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Abstract
Automated 3D breast ultrasound (ABUS) is a valuable, non-ionising adjunct to
X-ray mammography for breast cancer screening and diagnosis for women with
dense breasts. High image quality is an important prerequisite for diagnosis and
has to be guaranteed at the time of acquisition. The high throughput of images
in a screening scenario demands for automated solutions.

In this work, an automated image quality assessment system rating ABUS
scans at the time of acquisition was designed and implemented.

Quality assessment of present diagnostic ultrasound images has rarely been
performed demanding thorough analysis of potential image quality aspects in
ABUS. Therefore, a reader study was initiated, making two clinicians rate the
quality of clinical ABUS images. The frequency of specific quality aspects was
evaluated revealing that incorrect positioning and insufficiently applied contact
fluid caused the most relevant image quality issues.

The relative position of the nipple in the image, the acoustic shadow caused
by the nipple as well as the shape of the breast contour reflect patient position-
ing and ultrasound transducer handling. Morphological and histogram-based
features utilized for machine learning to reproduce the manual classification
as provided by the clinicians. At 97 % specificity, the automatic classification
achieved sensitivities of 59 %, 45 %, and 46 % for the three aforementioned as-
pects, respectively.

The nipple is an important landmark in breast imaging, which is generally—
but not always correctly—pinpointed by the technicians. An existing nipple
detection algorithm was extended by probabilistic atlases and exploited for au-
tomatic detection of incorrectly annotated nipple marks. The nipple detection
rate was increased from 82 % to 85 % and the classification achieved 90 % sensi-
tivity at 89 % specificity.

A lack of contact fluid between transducer and skin can induce reverberation
patterns and acoustic shadows, which can possibly obscure lesions. Parameter
maps were computed in order to localize these artefact regions and yielded a
detection rate of 83 % at 2.6 false positives per image.

Parts of the presented work were integrated to clinical workflow making up
a novel image quality assessment system that supported technicians in their
daily routine by detecting images of insufficient quality and indicating potential
improvements for a repeated scan while the patient was still in the examination
room. First evaluations showed that the proposed method sensitises technicians
for the radiologists’ demands on diagnostically valuable images.
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Preface

Since the dawn of history, people have suffered from and written about cancer.
Especially breast cancer has been mentioned in nearly every period of history,
since breast lumps, unlike other internal cancers, tend to manifest themselves as
visible tumours. The oldest evidence of breast cancer was discovered in Egypt
in 2015. The 4,200-year-old skeleton of an adult woman shows the typical de-
structive damage provoked by the extension of a breast cancer as a metastasis
(Mourad & Stonestreet 2015). The unknown author of the Edwin Smith pa-
pyrus, which was written around the 17th century BC, describes “ball-like chest
tumours” as “an ailment I will fight with”, meaning that there is no cure.

In the 18th century, a local therapy seemed to be an option and the lack of
anaesthesia did not prevent brave physicians from performing mastectomies (see
figure 0.1), not always to the patient’s best interest (Olson 2002).

Nowadays, breast cancer has not lost a bit of the terror it spreads, being
the most common cancer in women worldwide. Although treatment options in
more developed regions are manifold comprising surgery, chemo- and radiation
therapy, it remains the second cause of cancer death in women after lung cancer
(Ferlay et al. 2013).

Since early detection of breast cancer improves outcomes (Etzioni et al. 2003),
screening programmes have been established. Multiple studies have shown that
standard X-ray mammography screening reduces mortality from breast cancer
(Tabár et al. 1985), but it is not equally effective in all women. Overall, the sen-
sitivity of mammography for detecting breast cancer is around 80 %. However,
in women with radiographically dense breast tissue, the sensitivity can get as
low as 48 % (Kolb et al. 2002). Therefore, stratified screening programmes mak-
ing use of other modalities as ultrasound (US) or magnetic resonance imaging
(MRI), tailored to risk assessment based on family history, age, genetic profiles,
and breast density, are proposed (Drukteinis et al. 2013). Specifically, auto-
mated (whole-) breast ultrasound (ABUS) has been shown to support the early
detection of small invasive cancers that are occult on mammography in women
with dense breasts (Drukteinis et al. 2013; Mandelson et al. 2000; Yaghjyan et al.
2011; Kelly et al. 2010a). Compared to hand-held US, ABUS systems acquire
3D volumes that can be stored on an image archiving system, thus enabling
temporal comparison of exams with relevant priors. The acquisition can be
performed by non-radiologists, e.g. technicians, consequently reducing the costs
of the acquisition procedure. Although the acquisition is automated to a high
degree, image quality still depends on the imaging procedure: inadequate device
parameter settings or incorrect positioning of the transducer can cause diverse
image artefacts, which may impair the diagnostic evaluation of the ABUS exam
substantially.

An automated image quality assessment tool that detects artefacts directly
after image acquisition has the potential of enhancing overall image quality

vii
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Figure 0.1: Sketch by Louis-Jacques Goussier showing some tools for mastec-
tomy. Printed in “Encyclopédie Didérot”, Planche XXIX, written by Louis de

Jaucourt in 1752.

in ABUS screening images and, thus, facilitating diagnosis. Due to the high
amount and the complexity of volumetric images that have to be analysed in
an ABUS screening set up, there is a trend towards computer aided detection
(CADe) systems (Tan et al. 2015; Moon et al. 2012). High-quality images are an
essential pre-requisite particularly for these tools that are supposed to support
radiologists in their daily routine. The work presented in this thesis was driven
by the idea of a comprehensive fully automatic image quality assessment system
that is able to process acquired images in real-time and to provide immediate
feed-back to the medical technicians or nurses. Detailed information on potential
artefacts in an ABUS image would allow immediate repetition of a scan with
corrected parameters at low cost since an additional scan only takes several
minutes and US causes no radiation burden to the patient.



Objectives

The present work has been embedded in the European Commission’s FP 7
project ASSURE targeting personalised breast cancer screening programmes.
The objective of this thesis is the development of an automated image qual-
ity assessment system for automated 3D breast ultrasound (ABUS), which has
shown to be a valuable adjunct to X-ray mammography. The scope of ASSURE
ranges from improved risk estimation over stratified screening examinations to
sophisticated computer aided detection. A stratification of the screening popu-
lation as suggested by preliminary results of the project will entail an increased
amount of ABUS examinations. Good image quality is of highest importance
for reliable diagnostics as well as for further image processing. An automated
image quality assessment tool as envisaged in this thesis will process the im-
ages right after acquisition and alert the technicians if unwanted artefacts are
detected such that the scan can easily be repeated with the patient still present
in the examination room. To achieve this goal, the following steps have to be
undertaken:

(i) Potential ABUS image quality aspects and artefacts have to be defined and
discussed together with experienced clinical researchers. The relevance of
specific quality aspects has to be evaluated in a reader study based on a
data set of original images acquired in routine clinical care.

