body

case body part brain case
rib case

english letters lower case
upper case

instance of disease in patient % of cases with
[[number]] cases of
case control
case history
case management
case report
case study
confirmed case of

legal matters case law
court case

non-informative incidence in in case of
general in most cases

in the case of

concentration concentration camp concentration camp

density of matter haemoglobin concentration
high concentration of
plasma concentration

mental function concentration loss
mental concentration

physical contraction uterine concentration
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Target noun Custom semantic types Seed phrases

condition configuration or setting chosen condition
environmental condition
experimental condition
living condition
under normal condition

symptom or finding chronic condition
comorbid condition
medical condition

control about experiments control group

birth control birth control

disease control disease control

restriction in general in the control of

culture medical sample blood culture
cell culture
culture medium
tissue culture

way of life corporate culture
hispanic culture
language and culture

degree academic degree bachelor degree
masters degree

biomedical stage in progression first degree relatives
second degree burn
third degree perineal tear

degree of freedom degree of freedom
degrees of freedom

edges out of a node in graph degree distribution
node degree

metric for bending [[number]] degree bevel
[[number]] degree extension
[[number]] degree flexion

metric for temperature [[number]] degree celcius
[[number]] degree fahrenheit
[[number]] degree fever

non-informative rhetorical
description of severity

to the degree of
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Target noun Custom semantic types Seed phrases

development creation of a drug drug development

disease progression cancer development
development of diabetes
disease development

growth of physical body cell development
delayed development
embryonic development
muscle development

non-biomedical progress community development
economic development
leadership development
professional development
software development
urban development

non-informative progression in advances in the development of
general continued development of

future development

distribution spread in general in the distribution of
size distribution
tissue distribution

statistical distribution as a distribution of
binomial distribution
chi-square distribution
gaussian distribution
statistical distribution

effect biomedical named entity Bohr effect
Haldane effect
adverse effect
cohort effect
doppler effect
generation effect
late effect
placebo effect
side effect
toxic effect

non-informative impact in general possible effect of the
the effect of the

expression communication expression of feelings
facial expression
verbal expression

english idiom blank expression

gene expression gene expression

manifestation of disease disease expression
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Target noun Custom semantic types Seed phrases

factor a multiple of some quantity by a factor of [[number]]

impact factor impact factor

non-informative influence on factors impacting
consequence factors influencing

related to protein growth factor
transcription factor

risk factor risk factor

statistics covariate factor
multivariate factor
univariate factor

flow english idiom flow of events

flow cytometry analysis flow cytometry analysis

passing of fluid blood flow
flow rate
flow volume
fluid flow
period flow

passing of information data flow
information flow

passing of other matter flow cell
nerve impulse flow

form biomedical named entity recessive form
wave form

dosage form dosage form
dose form
oral form
topical form

non-informative type in general a form of
different forms of
in the form of
modified form of

paper form fill in the form

function body function metabolic function
motor function
pulmonary function
renal function

mathematical function as a function of
correlation function
logistic function
mathematical function

non-informative utility in general the function of the
whose function is to
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Target noun Custom semantic types Seed phrases

group biomedical named entity age group
blood group
control group
ethnic group
placebo group

collection of subjects or cases in conservative group
experiment group [[number]] subjects

group a
group of [[number]] subjects
treated group

non-informative collection of group of drugs
items group of experts

information biomedical information drug information
patient information
personal information

biomedical named entity silent information regulators

general use additional information
basic information
sufficient information

information technology information retrievel
information system

line biomedical stage of events first line treatment
second line therapy

body part boundary jaw line
joint line
lip line

cell line cell line
germ line

geometric boundary line in figure
line of sight
line tracing

non-informative line in general along those lines
in line with

measure actions in a strategy control measure
measures against
preventive measure
safety measures
supportive measures

quantitative measurement interpretable measure
performance measure
similarity measure
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Target noun Custom semantic types Seed phrases

mechanism non-informative procedure in as a mechanism of
general probable mechanism

specific biomedical mechanism biochemical mechanism
defense mechanism
drug mechanism
immune mechanism

model manufactured objects device model
equipment model
model number

model organism animal model
cell line model
mouse model

simulated structure in experiment model of chronic
model of disease
prediction model
regression model
statistical model

pattern about biopsy gleason pattern

about ecg ecg pattern

mental activity pattern recognition

non-informative template in various patterns of
general whose pattern is

physical activity feeding pattern
gait pattern
sleep pattern

specific characterization of banding pattern
biomedical entity binding pattern

spatial pattern
wavy pattern

period biomedical duration gestation period
incubation period

menstruation menstrual period

time span in general [[number]] year period
for a period of
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Target noun Custom semantic types Seed phrases

point about data and graphs data point
point in the graph

abstract biomedical location isoelectric point
melting point

metaphorical location entry point
starting point

metric for scores scored [[number]] points

moment in time time point

opinion key point
point of view

physical biomedical location acupuncture point
exit point
needle point
point mutation
point of application

specific mental state at one point in
at some point
to the point of
to the point where

pressure non-physical pressure selection pressure
social pressure

pressure from air air pressure
airway pressure

pressure from blood arterial pressure
blood pressure

pressure from body fliud intracranial pressure
pulmonary capillary wedge pressure

pressure from sound sound pressure

pressure from weight pressure sore

problem english idiom no problem
teething problem

non-informative issue in general big problem
same problem

specific issue or difficulty economic problem
management problem
mathematical problem
problem resolution

symptom health problem
medical problem
problem behavior
problem behaviour
problem breathing
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Target noun Custom semantic types Seed phrases

process biomedical process ageing process
aging process
binding process
healing process
thought process

body part articular process
condyloid process

information process data process
information process
markov process
review process

non-informative procedure in
general

during the process of

product blood product blood product

cell function degradation product
end product
gene product
metabolic product

food product food products
meat products
milk products

health care product health care product
medicinal product

mathematics inner product
outer product

other output product ion

profile about proteins and genes expression profile
lipid profile

biomedical characterization activity profile
adverse effect profile
clinical profile
pharmacokinetic profile
risk profile
safety profile

physical shape facial profile
shape profile
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Target noun Custom semantic types Seed phrases

program computer program computer program
computer programme
program computing
programme computing

genetic program gene expression program
gene expression programme
genetic program
genetic programme

medical treatment dialysis program
dialysis programme
exercise program
exercise programme
intervention program
intervention programme
relaxation program
relaxation programme

social assistance scheme government program
government programme
medicaid program
medicaid programme

training regimen athletic program
athletic programme
degree program
degree programme
education program
education programme
training program
training programme

