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Abstract

Spoken medical dialogue is a valuable source of information, and it forms a foundation
for diagnosis, prevention and therapeutic management. However, understanding even a
perfect transcript of spoken dialogue is challenging for humans because of the lack of
structure and the verbosity of dialogues. This work presents a first step towards automatic
analysis of spoken medical dialogue. The backbone of our approach is an abstraction of a
dialogue into a sequence of semantic categories. This abstraction uncovers structure in
informal, verbose conversation between a caregiver and a patient, thereby facilitating
automatic processing of dialogue content. Our method induces this structure based on a
range of linguistic and contextual features that are integrated in a supervised machine-
learning framework. Our model has a classification accuracy of 73%, compared to 33%
achieved by a majority baseline (p<0.01). We demonstrate the utility of this structural
abstraction by incorporating it into an automatic dialogue summarizer. Our evaluation
results indicate that automatically generated summaries exhibit high resemblance to
summaries written by humans and significantly outperform random selections (p<0.0001)
in precision and recall. In addition, task-based evaluation shows that physicians can
reasonably answer questions related to patient care by looking at the automatically-
generated summaries alone, in contrast to the physicians' performance when they were
given summaries from a naYve summarizer (p<0.05). This is a significant result because it
spares the physician from the need to wade through irrelevant material ample in dialogue
transcripts. This work demonstrates the feasibility of automatically structuring and
summarizing spoken medical dialogue.

Thesis Supervisor: William J. Long, PhD
Title: Principal Research Scientist
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1. Introduction

1.1 Motivation

Medical dialogue occurs in almost all types of patient-caregiver interaction, and forms a

foundation for diagnosis, prevention and therapeutic management. In fact, studies show

that up to 80%/o of diagnostic assessments are based solely on the patient-caregiver

interview.' Automatic processing of medical dialogue is desirable in multiple contexts -

from clinical and educational to financial and legal. Caregivers can use the results of this

processing for informed decision-making, researchers can benefit from large volumes of

patient-related data currently unavailable in medical records, and health care providers

can enhance communication with patients by understanding their concerns and needs. All

of these users share a common constraint: none of them wants to wade through a

recording or transcript of the entire interaction.

To illustrate the difficulty of accessing medical dialogue, consider two minutes of error-

free transcript of an interaction between a dialysis patient and a nurse (see Figure 1). This

excerpt exhibits an informal, verbose style of medical dialogue - interleaved false starts

(such as "The same, he's on the same one"), extraneous filler words (such as "ok"

or "oh") and non-lexical filled pauses (such as "rm"). This exposition also highlights the

striking lack of structure in the transcript: from reporting a patient's blood pressure

readings, the topic switches to how long the patient underwent dialysis that day, and then

switches again to a discussion about the patient's medications without any visible

delineation customary in written text. Therefore, a critical problem for processing

dialogue transcripts is to provide information about their internal structure.
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P: His blood pressure's still up.

N: How high is it?

P: When we went on, it was 182/88, that was sitting. And 168/83 standing

N: Ok

P: After I hook him up and everything, and I put him on, it was 167/85

N: Ok

P: When he came off tonight, I took the same reading. The first one I took, I took

minutes before he came off. And sitting, it was 216/96

N: Ok

P: When I took it again, it was 224/100.

N: Ok

P: So when he finally came off, I took the reading, the first one was 214/106

N: Mmm

P: And standing was 203/92. Last night, when he came off after the first one was

213/92 and the one sitting was 205/98, standing was 191/91.

N: Ok

P: I can give you last night's. It was high too. When he went on, it was pretty good,

when he came off, it was 211/96, the first one. And the second one was 222/100,

and 197/85.

N: Now what time did he come off today?

P: He went 6 hours, 5 o'clock to 11.

N: How does he feel?

16



P: He feels fine.

N: What medicine is he on now? What blood pressure medicine?

P: The same, he's on the same one, Corgard

N: ok, I have to talk to Dr. Lindsay tomorrow and see if he wants to put him on

something else.

P His weight, the other day was 63. But he came off at 61.5

N: What's his target weight?

P: 61.5

N: ok

N: When is he scheduled to see Dr. Lindsay

P: He's scheduled to see Dr. Lindsay this week, he comes to see Dr. Lindsay on the

26 th

N: Oh, not until the 2 6 th

P: He comes in on Monday for bloodwork

N: Ok, I'll talk to Dr. Lindsay tomorrow about his pressure. And he might need to

adjust his medication

P: That's about it

Figure 1: Transcribed segment of a phone dialogue
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1.2 Thesis Statement

In this thesis, we show that we can automatically acquire the structure of spoken medical

dialogue using techniques that have been developed for natural language processing for

written text. We also demonstrate that dialogue summarization is feasible using the

techniques we describe. Lastly, we design a framework to evaluate a medical dialogue

summarizer that can assess the usefulness of summaries in the medical setting and

effectively discriminate against baseline naive summaries.

18



1.3Thesis Contributions

This thesis presents the first attempt to analyze, structure and summarize dialogues in the

medical domain. Our method operates as part of a system that analyzes telephone

consultations between nurses and dialysis patients in the home hemodialysis program at

Lynchburg Nephrology, the largest such program in the United States.2 By identifying

the type of a turn - Clinical, Technical, Backchannel or Miscellaneous - we are able to

render the transcript into a structured format, amenable to automatic summarization.

Our emphasis on spoken discourse sets us apart from the efforts to interpret written

medical text. 4'5 This thesis has three main contributions:

Structure Induction We present a machine learning algorithm for classifying dialogue

turns with respect to their semantic type. The algorithm's input is a transcription of

spoken dialogue, where boundaries between speakers are identified, but the semantic type

of the dialogue turn is unknown. The algorithm's output is a label for each utterance,

identifying it as Clinical, Technical, Backchannel and Miscellaneous. Our algorithm

makes this prediction based on a shallow meaning representation encoded in lexical and

contextual features. We further improve the classification accuracy by augmenting the

input representation with background medical knowledge derived from two sources: (1)

Unified Medical Language System or UMLS,6 a manually crafted, large-scale domain

ontology, and (2) clusters of semantically related words automatically computed from a

19



large text corpus. Our best model has a classification accuracy of 73%, compared to 33%

achieved by the majority baseline.

Summarization We introduce a novel way to extract essential dialogue turns within

our domain of spoken medical dialogue using the discourse structure just described. Our

goal is to provide a caregiver with a succinct summary that preserves the content of a

medical dialogue, thereby reducing the need to leaf through a massive amount of

unstructured and verbose transcript. We construct such a summary by extracting

dialogue turns that are representative of key topics discussed by a caregiver and a patient.

The extraction algorithm relies on a variety of features to select summary sentences,

including utterance length, position within the dialogue and its semantic type.

Evaluation We describe a framework for evaluating a summarizer of medical

dialogues. Our first evaluation method follows an intrinsic methodology, commonly used

in the text summarization community. 7 We compare automatically-generated summaries

with a "gold standard" summary created by humans, assuming that a better automatic

summary exhibits high overlap with a "gold standard" summary. Our second evaluation

is task-based. Doctors were asked to use our summaries to answer questions concerning

various aspects of patient care, ranging from clinical assessment to scheduling issues.

Based on the evaluation results, we conclude that automatically generated summaries

capture essential pieces of information about patient-caregiver interaction that can be

utilized for improving quality of care.

20



1.4 Thesis Outline

The thesis is structured as follows. In Chapter 2, we present some related work on text

summarization and medical discourse. In Chapter 3, we present our data collection

technique. In Chapter 4, we describe how we performed structure induction using

unsupervised clustering. In Chapter 5, we describe a semantic taxonomy and show that it

can be reliably annotated by doctors. We present the basic design of our dialogue act

classifier: 8' 9 it predicts the semantic type of an utterance based on a shallow meaning

representation encoded as simple lexical and contextual features. We then show how to

enhance our machine learning algorithm with background knowledge. The experimental

evaluation, described in Section 5.3, confirms that adding semantic knowledge brings

some improvement to dialogue turn classification. In Chapter 6, we present the methods

that we used in creating summaries from a transcribed medical dialogue based on the

actual semantic category of each dialogue turn. In Chapter 7, we discuss the procedures

for obtaining "gold standard" human-created summaries and baseline summaries and

explain our evaluation methodology. We report the results of the intrinsic and the task-

based evaluation. Finally, we present our conclusion and future work in Chapter 8.
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2. Related Work

In this Chapter, we describe related work in structure induction for discourse and we

focus on medical discourse in particular. We will then discuss approaches to written text

summarization followed by a few related works on spoken dialogue summarization.

Finally, we will discuss current approaches to summarization evaluation. We will discuss

the knowledge sources that are pertinent to our thesis in Chapter 5, where we then

describe augmentation of our model with background knowledge.
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2.1 Discourse Structure and Dialogue Modeling

Discourse structure builds on first identifying appropriate discourse units for a given

domain and task. Based on a discourse unit such as a dialogue act, various models are

developed to identify the specific dialogue's structure. Dialogue act modeling is a

growing area of research in natural language processing. 10,11,12 Speech act theory 13,14

has been used as a basis for much of the current dialogue act identification schemes. We

will discuss the methods that have been used for dialogue modeling in the succeeding

section.

23



2.1.1 Discourse units

Discourse units have been described in various ways and referred to by various names. A

comprehensive discussion of discourse units and segments is abundant in the

Computational Linguistics literature. ,16,17,18, 1 9 The most commonly used discourse unit

is the dialogue act. A dialogue act represents the meaning of an utterance at the level of

illocutionary force. ll Based on speech act theory that dates back to 1962,1° Austin offered

an analysis of the concept of speech acts and distinguishes between three aspects:

Locutionary act, Illocutionary act and Perlocutionary act. The locutionary act deals with

saying something that makes sense in a certain language, including the act of producing

noises and conforming to a vocabulary and grammar. Illocutionary act includes the

illocutionary force that specifies the type of action performed while saying something

(e.g. question, answer, etc.), and the propositional content that specifies the action in

more detail. This aspect mirrors the speaker's intention behind an utterance.

Perlocutionary act reflects the effects provoked by an utterance in context (e.g. surprise,

persuasion). It also mirrors the listener's perception of the intentions of an utterance.

Dialogue acts traditionally focus on illocutionary acts, and specifically on the

illocutionary force. Speech acts, which by definition reflect underlying intentions or plans

by the speaker, have long been incorporated into plan-based approaches in dialogue.20 In

these approaches, a dialogue is defined as a plan, while the speech acts are the

components of a structured account of the dialogue.21
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The intentions of the dialogue acts become the basis for dialogue act tag sets or the

classification schemes that have been developed in Natural Language approaches to

dialogues. 12 13 22 There are close similarities between dialogue acts in dialogue act coding

schemes, such as the one described by Carletta,l9 and intention-based discourse segments,

as described in Discourse Structure Theory by Grosz and Sidner.16 Both approaches rely

on dialogue units that are based on intentions underlying linguistic behavior.

Various specific textual units have been used to represent a dialogue act. These

representations are primarily based on the ease of extracting text from various data

sources. Some examples of commonly used representations are as follows.

1. Sentences or clauses - Sentences are obvious units of text, especially when one

looks at written textual data (e.g. "My arm hurts."). Traditionally, each sentence

is regarded as having a subject, an object and a verb.

2. Dialogue Segments - Dialogue segments are sequences of words, utterances,

clauses or sentences that all pertain to one "topic". The notion of a topic was

defined by Brown and Yule as a way of describing the unifying principle which

makes one stretch of discourse about "something" and the next stretch about

"something else."23 We use dialogue segments in our preliminary analysis of

dialogue structure (see section 4.2).
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3. Dialogue Turns - A dialogue turn has been used extensively in the field of

Conversation Analysis and is defined as "a time during which a single participant

speaks, within a typical, orderly arrangement in which participants speak with

minimal overlap and gap between them."24 A dialogue turn may thus contain one

to many sentences. The dialogue turns, however, more distinctly reflects the

interaction between participants in a conversation. Obviously, dialogue turns are

only defined for spoken dialogue.

For various spoken language systems, dialogue turns have been utilized for

question answering tasks, as well as summarization tasks dealing with human-

human spoken dialogues.25 26 Turn-taking marks an explicit boundary in a

conversation when a speaker recognizes that the other speaker is done and he then

initiates his own turn. We therefore use dialogue turns as our basic dialogue

units.
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2.1.2 Dialogue Modeling

Dialogue act modeling is a central goal in dialogue analysis. This entails developing an

annotation scheme (corresponding to the dialogue act) and labeling each utterance in a

dialogue with a dialogue act. It forms the basis for computing a dialogue unit's meaning,

which is important for understanding a dialogue. Several researches have focused on

structuring dialogue using techniques ranging from Transformation-Based Learning to

Hidden Markov modeling. We will discuss several approaches and the relevant features

that they identified in this section. The first three methods we describe focus on local

features of a dialogue unit or the preceding unit (e.g. lexical features, duration). The next

two methods incorporate the sequential nature of dialogues and models sequences of

dialogue acts using machine learning techniques.

Maximum Entropy Classification

Dialogue act segmentation and classification was performed using audio recordings from

22the ICSI meeting corpus.2 2 Automatic segmentation techniques were used based on

acoustic features from the data. Subsequently, the dialogue acts were classified into five

broad domain-independent categories: statements, questions, backchannels, fillers and

disruptions. A maximum entropy classifier was used using the following external

features:

1. length of the dialogue unit (measured by the number of words in the unit)

2. first two words of the dialogue unit
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3. last two words of the dialogue unit

4. initial word of the following dialogue unit

Their model achieved a classification accuracy of 79.5%. They also used prosodic

features to augment the model. Clearly, the words of the dialogue and the length of the

dialogue unit are important features in identifying dialogue acts.

Transformation- Based Learning

Similar to the maximum entropy classifier described above, transformation-based

learning (TBL) labels units in the data using local features trained on a separate training

data set. TBL learns a sequence of rules from a tagged training corpus by finding rules

that will correctly label many of the units in the data. In order to prevent an infinite

number of rules that can be applied to the data, the range of patterns that the system can

consider is restricted to a set of rule templates, which are manually developed by humans.

This approach is similar to the method used for the Brill tagger, a part-of-speech tagger.2 7

TBL has been used for dialogue act tagging in the same domain as Verbmobil, 28 using the

following features in the dialogue unit:

1. cue phrases - These are manually selected sets of cue phrases that have been

identified in other domains (e.g. Finally, In summary). However, cue words are

less common in spoken dialogues and because these are usually determined

manually by inspecting text for cue words, they are not readily available for

spoken text.
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2. dialogue act cues - This is defined as word substrings that appear frequently in

dialogue for a particular training corpus.

3. entire utterance for a one, two or three word utterance

4. speaker information - This refers to the speaker identity.

5. punctuation marks

6. length of the utterance - This refers to the number of words in the utterance.

7. dialogue acts of the preceding utterances

8. dialogue acts of the following utterances

This approach was able to classify dialogue in the travel planning domain into 18

categories with an accuracy of 71.2%.