(ii) Characteristic physical and visual properties as well as the origin of the
most relevant image quality aspects have to be examined and translated
to quantitative metrics on different scales.

(iii) Since the nipple is an important landmark in breast imaging, automated
assessment of nipple visibility has to be designed adjoining empiric atlases
to existing methods based on probability maps.

(iv) Machine learning (classifier training) has to be deployed correlating fea-
tures based on physical properties of ultrasound to ground truth annota-
tions provided by clinicians.

(v) Integrated to an existing software framework for data management and
workflow design, the developed algorithms will make up a first prototype
for automated image quality assessment in ABUS, which will have to be
evaluated in clinical routine with respect to usability and utility.

ix



x



1 Basics

The female breast has a very complex structure that keeps on changing over a
woman’s lifetime. As described, e.g., in Berg & Yang (2014), there are differ-
ent relevant landmarks in breast development. Starting with the menarche, the
breast prepares for pregnancy every menstrual cycle by increasing the amount of
stromal (connective) and ductal tissue, which is dismantled again if no fertilisa-
tion took place. In case of pregnancy, the ductal and lobular tissue proliferates
even more to prepare the lactation. During menopause, fatty replacement of
epithelium and stroma takes place. These versatile changes open up various
chances for the genesis of cancer cells.

Figure 1.1 shows the basic anatomy of a female breast. The lobules making
up the glandular tissue produce milk, which is transported to the nipple by
the ducts. Fibrous tissue (ligaments) and fat are the main factors determining
breast size and shape and hold the other tissues in place. If there is a high
amount of fibrous or glandular (fibroglandular) tissue, a breast is considered as
dense in contrast to a mainly fatty breast. Density plays an important role for
the choice of suitable breast imaging modalities and is considered as risk factor
for breast cancer development (McCormack & dos Santos Silva 2006) as will be
discussed in the next sections.

1.1 Breast Cancer Screening

Breast cancer is the most common cancer that affects women, with 494,000 new
cases diagnosed in the EU in 2012 and 143,000 women dying from the disease
(Ferlay et al. 2013). While causes remain largely unknown, incidence is still in-
creasing. Currently, approximately one in eight women develops breast cancer
during her lifetime. It is generally accepted that early detection of breast cancer
improves therapy outcomes (Etzioni et al. 2003), and population-based breast
cancer screening programmes using X-ray mammography have been shown to
reduce mortality: Schopper & Wolf (2009) reported breast cancer mortality re-
ductions between 24 % and 48 % in ten countries among women having attended
at least one screening session. Early detection of tumours allows for more effec-
tive and at the same time less radical treatment options maintaining the quality
of life of these women.

Despite these clear benefits for women attending screening programs, still a
substantial number of women die from breast cancer, even though they per-
fectly complied with screening protocols. Several studies concluded that ap-
proximately 30 % of breast cancers were detected in-between screenings (interval
cancers) (Törnberg et al. 2010; Bennett et al. 2011). Furthermore, Otten et al.
(2005) found that 25 % to 30 % of screen-detected cancers were retrospectively
detectable on previous mammograms, and thus could have been detected ear-
lier. The sensitivity of mammography is highly variable, ranging from 98 % for
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2 1 Basics

Figure 1.1: Anatomy of the female breast (Graphic by Patrick J. Lynch (il-
lustrator) and C. Carl Jaffe (MD, cardiologist))

women with low amount of fibroglandular tissue to 36 % for women with dense
breast parenchyma (Kolb et al. 2002). This reduced sensitivity is due to the fact
that dense tissue has the same X-ray attenuation properties as tumours and thus
both show equally bright on mammographic images. This causes tumours to
remain masked for radiologists and thus breast cancer to remain undetected. As
approximately 35 % to 40 % of the screening population have dense breasts, the
huge impact of this limitation of the currently applied one-size-fits-all approach
is evident. Furthermore, breast density is after age and the rare BRCA (BReast
CAncer) gene mutation the third strongest breast cancer risk factor known to
date: Women with dense breasts, i.e. with more than 50 % fibroglandular tis-
sue, have been shown to have a three- to six-fold increased risk of developing
breast cancer compared to those with little or no dense tissue (McCormack &
dos Santos Silva 2006).

Therefore, stratified screening programmes tailored to risk assessment based
on family history, age, genetic profiles, and breast density, are proposed (Druk-
teinis et al. 2013). The main parameters of personalised screening approaches
are the different modalities that are available for breast imaging as well as the
screening intervals. The imaging methods have to be employed wisely in order
to increase sensitivity and specificity while minimizing cost and radiation expo-
sure. Three important breast imaging methods are described in the following
sections.
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1.2 Breast Imaging
Breast cancer screening programmes do not serve as prevention—a misleading
term that is often used in this context—but as early detection of lesions or
micro-calcifications in the breast as a predictor of a tumour. Generally, these
indications can be detected on standard X-ray mammograms. However, women
at cumulative lifetime breast cancer risk of more than 20 % to 25 %, mostly due
to BRCA gene mutation, are recommended to get a breast MRI examination.
This encompassed roughly 1 % of women. For women with dense breast tissue,
ultrasound is under consideration as adjunct to X-ray mammography, a combi-
nation of techniques that has recently yielded promising results in a Japanese
randomized trial (Ohuchi et al. 2015).

1.2.1 X-Ray Mammography

In 1895, Wilhelm Conrad Röntgen discovered that the radiation he produced
in a cathode tube was able to pass through matter and cast object specific
shadows on a film. Only one year later, X-radiation, as he called the previ-
ously unknown “invisible” light, was used clinically to examine bone fractures
or gunshot wounds.