rate biomedical named entity death rate
flow rate
heart rate

proportion mortality rate
rate of cancer

speed of activity rate of increase

reaction body function adverse reaction
allergic reaction
drug reaction
immune reaction

chemical reaction chemical reaction

lab technique polymerase chain reaction

mental reaction emotional reaction
reaction to threat

reaction time reaction time
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Target noun Custom semantic types Seed phrases

reduction medical procedure closed reduction
open reduction

opposite of oxidation oxidation and reduction

reducing in quantity quantity reduction
size reduction
volume reduction

region about proteins c-terminal region
n-terminal region
promoter region

body part cubital region
frontal region
midline region
sacral region

geographical area appalachian region
polluted region of
tropical region

other physical area in general region in the graph

report biomedical named entity assessment report
case report
laboratory report

non-informative communication detailed report
in general first report on

preliminary report
published reports

resistance chemical or protein repulsion drug resistance
immune resistance
insulin resistance

physical repulsion airway resistance
vascular resistance

psychological repulsion resistance to the idea

response body function behavioral response
behavioural response
immune response
inflammatory response
inhibitory response
response to glucose

emergency response emergency response

other reaction in general response to criticism
response to financial

reaction to treatment dose response
treatment response

response time response time
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Target noun Custom semantic types Seed phrases

result english idiom as a result

findings from experiment or functional result
research laboratory result

negative result
test result

non-informative outcome promising results
previous results
unpublished results

treatment outcome surgical result
treatment result

role biomedical function catalytic role
functional role
gender role
regulatory role

non-informative rhetorical use critical role
role of the

role model role model

sequence about proteins chromosome sequence
protein sequence
sequence alignment

series in general sequence of events

set division of data data set
test set
training set
validation set

non-informative collection in [[number]] set of
general is a set of

large set of

site anatomical location body site
distal site
injection site
site of injury
tumor site
tumour site

general physical location construction site
remote site

location in protein binding site
phosphorylation site
splice site
target site
transcription start site

website internet site
web site
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Target noun Custom semantic types Seed phrases

solution chemical in liquid form aqueous solution
dialysis solution
nacl solution
ophthalmic solution
oral rehydration solution
powder for solution
saline solution

solution to problem best solution
possible solution

state geographical entity county and state
state or local
united states

non-informative status in general future state of
in a state of

specific biomedical status disease state
functional state
mental state
steady state

state of the art state of the art

strain body part strain eye strain
shoulder strain

mental strain mental strain
psychological strain

organism strain virus strain

system about information technology automated system
billing system

collection of body parts cardiac system
immune system

organized collection in general a system of
scoring system
system performance

systems biology systems biology

technique non-informative know-how in [[number]] different techniques
general a novel technique for

other techniques
the technique of

specific technique diffusion technique
imaging technique
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Appendix C

Distribution of entity types in different corpora

UMLS semantic group: Activities & Behaviors

Scientific literature Encyclopedic Web portals Online discussion forums

UMLS
semantic
type

PubMed
MEDLINE

PubMed
Central

Drugs
.com

Mayo
Clinic

Medline-
Plus

RxList UpTo-
Date

Wikipedia
Health

eHealth-
Forum

Health-
Boards

patient
.co.uk

Activity 2.53% 2.64% 1.91% 2.19% 1.19% 1.98% 1.80% 1.80% 1.87% 2.00% 1.96%

Behavior 0.04% 0.03% 0.03% 0.10% 0.16% 0.02% 0.03% 0.05% 0.13% 0.08% 0.08%

Daily or
Recreational
Activity

0.22% 0.20% 0.19% 0.43% 0.23% 0.13% 0.22% 0.37% 0.77% 0.98% 1.07%

Event 0.09% 0.12% 0.05% 0.02% 0.01% 0.14% 0.08% 0.11% 0.06% 0.06% 0.05%

Governmental
or
Regulatory
Activity

0.17% 0.15% 0.14% 0.02% 0.35% 0.27% 0.08% 0.12% 0.05% 0.06% 0.04%

Individual
Behavior

0.35% 0.24% 0.15% 0.26% 0.11% 0.19% 0.16% 0.25% 0.48% 0.39% 0.37%

Machine
Activity

0.03% 0.03% 0.00% 0.00% 0.00% 0.01% 0.01% 0.02% 0.03% 0.03% 0.02%

Occupational
Activity

0.46% 0.39% 0.53% 0.30% 0.22% 0.57% 0.45% 0.52% 0.58% 0.83% 1.11%

Social
Behavior

0.72% 0.65% 0.19% 0.35% 0.18% 0.14% 0.36% 0.64% 0.81% 0.78% 0.67%

Total 4.61% 4.45% 3.19% 3.67% 2.45% 3.45% 3.19% 3.88% 4.78% 5.21% 5.37%
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UMLS semantic group: Anatomy

Scientific literature Encyclopedic Web portals Online discussion forums

UMLS
semantic
type

PubMed
MEDLINE

PubMed
Central

Drugs
.com

Mayo
Clinic

Medline-
Plus

RxList UpTo-
Date

Wikipedia
Health

eHealth-
Forum

Health-
Boards

patient
.co.uk

Anatomical
Structure

0.01% 0.01% 0.01% 0.01% 0.00% 0.01% 0.01% 0.01% 0.01% 0.01% 0.02%

Body
Location or
Region

0.25% 0.21% 0.41% 0.79% 0.39% 0.22% 0.37% 0.47% 1.23% 1.24% 1.49%

Body Part,
Organ,
or Organ
Component

1.37% 1.20% 1.32% 2.91% 1.96% 0.72% 1.74% 2.64% 2.68% 2.37% 2.19%

Body Space
or Junction

0.10% 0.27% 0.24% 0.32% 0.30% 0.17% 0.24% 0.50% 0.66% 0.45% 0.56%

Body
Substance

0.27% 0.22% 0.33% 0.32% 0.18% 0.37% 0.37% 0.27% 0.35% 0.21% 0.27%

Body System 0.09% 0.06% 0.27% 0.41% 0.30% 0.24% 0.16% 0.20% 0.11% 0.12% 0.09%

Cell 0.97% 1.37% 0.08% 0.17% 0.13% 0.13% 0.39% 0.52% 0.10% 0.06% 0.02%

Cell
Component

0.31% 0.53% 0.04% 0.02% 0.01% 0.06% 0.11% 0.29% 0.03% 0.03% 0.02%

Embryonic
Structure

0.06% 0.08% 0.04% 0.05% 0.03% 0.07% 0.08% 0.07% 0.03% 0.01% 0.00%

Fully Formed
Anatomical
Structure

0.00% 0.00% 0.01% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00%

Tissue 0.40% 0.38% 0.20% 0.47% 0.26% 0.16% 0.36% 0.53% 0.30% 0.25% 0.17%

Total 3.83% 4.33% 2.95% 5.47% 3.56% 2.17% 3.83% 5.50% 5.50% 4.75% 4.83%
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UMLS semantic group: Chemicals & Drugs

