62 research outputs found

    Automatic multi-seed detection for MR breast image segmentation

    Get PDF
    In this paper an automatic multi-seed detection method for magnetic resonance (MR) breast image segmentation is presented. The proposed method consists of three steps: (1) pre-processing step to locate three regions of interest (axillary and sternal regions); (2) processing step to detect maximum concavity points for each region of interest; (3) breast image segmentation step. Traditional manual segmentation methods require radiological expertise and they usually are very tiring and time-consuming. The approach is fast because the multi-seed detection is based on geometric properties of the ROI. When the maximum concavity points of the breast regions have been detected, region growing and morphological transforms complete the segmentation of breast MR image. In order to create a Gold Standard for method effectiveness and comparison, a dataset composed of 18 patients is selected, accordingly to three expert radiologists of University of Palermo Policlinico Hospital (UPPH). Each patient has been manually segmented. The proposed method shows very encouraging results in terms of statistical metrics (Sensitivity: 95.22%; Specificity: 80.36%; Precision: 98.05%; Accuracy: 97.76%; Overlap: 77.01%) and execution time (4.23 s for each slice)

    Fully automated breast segmentation on spiral breast computed tomography images

    Full text link
    INTRODUCTION The quantification of the amount of the glandular tissue and breast density is important to assess breast cancer risk. Novel photon-counting breast computed tomography (CT) technology has the potential to quantify them. For accurate analysis, a dedicated method to segment the breast components-the adipose and glandular tissue, skin, pectoralis muscle, skinfold section, rib, and implant-is required. We propose a fully automated breast segmentation method for breast CT images. METHODS The framework consists of four parts: (1) investigate, (2) segment the components excluding adipose and glandular tissue, (3) assess the breast density, and (4) iteratively segment the glandular tissue according to the estimated density. For the method, adapted seeded watershed and region growing algorithm were dedicatedly developed for the breast CT images and optimized on 68 breast images. The segmentation performance was qualitatively (five-point Likert scale) and quantitatively (Dice similarity coefficient [DSC] and difference coefficient [DC]) demonstrated according to human reading by experienced radiologists. RESULTS The performance evaluation on each component and overall segmentation for 17 breast CT images resulted in DSCs ranging 0.90-0.97 and in DCs 0.01-0.08. The readers rated 4.5-4.8 (5 highest score) with an excellent inter-reader agreement. The breast density varied by 3.7%-7.1% when including mis-segmented muscle or skin. CONCLUSION The automatic segmentation results coincided with the human expert's reading. The accurate segmentation is important to avoid the significant bias in breast density analysis. Our method enables accurate quantification of the breast density and amount of the glandular tissue that is directly related to breast cancer risk

    Breast MRI segmentation for density estimation:Do different methods give the same results and how much do differences matter?

    Get PDF
    PURPOSE: To compare two methods of automatic breast segmentation with each other and with manual segmentation in a large subject cohort. To discuss the factors involved in selecting the most appropriate algorithm for automatic segmentation and, in particular, to investigate the appropriateness of overlap measures (e.g., Dice and Jaccard coefficients) as the primary determinant in algorithm selection. METHODS: Two methods of breast segmentation were applied to the task of calculating MRI breast density in 200 subjects drawn from the Avon Longitudinal Study of Parents and Children, a large cohort study with an MRI component. A semiautomated, bias-corrected, fuzzy C-means (BC-FCM) method was combined with morphological operations to segment the overall breast volume from in-phase Dixon images. The method makes use of novel, problem-specific insights. The resulting segmentation mask was then applied to the corresponding Dixon water and fat images, which were combined to give Dixon MRI density values. Contemporaneously acquired T1 - and T2 -weighted image datasets were analyzed using a novel and fully automated algorithm involving image filtering, landmark identification, and explicit location of the pectoral muscle boundary. Within the region found, fat-water discrimination was performed using an Expectation Maximization-Markov Random Field technique, yielding a second independent estimate of MRI density. RESULTS: Images are presented for two individual women, demonstrating how the difficulty of the problem is highly subject-specific. Dice and Jaccard coefficients comparing the semiautomated BC-FCM method, operating on Dixon source data, with expert manual segmentation are presented. The corresponding results for the method based on T1 - and T2 -weighted data are slightly lower in the individual cases shown, but scatter plots and interclass correlations for the cohort as a whole show that both methods do an excellent job in segmenting and classifying breast tissue. CONCLUSIONS: Epidemiological results demonstrate that both methods of automated segmentation are suitable for the chosen application and that it is important to consider a range of factors when choosing a segmentation algorithm, rather than focus narrowly on a single metric such as the Dice coefficient

    A review on automatic mammographic density and parenchymal segmentation

    Get PDF
    Breast cancer is the most frequently diagnosed cancer in women. However, the exact cause(s) of breast cancer still remains unknown. Early detection, precise identification of women at risk, and application of appropriate disease prevention measures are by far the most effective way to tackle breast cancer. There are more than 70 common genetic susceptibility factors included in the current non-image-based risk prediction models (e.g., the Gail and the Tyrer-Cuzick models). Image-based risk factors, such as mammographic densities and parenchymal patterns, have been established as biomarkers but have not been fully incorporated in the risk prediction models used for risk stratification in screening and/or measuring responsiveness to preventive approaches. Within computer aided mammography, automatic mammographic tissue segmentation methods have been developed for estimation of breast tissue composition to facilitate mammographic risk assessment. This paper presents a comprehensive review of automatic mammographic tissue segmentation methodologies developed over the past two decades and the evidence for risk assessment/density classification using segmentation. The aim of this review is to analyse how engineering advances have progressed and the impact automatic mammographic tissue segmentation has in a clinical environment, as well as to understand the current research gaps with respect to the incorporation of image-based risk factors in non-image-based risk prediction models

    Density Based Breast Segmentation For Mammograms Using Graph Cut Techniques.