According to the Bohr model, X-rays are generated if an electron from a
higher atomic shell jumps over into a free position of an inner shell. The discrete
difference of energy is released as a photon and characteristic for the element. To
produce free positions in the inner shells, a target material, i.e. molybdenum
for breast imaging, is shot with accelerated electrons that interact with the
nuclei and the shells of the target atoms, producing bremsstrahlung (retardation
radiation) as well as characteristic radiation, respectively. Technically, X-rays
are produced in an X-ray tube where a tungsten filament, i.e. the cathode,
is heated at a voltage of 10 V and a current of 10 A such that free electrons
are emitted (thermionic emission). They are accelerated in vacuum towards the
anode at a voltage of 30 kV to 250 kV and a current of a few 100 mA. Arriving at
the anode, the electrons are decelerated by interactions with 1) K-shell electrons
producing characteristic X-rays of energies around 17 keV for breast imaging, 2)
nuclei causing bremsstrahlung, which makes up for the main part of produced
radiation, and 3) outer shell electrons generating a line spectrum. Only 1 % of
the electron energy is converted into X-ray production, whereas the rest is lost
in heat by electron-electron collisions.

When X-radiation passes through tissue, the photons mainly interact with
the electrons resulting in scattering and absorption. The exponential decrease
of their radiation intensity I is described by the material-specific attenuation
coefficient µ and depends on the thickness d of the imaged material. In a first
approximation, it is I = I0 exp(−µd). µ incorporates the different interactions
that can appear: For photons with energies above 1022 keV, electron-positron-
pair production can appear. Scattering is described by the Compton Effect,
which lowers the signal to noise ratio since the scattered photon usually travels
in a changed direction. Photoelectric absorption is the most likely reaction of
low energy (some keV) photons and depends on the atomic number Z of the
passed material. Thus, the differences in electron density of the traversed tissue
are the basis of a contrasted image. As a side effect of the above described
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Figure 1.2: Examples of breast density patterns in X-ray mammograms
(medio-lateral view), with overall density increasing from left to right

interactions secondary electrons are released, i.e. X-rays are ionizing radiation
causing damage to living cells, which is a shortcoming of this technique. For
mammography, the photon energies are particularly low yielding a low trans-
mission, which results in a good contrast but also in relatively high skin doses.

X-ray imaging produces summation images integrating all attenuation coeffi-
cients along the path of the photons, such that the order of overlapping objects
cannot be determined. In standard screening mammography examinations, two
X-ray images per breast are therefore acquired from different views, generally a
cranio-caudal (CC) and a medio-lateral (MLO) view. The various appearances
of breasts with different density can be seen in figure 1.2.

1.2.2 Magnetic Resonance Imaging of the Breast

After Isidor Rabi had already shown the ability of nuclei to absorb high fre-
quency electro-magnetic pulses using a molecular beam in a vacuum in 1938, it
would not be until late 1945 that Felix Bloch and Edward Purcell would demon-
strate nuclear magnetic resonance in condensed matter. Only several decades
later, in 1973, Paul Lauterbur acquired a magnetic resonance image differenti-
ating between normal and heavy water.

All nuclei that have an uneven number of nucleons and some nuclei that have
uneven amounts of protons and neutrons possess a nuclear spin, which in turn
is associated to a magnetic moment µ⃗. Due to the nuclei’s thermal energy
at normal temperatures, the magnetic moments in a sample are distributed
isotropically, but in a static magnetic field B⃗0, the spins align parallel (spin-up)
or anti-parallel (spin-down) to B⃗0. The spin-down energy level is higher than
that of spin-up and the population of these levels is described by the Boltzmann
distribution. This results in a small surplus of spins that are oriented parallel to
the static magnetic field and yields a measurable longitudinal net magnetisation
M⃗ .

In magnetic resonance imaging (MRI), M⃗ is excited by a radio frequency (RF)
pulse of the Larmor frequency ωL = γB(x, y, z) being proportional to the local
static magnetic field B(x, y, z) and the gyromagnetic ratio γ, which is charac-
teristic for each isotope (e.g. γ(1H) = 42.6 MHz/T). B(x, y, z) is composed of
B⃗0 and three additional (orthogonal) gradient magnetic fields that are used for
spatial encoding. The RF pulse forces the net magnetisation M⃗ to flip away
from its original orientation and precess around B⃗0, causing a transversal mag-
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netisation that induces a measurable alternating voltage in a receive coil. The
measured frequency depends on the local magnetic field whereas the amplitude
encodes the strength of the transverse magnetisation, which in turn depends on
the proton density and tissue-specific parameters.

The system is restoring its equilibrium state by exponential relaxation, i.e.
the free induction decay (FID) of the MR signal. During the relaxation process,
two independent effects superimpose: the spin-lattice interaction with relaxation
time T1 encodes the recurrence of the longitudinal magnetisation, and the spin-
spin interaction with relaxation time T2 describes the de-phasing of the spins.
Since the human body consists of about 70 % water, the focus of MRI is on the
hydrogen atoms that are bound in water molecules. The measured relaxation
times are specific for the molecular structure and environment of the bound
hydrogen atoms, allowing to differentiate between tissue types.

In dynamic contrast enhanced MRI (DCE-MRI), a paramagnetic contrast
agent (CA), e.g. the Gadolinium-based Gd-DTPA, is injected intravenously
before a time series of MR images is acquired to visualise the enhancement
characteristics of the imaged tissues. Gadolinium causes the relaxation time
to decrease resulting in images of higher contrast. At the first pass of the CA
through the blood circulation, which is typically 45 s to 60 s after injection, it
is predominantly intra-vascular allowing evaluation of perfusion, i.e. blood flow
per unit volume. During the subsequent 2 to 10 minutes, the diffusion-based
passage of CA into the extra-vascular (and extra-cellular) space is increased,
and imaging during this delayed phase enables measurement of vascular per-
meability. For tumour tissue, the CA enhancement curve is changed compared
to healthy tissue. Common DCE-MRI sequences for the breast focus on high
spatial resolution allowing for detailed morphologic evaluation of lesions. One
reference image is acquired before CA administration, followed by up to four
images showing the maximum enhancement as well as the late behaviour of CA
uptake, i.e. increasing enhancement, a plateau, or wash-out. New ultra-fast
view-sharing MRI protocols allow imaging at high temporal resolution while re-
taining a high spatial resolution (Laub & Kroeker 2006). Using these sequences,
a volumetric image of the breast can be acquired within 5 s enabling an accu-
rate description of CA kinetics while at the same time maintaining detailed
information of lesion morphology (Platel et al. 2014). First attempts to adjust
the spatial and temporal resolution dynamically depending on the current CA
behaviour have been taken by Kompan (2015).

