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ABSTRACT

With the progress of natural language processing in the biomedical field, lack

of annotated data due to regulations and expensive labor remains an issue. In

this work, we study the potential of knowledge bases for biomedical language

processing to compensate for the shortage of annotated data. Accordingly,

we experiment with integration of a rigorous biomedical knowledge base, the

Unified Medical Language System, in three different biomedical natural lan-

guage processing applications: text simplification, conversational agents for

medication adherence, and automatic evaluation of medical students’ chart

notes.

In the first task, we take as a use case simplifying medication instruc-

tions to enhance medication adherence among patients. Given the lack of

an appropriate parallel corpus, the Unified Medical Language System pro-

vided simpler synonyms for an unsupervised system we devise, and we show

positive impact on comprehension through a human subjects study.

As for the second task, we devise an unsupervised system to automatically

evaluate chart notes written by medical students. The purpose of the system

is to speed up the feedback process and enhance the educational experience.

With the lack of training corpora, utilizing the Unified Medical Language

System proved to enhance the accuracy of evaluation after integration into

the baseline system.

For the final task, the Unified Medical Language System was used to aug-

ment the training data of a conversational agent that educates patients on

their medications. As part of the educational procedure, the agent needed

to assess the comprehension of the patients by evaluating their answers to

predefined questions. Starting with a small seed set of paraphrases of accept-

able answers, the Unified Medical Language System was used to artificially

augment the original small seed set via synonymy. Results did not show

increase in quality of system output after knowledge base integration due to
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the majority of errors resulting from mishandling of counts and negations.

We later demonstrate the importance of a (lacking) entity linking system

to perform optimal integration of biomedical knowledge bases, and we offer

a first stride towards solving that problem, along with conclusions on proper

training setup and processes for automatic collection of an annotated dataset

for biomedical word sense disambiguation.
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CHAPTER 1

INTRODUCTION

The Health Information Technology for Economic and Clinical Health Act

(HITECH) was passed in 2009, creating incentives for the healthcare industry

to adopt electronic health records (EHR) [1]. Figure 1.1 demonstrates its sig-

nificant impact on the adoption of EHRs. As a consequence, the healthcare

industry in the US, and worldwide, produces large volumes of digitized text

on a daily basis. In these volumes lie knowledge sources untapped due to ex-

perts’ time limitations, and machines’ cognitive limitations. To process these

texts for patients’ benefit as well as the scientific community, researchers have

worked towards equipping machines with cognitive capabilities through the

use of natural language processing (NLP) tools [2]. Although NLP methods

have rapidly evolved in the past decade, these methods were developed and

evaluated mostly on non-biomedical data, relying on large amounts of labeled

text. It is unclear to what extent these advances translate to the biomedical

domain with significantly constrained labeled data. With the susceptibility of

NLP tools to degrade with a shift in domain [3], and the shortage of labeled

text in the biomedical domain, this dissertation aims to study the limita-

tion introduced by the shortage in labeled text, and the possible methods to

address the shortage.

Different biomedical NLP tasks require different volumes of training data.

This requirement depends on the language variability of the domain, the

level of semantic understanding and world knowledge needed, and the deci-

sion space in the task. Consequently, we answer our overarching question by

posing it as a set of pragmatic questions over several downstream biomedical

NLP tasks, while varying the difficulty level and data requirement. The first

task we approach aims to simplify health text to enhance patients’ compre-

hension of their own health data [4]. The second task streamlines the train-

ing and evaluation of student-prepared medical chart notes [5], while the last

task offers a conversational agent to assist patients in their knowledge of their
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Figure 1.1: Percent of physicians e-prescribing through an electronic health
record [7]

medication regimes, and consequently, their medication adherence [6]. The

recurring theme in our approach across all the previously mentioned tasks

is the infusion of the information in a knowledge base into our system to

compensate for the lack of a training data.

Text Simplification of Medication Instructions Biomedical text can

be complicated for the target audience to comprehend due to the mismatch

in health literacy levels between the authors and the readers [8]. For ex-

ample, a physician might note “Take 3 tablets PO BID” as a medication

instruction, which is incomprehensible to a patient without the intervention

of a pharmacist. This motivates automatic text simplification methods for

biomedical text.

Text simplification is a well-researched task in NLP, with recent progress

borrowing methods from works on neural machine translation [9]. With

neural methods hungry for data, and the shortage of the required parallel

text (complicated - simple) in the healthcare domain, we pose several ques-

tions. First, how directly portable are state-of-the-art neural methods for

text simplification in the general domain when used for health text? For

that, we construct a suitable, yet limited, parallel corpus of medication in-

structions and their simplifications, and train/evaluate the aforementioned

neural methods. Next, we realize the potential of well-maintained medical

ontologies, such as the Unified Medical Language System (UMLS) [10], and

study a suggested unsupervised text simplification method that relies on the
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UMLS compensating for the linguistic connections made through a parallel

corpus.

Entity Linking for Evaluating Medical Chart Notes Automatic

short answer grading (ASAG) in the healthcare domain poses challenges un-

faced in other domains. The main challenge introduced by biomedical text

is its ambiguity level [11]. Healthcare professionals and biomedical scien-

tists deal with an ever-expanding host of terminologies. To simplify com-

munication, abbreviations and qualifier-free rhetoric is heavily used, causing

ambiguity in biomedical text and consequent challenges to an NLP system

processing such text. For example, it is not straightforward to estimate

whether “COLD” in a sentence refers to the feeling of cold, to the common

cold sickness, or to chronic obstructive lung disease. A prerequisite to the

grading of an answer is the semantic understanding of the answer and the

corresponding rubric item. Entity linkers can identify the intended concept

for an ambiguous phrase and provide significant semantic value. Although

entity linkers are available for the biomedical domain [12], they have been

developed for well-written scientific documents and are not readily available

for the noisy language of medical chart notes. With the lack of training data

for entity linking in medical chart notes, we study the capability of UMLS

to assist in entity linking and act as a grounding source for variant phrases.

Conversational Agent for Medical Adherence Another biomedical

field with great potential and lacking datasets is the conversational agent

space in healthcare. Conversational agents identify the intent of the user, and

reply with the appropriate response. Such a technology offers the required

presence of a medical consultant despite the limited schedule of healthcare

professionals. The underlying technology of conversational agents requires

a preset of intents and their possible surface forms [13]. For example, the

surface forms “What’s my medication’s dosage?” and “How much of the

medication should I take every time?” can serve as examples for the user’s

intent to ask about the dosage. Linking back to the previous task, a semantic

understanding of the utterance is required to understand the intent of the

user. Given the variability of communicating with a health agent, and the

variability of health text, we find a similar motivation to identify entities

in utterances and automatically produce alternatives for the agent to train.

Along the same lines, we continue to explore the utilization of a knowledge

base such as the UMLS in automatically producing the dataset required to
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enhance the intelligence of the conversational agent.

Ambiguity in Biomedical NLP and Word Sense Disambiguation

As mentioned, the recurring theme in our approach is the infusion of the

information in a knowledge base into our system. An identified challenge

to this infusion is in resolving the ambiguity of the biomedical phrases, and

introducing the right set of information from the knowledge base. Hence, we

finally take a step back and explore the potential of BioBERT [14] at ad-

vancing entity linking of ambiguous phrases, in biomedical text, to concepts

in knowledge bases.

Word sense disambiguation (WSD) is an integral step in entity linking,

and relies on the context of an ambiguous phrase to disambiguate it. With

BioBERT being a contextualized word representation that has shown great

benefits on other biomedical downstream tasks, we study the potential of

BioBERT at advancing the state of biomedical WSD. With the ever-expanding

terminology of biomedical text, we further explore the potential of automatic

generation of WSD datasets, and analyze the cost of relying on noisy auto-

matically generated data for biomedical WSD.

The high-level contributions of this dissertation are:

1. Studying the limitation of general NLP methods in the low-resource

setting of healthcare text in three separate tasks.

2. Assessing the capability of knowledge bases such as the UMLS at com-

pensating for the lack of labeled text.

3. Explore the potential of BioBERT at advancing the state of biomed-

ical WSD, which allows for the utilization of knowledge bases in low-

resource settings.

The rest of the dissertation is structured as follows. Chapter 2 summarizes

previous works that have followed the same approach of utilizing knowledge

bases to compensate for the lack of training data in low-resource settings.

The next three chapters respectively cover the work performed in each of the

aforementioned downstream tasks. Chapter 6 takes a step back and addresses

the task of biomedical WSD. Finally, Chapter 7 presents other supporting
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work that aids in addressing low-resource settings in general, and Chapter 8

concludes the dissertation.
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CHAPTER 2

KNOWLEDGE BASE INTEGRATION IN
GENERAL NLP

In the endeavor to create intelligent computer programs, machine learning

algorithms have made long strides by learning patterns from annotated data.

But to reach human intelligence, our reasoning relies on background knowl-

edge that lies outside the knowledge particular to the task, and accordingly,

knowledge outside the realm of the data annotated for the task. For example,

when semantically parsing the sentence “The man observes the elephant with

his telescope.”, it is trivial for human intelligence to realize, even without see-

ing previous similar examples, that the man is operating the telescope, and

not the elephant. But to the machine, if it has not seen a similar example

in the annotated data, it is not trivial due to lacking general knowledge such

as elephants lacking the means to own a telescope and the intelligence to

operate it.

To fill this gap, and progress towards human-level intelligence, NLP re-

searchers have developed and utilized knowledge bases to structurally repre-

sent and model background knowledge, or at least attempt it. This resulted

in the generation of various types of knowledge bases which can be divided

into two categories: (1) databases modeling lexico-semantic aspects of lan-

guage, and (2) databases of entities and the relations between them.

More particular to our setting, knowledge in the biomedical domain was

long motivated to be documented and structured due to the ever-expanding

knowledge in this field, and due to the need of medical students to ingest this

large amount of knowledge. When the need for biomedical NLP unraveled,

along with the benefits of knowledge bases, it was a matter of organizing

the documented knowledge into machine-readable knowledge bases. Most

notably, the metathesaurus of the UMLS [10] came to unify the information

in bibliographic and factual databases, in addition to clinical data. This

aspect of biomedical NLP reflects the potential of utilizing knowledge bases

in this domain, especially given its shortage of annotated data

6



In this chapter, we discuss the history of knowledge bases in NLP, and

the motivation behind them. We also cover what are the different types of

knowledge bases accompanied with example KBs. Next, we address what are

current methods of integrating knowledge bases into NLP methods. Finally,

we enumerate knowledge bases in the biomedical domain and discuss ways

to utilize them to advance NLP algorithms in the field.

2.1 History of Knowledge Bases in NLP

Knowledge bases could be traced back to initial attempts to model and ex-

plain how minds and language work [15, 16]. And early NLP systems relied

on small-sized handcrafted rules and patterns of morphology and syntax [17],

especially in the prevalent environment of rule-based systems in early works

of machine learning systems. This was the case up until the creation of one of

the earliest and largest knowledge bases of NLP: WordNet, a lexical database

containing information on around 155,000 words [18]. This information en-

codes the different senses a word can have, equivalence between these senses,

and relations between words on a sense-level. Later, in 1998, the Interna-

tional Computer Science Institute in Berkeley attempted to model language

on another level: FrameNet [19]. What distinguishes FrameNet from Word-

Net is documenting and abstracting the possible actors in an action (verb),

along with examples. On another front, many years later, researchers found

the need to extend WordNet beyond the limits of English, coming up with

BabelNet [20]. By utilizing the multi-linguality of Wikipedia, and machine

translation methods, BabelNet was automatically constructed to extend the

acyclic graph of WordNet along another dimension: language.

Besides modeling language, and the characteristics of words forming a re-

spective language, researchers found the need to structure background knowl-

edge on entities, such as famous people, cities of the world, and famous events.

What started out as Freebase [21], was later merged into Wikidata [22], which

in the spirit of Wikipedia, is a collectively created and maintained knowledge

base of information on famous people and entities such as (Barack Obama)

being a (President of) the (United States of America), along with metadata

such as start and end time. Resources such as WordNet and FrameNet can

contribute to more fundamental tasks such as abstract meaning representa-
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tion, whereas resources such as Wikidata can contribute to more downstream

applications such as question answering.

2.2 Types and Examples of Knowledge Bases

One broad way, although not necessarily exhaustive way, to categorize knowl-

edge bases is based on the type of information it encodes: (1) lexico-semantic

information over words, or (2) relational information over world entities.

2.2.1 Word-level Knowledge Bases

The first type of knowledge bases we elaborate on is word-level knowledge

bases. These knowledge bases encode the meaning of words of a language

and present a structure over these words, understanding the relations and

interactions between these words. These resources tend to help NLP ap-

plications addressing the lower layers of language such as semantic parsing,

and abstract meaning representation. For example, [23] concurrently uti-

lized three word-level knowledge bases to guide semantic parsing: WordNet,

VerbNet [24], and FrameNet. Next, we detail several examples of word-level

knowledge bases.

WordNet and BabelNet

WordNet organizes and assigns features to a large coverage of English words

ranging from nouns, to verbs, to adverbs, to adjectives, etc. As of June 2020,

WordNet covers 155,327 English words. WordNet further assigns multiple

senses to each word. For example, the word “bank” can exist in WordNet as

“bank 1” to represent the financial institution, and “bank 2” to represent the

bank of a river. These word-sense pairs, accumulating to 207,016 pairs, are

then collapsed, or clustered, to 175,979 synonym sets (synsets). For exam-

ple, “car 1” and “automobile 1” would be assigned the same cluster as they

are synonyms meaning: “a motor vehicle with four wheels; usually propelled

by an internal combustion engine”. Finally, these synsets are then assigned

directed relations among them, portraying interactions between the seman-

tics of the synsets. Relations identify hypernyms, hyponyms, meronyms,
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holonyms, antonyms, and entailment, among others. For example, “wheel 2”

representing the car wheel sense of the word “wheel”, would be connected to

“car 1” via the relation “meronym”.

Extending WordNet beyond English, BabelNet [20] was created by link-

ing WordNet to Wikipedia, and then using Wikipedia hyperlinks (across

languages as well) between words and entities, word-sense-language triplets

are added to the aforementioned synsets. For broader coverage, machine

translation methods were also utilized to generate more word-sense-language

triplets, and estimate relations between them.

Besides utilizing WordNet for definitions and synonym generation, re-

searchers have also relied on the directed acyclic graph of WordNet to assess

the semantic similarity between English words using graph-based distance

measures [25].

FrameNet

Taking another approach at modeling language and the relations between

words of a language, FrameNet instead centers its modeling around verbs,

amounting to 3,040 of them. Each frame in FrameNet describes a scenario

(for example, “being born”). A frame can be invoked by several verbs that

represent the scenario of this frame (for example, “born”). Each frame (or

scenario) also identifies key players (core frame elements: FEs) such as the

child in “being born”, and non-core FEs such as the time of birth.

This knowledge base helps in grouping words into scenarios to give an

abstract representation of the meaning of discourse. Moreover, it helps iden-

tifies actionable relations between words, rather than organizing them on a

conceptual level.

2.2.2 Entity-level Knowledge Bases

The other type of knowledge base in our dichotomy is the entity-level knowl-

edge base containing information on famous living and non-living entities

and the relations between them. The significance of these knowledge bases is

their ability to help downstream NLP applications to reason about the word

and provide more accurate answers. For example, in a document describing

the life of an elephant, paired with a question “Which mammal is the largest
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land animal?”, having a knowledge base that identifies elephants as mam-

mals, would help the system provide the accurate answer, even though the

system might have not seen anywhere in its training data the word “mam-

mal”.