Scientific literature Encyclopedic Web portals Online discussion forums

UMLS
semantic
type

PubMed
MEDLINE

PubMed
Central

Drugs
.com

Mayo
Clinic

Medline-
Plus

RxList UpTo-
Date

Wikipedia
Health

eHealth-
Forum

Health-
Boards

patient
.co.uk

Amino Acid,
Peptide, or
Protein

2.40% 2.59% 1.02% 0.45% 0.90% 1.63% 1.37% 1.75% 0.54% 0.66% 0.56%

Antibiotic 0.12% 0.10% 0.67% 0.30% 0.71% 0.58% 0.29% 0.23% 0.21% 0.25% 0.32%

Biologically
Active
Substance

1.76% 1.95% 0.58% 0.24% 0.64% 0.78% 0.77% 1.39% 0.16% 0.26% 0.28%

Biomedical
or Dental
Material

0.29% 0.31% 1.75% 0.63% 0.84% 1.76% 0.39% 0.32% 0.52% 0.38% 0.66%

Carbohydrate 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Chemical 0.08% 0.07% 0.04% 0.05% 0.05% 0.04% 0.03% 0.09% 0.03% 0.03% 0.03%

Chemical
Viewed
Functionally

0.08% 0.07% 0.22% 0.09% 0.11% 0.14% 0.11% 0.10% 0.02% 0.03% 0.02%

Chemical
Viewed
Structurally

0.17% 0.14% 0.06% 0.04% 0.05% 0.08% 0.08% 0.13% 0.03% 0.03% 0.02%

Clinical
Drug

0.01% 0.01% 0.18% 0.03% 0.18% 0.19% 0.04% 0.01% 0.02% 0.02% 0.02%

Eicosanoid 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Element,
Ion, or
Isotope

0.33% 0.30% 0.22% 0.19% 0.35% 0.20% 0.26% 0.38% 0.09% 0.12% 0.10%

Enzyme 0.56% 0.55% 0.17% 0.04% 0.09% 0.30% 0.27% 0.41% 0.35% 0.35% 0.36%

Hazardous
or Poisonous
Substance

0.30% 0.24% 0.28% 0.35% 0.28% 0.25% 0.41% 0.43% 0.14% 0.15% 0.12%

Hormone 0.19% 0.14% 0.59% 0.32% 0.47% 0.85% 0.45% 0.35% 0.21% 0.24% 0.20%

Immunologic
Factor

0.59% 0.73% 0.43% 0.29% 0.32% 0.71% 0.63% 0.40% 0.09% 0.11% 0.06%

Indicator,
Reagent, or
Diagnostic
Aid

0.27% 0.43% 0.18% 0.16% 0.04% 0.18% 0.12% 0.18% 0.05% 0.05% 0.05%

Inorganic
Chemical

0.29% 0.25% 0.61% 0.34% 0.58% 0.49% 0.23% 0.29% 0.20% 0.20% 0.21%

Lipid 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Neuroreactive
Substance
or Biogenic
Amine

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

(continued on next page)
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Scientific literature Encyclopedic Web portals Online discussion forums

UMLS
semantic
type

PubMed
MEDLINE

PubMed
Central

Drugs
.com

Mayo
Clinic

Medline-
Plus

RxList UpTo-
Date

Wikipedia
Health

eHealth-
Forum

Health-
Boards

patient
.co.uk

Nucleic
Acid,
Nucleoside,
or
Nucleotide

0.50% 0.89% 0.17% 0.07% 0.17% 0.36% 0.17% 0.39% 0.02% 0.02% 0.15%

Organic
Chemical

2.14% 1.76% 8.09% 4.55% 8.97% 7.44% 3.18% 3.37% 1.62% 2.23% 2.52%

Organo-
phosphorus
Compound

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pharmacologic
Substance

2.54% 2.37% 12.46% 9.36% 13.43% 10.73% 5.13% 4.58% 1.80% 2.55% 2.87%

Receptor 0.24% 0.22% 0.03% 0.01% 0.01% 0.04% 0.09% 0.20% 0.01% 0.01% 0.01%

Steroid 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Vitamin 0.09% 0.07% 0.35% 0.14% 0.63% 0.13% 0.16% 0.16% 0.08% 0.11% 0.08%

Total 12.95% 13.19% 28.10% 17.65% 28.82% 26.88% 14.18% 15.16% 6.19% 7.80% 8.64%

UMLS semantic group: Concepts & Ideas

Scientific literature Encyclopedic Web portals Online discussion forums

UMLS
semantic
type

PubMed
MEDLINE

PubMed
Central

Drugs
.com

Mayo
Clinic

Medline-
Plus

RxList UpTo-
Date

Wikipedia
Health

eHealth-
Forum

Health-
Boards

patient
.co.uk

Classification 0.23% 0.22% 0.03% 0.02% 0.01% 0.06% 0.19% 0.19% 0.02% 0.02% 0.01%

Conceptual
Entity

1.01% 1.20% 1.47% 2.56% 3.35% 0.98% 0.84% 0.99% 1.05% 1.08% 1.18%

Functional
Concept

10.56% 10.63% 10.18% 11.21% 10.42% 9.26% 11.25% 10.44% 5.95% 6.38% 5.60%

Group
Attribute

0.03% 0.02% 0.00% 0.01% 0.01% 0.00% 0.01% 0.02% 0.00% 0.00% 0.00%

Idea or
Concept

4.06% 3.93% 2.25% 2.66% 2.24% 2.52% 3.68% 3.01% 2.98% 3.02% 2.94%

Intellectual
Product

3.46% 3.85% 2.78% 2.23% 2.88% 2.19% 2.28% 2.58% 4.05% 4.38% 4.04%

Language 0.02% 0.02% 0.00% 0.01% 0.13% 0.00% 0.01% 0.03% 0.01% 0.01% 0.01%

Qualitative
Concept

12.39% 11.75% 8.37% 10.17% 6.59% 9.01% 10.73% 10.37% 10.53% 10.68% 10.32%

Quantitative
Concept

7.13% 8.26% 5.71% 4.60% 2.80% 7.79% 8.22% 5.97% 5.70% 6.24% 5.64%

Regulation
or Law

0.05% 0.06% 0.03% 0.00% 0.01% 0.03% 0.05% 0.07% 0.02% 0.02% 0.01%

Spatial
Concept

3.46% 4.11% 1.47% 1.69% 1.55% 1.75% 2.77% 3.21% 3.62% 3.59% 3.21%

Temporal
Concept

3.30% 3.28% 3.72% 3.55% 2.71% 4.64% 4.52% 3.45% 10.15% 9.35% 10.60%

Total 45.70% 47.33% 36.01% 38.71% 32.70% 38.23% 44.55% 40.33% 44.08% 44.77% 43.56%
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UMLS semantic group: Devices