Sample T1 weighted breast MR images are described in figure 1.3. The max-
imum intensity projection (MIP) images are based on the subtraction of the
pre-contrast image from (in this case) the first post-contrast image.

DCE-MRI of the breast is the most sensitive alternative for the detection of
breast cancer (Mann et al. 2007; Lehman et al. 2005). Unlike X-ray mammog-
raphy, MRI is unaffected by breast density and does not use ionizing radiation.
However, the application of MRI for breast cancer screening in the general pop-
ulation is not practical because of its high costs, limited availability, use of con-
trast agents and variable specificity. Contrast agent-less MRI sequences such as
ASL (Arterial Spin Labelling) (Buchbender et al. 2013) or HiSS (High Spectral
and Spatial resolution) (Medved et al. 2011) are currently under development
for breast cancer imaging. First results especially for other entities, e.g. the
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Figure 1.3: Sample breast DCE-MR images of the breast: (a) shows the
sagittal maximum intensity projection (MIP) of the difference image of one
breast, (b) is the transversal MIP, and (c) is a transversal slice of the T1

weighted image of the same breast.
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head, are promising (Günther 2014), but those sequences are not yet ready to
replace DCE-MRI for the breast.

1.2.3 Breast Ultrasound

An affordable and safe alternative to MRI and X-ray mammography is the use
of ultrasound for breast examination, since no radiation or intravenous contrast
agent is required. Large screening studies have shown that (classical) hand-held
ultrasound has a high sensitivity for breast cancer, particularly for aggressive
forms of cancer (Berg 2008). Apart from that, ultrasound image quality is unaf-
fected by breast density and it has been reported to double the detection rates
in dense breasts when used in combination with mammography (Kelly et al.
2010b). The disadvantage of time-consuming examination that has to be per-
formed by a highly qualified radiologist has recently been technically resolved
with the introduction of automated 3D breast ultrasound (ABUS) (Brem et al.
2015; Drukteinis et al. 2013), which can be acquired by trained medical techni-
cians and analysed later by radiologists. Furthermore, this technique provides
standardized volumetric images that can be compared to relevant prior exami-
nations.

Physical Basics of Ultrasound

Medical image acquisition with ultrasound is based on the reflection and back-
scattering of insonated acoustic waves. In soft tissue, ultrasound waves can be
considered as longitudinal waves, i.e. a propagation of compression and decom-
pression in a medium manifested as a particle vibration along the propagation
direction.

At transitions between different matters, e.g. muscle and fat, ultrasound
waves are partly reflected and partly transmitted (refracted if the surface is not
hit perpendicularly). Thus, the echo runtime indicates the distance between
the transducer and the tissue border whereas the signal intensity contains infor-
mation on the material properties. The relevant property of matter (material
constant) is described by the acoustic impedance Z = cs ·ρ (for harmonic waves),
which combines the density ρ and the speed of sound cs in the particular ma-
terial. If an acoustic wave passes the interface of two materials (see figure 1.4)
with Z1 and Z2 with entrance angle θ1, Snell’s law holds true and yields the exit
(refraction) angle θ2 (relative to the normal of the interface)

sin θ2 = sin θ1
c2
c1

(1.1)

The reflection r describing the ratio between the reflected amplitude AR and
the incident amplitude A0 is then given by

r(θ1, θ2) = AR

A0
= Z2 cos θ1 − Z1 cos θ2

Z2 cos θ1 + Z1 cos θ2
(1.2)

If the incidence of the sound wave is perpendicular, this turns into

r(0, 0) = Z2 − Z1
Z2 + Z1

. (1.3)
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Figure 1.4: Different aspects of acoustic attenuation when an ultrasound wave
traverses tissue. The ultrasound image is reconstructed from reflected and

scattered signals. (Figure similar to a figure in Delorme & Debus (1998).)

Table 1.1: Speed of sound in different tissues. The acoustic impedance Z =
cs · ρ is computed from density ρ and speed of sound cs. All numbers refer to

body temperature of 37 ◦C (Numbers from Deserno (2011)).

Material cs in m s−1 ρ in 103 kg m−3 Z in 106 kg m−2 s−1

Bone 3600 1.70 6.12
Marrow 1700 0.97 1.65
Blood 1570 1.02 1.61
Muscle 1568 1.04 1.63
Water 1540 0.99 1.53
Fat 1400 0.97 1.36
Air 340 1.20 × 10−3 4.08 × 10−4

If Z2 ≈ Z1, the reflection r becomes 0, i.e. the acoustic wave passes the tissue
interface without being reflected. The cases Z2 ≪ Z1 and Z2 ≫ Z1 result in
r = −1 and r = 1, respectively, which describe a total reflection with or without
phase shift of 180°.

The typical values of acoustic impedance listed in table 1.1 yield a very strong
reflection for interfaces from air to soft tissue as well as from soft tissue to bone,
whereas the reflection ratio is small between different soft tissues. Therefore,
“impedance-matched” (water-based) contact gel must be used for air-free cou-
pling of ultrasound waves to the human body. Furthermore, it is almost impos-
sible to acquire sonographic views behind bony structures or air filled organs.

Whereas the above described specular reflection visualizes flat smooth inter-
faces as the diaphragm or walls of major vessels, scattering appears on small
objects, e.g. cells, and provides information on the inner structure of tissues.
Scattering on a point source generates a spherical wave, which depends on the
diameter a of the scatterer relative to the wave length λ: If a ≫ λ, the scattering
is geometric leading to a strong (diffuse) reflection as for example on small ar-
teries and bile ducts of the liver, which appear brighter (hyper-echoic). If a ≈ λ,
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the scattering is stochastic and directional, as it occurs, e.g., in liver tissue and
makes up for about 20 % of the total acoustic attenuation. Rayleigh scattering
is relatively weak and occurs if a ≪ λ, as for example in blood. Consequently,
the interior of vessels is normally dark (anechoic).

Due to the coherent character of ultrasound waves, the reflected signals in-
terfere with each other at the transducer aperture. Depending on the relative
phase of the scattered waveforms, they can add constructively or destructively
producing the “speckle” pattern, which is inherent to ultrasound images and
potentially decreases image quality. Although the pattern is random, it is more
or less constant over time and, thus, can be exploited, e.g., for motion tracking
purposes (Notomi et al. 2005). Compound scanning, i.e. averaging over several
scans acquired by differently steered ultrasound waves (Hoskins et al. 2010, p.
38), can decrease the speckle pattern and acoustic noise.