Feature Latent Semantic Analysis

Feature latent semantic analysis (FLSA) is an extension to Latent Semantic Analysis

(LSA) and has been used for dialogue act classification.2 9 The corpora used for this

method include the Spanish CallHome, MapTask and DIAG-NLP.3 0 '3 1'32 FLSA enables

the use of additional features, other than words, to be added into the typical LSA model.

In LSA, a dialogue unit is represented as a vector of all words in the dialogue, where the

meaning of the dialogue unit is a reflection of the meaning of all the words it contains.

Singular value decomposition is then performed to find the major associative patterns in

the data. After representing all dialogue units using words and some related features,

classification is performed for each new dialogue unit by comparing it to each vector in
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the training data. The tag of the vector with the highest similarity (using cosine measure)

to the new dialogue unit becomes its label. This method is similar to the one used for a

question-answering application developed by Bell Laboratories where calls are

represented as vectors of words.9 Calls are then classified into their corresponding

destinations; each destination within the call center is likewise represented as an n-

dimensional destination vector. Using cosine as a similarity measure between 2 vectors,

the destination for a call is determined. The features used in this method, in addition to

words, include:

1. previous dialogue act

2. initiative (refers to the person who is in control of the flow of conversation)

3. game (another set of labels, such as "information" or "directive" based on the

MapTask notion of a dialogue game)1 9

4. duration (length of the dialogue unit)

5. speaker identity

In this method, the feature they identified to be most predictive is the notion of "Game."

The problem, as they have identified, is that this feature is not readily available in real

time. In this study, it is not clear whether using the previous dialogue act was any help in

improving classification accuracy.

N-gram Language Modeling

Language modeling has been used for predicting dialogue acts given a sequence of

dialogue units. Verbmobil was initially developed as a translation system for travel
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planning.28 In addition to finite state transducers, it uses a knowledge-rich approach for

dialogue processing and summary generation. It has a rich hierarchy of dialogue acts

which at the roots are domain-independent and at the leaves are very domain-specific. It

performs dialogue act processing using a three-tiered approach: a planner, a finite state

machine and a statistical n-gram model.

The planner understands the thematic structure of the domain and a contextual model

allows backup strategies for the dialogue. The finite state machine describes the

sequences of dialogue acts that are admissible in their domain and checks whether

sequences of ongoing dialogue labels conform to these expectations. Finally, the

statistical n-gram model predicts the appropriate speech act for a dialogue unit using

unigrams, bigrams and trigrams that have been trained on dialogue annotated with the

corresponding dialogue acts. Deleted interpolation is used for smoothing. In this method,

we observe that the sequence of dialogue acts clearly play a role in dialogue act

classification.

Hidden Markov Modeling

One research study compared various machine learning techniques for automatically

computing dialogue acts from both transcribed and automatically recognized

conversational telephone speech. " Using a standard for discourse annotation, Discourse

Annotation and Markup System of Labeling (DAMSL),3 3 205000 dialogue acts from

11] 55 Switchboard conversations34 were labeled into 42 categories. The dialogue model
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is based on a Hidden Markov Model where individual dialogue acts correspond to

observations emanating from the dialogue states. The goal is maximizing the probability

of an utterance given all the observable features they selected. A dialogue grammar is

described to constrain the sequence of dialogue acts using dialogue act n-grams. It

determines the prior probability of utterance sequences. The features that were used in the

model include the following:

1. speaker information

2. word n-grams - n-grams use n consecutive words (instead ofjust one word) as an

additional feature in textual data representation with a reasonable bound on the

length. They have been used for language modeling and for automatic spelling

correction in the medical domain.3 5

3. prosodic features - These features were taken from the spoken dialogue data.

4. recognized words - These include words that were recognized by the automatic

speech recognizer. A separate analysis was conducted using recognized words

and manually transcribed words for dialogue act classification.

The model was highly successful and achieved a labeling accuracy of 71% on manual

transcripts of their data.
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2.1.3 Relevant Applications in Medicine

In the medical domain, discourse literature has been limited to theoretical study of

dialogue representation. Discourse literature has mainly focused on sequential speech

activities. In particular, discussions have focused on the rituals associated with

conversational talk - the type of speech is predetermined, the place of occurrence in

sequential talk is prescribed for a given topic, and phrasing is routinized. 36 Consider the

conversation between a caregiver and a patient about a patient's complaint shown in

Figure 2. Out of necessity, it is imperative that the caregiver seeks to find answers to

specific questions in what appears as an "interrogative" manner to clarify an illness,

which in this case is a cough. This is then followed by discussion about how the cough is

treated and managed. Thus, on the surface, the conversation appears ritualized and

appears to have a predictable sequence of utterances.

P: I am getting a yellow sputum.

N: You coughing that up?

P: Yes, sort of

N: Are you running a fever?

P: 98.8 and it's just right in my throat. I don't know if I'm getting a head cold or what

N: Your throat is still sore?

P: yeah

N: Is this like sinus drainage that you have? Or are you coughing this up?

P: Basically, coughing, it's not sinus. It started with a sore throat

N: let me leave a message with Dr. Smith and I'll see if he wants to put you on

something, ok? And I'll get back to you.

Figure 2: Dialogue between a patient and a caregiver
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Although ritual is less observed in more informal telephone conversations, we adopt the

notion that spoken medical dialogues are made up of sequential activities/segments or

composed of sequential topics.

Recurring types of information have been seen to occur in medical data, and specifically

in written medical documents. An example is the use of context models to represent

37medical publications.3 7 Typically, medical publications follow a strict format with an

introduction, literature review, methodology, results and discussion. A separate context

model is built for clinical research articles compared to case reports and review articles as

a basis for document representation. By manual context mark-up, the recurring semantic

themes in each type of publication are identified manually (e.g. relevant tests, study type,

relevant population) by human subjects. They are then used for manually labeling

several publications for further clinical to research use.

A method for identifying basic patterns that occur in a medical plan was developed for a

language generation system that briefs about a patient who has undergone coronary

bypass surgery. Using supervised training on manually annotated narrated events,

sequences of semantic tags are identified that occur frequently.38 This is similar to

motif/pattern detection in computational biology. Patterns are identified in a separate

training set when they occur above a pre-set threshold of frequency. After obtaining a

relatively large number of patterns, clustering is done to group together similar patterns

and to allow better visualization of the quality of the patterns that are detected.
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Our emphasis on spoken medical discourse sets us apart from the efforts to interpret

written medical text. 39 40 We attempt to structure spoken dialogue and leverage the

sequential nature of topics by using change in semantic type of a dialogue turn as a

marker for a corresponding switch in topic of conversation.
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2.1.4 Other Relevant Features

The major approaches in natural language processing rely on word and phrase

similarities. Term repetition has been known to be a strong indicator of topic structure

and lexical cohesion. In fact, word frequencies have been shown to produce successful

results for text segmentation, dialogue act classification, and summarization. 26' 28 We

look at other features that are potentially useful in our thesis.

Word Substitutions

Word substitutions are the use of more general words instead of the actual one used in the

data. These are used primarily to remove noise created by very specific numbers or

names or to relax the constraints in matching a word with similar words. Text-specific

attributes such as proper names, dates and numbers can be replaced by generic tags or

placeholders. 4 In this thesis, we will use a placeholder to automatically replace numbers

within the text. Another type of word substitution includes the use of word synonyms and

word stems to relax word matching constraints. We did not use word stems because upon

inspection of relevant features identified by the algorithm, words with similar stems did

not appear to be highly predictive features.

Location

Relative location of textual units in the data has been shown to be a useful predictor of

important units for summarization. In fact, lead sentences have been shown to produce
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understandable and coherent text summaries.4 2 This clearly indicates that, especially for

written text, substantial amounts of relevant information are given in the first sentence of

a paragraph. We will discuss in more detail how we use the relative location of a dialogue

turn for our summarization algorithm in section 6.1.

Term-weighting

In order to augment simple word matching and decrease the value of frequently occurring

words that are not very discriminatory, term-weighting such as TF*IDF has been used in

several studies - from spelling correction to sentence extraction.35 '43 The total frequency

(TF) of words in each block can be computed and adjusted according to the number of

blocks in the dialogue that the word appears in. The greater the number of blocks

containing a particular word, the lesser its weight. Since the number of blocks in which a

particular word appears in is commonly referred to document frequency (DF), we

inversely adjust the word's TF with its inverse document frequency (IDF). Each word can

therefore be represented with its TF*IDF score, calculated as:

TF(wo)rdi) -log(Total number of blocks/DF(wordi)).

Any unit of dialogue can therefore be arbitrarily determined and represented as a vector

of word frequencies or TF*IDF.

Using various appropriate features and discourse units, we can induce dialogue structure

to enhance our understanding of medical dialogues. The next section deals with text

summarization in general and dialogue summarization in particular.
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2.2 Text Summarization

A summary is a presentation of the substance of a body of material in a condensed form

or by reducing it to its main points.4 4 In recent years, a variety of summarization

algorithms have been developed for text,45 46 and are primarily applied for summarizing

newspaper articles.47 48 Identification of salient sentences and important content terms are

key contributions of summarization research to date. Our work builds on these

approaches in the design of a summarization algorithm for medical dialogues.

2.2.1 Summarization Goal

Independent of the approach to summarization, a summary has to accomplish specific

goals - informative versus indicative. We discuss each goal in the next two paragraphs.

Informative versus Indicative

Informative summaries are shorter versions of the original text that act as surrogates to

the original. They are meant to fully identify all relevant information in the original text

in a condensed form. Examples of these are news summaries especially from multi-

47,48,49document sources.47 48 49 Aone et al. uses LA Times and Washington Post and selected

key sentences to produce an informative summary which preserves as much information

as possible from the original text using TF*IDF (See section 2.1.4), durational and

positional features of sentences. Sentences are assigned scores based on weighted
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features and the highest scoring sentences are selected.4 9 Kupiec et al. performed

sentence extraction using scientific journal articles and created informative summaries by

training a classifier using the following features: fixed-phrase features (e.g. "Summary"),

paragraph features (e.g. first 10 paragraphs), thematic word features (e.g. most commonly

occurring words in the document), and uppercase word features. In this thesis, we will

focus on creating informative summaries so that we preserve the important and relevant

contents of a dialogue for use in medical tasks.

Indicative summaries generally point out the main ideas of a text. It is more commonly

used for information retrieval and text classification. The output is generally shorter and

is not comprehensive in content. This approach is similar to "query-driven" summaries

where the output is pre-determined by a user. In the latter, summaries are constrained by

the specific interest of a particular user as opposed to a generic topic that is most

important to the domain.

2.2.2 Summary Types

The output of a summarization system determines the approach that is taken in designing

a summarization system. The types of output - extracts versus abstracts are described in

this section.

Extracts versus Abstracts

Most approaches to text summarization involve extracting key sentences from the source

text to form a summary.2 5 43 These textual materials (whether sentences, phrases or

39



words) are called extracts. They are glued together in an appropriate manner to form

summaries.

Abstracts are often generated from some "deep understanding" of textual material and

requires detailed semantic analysis of the source text to enable generation of a shorter

summary. The words used may be entirely different from the ones present in the source.

Thus, in automatic abstractive summarization, a generation component is essential to

create a textual summary from the source data.

2.2.3 Summarization Methods

Approaches to summarization have typically been classified into three major categories:

(1) corpus-based approaches, which deal with textual features of the data, (2) discourse

structure approaches, which leverage the discourse structure of data and (3) knowledge-

rich approaches, which focus heavily on domain knowledge representation. We will

elaborate on these approaches below.

Corpus-Based Approaches

Linguistic representation relies on textual features that are readily available from the

corpus. Methods are typically based on domain independent machine-learning techniques

based on surface-level indicators.45 50 These features include location of sentences within

a text, cue phrases, sentence length, title words and term-based statistics such as TF*IDF
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(as described in section 2.1.4). Feature extraction and choosing the best combination of

features predict which sentences are typically extracted to form summaries.

Discourse Structure Approaches

The corpus-based approach gradually evolved into exploiting discourse structure that is

still predominantly based on linguistic features. Some summarization approaches focus

on lexically cohesive text segments that are based on lexical chains.5 This leverages

knowledge from huge lexical resources (e.g. WordNet) to determine semantic relatedness

of terms. Scores are computed for lexical chains and this determines extracts for a

summary. Other summarization methods based on discourse structure include using

rhetorical structure and topic segmentation. 52,53,54

Another distinct approach for summarizing dialogues is based on Rhetorical Structure

Theory, as described by Mann and Thompson.5 5 In this method, dialogue units or

segments are based on text structure and are thus domain independent. Segments are

then related to each other in a hierarchical fashion, each relationship between two

segments selected from a predefined set of relationships.56 An unsupervised approach to

recognizing certain types of discourse relations has been developed that was able to

distinguish relations between adjoining segments of text as "contrast", "cause-

explanation-evidence", "condition" and "elaboration".56 Based on the relationships and

the structure identified, which is typically a tree-based structure, a formula is derived for

ordering the units of text and choosing the highest scored textual units.
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Knowledge-Rich Approaches

Knowledge-rich representation has been used in limited domains for text

summarization.5758 Text is typically represented using substantial domain knowledge and

every word of an utterance has to be previously identified and encoded. In a research

study by Hahn and Reimer, they created a knowledge base for each paragraph in a given

text using terminologic logic. Terminologic logic is comprised of concepts and two types

of relations: (1) properties, which link concepts to specific strings, and (2) conceptual

relations, which denotes relations between two concepts. A text graph is built using

generalization operators applied to each paragraph (which is referred to as a topic

description after representing it in terminologic logic) by picking common elements and

creating a more general node, until no additional new node can be created.

Summarization occurs by leveraging the representation structures of the text. For

example, a really concise summary is extracted by choosing only the root nodes of the

text graph. Clearly, substantial domain knowledge has to be encoded in order to represent

every new data that has to be summarized.
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2.3 Dialogue Summarization

Spoken language summarization differs from written text summarization in several ways.

For example, uppercase words cannot be expected in automatic transcription of spoken

dialogues. Second, there are no keywords or titles (e.g. "Result", "Summary") to guide

the reader about the contents of a dialogue. Third, the informal nature of dialogue

typically does not contain fixed-phrases or cue phrases (e.g. "In summary"), as in text.

Fourth, dialogues lack the structure customary in written text - topics switch in content

without any visible delineation. Spoken language can further be distinguished by single-

speaker, written-to-be-spoken text and unscripted spoken dialogues. In spoken systems, a

whole range of phenomena have to be addressed, including interruptions and hesitations,

speech recognition errors and disfluencies. 30

In this thesis, we will focus on the structure of dialogue, without relying on acoustic or

speech related features by using manually transcribed spoken dialogue. In previous work,

prosodic features and acoustic confidence scores have been used in generating summaries

for spoken text.59 We will concentrate on linguistic and structural features for dialogue

summarization in the summarization systems we discuss below.