Wikidata

Wikidata structures information on topics, objects, or concepts into docu-

ments containing information such as the label, the description, and different

properties of these entities [22]. Each document covering one entity is given a

unique QID. For example, the different cities of Tripoli, Lebanon (Q168954),

and Tripoli, Libya (Q3579), are given the same label but differing unique

QIDs. Example properties of Tripoli, Lebanon, are “elevation above sea

level” (P2044) by 222 meters. Note that even properties have their own

unique ID starting with “P”. These properties could also represent relations

(links) between entities. For example, Nick Holonyak (Q360445) “educated

at” (P69) University of Illinois at Urbana-Champaign (Q457281). By June

8, 2020, Wikidata includes information on 86,942,351 items.

Wikidata is owned by the Wikimedia group, which also owns Wikipedia,

and develops Wikidata in the same approach Wikipedia was developed: col-

laborative curation. This also allows Wikidata to utilize the textual and

metadata knowledge of Wikipedia.

DBpedia

DBpedia [26], which precedes Wikidata in time, takes the opposite approach.

Instead of collaboratively curating information which might lead to auto-

matically generated infoboxes of Wikipedia, it uses the already present in-

foboxes to automatically collect information on world entities covered by the

Wikipedia project. By 2016, DBpedia had information on around 6 million

entities with the following distribution: 1.5M people, 810K locations, 301K

species, 275K organization, 135K music albums, 106K movies, 20K video

games, and 5K diseases.
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NELL: Never-Ending Language Learning

All previously mentioned knowledge bases rely on manual labor either di-

rectly (WordNet, FrameNet, Wikidata), or indirectly (BabelNet, DBpedia).

NELL [27] on the other hand attempts to emulate the way humans acquire

knowledge; namely, starting with a set of known facts, it continuously skims

through the internet, everyday learning new facts, and revisiting previously

acquired facts. This work, contrary to previously mentioned knowledge bases,

falls under automatic population of knowledge bases.

NELL utilizes textual patterns such as knowing that (Cristiano Ronaldo,

plays for, Juventus) allows it to look for all sentences including these two

entities and learn all the phrasings that represent the meaning “plays for”.

It can then later use these learned phrasings to estimate new relations of

“plays for” for new entities. In less than a year, NELL was able to double

its knowledge and learn 440K new relationships that are 87% accurate [27].

2.3 Methods of Integrating Knowledge Base

Information

How to best integrate knowledge base information into natural language pro-

cessing systems depends on the underlying algorithms being used. With the

ever-continuous development of NLP algorithms, integration methods need

to match the development. Most notably, the shift of NLP algorithms to deep

learning methods presents a challenge on ways to integrate this knowledge.

In this section we divide the algorithms, and accordingly the way knowledge

bases were integrated, into two eras: (1) pre-deep learning era, and (2) post-

deep learning era. This separation point is also inspired by the motivation

of this work: how to integrate biomedical knowledge bases into biomedical

NLP algorithms after the recent shift to deep learning.

2.3.1 Pre-Deep Learning Era

One of the differentiating characteristics of machine learning and NLP before

and after deep learning is the amount of feature engineering required by

researchers. Pre-deep learning, most of the effort lied in engineering the most
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discriminating features to feed into an ML algorithm to perform classification.

Naturally, knowledge bases ended up being utilized as a source for instance

features.

As a representative example, in [28], when building a system to perform

entity-linking, they relied on popularity features from DBpedia when con-

structing features to be passed to a support vector machine (SVM) [29].

Other examples of features could be similarities of words, POS tags of words,

etc.

2.3.2 Post-Deep Learning Era

With the progression of deep learning methods and the takeover of sequence-

to-sequence modeling over almost all NLP tasks, integration of knowledge

base information adapted to the change. Neural methods of integrating

knowledge bases can be divided into: (1) implicit utiliztion, where concepts

in a knowledge base are encoded into a fixed-length vector, and used as input

into the end-to-end network, or (2) explicit utilization, where the knowledge

base directly controls the operation of the end-to-end network.

One example of implicit utilization is the work in [30], where knowledge

base information from ConceptNet and Wikipedia was transformed into text

via rule-based methods, and then passed through DL-based encoding archi-

tectures that learned contextually refined word embeddings. These embed-

dings were later used as inputs to DL-based architectures for several down-

stream tasks such as question-answering and recognizing textual entailment.

This implicit utilization led to an increase in accuracy of answering ques-

tions on the SQuAD dataset from 75.9% to 79.7%, reflecting the significance

of added knowledge base information. The challenge in implicit utilization of

knowledge bases is how to best encode knowledge into a fixed-length vector.

The transformation of a knowledge base to a corpus of text is not directly

applicable to any knowledge base, and might differ between domains.

In contrast, other work explicitly integrates information from a knowledge

base. Work in [31] explicitly integrates knowledge base information into a

machine reading comprehension system that given a passage, and a question,

automatically answers that question using information from the passage. In

this system, [31] utilize WordNet connections between words to infer whether
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two words are related. Then, in the attention mechanism of the neural net-

work, only attention between words that are related in WordNet are allowed

to exist, and the rest are masked with a zero. This forces to system to gen-

erate its attention-based representations only by attending to words we a

priori know are semantically connected. This integration, although it did

not push the state-of-the-art results on the SQuAD dataset, was reflected in

enhancing performance under adversarial circumstances: (1) limited training

dataset size, and (2) injected adversarial sentences intended to confuse the

system. Having background knowledge information allowed the system to

beat the state-of-the-art system when only 20% of the data was available by

approximately 6% absolute, and when adversarial sentences were injected to

the data by approximately 9% absolute. The challenge in explicit utilization

of knowledge bases is how to minimize the bias introduced by human design

which controls how the knowledge base affects the end-to-end system. For

example, in this case, the authors assumed that only words related to each

other should be considered in the attention mechanism.

2.4 Biomedical Knowledge Bases and Their Potential

Despite the particular obstacles presented in the healthcare domain, resources

specific to the healthcare domain present themselves.

The first type of resource is the lexical database, best exemplified by

the Unified Medical Language System (UMLS). With the technicality of

biomedical terms and the urge for abbreviations, the National Library of

Medicine (NLM) realized the added challenge for automated algorithms and

addressed that by launching a long-term research project to build the UMLS

[10]. Accordingly, NLM quarterly releases an updated version of the UMLS

to researchers with information regarding phrasal equivalence of biomedical

terms, relations between terms, as well as semantic types of these terms,

besides other pieces of information. Moreover, the NLM released a set of

off-the-shelf NLP tools called the SPECIALIST NLP Tools [32] to perform

infrastructural NLP tasks such as part-of-speech tagging, spell checking, text

categorization, etc.

The second type of resource comes in the form of labeled data for several

NLP tasks. Foundations such as n2c2 (formerly i2b2) realized the need for
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labeled data and accordingly generated datasets and organized challenges

around these datasets. Some example challenges are: concept and relation

extraction in clinical records [33], extracting temporal relations [34], cohort

selection for clinical trials [35], detecting adverse drug events [36], and more

recently, evaluating clinical textual similarity.
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CHAPTER 3

TEXT SIMPLIFICATION OF
MEDICATION INSTRUCTIONS

3.1 Introduction

Healthcare practices have granted patients increased access to their health

information to support self-care [37, 38]. But the benefits have been hindered

by patients’ low comprehension of their own health data [39], as a study

shows that readability measures of online health information is significantly

higher than patient health literacy abilities [40]. Moreover, older adults, the

largest demographic group interacting with the healthcare system, are often

the least health-literate [41, 42]. With low levels of health literacy resulting

in worse health outcomes [43, 44], there is an urgent need to reduce the gap

between the health literacy of patients and the health literacy demands of

the US healthcare system.

This mismatch in patient literacy levels and health documents is due in

part to the differing language used by healthcare professionals and patients

[8]. For example, what professionals refer to as “abdominal pain”, patients

might refer to as “stomach ache”. While previous works have addressed this

by performing local word replacement [45], their context-free frameworks

lacked the accuracy. In a health document, “Mg” could mean “milligrams”

or “Magnesium”, and harnessing the contextual information, for example in

“Take 50 Mg” or “Mg reacts with”, aids accurate simplification.

Our approach is a context-aware medical text simplification system, named

Dr. Babel Fish (DBF). We design our system to be independent of the

availability of annotated datasets as scarcity of such data is expected due

to privacy and proprietary concerns. To compensate for annotated datasets,

we instead rely on a structured knowledge base in the form of the Unified

Medical Language System (UMLS) [10]. Taking inspiration from the modular

and context-aware frameworks of phrase-based statistical machine translation
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(PBSMT) systems [46], our system, DBF, first identifies hard (low frequency)

words, then collects possible simplifications of these words from the UMLS,

and finally chooses the simplification that best reflects patients’ preferred

medical terms and best fits the context, by relying on a patient language

model trained on a suitable monolingual corpus.

Although neural machine translation (NMT) frameworks [47, 48] consti-

tute the state-of-the-art, they suffer in the low-resource settings of the clinical

(medical) domains, and we accordingly present our system to complement

neural methods in domains lacking the appropriate parallel corpus. Although

we take medication instructions as a use case, our system is general enough by

construction to handle any medical text. All code and materials associated

with this study are released to the public.1 This chapter:

• studies a knowledge-aware text simplification model that does not rely

on parallel text.

• empirically demonstrates the higher precision simplification output of

the proposed model compared to previous methods.

• presents a parallel corpus of medication instructions available to foster

future research.

• provides a comprehensive and comparative study of NMT models ap-

plied to healthcare text simplification, previously impossible due to the

lack of a parallel corpus.

• via a human subjects’ study, shows the positive impact of DBF on

patient comprehension.

3.2 Previous Work

Efforts to improve patient comprehension of health information in the biomed-

ical informatics community can be categorized into: developing standards

[49, 50], curating dictionaries [51], annotating text with additional informa-

tion [52, 53, 54, 55], normalizing terms [56], syntactic simplification [45],

and finally, lexical simplification [45, 57, 58]. Our work on biomedical text

simplification belongs to the final category.

1http://bit.ly/dbf-ml4health
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One popular previous attempt [45] of health material text simplification

relies on the consumer health vocabulary (CHV) [51] for mapping the hard

term to its simpler counterpart, disregarding context information. Other

word-replacement systems [57, 58] have relied on MetaMap [59] to map med-

ical terms to their simpler counterparts by either utilizing CHV as a the-

saurus [57], or relying on an in-house equivalent resource (CoDeMed) [58].

Although, MetaMap performs word sense disambiguation (WSD) by relying

on the context, its creators admit its low WSD quality [12]. Therefore, we

rely on a language model instead of MetaMap. Nonetheless, since MetaMap

followed by a CHV (or another dictionary) is a popular method in previous

works, we include it as a baseline in our experiments.

Beyond health materials, lexical simplification is highly researched. A thor-

ough survey of this field is presented in [60], which divides work in this field

into four stages of a pipeline: (1) complex word identification, (2) substitu-

tion generation, (3) substitution selection, and (4) substitution ranking. We

also perform complex word identification as a first stage by relying on word

frequencies, which is a popular method among previous work [61, 62, 63, 64].

We also generate substitutions as a second stage by relying on UMLS, sim-

ilar to how previous work relied on word taxonomies [65, 66]. The last two

stages are performed in one shot in DBF, where instead of finding which

candidate substitutions fit the context and then selecting the simplest based

on a certain metric, we let the language model decide which is the most prob-

able substitution in terms of meaning and simplicity. Our work is the first

to combine these stages in a context-aware method tailored for the health-

care domain. Finally, text simplification has been modeled previously as a

machine translation task where parallel corpora are available [67, 68]. Ac-

cordingly, we compare against these methods in this study to assess their

capacity in the low resource setting and their capability to generalize across

healthcare domains.

3.3 Materials

Next, we describe the materials used in our study to build and evaluate the

various systems.
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3.3.1 Parallel Corpus

We collected 4554 unique and de-identified medication instructions from the

electronic health records of a collaborating healthcare institution. They were

of two types: (1) Structured– automatically populated using three drop-down

fields: Dose, Route, Frequency (2) Free-text– manually typed. Free-text

instructions tend to have more hard words due to their uncontrolled nature.

Then, for every instruction, a physician, with expertise in standard prac-

tices for increasing patient comprehension, annotated each instruction with

its accurate simplification. The resulting parallel corpus is essential to the

training of the supervised NMT methods, and evaluation of all systems.

3.3.2 Monolingual Corpus

Next, in order to develop a corpus representative of the target language (ac-

cessible to patients), we scraped medication-related pages from five medicine-

related websites2 targeted for laypeople. We selected the five websites to

be: (1) medication-related, and (2) patient-facing. This corpus Ct (≈ 11M

words) was used to: (1) train a language model, and (2) estimate usage

frequency of words by DBF’s target audience.

3.3.3 Human Subjects Study

Finally, we designed an online human subjects study (via Mechanical Turk)

that presents medication instructions to participants and tests their compre-

hension of the instructions, before and after simplification, using multiple-

choice questions.

Accordingly, we randomly choose 100 of the free-text medication instruc-

tions of varying levels of hardness (1: 29 instructions, 2: 29 instructions,

and 3: 42 instructions) as measured by the number of hard (low frequency)

words. Then, we simplify every instruction using DBF, and pair both the

original and simplified versions of the instruction with the same multiple-

choice question.

2medlineplus.gov; nia.nih.gov; umm.edu; mayoclinic.org; medicinenet.com
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3.4 Methods

In this section, we describe our method, DBF, along with the established

baselines it was quantitatively evaluated against: MetaMap+CHV, Seq2Seq-

w-Attention, and Pointer-Generator.

3.4.1 Dr. Babel Fish

For reproducibility purposes, following is a detailed system description. DBF

is designed as a three-stage pipeline. First, hard (and easy) words are identi-

fied based on their frequency of usage. Then, in the second stage, candidate

simplifications of a given hard word are collected and each given a replace-

ment probability (prm). In the final stage, every candidate output simplifica-

tion is assigned a language model score and a replacement model score. We

will refer to this system as an “unsupervised” system due its independence

of annotated datasets, as well as “knowledge-aware” due to its reliance on

a knowledge base in the form of UMLS. The highest scoring simplification

is then selected as the output of DBF. We describe the three stages in the

following subsections (see Figure 3.1).

Stage 1: Identification of Hard Words

In the first stage, the task is to identify the hard words to be translated from

the source sentence and to retain the easy words. Accordingly, we devise

a simple statistical model which checks a word’s frequency of usage in Ct

(see Materials Section). We consider the high usage frequency of a word by

patients (or targeted towards patients) to be a strong indicator that it is

easy for patients to understand, and vice versa. Thus, if a given word has

a frequency lower than a tunable frequency threshold (ft), DBF labels it as

hard.