Apart from reflection on interfaces of different impedance Z, refraction at
positions of changing speed of sound cs, and scattering, absorption and diver-
gence also contribute to the attenuation of an ultrasound wave (see figure 1.4).
Absorption is the transition of ultrasound energy into heat and results in an
exponential decay of the ultrasound pressure p(x) = p0 exp (−αx). The ab-
sorption coefficient α depends on the frequency as α = α0fm where α0 and m
(≈ 1.1 to 1.3) have to be determined experimentally for a particular material.
Divergence is the attenuation of ultrasound intensity I due to the spread of the
beam and can be expressed by the inverse square law: I ∝ 1/r2 with r being
the distance to the source.

As mentioned above, the attenuation increases with increasing ultrasound fre-
quency f , but as well does the spatial resolution. The capability to resolve (or to
differentiate) two objects that are close to each other depends on the wavelength
λ that is coupled to the frequency as λ · f = cs. Whereas the axial resolution
(along the propagation direction of the sound waves) is approximately twice the
wavelength λ, the lateral resolution (orthogonal to the propagation) is only four
to five times the wavelength (Delorme & Debus 1998). Typical diagnostic ultra-
sound devices operate in the frequency range of 1.5 MHz to 20 MHz trading-off
image depth and spatial resolution as shown in table 1.2.

Imaging Techniques

Technical implementation of ultrasound imaging is enabled by piezoelectricity
that was discovered in 1880 by the French physicists Jacques and Pierre Curie.
The piezoelectric effect describes the behaviour of certain solid materials that
respond to mechanical stress with separation of charge resulting in a voltage,
and vice versa. For ultrasound imaging, an array of piezoelectric crystals (“sub-
aperture”) is used to convert electrical signals into mechanical deformation that
is coupled into the body (see figure 1.5). The reflections of the ultrasound
pressure wave are echoed back to this (or another) sub-aperture transforming
now the deformation into an electrical signal that can be measured. The runtime
of the signal defines the spatial origin of the echo. Therefore, a constant speed
of sound of 1540 m/s is assumed, which is a sufficient approximation for soft
tissue imaging (see table 1.1), but still leads to image artefacts (see section 1.3).

There are different ways of processing and interpreting the electrical signal of
the pulse echo. In A-mode (Amplitude) imaging, the amplitude (envelope) of the
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Table 1.2: Penetration depth, spatial resolution of different ultrasound fre-
quencies as well as typical organs that are imaged at (approximately) these
frequencies. (Table similar to a table in Postema & Attenborough (2011, p.

157))

Fre-
quency
in MHz

Wave-
length in

mm

Penetra-
tion

depth in
cm

Lateral
resolu-
tion in

mm

Axial
resolu-
tion in

mm

Clinical
application

2 0.78 25 3.0 0.80 Liver, Fetus,
Heart

3.5 0.44 14 1.7 0.50 Kidney
5.0 0.31 10 1.2 0.35 Brain

7.5 0.21 6.7 0.8 0.25
Thyroid,
Superficial
Vessels

10.0 0.16 5.0 0.6 0.20 Prostate,
Breast

15.0 0.10 3.3 0.4 0.15 Breast
21.0 0.09 1.1 0.36 0.13 Eye, Skin

Figure 1.5: Simplified schematic construction of an ultrasound probe. The
electrodes apply an alternating potential difference to make the piezo crystals
contract, and receive the electrical signal if the crystals are distorted by the
incoming echo. The backing block decreases ringing of the piezo elements,
i.e. shortens the pulse length and increases the axial resolution. The coupling
layers reduce the bridge the difference in acoustic impedance between crystals

and contact fluid that is applied to the skin.
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returning signal is displayed as a function of depth for a single line originating
from one transducer element (piezo crystal). In B-mode (Brightness) imaging,
the amplitude of the echo is coded in grey scales, such that the combination
of several adjacent lines results in a 2D image. In M-mode (Motion) imaging,
a single B-mode line is recorded over time by emitting and evaluating pulses
in quick succession. This technique allows to see real-time motion, e.g., of a
cardiac valve. Doppler ultrasound imaging can be used to visualize blood flow
by employing the Doppler Effect that describes the change of frequency if sound
waves are reflected from moving objects.

As mentioned above, a 2D image is made up of several adjacent 1D lines that
encode the returning ultrasound signal intensity and runtime in grey scales.
Depending on the intended application, different arrangements of piezo crystals
are used clinically. The simplest configuration is a linear parallel array of tra-
ditionally 64 to 256 transducer elements out of which a sub-aperture is excited
to transmit and receive a focused bundle of ultrasound waves. The subsequent
excitation of adjacent groups of piezo crystals produces a rectangular B-mode
image. Due to the finite speed of sound, the chosen image depth and the number
of lines that are acquired for one image limit the maximum frame rate. It has to
be noted that modern transducers can have much more single elements and that
it is even possible to excite and read out all elements at once, increasing the
frame rate significantly and enabling real-time 3D ultrasound (Bercoff 2011).
Where tiny transducers are needed, e.g. for endo-rectal or gynaecological imag-
ing, mechanical scanners that rotate or “wobble” a single transducer element
are applied. These so-called sector scanners have a small aperture and produce
a fan-shaped acoustic window that can also exploit the gap between two ribs for
abdominal (inter-costal) imaging. A convex arrangement of piezo crystals can
be found in curved arrays combining the advantages of both above described
scanner types. It provides a good (wide) image in the near-field that even gets
wider with increasing depth. However, it also gets coarser due to the divergence
of the single lines.

Various effects cause a continuous attenuation of the ultrasound beam passing
through tissue. It is however desirable that the same tissues are represented
by the same pixel intensities on the resulting ultrasound image. Therefore, a
time gain compensation (TGC) is introduced to amplify the returning echoes:
The later a signal arrives at the transducer, the deeper—or rather longer—it
has travelled into the body before being reflected, and the more it needs to be
intensified. The TGC function can be set manually on most ultrasound scanners
since the ideal setting depends on the imaged tissue structure.