Approaches to Dialogue Summarization

Several summarization systems have been developed for very limited task-based

domains.28' 60 In particular, the MIMI and VERBMOBIL systems deal with travel
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planning and reservations. The MIMI system uses finite-state transducers that process

each utterance for words, basic phrases, complex phrases and domain patterns.60 It

recognizes the particular combination of subjects, objects and verbs necessary for

correctly filling templates for a given information task using a set of predefined rules. It

then ignores unknown input and merges redundant information. Summaries are generated

from the template, which in this domain contain the current state of travel reservation at a

particular point in the conversation.

Verbmobil was initially developed as a translation system for travel planning. 28 In

addition to finite state transducers, it uses a knowledge-rich approach for dialogue

processing and summary generation. It has a rich hierarchy of dialogue acts which at the

leaves are very domain-specific. Each dialogue utterance is classified into a dialogue act

using a language-modeling approach. It also identifies the propositional content of an

utterance using a cascade of rule-based finite state transducers. It then represents the

dialogue act and propositional content using a frame notation including several nested

objects and attributes that cover the travel-planning task. A template based approach to

summary generation is performed, which can be translated into multiple languages within

this limited domain.

Several other summarization systems have been developed for summarizing topics in

spoken human-human dialogues.29,33,61 Gurevych and Strube worked on Switchboard

34 . 61
data3 4 to create representative extracts from the dialogue using automatic segmentation.

Based on semantic similarity of a segment of text to individual utterances within the
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segment, relevant textual data are selected for summaries. Waibel, et al., also worked

with the Switchboard data using an implementation of an algorithm based on maximum

marginal relevance (MMR).6 2 Each dialogue turn is weighted using the most common

word (stem) that are highly weighted in a given segment while minimizing similarity

from previously ranked turns. One dialogue turn is selected at each iteration until a pre-

specified summary length is reached. Finally, Zechner used human-human dialogues

which considered speech-recognition issues such as speech recognition word-error rate

reduction, dysfluency detection and removal, and sentence boundary detection.6 3 They

then used a topic segmentation algorithm6 4 to detect different segments. Also using

MMR, they extracted sentences containing the most highly weighted terms while

sufficiently dissimilar from previously ranked sentences.
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2.4 Summary Evaluation Techniques

Automatic summary evaluation is a challenging task that is crucial for the continued

development of summarization systems. It is especially challenging because of the

following factors: (1) It requires an output (the summary) for which there is no single

correct answer, (2) Humans may need to judge the system's output, which is very

expensive, (3) Because of (2), information has to be presented to humans in a manner that

is sensitive to the user's needs, and (4) Summarization involves compression and the

compression rate may further complicate the evaluation.6 5 Methods for evaluating text

summarization can be broadly categorized into two categories: intrinsic evaluation and

extrinsic evaluation. 66' 67 We will discuss both approaches in this section.

Intrinsic Evaluation

Intrinsic evaluation techniques are designed to measure the coherence and

informativeness of summaries. Clearly, summaries which are extracts may have

readability and coherence issues especially if sentences are extracted out of context. In a

particular study, judges assessed the readability of a summary based on general

readability criteria, such as good spelling and grammar, a clear indication of the topic of

the source document, understandability, and acronyms being presented with expansions.68

Several summarization systems were evaluated using intrinsic methods by measuring

informativeness using precision and recall.4 5 46 The typical approach involves creating a
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"gold standard" or ideal summary, made by humans. The output of the summarizer is

then compared to this "gold standard" and the system's output is typically scored higher

if it contains greater overlap with the "gold standard." This approach also contains

several pitfalls that have been identified previously:67

1. There is no single correct summary.

2. The length of the summary influences the evaluation results.

In order to create a "gold standard" summary that is reproducible, summaries have been

created by multiple experts for the same text and agreement is measured between the

human summaries. The "gold standard" is usually selected using majority opinion.

Precision and recall are typically used to evaluate summarization systems' outputs

compared to the ideal summary. Another approach extends precision and recall by

considering alternate sentences which are chosen by some human summarizers but were

69
eliminated by majority vote.6 9 If this alternate sentence is chosen by a system, they are

assigned some weighted score for this sentence (instead of 0).

Different summary lengths influence evaluation results as well as human agreement in

selecting statements for a "gold standard." 6 7 Thus, it is important to restrict the length of

the summaries so that summary lengths are comparable when evaluating summarizers.
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Extrinsic Evaluation

Extrinsic or task-based evaluation follows a key recommendation by Jones and Galliers

for evaluating a natural language processing system - evaluations must be designed to

address issues relevant to the specific task domain of the system.66 Several methods have

been developed that address certain tasks:

1. Relevance assessment - A person may be presented with a document and a topic and

asked to determine how relevant the document is to the topic. Accuracy and time in

performing the task are measured and studied. This framework has been used in several

task-based evaluations. 67 70 '7 1

2. Reading comprehension - A person reads a full source or summary and then answers a

series of questions (e.g. multiple choice test). The goal is to get the greatest number of

correct answers. This framework has been used for various task-based evaluations as

well 7 2,7 3

Extrinsic evaluations have the advantage of being able to assess the summaries when

given a specific task. This is important for continued system development and provides a

practical feedback especially for the users of the summaries.

Our work builds on these approaches in the design of a summarization algorithm for

medical dialogues. However, our work differs in two significant directions:
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1. The essential component of our method is structural representation of dialogue

content, tailored to the medical domain. We show that this scheme can be reliably

annotated by physicians, effectively computed and integrated within a summarization

system.

2. We propose a novel task-based evaluation method that assesses usefulness of our

summaries in the medical setting. Research in text summarization has revealed that

designing a task-based evaluation is challenging; frequently a task does not

effectively discriminate between systems. In contrast, we show that our task-based

evaluation does not suffer from this drawback, and thus can be used to evaluate other

summarization systems for medical dialogues.
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3. Data

We first introduce our methods for data collection and describe basic characteristics of

the medical dialogue. We then describe some techniques for data representation and

clean-up.
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3.1 Data Collection

We collected our data from the Lynchburg Nephrology home hemodialysis program, the

2oldest and largest such program in the United States. All phone conversations between

nurses and 25 adult patients treated in the program from July to September of 2002 were

recorded using a telephone handset audio tap ("QuickTap", made by Harris, Sandwich,

ILI)74 and a recorder. The home hemodialysis nurses recorded the conversations whenever

a call was made and stopped the recorder when the conversation ended. All patients and

nurses whose questions and answers were recorded read and signed an informed consent

form approved by the MIT Committee on the Use of Humans as Experimental Subjects.

At the end of the study period, we received a total of six cassette tapes, consisting of 118

phone calls, containing 1,574 dialogue turns with 17, 384 words. The conversations were

manually transcribed, maintaining delineations between calls and speaker turns. The data

were then divided chronologically into training and testing sets.
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3.2 Data Representation

The transcribed spoken dialogues contained speaker delineations, and thus allows

convenient identification of dialogue turns. We use each dialogue turn as our basic

dialogue unit. We performed data scrubbing and stop word identification, as described

below. We then represent each unit as a vector of words, with corresponding word

counts.

3.2.1 Data Scrubbing

We removed all punctuations and extra white spaces in the transcribed text. After noting

a substantial number of numerals (e.g. 96, 125.5) in the text, we decided to use a

placeholder (a string "Integer") for each occurrence of a distinct real number in the text.

This not only reduces the number of words in the feature vector but also augments the

representation because of the semantic information. Finally, we removed all proper

names of persons in the text to protect the patients' and caregivers' privacy.

3.2.2 Stop Words Identification

Stop words are common words that frequently occur in the text and contain very little

additional information. Examples include "the", "a", and "and". We identified stop words

by identifying the 20 most common words in the entire dialogue and removed them from

the data. The stop words we selected are very similar to those published in the literature 75
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and are shown in Table I. In subsequent experiments, we did not see any improvement in

performance by removing stop words. Thus, we decided to keep them in all the final

models.

in that
your a
know is
be it
of to
at the
just ok
on and
I you
was are
Table I: 20 Most Common Words
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4. Naive Approaches to Structure Induction

We initially analyzed the first 25 dialogues that were recorded, containing 8,422 words. 7 6

Upon manual analysis of the dialogues, a total of 44 topics were identified. The topics,

however, appear to be limited to three broad categories: clinical, technical and

miscellaneous.7 6 In an effort to automatically identify these segments of dialogue that

contain the same topic, we performed unsupervised clustering on the data as described in

the next section. In addition, we describe segment-based supervised classification at the

end of this section.
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4.1 Clustering

Clustering algorithms partition a set of objects (in this case, dialogue turns) into

clusters.7 7 Ac cording to the type of structures produced, clusters can be divided into

hierarchical and non-hierarchical. Clustering has been referred to as "unsupervised

classification" because clusters are created from natural divisions in the data and require

no training or labeling.

In order to classify data into various clusters, a measure of similarity is necessary. A

standard measure of similarity that has been frequently used is the cosine. We first

represent the dialogue turns as a vector of word counts where a vector x j has n

ooo

dimensions, corresponding to the frequency of n words in the turn. Cosine is computed

between two vectors as follows:

n
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After computing pair-wise similarities between units of dialogue using cosine, we can use

a clustering algorithm to partition the dialogue into different topics.77 This assumes that

dialogue units with similar words have similar topics and thus are clustered together.
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4.1.1 Clustering Implementation

We used an agglomerative clustering algorithm to group dialogue turns. A threshold was

empirically set to cluster up to a cosine value of 0.5. Figure 3 shows the clustering

algorithm we used. The algorithm was implemented in Java.

Figure 3: Clustering algorithm

4.1.2 Clustering Results

Figure 4: Sample of an automatically generated cluster
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Given: set X = {xi, ... , xn} of dialogue turns
A similarity function, sim, where sim(xa, Xb) -> Real Number

Initialization phase (assigns each dialogue turn to a cluster):
fori := 1 ton
ci := {xi}
C := {Cl, ... , Cn}

Merge clusters:
j :=n+1
while C>1 and sim > 0.5

(Cnl , Cn2) := argmax [sim (cu , cv)], where cu E C and cv E C

Cj : Cnl U Cn2

C :C\{cnl ,Cn2} U {j}
j:=j+l

That's fine, between 8 8 30 that's fine.

That's a good idea you're putting blood flow up

That's fine thank you.

Good good, I want to let you know, I'll be going out of

town this weekend, on Sunday, I will not be dialyzing.

I'm fine.



The partial list of clusters generated by the clustering algorithm is shown in Appendix A.

Although the results were able to group together short dialogue turns containing one to

two words, it was not as useful for most of the dialogue turns. On manual inspection,

dialogue turns are grouped together that belong to various general topics. An example of

a cluster is shown in Figure 4. Moreover, similar dialogue turns that belong to the same

topic were assigned to various unrelated clusters, as shown in Figure 5.

Figure 5: Sample of clusters containing similar dialogue turns
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I wonder what time you could come tomorrow?

When do you want us over there?

What's your schedule Monday?

I couldn't get a doctor's appointment Tuesday evening.



4.2 Segment-based Classification

We decided to organize the dialogues manually into segments. We identified dialogue

segments as consecutive dialogue turns that all pertain to the same general topic. After

initially segmenting the dialogue manually into dialogue segments, we describe in the

next section the algorithm we use to automatically identify the topics of individual

dialogue segments in a separate test set.

4.2.1 Expert-derived features

The transcribed dialogues were divided into training and testing sets consisting of 71

segments each. Dialogues were divided manually into dialogue segments, which are

composed of consecutive dialogue turns containing the same topic. Segments were then

labeled manually according to the following four general headings: (1) Clinical if they

pertain to the patient's health, medications, laboratory tests (results) or any concerns

regarding the patient's health; (2) Technical if they relate to machine problems,

troubleshooting, electrical, plumbing, or any other issues that require technical support;

(3) Miscellaneous for all other topics, which are primarily related to scheduling issues

and family concerns; and (4) Backchannel for greetings and confirmatory responses.

These categories are described in more detail in section 5.1. A domain expert reviewed

the training data and manually chose words that appeared predictive for each of the four

categories.
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Algorithm Development:

During training, each word identified by the expert is assigned a score, corresponding to

the weighted count of instances it occurred in the training data for a particular category.

The model is therefore composed of four classes containing a weighted set of words,

derived from the training data. Examples of features selected for each class are shown in

Table II. When a new data segment is presented, each class computes the votes from its

list of pertinent words and the class with the highest vote wins. The algorithm is

implemented in Common Lisp.

Class Features

Clinical Integer (167), blood (25), weight (18), pulse (17),

pressure (16), low (15), feel (13), target (11), night

(10), mean (10), sitting (9), standing (8)

Technical machine (12), formaldehyde (6), water (6), pressure (6),

blood (6), flush (5), green (4), lights (4), syringe

(4), arterial (4), started (3)

Miscellaneous Integer (44), call (8), back (8), going (8), today (7),

week (6), night (5), tonight (5), tomorrow (5) , time

(5), Friday (4), morning (4), Saturday (4), Monday (4)

Backchannel bye (42), you (23), hello (23), ok (23), Hi (15), thank

(11), thanks (5), Good (4)

Table II: Expert-derived

algorithm

features (and scores in parentheses) used for the classification
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Incorporating Semantic Types:

To study the contribution of semantic knowledge in increasing the accuracy of predicting

relevant topics in our application, we used the UMLS Semantic Network. 6 For each

pertinent word that was identified by the expert, and for each word in the test set, we used

MetaMap to represent the word using its semantic type. For our third model, we did a

similar substitution using MetaMap for only the nouns in the same text because it

achieved better predictive accuracy in our preliminary studies. In the latter case, we used

Ratnaparkhi's tagger to identify the nouns in the data.79 We compared the predictive

accuracy of the three models.

The results of the three models in predicting each of the four categories are shown in

Table III. T-test was performed to compare the best UMLS model with the base model

and showed no significant difference.

Model Clinical Technical Backchannel Misc. Total

(n=25) (n= 19) (n=10) (n=17) (n=71)

words 80% 37% 100% 35% 61%

UMLS 76% 32% 90% 18% 52%

UMLS nouns 60% 47% 90% 53% 59%

Table III: Accuracy of the models using expert-derived features

The best model achieves an accuracy of 61%, which is better than what we would obtain

if we label each segment with the most frequent class (accuracy=35%). Nevertheless, this
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unexpectedly low result demonstrates the complexity of semantic annotation for medical

dialogues, and justifies the use of machine learning methods, which we will describe in

the next section.
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5. Structure Induction

We first introduce our annotation scheme followed by a description of the manual data

annotation process. Next, we present a basic classification model that uses a shallow

dialogue representation. Finally, we present a method for augmenting the basic model

with background knowledge.
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5.1. Semantic Taxonomy

Our annotation scheme was motivated by the nature of our application - analysis of

phone consultations between a nurse and a dialysis patient. It is defined by four semantic

types - Clinical, Technical, Backchannel and Miscellaneous. Examples of utterances in

each semantic type are shown in Table IV.

Table IV: Examples of dialogue for each semantic type

Dialogue turns are labeled Clinical if they pertain to the patient's health, medications,

laboratory tests (results) or any concerns or issue that the patient or nurse has regarding

the patient's health. These discussions become the basis from which a patient's diagnostic

and therapeutic plans are built. Dialogue turns are labeled Technical if they relate to

machine problems, troubleshooting, electrical, plumbing, or any other issues that require
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Clinical: Ok, how's the Vioxx helping your shoulder?