Stage 2: Candidate Generation

Next, DBF relies on the UMLS to collect all candidate replacements of each

hard word, and estimates the probability of each candidate.
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Figure 3.1: Block diagram of DBF for the sample sentence: “Take 3 tablets
PO.”
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Table 3.1: Example UMLS concepts

Oral Twice a day Milligram

PO BID Mg
Orally Twice daily Milligramos
By mouth Two times daily Milligrams

Table 3.2: Example UMLS queries

Query PO BID

1st Result Portugal BID Protein
2nd Result Oral Twice a day
3rd Result Positive BID gene

A salient feature of the UMLS is its groupings of words/phrases into clus-

ters, where each cluster represents one concept. In Table 3.1, we present three

example concepts, each headed by its “Preferred Name”, followed by three

example atoms (the UMLS term for a phrase in a given concept). We note

the variability of atoms in a concept in terms of complexity and language.

A second feature of the UMLS is its ability to return an ordered list of

concepts to best match a search query. In Table 3.2, we see the top three

concepts returned for two example queries: “PO”, and “BID”. The correct

concept for “PO” appears only second in the results, as is the case for “BID”.

This suggests that just relying on the top result of such a context-insensitive

static search of the UMLS is insufficient for accurate simplifications.

Leveraging these two features, DBF uses the hard word from the input

sentence as a query to the UMLS search function. Then, all atoms of the

top k returned concepts are considered as candidate simplifications, with

concepts ranked higher assigned higher probabilities.

Formally, let {C1, C2, ..., Ck} be the top k concepts returned by the UMLS

search feature when using the hard word c as a query. Also, let Ci =

{ai1, ai2, ..., ain} be all the atoms of the ith concept. Then, the probabil-

ity of atom aij being the simpler replacement of c is assigned prm(aij|c) ∝ 1
ri

,

where r ≥ 1. Thus, an atom of the ith concept is allocated a probability r

times that of an atom of the (i + 1)th concept. In this setup, r and k are

tunable hyperparameters of the system. To allow for possibly keeping a hard

word c unaltered on the output side, we also assign the probability prm(c|c)
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equal to that of an atom in the 1st concept. This helps in cases where a word

was wrongly identified as hard, or a simpler alternative does not exist for it.

For an easy word e, we assign p(e|e) = 1 to force retention of easy words.

Stage 3: Decoding via Language Model

Finally, we consider all possible combinations of simplifications and choose

that with the highest product of replacement probability and language model

probability.

Formally, we identify T (c) = {t1, t2, ..., tm} which is the set of possible

simplifications for a word c. Using this, the set of possible simplifications of

the input sentence becomes H = T (c1) × T (c2) × T (cn), where × refers to

the Cartesian product of sets.

Now consider a sentence t ∈ H and let t = t1t2...tT where ti is the ith word

of t. Then, P (t|c) ∝
∏T

i=1 prm(ti|ci) ∗ plm(ti|ti−1:i−5), where plm(ti|ti−1:i−5) is

the probability assigned by the 6-gram language model [69], for the word ti

occurring after the sequence of words ti−5ti−4ti−3ti−2ti−1. The 6-gram lan-

guage model is trained on the patient-friendly corpus to model the target

language. Finally, the sentence t with the highest assigned probability P (t|c)
is selected as the output simplification of the system.

The significance of the language model is, first, it utilizes the context in

which a word like “PO” appears to reward a simplification like “Oral”, and

penalize a simplification like “Portugal”, especially considering that “Portu-

gal” is assigned a higher replacement probability (prm). Second, it encodes

word usage preferences–such as “by mouth” being preferred over “Oral”–

even though they both had equal replacement probabilities (prm).

3.4.2 MetaMap+CHV

To compare DBF to the majority of previously used methods for simplifying

health materials, we implement the following baseline. Text is first passed

through MetaMap, which maps phrases in the text to their respective UMLS

concepts. Then, for every phrase identified, we first check if it includes at

least one hard word. If it does, and if that UMLS concept is covered by CHV,

we replace it by CHV’s most preferred term for that concept; otherwise,

we replace it with the UMLS preferred term for that concept. With that
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being said, all phrases identified by MetaMap, which are not contiguous, are

ignored to avoid errors in sentence structure when performing the phrase

replacement.

3.4.3 NMT Baselines

Our last set of baselines are two supervised NMT architectures [47, 70],

requiring training data.

One NMT baseline we consider is a Seq2Seq-with-Attention architecture

[47]. In this deep learning architecture, a long short-term memory (LSTM)

encoder maps the input sentence to a fixed length vector, and generates

contextualized representations of the input words. Then, an LSTM decoder

generates the output words sequentially based on the fixed length vector and

the contextualized representations, while the attention mechanism indicates

which input words influence each output decision. For this baseline, we utilize

Google’s open source implementation [71] with default parameters.

Due to the large overlap in the vocabulary of the source and target sen-

tences, particularly the “easy” words, we consider a second NMT baseline

called Pointer-Generator capable of copying words as is from the source sen-

tence [70]. It differs from Seq2Seq-with-Attention in that at every decode

step, it estimates a probability g of generating a new word rather than copy-

ing a word from the source sentence. If g is low, the model relies more heavily

on the estimated attention distribution over the input source words, which

increases the chances of copying the word that is most highly weighted by the

attention mechanism. To implement the system, we use the author’s original

open-source implementation [70] with default parameters, except for using

the Proximal Adagrad [72] optimization algorithm to maximize performance.

3.5 Results

This section describes the results of two studies. The first study uses au-

tomated evaluation metrics to assess DBF’s output in comparison to the

baselines considered. The second study evaluates the impact of DBF on

laypeople comprehension.

One standard measure for machine translation tasks is BLEU score [73],
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which measures the overlap in words and phrases between a system’s out-

put and a reference output. It is also used frequently in other sequence-to-

sequence problems such as text simplification. Nevertheless, BLEU has been

shown insufficient for text simplification tasks due to the large overlap be-

tween the source and target vocabulary [74]. Therefore, we instead consider

the SARI metric, which showed better correlation than BLEU with human

judgement on text simplification tasks [74]. SARI, similarly to BLEU, mea-

sures the overlap of the system’s output with a reference output, but also

measures the amount of novelty introduced by the system. The novelty

component in the metric rectifies BLEU’s shortcoming in measuring the per-

formance of a text simplification system. Moreover, we also use the PINC

metric [75] to measure, in isolation, the amount of novelty introduced by a

system.

As for the experimental setup, to avoid evaluating systems on a limited

dataset size, we perform 5-fold cross validation to utilize the full dataset for

evaluation. For every fold, we take 20% of the training data for tuning.

3.5.1 Automated Evaluation:

We present in Table 3.3 the average performance of all systems on the eval-

uation portion of the dataset for all five folds. We also distinguish between

the performance on the full dataset and the more critical subset – free-text

instructions, and include the results in Table 3.4. For reference, we also

include a baseline system that performs no change.

Table 3.3: Performance of the simplification systems on all medication
instructions

Method Supervision Type PINC SARI

No Change N/A 0.00 32.83
MetaMap+CHV Knowledge-Aware 25.84 45.64
DBF Knowledge-Aware 19.61 55.33
Pointer-Generator Direct Supervision 32.25 54.75
Seq2Seq-w-Att Direct Supervision 50.81 79.26
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Table 3.4: Performance of the simplification systems on the free-text subset
of the medication instructions

Method Supervision Type PINC SARI

No Change N/A 0.00 39.29
MetaMap+CHV Knowledge-Aware 26.32 54.35
DBF Knowledge-Aware 21.52 56.51
Pointer-Generator Direct Supervision 36.34 40.01
Seq2Seq-w-Att Direct Supervision 78.35 48.27

We first compare the two knowledge-aware systems: MetaMap+CHV and

DBF. First, and confirming our main hypothesis, the context-aware frame-

work of DBF led to higher quality simplifications gaining an absolute 9.7%

improvement in SARI scores over MetaMap+CHV, and a 22.5% gain com-

pared to the No-Change case. Even though MetaMap has the added flexibil-

ity to operate on a phrase level, we attribute its comparatively lower quality

to its poor WSD. Second, and by comparing PINC scores, we notice that

DBF is more conservative in its changes, making it less likely to mistakenly

alter key information, arguably a desired behavior in a critical domain such

as healthcare. This is mainly due to it considering the identity replacement

as a possible simplification, and letting the context decide whether to at-

tempt simplification or not. These observations are also consistent on the

free-text subset of the evaluation data, though we note that the gap shrinks

between the two systems. We hypothesize that this is due to MetaMap+CHV

committing consistent errors over one or more highly repeated terms in the

structured subset of the medication instructions.

Next, we observe that, including the supervised deep learning methods,

Seq2Seq-w-Attention performs significantly better than all systems. The

high performance of the Seq2Seq-w-Attention is an expected result, due to

the advantage of direct supervision in general, but also because direct super-

vision would allow it to memorize the annotator’s style as well. The poor

performance of the Pointer-Generator was unexpected considering its mech-

anism to pass easy words. Upon further inspection, we noticed two factors

that degraded performance. First, the copy mechanism led to meaningless

repetition of words as previously noted in the literature [76]. Second, the

25



copy mechanism led to copying hard words as is.

Finally, we focus our attention on how performance levels are affected when

considering free-text instructions only, which are more representative of com-

plicated health material. We notice that all the systems show more activity

(higher PINC scores) in their simplifications, as these systems encounter more

hard words in the original instructions. This provides further evidence that

the free-text instructions constitute a critical component of the evaluation.

Second, we notice that the performance of the supervised systems suffers sig-

nificantly on the free-text instructions (compared to that on All Instructions),

while that of the knowledge-aware (utilizing background knowledge such as

UMLS and CHV) systems remain comparable, to the extent that DBF be-

comes the best performing approach on free-text instructions. This reflects

the robustness of the knowledge-aware systems in a low-resource setting. In

a setting where a sufficient parallel corpus is available, neural machine trans-

lation systems are recommended, but in the absence of a sizable in-domain

corpus, DBF achieves better performance.

3.5.2 Simplification Effects on Patient Comprehension:

We also investigated whether DBF’s simplification efficacy helped improve

laypeople comprehension, by measuring their ability to answer multiple choice

questions (percent correct) on medication instructions before and after sim-

plification (see Figure 3.2). Participants, on Amazon Mechanical Turk, were

160 adults diverse in age, cultural and academic background, and gender. 100

instructions were randomly selected from the free-text subsample of our orig-

inal set of medication instructions (see Materials Section), along with their

DBF simplifications and their respective multiple choice questions. Each

participant read 50 instructions and answered the corresponding questions.

A counterbalancing scheme ensured that each participant read 25 original

instructions (as written by the physician) and 25 instructions simplified by

DBF. No participant encountered both the original and the simplified ver-

sion of the same instruction. Also, hardness levels of medication instructions

were balanced for each participant.

The key result of this experiment was that the participants understood the

simplified instructions 24.4% better than the original instructions (F (1, 7973) =
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Figure 3.2: Example questions from the online human subjects study
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Figure 3.3: Impact of DBF on the different hardness levels of medication
instructions

112.3, p < .0001, 58.23% vs 46.80%). Hardness level also influenced compre-

hension (F (2, 7973) = 14.6, p < .0001; see Figure 3.3). The simplification

benefit was largest when there were two difficult words (45.63% relative),

rather than one (16.55% relative) or three difficult words (15.87% relative).

It is possible that having two rather than one difficult word gave more poten-

tial for DBF’s simplification to increase comprehension. However, when the

simplification process involved three words, the propagation of error led to

a decrease in the quality of the simplification, and this may have negatively

impacted comprehension.

3.6 Discussion

To better understand the functioning of the knowledge-aware systems, we

study the effect of ft on their first stage of identifying hard words. Upon

tuning the systems on the validation dataset, ft was set to 672 for both

systems coincidentally. Based on Figure 3.4, we deduce that around 18% of

words in the original instructions were attempted for translation, reflecting

a high recall of hard words.

Along the same lines, we check the effect of ft on DBF and MetaMap+CHV
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Figure 3.4: Percentage of words considered hard, and accordingly
considered for lexical replacement, as we vary the frequency threshold

in terms of the two evaluation scores (see Figure 3.5). In terms of PINC

scores, we observe an expected pattern of increase as we increase ft for both

systems. As ft increases, both systems attempt to modify more of the orig-

inal sentence (including easy words) leading to a lower overlap with refer-

ence sentences. MetaMap+CHV introduces more novelty as we increase ft

since DBF can retain easy words even if they were identified as hard, unlike

MetaMap+CHV. As for SARI scores, we observe the significance of tuning

the first stage, where too low of an ft results in reduced performance due

to lack of attempted translations (low PINC scores), and too high of an ft

results in reduced performance due to translating easy words. Moreover, we

observe consistent enhances in performance for DBF over MetaMap+CHV

for all ft considered.

Moving our attention to the effect of k and r on the performance of DBF,

we show in Figure 3.6, DBF’s SARI score when varying k and r from 1 to 5,

and fixing ft to 672. Our first observation is a positive trend as we increase

k, particularly for r = 1. This shows the aptitude of the language model at

selecting the best translation even when faced with a plethora of options given

equal translation probabilities. As for r, we notice reduced performances

for any r value different from 1. We thus conclude that the model we use
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Figure 3.5: Effect of the frequency threshold on the performance of DBF,
and MetaMap+CHV

for estimating translation probabilities is not benefiting translation quality.

Moreover, the ranking of the concepts returned by the UMLS search function

has insignificant value, when an appropriate language model is present.

Figure 3.6: Effect of the hyperparameters k and r on the performance of
DBF

Finally, we analyze several example simplifications from the various sys-

tems in Table 3.5. The first example shows the incapability of Seq2Seq-w-

Att to recover from a wrongly generated first word (Wheeled). Moreover,

we notice Pointer-Generator’s tendency to even pass hard words. In the sec-

ond example, we notice how MetaMap+CHV retains “PRN” despite being

a hard word, due to MetaMap not mapping it to any UMLS concept. Addi-

tionally, we see Seq2Seq-w-Attention’s mishandling of numbers since it does
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Table 3.5: Sample output simplifications from the different systems
considered

Source: Total 90 mg QAM.
Gold: Total 90 milligrams every morning.
DBF: Total 90 mg every morning.
MetaMap+CHV: Total 90 mg every morning.
Seq2Seq-w-Att: Wheeled systolic blood sugar test result is between 301 and 180,
Pointer-Generator: Total 90 mg QAM.

Source: Every 4-6 hours PRN thoracic back pain.
Gold: Every 4 up to 6 hours as needed for chest back pain.
DBF: Every 4-6 hours as needed thoracic back pain.
MetaMap+CHV: Every 4-6 hours PRN thoracic back pain.
Seq2Seq-w-Att: Every 6 hours as needed for back pain.
Pointer-Generator: Every 4-6 hours PRN back pain.

Source: Take 15 g by mouth 2 times daily as needed.
Gold: Take 15 grams by mouth 2 times daily as needed.
DBF: Take 15 grams by mouth 2 times daily as needed.
MetaMap+CHV: Take 15 gram per deciliter by mouth 2 times daily as needed.
Seq2Seq-w-Att: Take 15 grams by mouth 2 times daily as needed.
Pointer-Generator: Take 15 grams by mouth 2 times daily as needed.

Source: For better hearing with the ear, avoid cleaning your cerumen.
Gold: For better hearing with the ear, avoid cleaning your earwax.
DBF: For better hearing with the ear, avoid cleaning your wax.
MetaMap+CHV: For better hearing with the ear, avoid cleaning your earwax.
Seq2Seq-w-Att: Provide syringes dressings with the month, and Sunday more Lantus.
Pointer-Generator: For UNK UNK with the UNK UNK

not have a mechanism for passing easy words. We also notice how Pointer-

Generator wrongly eliminates words (thoracic) essential to the meaning of

the sentence. On the other hand, the next example shows the shortcomings

of MetaMap+CHV’s disambiguation algorithms, while DBF was able to ac-

curately map “g” to “grams”. Whereas both deep learning methods get the

full mark on this example since it is a structured medication instruction.