Tissue Harmonic Imaging

Since ultrasound often suffers from noise and artefacts due to reverberation or
aberration, modern devices use techniques that are more sophisticated than ba-
sic B-mode imaging. One example is Tissue Harmonic Imaging (THI), which
deploys non-linear effects of sound propagation and reflection. As a sound wave
travels through tissue, it produces regions of higher and lower pressure, which
in turn influence the speed of sound cs and consequently distort the original
sine-like pulse. Since tissue is not linearly elastic, it contracts less than it ex-
pands. At higher pressure, cs increases such that the peaks get pulled forward
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(a) (b)

Figure 1.6: Two breast ultrasound images acquired (a) without and (b) with
Tissue Harmonic Imaging. The image in (a) is clearly more affected by noise
than the image in (b). Note that the images are not showing the same patient.

as the sound wave passes through tissue. The opposite effect applies to regions
of lower pressure causing the trough of the signal to travel slower. This non-
linear propagation results in an asymmetrical, saw tooth shaped wave, which
is physically equivalent to a signal containing not only the bandwidth of fun-
damental frequencies of the original ultrasound pulse but also higher harmonic
frequency components. The harmonics have shorter wavelengths as well as a
narrower beam profile since they are mainly produced along the strong central
ultrasound beam and not by weak components of the initial signal as scat-
tered echoes or the edge of the transmit beam. This significantly improves the
grey scale contrast resolution and reduces artefacts. Furthermore, the harmonic
signals are less noisy, i.e. distorted or scattered, because they are produced
in the body and, thus, only have to pass through the body wall (or skin fat
layer) once. A general haze that overlies the top centimetres of an image in
conventional ultrasound images due to reverberations between the transducer
and the body wall layers is also eliminated by THI. The amplitude of the har-
monic signal is very low and suffers from strong absorption. Several methods
to detect the harmonics and to eliminate the unwanted fundamental echoes are
available. High pass filters can remove the fundamental frequencies from the
received signal. However, this technique requires a transducer that transmits
a very narrow bandwidth of frequencies in order to avoid substantial overlap
between (the highest) fundamental frequencies and (the lowest) harmonics. In
single line pulse inversion, the fundamental and harmonic echoes of one line are
recorded before an inverted pulse is applied to the same line. The resulting
signal is subtracted from the first one, cancelling the fundamental echoes and
sparing the harmonic information. Sample breast ultrasound images acquired
with and without THI are shown for comparison in figure 1.6. It has been stated
that THI can improve the tumour delineation and tissue differentiation when
compared to standard ultrasound imaging (Clevert et al. 2007).
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Automated 3D Breast Ultrasound

In automated 3D breast ultrasound (ABUS), a series of 2D ultrasound images
covering the breast is acquired automatically by a transducer translating across
the breast. Volumetric breast images are then generated by stacking the single
slices together. This automation enables technicians to acquire these images, as
opposed to hand-held ultrasound images that are attributed to radiologists. Al-
though the real-time feedback inherent to hand-held ultrasound is lost in ABUS
imaging, the 3D images promise to include more information at comparable
image quality (An et al. 2015).

The most common commercially available systems are the ACUSON S2000
ABVS system by Siemens and the somo-v by U-Systems1 (see figure 1.7a), which
both have FDA approval for clinical use.

With these two systems, ABUS images are acquired by a wide linear array
ultrasound transducer with more than 700 elements sliding continuously over
one breast, which is gently compressed by a dedicated membrane while the
patient lies in a supine position. During the sliding motion of the transducer, the
ultrasound scanner acquires more than 300 transversal images covering a large
segment of the breast. These single slices are stacked to a 3D ultrasound image
that can be examined in multi-planar reconstructions (van Zelst et al. 2015) as
shown in figure 1.7b. Depending on the size of the breast, up to five views of
each breast are acquired. The positioning and compression of the breast are
standardized to some extent and include anterior-posterior (AP), lateral (LAT),
medial (MED), superior(SUP) or inferior views, the breast being gently pushed
in these directions, respectively.

The ACUSON system produces images of a maximum size of
154 mm × 168 mm × 60 mm as well as a minimum voxel size of
0.21 mm × 0.52 mm × 0.07 mm in cranio-caudal (head-to-toe), medio-lateral (left-
right) and antero-posterior (front-to-back) direction, respectively. Spatial reso-
lution in antero-posterior direction depends on the chosen scanning depth, which
is generally adapted to the breast size. The somo-v scanner acquires images with
a maximum size of 146 mm × 168 mm × 49 mm at similar resolution. However,
the systems differ in the ultrasound frequencies they provide. Whereas the
Siemens transducer can operate at frequencies between 5.0 MHz and 14.0 MHz
(adjustable to the breast size), the U-systems device allows choosing between
8.0 MHz and 10.0 MHz. Some anatomical structures are referenced in the ABUS
image shown in figure 1.8.

A single ABUS scan takes approximately one minute plus patient positioning
and transducer set up. For a complete ABUS acquisition, the typical imaging
time per patient is 10 to 20 minutes with additional preparation times of 5 to
10 minutes. Interpretation and reporting time for an experienced radiologist is
approximately 7 to 10 minutes per examination (Kelly et al. 2010b; Skaane et al.
2015). Computer aided detection systems, which aim at improving and accel-
erating the image read, are therefore being developed. Images of consistently
high quality are an essential pre-requisite for these tools.

1Now marketed as Invenia ABUS by GE Healthcare
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(a)

(b)

Figure 1.7: (a) The somo-v Scanner by U-Systems with the typical linear
ABUS scan head sliding over the breast within its frame. (b) The acquired

transversal slices are stacked together in multi-planar reconstruction.
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Figure 1.8: Sample coronal (top) and transversal (bottom) slices of an ABUS
image.
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1.3 Ultrasound Image Quality

Typical Ultrasound Artefacts

The above mentioned physical aspects of sonography can lead to imaging arte-
facts: structures that appear in the image for technical reasons but do not
reflect anatomical reality. Ultrasound artefacts originate in idealised assump-
tions of sound expansion as explained below for some examples. It is important
to note that ultrasound artefacts indeed may disturb diagnosis, but on the other
hand, sometimes help to confirm findings.

The assumption that every pulse echo returning to the transducer has only
been reflected once can lead to repetition or mirror artefacts. If the ultrasound
waves are reflected back and forth between two successive reflectors, the increas-
ing runtime makes the incoming signal mock a regular stripe pattern resulting
from the repeated depiction of the reflectors. These reverberation lines can also
appear if the ultrasound signal does not leave the transducer but is reflected
within the coupling layers (see description of air artefacts in the next section).
Nevertheless, repetition artefacts can be used diagnostically, e.g. to identify
metallic OP clips. If there is one strong reflector in the field of view, it is pos-
sible that it reflects sound waves to the back side of an object that lies in front
of it. This simulates a copy of the object behind the reflector and produces a
mirrored version on the image.