You see, his pressure is dropping during his treatments.

Technical: umm, I'm out of kidneys.

That's where you spike it; the second port is the one where you

draw from.

Miscellaneous: Martha wants me to remind you of your appointment

today at 8:30.

I'm just helping out 'til they get back from vacation.

Backchannel: Hello. How are you doing?

Yeah.



technical support. This category also includes problems with performing a procedure or

laboratory test because of the lack of materials, as well as a request for necessary

supplies. Utterances in the Technical category typically do not play a substantial role in

clinical decision-making, but are important for providing quality health care. We label as

Miscellaneous any other concerns primarily related to scheduling issues and family

concerns. Finally, the Backchannel category covers greetings and confirmatory

responses, and they carry little information value for health-care providers.
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5.2 Data Annotation

Two domain experts, specializing in Internal Medicine and Nephrology, independently

labeled each dialogue turn in the training and testing data sets with its semantic type.

Each annotator was provided with written instructions that define each category and was

given multiple examples (see Appendix B). The distribution of semantic types for each

set is shown in Table V.

Category Training (n=1281) Testing (n=293) Total (n=1574)

Clinical 33.4% 20.8% 31.1%

Technical 14.6% 18.1% 15.2%

Backchannel 27.2% 34.5% 28.5%

Miscellaneous 24.7% 26.6% 25.1%

Table V: Semantic Type Distribution in Training and Testing Data Set

5.2 1. Kappa agreement

To validate the reliability of the annotation scheme, we computed the percentage of

agreement between annotators. In addition, we accounted for chance agreement by using

the kappa coefficient.80 Percentage of agreement is defined as the number of dialogue

turns for which both physicians gave the same label, divided by the total number of

dialogue turns labeled. We computed the percentage of agreement to be 90%.
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Kappa, on the other hand, is a measure of agreement between two observers taking into

account agreement that could occur by chance (expected agreement), and is computed by:

Kappa Observedagreement - Expected agreeement
100% - Expected agreement

Agreement increases as kappa approaches 1.0, with complete agreement corresponding to

a kappa of 1.0. We computed the kappa to be 0.80, which is "substantial" agreement. 80

This kappa suggests that our dialogue can be reliably annotated using the scheme we

developed.
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5.3 Semantic-Type Classification

Our goal is to identify features of a dialogue turn that are indicative of its semantic type

and effectively combine them. We present a basic model for classification followed by

models augmented with background knowledge.

5.3.1 Basic Model

We discuss features selected for our basic model. This is followed by a presentation of

the supervised framework for learning their relative weights.

Feature selection: Our basic model relies on three features that can be easily extracted

from the transcript: words of a dialogue turn, its length and words of the previous turn.

Lexical Features Clearly, words of an utterance are highly predictive of its semantic

type. We expect that utterances in the Clinical category would contain words like

"pressure", "'pulse" and "pain", while utterances in the Technical category would

consist of words related to dialysis machinery, such as "catheter" and "port". To

capture colloquial expressions common in everyday speech, our model includes bigrams

(e.g. "I am") in addition to unigrams (e.g. "I").

Durational Features We hypothesize that the length of a dialogue turn helps to

discriminate certain semantic categories. For instance, utterances in the Backchannel
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category are typically shorter than Technical and Clinical utterances. The length is

computed by the number of words in a dialogue turn.

Contextual Features Adding the previous dialogue turn is also likely to help in

classification, since it adds important contextual information about the utterance. If a

dialogue is focused on a Clinical topic, succeeding turns frequently remain Clinical. For

example, the question "How are you doing?" might be a Backchannel if it occurs in the

beginning of a dialog whereas it would be considered Clinical if the previous statement is

"My blood pressure is really low."

Another contextual feature we added is the entire dialogue segment containing the

dialogue turn being classified. As we show in the previous paragraph, an utterance may

be classified more appropriately if the context of the utterance is known. Thus, the

question "How are you doing?" is more likely to be classified as clinical if it was

mentioned within a segment discussing the patient's clinical condition.

Feature weighting and combination: We learn the weights of the rules in the

supervised framework using Boostexter,81 a state-of-the-art boosting classifier. Each

object in the training set is represented as a vector of features and its corresponding

class. Boosting works by initially learning simple weighted rules, each one using a

feature to predict one of the labels with some weight. It then searches greedily for the

subset of features that predict a label with high accuracy. On the test data set, the label

with the highest weighted vote is the output of the algorithm.
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5.3.2 Data Augmentation with Background Knowledge

Our basic model relies on the shallow representation of dialogue turns, and thus lacks the

ability to generalize at the level of semantic concepts. In this section we describe methods

that bridge this gap by leveraging semantic knowledge from readily available data

sources. These methods identify the semantic category for each word, and use this

information to predict the semantic type of a dialogue turn. To show the advantages of

this approach, consider the following scenario: the test set consists of an utterance "i

have a headache" but the training set does not contain the word "headache." At the

same time, the word "pain" is present in the training set, and is found predictive of the

Clinical category. If the system knows that "headache" is a type of "pain", it will be

able to classify the test utterance into a correct category.
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Original:

Uhumm, what you can do is during the treatment a couple of times, take

your blood pressure and pulse and if it's high, like if it's gone up

into the 100s, give yourself 100 of saline.

UMLS Semantic Type:

Uhumm what you can do is during the T169 [FunctionalConcept] a T099

[Family Group] of T079 [Temporal Concept] take your T040 [Organism

Function] and T060 [Diagnostic Procedure] and if it's high like if it's

gone up into the Integer give yourself Integer of T121 [Pharmacologic

Substance] T197 [Inorganic Chemical].



Cluster Identifier:

1110111110110 111110100

1111011100000 111110100

1111010001001 1001 110

111110100 11110100110110

111110100 11110100110110

11001111111111 111100110

1111101110 11111101010

1111111111 11100111101101110

1111010111101101 11111101010

111101000 11001111101101 11010100101

111110100 11110100110111 110011100011

10111111 11011101101101 11110111001100

1110 11101110 111110100 11110100110110

1111010001000 1111001000110.

Table VI. Dialogue turn represented in its original form, augmented with UMLS semantic

type and cluster identifiers. Terms in square brackets are included for illustrative

purposes only.

We explored two orthogonal ways to add lexico-semantic knowledge into our system -

(1) Unified Medical Language System (UMLS), a manually-crafted, large-scale domain

ontology and (2) clusters of semantically-related words automatically computed from a

large text corpus.

5.3.2.1 UMLS Semantic Types

Our first approach builds on a large-scale human crafted resource, UMLS. The UMLS

Metathesaurus is the largest thesaurus in the biomedical domain.6 Among other things, it

provides a representation of biomedical concepts that are classified by semantic types,

with hierarchical relationships among certain concepts. The UMLS contains information

about over 1 million biomedical concepts and 4.3 million concept names from more than

100 controlled vocabularies and classifications (some in multiple languages) used in

patient records, administrative health data, bibliographic and full-text databases and
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expert systems. It includes vocabularies and coding systems designated as U.S. standards

6for the exchange of administrative and clinical data. This resource is widely used in

medical informatics, and has been shown to be beneficial in a variety of applications. 3,4,82

Several applications have been developed to map natural language terms into these

UMLS concepts. One particular project developed at the National Library of Medicine is

the MetaMap Program.78 This program maps natural language biomedical text to

concepts in the UMLS. Noun phrases are extracted, variants are generated, and mapping

to the set of UMLS concepts that covers the entire text is done using an exhaustive

algorithm. This algorithm assigns a score to the (set of) UMLS concepts with the best

match to a given amount of text (i.e. sentence) based on centrality (involvement of the

head), coverage, cohesiveness and variation.78 The output can be the UMLS concept(s) or

the corresponding semantic type(s).

Using UMLS for Data Augmentation

For our experiments, we used the 2003 version of UMLS which consists of 135 semantic

types. Each term that is listed in UMLS is substituted with its corresponding semantic

category. An example of such substitution is shown in the second row of Table VI. To

implement this approach, we first employ Ratnaparkhi's tagger79 to identify all the nouns

in the transcript. Then, using MetaMap, we extract the corresponding semantic type and

replace the noun with the corresponding semantic type from the UMLS.83 An utterance

with the UMLS substitutions is added to the feature space of the basic model.
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When we encounter a term that is not listed in UMLS, we do not perform any substitution

and the term is left" as is." A term can have multiple matches in UMLS, and we pick the

one with the highest MetaMap score. The UMLS semantic types can be combined using

predefined relationships to generate more types. This can leverage the multiple matches

that are sometimes encountered for a particular term. We chose to rely solely on single

semantic types and leave this task for future research.

5.3.2.2 Automatically Constructed Word Clusters

Our second approach derives background knowledge from clusters of semantically-

related words automatically computed from a large text corpus. An example of a cluster

is shown in Figure 6. Being automatically constructed, clusters are noisier than UMLS,

but at the same time have several potential advantages. Clustering provides an easy and

robust solution to the problem of coverage as we can always select a large and

stylistically appropriate corpus for cluster induction. This is especially important for our

application, since patients often use colloquial language and jargon, which may not be

covered by UMLS. In addition, similarity based clustering has been successfully used in

statistical natural language processing for such tasks as name entity recognition and

language modeling. 84 85

headaches cramps swelling

cramping fluids itching

radiation saline patience

pain

Figure 6: An Example of a Cluster (ll100011110)
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To construct word classes, we employ a clustering algorithm that groups together words

85
with similar distributional properties.l The algorithm takes as an input a corpus of

(unannotated) text, and outputs a hierarchy of words that reflects their semantic distance.

The key idea behind the algorithm is that words that appear in similar contexts have

similar semantic meaning. The algorithm computes mutual information between pairs of

words in a corpus, and iteratively constructs a word hierarchy using a binary tree. It

terminates when it has clustered all unique words into a pre-specified number of clusters

identified by the user. Once clustering is completed, each word has a binary identifier that

reflects the cluster where it belongs, and its position in the hierarchy. We use these

identifiers to represent the semantic class of a word. The third row of Table VI shows an

example of a dialogue turn where all the words are substituted with their corresponding

identifiers. We add cluster-based substitutions to the feature space of the basic model.

In our experiments, we applied clustering to a corpus in the domain of medical discourse

that covers topics related to dialysis. We downloaded the data from a discussion group

for dialysis patients available in the following url:

http:/,/health.-roups.vahoo.com/group/dialysis support. Our corpus contains more than

one million words corresponding to discussions within a ten month period. We inspected

word clusters that were generated for arbitrary numbers of cluster sizes. Partial results of

word clusters when the algorithm was terminated after achieving 1000, 1500, 2000 and

5000 clusters are shown in Appendix C. We empirically determined that the best

classification results are achieved for 2000 clusters.
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5.3.3 Results of Semantic Type Classification

Table VII displays the results of various configurations of our model on the 293 dialogue

turns of the test set, held out during the development time. The basic model, the UMLS

augmented model and the cluster based model are shown in bold. All the presented

models significantly outperform the 33.4% accuracy (p<0.01) of a baseline model in

which every turn is assigned to the most frequent class (Clinical). The best model

achieves an accuracy of 73%, and it combines lexical, durational and contextual features,

and is augmented with background information, obtained through statistical clustering.

Models Accuracy (n=1281)

Dialogue turn 69%

Dialogue turn with length 70%

Dialogue turn with previous turn 68%

Dialogue turn with corresponding dialogue segment 61%

Basic Model (Dialogue turn with length and previous turn) 70%

Basic Model + UMLS 71%

Basic Model + 2000 clusters 73%

Table VII: Accuracy of the models based on various feature combinations

The first four rows of Table VII show the contribution of different features of the basic

model. Words of the dialogue turn alone combined with both the length of the turn and

the words of the previous utterance achieve an accuracy of 70%. Adding the dialogue
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segment as an additional feature worsens the model's performance. We therefore decided

to omit this feature in succeeding models. Table VIII shows the most predictive features

for each category.

The last two rows in Table VII demonstrate that adding background knowledge improves

the performance of the model, although not significantly. The model based on statistical

clustering outperforms the basic model by 3%, compared to UMLS augmentation which

improves the performance by 1%. Even at the current level of performance (73%), we

are able to use this model's predicted semantic types to generate summaries that are

comparable to manual summaries created by physicians, as we will describe in the next

section.

Category Current Dialogue Turn Previous Dialogue Turn

Clinical weight, blood, low, feel, weight, take integer, you

pulse

Technical filter, box, leaking machine, a little

Backchannel thanks, ok, and, umm hi, make, sure, lab

Miscellaneous appointment, hold, phone can, o clock, what, time

Table VIII: Examples of predictive features

An interesting finding of this research is that background knowledge did not improve the

performance of the base model profoundly. We explain this finding by the markedly

different vocabulary used in written and spoken discourse and the significantly lesser

term coverage of consumer terms within UMLS.86 We examined this phenomenon further
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and found that MetaMap was only able to extract semantic types for 1503 of 2020

(74.3%) noun phrases that were identified in the data. Moreover, a significant fraction of

nouns are mapped to the wrong category. For instance, the word "kidneys" is labeled as a

"body part", while in our corpus "kidney" always refers to a dialyzer. This problem, in

particular, is difficult to address when one is building a huge generic vocabulary for the

entire medical domain. Clearly, vocabularies have to be tailored to appropriate users and

specialties of medicine, especially when choosing the correct meaning of a given term.

We encounter problems both with discrepancies in word usage and lay terminology that

are not present in UMLS. The discrepancies between word usage in spoken and written

language as well as differences in lay and expert terminology present a distinct problem

in using UMLS for processing spoken medical dialogue. A corpus-based acquisition of

semantic knowledge provides a promising solution for this problem.

5.3.4 Using a Sequential Model for Semantic Type Classification

We explored the potential contribution of the sequential nature of medical dialogue to

semantic type classification. First, we determined whether the distribution of the

semantic types of succeeding dialogue turns given the semantic type of the current

dialogue turn is uniform. Second, we used the label of the previous dialogue turn as a

feature in predicting a dialogue turn's semantic type to determine its possible utility.

Finally, we utilized a sequential classification model that would explicitly model the label

of the previous dialogue turn in predicting the succeeding one.
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5.3.4.1 Semantic Type Transition

We determine the distribution of semantic types following a current dialogue turn's

semantic type by counting the number of dialogue turns that belong to each semantic type

following each turn in our dialogue. Table IX shows the distribution of semantic type

transition from one dialogue turn to the next.