The last point we would like to address is the last example in Table 3.5.

This example, contrary to the previous ones, was not taken from the medi-

cation instruction dataset, but rather created by us to portray a complicated

sentence from another medical domain, in this case: online health tips. As

can be seen from the systems’ outputs, the robustness of knowledge-aware

systems is evident in comparison to the supervised deep learning methods,

which are completely off the mark.
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CHAPTER 4

ENTITY LINKING FOR AUTOMATIC
SHORT ANSWER GRADING FOR

MEDICAL TRAINING

4.1 Introduction

Clinical text is known to be highly ambiguous in nature, posing a challenge

for downstream NLP applications [77]. As shown in Figure 4.1, among the

terms appearing in UMLS [10], a majority of them have more than one sense,

reflecting a high level of ambiguity. A term like “CP” could refer to “Chest

Pain”, “Cerebral Palsy”, “CP gene”, and many more concepts. Accordingly,

downstream clinical natural language processing (NLP) applications, such as

named entity recognition [78], syntactic parsing [79], or relation extraction

[80, 81], require the resolution of these ambiguities as part of their algorithm.

The complexity of the task is showcased in Figure 4.2. Although “CP” might

refer to “Chest Pain” in text, (1) it can map to multiple concepts in an

anthology, and (2) it might not map to the intended concept. This motivates

the task of entity linking clinical text to an ontology of clinical and biomedical

concepts.

Targeting clinical text, several entity linking systems have been proposed:

MedLEE [82] relies on traditional parsing techniques such as Definite Clause

Grammer (DCG), MetaMap [59, 12] which has been shown to struggle with

WSD [12], cTAKES [83] which builds on the SPECIALIST Lexical Tools

by NLM [84], and others. These systems have been shown to underperform

with F-scores between 0.17 and 0.60 on the task of abbreviation identification

and resolution as mentioned in a recent comparative study of clinical text

processing systems [85]. Moreover, these systems required intensive training

or development, and are susceptible to the nature of the domain language

they were developed on. For example, with a shift in the target medical case

from a chest pain, to cerebral palsy, abbreviations such as “CP” would also

shift in the sense profile while the aforementioned systems have shown to
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Figure 4.1: Ambiguity of terms in a dataset of clinical chart notes. The
senses of a term are counted by the number of UMLS concepts a term
participates in.

Chart Notes:
Patient suffering from CP for 2 days. Factors ...
UMLS(Chest Pain):
chest pain, thoracic pain, thorax pain, ...
UMLS concepts with CP as an atom:
Cerebral Palsy, CP Protocol, Centipoise, etc.

Figure 4.2: “CP”, which refers to chest pain in a chart note on chest pain,
does not take part in the UMLS concept for Chest Pain, while being part of
several other concepts.

be non-robust to such shifts [86]. Other systems such as CARD [86] have

also been proposed, but require undesired manual intervention. Accordingly,

we present an unsupervised, medical case-sensitive entity linking algorithm.

It can handle ambiguous full terms as well as abbreviations, while being

sensitive to the language characteristics of different medical cases.

To perform entity linking, we rely on three sources of information: (1)

distributed representations of words trained on clinical text, (2) unanno-

tated clinical text, and (3) an ontology of clinical technical terms. Given

an ambiguous term such as “CP”, we assume the presence of a nonambigu-

ous surface form alternative of it such as “Chest Pain” in one of the similar

case notes from the given dataset, and use regular expressions to look for

such candidates. Then, we rely on Positive Pointwise Mutual Information
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(PPMI) as our distributed representations, trained on the aforementioned

chart notes, to filter out candidates based on semantic information. We then

use candidate results as queries to search for exact matches in an ontology of

clinical technical terms for candidate technical concepts. We finally choose

the concept whose various surface forms appeared the majority number of

times in the text.

In this chapter, we (1) offer a medical case-adaptable, unsupervised entity

linking method for clinical text, and (2) showcase its benefits on the task

of automatically grading chart notes in comparison to the well-established

entity linking system of MetaMap.

4.2 Related Works

As previously mentioned and demonstrated in Figure 4.1, clinical text is rife

with ambiguity. The issue is also present in the sister domain of biomedi-

cal text. Accordingly, several works have realized the importance of entity

normalization (and consequently, entity linking) in biomedical and clinical

text. Several studies have been proposed crossing rule-based [87, 88, 89],

neural-based [90, 91], and machine learning-based methods [92, 93]. For ex-

ample, one system [89] focused on disease normalization by identifying five

different types of rules affecting the surface form of disease names. Another

system [88], also focusing on disease and disorder normalization, automati-

cally learned, by relying on the training data present, transformations done

on disease names to generate the different synonyms. Also, several other

learning to rank-based systems were proposed, by relying on either a linear-

RankSVM [94] or a convolutional neural network [90] to accurately rank the

pairs of surface form and normalized form.

More recently, and with the advancement of large pre-trained contextual-

ized language models [95, 96, 97], and biomedical [14], as well as, clinical [98]

versions of them, authors in [99] advanced the state-of-the-art in biomedical

entity normalization by 1.17%. Our system differs from the previously men-

tioned learning-based systems in that it does not require training in a setting

where chart notes for a particular medical case are not present. Moreover, it

differs from rule-based methods in not having to create the ever-expanding

rules of variations of clinical term among the different subdomains of clinical
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text, as well as among the different physicians/students.

4.3 Method

Linking terms in clinical text to entities is unique in two aspects: (1) Given

a medical case, a term tends to be consistent in the sense it takes, and

(2) terms shift sense profiles across medical cases. So, for example, a term

like “CP” is almost always surely to have the sense “Chest Pain” in a case

about chest pain of a patient, and almost always surely to have the sense

“Cerebral Palsy” in a case about a patient suffering from “Cerebral Palsy”.

Accordingly, we design a method which is case-adaptable, but also static per

case, or better referred to as one sense per discourse [100], as it has been

shown that majority sense methods work well in the absence of a domain

shift.

Our method is designed as a three-stage pipeline (Figure 4.3), described

later in detail: (1) Candidate Expansion Collection, (2) Candidate Expansion

Selection, (3) UMLS Concept Selection. The first two stages are essential

to handle the abundance of abbreviations, standard and non-standard, in

clinical text, while the last stage operates on all technical terms.

4.3.1 Candidate Expansion Collection

Abbreviations compose a large portion of technical terms, and coverage of

abbreviations in the thesaurus we use, UMLS, is low. That is even more

aggravated by non-standard abbreviations. Hence, the need to identify the

expansion of the abbreviation first.

We first overgenerate candidate expansions of abbreviations using regular

expressions. Accordingly, given an abbreviation C1C2...Cn, where Ci is the

ith character of the abbreviation, we look for either n-grams where the ith

word starts with the ith character of the abbreviation, or unigrams that start

with C1 and maintain the order of the order of the remaining characters.

For example, an abbreviation like “CP” would possibly return “Chest

Pain”, and “computer” as candidate expansions among others.
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Figure 4.3: Block diagram of entity linking algorithm. Case example: “CP”.

4.3.2 Candidate Expansion Selection

Due to the overgeneration of the previous stage, we found it necessary to

narrow down the candidates. To perform this operation we rely on the as-

sumption that the abbreviation and the expansion carry the same semantic

meaning and thus will be accompanied by similar context. One method

to model the semantics via the context associated with terms is relying on

Positive Pointwise Mutual Information (PPMI) [101]. In PPMI, word col-

locations are measured as the positive logarithm of the probability of two

words appearing in the same context window, normalized by the product

of the probability of the words appearing independently. More formally,

PPMI(x, y) = max(0, log( p(x,y)
p(x)p(y)

)), where x and y are two words in the

vocabulary. After we have a measure of the collocation of two words, a word

gets a distributed representation of its collocation level with every other word

in the vocabulary. Accordingly, we use PPMI on the corpus of chart notes of

the case of interest to generate a distributed representation ~w of every word w

in our corpus. Assuming ~a is the abbreviation of interest, and {~e1, ~e2, ..., ~em}
is the set of candidate expansions from the previous stage, we check for se-

mantic similarity of every ~ei with ~a using cosine similarity. More formally,

we choose the top candidates that maximize cos(~a,~ei). We found it best,
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qualitatively and computationally, to keep only the top three candidates for

the next stage.

4.3.3 UMLS Concept Selection

The final stage maps the term of interest to the representative UMLS concept.

Given the top three candidate expansions (if any) from the previous stage,

and given the term itself, all UMLS concepts with an atom matching one

of the expansions or the term are retrieved and considered candidate UMLS

concepts {c1, c2, ..., ck}.
Based on the assumption that different nonambiguous surface forms of

the same concept are expected to appear in the corpus of chart notes of a

medical case, we score a UMLS concept based on the count of its atoms that

appear in the corpus C. Accordingly, score(ci) =
∑

atom∈ci
1{atom ∈ C}. The

technical term is then mapped to the UMLS concept with the highest score,

finalizing the entity linking process.

4.4 Experiments

We extrinsically evaluate our system and compare against MetaMap on the

task of automatic grading of chart notes.

4.4.1 Automatic Grading of Chart Notes

To assess the impact of our entity linking algorithm on clinical NLP down-

stream applications, we choose the task of automatic grading of chart notes.

Medical students interview standardized patient actors (SPs) and are re-

quired to document the visit on an electrical chart note. Faculty physicians

are then required to manually grade each chart note based on a set of rubric

items. This manual labor wastes high in-demand physician time, and delays

feedback for students, hindering learning.
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Baseline System

Operating with a scope of one medical case at a time, chest pain for example,

our baseline system takes as input: (1) rubric, (2) student chart note, (3)

case description. The rubric includes items that are expected to be noted in

the chart note, and includes items of six categories: (1) Pertinent Positives,

(2) Pertinent Negatives, (3) Pertinent Physical Exam Positives, (4) Pertinent

Physical Exam Negatives, (5) Diagnoses, and (6) Tests Ordered. The chart

note is also divided into four sections: (1) Patient History, (2) Physical Exam,

(3) Diagnosis, (4) Tests Ordered, with a correspondence between the rubric

item and the chart note sections. The system is required to check, for each

rubric item, if it was covered by the corresponding section in the chart note.

If yes, a credit of 1 point is assigned to the rubric item, otherwise 0. The

case description helps only as better data for PPMI and RegExp stages in

the entity linking algorithm.

Accordingly, we devise the following pipelined baseline. First, all rubric

items and all chart note sections undergo standard preprocessing methods,

particularly: (1) sentence tokenization, (2) word tokenization, (3) stopwords

removal, (4) lowercasing, and (5) removal of non-alpha words. Handling

counts is out of the scope of the baseline, although not ideal. Also, prepro-

cessing methods are implemented using NLTK [102].

Operating on a word level, our baseline checks, for every word in the rubric

item, if there is a semantically equivalent word for it in the corresponding

chart note section. The algorithm relies on distributed word representations

for a more flexible comparison than 1-hot vector representations. Let the

rubric item be denoted as R = r1r2...rk, and corresponding chart note section

be denoted as c1c2...cm, where k is the number of rubric item words, and m

is the number of words in the corresponding chart note section. Then, every

rubric item is given a score score(R) =
∑

i≤k,j≤m
1{cos(~ri, ~cj) ≥ vt}, where ~ri

and ~cj are the vector word representations of ith and jth word of the rubric

item and chart note section respectively. We use off-the-shelf clinical word

vector representations that were trained using FastText [103] on PubMed and

MIMIC-III [104] with a dimension of 200. The term vt is a tunable cosine

similarity threshold above which two words are considered to be semantically

close enough. Finally, a rubric item is given credit if its score crosses a tunable

threshold rt.
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Table 4.1: Dataset statistics

Case Name Chest Pain Back Pain Headache
Students 55 55 55
Rubric Items 36 30 42
Avg. Rubric Len 4.14 4.93 4.71
Avg. Note Sec. Len 218.99 231.49 213.98

One issue with the above vanilla system is that some words might be

mistakenly missed such as “ECG” in the rubric item and “EKG” in the

chart note. This is where entity linking helps. And so to assess the impact

of our entity linking algorithm, after normalizing to a UMLS concept, we not

only compare the word vectors of the original surface form, but we check if

any of the atoms of the UMLS concept selected on the rubric side matches

with any of the atoms of the UMLS concept selected at the chart note side.

For entity linking, we use both our system and MetaMap, and compare in

terms of effect on accuracy.

Data

We collect data on three medical cases from a collaborating healthcare insti-

tution. The cases were on: (1) Chest Pain, (2) Back Pain, and (3) Headache.

The diversity of cases also helps in assessing the generalization of the method

across cases. This is essential as the three cases at hand are not exhaustive

to the list of medical cases to be delivered for grading in the future. Es-

tablishing good performance on all three cases ensures the generalization of

methods. To have a better understanding of the dataset, we show statistics

of the dataset in Table 4.1.

4.4.2 Results

To check the impact of our entity linking algorithm on the system’s perfor-

mance, we run the system on all three cases while manipulating the entity

linking component into three conditions: no entity linking (Baseline), entity

linking via MetaMap, and entity linking using our algorithm (Case-adaptive).

We measure performance based on accuracy on a rubric item level. We choose
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Figure 4.4: Effect of entity linking and UMLS integration on the Chest
Pain case

Table 4.2: Examples of entity resolution by both systems on the Chest Pain
case. The output of each system is indicated by the preferred name of the
UMLS entity.

Ambiguous term UMLS Non-ambiguous synonym MetaMap Case-Adaptive*

URI Yes Upper Respiratory Infections N/A Upper Respiratory Infections
MI Yes Myocardial Infarction Myocardial Infarction ECG Assessment Myocardial Infarction
CP No Chest Pain Captopril Chest Pain
SOB Yes Shortness of Breath Dyspnea Dyspnea
h/o No History of History of N/A
F Yes Female Fluorides Females
C No Cold N/A N/A
PMH Yes Past Medical History Medical History Medical History
WNL No Within Normal Limits N/A N/A
ACS Yes Acute Chest Syndrome Acute Chest Syndrome Activities

the best performing vt, and check performance for all rt values on all cases

in Figures 4.4, 4.5, and 4.6. Our system significantly outperforms MetaMap

on all three cases given its poor WSD system in a highly ambiguous set-

ting, with MetaMap being non-adaptive to the different medical cases, but

designed once for general use. We also notice across all three cases that

the optimum performance with UMLS integration, using our system, is al-

ways at a higher rt than without. This is because with UMLS integration,

the chances for a random hit increase, and thus the need for a stricter rt.

In terms of absolute percentage increase in performance, our case-adaptive

system increases performance over the vanilla baseline by 1.96%, 0.42%, and

2.44%, and over the MetaMap baseline by 9.18%, 8.02%, and 9.56% on Chest

Pain, Back Pain, and Headache case respectively.

Since the datasets are not balanced across the binary labels 0/1, we also
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Figure 4.5: Effect of entity linking and UMLS integration on the Back Pain
case

Table 4.3: Examples of entity resolution by both systems on the Back Pain
case. The output of each system is indicated by the preferred name of the
UMLS entity.