Whereas a constant ultrasound velocity of 1540 m s−1 is assumed for image
generation, cs can indeed vary considerably in diverse tissue types (see table
1.1). This can produce runtime artefacts showing up as deformations especially
evident if tissues with extremely different cs are next to each other, as it is the
case when imaging, e.g., the liver through the ribs (trans-costal).

Another idealised assumption is the equal attenuation of ultrasound in all
media, which can lead to erroneous signal enhancements as well as to acoustic
shadows. The latter one appears if a structure does not conduct the ultrasound
to deeper layers in tissue, i.e. the sound is reflected totally at abrupt changes
of acoustic impedance or it is absorbed completely. Bones or kidney stones are
typical examples for such strong reflectors as can be seen in breast ultrasound
images where the ribs cause severe acoustic shadows (see figure 1.9a). Poste-
rior enhancement is caused by disproportionate time gain compensation and
describes the fact that tissue behind structures with very low ultrasound atten-
uation appears brighter. Due to the reduced attenuation of, e.g., a cyst, the
pixel intensity behind the cyst is overestimated and appears higher than in the
surrounding areas. This behaviour is an important criteria for detecting cysts
(see figure 1.9b).

Finally, it is assumed that the ultrasound beam is focused sharply, but actually
the beam has a distinct width causing blurring or partial volume artefacts. Due
to the finite extension of the beam, pulse echoes that originate in a volume are
projected onto one pixel in the image. If the imaged structures are of similar
size as the beam width, a mixture of these different tissues will be displayed.

Most of the above described artefacts are caused by the physical properties
of ultrasound interacting with different media and cannot be altered or avoided,
e.g., by a change of scanning parameters. Further image quality aspects that
play a role especially in ABUS imaging are introduced in the following section.
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(a)

(b)

Figure 1.9: Artefacts in (AB)US imaging. The sagittal reconstruction in (a)
has three strong acoustic shadows caused by the ribs. In (b), an anechoic cyst
causes posterior signal enhancement (arrows) due to a very low attenuation

within the cyst and consequently incorrect TGC.

Particular ABUS Image Quality Aspects

An important factor and unique feature of hand-held ultrasound imaging is the
user interaction with the real-time image. Many artefacts can be resolved or
explained by a slight movement or tilting of the ultrasound probe. In ABUS
imaging, this interaction and real-time feedback is completely lost. Therefore,
a standardized acquisition protocol ensuring high quality reporting, complete
coverage of breasts and accurate temporal comparison of prior to current ABUS
images is of highest importance in ABUS imaging. Although the image acqui-
sition process is automated to a high degree, it still depends on the experience
and training of the operating technician. The standard ultrasound parameters
as scanning depth, contrast, and level must be adjusted. The transducer needs
to be placed using the correct pressure and there must be a sufficient amount
of contact fluid covering the whole breast in order to avoid imaging artefacts,
which can either mimic or obscure pathology causing patient recalls. The most
relevant image quality aspects of ABUS are described in the following.

A common artefact in ultrasound imaging are shadows (air artefacts) caused
by a lack of contact gel, which is needed to couple the sound waves properly
into the body. If this coupling is not provided, the high impedance change
prevents the signal from leaving the transducer. Instead, the sound waves are
reflected back and forth within the transducer layers causing a characteristic
stripe pattern (reverberations) and a deep acoustic shadow on the image as
shown in figure 1.10a.

Major concerns in ultrasound breast images are the nipple and the ducts. On
the one hand, the nipple is an important landmark which helps, e.g., describing
lesion locations. On the other hand, the nipple can cause severe shadows in an



1.3 Ultrasound Image Quality 17

(a)

(b)

(c)

(d)

Figure 1.10: Artefacts in ABUS imaging. Air artefact (a) and nipple shadow
(b) in (orignal) transversal view. Wavy pattern (c) and discontinuities (d) in

(reconstructed) sagittal view.
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ultrasound image due to entrapped air and lack of contact between transducer
and skin as shown in figure 1.10b. The ducts may also be filled with air and,
thus, can produce elongated shadow regions along their axes. These shadows
may cover important structures in the breast image and hinder a solid diagnosis.

Eventually, the success of the imaging process also depends on the cooperation
of the patient. The acquisition of a single ABUS volume consisting of 318 2D
transversal slices takes approximately 1 min. If the woman is breathing strongly,
talking or coughing during the examination, the volumetric image will show a
wavy pattern in the reconstructed image plane (see figure 1.10c).

As the volumetric image data set is reconstructed from several 2D ultrasound
image slices, which are collected one after another by the transducer scanning
over the breast, it is crucial that the transducer moves smoothly at constant
velocity through its frame. If, however, the pressure of the transducer on the
skin is too high or if there are hard tissue structures in the breast, the transducer
motion may be hampered. In consequence, there will be discontinuities between
the lines of the reconstructed images (see figure 1.10d).

Furthermore, the position of the nipple relative to the rest of the breast in the
image is a quality aspect that should be considered. The nipple being too close
to the edge of the (laterally compressed) breast might constrain the view of the
radiologist on important areas and induce uncertainty about the true contour
of the breast.

The shapes and sizes of female breasts vary strongly among different women,
which results in slightly different shapes and contours in a breast image. Nev-
ertheless, on an ABUS image all breasts should show a smooth and roundish
contour line and more or less fill the image volume. An irregular breast shape
on an ABUS image might indicate improper patient positioning causing skin
folds, air cavities or even completely omitted regions of the breast.
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1.4 Image Processing

Due to the increasing use of digitization of medical images, digital image pro-
cessing is gaining importance in health care, such that the entire spectrum of
digital image processing is now applicable to medicine (Deserno 2011). Gener-
ally, digital image processing covers four major areas: 1) image formation, 2)
image visualization, 3) image analysis, and 4) image management. Whereas the
first two aspects deal with the steps from acquisition to display of an optimized
output of the image, the latter one refers to data storage, communication and
transmission. The focus of this work is on the third one—image analysis—
which includes quantitative measurements as well as abstract interpretations of
biomedical images. An important factor for this analysis is a priori knowledge
on the content and nature of the images, which must be implemented to the
algorithms on a high level of abstraction. Due to the complexity of biomedical
images, formulation of medical a priori knowledge is a challenging task. The dis-
crepancy between the cognitive interpretation of a medical image by a physician
and the simple representation of this image that is used by computer programs
is called the semantic gap (Smeulders et al. 2000). The heterogeneity of med-
ical images, the unknown delineation of objects, and the required robustness
of algorithms are the three main aspects of medical imaging that hinder bridg-
ing this gap. Nevertheless, medical image analysis is a wide field of research
that has already translated many ideas to clinical applications, e.g. computer
aided detection (CAD) algorithms supporting radiologists in the interpretation
of mammograms (first product approved by the U.S. Food and Drug Admin-
istration in 1998). Some basic image analysis tools that were used throughout
this work are described in the following.