Current Dialogue Turn's Succeeding Dialogue Turn's Semantic Type

Semantic Type Clinical Technical Backchannel Miscellaneous

Clinical (488) 287 12 142 30

Technical (240) 9 130 77 16

Backchannel (449) 132 63 111 100

Miscellaneous (395) 27 11 101 236

Table IX: Semantic Type Transition from Current Dialogue Turn to the Next

We observe from Table IX that a technical dialogue turn is likely to be followed by

another technical turn. A technical turn is usually preceded by another technical turn as

well (60% of the time). The distribution is clearly not uniform except for backchannels,

where the preceding turn's semantic type is more uniformly distributed. Thus, we

anticipate that leveraging the sequential nature of dialogue would augment the

classification accuracy for the remaining three categories - clinical, technical and

miscellaneous. This is quite desirable because classifying turns into the backchannel

category is a relatively easier task.
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5.3.4.2 Utilizing the Previous Turn's Label

To determine whether the previous turn's semantic type would augment our classifier, we

added the actual semantic type of the immediately preceding dialogue turn in the current

dialogue turn's feature vector. We did the same using the two previous turns' semantic

types. For leading dialogue turns, which have no preceding turns, we added a label called

"none." The results are shown in Table X.

Semantic Types Added Classification Accuracy

One previous turn 75%

Two previous turns 77%

Table X: Classification Accuracy Using the Semantic Types of Previous Turns

As expected, we show that there is improvement in the model's accuracy when we added

the semantic types of the previous dialogue turns. However, when performing semantic

type classification on test data, we do not know the preceding turns' labels beforehand.

Thus, we hope to model the semantic type(s) of the preceding turn(s) with the rest of our

features, as we discuss in the next section.
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5.3.4.3 Conditional Random Fields

In this section, we present conditional random fields or CRF - a framework for building

probabilistic models for sequential data.8 7 In this framework, the relationship between

adjacent pairs of labels is modeled as a Markov random field, solely conditioned on the

observed inputs. We therefore model how adjacent labels influence each other through

the input features. For example, we model the conditional probability of a possible

semantic type sequence t = t, ... t given input data o = o , ..., o, and maximize the

probability p(t o). We used the MALLET implementation of CRF.8 8 Table XI shows

the results of using CRF to predict the semantic types of dialogue turns on our test data.

Order Accuracy

0 62%

0,1 56%

0,1, 2 53%

Table XI: Accuracy of CRF Model

In Table XI, we used various setting of MALLET to determine whether previous turns'

semantic types will positively affect our model. In this implementation of CRF, setting

the order to "" directs the classifier to create predictions without regard for the previous

dialogue turns' semantic type. Setting the order to "1" models the immediately preceding

dialogue turn's semantic type and setting the order to "2" models the two previous turns'

semantic types. We find that the classification accuracy actually decreases compared to
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our current models. Perhaps, the low accuracy exacerbates the model's poor performance

when taking into account the previous turns' semantic types.
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6. Summarization

In the next section, we describe our method for automatically summarizing our dialogues.

We create informative summaries using extraction of key dialogue turns based on the

induced semantic structure of the dialogues.
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6.1 Summarization Method

Our extraction method consists of three consecutive steps:

Step 1: Remove Backchannels - By definition, backchannels contain greetings and

acknowledgements that carry very little information value for health care providers.

Removing backchannels should not affect the quality of information that is essential in

summarization. Examples of backchannels are "Hello.", "Hi, is Martha there?",

"That's ok." and "Thank you." We remove all backchannels from the dialogues at

the beginning of the process. After this, each dialogue only contains dialogue turns from

the following three categories: Clinical, Technical and Miscellaneous.

Step 2: Dialogue Segmentation - Our manual corpus analysis revealed that a typical

dialogue in our domain contains more than one topic. 76 Therefore, a summary has to

include dialogue turns representative of each topic. We computed topics by segmenting a

dialogue into blocks of consecutive turns of the same segment type. An example of such

segmentation is shown in Figure 7.

Step 3: Dialogue Turn Extraction - Next, we extract key utterances from each segment.

Following a commonly used strategy in text summarization, we select the leading

utterance of each segment.89 We hypothesize that the initial utterance in a segment

introduces a new topic and is highly informative of the segment's content.
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This extraction strategy may be deficient for long segments since such segments may

discuss several topics of the same semantic type. For instance, a patient may discuss his

vital signs while doing dialysis and then proceed to talk about back pain. Thus, for

segments with more than two dialogue turns, we select the longest dialogue turn in

addition to the initial one. We hypothesize that introducing a new topic will contain a lot

of new infornmation and will therefore contain more words.

Figure 7 shows one run of the algorithm. The summarizer compresses a conversation of

14 into five key dialogue turns.

P: It's the machine, I couldn't turn it on

N: What's the matter?

P: The pressure, arterial pressure, I mean the

venous pressure, I couldn't even turn the pump on

N: Did you have the transducer hooked up? Your

monitor is on?

P: Yes ma'am, my blood won't flush, every time I try

to turn the pump on, its either I got a negative

pressure, arterial has a pressure now, and both of

my catheters, I have an arterial pressure of 220 and

a venous pressure of 180. I don't even have my pump

open.

N: You don't have any pumps open where? On your

catheter?

P: I have pressures a little bit there.

N: I can hear the warning. Does it flush ok?

P: Yeah

N: I will try switching the ports. Start the pump

83

Segmented

Dialogue

w --

Technical



and clamp off your lines and try switching the

ports. And then turn it on and see what happens

N: Can you come off and put your blood in

recirculation? I'll go ahead and call technical

support and see if they have any suggestions. I

can't think of anything else that can be causing it.

.........................................................................................................................................................................I............................................
N: How are you feeling?

P: I feel fine.

N: You feel better? Your target weight's ok?

P: My blood pressure was 147/79, when I sit it drops

to 139/73. My pulse is good, 80 and 84.

N: And how's your weight now

P: 129.2

N: Your blood pressure medicine, I'll have you

finish that.

P: I finished taking that on Friday

N: Oh, so you finished taking that Friday, and the

diarrhea and nausea, all that stopped.

...: Y u h ...........................................................................................................................................................................................

N: Ok, that's good. Go ahead and call technical

support and then just call me back and let me know

what they say, ok?

I.....................

Clinical

Miscellaneous............................................

Miscellaneous

P: It's the machine I couldn't turn it on

P: Yes ma'am, my blood won't flush, every time I try

to turn the pump on, its either I got a negative

pressure, arterial has a pressure now, and both of

my catheters, I have an arterial pressure of 220 and

a venous pressure of 180. I don't even have my pump
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open.

N: How are you feeling

P: My blood pressure was 147/79, when I sit it drops

to 139/73. My pulse is good, 80 and 84.

N: Ok, that's good. Go ahead and call technical

support and then just call me back and let me know

what they say, ok?

Clinical

Clinical

Miscellaneous

Figure 7: Segmented Dialogue and the Summarized Version (P: patient, N: nurse)
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6.2 Predicted Semantic Type vs. True Semantic Type

Our summarization takes as input a dialogue in which every turn is annotated with its

semantic type. An obvious way to obtain this information is to use an automatic

classification method described in Chapter 5 for generating semantic types for each

dialogue turn. We refer to these automatically generated labels as "predicted semantic

types." In our experiments, we also consider summaries that use "true semantic types,"

that is, types manually assigned by human experts to each dialogue turn. Analyzing the

performance of the model based on the "true semantic types" would allow us to measure

whether structural information helps. Comparing summaries based on "true semantic

types" with summaries based on "predicted semantic types" would reveal the impact of

classification accuracy on the quality of the produced summaries.

Note that there is one caveat in this comparison: summaries of the two types may have

different lengths for the same dialogue. This happens because our summarization method

captures changes in conversation topics by identifying switches in semantic types of the

dialogue turns. We found that summaries based on "true semantic types" contain 38% of

the original dialogues, compared to the summaries based on "predicted semantic types"

which contained 53% of the original dialogues. The discussion of our evaluation results

in the next section takes this discrepancy into account.

86



7. Evaluation

In this section, we detail our evaluation protocol. First, we describe two alternative

summaries that we use for comparison with our system - a gold standard summary and a

baseline naive summary. Second, we introduce two evaluation frameworks for testing our

automatically-generated summaries.
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7.1 The "Gold Standard" - Manual Dialogue Turn Extraction

We created a "gold standard" summary for evaluating our automatically extracted

dialogue turns. Two physicians were given instructions to select dialogue turns that cover

the most essential topics within each dialogue (see Appendix D for instructions). For each

dialogue, we restricted the number of turns that the human subject could select, from one

to a third of the dialogue's original size. This way, we obtain summaries for 80 dialogues.

Twenty summaries were summarized by two physicians while the remaining 60 were

summarized by a single physician.

Measure ofAgreement

We assess the degree of agreement between two humans by comparing selected dialogue

turns for 20 dialogues that both physicians summarized. First, we calculated their

percentage of agreement in manually selecting dialogue turns that best represent each

dialogue. Second, we calculated an odds ratio to further illustrate agreement. Percentage

of agreement is defined as the number of dialogue turns that both physicians included in

the summary, divided by the total number of dialogue turns in the summary. The actual

observed agreement is 81.8% between the two physicians. In addition, we computed the

kappa to be 0.50, which is "substantial" agreement. 80 Although kappa was not

impressive, we also computed the odds ratio, which shows the relative increase in the

odds of one subject making a given decision given that the other subject made the same

decision. The odds ratio is 10.8. It indicates that the odds of Subject 2 making a positive
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decision increases 10.8:1 for cases where Subject 1 makes a positive decision (p<0.0003 ,

log odds ratio) These two measurements indicate that dialogue turn extraction can be

reliably performed by humans in our domain.

89



7.2 Baseline Summary

The baseline summaries were produced by randomly selecting a third of the dialogue

turns within each dialogue, independently of their semantic types. Random baselines are

routinely used for comparison in the natural language domain.6 390 In a task-based

evaluation, random extraction methods commonly rival automatic methods since humans

can compensate for poor summary quality by their background knowledge. We chose not

to do a "lead summary" baseline because initial utterances in dialogues are typically

backchannels and are not very informative. We expect that this would perform worse

than a random baseline.

We therefore have the complete dialogue and four types of summaries for each dialogue:

the "gold standard", a randomly generated baseline, and two semantic type based

summaries. Appendix E shows a sample of all four summaries with the original complete

dialogue.
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7.3 Intrinsic vs. Extrinsic Evaluation Techniques

66,67Our evaluation is composed of two parts - intrinsic and extrinsic.66 67 In the intrinsic

part, we compare the automatically generated summaries to the "gold standard." The key

assumption is that automatically generated summaries that have higher overlap with the

"gold standard" are better summaries. In the extrinsic part, we do a task-based evaluation

and measure how useful the summaries are in preserving information important in the

medical setting.

Intrinsic Evaluation

To measure the degree of overlap between an automatically computed summary and the

"gold standard," we use precision and recall. Precision penalizes false positives chosen

by the system in question. It is similar to "positive predictive value" in the biomedical

literature and is expressed as:

#recision Documents Correctly Chosenprecision =
# Documents Chosen

Recall penalizes false negatives chosen by the system. It is similar to "sensitivity" in the

biomedical literature and is expressed as:

recall # Documents Correctly Recognized
Documents Should Have Been Recognized# Documents Should Have Been Re cognized
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To have a single measure of a system's performance, we also use the F-measure, defined

as a weighted combination of precision and recall. It is expressed as:

F-measure 2 * precision * recallF-measure -
precision + recall

Using these measures, we compare automatically generated summaries using "predicted

semantic types" and "true semantic types" with the "gold standard" and the random

baseline. We use 2-tailed Fisher's Exact test to determine statistical significance.

Extrinsic (Task-Based) Evaluation

Our goal in this section is to determine whether the summaries are sufficient to provide

caregivers with information that is important for patient care. We consulted with dialysis

physicians and nurses to create a list of key questions based on topics that commonly

arise between hemodialysis patients and caregivers.91 '92 (see Table XII) The questions

address relevant issues in clinical assessment, technical support and overall delivery of

quality patient care.

We distributed 360 dialogues, comprised of the complete version of 80 dialogues and

four "summaries" of these same dialogues: (1) the manually created summaries; (2) the

summaries based on randomly-extracted dialogue turns; (3) summaries based on the "true

semantic types" of the dialogue turns; and (4) summaries based on the "predicted

semantic types" of the dialogue turns. There were only 40 summaries based on the

"predicted semantic types" of the dialogue turns because the rest of the data was used for
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training. We had nine licensed physicians (who did not participate in the selection of

questions or in the manual summarization process) answer each of the six questions using

each of 40 dialogues. They received written instructions prior to performing their task

(see Appendix F). Each physician only saw one version of every dialogue. Based on self-

reporting, they completed the task of answering six questions for 40 dialogues in

approximately one hour. Based on the complete dialogue, 30% of the answers to these

questions are "yes" and 70% are "no." The characteristics of the complete data set are

provided in Table XIII below. We compare the number of questions that physicians

answered correctly using our summaries with answers based on the "gold standard" and

the random baseline. Sign test was used to measure statistical significance.

1. Did a clinical problem require urgent intervention?

2. Did the patient mention either his vital signs (blood pressure, pulse rate, temperature), his

weight, any symptoms, or his medications?

3. Was there a problem with the machine that required technical support?

4. Did the call require a follow-up (i.e. need to consult with another nurse, a physician, a

technician or a supplier and/or require further laboratory investigation outside of the current call)?

5. Did the patient need to make, verify, cancel or reschedule an appointment?

6. Did the patient need to be dialyzed in-center?

Table XII: Questions used in task based evaluation
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Number of dialogues 40

Average number of dialogue turns per dialogue 13

Number of"yes" answers to question 1 12 (0.30)

Number of"yes" answers to question 2 33 (0.41)

Number of"yes" answers to question 3 20 (0.25)

Number of"yes" answers to question 4 38 (0.48)

Number of"yes" answers to question 5 26 (0.32)

Number of "yes" answers to question 6 8 (0.10)

Total number of"yes" answers 143 (0.30)

Table XIII: Answer distribution across the six questions
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7.4 Evaluation Results

In this section, we report the results of the intrinsic and extrinsic evaluations of our

automatically-generated summaries.