Ambiguous term UMLS Non-ambiguous synonym MetaMap Case-Adaptive*

wk Yes Week Week Week
LE No Lower Extremity LE, Rat Strain LE, Rat Strain
SLR No Straight Leg Raise N/A Straight Leg Raise Test Response
PT Yes Patient Physical Therapy Present
MRI Yes Magnetic Resonance Imaging Magnetic Resonance Imaging Magnetic Resonance Imaging
FADIR No Flexion Adduction Internal Rotation N/A N/A
FABER No Flexion Abduction External Rotation N/A N/A
VS No Vital Signs N/A Patient Visit
CVA No Costovertebral Angle Renal Angle Tenderness Cyclophosphamide ...
CTA Yes Computed Tomography Angiography PCYT1A wt Allele Cancer/testis antigen

measure our system’s performance for F-1 score and note a performance of

79.32%, 76.12%, and 70.52% on the Chest Pain, Back Pain, and Headache

case respectively. This reflects that the F1 score and the accuracy measure

are comparable for all cases except for a large drop for the headache case,

showing that the system is not biased towards one label. Although this also

shows that the headache case could be highly imbalanced towards positive

instances.

Finally, to understand the performance of our case-adaptive system in

comparison to MetaMap, we consider several examples of ambiguous abbre-

viations in Tables 4.2, 4.3, and 4.4. For every example, we indicate the

ambiguous term, whether that term appears in the right concept in UMLS,

the nonambiguous synonym of that term, the preferred name of the concept

that MetaMap resolved the term to, and our system’s output. In general,

41



Figure 4.6: Effect of entity linking and UMLS integration on the Headache
case

Table 4.4: Examples of entity resolution by both systems on the Headache
case. The output of each system is indicated by the preferred name of the
UMLS entity.

Ambiguous term UMLS Non-ambiguous synonym MetaMap Case-Adaptive*

PMH Yes Past Medical History Medical History Medical History
HTN Yes Hypertension Hypertensive Disease Hypertensive Disease
R Yes Right Right Roentgen
SOB Yes Shortness of Breath Dyspnea Dyspnea
PPD No Packets Per Day Purified protein derivative ... Menstruation
FH Yes Family History N/A CFH wt Allele
MI Yes Myocardial Infarction Myocardial Infarction ECG Assessment Morning
DM Yes Diabetes Mellitus Dextromethorphan Diabetes Mellitus
UE No Upper Extremity N/A Upper Extremity
LE No Lower Extremity LE, Rat Strain HPS4 Gene

our system correctly resolves more examples (14) in comparison to MetaMap

(10). More particularly, MetaMap does well on standardized abbreviations

such as PMH, HTN, MRI, and SOB, but it cannot handle case-specific, non-

standardized abbreviations such as CP, SLR, and UE.

Experiments conclude that an unsupervised entity linking algorithm is

capable of adapting with the change of the medical case and not requiring

any training data: two well-known obstacles in previous works. The entity

linking system benefits from the positive impact of the algorithm on the

downstream task of automatic grading of medical student chart notes, a task

well motivated educationally and operationally.
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CHAPTER 5

CONVERSATIONAL AGENT FOR
MEDICAL ADHERENCE

5.1 Introduction

Another biomedical NLP field lacking the required training data is the field

of medical conversational agents (CA). For CAs to hold an engaging conver-

sation with the user, the CA needs to first understand the intent of the user.

The training data in this setup would be examples of phrases to express a

certain intent [13]. For example, for a conversational agent to understand

that a user wants to hear the weather report, multiple example ways of ask-

ing for the weather need to be supplied to the conversational agent, such

as: “How is the weather?”, “What’s the weather like today?”, “Is it sunny

today?”, and ideally, many more. Such datasets, in general, are not available

naturally, and are harder to find in the biomedical domain. Consequently,

we pose the question, Can biomedical knowledge bases assist the process of

collecting training data for CAs?

The particular biomedical application we consider for this CA is increasing

medical adherence through the process of teachback [105]. One of the causes

of low medical adherence, and consequently, low health levels, is a lack of

understanding of the medical prescription itself [106]. Many conditions can

prevent a patient from fully comprehending their medical prescription such

as mental status at the time, cognitive overload with multiple medications

to learn about, limited physician-patient time [107]. For that purpose, a rec-

ommended practice is to use the teachback method when teaching a patient

about their medication at discharge time [108]. The teachback method re-

quires the physician, or the nurse, to inform the patient of details about their

medication in stages, and requires the patient to repeat the information back

to the physician. The purpose of that repetition is to: (1) enhance retention,

and (2) ensure accuracy of understanding. Due to resource constraints, this
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teachback process tends to be overlooked, and the use of a CA is promising

for this resource-constrained scenario. Motivated by this issue, we take on

the task of developing a CA to assist in medical adherence by delivering a

patient’s medical adherence using the teachback method. Along the course

of development, we study the potential of knowledge bases to alleviate the

dataset sparsity issue, and assist in the training of the CA.

Owing to the requirements of teachback, the CA asks the patient a ques-

tion to test their comprehension of an aspect of their medical prescription.

One challenge in the development of the CA is how to use a technology

intended to be user-initiated and utilize it for a CA-initiated conversation.

Current uses of CAs tend to be a user asking a question, and the CA re-

sponding. To tackle this challenge, we design our own dialogue management

logic, and rely on the present CA technology solely for assessing whether the

patient uttered a paraphrase of the expected answer. In this setup, intents

become answers, and intent training phrases become possible paraphrases of

the required answer. Essentially, we utilize the CA technology solely for its

paraphrase detection capabilities.

For the CA technology, we utilize Google’s Dialogflow [13], which in turn

requires a small set (recommended≈ 10) of paraphrases for every intent/answer.

Hence, we first collect a seed dataset of paraphrases for every intent. This

allows for the development of a benchmark CA, and then we study the po-

tential of a knowledge base to augment the initial dataset into a larger, more

comprehensive dataset. Data augmentation is performed by first identify-

ing UMLS concepts in the training phrases, retrieving their synonyms from

UMLS, and augmenting the dataset by considering all the combinations of

synonyms that could be used in the full sentence. For example, for a train-

ing phrase such as “I should take my medication orally”, “medication” and

“orally” can be identified, and replaced with their synonyms: “drug”, “by

mouth” respectively. We further use the seed dataset to evaluate the CA at

correctly assessing the patients’ answers before, and after data augmentation.

5.2 Previous Work

A recent interest in conversational agents for healthcare has resulted in ex-

ploring the potential conversational agents can have on a user’s health. ran-
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domized controlled trials (RCTs) showed that embodied agents can have a

positive impact on, including but not limited to, a user’s physical activity,

dietary habits, comprehension of health data [109, 110, 111, 112]. Despite

the apparent potential, this field is far from mature. Most work identified

and mentioned here dates after 2010, with most lacking RCTs [113].

As mentioned earlier, the majority of previous work has found value in an

embodied agent [114, 115, 116, 117, 118], rather than a chat bot [119, 120].

Among the embodied agents, four of them [114, 115, 116, 118] focus on a

specific task, and control the dialogue in a rule based mechanism, similar to

our work, while the other uses a frame-based dialogue management system,

and does not focus on a specific task.

The first embodied agent [114] delivers social skills training to people with

autism spectrum disorders. To assess the performance of the patients and

perform feedback, it relies on predefined acoustic, linguistic, and visual cues,

and does not rely on a labeled training set, as ours. The second embodied

agent [115] diagnoses patients whether they suffer from major depressive

disorders (MDD) or not. The agent in this case solicits input but offers no

feedback. The input is then used to assess whether the patient suffers from

MDD according to predefined diagnostic criteria. Thirdly, the work in [116]

developed an agent to diagnose excessive daytime sleepiness. To perform the

diagnosis, the agent asks a series of rating questions thus severely limiting the

user’s possible utterances. The answers are then used to generate a predefined

score for the patient. Finally, the work in [118] utilizes conversational agents

to allow for anonymous self-reporting of symptoms that patients would rather

not disclose otherwise. The example in this study was veterans finding more

comfort in reporting to a virtual agent rather than an actual physician. In

this study, although an agent is used to solicit input from war veterans,

the agent did no NLP processing and offered no instantaneous feedback,

but rather used human coders to analyze the input of the user post-study.

Despite the potential of conversational agents in healthcare, most agents do

not rely on supervised NLP possibly due to lack of training data.
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5.3 System Setup

The communication efficiency of a CA does not solely rely on the quality of

the underlying NLP technology. For a user to smoothly communicate with

a CA, they need to feel that the conversation is as natural as possible. For

that reason, users, and especially older patients, prefer vocal communication

over a textual communication, and prefer communicating with an embodied

agent rather than just a sound [121].

To achieve such a vocalized embodied agent, an NLP component com-

municates with a speech component and a visual component to deliver the

teachback process to the patient. The flow of communication, from the pa-

tient to the submodules and back to the patient, is depicted in Figure 5.1.

Step (1) has the CA vocally deliver a piece of information (referred to as a

frame) about the prescribed medicine, followed by a question to the patient

about the delivered frame. Table 5.1 enumerates, with examples, all the

frames that the CA delivers. In step (2), the patient answers the question

soliciting a repetition of the frame. In (3) the speech recognition module

transcribes the utterance of the patient into text and feeds it into the NLP

component, which assesses the patient’s response, and generates the CA’s

textual response (4). The CA’s response is either an affirmation of the pa-

tient’s answer and a delivery of the next frame, or an identification a wrong

answer, delivering the frame again, and repeating the question. The speech

generation module takes the textual response and generates the audio re-

sponse (5). The visual renderer takes the audio response as an input, and

generates the embodied response, animating the agent’s body and lips, in an

appropriate background.

The embodied agent is depicted in Figure 5.2. Following the recommenda-

tion of a human subjects study [121], the agent is embodied as a female rather

than a male, and an older female rather than a younger female. The combi-

nation of an older female established the most trust with the human subjects,

which is an important aspect of health-related communication. Furthermore,

the agent is placed in a professional setup to communicate credibility.

Off-the-shelf tools are adapted to our task at hand for all 3 modules: NLP,

speech, and visual. For the visual module, we use the Virtual Human Toolkit

[122]. For speech, we use the Kaldi toolkit [123]. And for NLP, we utilize

Google Dialogflow [13], Google’s engine for conversational agents. Focusing
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Table 5.1: Medication information segmented to frames of information

Frame Text
Name Your medication is called Metformin.
Purpose It is used to treat type 2 diabetes by helping

to control the amount of sugar in your blood.
Benefits If you take Metformin as directed, you will

have a better blood sugar. A better blood
sugar helps to keep your heart, eyes, kidneys,
and blood vessels healthy.

Warnings Be sure to follow all exercise and diet recom-
mendations from your doctor or dietitian. It
is important to eat a healthy diet.

Dose Take one tablet of Metformin by mouth.
Frequency Take your medicine two times a day, with

breakfast and with dinner. Swallow the table
whole.

Duration Continue to take Metformin even if you feel
well. Do not stop taking it without talking
to your doctor.

Missed Dose If you forget to take your Metformin on time,
take it as soon as you can. However, if it is
almost time for the next dose, skip the missed
dose and continue your regular schedule. Do
not double dose to make up for a missed one.

Side Effects Some side effects are expected, but talk to
your doctor if you notice diarrhea or metallic
taste. Other side effects can be serious. If
you experience any of these symptoms, call
your doctor immediately or get emergency
treatment: itching or hives, swelling in face,
hands, or mouth, stomach pain, or trouble
breathing.
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Figure 5.1: Block diagram of Health EdVisor pipeline

Figure 5.2: Appearance and setup of Edna
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on the NLP component, we detail next the training procedure of the NLP

module, and the data collection process.

5.3.1 NLP Component

The NLP component is responsible for intelligently assessing the quality of

patients’ answers by assigning them a binary label ∈ {correct, wrong}. To

perform this assessment, we model it as a paraphrase detection problem, in

which we have a set of reference answers and we assess whether the input

utterance by the user is a paraphrase of the reference answers or not. In this

setup, utterances are assessed by their semantic similarity to a set of correct

answers. Nevertheless, a wrong answer (such as missing a negation) can still

have a high semantic similarity with the reference answers. To avoid such

false positives, we further provide sample wrong answers. In this updated

setup, an input answer is assessed by comparing it to a reference of correct

and wrong answers simultaneously. An answer is predicted as wrong if it did

not match any of the classes, or if it matched the class of wrong answers. The

wrong answers are designed to be highly adversarial by including a significant

amount of lexical overlap with the correct answers for the CA to be able to

identify wrong answers with high overlap.

Accordingly, for every frame, a set of correct and wrong answers is collected

and fed to Google Dialogflow for training. A separate paraphrase detection

module is trained for every frame since the agent, at runtime, is aware which

frame the patient is answering about, and thus reduces the hypothesis set to

the correct and wrong label of the respective frame.

Data Collection

An essential component of this supervised setup is the phrases for each class

{correct, wrong} of each frame. Accordingly, for each frame, seven anno-

tators were given: (1) the information that would be given to the patient,

and (2) the question that would be asked as a followup to check the com-

prehension of the patient. Based on this information, each annotator was

asked to provide 10 examples of correct answers, and 10 examples of wrong

answers. Furthermore, the annotators were asked to divide their 10 examples
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Table 5.2: Example frame (purpose) along with its training phrases for
every class.

Frame It is used to treat type 2 diabetes by helping
to control the amount of sugar in your blood.

Question How does your medication treat diabetes.
Correct Maintains sugar level.
Wrong-Adversarial It increases the amount of sugar in my blood.
Wrong-Easy It controls something.

of wrong answers to 5 wrong answers with high lexical overlap to the deliv-

ered information, and 5 wrong examples with low overlap to the delivered

information. The purpose of this distinction is to understand the behavior of

the system under different levels of adversary, as well as provide the system

with a diverse set of wrong answers.

The final output of the collection process was 140 examples per frame

(70 correct, 35 wrong with high lexical overlap, 35 wrong with low lexical

overlap). This was done for all 9 frames. After the collection process, the

data was divided equally into training (development) and a held-out dataset

for final testing. The division of the data was ensured to be balanced between

annotators, frames, and classes.

The distinction between wrong instances with high overlap and wrong

instances with low overlap is only of significance when sampling the training

data. Such a distinction helps ensure a balance for the wrong class in terms

of examples high and low in lexical overlap. Table 5.2 includes an example

frame, purpose in this case, the associated question, and an example training

phrase for every class of aforementioned answers.

UMLS Integration

The collected dataset is limited in size, and its coverage of the different

surface forms an answer could take could be enhanced. We propose the

use of a biomedical ontology, such as the UMLS, to generate extra data

points using the seed set of examples. The method is to retrieve biomedical

phrases in the original seed set, link them to a concept in UMLS, retrieve the

synonyms (atoms) of the concept, and replace them in the original example

to generate new examples. For example, for an answer such as “Maintains

sugar level.” the word sugar is linked to the “glucose” concept in UMLS since
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sugar is an atom in that concept. Then, “glucose” is identified as a synonym

of “sugar”, and a new data point “Maintains glucose level.” is added to the

original dataset of correct answers for the Purpose frame.