Scientific literature Encyclopedic Web portals Online discussion forums

UMLS
semantic
type

PubMed
MEDLINE

PubMed
Central

Drugs
.com

Mayo
Clinic

Medline-
Plus

RxList UpTo-
Date

Wikipedia
Health

eHealth-
Forum

Health-
Boards

patient
.co.uk

Drug
Delivery
Device

0.00% 0.00% 0.01% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00%

Medical
Device

0.59% 0.73% 0.56% 0.77% 0.64% 0.58% 0.64% 0.68% 0.82% 0.95% 0.70%

Research
Device

0.05% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00%

Total 0.64% 0.78% 0.57% 0.77% 0.64% 0.59% 0.64% 0.69% 0.82% 0.95% 0.70%

UMLS semantic group: Disorders

Scientific literature Encyclopedic Web portals Online discussion forums

UMLS
semantic
type

PubMed
MEDLINE

PubMed
Central

Drugs
.com

Mayo
Clinic

Medline-
Plus

RxList UpTo-
Date

Wikipedia
Health

eHealth-
Forum

Health-
Boards

patient
.co.uk

Acquired
Abnormality

0.04% 0.03% 0.02% 0.06% 0.03% 0.02% 0.07% 0.09% 0.05% 0.06% 0.06%

Anatomical
Abnormality

0.05% 0.03% 0.01% 0.06% 0.01% 0.02% 0.09% 0.10% 0.06% 0.05% 0.06%

Cell or
Molecular
Dysfunction

0.15% 0.19% 0.01% 0.00% 0.01% 0.02% 0.04% 0.07% 0.00% 0.00% 0.00%

Congenital
Abnormality

0.13% 0.13% 0.07% 0.23% 0.10% 0.08% 0.18% 0.37% 0.30% 0.33% 0.51%

Disease or
Syndrome

2.06% 1.35% 2.86% 3.25% 2.80% 3.14% 4.74% 4.12% 2.09% 2.30% 2.56%

Experimental
Model of
Disease

0.03% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Finding 2.49% 2.40% 4.07% 4.98% 4.17% 3.44% 4.10% 3.69% 5.71% 4.66% 4.57%

Injury or
Poisoning

0.37% 0.22% 0.31% 0.39% 0.39% 0.31% 0.50% 0.53% 0.34% 0.28% 0.25%

Mental or
Behavioral
Dysfunction

0.32% 0.18% 0.40% 0.54% 0.55% 0.45% 0.34% 0.91% 0.70% 0.69% 0.88%

Neoplastic
Process

0.87% 0.46% 0.27% 0.51% 0.56% 0.38% 0.82% 0.80% 0.32% 0.32% 0.25%

Pathologic
Function

0.59% 0.36% 0.94% 0.85% 0.68% 1.33% 1.43% 0.86% 0.50% 0.32% 0.37%

Sign or
Symptom

0.35% 0.26% 3.11% 4.61% 3.41% 1.80% 1.59% 1.40% 2.51% 2.14% 2.92%

Total 7.45% 5.62% 12.07% 15.48% 12.71% 10.99% 13.90% 12.94% 12.58% 11.15% 12.43%
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UMLS semantic group: Genes & Molecular Sequences

Scientific literature Encyclopedic Web portals Online discussion forums

UMLS
semantic
type

PubMed
MEDLINE

PubMed
Central

Drugs
.com

Mayo
Clinic

Medline-
Plus

RxList UpTo-
Date

Wikipedia
Health

eHealth-
Forum

Health-
Boards

patient
.co.uk

Amino Acid
Sequence

0.04% 0.17% 0.00% 0.00% 0.00% 0.00% 0.02% 0.06% 0.00% 0.00% 0.00%

Carbohydrate
Sequence

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Gene or
Genome

2.07% 3.15% 0.52% 0.40% 0.65% 0.39% 0.59% 1.17% 1.84% 1.89% 1.93%

Molecular
Sequence

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Nucleotide
Sequence

0.09% 0.20% 0.00% 0.00% 0.00% 0.00% 0.01% 0.04% 0.00% 0.00% 0.00%

Total 2.20% 3.52% 0.52% 0.40% 0.65% 0.39% 0.62% 1.27% 1.84% 1.89% 1.93%

UMLS semantic group: Geographic Areas

Scientific literature Encyclopedic Web portals Online discussion forums

UMLS
semantic
type

PubMed
MEDLINE

PubMed
Central

Drugs
.com

Mayo
Clinic

Medline-
Plus

RxList UpTo-
Date

Wikipedia
Health

eHealth-
Forum

Health-
Boards

patient
.co.uk

Geographic
Area

0.58% 0.59% 0.17% 0.10% 0.39% 0.14% 0.34% 1.07% 0.56% 0.50% 0.44%

Total 0.58% 0.59% 0.17% 0.10% 0.39% 0.14% 0.34% 1.07% 0.56% 0.50% 0.44%
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UMLS semantic group: Living Beings

Scientific literature Encyclopedic Web portals Online discussion forums

UMLS
semantic
type

PubMed
MEDLINE

PubMed
Central

Drugs
.com

Mayo
Clinic

Medline-
Plus

RxList UpTo-
Date

Wikipedia
Health

eHealth-
Forum

Health-
Boards

patient
.co.uk

Age Group 0.33% 0.20% 0.73% 0.89% 0.44% 0.51% 0.77% 0.44% 0.81% 0.40% 0.24%

Amphibian 0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00%

Animal 0.21% 0.69% 0.20% 0.28% 0.07% 0.26% 0.18% 0.37% 0.16% 0.16% 0.11%

Archaeon 0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Bacterium 0.25% 0.18% 0.14% 0.07% 0.11% 0.19% 0.16% 0.20% 0.04% 0.03% 0.03%