A. Intrinsic Evaluation

The precision, recall and F-measure for the random baseline and the computer-generated

summaries are shown in Table XIV. The results indicate that machine-generated

summaries outperform random summaries by a wide margin. The results of a 2-tailed

Fisher's Exact test comparing various summaries are shown in Table XV. As expected,

recall was better for the summary that was generated using the predicted semantic types

compared to true semantic types because it contained more dialogue turns as we

mentioned earlier. It is more significant to note the effect on precision, which is less

influenced by the length of the summaries. Precision was significantly better for both

summaries compared to the random baseline and there was no difference between the

precision of the two summaries. These results clearly demonstrate the contribution of

structural infiormation to text summarization.
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Random Computer- Computer-generated using
generated using predicted semantic type
true semantic type

Precision 62/183 (33.88%) 107/199 (53.77%) 139/277 (50.18%)

Recall 62/177 (35.03%) 107/177 (60.45%) 139/177 (78.53%)

F-measure 34.45 56.91 61.23

# of dialogue turns 183/516 (35.47%) 199/516 (38.57%) 277/516 (53.68%)

Table XIV: Precision, Recall and F-measure for 40 Dialogues

Computer- Computer-generated Computer-generated using
generated using true using predicted predicted semantic type vs.
semantic type vs. semantic type vs. true semantic type
Random Random

Precision 1.38x10 -4 7.94x10 -4 0.4580

Recall 2.53x10 -6 1.03x10- 16 3.23x10 4

l l X I ·1 . 1 _ · . . _1 X 1- I A T-. - ' · : i I 1 1

lanle v: p-values using -talea

(p<O.05 is statistically significant)

risner s xact lest comparing precision and recall

B. Extrinsic Evaluation

The total correct responses, compared to the responses for the complete dialogue, are

shown in Table XVI below for the first three summaries. The computer-generated

summaries based on the true labels of the dialogue turns had higher scores across all

questions, compared to the random summaries. The "gold standard" summaries also

performed better than the randomly generated summaries, except for question 5 (Did the

patient need to make, verify, cancel or reschedule an appointment?).
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Q1 Q2 Q3 Q4 Q5 Q6 Total

Random 58 59 70 50 59 74 370

(72.5%) (73.8%) (87.5%) (62.5%) (73.8%) (92.5%) (77.1%)

Manual 66 70 71 53 50 74 384

(82.5%) (87.5%) (88.8%) (66.2%) (62.5%) (92.5%) (80.0%)

Computer- 68 67 73 54 68 76 406

generated using (85.0%) (83.8%) (91.2%) (67.5%) (85.0%) (95.0%) (84.6%)

true-label

Table XVI: Correct responses comparing three summaries

We report the results of physicians' answers to each of our six questions when given

various summaries, including ones based on predicted semantic types for 40 dialogues.

We assume that answers based on the complete dialogues are the correct ones. The

numbers of correct responses are shown in Table XVII for each summary type. The

summaries based on true semantic types outperformed all other summaries. Computer

generated summaries based on predicted semantic types performed comparably, allowing

physicians to correctly answer 81% of questions.
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Q1 Q2 Q3 Q4 Q5 Q6 Total

Random 27 28 33 26 29 38 181

(67.5%) (70.0%) (82.5%) (65.0%) (72.5%) (95.0%) (75.4%)

Manual 31 34 35 28 24 38 190

(77.5%) (85.0%) (87.5%) (70.0%) (60.0%) (95.0%) (79.2%)

Computer- 31 34 37 27 33 38 200

generated using (77.5%) (85.0%) (92.5%) (67.5%) (82.5%) (95.0%) (83.3%)

true-label

Computer- 29 32 38 28 29 39 195

generated using (72.5%) (80.0%) (95.0%) (70.0%) (72.5%) (97.5%) (81.2%)

predicted-label

Table XVII: Correct responses comparing four summaries

Statistical significance was measured using one-tailed Sign test as shown in Table XVIII.

This test is applicable for our evaluation: we want to measure the degree of improvement

our method has over the baseline. Sign test has been used in the speech recognition

domain to show systematic evidence of differences in a consistent direction, even if the

magnitudes of the differences are small.9 3 The automatically generated summaries

outperform random summaries on 5 questions, with a tie for the sixth. More importantly,

there is no significant difference between computer-generated summaries and manually-

generated summaries.
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Computer-generated using true

semantic type vs. Random

Computer-generated using predicted

semantic type vs. Random

Computer-generated using true

semantic type vs. Manual

Computer-generated using predicted

semantic type vs. Manual

Table XVIII: Comparison

statistically significant)

Sign Test (One-tailed, n=5)

p=0.031

p=0.031

NS (not significant)

NS (not significant)

of the accuracy of the summaries using Sign Test (p<0.05 is

The importance and complexity of the task require substantial participation from

physicians. lThese doctors are able to make intelligent presumptions even when given

simple randomrnly-generated summaries. In spite of this limitation, we still demonstrated

that physicians perform significantly better in answering very important questions related

to patient care when given our summaries compared to a simple baseline. More

significantly, we demonstrate that although not statistically significant, our summarizers

provided physicians with summaries that allowed them to answer pertinent questions

more accurately than when they were using manually generated summaries. The

physicians were only able to answer two questions more accurately using the manual
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summaries compared to the more conservative automatic summarizer, which relies on

predicted semantic types. These questions are as follows:

(1) Did a clinical problem require urgent intervention?

(2) Did the patient mention either his vital signs (blood pressure, pulse rate,

temperature), his weight, any symptoms, or his medications?

The rest of the time, the automatically generated summaries were better able to provide

sufficient information for the physicians to answer more accurately. Expectedly,

manually generated summaries created by physicians invariably focus more on issues

regarding clinical care. Thus, they may not have included as much information about

technical and scheduling concerns. When we used the "true semantic types" of the

dialogue turns in the automatic summarizer, the summaries actually allowed physicians to

answers more questions correctly than when they used the manual summaries (p=O. 10,

Sign test). Although not statistically significant, the automatic summarizer using "true

semantic types" provided summaries that allowed physicians to answer more questions

correctly for five of the six questions we provided.

The framework we developed for extrinsic evaluation emphasizes the importance of

selecting appropriate tasks for a summarization system while in the development phase.

The questions we identified are broad in coverage and were selected independent of the

summarization methods. This addresses our summarization goal - to create informative

summaries that capture as much information content as possible. We show that this

framework can be used in separating summaries generated using simple random

summarizers from automatically generated summaries using our methods.
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8. Conclusion and Future Work

This work presents a first step towards automatic analysis of spoken medical dialogue.

The backbone of our approach is an abstraction of a dialogue into a sequence of semantic

categories. This abstraction uncovers structure in informal, verbose conversation between

a caregiver and a patient, thereby facilitating automatic processing of dialogue content.

Our method induces this structure based on a range of linguistic and contextual features

that are integrated in a supervised machine-learning framework.

We develop mand evaluate semantic categories that are relevant to our specific domain.

Although the categories are broad in coverage, they capture major topics in segments of

our dialogues and are practical distinctions for identifying relevant topics for specific care

providers. The categories are sufficiently distinct and two physicians are able to perform

manual annotation with reasonable agreement, illustrating that the annotation scheme is

stable.

We demonstrate how we can improve the performance of our method for structure

induction by augmenting our data using two orthogonal sources of information - UMLS

semantic types and automatically-induced word clusters. We recognize the importance of

identifying words that are semantically related (e.g. headache and pain) or have similar

meanings within the domain (e.g. hurts and pains). We achieve modest improvement

when we incorporated these knowledge sources into our feature set.
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We demonstrate the utility of our structural abstraction by incorporating it into an

automatic dialogue summarizer. By eliminating backchannels, we are able to condense

the dialogues and remove unnecessary information. Using the rest of the semantic

categories, we are able to select dialogue turns that contain relevant information for our

summaries by leveraging the finding that a change in semantic category signals the

beginning of a new topic. Clearly, the first utterance when a new topic is discussed

contains important information for an informative summary.

Our evaluation results indicate that automatically generated summaries exhibit high

resemblance to summaries written by humans. More importantly, we show that the

summaries are potentially useful in a medical setting. We develop a framework for

evaluating our summaries based on a task that clinicians are expected to perform in

delivering quality health services. Our task-based evaluation shows that physicians can

accurately answer questions related to patient care by looking at the summaries alone,

without reading a full transcript of a dialogue. This is a significant result because it spares

the physician from the need to wade through irrelevant material ample in dialogue

transcripts.

Although we analyzed transcribed spoken dialogue in the home hemodialysis domain, the

methods for structure induction and summarization can potentially be applied to other

medical specialties. The semantic categories may need to be tailored for specific domains

and specific user goals. However, the techniques for acquiring and incorporating

additional knowledge sources are not limited to this domain. Furthermore, the evaluation
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framework that we used can be applied to evaluating summaries in other medical

specialties. The extrinsic evaluation, in particular, contains questions that are sufficiently

broad and applicable in other clinical areas. More importantly, the task is able to

distinguish our automatically-generated summaries from summaries created using

simpler methods.
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8.1 Future Work

In the future, this work can be extended in three main directions. I will discuss each of

these three approaches below:

1. Our method can be applied to automatically recognized conversations. The use of

automatic speech recognition is a logical next step in dialogue analysis. This will

allow a completely automated process from spoken conversations to summarization.

Clearly, automatic speech recognition will introduce mistakes in a transcript. In

addition, one needs to address sentence boundary detection, dysfluency repair and

speaker identification. At the same time, however, it will provide access to a wealth

of acoustic features that provide additional cues about dialogue content. For instance,

a pause may be a strong indicator of topic switch. Therefore, the use of acoustic

features can be used to compensate for recognition errors in the transcript.

2. The annotation scheme can be refined to include more semantic categories. We can

develop a hierarchical annotation scheme, which would contain more specific

categories within the same domain. Another approach would be to augment the

categories with more generic semantic labels (e.g. "greeting", "accept", "reject") and

use a hierarchy of dialogue acts which at the roots are domain-independent and at the

leaves are very domain-specific, similar to the approach taken for Verbmobil. 28 This

would support a deeper analysis of medical dialogue. To achieve this goal and to
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further enhance the accuracy of the present model we described, several approaches

can be taken.

a. Immediate improvement can possibly be gained from performing dialogue turn

segmentation. A dialogue turn can be segmented further into utterances (phrases

or sentences that constitute a speech act). While a dialogue turn can have multiple

utterances, an utterance may also contain multiple dialogue turns, especially when

a dialogue turn is comprised of a backchannel. Automatic segmentation of

dialogue is still a challenging problem.94

b. We observed modest improvement from using knowledge augmentation of our

base model with both automatically generated word clusters and UMLS semantic

types. Although this improvement was not significant, further improvements in

performance can probably be attained from fine-tuning either approach. For

generating word clusters, the best approach would be to find a conversational data

set that has similar content to the system being developed. If unlabelled

transcribed data for a similar domain can be obtained for word clustering, this

may improve the model's performance significantly. In addition, distributional

clustering algorithms are typically trained on corpora with 100 million words.85

Our corpus is two orders of magnitude smaller because so much data is difficult to

obtain in the dialysis domain. Once more data become available, word clustering

using this larger data set would be a logical next step.
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In addition to augmenting the word clustering approach, we also believe that

substantial improvement may be attained from augmenting UMLS with lay

terminology.86 More significantly, vocabularies have to be tailored for appropriate

users, tasks and specialties of medicine. In our case, we need vocabularies tailored

towards patients and ones that are applicable to dialogue in the hemodialysis

domain. We encountered substantial discrepancies in word usage, which are not

typically used in this sense in any other context (e.g. kidneys referring to

dialyzers). While significant research has been developed for word sense

disambiguation, this relies heavily on predefined meanings for specific words.

New meanings for terms and new domain-specific terms may have to be

identified and added to existing vocabularies to maximize their benefit. These

new terms will have to be added in a principled manner to existing vocabularies

(e.g. UMLS) so that they do not further complicate this already huge

metathesaurus. It is clear, however, that our methods for structure induction can

benefit from additional relevant knowledge resources.

c. More expressive statistical models may be used to capture the structure of medical

dialogue. Possible modeling methods include hidden Markov models and

conditional random fields.8 7 95 Although we did not see any improvement in our

models using the latter, it was clear that knowing the category of the immediately

preceding dialogue turn helps predict the next one. Furthermore, we see that

transition from one category to the next is not uniformly distributed. Perhaps
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augmenting the current classification accuracy of our model can boost the

performance of these sequential modeling techniques.

More innovatively, further research may be done on inducing the structure of a

model that would better represent medical dialogue, which may not turn out to be

simply a sequential chain of utterances, but may capture a more elaborate

structure such as a stack-based model.9 6 In a stack, one might represent dialogue

segments, which are composed of sequences of utterances focusing on a specific

topic. These segments may, in turn, contain sub-segments with more specific

subtopics that are still related to that of the current segment. Methods that would

explicitly represent these more complex structures in addition to local features for

dialogue act labeling might greatly enhance medical dialogue analysis.

3. Query-based summarization may be performed as opposed to generic

summarization.9 7 In our current implementation, the summaries are not tailored to

specific information needs of a care provider. By knowing what information is of

interest to different categories of care providers as well as patients, summaries may be

personalized towards their needs. Further research needs to be designed to understand

what specific goals are relevant in different medical domains and for different users

in an unobtrusive manner. If the primary goal for a specific care provider is to detect

and summarize scheduling utterances, for example, we can train our machine-learning

techniques with more utterances in the miscellaneous category. In addition, further
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elaboration of this broad category can be performed to create more specific semantic

types for scheduling appointments.

The methods described in the preceding paragraphs can be used to address either a deeper

or a more focused analysis of spoken medical dialogue.
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9. Appendices
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Appendix A: Partial Results of the Agglomerative Clustering Algorithm

765
hello

277
hello this

528
hello

268
hello

637
hello

537
hello this

549
hello this

231

hello
661
hello

527
hello
548
hello

483
hello

10
hello

481
hello

577

uhumm
353
uhumm

579

Bye
182
Bye

52
Bye
135
Bye

230

No 10 hours fine
212
No
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235
No didn't call anybody

65
No didn't

233
************************** ******** **

thanks
364
thanks
325

what weight
96
Pulse 92 Now what weight

292
** **** ************** ***** ****** ******** ******** **

can do today if that's
491
if doesn't give headache can do

632

Alright I'm off tomorrow night
125
I'm all off

108

Bubble up through
656
let bubble up through
655

Good
87
Good
18
Good

78
Good
56

** ****************** ****** ***** *** **** **** **

Right
721
Right take another one

388
Right

418
Right

31
Right
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1

Right
196
Right
138

let me look number
618
well let me call me tomorrow sometime let me what they are after have done rinse formaldehyde

222
Ok let me call him

273
well let me call then will have him call

262
said want me call let how do

552
let me look think real pause good

599
give me call let me how you're feeling then we'll decide then

449

want make sure What's his target weight
404
mmm he's not much over his target weight

413
67 over his target weight I'm sure

555

Thank feel today
264
Thank
180
Thank

228
Thank

240

So mean flush back forth
383
flush back forth get blood moving back forth through catheter

386
**** ******** ** **** ***** ** **** ***** ** ***** ***** *

Monday
141
what schedule Monday

572

aha
624
aha
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532
aha

510
aha

534
aha

470
aha

538
******** *** ************ ***** ******* **** **

right
564
right

420
You're right
754
right
553

yuh
601

yuh
718
yuh
593
yuh
403
yuh
724
yuh

609
yuh
730
1:00 yuh

545
******* ***** *** *** ***** ****** ** *** ******* **** **

Thanks lot
326
Thanks

8
Thanks for calling
132

Ok well I'll ask her I'll call back let
7

I'll ask coz I'm not sure honest with but I'll ask I'll call back let
5

******* ***** ****** ******* ** **************** **

will

340
will fine
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153
will fine
540
will

743

Yuh
728
Yuh he 200

566
Yuh

359
Yuh That's her problem

712
Yuh
194
Yuh

658
200
567

OK me too
227
OK
257

****** ********** ****** ****** ** **** **** * *

hi I'm

639
hi

551

calling back see laughs

hi I'm
766
hi this

638
hi

550
** ** ********* ** ***** ************ ****** **** **

Alright
45
Alright
131
Alright

47
Alright

55
Alright

21
Alright

238
Alright

29
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Appendix B: Request for Annotation

We provide here the instructions and examples for annotating dialogue turns within our dialogues.