Let C = {C1, C2, ..., CM} be the set of M concepts in UMLS, and let

Ai = {ai1, ai2, ..., aiN} be the set of atoms (synonym set) for concept i. Then,

for every training phrase = {w1, w2, ..., wP}, every word wk in the phrase

of length P is checked against the UMLS concepts C. A word wk is said

to be part of a concept Ci if wk ∈ Ai. Then, assuming an input phrase

{w1, ..., wk, ..., wP}, new training phrases {w1, ..., aij, ..., wP}, ∀aij ∈ Ai are

generated and added to the original seed set of training phrases. Note that

one word could be mapped to multiple UMLS concepts, and this word-level

definition of the UMLS-integration is extended to phrases by considering

n-grams up to size 3.

5.4 Results

The experiments are designed to answer two main questions: (1) Does UMLS

integration lead to a more accurate system? and (2) Is the impact of UMLS

integration magnified under a low-resource setting? Accordingly, the experi-

ments evaluate the accuracy, precision, and recall of the system while varying

two components: (1) whether UMLS is used to augment the data or not, and

(2) the size of the initial training phrases (20% or 100%).

Examining the results in Table 5.3, we conclude that when using 100% of

the training phrases as a seed set, using UMLS for data augmentation did not

have a positive impact on the F1 score, or accuracy. Suspecting that possibly

the seed set is exhaustive enough, leaving little space for UMLS to improve,

we check the impact of UMLS integration when only 20% of the initial dataset

is used. Despite the evident drop in performance, and increased potential

for improvement, an insignificant impact of UMLS-integration is observed,

confirming that the designed UMLS integration does not boost CA accuracy.

Examples detailed later answer why UMLS-integration had no impact on

performance in this case.

Next, we examine the performance of the NLP module in more detail

through the confusion matrix in Figure 5.3. We observe that adversarial

examples with high lexical overlap are mislabeled more often (59 times) than
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Table 5.3: Performance of Health EdVisor at assessing accuracy of answers
after varying percentage of data used (20%, 100%) as well as whether
UMLS was injected or not

UMLS-Augmented Data Acc P R F1
Yes 20% 65.94 63.26 60.58 61.89
No 20% 65.70 62.91 60.58 61.73
Yes 100% 79.23 74.64 82.54 78.39
No 100% 80.19 76.62 81.48 78.97

Figure 5.3: Confusion matrix for Health EdVisor assessment

their low lexical overlap counterpart (35 times), as expected by design.

Next, looking at specific examples, in Table 5.4, of different type of errors

and accurate predictions, we can understand better the functionality of the

system. The first four examples pertain to the “Benefits” frame where the

user is told that “If you take Metformin as directed, you will have a better

blood sugar. A better blood sugar helps to keep your heart, eyes, kidneys,

and blood vessels healthy”. In the first example, the user flips the direction

of two words, “helps” to “prevents” and “keep” to “damage” resulting in the

same intended meaning. The CA is still capable of assessing as it as a correct

answer due to the training data containing similar example paraphrases. The

second example shows how the system is not capable of handling negation
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in the case of high overlap of words. The third example shows some of the

characteristics of the data at hand. The input utterance in the third example

is labeled originally as “wrong” although one can argue that the inaccuracy

in the statement comes from the name of the medication and not from the

frame being tested: “Benefits”. This example shows the high adversary level

of the dataset where only word is changed, and the rest overlap with the input

utterance. The fourth example illustrates good handling of wrong answers

of high overlap with given information, again just due to presence of similar

adversarial examples in the negative class. This reflects the importance of

collecting negative instances for training. Finally, the last example shows the

incapability of the system in handling numbers. In conclusion, most of the

errors originate from incapability of handling negation and numbers, rather

than synonymy. This explains the lack of impact of UMLS on the system.
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Table 5.4: Error analysis of Health EdVisor

Gold Label Correct
Predicted Label Correct
Input Utterance It prevents the damage of my heart of my kidneys.
Trigger My heart, lungs, and kidneys might fail otherwise.

Gold Label Correct
Predicted Label Wrong
Input Utterance My metformin makes my eyes healthy.
Trigger The medication will not keep my heart, eyes, kid-

neys and blood vessels healthy.

Gold Label Wrong
Predicted Label Correct
Input Utterance If you take Metamorphosis as directed, you will

have a better blood sugar. A better blood sugar
helps to keep your heart, eyes, kidneys, and blood
vessels healthy.

Trigger Metformin results in better blood sugar. A better
blood sugar helps to keep your heart, eyes, kidneys,
and blood vessels healthy.

Gold Label Wrong
Predicted Label Wrong
Input Utterance It helps to keep my eyes, blood vessels, heart and

kidneys healthy by increasing my blood sugar.
Trigger The medication will not keep my heart, eyes, kid-

neys and blood vessels healthy.

Gold Label Correct
Predicted Label Wrong
Input Utterance One by mouth.
Trigger Two tablets by mouth.
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CHAPTER 6

AMBIGUITY IN BIOMEDICAL NLP AND
WORD SENSE DISAMBIGUATION

While experimenting with integrating knowledge bases into NLP biomedical

algorithms, one recurrent issue is the ambiguity of the biomedical text. To

retrieve knowledge from a knowledge base pertaining to a word or phrase in

the text, a system needs to first correctly identify the concept it links to in

the knowledge base. This would have been trivial were it not for ambiguity

of words and language in general. Given the high level of ambiguity of

biomedical text, we take a step back and explore the potential of current

contextualized word representations in assisting Word Sense Disambiguation

and Entity Linking.

6.1 Introduction

Biomedical text tends to be highly ambiguous in nature [124]. For exam-

ple, a term such as AA could refer either to the concept of Amino Acids

or to the concept of Alcoholics Anonymous. To quantify the level of am-

biguity in biomedical text, we take machine reading comprehension (MRC)

as an example task and examine the ambiguity level in one of its datasets:

BioASQ [125]. As shown in Figure 6.1, terms in BioASQ tend to belong

to more than one concept in the Unified Medical Language System (UMLS)

[10]. This presents a challenge not only for MRC, but other downstream

natural language processing applications operating on biomedical text, such

as relation extraction [126], and so on. To address the challenge, several

systems have been proposed ranging from rule-based methods [127] to neu-

ral methods [128, 129]. With advances in contextualized pre-trained word

representations [95, 97], and the impact they have had on downstream ap-

plications, we explore the utility of a recent contextualized biomedical word

representation, namely BioBERT [14], for the task of biomedical word sense
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Figure 6.1: Distribution of tokens based on number of UMLS concepts they
belong to

disambiguation (WSD).

Although one biomedical term could be ambiguous and refer to multiple

concepts, humans utilize the context an ambiguous term appears in to dis-

ambiguate it to the correct concept. Similarly, previous WSD methods, most

notably deepBioWSD [129], resort to modeling the context to perform predic-

tions. Nonetheless, these methods rely on static word representations, which

cannot model the change in semantics of a word based on the sense it takes in

that particular context. With recent advances in contextualized word repre-

sentations, and more particularly, biomedical ones represented by BioBERT,

the first question we pose is understanding the capacity of BioBERT at cap-

turing the semantics of the different senses of an ambiguous phrase, and

accordingly aid WSD. The advancements of contextualized word representa-

tions and their ability to model the semantics of a term given its context,

positions BioBERT favorably for the task of word sense disambiguation in

general, and biomedical word sense disambiguation in particular.

Another obstacle facing biomedical WSD is availability of training data

given the ever-expanding list of ambiguous technical terms, and the expensive

manual labor [130, 131]. For biomedical WSD to become practical, it is

essential to automate the process of data collection, assuming supervised
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Table 6.1: Context characteristics of ambiguous term based on positional
order

Occurrence Example Context
First . . . prefeeding on prececal amino acid (AA) digestibility of . . .
Second . . . and digested amounts of AA were determined . . .

methods. Self-supervision has been found to be a more realistic and scalable

avenue for machine learning applications, rather than relying on human-

annotated corpora. Accordingly, we follow methods suggested by previous

works, and utilize UMLS and PubMed to automatically create a sense-tagged

corpus, and study its quality as a training set [129].

Our study also explores the influence of the positional order of an ambigu-

ous term on the challenge of disambiguating an ambiguous term. As authors

delve deeper into their document, they assume a higher level of reader’s un-

derstanding of the context, and exhibit less explicit context in their writing.

For example, when an ambiguous acronym is first introduced, authors tend

to explicitly precede it with its expanded unambiguous form, and omit that

later on, as in Table 6.1. We hypothesize that WSD models should take

that into account when training, as well as evaluation. One of the popular

biomedical WSD datasets does not account for that aspect and labels only

the first occurrences of an ambiguous term in abstract. We claim that that

leads to mismatch in modeling for real world applications on terms that ap-

pear later in the text. We also claim that evaluating on these less challenging

occurrences overestimates the performance of biomedical WSD algorithms.

We further recommend alternative training/evaluation setups.

Finally, we distinguish between two types of ambiguous terms: (1) with

related candidate senses, and (2) with unrelated candidate senses. For exam-

ple, “Alcoholics Anonymous” and “Amino Acids” are two unrelated senses

of the ambiguous term “AA”, and thus, “AA” belongs to the second type. In

contrast, a term such as “Yellow Fever” belongs to the first type since it can

either mean the disease or its vaccine: two related senses. This distinction is

important as a mistake on the first type is expected to have less of a negative

effect on a downstream task, and so measuring the isolated performance of a

WSD system on each type can give a better sense of the impact of the WSD

system on downstream tasks.
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In summary, in this chapter, we answer the following questions:

1. What is the potential of BioBERT in biomedical WSD?

2. What is the efficacy of self-supervised methods at generating training

data?

3. What is the sensitivity of the WSD systems to the positional order of

the ambiguous term?

4. How does the relatedness of candidate concepts affect the performance

of biomedical WSD systems?

6.2 Previous Work

Several approaches to Biomedical WSD have been proposed and evaluated

in the past. These methods primarily differ in the amount and nature of

supervision.

One set of approaches, especially in earlier years, utilized knowledge-bases

such as UMLS and MEDLINE to perform biomedical WSD [132, 133]. In

[132], for example, authors also explore the potential of automatically created

sense-tagged corpora using a thesaurus (UMLS) and a corpus of abstracts

(MEDLINE). Given the automatically collected supervised data, näıve Bayes

was used to perform sense classification. We find it important to revisit the

potential of automatically curated datasets given the advances in machine

learning algorithms and representations.

Another set of approaches relies on semi-supervised learning [124, 134, 135].

For example, in [134], authors first use unsupervised methods to cluster dif-

ferent occurrences of an ambiguous term into unlabeled clusters representing

the different senses. This represents the profile of an ambiguous term. Then

a human annotator would annotate and verify the different clusters. These

clusters are then used for supervised methods, thus requiring less human in-

put. Along the same lines, active learning approaches have been proposed to

minimize human input [131].

Finally, the last set of approaches belong to the supervised learning frame-

work [136, 137, 138, 129], with the closest work to ours being that of deep-

BioWSD [129]. Not only do they rely on modeling word representations from
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unannotated text, they further enrich their representations with information

from the UMLS. On top of these representations they developed a deep bi-

directional LSTM network to perform WSD. We offer a simpler, yet com-

petitive, method and architecture to perform WSD by utilizing the context

modeled in the biomedical pre-trained word representations of BioBERT,

which has not been explored in the aforementioned previous work [136, 137,

138, 129].

6.3 Materials

Following are the materials used for this study. We use pre-trained BioBERT

embeddings as a basic building block of our WSD framework. We utilize

the MSH WSD data set [139] for training and evaluation. Finally, for the

unsupervised setup, we describe our automatically collected training dataset.

6.3.1 BioBERT

Distributed word representations have shown their capabilities at captur-

ing the semantics of words and phrases, but their static versions would as-

sign equal representations to different senses of the same phrase [140, 141].

Contextualized word representations, on the other hand, were developed to

address this issue, and carry sense information by encoding the context in

the word representation. Recently, BERT has been found useful in a vari-

ety of NLU tasks, and an essential component in our WSD framework is a

contextualized representation of biomedical terms.

Building on the success of BERT, authors in [14] trained and released a

biomedical version of BERT representation: BioBERT. They utilized the ar-

chitecture, as well as the pretrained representations, of BERT, and resumed

its training on biomedical scientific articles: Pubmed (4.5B words), and PMC

(13.5B words). With a simple feedforward layer on top of these representa-

tions, they were able to advance the state-of-the-art on several downstream

biomedical NLP applications: named entity recognition [142], relation ex-

traction [143], and question answering [125]. This reflects the richness of

BioBERT representation in encoding the semantics of the word and its con-

text. BioBERT representations were made available here: https://github.com/dmis-
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Table 6.2: MSH WSD dataset statistics

Count of ambiguous terms 203
Abbreviations 102
Abbreviation-Word combination 13
Non-abbreviated words 88
Average count of senses per term 2.08
Average count of abstracts per sense 89.57
Average count of words per abstract 200.38
Avgerage % of majority sense 54.2%

lab/biobert, and we use version BioBERT-Base v1.1 (+ PubMed 1M).

6.3.2 MSH WSD Data set

To train supervised WSD frameworks, we need a corpus of biomedical text

with annotations of polysemous biomedical phrases being linked to their

respective senses. A common practice in biomedical NLP is to assign the

sense as a concept in UMLS. For example, AA in the sense of amino acids

would be assigned the UMLS concept ID: C0002520, and AA in the alcoholics

anonymous sense would be assigned the UMLS ID: C0001972.

One popular available dataset, due to its size and term diversity, is the

MSH WSD Data Set. This dataset provides training instances for 203 am-

biguous terms frequently occurring in biomedical text. The text is collected

from the title and abstract of 37,090 MEDLINE citations. For every term, 2

(most cases) to 5 candidate senses are pre-determined, and for every sense, a

maximum of 100 instances are provided. In each instance, only the first oc-

currence of the ambiguous word is annotated with the accurate sense (UMLS

ID). For further statistics on the dataset, the reader is referred to Table 6.2.

The count and size of abstracts were found sufficient for training purposes.

Table 6.2 also reflects the balance in the dataset with the majority sense

covering only 54.2% of the cases. Also, the dataset covers a variety of am-

biguous terms between those that are ambiguous due to abbreviations over-

lapping with other abbreviations (102), abbreviations overlapping with full

words (13), or full words that are inherently ambiguous (88).
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6.4 Methods

The experiments we perform are targeted towards answering the individual

research questions.

6.4.1 BioBERT for Biomedical WSD

With BioBERT’s capacity at modeling contextual information, and compar-

ing to previous complicated architectures for biomedical WSD [129], we take

a simple approach following the success of BERT and BioBERT, which found

that a single hidden layer feedforward neural network is sufficient to perform

classification on top of the rich contextualized representations. Both works

of BERT and BioBERT have only utilized such a simple prediction layer and

achieved significant boosts in performance. The underlying transformer net-

work and the masked language model training allow BioBERT to explicitly

encode semantic information of the context on both sides of the term into

the distributed representation of the center word. Moreover, its parallelizable

architecture allows for training on larger amounts of unannotated biomedi-

cal text. Accordingly, a simple single hidden layer neural network is capable

of performing word sense disambiguation given the contextual information.

Another motivation behind the simple classification layer is scalability. This

simplifies the process of learning to disambiguate new ambiguous words, as

training a 1-layer neural network for that word is computationally cheap and

fast. A separate multi-class classification layer is trained for every ambiguous

term.

Contrary to the more general setting of entity linking [144], in WSD, the

goal is to provide a sense for an ambiguous term with identified boundaries.