Bird 0.05% 0.04% 0.01% 0.01% 0.01% 0.00% 0.01% 0.05% 0.02% 0.03% 0.03%

Eukaryote 0.30% 0.30% 0.04% 0.09% 0.05% 0.02% 0.07% 0.29% 0.36% 0.32% 0.39%

Family
Group

0.18% 0.19% 0.06% 0.17% 0.08% 0.12% 0.15% 0.27% 1.02% 0.95% 0.74%

Fish 0.08% 0.05% 0.02% 0.01% 0.02% 0.02% 0.01% 0.03% 0.03% 0.03% 0.05%

Fungus 0.07% 0.06% 0.02% 0.01% 0.02% 0.02% 0.03% 0.05% 0.02% 0.02% 0.01%

Group 0.07% 0.06% 0.01% 0.01% 0.00% 0.01% 0.02% 0.06% 0.01% 0.01% 0.02%

Human 0.32% 0.32% 0.16% 0.02% 0.06% 0.31% 0.18% 0.38% 0.05% 0.03% 0.03%

Mammal 0.48% 0.51% 0.14% 0.02% 0.04% 0.36% 0.05% 0.28% 0.10% 0.08% 0.09%

Organism 0.16% 0.14% 0.04% 0.02% 0.01% 0.06% 0.07% 0.10% 0.01% 0.00% 0.00%

Patient or
Disabled
Group

1.11% 0.56% 1.09% 0.34% 0.15% 2.18% 2.09% 0.66% 0.12% 0.14% 0.39%

Plant 0.30% 0.28% 0.05% 0.06% 0.35% 0.03% 0.08% 0.29% 0.15% 0.15% 0.20%

Population
Group

0.92% 0.71% 0.66% 0.95% 1.16% 0.76% 0.73% 1.25% 1.58% 1.21% 0.93%

Professional
or
Occupational
Group

0.43% 0.43% 1.40% 1.35% 1.89% 0.44% 0.53% 0.67% 0.82% 0.94% 1.06%

Reptile 0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00%

Vertebrate 0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Virus 0.21% 0.21% 0.07% 0.08% 0.10% 0.10% 0.18% 0.22% 0.08% 0.06% 0.02%

Total 5.51% 4.97% 4.84% 4.38% 4.56% 5.39% 5.31% 5.63% 5.38% 4.56% 4.34%
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UMLS semantic group: Objects

Scientific literature Encyclopedic Web portals Online discussion forums

UMLS
semantic
type

PubMed
MEDLINE

PubMed
Central

Drugs
.com

Mayo
Clinic

Medline-
Plus

RxList UpTo-
Date

Wikipedia
Health

eHealth-
Forum

Health-
Boards

patient
.co.uk

Entity 0.08% 0.16% 0.29% 0.19% 0.32% 0.12% 0.07% 0.12% 0.65% 0.76% 0.56%

Food 0.45% 0.43% 0.46% 0.81% 0.94% 0.19% 0.35% 0.42% 0.73% 0.82% 0.86%

Manufactured
Object

1.24% 1.63% 0.99% 1.14% 1.32% 0.93% 0.91% 1.66% 1.95% 2.08% 1.94%

Physical
Object

0.06% 0.04% 0.05% 0.06% 0.07% 0.04% 0.09% 0.07% 0.02% 0.02% 0.02%

Substance 0.47% 0.47% 0.26% 0.23% 0.28% 0.18% 0.18% 0.28% 0.11% 0.11% 0.08%

Total 2.30% 2.73% 2.05% 2.43% 2.93% 1.46% 1.60% 2.55% 3.46% 3.79% 3.46%

UMLS semantic group: Occupations

Scientific literature Encyclopedic Web portals Online discussion forums

UMLS
semantic
type

PubMed
MEDLINE

PubMed
Central

Drugs
.com

Mayo
Clinic

Medline-
Plus

RxList UpTo-
Date

Wikipedia
Health

eHealth-
Forum

Health-
Boards

patient
.co.uk

Biomedical
Occupation
or Discipline

0.30% 0.19% 0.24% 0.05% 0.26% 0.27% 0.19% 0.32% 0.07% 0.07% 0.06%

Occupation
or Discipline

0.25% 0.23% 0.09% 0.11% 0.07% 0.07% 0.12% 0.23% 0.13% 0.13% 0.11%

Total 0.55% 0.42% 0.33% 0.16% 0.33% 0.34% 0.31% 0.55% 0.20% 0.20% 0.17%

UMLS semantic group: Organizations

Scientific literature Encyclopedic Web portals Online discussion forums

UMLS
semantic
type

PubMed
MEDLINE

PubMed
Central

Drugs
.com

Mayo
Clinic

Medline-
Plus

RxList UpTo-
Date

Wikipedia
Health

eHealth-
Forum

Health-
Boards

patient
.co.uk

Health Care
Related
Organization

0.20% 0.17% 0.50% 0.22% 0.49% 0.27% 0.23% 0.31% 0.17% 0.20% 0.33%

Organization 0.19% 0.24% 0.13% 0.04% 0.37% 0.08% 0.12% 0.40% 0.19% 0.17% 0.15%

Professional
Society

0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.01% 0.00% 0.00% 0.00%

Self-help or
Relief
Organization

0.01% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.01% 0.01% 0.01% 0.02%

Total 0.41% 0.41% 0.63% 0.28% 0.86% 0.35% 0.37% 0.73% 0.37% 0.38% 0.50%
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UMLS semantic group: Phenomena