    Get PDF
    In this work we explore the application of graph cuts techniques to the problem of finding the boundary of different breast tissue regions in mammograms

    Automatic Breast Density Classification on Tomosynthesis Images

    Get PDF
    Breast cancer (BC) is the type of cancer that most greatly affects women globally hence its early detection is essential to guarantee an effective treatment. Although digital mammography (DM) is the main method of BC detection, it has low sensitivity with about 30% of positive cases undetected due to the superimposition of breast tissue when crossed by the X-ray beam. Digital breast tomosynthesis (DBT) does not share this limi tation, allowing the visualization of individual breast slices due to its image acquisition system. Consecutively, DBT was the object of this study as a means of determining one of the main risk factors for BC: breast density (BD). This thesis was aimed at developing an algorithm that, taking advantage of the 3D nature of DBT images, automatically clas sifies them in terms of BD. Thus, a quantitative, objective and reproducible classification was obtained, which will contribute to ascertain the risk of BC. The algorithm was developed in MATLAB and later transferred to a user interface that was compiled into an executable application. Using 350 images from the VICTRE database for the first classification phase – group 1 (ACR1+ACR2) versus group 2 (ACR3+ACR4), the highest AUC value of 0,9797 was obtained. In the classification within groups 1 and 2, the AUC obtained was 0,7461 and 0,6736, respectively. The algorithm attained an accuracy of 82% for these images. Sixteen exams provided by Hospital da Luz were also evaluated, with an overall accuracy of 62,5%. Therefore, a user-friendly and intuitive application was created that prioritizes the use of DBT as a diagnostic method and allows an objective classification of BD. This study is a first step towards preparing medical institutions for the compulsoriness of assessing BD, at a time when BC is still a very present pathology that shortens the lives of thousands of people

    Microwave Imaging to Improve Breast Cancer Diagnosis

    Get PDF
    Breast cancer is the most prevalent type of cancer worldwide. The correct diagnosis of Axillary Lymph Nodes (ALNs) is important for an accurate staging of breast cancer. The performance of current imaging modalities for both breast cancer detection and staging is still unsatisfactory. Microwave Imaging (MWI) has been studied to aid breast cancer diagnosis. This thesis addresses several novel aspects of the development of air-operated MWI systems for both breast cancer detection and staging. Firstly, refraction effects in air-operated setups are evaluated to understand whether refraction calculation should be included in image reconstruction algorithms. Then, the research completed towards the development of a MWI system to detect the ALNs is presented. Anthropomorphic numerical phantoms of the axillary region are created, and the dielectric properties of ALNs are estimated from Magnetic Resonance Imaging exams. The first pre-clinical MWI setup tailored to detect ALNs is numerically and experimentally tested. To complement MWI results, the feasibility of using machine learning algorithms to classify healthy and metastasised ALNs using microwave signals is analysed. Finally, an additional study towards breast cancer detection is presented by proposing a prototype which uses a focal system to focus the energy into the breast and decrease the coupling between antennas. The results show refraction calculation may be neglected in low to moderate permittivity media. Moreover, MWI has the potential as an imaging technique to assess ALN diagnosis as estimation of dielectric properties indicate there is sufficient contrast between healthy and metastasised ALNs, and the imaging results obtained in this thesis are promising for ALN detection. The performance of classification models shows these models may potentially give complementary information to imaging results. The proposed breast imaging prototype also shows promising results for breast cancer detection

    Computer-aided image quality assessment in automated 3D breast ultrasound images

    Get PDF
    Automated 3D breast ultrasound (ABUS) is a valuable, non-ionising adjunct to X-ray mammography for breast cancer screening and diagnosis for women with dense breasts. High image quality is an important prerequisite for diagnosis and has to be guaranteed at the time of acquisition. The high throughput of images in a screening scenario demands for automated solutions. In this work, an automated image quality assessment system rating ABUS scans at the time of acquisition was designed and implemented. Quality assessment of present diagnostic ultrasound images has rarely been performed demanding thorough analysis of potential image quality aspects in ABUS. Therefore, a reader study was initiated, making two clinicians rate the quality of clinical ABUS images. The frequency of specific quality aspects was evaluated revealing that incorrect positioning and insufficiently applied contact fluid caused the most relevant image quality issues. The relative position of the nipple in the image, the acoustic shadow caused by the nipple as well as the shape of the breast contour reflect patient positioning and ultrasound transducer handling. Morphological and histogram-based features utilized for machine learning to reproduce the manual classification as provided by the clinicians. At 97 % specificity, the automatic classification achieved sensitivities of 59 %, 45 %, and 46 % for the three aforementioned aspects, respectively. The nipple is an important landmark in breast imaging, which is generally---but not always correctly---pinpointed by the technicians. An existing nipple detection algorithm was extended by probabilistic atlases and exploited for automatic detection of incorrectly annotated nipple marks. The nipple detection rate was increased from 82 % to 85 % and the classification achieved 90 % sensitivity at 89 % specificity. A lack of contact fluid between transducer and skin can induce reverberation patterns and acoustic shadows, which can possibly obscure lesions. Parameter maps were computed in order to localize these artefact regions and yielded a detection rate of 83 % at 2.6 false positives per image. Parts of the presented work were integrated to clinical workflow making up a novel image quality assessment system that supported technicians in their daily routine by detecting images of insufficient quality and indicating potential improvements for a repeated scan while the patient was still in the examination room. First evaluations showed that the proposed method sensitises technicians for the radiologists' demands on diagnostically valuable images

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201
    corecore