B.t. Instructions

Dear Doctor,

I would like to request your participation in annotating a transcription of a telephone dialogue between dialysis nurses

and patients. This annotation will be used to help identify the most frequent reasons for calls to a dialysis unit by actual

patients. It will be used in conjunction with other methods in helping identify the topics that are pertinent to patients

who undergo home hemodialysis.

The dialog will be segmented by utterances or each person's turn in the actual dialogue. Each turn will be labeled as

belonging to one of several categories:

1. Clinical

2. Technical

3. Greetings and acknowledgements

4. Miscellanmeous

As implied by the category names, a clinical utterance is anything that pertains to a clinical topic, such as the patient's

health, medications, laboratory tests (results) or any concerns or issues the patient or nurse has regarding the patient's

health. Examples include:

1. You see, his pressure's dropping during his treatments.

2. Do you want me to do blood test?

A technical utterance relates to machine problems, troubleshooting, electrical, plumbing, or any other issues that

require technical support. This also includes problems with performing a procedure or laboratory test because of lack

of or defective materials, as well as a request for necessary supplies. Procedures for doing a laboratory test will also be

classified as technical. Examples include:

1. The machine is stuck

2. That's where you spike it, the second port is the one where you draw from.
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Greetings include "hellos" and "goodbyes" that are typically located at the beginning and end of a call.

Acknowledgements and confirmatory responses to questions include "aha", "ok", "alright", "yes", etc.

Examples of this category include:

1. Hello, is S there?

2. Thanks for calling.

Any other utterances can be classified as miscellaneous. These include (but are not exclusive to) scheduling (a clinical

or technical meeting or appointment), personal conversations, etc. Examples include:

1. I'll call you back

2. I'm just helping out till they get back from vacation

An utterance should be taken within the context of the conversation. (e.g. "I'm taking two" should be categorized

as clinical if the conversation is regarding how many tablets a patient is taking.) However, "ok", "yes" and other

acknowledgements should be categorized as confirmations.

Please indicate the categorizations by marking the clinical utterances with "C", the technical utterances with "T",

acknowledgements/greetings with "A" and miscellaneous utterances with "M". A sample annotation is given below.

An utterance can be categorized into more than one topic. If any utterance appears to belong to more than one topic,

please indicate both categories. For example,

1. "You know the meter on the machine, and I couldn't get it to come out so

I called technical support. He said someone will call him but nobody

called me." This can be technical because it concerns the machine or miscellaneous because it refers to

someone who needs to call. You can indicate "T" or "M" in this case.

2. "Ok, how many hours did you run M_". This can be clinical because knowing how long the

patient dialyzed impacts their health. It can also be technical if taken in context with the machine not working

anymore after this run. You can indicate "C" or "T" in this case.

This participation is voluntary and any specific data you provide will not be published or made available without your

consent.

Thank you.
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B.2. Sample of Annotated Dialogue

C Just changed it this morning, he said it's not sore. It's still got
the dressing on it, didn't take it out last night in case it drains
again.

C Have you looked at it this morning?

C It hasn't drained overnight. Just a little bit. It's not clear, it's
pussy looking

A Ok

C It's not red like it was last night.

C ok, let me Dr. M is on call for the weekend, let me give her a call.
See if he wants to put him on any antibiotics. You, know,
preventatively

A ok

M and I'll call you back

T, M You know the meter on the machine, and I couldn't get it to come
out so I called technical support. He said someone will call him but
nobody called me

C, T ok, how many hours did you run M_

C, T 3 and a half

C, T You ran 3 and a half?

A aha.

M ok, well nobody will be coming out here today anyway to do anything
about your machine

A aha

M At least, till tomorrow morning. And I will go ahead and call them to
see if we can get somebody to come out there tomorrow to do something

M It's the same thing.

M Oh you're kidding
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Appendix C: Samples of word clusters for various cluster sizes

C.1 Results using 1000 clusters

Below are samples of word clusters that were obtained when the clustering algorithm was

terminated upon reaching 1000 clusters.

00101001000
00101001000
00101001000
00101001000
00101001000
00101001000
00101001000
00101001000
00101001000
00101001000

00101001001
00101001001
00101001001
00101001001
00101001001
00101001001
00101001001
00101001001
00101001001
00101001001
00101001001
00101001001
00101001001
00101001001
00101001001

olives
meats
administrators
businesses
corporation
profits
eggs
corporations
techs
regulations

Remove
substitue
tecs
staffs
latter
beaches
churches
docs
Australian
employees
surgeons
physicians
docs
doctors
Doctors
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C.2 Results using 1500 clusters

Below are samples of word clusters that were obtained when the clustering algorithm was

terminated upon reaching 1500 clusters.

001111101101
001111101101
001111101101
001111101101
001111101101
001111101101
001111101101
001111101101
001111101101
001111101101

110001011001
110001011001
110001011001
110001011001
110001011001
110001011001
110001011001
110001011001
110001011001
110001011001
110001011001
110001011001
110001011001

Lawyers
Caregivers
Recirculation
Consumers
Attorneys
Others
Lord
officials
People
Doctors

parathormone
triglyceride
unexplained
testosterone
TSH
PRA
hematocrit
hgb
urea
hct
phos
hemoglobin
PTH
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C.3 Results using 2000 clusters

Below are samples of word clusters that were obtained when the clustering algorithm was

terminated upon reaching 2000 clusters.

10110100011011 mytral
10110100011011 aortic
10110100011011 newmitral
10110100011011 mytrial
10110100011011 Thyroid
10110100011011 mitral
10110100011011 thyroid
10110100011011 parathyroid
10110100011011 pth

101101000111001 Decrease
101101000111001 diff
101101000111001 creainine
101101000111001 phosphous
101101000111001 creatinine
101101000111001 creatnine

10110100101001
10110100101001
10110100101001
10110100101001

10110101110011110
10110101110011110
10110101110011110
10110101110011110
10110101110011110
10110101110011110

Opthamologist
Docs
obgyn
neph

Dietician
nefrologist
Nephro
Nephrologist
dr
doc
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C.4 Results using 5000 clusters

Below are samples of word clusters that were obtained when the clustering algorithm was

terminated upon reaching 5000 clusters.

111000100 staff

1110001010 doctors

11100010110 nurses

11100010111 techs

1110100111000

11101001110010
11101001110010

11101001110011

1110100111010

11101001110110

11101001110111

111010011110 doctor

1110100111110

11101001111110

111010011111110

111010011111111
111010011111111
111010011111111

doc

dr
abilities

Doc

surgeon

RN

Doctor

neph

nephrologist

dietician

hemos
Neph
heme
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Appendix D: Instructions given to physicians for manually selecting

dialogue turns

D.1 Instructions

Dear Doctor,

1. Please select dialogue turns from each phone call, which are most representative

of the entire dialogue and would give the reader an idea about the topics within

the conversation. In particular, please pick dialogue turns that are important to

the patient's health and dialysis management. Information about their relatives,

their homes, etc. is not relevant unless these impact the delivery of their care.

2. A dialogue turn starts with N: (for a nurse's turn) or P: (for a patient's turn).

3. You are allowed to pick at least one dialogue turn, up to a specified number of

turns that will best summarize the conversation, at your discretion.

4. Please highlight your choices with the highlighter provided.

5. See example below.

Thank you.
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D.2. Example of dialogue turn selection (underlined text)

Select up to 3 turns

N: ok
P: I was making cabbage rolls and a little bit of rice. And I have to
cook the rice and put it in there. And it's the regular long grain
rice. And I thought it would cook, you know, in the rolls.
N: Right
P: But it appears not to get done so the first half of the cabbage
rolls I ate was crunchy rice.
N: Oh, ok.
P: I ust wanted to ask if there's anything I should watch out for
because I know raw rice is not a good thing for you. (laughs)
N: I'll ask Dr. LAWSON ok, coz I'm not sure to be honest with you, but
I'll ask Dr. LAWSON. I'll call you back and let you know, ok?
P: Ok. I'm just concerned because people stop throwing rice at weddings
because birds would eat it. And they get stuck in their stomachs. Now
they probably don't have enough enzymes, but we can probably break down
rice and stuff but I just called to make sure.
N: Ok, well I'll ask her and I'll call you back and let you know, ok?
P: ok, Thanks.
N: Bye-bye.
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Appendix E: Complete dialogue with four summaries (P: patient, N:

nurse)

P: It's the machine, I couldn't turn it on

N: What's the matter?

P: The pressure, arterial pressure, I mean the venous

pressure, I couldn't even turn the pump on

N: Did you have the transducer hooked up? Your monitor is

on?

P: Yes ma'am, my blood won't flush, every time I try to

turn the pump on, its either I got a negative pressure,

arterial has a pressure now, and both of my catheters, I

have an arterial pressure of 220 and a venous pressure of

180. I don't even have my pump open.

N: You don't have any pumps open where? On your catheter?

P: I have pressures a little bit there.

N: I can hear the warning. Does it flush ok?

P: Yeah

N: I will try switching the ports. Start the pump and

clamp off your lines and try switching the ports. And then

turn it on and see what happens

P: ok

N: Can you come off and put your blood in recirculation?

I'll go ahead and call technical support and see if they

have any suggestions. I can't think of anything else that

can be causing it.

P: Mmm
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N: How are you feeling?

P: I feel fine.

N: You feel better? Your target weight's ok?

P: My blood pressure was 147/79, when I sit it drops to

139/73. My pulse is good, 80 and 84.

N: And how's your weight now

P: 129.2

N: Your blood pressure medicine, I'll have you finish

that.

P: I finished taking that on Friday

N: Oh, so you finished taking that Friday, and the

diarrhea and nausea, all that stopped.

P: Yuh

N: Ok, that's good. Go ahead and call technical support

and then just call me back and let me know what they say,

ok?

P: The pressure, arterial pressure, I mean the venous

pressure, I couldn't even turn the pump on

N: Did you have the transducer hooked up? Your monitor is

on?

P: Yes ma'am, my blood won't flush, every time I try to

turn the pump on, its either I got a negative pressure,

arterial has a pressure now, and both of my catheters, I

have an arterial pressure of 220 and a venous pressure of

180. I don't even have my pump open.

N: Can you come off and put your blood in recirculation?

I'll go ahead and call technical support and see if they

have any suggestions. I can't think of anything else that
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Random

"True

semantic

type"- based

can be causing it.

N: You feel better? Your target weight's ok?

P: My blood pressure was 147/79, when I sit it drops to

139/73. My pulse is good, 80 and 84.

N: Your blood pressure medicine, I'll have you finish

that.

N: Oh, so you finished taking that Friday, and the

diarrhea and nausea, all that stopped.

P: It's the machine, I couldn't turn it on

N: Did you have the transducer hooked up? Your monitor is

on?

P: Yes ma'am, my blood won't flush, every time I try to

turn the pump on, its either I got a negative pressure,

arterial has a pressure now, and both of my catheters, I

have an arterial pressure of 220 and a venous pressure of

180. I don't even have my pump open.

N: You don't have any pumps open where? On your catheter?

N: I can hear the warning. Does it flush ok?

P: I feel fine.

N: You feel better? Your target weight's ok?

N: And how's your weight now

P: It's the machine I couldn't turn it on

P: Yes ma'am, my blood won't flush, every time I try to

turn the pump on, its either I got a negative pressure,

arterial has a pressure now, and both of my catheters, I

have an arterial pressure of 220 and a venous pressure of

180. I don't even have my pump open.

N: How are you feeling
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"Predicted

semantic

type"- based

P: My blood pressure was 147/79, when I sit it drops to

139/73. My pulse is good, 80 and 84.

N: Ok, that's good. Go ahead and call technical support

and then just call me back and let me know what they say,

ok?

P: It's the machine, I couldn't turn it on

N: What's the matter?

P: The pressure, arterial pressure, I mean the venous

pressure, I couldn't even turn the pump on

N: Did you have the transducer hooked up? Your monitor is

on?

P: Yes ma'am, my blood won't flush, every time I try to

turn the pump on, its either I got a negative pressure,

arterial has a pressure now, and both of my catheters, I

have an arterial pressure of 220 and a venous pressure of

180. I don't even have my pump open.

N: How are you feeling?

P: My blood pressure was 147/79, when I sit it drops to

139/73. My pulse is good, 80 and 84.

N: ok, that's good. Go ahead and call technical support

and then just call me back and let me know what they say,

ok?
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Appendix F: Instructions given to evaluators

Dear Doctor,

Below are some dialogues between dialysis nurses and patients. After reading each

dialogue, please answer the 6 (yes/no) questions that follow. Some dialogues are

incomplete, so just answer the best you can. Thanks a lot for doing this amidst your busy

schedule.

Questions:
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1. Did a clinical problem require urgent intervention?

2. Did the patient mention either his vital signs (blood pressure, pulse rate, temperature),

his weight, any symptoms, or his medications?

3. Was there a problem with the machine that required technical support?

4. Did the call require a follow-up (i.e. need to consult with another nurse, a physician, a

technician or a supplier and/or require further laboratory investigation outside of the

current call)?

5. Did the patient need to make, verify, cancel or reschedule an appointment?

6. Did the patient need to be dialyzed in-center?



10. References

'Hampton JR, Harrison MJ, Mitchell JR, Prichard JS, Seymour C. Relative contributions
of history-taking, physical examination, and laboratory investigation to diagnosis and
management of medical outpatients. BMJ. 1975; 2(5969): 486-9.
2 Lockridge RS Jr. Daily dialysis and long-term outcomes-the Lynchburg Nephrology
NHHD experience. Nephrol News Issues. 1999; 13(12): 16, 19, 23-6.
3 McCray AT, Aronson AR, Browne AC, Rindflesch TC, Razi A, Srinivasan S. UMLS
knowledge for biomedical language processing. Bull Med Libr Assoc. 1993; 81(2): 184-
94.
4 Xu H, Anderson K, Grann VR, Friedman C. Facilitating cancer research using natural
language processing of pathology reports. Medinfo. 2004: 565-72.
5 Hsieh Y, Hardardottir GA, Brennan PF. Linguistic analysis: Terms and phrases used by
patients in e-mail messages to nurses. Medinfo. 2004: 511-5.
6 McCray A. Miller R. Making the Conceptual Connections: The UMLS after a Decade
of Research and Development. J Am Med Inform Assoc. 1998 Jan-Feb; 5(1):129-30.
7Document Understanding Workshop. HLT/NAACL Annual Meeting. Boston, MA.
May, 2004. In: http://duc.nist.gov/. Accessed on: June 16, 2005.
8 Gorin A. Processing of semantic information in fluently spoken language. Proceeding of
Intl. Conf. on Spoken Language Processing (ICSLP). 1996; 2: 1001-1004.
9 Chu-Carroll J, B Carpenter. Vector-based natural language call routing. Computational
Linguistics. 1999; 25(3): 361-388.
10 Reithinger N, Maier E. Utilizing statistical dialogue act processing in Verbmobil.
Proceedings of the 33rd annual meeting on Association for Computational Linguistics,
Cambridge, MA. 1995:116-121.
1 Stolcke A, Coccaro N, Bates R, Taylor P, Ess-Dykema C, Ries K, Shriberg E, Jurafsky
D, Martin R, Meteer M. Dialogue act modeling for automatic tagging and recognition of
conversational speech. Computational Linguistics. 2000; 26(3): 339-373.
12 Samuel K, Carberry S, Vijay-Shanker K. Dialogue act tagging with transformation-
based learning. Proceedings of COLING/ACL. 1998: 1150-1156.
13 Austin, J. L. How to do Things with Words. Clarendon Press, Oxford. 1962.