Scientific literature Encyclopedic Web portals Online discussion forums

UMLS
semantic
type

PubMed
MEDLINE

PubMed
Central

Drugs
.com

Mayo
Clinic

Medline-
Plus

RxList UpTo-
Date

Wikipedia
Health

eHealth-
Forum

Health-
Boards

patient
.co.uk

Biologic
Function

0.09% 0.06% 0.03% 0.00% 0.01% 0.06% 0.05% 0.05% 0.01% 0.00% 0.00%

Environmental
Effect of
Humans

0.03% 0.01% 0.01% 0.02% 0.02% 0.01% 0.02% 0.02% 0.05% 0.04% 0.04%

Human-
caused
Phenomenon
or Process

0.09% 0.07% 0.12% 0.05% 0.05% 0.13% 0.05% 0.08% 0.03% 0.03% 0.02%

Laboratory
or Test
Result

0.07% 0.07% 0.05% 0.04% 0.03% 0.07% 0.10% 0.06% 0.03% 0.03% 0.02%

Natural
Phenomenon
or Process

0.68% 0.59% 0.43% 0.49% 0.38% 0.33% 0.38% 0.55% 0.50% 0.45% 0.42%

Phenomenon
or Process

0.46% 0.47% 0.22% 0.27% 0.15% 0.15% 0.32% 0.48% 0.42% 0.39% 0.30%

Total 1.42% 1.27% 0.86% 0.87% 0.64% 0.75% 0.92% 1.24% 1.04% 0.94% 0.80%

UMLS semantic group: Physiology

Scientific literature Encyclopedic Web portals Online discussion forums

UMLS
semantic
type

PubMed
MEDLINE

PubMed
Central

Drugs
.com

Mayo
Clinic

Medline-
Plus

RxList UpTo-
Date

Wikipedia
Health

eHealth-
Forum

Health-
Boards

patient
.co.uk

Cell
Function

0.48% 0.45% 0.05% 0.01% 0.02% 0.09% 0.12% 0.20% 0.01% 0.01% 0.00%

Clinical
Attribute

0.47% 0.34% 0.41% 0.55% 0.29% 0.56% 0.58% 0.28% 0.11% 0.10% 0.11%

Genetic
Function

0.47% 0.60% 0.02% 0.02% 0.01% 0.04% 0.14% 0.27% 0.01% 0.01% 0.01%

Mental
Process

1.65% 1.48% 1.10% 1.94% 1.55% 0.87% 1.05% 1.54% 5.89% 6.42% 6.13%

Molecular
Function

0.48% 0.47% 0.27% 0.33% 0.09% 0.27% 0.16% 0.24% 0.03% 0.06% 0.05%

Organ or
Tissue
Function

0.25% 0.16% 0.23% 0.21% 0.12% 0.26% 0.31% 0.29% 0.29% 0.20% 0.19%

Organism
Attribute

0.71% 0.61% 0.21% 0.23% 0.19% 0.37% 0.37% 0.39% 0.61% 0.58% 0.50%

Organism
Function

0.67% 0.54% 0.87% 1.35% 0.86% 0.92% 0.74% 0.84% 2.30% 1.38% 1.18%

Physiologic
Function

0.15% 0.13% 0.19% 0.22% 0.22% 0.23% 0.19% 0.21% 0.32% 0.41% 0.35%

Total 5.33% 4.78% 3.35% 4.86% 3.35% 3.61% 3.66% 4.26% 9.57% 9.17% 8.52%
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UMLS semantic group: Procedures

Scientific literature Encyclopedic Web portals Online discussion forums

UMLS
semantic
type

PubMed
MEDLINE

PubMed
Central

Drugs
.com

Mayo
Clinic

Medline-
Plus

RxList UpTo-
Date

Wikipedia
Health

eHealth-
Forum

Health-
Boards

patient
.co.uk

Diagnostic
Procedure

0.61% 0.35% 0.14% 0.47% 0.04% 0.17% 0.75% 0.39% 0.36% 0.36% 0.36%

Educational
Activity

0.09% 0.06% 0.01% 0.04% 0.01% 0.01% 0.04% 0.08% 0.05% 0.06% 0.04%

Health Care
Activity

1.27% 0.90% 1.89% 1.92% 3.57% 1.21% 1.37% 0.83% 1.76% 1.90% 2.25%

Laboratory
Procedure

1.36% 1.41% 0.55% 0.48% 0.26% 1.03% 0.96% 0.62% 0.37% 0.34% 0.35%

Molecular
Biology
Research
Technique

0.15% 0.22% 0.01% 0.00% 0.00% 0.02% 0.03% 0.03% 0.00% 0.00% 0.00%

Research
Activity

1.14% 1.10% 0.41% 0.09% 0.30% 0.94% 0.61% 0.40% 0.11% 0.12% 0.10%

Therapeutic
or Preventive
Procedure

1.91% 1.54% 1.33% 1.73% 1.23% 1.87% 2.84% 1.88% 1.02% 1.14% 1.15%

Total 6.53% 5.58% 4.34% 4.73% 5.41% 5.25% 6.60% 4.23% 3.67% 3.92% 4.25%
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Appendix D

List of ambiguous entity names and candidates for the political domain

Candidate names are spelled exactly as their corresponding Wikipedia page titles.

List of abbreviations:

Ambiguous entity name Candidates

ACP African, Caribbean and Pacific Group of States
ACP Magazines
Alliance for Climate Protection
American Communist Party
A Connecticut Party
Alliance for Climate Protection
American Communist Party
Armenian Communist Party
Panama Canal Authority

ADL Anti-Defamation League
Armenian Democratic Liberal Party

ADM Admiral
Archer Daniels Midland
Assyrian Democratic Movement

AFP Armed Forces of the Philippines
Argentine Federal Police
Australian Federal Police
Austrian Federal Police
Alliance of the Forces of Progress (Benin)
Alliance of the Forces of Progress (Senegal)
America First Party (disambiguation)
Americans for Prosperity
Australia First Party

ANC African National Congress
Armenian National Congress
Advisory Neighborhood Commission
Assemblea Nacional Catalana
ABS-CBN News Channel

ANZ Antarctica New Zealand
Australia and New Zealand Banking Group
ANZ Bank New Zealand
ANZ (Fiji)

AUS Army of the United States
Australia
Aus, Namibia

ACT Australian Capital Territory
Allied Command Transformation
ACT Alberta
ACT Alliance
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Ambiguous entity name Candidates

ACT New Zealand
America Coming Together
Alliance for Change and Transparency

BBC Banahaw Broadcasting Corporation
British Broadcasting Company
Bangkok Bank of Commerce
Biplobi Bangla Congress

CAC Corporate Affairs Commission, Nigeria
Canadian Aviation Corps
Campaign Against Censorship
Central Advisory Commission
Coalition against Communalism

CDU Cameroon Democratic Union
Christian Democratic Union (Germany)
Christian Democratic Union (Ukraine)
Croatian Democratic Union
Democratic Unitarian Coalition
United Christian Democrats
United Democratic Centre (El Salvador)

CHP Christian Heritage Party of Canada
Christian Heritage Party of British Columbia
Christian Heritage Party of New Zealand
Republican People’s Party (Turkey)

COE Center of excellence
NATO Centres of Excellence
Afghanistan-Pakistan Center of Excellence
Church of England
Council of Europe
United States Army Corps of Engineers

CPL Communist Party of Latvia
Communist Party of Lithuania
Corporal

CPP Cambodian People’s Party
Communist Party of Pakistan
Communist Party of the Philippines
Convention People’s Party
Patriotic Pan-African Convergence
Centre for Public Policy

DNC Delaware North Companies
Democratic National Committee
Democratic National Convention

DPA Deutsche Presse-Agentur
Democratic Party of Albanians
Democratic Progressive Alliance
Doctor of Public Administration
United Nations Department of Political Affairs
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Ambiguous entity name Candidates

DPP Danish People’s Party
Democratic Party of the Philippines
Democratic Progressive Party
Democratic Progressive Party (Malawi)
Democratic Progressive Party (Singapore)

ECB European Central Bank
European Chemicals Bureau
Equatorial Commercial Bank

GCC Gulf Cooperation Council
Garde côtière canadienne
Glasgow City Council
Global Climate Coalition

ICA ICA AB
Ica, Peru
Immigration and Checkpoints Authority
International Court of Arbitration
Islamic Consultative Assembly