Hence, what remains is how to aggregate the BioBERT’s subword represen-

tations of the ambiguous phrase at hand to perform predictions. We follow

the most straightforward approach of averaging the subword representations

to form the phrase representations. BioBERT’s operation on a subword level

helps address the issue of unseen and rare words. We further explore alter-

native methods of aggregating context by considering the full representation

of the sentence an ambiguous phrase appears in, and even the full abstract.

Towards that end, we consider three setups before feeding the representations

into the neural network: (1) aggregating only the subwords of the ambiguous
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Figure 6.2: Block diagram of WSD framework. The highlighting reflects the
contribution of context words to the representation of the center word.

phrase, (2) aggregating the subwords of the full sentence, and (3) aggregating

the subwords of all the abstract. The first setup assumes that all required in-

formation to perform disambiguation is present in the representations of the

phrase itself. In other words, it assumes a perfect operation of BioBERT of

encoding the context information into the local representation. The second

setup considers the possibility of semantic information present in the rest of

the sentence not encoded in the local representation itself. Finally, and since

the attention of BioBERT representations is limited to the context of the

sentence, the third setup posits that helpful semantic information could be

present outside the sentence of the ambiguous phrase, and includes that in

the final representation to be fed to the neural network. Figure 6.2 illustrates

the different building blocks of the WSD framework in its phrasal setup.

6.4.2 Self-Supervision

As previously mentioned in the materials section, the MSH WSD dataset

is limited to 203 phrases, and any system trained on it can only perform

WSD on these 203 phrases. This is a strong limitation, which we attempt to

address, given the highly ambiguous nature of biomedical phrases as shown

in the introduction. Another limitation of the above dataset, although we

do not address it in this chapter, is the non-exhaustive pre-determined set of

candidate senses. Accordingly, we follow in the footsteps of [129] and study

the feasibility of automatically collecting a WSD dataset.
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The automatic collection process assumes that for every occurrence of an

ambiguous word, another surface form (polyonomy), which is unambiguous,

of the same concept appears in the text as well. For example, if AA in the

amino acids sense appeared in a scientific article, this method assumes that

the phrase “amino acids” would also appear in the same text. This is an

acceptable assumption to have in the scientific domain given the standard of

using the full form of a concept before truncating it, yet this assumption does

not always hold, as we detail later in the results section. One issue with the

method described in [129] is that they look for the nonambiguous synonym

and replace that synonym with the ambiguous phrase. This could create

unnatural text such as “. . . amino acids (AA) . . . ” being mapped to “. . .

AA (AA) . . . ”, and thus a better alternative is to look for the ambiguous

phrase instead of synthetically inserting it.

6.4.3 Sensitivity to Positional Order

We observed that in the MSH WSD data set the annotated ambiguous phrase

is always the first instance of that phrase in the abstract. More importantly,

that ambiguous phrase was highly likely to appear in the close vicinity of

the nonambiguous form of the sense, as is the standard in scientific writing.

For example, for an abstract about amino acids, it was highly likely that

“AA” appeared for the first time in parentheses following the expanded form

“amino acids”. We hypothesize that to train and evaluate WSD systems

on such trivial examples, first, overestimates the optimal performance of the

WSD system in general, and second, would lead to deteriorated performance

levels once tested on real examples where that triviality is not guaranteed,

and even more, not expected.

6.4.4 Effect of Relatedness

Another aspect we noticed of the MSH WSD data set, and of WSD in gen-

eral, is the range in difficulty of resolving ambiguous biomedical phrases.

More particularly, we expect that ambiguous phrases where the candidate

senses are related, are harder to resolve than ambiguous phrases where the

candidate senses are unrelated. This stems from the fact that related senses

63



will appear in closer semantics of the context, and thus less distinct to dis-

ambiguate trivially. For example, a term such as AA should be easy to

disambiguate since the candidate senses “alcoholics anonymous” and “amino

acids” are semantically distant, or in other words unrelated. In contrast, an

ambiguous phrase such as “Yellow Fever” with the candidate senses “Yellow

fever disease” and “Yellow fever vaccine” is harder to disambiguate due to

the high relation between the two candidate sense, one being the vaccine to

the other.

6.5 Experimental Setup

6.5.1 BioBERT for Biomedical WSD

To build our system, we utilize Python’s scikit-learn package [145], and more

particularly, the multi-layer perceptron with a single layer of 200 hidden

units and a ReLU activation function [146]. Increasing the number of hidden

units beyond 200 did not benefit performance. Phrase-level, sentence-level,

and abstract level representations were pre-computed for all experiments

using the BioBERT source code. The WSD framework is evaluated in two

settings. In the first setting, we take a supervised approach and randomly

split the instances from all senses of all ambiguous phrases into an 70-10-20

split, with 70% used for training, 10% used for development, and 20% used

for evaluation. After the dev set guided architecture and hyperparameter

decisions, a separate neural layer is trained for every ambiguous phrase using

the 80% (train + dev) split of each sense belonging to that phrase, and then

evaluated on the rest of the instances. Given the computational simplicity

of the classification layer, it is inexpensive to train separate layers, and offers

modularity for training on newly introduced ambiguous terms. In the second

setting, which is unsupervised, the automatically collected dataset is used

solely for training and all of the MSH WSD data set is used for evaluation.

These two settings are compared against the results of deepBioWSD as a

baseline [129].
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6.5.2 Self-Supervision

To perform the automatic collection of the training data, for every sense of

every ambiguous phrase, we use UMLS to look for a non-ambiguous syn-

onym. A non-ambiguous synonym is defined as a phrase of a UMLS concept

that does not participate in any other concept. Using that non-ambiguous

synonym, we look for Pubmed abstracts via the Entrez-Direct tool [147].

Then, in every abstract returned as a result of a query of the non-ambiguous

form, we look for an exact match of the ambiguous form in the text, and

annotate its sense accordingly. We limit the number of retrieved abstracts

to 500 per sense.

6.5.3 Sensitivity to Positional Order

To test our hypothesis on the effect of positional order, we trained two sys-

tems: one on the first occurrences of an ambiguous phrase, and another on

the second occurrences of an ambiguous phrase. We also had two settings

for evaluation, one evaluating disambiguation on the first occurrences of the

ambiguous phrase, and the other evaluating on the second occurrences. We

claim that the second setting of evaluation is more representative of the real

world setting where the expanded form of the ambiguous phrase is not ex-

pected to be in the close vicinity of the ambiguous phrase. We also expect

that when the training setup matches the evaluation setup, which in this

case translates to training being on the second occurrences when evaluating

on second occurrences, the performance would increase.

6.5.4 Effect of Relatedness

To validate the impact of relatedness, we divided the MSH WSD data set

phrases into ambiguous phrases with related candidates (at least 2 related),

and phrases with unrelated candidate. To perform this division of phrases

into these two categories, we relied on UMLS, that identifies whether a re-

lation exists between two concepts (senses), or not. Given the scope of this

work being limited to word sense disambiguation, and assuming the word

boundaries of the ambiguous term to be given, we rely on accuracy as a

metric.
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Table 6.3: Performance of WSD framework with respect to different
aggregation levels of BioBERT representations

Aggregation Phrase-Level Sentence-Level Abstract-Level
Accuracy 93.82% 91.06% 91.07%

6.6 Results and Discussion

6.6.1 BioBERT for Biomedical WSD

Considering first the comparative performance of our WSD framework ac-

cording to the different levels of aggregation, we notice in Table 6.3 that ag-

gregation on the phrasal level performs the best by a 2.75% margin. This re-

flects BioBERT’s ability at capturing contextual information into the phrase

at hand, without requiring the inclusion of features beyond the phrase bound-

aries. Moreover, these positive results of BioBERT add to the successes of

BioBERT on other BioNLP tasks such as Relation Extraction and Question

Answering.

6.6.2 Self-Supervision

Next, we analyze the performance of our system in the unsupervised set-

ting, and compare its performance in both the supervised and the supervised

setting to the recent work of deepBioWSD in Table 6.4. In terms of com-

paring BioBERT to deepBioWSD, we notice a 3% gap in performance, but

taking into account the simplicity of the approach and the complexity of the

deepBioWSD network, a comparable performance by BioBERT reflects the

quality of the contextual information present in the BioBERT representa-

tions. When switching to the unsupervised setting, we notice a significant

drop in performance. Since BioBERT representations have already proven

capable of encoding contextual information, and the neural layer capable of

performing predictions, it can only be that the dataset collected is noisy, and

we explore that next. Nevertheless, the results are promising for building a

generalizable biomedical WSD system that goes beyond the human labeled

data.

Upon further investigation, we detected the source of noise in the auto-
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Table 6.4: Performance of the different systems on the MSH WSD dataset

System Accuracy
BioBERT - Self Supervised 84.02%
BioBERT 93.82%
deepBioWSD 96.82%

Table 6.5: Effect of order of occurrence on training and evaluation

Training Setup Evaluation Setup Accuracy
First occurrences First occurrences 93.82%
First occurrences Second occurrences 88.41%
Second occurrences Second occurrences 91.71%

matically collected dataset back to the initial assumptions not always hold-

ing. One of the assumptions is that if the ambiguous synonym appears in

the same abstract as the nonambiguous synonym, then both have the same

sense. It turns out that does not always hold true. For example, the am-

biguous phrase “CH”, which in the MSH WSD data set could either mean

China or Switzerland, appears in the sense of “Methylene” in our automat-

ically collected corpus. In other words, several examples included studies

performed in China or Switzerland and included CH (Methylene) as a sub-

stance, and thus CH was labeled wrongly in these abstracts as either China

or Switzerland.

6.6.3 Sensitivity to Positional Order

As shown in Table 6.5, when comparing the first row of results to the second,

the decrease in performance when evaluating systems trained on the first oc-

currences on second occurrences instead of first, reflects the overestimation

of the performance of the systems trained and evaluated on the MSH WSD

data set. As for comparing the second row to the third row, the jump in

performance when adjusting the training setup to match the real world em-

ulating evaluation shows what is better recommended as training procedure

when training WSD systems for real world examples.

Hence, for future research on WSD in general, and the MSH WSD data

set in particular, we recommend having the annotated instances to be the

occurrences later than the first to match what is expected to be encountered
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by WSD systems in downstream tasks.

6.6.4 Effect of Relatedness

After dividing the ambiguous terms into those that have related candidate

senses and those that have unrelated candidate senses, the performance of

our system on the phrases with related candidates was 78.45%, whereas the

performance on those with unrelated candidates was 96.34%. This large dis-

parity in performance first reflects the intuition that those with unrelated

candidate senses should be easier to resolve due to the highly distinct con-

texts the candidates appear in. More importantly, this result emphasizes the

capacity of the WSD systems to perform significantly better on the cases

that matter more. Mistaking a sense for a related sense is expected to have

less impact on downstream tasks than mistaking a sense for an unrelated

concept.

We conclude from our experimental results that, first, BioBERT represen-

tations contain a high level of semantic contextual information that can sig-

nificantly aid biomedical word sense disambiguation. Second, self-supervised

methods to automatically create training date are feasible, yet noisy. Third,

and most importantly, we identify that WSD systems are highly sensitive

to positional order, and recommend training and evaluation on second oc-

currences of ambiguous terms. Finally, we showcase the disparity in perfor-

mance on words with related candidate concepts versus those with unrelated

candidate concepts, reflecting higher performance on the type of ambigu-

ous words that have higher impact on downstream tasks. Reflecting on our

work, we identify two possible avenues for future research. First, one pur-

pose of this work was to showcase BioBERT’s WSD capacity, yet it does

not optimize performance. More advanced classification architectures with

attention mechanisms could guide classification by attending to the more

relevant words of an ambiguous phrase, or even the more relevant words of

the full sentence if fed in full. Second, and extending from WSD to entity

linking, it would be interesting to study BioBERT’s capacity at not only dis-

ambiguating phrases, but also identifying biomedical phrases to begin with,

and disambiguating those that are ambiguous.
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CHAPTER 7

SUPPORTING WORK

Finally, we summarize two of our previous NLP systems that tackle data

shortage in general, and can assist low-resource biomedical application. The

first system addresses semantically-aware morpheme segmentation, while the

second addresses domain extraction: the curation of a large in-domain mono-

lingual corpus given a seed corpus.

7.1 Morpheme Segmentation

One of the standard preprocessing steps in NLP, including biomedical NLP,

is morpheme segmentation. In morpheme segmentation, a word like “doc-

tors” is segmented into its meaningful morphemes “doctor” + “s”. This

kind of segmentation is helpful for NLP algorithms to reduce vocabulary

size and consequently reduce sparsity in the training data. Example NLP

applications that utilize morpheme segmentation are information retrieval

(IR) [148, 149], automatic speech recognition (ASR) [150, 151], and machine

translation (MT) [152, 153]. Morpheme segmentation becomes even more es-

sential in the context of limited datasets such as in the case of the biomedical

domain.

Although recent advances in deep learning frameworks have been less re-

liant on semantic segmentation and sufficing with orthographic segmentation

such as Byte-Pair Encoding [154], meaningful segmentation remains of im-

portance for applications requiring semantic-based segmentation.

7.1.1 Drawback of Previous Methods

The majority of systems prior to ours [155] relied solely on the surface form

of a word without giving attention to the underlying semantics of the word
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[156, 157, 158, 159, 160]. Relying only on surface form signals led to over-

segmenting words, where a change in the surface form was a necessary but

insufficient indication of a morphological change. For example, although

appending “man” to “police” to form “policeman” is a valid morphological

transformation, the addition of “man” to “fresh” is not a valid morphological

transformation resulting in “freshman”, since a freshman is not a fresh man.

To compensate for the drawback of previous methods we develop the sys-

tem, named MORSE [155], which performs morpheme segmentation using

both orthographic features and semantic features estimated from distributed

representations of words.

7.1.2 Our Contribution

One of the basic building blocks to our algorithm is the geometric shapes ap-

parent in word embeddings. Particularly, we rely on the fact that v(doctor)−
v(doctors) ≈ v(patient)− v(patients), where v(word) is the embedding of a

word.

Accordingly, our algorithm first relies on orthographic signals to generate

a candidate list of morphological rules. It first clusters pairs of words with

equivalent change of affix. For example, it clusters pairs of words differing

only in the suffix “s” together, such as (“doctor”, “doctors”), and (“patient”,

“patients”). Then, it checks the consistency of the difference vector of pairs in

a cluster. For example, it checks the similarity between v(doctor)−v(doctors)

and v(patient)−v(patients). The closer the similarity between the difference

vectors, and the larger the cluster is, the larger is the evidence for it being a

valid morphological rule. Finally, our system measures the consistency of one

pair of words with all other pairs in the cluster. This is for the purpose for

invalidating false positives in a valid rule. For example, this would invalidate

the pair (“on”, “only”) in the valid rule of adding an “ly”.

Finally, for the purpose of segmentation, given a word, we sequentially

choose the rule that maximizes the scores of the various signals, and segment

accordingly. For a more detailed explanation, please check [155].
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7.1.3 Experiments and Results

We compare our system, “MORSE”, to a popular system, “Morfessor”, which

relies on orthographic features only. We perform the comparison over the

standard dataset of Morpho Challenge on three languages of varying lev-

els of morphology: English, Turkish, and Finnish. As shown in Table 7.1,

MORSE performs significantly better than Morfessor on English, while the

gap reduces as the level of morphology increases in the language considered,

until Morfessor performs better than MORSE on Finnish. We hypothesize

that the high level of morphology in a language increases the sparsity in the

training data, which reduces the quality of the word embeddings learned,

and consequently hurts the performance of MORSE.