14 Searle, J. R. Speech Acts. An Essay in the Philosophy of Language. University Press,
Cambridge. 1969.
1 Hobbs J. On the coherence and structure of discourse. CSLI Technical Report 85-37.
Stanford, CA. 1985.
16 Grosz B, Sidner C. Attention, intentions and the structure of discourse. Computational
Linguistics. 1986; 12(3): 175-204.
17 Polanyi L. ,A formal model of the structure of discourse. Journal of Pragmatics. 1988;
12: 601-638.
18 Mann W, Thompson S. Rhetorical structure theory: Toward a functional theory of text

organization. Text. 1988; 8(3): 243-281.
19 Carletta J, Isard A, Isard S, Kowtko J, Doherty-Sneddon G, Anderson A. The reliability
of a dialogue structure coding scheme. Computational Linguistics. 1997; 23: 13-31.

129



20 Cohen PR, Perrault CR. Elements of a plan-based theory of speech acts. Cognitive
Science. 1979: 3; 177-212.
21 Traum D. Speech acts for dialogue agents. In: Wooldride and Rao (eds.). Foundations

of Rational Agency. Kluwer. 1999.
22 Ang J. Liu Y. Shriberg E. Automatic dialogue act segmentation and classification in

multiparty meetings. Proc. ICASSP, Philadelphia. 2005.
23 Brown G, Yule G. Discourse Analysis, Cambridge University Press. 1983.

24 Levinson, SC. Pragmatics. Cambridge, England: Cambridge University. 1983.
25 Waibel A. Bett M, Finke M. Meeting browser: Tracking and summarizing meetings.
Proceedings of the DARPA Broadcast News Workshop. 1998.
26 Gorin A, B Parker, R Sachs and J Wilpon. How may I help you? Proc. of IVTTA,

1996: 57-61.
27 Brill E. Transformation-based error driven learning and natural language processing: A
case study in part-of-speech tagging. Computational Linguistics. 1995; 21(4): 543-566.
28 Wahlster W. Verbmobil: Translation of face-to-face dialogues. Proc of MT Summit
IV. Kobe, Japan. 1993.
29 Serafin R, Di Eugenio B. FLSA: Extending latent semantic analysis with features for

dialogue act classification. 42nd Annual Meeting of the Association for Computational
Linguistics, Barcelona, Spain. July 2004.
30 Levin L, Thyme-Gobel A, Lavie A, Ries K, Zechner K. A discourse coding scheme for

conversational Spanish. Proceedings ICSLP. 1998.
31 Anderson A, Bader M, Bard E, Boyle E, Doherty GM, Garrod S, Isard S, Kowtko J,

McAllister J, Miller J, Sotillo C, Thompson HS and Weinert R. The HCRC Map Task
Corpus. Language and Speech. 1991; 34: 351-366.
32 Douglas M, Towne. Approximate reasoning techniques for intelligent diagnostic
instruction. International Journal of Artificial Intelligence in Education. 1997.
33 Core M, Allen J. Coding dialogs with the DAMSL annotation scheme. Working Notes
of the AAAI Fall Symposium on Communicative Action in Humans and Machines.
Cambridge, MA. November, 1997: 28-35.
34 Godfrey JJ, Holliman C. Switchboard: Telephone speech corpus for research and
development. Proceedings of the IEEE Conference on Acoustics, Speech and Signal
Processing. San Francisco, CA. March, 1992; 1: 517-520.
35 Mclnnes BT, Pakhomov S, Pedersen T, Chute C. Incorporating bigram statistics into
spelling correction tools. Medinfo. 2004.
36 Ainsworth-Vaughn N. The discourse of medical encounters. In: The Handbook of
Discourse Analysis (Deborah S. Schiffrin, ed.). 2003: 453-469.
37 Purcell G, Rennels G, Shortliffe E. Development and evaluation of a context-based
document representation for searching the medical literature. International Journal on
Digital Libraries. 1997; 1(3): 288-296.
38 Duboue P and McKeown K. Empirically Estimating Order Constraints for Content
Planning in Generation. Proceeding of the ACL/EACL. 2001: 172-179.
39 Xu H, Anderson K, Grann VR, Friedman C. Facilitating cancer research using natural
language processing of pathology reports. Medinfo. 2004: 565-72.

130



40 Hsieh Y, Hardardottir GA, Brennan PF. Linguistic analysis: Terms and phrases used by
patients in e-mail messages to nurses. Medinfo. 2004: 511-5.
41 Barzilay R, Elhadad N. Sentence alignment for monolingual comparable corpora.
EMNLP, Sapporo, Japan. 2003.
42 Ishikawa K, Ando S, Okumura A. Hybrid text summarization method based on the TF
method and the Lead method. Proceedings of the Second NTCIR Workshop on Research
in Chinese & Japanese Text Retrieval and Text Summarization. Tokyo, Japan. 2001.
43 Teufel S, Moens M. Sentence extraction as a classification task. Proceedings of the
ACL/EACL-97 Workshop on Intelligent Scalable Text Summarization. 1997: 58-65.
44 The American Heritage® Dictionary of the English Language, Fourth Edition
Copyright © 2000 by Houghton Mifflin Company.
45 Kupiec J, Pedersen J, Chen F. A trainable document summarizer. Research and
Development in Information Retrieval. 1995: 68-73. In:
http://citeseer.csail.mit.edu/kupiec95trainable.html.
46 Edmundson HP. New methods in automatic extracting. In: Advances in Automatic
Text Summarization (eds: Mani and Maybury). 1999: 23-42.
47 McKeown K, Radeev DR. Generating summaries of multiple news articles. In:
Advances in Automatic Text Summarization (eds: Mani and Maybury). 1999: 381-390.
48 Merlino A, Maybury M. An empirical study of the optimal presentation of multimedia
summaries of broadcast news. In: Advances in Automatic Text Summarization (eds:
Mani and Maybury). 1999: 391-402.
49 Barzilay R, Elhadad N, McKeown K. Sentence ordering in multidocument
summarization. Proc. of HLT. San Diego, CA. 2001.
50 Aone, Chinatsu, Okurowski ME, Gorlinsky J. Trainable, scalable summarization using
robust NLP and machine learning. ACL/EACL Workshop on Intelligent and Scalable
Text Representation. Madrid, Spain. 1997.
51 Barzilay R., Elhadad M. Using lexical chains for text summarization. Proceedings of
the Intelligent Scalable Text Summarization Workshop, 1997.
52 Marcu D. Discourse trees are good indicators of importance in text. In: Advances in
Automatic Text Summarization (eds: Mani and Maybury). 1999: 123-136.
53 Teufel S, Moens M. Argumentative classification of extracted sentences as a first step
towards flexible abstracting. In: Advances in Automatic Text Summarization (eds: Mani
and Maybury). 1999: 155-176.
54 McKeown K, Hirschberg J, Galley M, Maskey S. From text to speech summarization.
ICASSP. 2005. Philadelphia, PA. In:
http://wwwl.cs.columbia.edu/-galley/papers/fromtxtto_speech.pdf. Last accessed:
June 20, 2005.
55 Mann W, Thompson S. Rhetorical structure theory: Toward a functional theory of text
organization. Text. 1988; 8(3): 243-281.
56 Marcu D, A Echihabi. An unsupervised approach to recognizing discourse relations.
Proceedings of the ACL/NAACL. 2002.
57 Norbert Reithinger, Robust Information Extraction in a Speech Translation System.
Proceedings of EuroSpeech-99. 1999: 2427-2430.

131



58 Hahn U. Reimer U. Knowledge-based text summarization: Salience and generalization

operators for knowledge base abstraction. In: Advances in Automatic Text
Summarization (eds: Mani and Maybury). 1999: 215-232.
59 Valenza R, Robinson T, Hickey M, Tucker R. Summarization of spoken audio through
information extraction. Proceedings of the ESCA Workshop. Cambridge, UK. 1999: 111-
116.
60 Kameyama M, Megumi, Kawai G, Arima I. A real-time system for summarizing
human-human spontaneous spoken dialogues. Proc ICSLP. 1996: 681-684.
61 Gurevych I, Strube M. Proceedings of the 20th International Conference on

Computational Linguistics. Geneva, Switzerland. August 2004: 764-770.
62 Carbonell J, Geng Y, Goldstein J. Automated query-relevant summarization and

diversity-based reranking. IJCAI-97 Workshop on AI and Digital Libraries. 1997.
63 Zechner K. Automatic generation of concise summaries of spoken dialogues in

unrestricted domains. SIGIR. New Orleans, LA. September 2001: 199-207.
64 Hearst M. TextTiling: A quantitative approach to discourse segmentation. Technical
Report 93/24, U. of Californa, Berkeley. 1993. In:
http://citeseer.ist.psu.edu/hearst93texttiling.html. (Last accessed July 19, 2005).
65 Mani I. Summarization evaluation: An overview. Proceedings of the NTCIR Workshop
Meeting on Evaluation of Chinese and Japanese Text Retrieval and Text Summarization.
Tokyo National Institute of Informatics. 2001.
66 Jones KS, Galliers JR. Evaluating natural language processing systems: an analysis and

review. New York, Springer (eds). 1996.
67 Jing H, Barzilay R, McKeown K, Elhadad M. Summarization evaluation methods:

experiments and analysis. AAAI Intelligent Text Summarization Workshop (Stanford,
CA); Mar. 1998: 60-68.
68 Saggion H, Lapalme G. Concept identification and presentation in the context of
technical text summarization. Proceedings of the Workshop on Automatic
Summarization. 2000: 1-10.
69 Hatzivassiloglou V, McKeown K. Towards the automatic identification of adjectival

scales: Clustering adjectives according to meaning. Proceedings of the 31St Annual
Meeting of the Association for Computational Linguistics. 1993: 172-182.
70 Brandow R, Mitze K, Rau L. Automatic condensation of electronic publications by
sentence selection. Information Processing and Management; 31(5): 675-685. Reprinted
in: Advances in Automatic Text Summarization (eds: Mani and Maybury). 1999: 293-
303.
71 Mani I, Bloedorn E. Summarizing similarities and differences among related
documents. Information Retrieval. 1999; 1: 35-67.
72 Maybury M. Generating summaries from event data. Information Processing and
Management. 1995; 31(5): 735-751.
73 Morris A, Kasper G, Adams D. The effects and limitations of automatic text

condensing on reading comprehension performance. Information Systems Research.
1992; 3(1): 17-35. Reprinted in: Advances in Automatic Text Summarization (eds: Mani
and Maybury). 1999:305-323.
74 QuickTap. Telephone Handset Tap. JKAudio, Inc. Sandwich, IL. 2000.

132



75 Fox C. A stop list for general text. SIGIR Forum. 1990; 24(1-2): 19-35.
76 Lacson R, Lacson E, Szolovits P. Discourse structure of medical dialogue.
Proceedings of MEDINFO. 2004: 1703.
77 Manning C and Schutze H. Clustering. In: Foundations of Statistical Natural Language
Processing. The MIT Press. 2000: 495-528.
78 Aronson A. Effective mapping of biomedical text to the UMLS metathesaurus: The
MetaMap program. Proc. AMIA Symposium, 2001: 17-21.
79 Ratnaparkhi A. A maximum entropy part-of-speech tagger. EMNLP Conference. 1996;
133-142.
80 Landis JR, Koch GG. The measurement of observer agreement for categorical data.
Biometrics. 1977; 33:159-174.
81 Schapire R, Singer Y. Boostexter: A boosting-based system for text categorization.
Machine Learning. 2000; 39(2/3):135-168.
82 Chapman W, Fiszman M, Dowling JN, Chapman BE, Rindflesch TC. Identifying
respiratory findings in emergency department reports for biosurveillance using MetaMap.
Medinfo. 2004: 487-491.
83 Aronson A. Effective mapping of biomedical text to the UMLS metathesaurus: The
MetaMap program. Proc. AMIA Symposium; 2001: 17-21.
84 Miller S, Guinness J, Zamanian A. Name tagging with word clusters and discriminative
training. HLT-NAACL. 2004: 337-342.
85 Brown PF, Della Pietra VJ, DeSouza PV, Lai JC, Mercer RL. Class-based n-gram
models of natural language. Computational Linguistics. 1990; 18(4): 467479.
86 Zeng Q, Kogan S, Ash N, Greenes RA. Patient and clinician vocabulary: how different
are they? Medinfo. 2001;10(Pt 1):399-403.
87 Lafferty J, Pereira F, McCallum A. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. International Conference on Machine Learning.
2001: 282-289.
88 McCallum, A. MALLET: A Machine Learning for Language Toolkit.
http://mallet.cs.umass.edu. 2002.
89 J. Goldstein, M. Kantrowitz, V. Mittal, and J. Carbonell. Summarizing text documents:
Sentence selection and evaluation metrics. In Proceedings of the 22nd ACM SIGIR.
1999: 121-128.
90 Allan J, Gupta R, Khandelwal V. Temporal summaries of news topics. Proceedings of
SIGIR. 2001: 10-18.
91 Lehoux P. Patients' perspectives on high-tech home care: a qualitative inquiry into the
user-friendliness of four technologies. BMC Health Serv Res. 2004 Oct 5; 4(1): 28.
92 Lacson R, Lacson E, Szolovits P. Home Hemodialysis Queries. Proceedings of
Medinfo; 2004(CD): 1702.
93 Pallett D, Fiscus J, Garofolo J. Resource Management Corpus: September 1992 Test
Set Benchmark Test Results, Proceedings of ARPA Microelectronics Technology Office
Continuous Speech Recognition Workshop (Stanford, CA); September 21-22, 1992.
94 Shriberg E, Stolcke A, Hakkani-Tur D, Tur G. Prosody-based automatic segmentation
of speech into sentences and topics. Speech Communication. 2000; 32(1-2): 127-154.

133



95 Conroy J, O'Leary D. Text summarization via hidden Markov models. Proc 24th
annual international ACM SIGIR conference on research and development in information
retrieval. 2001: 406-407.
96 Flammia G. Discourse segmentation of spoken dialogue: An empirical approach [PhD
Thesis].Cambridge, MA:MIT; 1998.
97 Sakai T, Sparck-Jones K. Generic summaries for indexing in information retrieval.
Proc 24th annual international ACM SIGIR conference on research and development in
information retrieval. 2001: 190-198.

134