IND India
Indianapolis

ITC ITC Entertainment
ITC Limited
International Trade Centre
Intertropical Convergence Zone
International Teledemocracy Centre
Independent Television Commission
Information and communications technology

MAS Monetary Authority of Singapore
Malaysia
Mouvement pour une Alternative Socialiste
Movement for Socialism (Argentina)
Movement toward Socialism (Bolivia)
Broad Social Movement
Movement toward Socialism (Venezuela)

NBC NBC
Norwegian Broadcasting Corporation
Namibian Broadcasting Corporation
Nation Broadcasting Corporation
National Bank of Canada
National Business Center
Naval Base Coronado

NPD National Democratic Party of Germany
New Democratic Party of Canada

NPR NPR
New Port Richey, Florida

NYC New York City
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Ambiguous entity name Candidates

Youth Development Administration
North York Centre

ODA Civic Democratic Alliance
Organization for Democratic Action

PFP Party of Freedom and Progress
People First Party (South Korea)
People First Party (Republic of China)
Peace and Freedom Party
Progressive Federal Party
Popular Front Party
Federal Preventive Police
Partnership for Peace

PGA Parliamentarians for Global Action
Peoples’ Global Action

PLA Palestinian Liberation Army
Party of Labour of Albania
People’s Liberation Army
People’s Liberation Army of Manipur
ProLife Alliance

PPI Italian People’s Party (1994)
Peace Party of India
Pirate Party (Iceland)
Pirate Parties International
Professionals Party of India

PTE Workers’ Party of Ecuador
Party of Labour of Spain
Private (rank)

ROK Republic of Korea
Republic of Kosovo
Rok River

SAIC Leidos
South African Indian Congress

SBS SBS Broadcasting Group
Special Broadcasting Service
Seoul Broadcasting System
Spanish Broadcasting System

List of organizations:

Ambiguous entity name Candidates

Blackberry BlackBerry (company)
BlackBerry
Blackberry Township, Itasca County, Minnesota
Blackberry Township, Kane County, Illinois
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Ambiguous entity name Candidates

Blackberry

Bosch Bosch, Netherlands
Bosch en Duin
Den Bosch
Villa Bosch
Robert Bosch GmbH

Broad Front Broad Front (Argentina)
Broad Front (Paraguay)
Broad Front (Uruguay)
Broad Front (Costa Rica)
Broad Left Front (Peru)
Broad Front for Democracy
Socialist Party – Broad Front of Ecuador

Bundesrat Federal Council (Austria)
Bundesrat of Germany
Federal Council (Switzerland)

Democratic Progressive Party Democratic Progressive Party (Argentina)
Democratic Progressive Party (Austria)
Democratic Progressive Party (Malawi)
Democratic Progressive Party (Singapore)
Democratic Progressive Party
Progressive Democratic Party (Tunisia)
Sammarinese Democratic Progressive Party

Democratic Rally Democratic Rally
Democratic Rally (France)
Democratic Rally (Senegal)
Central African Democratic Rally
Martinican Democratic Rally
Oceanian Democratic Rally

Dow Dow Jones Industrial Average
Dow, California
Dow, Kentucky

Front line Front Line Defenders
Frontline States
Front Line (political party)

Gallup Gallup (company)
Gallup International Association
Gallup, Kentucky
Gallup, New Mexico
Gallup, South Dakota
Alec Gallup
David Gallup
George Gallup
Gallup Glacier

House Lower house
House of Commons



147 Appendices

Ambiguous entity name Candidates

House of Representatives
United States House of Representatives
Upper house
House of Lords
House, New Mexico
House, North Carolina
Douglas House (Arkansas politician)

J. P. Morgan J. P. Morgan
J. P. Morgan, Jr.
JPMorgan Chase

Junta Military junta
Junta (Habsburg)

Millennium Millennium Development Goals
Millennium Kids
White House Millennium Council
Millennium Stadium
Millennium Summit

NATO headquarters NATO
Supreme Headquarters Allied Powers Europe
Allied Command Transformation

New Era New Era, Indiana
New Era, Michigan
New Era, Oregon
New Era Park, Sacramento, California
A New Era
New Era Party

Panther Panther, Daviess County, Kentucky
Black Panther Party
Gray Panthers
White Panther Party
Black Panthers (Israel)
Polynesian Panthers

Rouge Khmer Rouge
Rõuge
Rouge, Toronto
The Rouge
Baton Rouge, Louisiana

Rover Rover (marque)
Rover Company
Rover Group
MG Rover Group
Land Rover Group
Freight Rover
Land Rover

Schindler Schindler Group
Emilie Schindler
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Ambiguous entity name Candidates

Oskar Schindler

Shalom Silvan Shalom
Brit Tzedek v’Shalom
Brit Shalom (political organization)
Gush Shalom
Hevel Shalom
Neve Shalom

Shell Royal Dutch Shell
Shell Oil Company
Shell Canada
Shell Nigeria
Shell corporation
Shell, Ecuador
Shell, California
Shell, Wyoming

Thomas Cook Thomas Cook Group
Thomas Cook AG
Thomas Cook & Son
Thomas Cook Airlines Belgium
Thomas Cook Airlines
Thomas Cook Airlines Scandinavia
T. Cooke & Sons

Yoruba Yoruba people
Yoruba language
Yoruba culture
Yoruba religion

Young America Young America, Indiana
Young America, Wisconsin
Norwood Young America, Minnesota
Young America Township, Carver County, Minnesota
Young America Township, Edgar County, Illinois
Young America Lake
Young America movement
Young America’s Foundation
Young Americans for Freedom

List of persons:

Ambiguous entity name Candidates

Bains Bains, Haute-Loire
Bains (Mirpur)
Bains, Louisiana
Hardial Bains
Harry Bains
Navdeep Bains
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Ambiguous entity name Candidates

Bush George H. W. Bush
George W. Bush
Jeb Bush
Bush family
Bush, Cornwall
Bush, Saskatchewan
Bush Island (Nunavut)
Bush, Illinois
Bush, Louisiana

Calhoun Bootsie Calhoun
Charles Calhoun, Jr.
Calhoun, Georgia
Calhoun, Illinois
Calhoun, Kentucky
Calhoun, Missouri
Calhoun, South Carolina
Calhoun, Tennessee
Calhoun, West Virginia

Constance Konstanz
Lake Constance
Constance Bay, Ottawa
Constance, Minnesota
Constance (Portugal)
Mount Constance
Andrew Constance
Angela Constance
Ansley Constance

Faris Faris Glubb
Faris Odeh
Al-Faris
Faris
Faris Island

Gaillard Gaillard
Château-Gaillard, Ain
Château Gaillard
Gaillard Island
La Gaillarde
Brive-la-Gaillarde
Claude Gaillard
Geneviève Gaillard
Micha Gaillard