Table 7.1: Scores of MORSE and Morfessor on the Morpho Challenge
dataset

English Turkish Finnish
P R F1 P R F1 P R F1

Morfessor 74.46 56.66 64.35 40.81 25.00 31.01 43.09 28.16 34.06
MORSE 81.98 61.57 70.32 49.90 30.78 38.07 36.26 9.44 14.98

7.2 Domain Extraction

Building NLP applications for the healthcare domain, as for all other spe-

cific domains, often requires the existence of a large in-domain corpus. For

example, in our project for simplifying healthcare text, it was of the essence

to have available not only a corpus of healthcare documents, but also articles

that are patient-friendly. The process to collect such a corpus manually is

time and labor-consuming. Other examples of utilizing monolingual corpora

are training word embeddings [140], and training document embeddings [161].

Such resources are also central to downstream applications such as automatic

speech recognition [162], machine translation [46], and text categorization

[163].

Although possible, it would be suboptimal, and detrimental to perfor-

mance, to use out-of-domain corpora regardless of the size [164]. Accordingly,

we build a system, named Dexter, to automatically extract a large in-domain
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corpus from a large multi-domain corpus (such as Wikipedia) given a small

set of seed documents representative of the desired domain [165].

7.2.1 Drawback of Previous Methods

To the best of our knowledge, there is one previous system with a highly

similar functionality: BootCaT [166]. This system utilizes a set of user-

supplied keywords and the world-wide web to automatically scrape pages

returned by queries of combinations of the keywords using a search engine

of the user’s choice. Despite having access to a larger set of documents

than Dexter, which is limited to Wikipedia or a multi-domain corpus of

the user’s choice, we hypothesize that the unconstrained access of BootCaT

would introduce noise due to the imperfect information retrieval algorithms,

and due to the imperfect automated scraping algorithms.

7.2.2 Our Contribution

Dexter’s algorithm instead relies on the assumption that within the multi-

domain corpus, articles covering similar topics would be assigned embeddings

close by in the vector space. To inspect such an assumption, we estimate an

embedding space over Wikipedia’s articles using Doc2Avg,1 then map these

articles into 2D space using t-SNE [167]. We see in Figure 7.1 that, for

example, scientific articles (which are a superset of medical articles) cluster

well together. This validates our initial assumption.

Following this observation, we build Dexter as follows. Dexter takes, as

an input, seed articles representing the target domain (e.g. medicine) then

ranks articles in Wikipedia based on their distance to the seed set in the

embedding space, and finally returns the closest k (set by the user) articles

from Wikipedia.

7.2.3 Experiments and Results

To assess the quality of the output corpus and compare against BootCaT,

we evaluate the output corpus in terms of two purposes: training word em-

1Every document is assigned the average of its words’ embeddings.
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Figure 7.1: Mapping of Wikipedia articles into 2D space: Scientific articles
in red, all other articles in blue

beddings, and estimating word representations.

Word Embeddings To evaluate the output corpus’ quality for training

word embeddings, we estimate word embeddings based on different corpora

using the FastText algorithm [103]. For this experiment, we use the science

domain as a target domain. Moreover, to assess the intrinsic quality of

word embeddings, we assess its extrinsic ability at distractor generation for

multiple choice questions (check [165] for more details).

As shown in the second column of Table 7.2, Dexter’s output leads to

the highest recall, higher than BootCaT’s output. More surprisingly, Dex-

ter’s output results in a recall higher than the corpus extracted based on

Wikipedia’s manually constructed taxonomy.

Even qualitatively, one can see the quality of in-domain embeddings by

checking neighbors of polysemous words in Table 7.3. For example, “Field”

had a sports sense when trained on all of Wikipedia, and had a scientific

sense when trained on Dexter’s output.

Language Modeling Repeating the previous experiment, but for lan-

guage modeling, returned similar results as shown in Table 7.2 with Dexter
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Table 7.2: Distractor recall@100 for word embeddings (middle) and
perplexity of language models (right) while varying training corpora. C is
all of Wikipedia, CD is taxonomy-based extracted corpus, BootCaT-KE is
corpus constructed by BootCaT given seed set of documents, BootCaT-M
is corpus constructed by BootCaT given set of keyphrases, Dexter is output
of our system, while Dexter-Downsampled is after downsampling to the size
of BootCaT outputs.

Corpus Recall Perplexity

C 17.43% 431.78
Csilver N/A 334.57
CD 20.47% N/A
BootCaT-KE 15.28% 3199.30
BootCaT-M 13.82% 4586.80
Dexter-Downsampled 18.86% 1117.34
Dexter 22.71% 294.20

Table 7.3: Neighbors of scientific words when embeddings were estimated
on all of Wikipedia (left), on CD (top right), and on Dexter’s output
(bottom right).

Word Neighbors (General) Neighbors (Science)

Force Forces Troops Army Deflection Torque Gravity
Digest Review Guide Supplement Digested Extract Metabolize
Matter Matters Subject Debate Particles Materials Universe

Field Fields Football Professional-sized Fields Magnetobiology Ambipolar
Rock Punk Pop Indie Rocks Shoegazing Screamo

Cellular Cell Signalling Apoptosis Cell Organelle Automata
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Figure 7.2: Performance of language models in terms of perplexity after
training on General, Silver, and Dexter corpora on several Wikipedia
domains

exceeding the performance of other corpora. Moreover, repeating the lan-

guage modeling experiment shows competitive performance by Dexter over

several domains, showcasing its ability to generalize to other domains as

shown in Figure 7.2. This ability to generalize reflects the possible impact

for healthcare.
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CHAPTER 8

CONCLUSION

Biomedical NLP applications struggle with shortage of data. This work stud-

ies the potential of knowledge bases in compensating for the lack of data. Due

to the nature of the technical biomedical field, knowledge is stored in highly

curated ontologies such as the UMLS, and can serve as the aforementioned

knowledge bases. To study the impact of knowledge bases, we take three

biomedical applications as use cases: (1) text simplification of medication in-

structions, (2) entity linking for automatic short answer grading for medical

training, and (3) training a conversational agent for medical adherence.

To build a text simplification system, the standard practice is to resort

to Seq2Seq neural models that require a large training data consisting of a

parallel corpus. Given the unavailability of a parallel corpus to automatically

learn word correspondences between complicated terms and simpler ones,

we rely on UMLS instead. Paired with a language model, we design and

build an unsupervised text simplification system for medication instructions

which outperforms neural methods. Moreover, the text simplification system

positively impacted the human subjects’ comprehension of health data.

As for automatically grading medical chart notes written by students in

learning, and given the small size of the dataset, we rely on UMLS to both

handle entity linking and to handle synonymy between an answer and a rubric

item. The entity linker was designed to be unsupervised and can generalize

across medical cases. The entity linker and the use of UMLS to extend a

word beyond its surface forms increased the accuracy of the grading system.

For the last application of building a CA for medical adherence, our CA

relies on a training data of multiple paraphrases of a patients’ answer. The

UMLS was used to augment the limited seed training data. Synonyms of

words in the training data, retrieved from the UMLS, replaced the original

wording to generate extra examples. This integration of UMLS did not lead

to the CA more accurately assessing the patient’s answer. The CA’s biggest
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sources of errors were counts in the text and incapability of handling negation,

two issues not handled by synonymy extension using UMLS.

Finally, one recurring challenge in integrating knowledge bases into biomed-

ical NLP applications was disambiguating the words of interest into a concept

in UMLS given the high ambiguity of biomedical text. Accordingly, we took a

step back and explored the potential of BioBERT at increasing the accuracy

of WSD and entity linking in biomedical text. A simple feed-forward layer

network showed results competitive with those of the SOTA deepBioWSD

system. Moreover, we studied the impact of the position of the ambiguous

word on the training and evaluation of a WSD system. We recommend a

WSD system to be trained and tested on any word beyond the first occur-

rence which tends to be trivial.

8.1 Limitations and Future Work

This work showcases the potential of BioBERT for biomedical WSD, but does

not optimize a WSD system architecture around the potential of BioBERT.

The experiments presented in this work were limited to a single feed-forward

neural layer, and more complex architectures have the potential to enhance

accuracy of such a critical task. Future work can focus on devising neural

architectures to best cultivate the signals in BioBERT representations for a

more accurate BioWSD system.

With that being said, a stand-alone WSD system cannot resolve the ambi-

guity issue when integrating knowledge bases. In our setting, the trained

WSD network had the mention boundaries, and the candidate concepts,

given. In the real setting, this information is not provided, and for such

a utility to be of use, further work needs to be done on how to detect the

mention boundaries, and how to narrow down candidate concepts.

Future studies could examine whether BioBERT could also assist in de-

tecting mentions of a span by modeling the problem as a supervised Seq2Seq

task with BioBERT vectors as input. For a more domain-robust, generaliz-

able setting, one can explore detecting biomedical mentions through surface

level matching to atoms in UMLS itself with a biomedical concept type. As

for removing the limitation on assuming candidate concepts are given, fur-

ther studies can explore whether overgenerating candidates by checking exact
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match in UMLS concepts is feasible. Addressing these two limitations would

result in an end-to-end entity linking system, which can, in turn, significantly

contribute to the integration of knowledge bases.

Finally, across all three downstream tasks considered, UMLS utilization

was limited to synonymy. UMLS contains information beyond synonymy

to include types of concepts and relations between them. Furthermore, it

provides definitions for every concept. Future work can explore how to best

utilize UMLS beyond synonymy.
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[9] S. Nisioi, S. Štajner, S. P. Ponzetto, and L. P. Dinu, “Exploring neural
text simplification models,” in Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics (volume 2: Short
Papers), 2017, pp. 85–91.

[10] D. A. Lindberg, B. L. Humphreys, and A. T. McCray, “The unified
medical language system,” Methods of Information in Medicine, vol. 32,
no. 4, p. 281, 1993.

[11] M. Stevenson and Y. Guo, “Disambiguation in the biomedical domain:
The role of ambiguity type,” Journal of Biomedical Informatics, vol. 43,
no. 6, pp. 972–981, 2010.

[12] A. R. Aronson and F.-M. Lang, “An overview of metamap: Historical
perspective and recent advances,” Journal of the American Medical
Informatics Association, vol. 17, no. 3, pp. 229–236, 2010.

[13] N. Sabharwal and A. Agrawal, “Introduction to Google Dialogflow,” in
Cognitive Virtual Assistants using Google Dialogflow. Springer, 2020,
pp. 13–54.

[14] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang,
“BioBERT: A pre-trained biomedical language representation model
for biomedical text mining,” Bioinformatics, vol. 36, no. 4, pp. 1234–
1240, 2020.

[15] C. J. Fillmore et al., “Frame semantics and the nature of language,”
in Annals of the New York Academy of Sciences: Conference on the
origin and development of language and speech, vol. 280, no. 1, 1976,
pp. 20–32.

[16] M. Minsky, Society of Mind. Simon and Schuster, 1988.

[17] B. Yang and T. Mitchell, “Leveraging knowledge bases in LSTMs for
improving machine reading,” arXiv preprint arXiv:1902.09091, 2019.

[18] G. A. Miller, WordNet: An Electronic Lexical Database. MIT Press,
1998.

[19] C. F. Baker, C. J. Fillmore, and J. B. Lowe, “The Berkeley FrameNet
project,” in Proceedings of the 17th International Conference on Com-
putational Linguistics-Volume 1. Association for Computational Lin-
guistics, 1998, pp. 86–90.

[20] R. Navigli and S. P. Ponzetto, “BabelNet: Building a very large mul-
tilingual semantic network,” in Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics. Association for
Computational Linguistics, 2010, pp. 216–225.

80



[21] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Free-
base: A collaboratively created graph database for structuring human
knowledge,” in Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, 2008, pp. 1247–1250.
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[64] K. Wróbel, “PLUJAGH at SemEval-2016 Task 11: Simple system for
complex word identification,” in Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016), 2016, pp. 953–957.

84



[65] S. Devlin, “The use of a psycholinguistic database in the simplification
of text for aphasic readers,” Linguistic Databases, 1998.

[66] J. Carroll, G. Minnen, Y. Canning, S. Devlin, and J. Tait, “Practical
simplification of English newspaper text to assist aphasic readers,” in
Proceedings of the AAAI-98 Workshop on Integrating Artificial Intelli-
gence and Assistive Technology, 1998, pp. 7–10.

[67] S. Wubben, A. Van Den Bosch, and E. Krahmer, “Sentence simpli-
fication by monolingual machine translation,” in Proceedings of the
50th Annual Meeting of the Association for Computational Linguistics:
Long Papers-Volume 1. Association for Computational Linguistics,
2012, pp. 1015–1024.

[68] T. Wang, P. Chen, J. Rochford, and J. Qiang, “Text simplification
using neural machine translation,” in Thirtieth AAAI Conference on
Artificial Intelligence, 2016.

[69] P. F. Brown, P. V. Desouza, R. L. Mercer, V. J. D. Pietra, and J. C.
Lai, “Class-based n-gram models of natural language,” Computational
Linguistics, vol. 18, no. 4, pp. 467–479, 1992.

[70] H. Jhamtani, V. Gangal, E. Hovy, and E. Nyberg, “Shakespearizing
modern language using copy-enriched sequence-to-sequence models,”
EMNLP 2017, vol. 6, p. 10, 2017.

[71] TensorFlow Developers, “TensorFlow neural machine translation tuto-
rial,” 2017.

[72] Y. Singer and J. C. Duchi, “Efficient learning using forward-backward
splitting,” in Advances in Neural Information Processing Systems,
2009, pp. 495–503.

[73] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: A method
for automatic evaluation of machine translation,” in Proceedings of the
40th Annual Meeting on Association for Computational Linguistics.
Association for Computational Linguistics, 2002, pp. 311–318.

[74] W. Xu, C. Napoles, E. Pavlick, Q. Chen, and C. Callison-Burch, “Op-
timizing statistical machine translation for text simplification,” Trans-
actions of the Association for Computational Linguistics, vol. 4, pp.
401–415, 2016.

[75] D. L. Chen and W. B. Dolan, “Collecting highly parallel data for
paraphrase evaluation,” in Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language
Technologies-Volume 1. Association for Computational Linguistics,
2011, pp. 190–200.

85



[76] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summarization
with pointer-generator networks,” arXiv preprint arXiv:1704.04368,
2017.

[77] R. Kavuluru, A. Rios, and Y. Lu, “An empirical evaluation of su-
pervised learning approaches in assigning diagnosis codes to electronic
medical records,” Artificial Intelligence in Medicine, vol. 65, no. 2, pp.
155–166, 2015.

[78] M. Habibi, L. Weber, M. Neves, D. L. Wiegandt, and U. Leser, “Deep
learning with word embeddings improves biomedical named entity
recognition,” Bioinformatics, vol. 33, no. 14, pp. i37–i48, 2017.

[79] S. Garg, A. Galstyan, U. Hermjakob, and D. Marcu, “Extracting
biomolecular interactions using semantic parsing of biomedical text,”
in Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[80] K. Lee, S. Lee, S. Park, S. Kim, S. Kim, K. Choi, A. C. Tan, and
J. Kang, “BRONCO: Biomedical entity relation oncology corpus for
extracting gene-variant-disease-drug relations,” Database, vol. 2016,
2016.
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