Gloria Gloria, Lafayette Parish, Louisiana
Gloria, Oriental Mindoro
Gloria Cultural Arena
Gloria Macapagal-Arroyo

Herzog Chaim Herzog
Aura Herzog
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Ambiguous entity name Candidates

Gustav Herzog
Isaac Herzog
Maurice Herzog
Roman Herzog
Herzog Mountains

Jeb Jeb Bardon
Jeb Bradley
Jeb Bush
Jeb Hensarling
Jeb Stuart Magruder
Jeb Spaulding

Jamieson Cathy Jamieson
Don Jamieson (politician)
Margaret Jamieson
Norma Jamieson
Stuart Jamieson

Karamanlis Caramania
Konstantinos Karamanlis
Kostas Karamanlis
Karamanlı, Burdur
Qaramanlı

Lance Bert Lance
Leonard Lance
Łańce

MacLeod Fort Macleod, Alberta
McLeod (Edmonton)
McLeod County, Minnesota
McLeod, North Dakota
Macleod, Victoria
McLeod Ganj
McLeod, Texas
Macleod (electoral district)
Macleod (provincial electoral district)
Lake Macleod

Michael Collins Michael Collins (Irish leader)
Michael Collins (Limerick politician)

Olli Egil Olli
Olli Rehn

Prentice Prentice, Wisconsin
Bridget Prentice
Christopher Prentice
Jim Prentice

Prince of Wales Prince of Wales
Prince of Wales, New Brunswick
Prince of Wales Strait
Cape Prince of Wales
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Ambiguous entity name Candidates

Prince of Wales Mountains
Prince of Wales Range

Ricardo Ricardo Hausmann
Ricardo Lagos
John Lewis Ricardo

Sana Sana’a
Sana, Haute-Garonne
Sana, Bhutan
Sana, Chalkidiki
Sana (river)
Saña, Peru

Skelton Skelton, Cumbria
Skelton, East Riding of Yorkshire
Skelton, North Yorkshire
Skelton-on-Ure
Skelton, York
Skelton-in-Cleveland
North Skelton
Skelton, Indiana
Ike Skelton

Soledad Soledad Alvear
Soledad, California
Soledad, Atlántico
Soledad Atzompa
Soledad de Doblado
La Soledad, Tamaulipas

Stockwell Stockwell
Stockwell, Indiana
Stockwell, South Australia
Chris Stockwell
Stockwell Day

Summers Summers, Arkansas
Summers, California
Summers, West Virginia
Summers County, West Virginia

Theodore Theodore, Alabama
Theodore, Australian Capital Territory
Theodore, Queensland
Theodore, Saskatchewan
Theodore Roosevelt

Yolanda Yolanda King
Typhoon Haiyan

List of geographical places:
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Ambiguous entity name Candidates

Anaconda Anaconda, Missouri
Anaconda, Montana
Anaconda, British Columbia
Anaconda Range

Ankara Ankara
Ankara Province
Ankara University
Ankara Central railway station
Ankara Castle
Ankara River
Greater Ankara

Bombay Bombay
Bombay State
Isle of Bombay
New Bombay
Bombay, New York
Bombay Beach, California

Cartagena Cartagena, Chile
Cartagena, Colombia
Cartagena Province
Cartagena del Chairá
Cartagena, Spain
Campo de Cartagena
Carthagena, Ohio
Carlos Mauricio Funes Cartagena
Nicolás Nogueras Cartagena

Delphi Delphi
Delphi, Indiana
Delphi, County Mayo

Estonia Estonia
Estonia, Abkhazia
Estonia, Altai Krai
Estonia Mine
Estonia (peak)

Fargo Fargo, North Dakota
Fargo, Arkansas
Fargo, California
Fargo, Georgia
Fargo, Oklahoma
Fargo, Wisconsin
Wells Fargo

Georgia Georgia (country)
Georgia (U.S. state)
Georgia, Indiana
Georgia, New Jersey
Georgia, Vermont
New Georgia
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Ambiguous entity name Candidates

South Georgia and the South Sandwich Islands
Strait of Georgia

Great Lakes Great Lakes
African Great Lakes
Great Lake (Britain)
Great Lake, Tasmania
Great Lakes region

Hampden Hampden, New Zealand
Hampden, Newfoundland and Labrador
Hampden, Quebec
Hampden Park
Hampden Park, Eastbourne
Hampden, Maine
Hampden, Baltimore
Hampden, Massachusetts
Hampden, North Dakota

Jaya Petaling Jaya
Putrajaya
Seberang Jaya
Puncak Jaya

Kremlin Kremlin
The Kremlin
Government of the Soviet Union
Government of Russia
Kremlin, Montana
Kremlin, Oklahoma
Kremlin, Virginia
Kremlin, Wisconsin

Missouri Missouri
Missouri River
Missouri City, Texas
Missouri Rhineland
Missouri Territory
Missouri bellwether

Niger Niger
Niger River
Niger State

Paisley Paisley
Paisley, Florida
Paisley, Oregon
Paisley Caves
Paisley, Ontario
Paisley, Edmonton
Paisley Islet
Paisley (UK Parliament constituency)
Ian Paisley
Ian Paisley, Jr.
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Ambiguous entity name Candidates

Palo Alto Palo Alto, California
East Palo Alto, California
Palo Alto County, Iowa
Palo Alto, Mississippi
Palo Alto, Pennsylvania
Palo Alto, Texas
Palo Alto, Aguascalientes

Potsdam Potsdam
Potsdam-Mittelmark
Potsdam (Papua New Guinea)
Potsdam, Eastern Cape
Potsdam (town), New York
Potsdam (village), New York
Potsdam, Ohio

RO Ro, Greece
Ro, Emilia–Romagna
Rø
Romania
Rondônia
Reserve Officers’ Training Corps

Saxony Saxony
Saxony (wine region)
Sachsen bei Ansbach

South of the Border England and Wales
Mexico
United States

Southland Dunbar–Southlands
Southland, New Zealand
Southland District
Southland Plains
Chicago Southland
Greater Los Angeles Area
Los Angeles metropolitan area
Southland, Texas

Stade Stade
Stade (district)
Stade (region)
Stade de France
Stade Louis II

Thames River Thames
Thames Estuary
Thames River (Ontario)
Thames River (Connecticut)
Waihou/Thames River
Thames, New Zealand

Zaire Zaire
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Ambiguous entity name Candidates

Zaire Province
Congo River

Zanzibar Zanzibar
Unguja
Zanzibar City
Zanzibar Archipelago
Zanzibar Protectorate
Zanzibar Sultanate
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