1.4.1 Otsu’s Threshold

A very common and important task in image processing is separation of image
foreground from background. In an ideal case, the histogram of an image has a
deep and sharp valley between two peaks that represent object and background,
respectively. Then, this valley can easily be chosen as threshold value. In real
images however, this is seldom the case, e.g. due to noise roughening the whole
histogram. Otsu (1975) proposed a threshold selection method that maximized
the variance between foreground and background. Assuming that a threshold
value k for the pixel intensity dichotomizes the image into two classes C0 and
C1 (background and object) he computed the between-class variance as

σ2
B = ω0ω1(µ1 − µ0)2 (1.4)

where ω0 and ω1 are the probabilities of class occurrence and µ0 and µ1 the
class mean intensity levels, respectively. Given a picture of N pixels and L
grey-levels with ni pixels at level i ∈ 1, ..., L, normalisation yields a probability
distribution:

pi = ni/N, pi ≥ 0,
L∑

i=1
pi = 1. (1.5)
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Then, the elements of equation 1.4 depend on k as follows:

ω0 =
k∑

i=1
pi = ω(k) (1.6)

ω1 =
N∑

i=k+1
pi = 1 − ω(k) (1.7)

µ0 =
k∑

i=1
ipi/ω0 = µ(k)/ω(k) (1.8)

µ1 =
N∑

i=k

ipi/ω1 = µ(L) − µ(k)
1 − ω(k) , (1.9)

where ω(k) and µ(k) are the zeroth and first order cumulative moments of the
histogram up to the kth level, respectively, and µ(L) is the total mean level of
the original picture. Thus, the problem to be maximized over k is

σ2
B(k) = [µT ω(k) − µ(k)]2

ω(k) [1 − ω(k)] . (1.10)

The criterion measure takes a minimum value of zero if all pixels are either C0 or
C1, and otherwise takes a positive and bounded value, i.e. the maximum always
exists. It is noticeable that Otsu’s method only uses zeroth and first order
statistics making the computation relatively simple. Furthermore, an extension
to multi-thresholding exists.

As can be seen in figure 1.11, this single threshold is not always sufficient
to get a meaningful separation between foreground and background. But for
ABUS images, Otsu’s method yields a binary image of the breast that is clearly
separated from the background. Small holes in the foreground can be eliminated
by morphological operations as described in the next section.

1.4.2 Basic Morphological Operations

Mathematical morphology comprises many techniques for the analysis and pro-
cessing of geometrical structures, which are commonly applied to digital images.
The basic morphological operators are erosion, dilation, opening and closing, all
of which are shift-invariant and can be applied not only to binary images but
also to grey-scale images. In binary morphology, an image is considered as a
subset of a Euclidean space Rd or an integer grid Zd, for some dimension d. This
image is probed, i.e. convolved, by a simple, pre-defined structuring element,
which is by itself a binary subset of the space or grid. The structuring element
can have the shape, e.g., of a disk of radius r, a n×n square, or a cross. The four
basic operations that are often used in medical image processing are depicted
in figure 1.12 for a sample binary image and a circular structuring element. If
E is a Euclidean space or an integer grid, A is a binary image in E, and B is
the structuring element, dilation is defined as

A ⊕ B =
⋃

b∈B

Ab. (1.11)



1.4 Image Processing 21

(a)

−50 0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

Pixel Intensity
N

um
be

r 
of

 P
ix

el
s

(b) (c)

(d)

−50 0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3
x 10

4

Pixel Intensity

N
um

be
r 

of
 P

ix
el

s

(e) (f)

Figure 1.11: Otsu’s threshold image filter applied to a sample image (top)
and the mean projection of 50 coronal ABUS image slices. (a) and (d) are
the original grey scale images, (b) and (e) show the corresponding histogram
and Otsu’s threshold level (red line), and (c) and (f) are the resulting binary

images.

Figure 1.12: Basic morphological operations. The dark blue open square is
the image that is dilated, eroded, opened and closed by the circular structuring

element yielding the light blue shape.
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Figure 1.13: Principle of contour extraction algorithm that uses erosion and
subtraction. The size of the structuring element B defines the thickness of the

boundary (right).

Whereas dilation works like a low pass filter enlarging foreground structures,
smoothing contours, or even filling small holes, erosion is the contrary operation
that makes foreground regions shrink and cancels details that are smaller than
the structuring element. Erosion can be written as

A ⊖ B =
⋂

b∈B

A−b. (1.12)

Opening is the combination of erosion and dilation,

A ◦ B = (A ⊖ B) ⊕ B, (1.13)

which keeps all parts of the foreground that the probe image fits in. Opening
keeps all points of the object that are covered by the translation of the structur-
ing element along the inner border, i.e. it eliminates protrusions and bridges.
Closing is the inverse operation—dilation followed by erosion—

A • B = (A ⊕ B) ⊖ B (1.14)

filling gulfs and holes. Closing adds all points from the background to the
foreground that cannot inclose completely the structuring element translating
along the outer boundaries of the object, i.e. holes within the foreground object
are closed if they are smaller than the structuring element.

1.4.3 Boundary Extraction
The extraction of the boundary (or contour) of an object in a binary image
is a very useful application of the above described morphological operators.
Technically, the boundary of an object A can be obtained by eroding A by a
suitable structuring element B and then subtracting the eroded set from A as
shown in figure 1.13. The size of the structuring element defines the thickness of
the extracted contour. If, for example, B is a square of 3 × 3 pixels, the contour
line will be one pixel thick.

1.4.4 Hole Filling
A hole in a binary image may be defined as a background region surrounded
by a connected border of foreground pixels. Whereas a closing operator might
already do the job for small holes, this is not an option to erase bigger enclosed
background regions since a sufficiently large closing operator would distort the
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I Ic F F ⊕ B (F ⊕B)∩Ic H H ∩ Ic

Figure 1.14: Principle of the hole filling algorithm based on morphological
reconstruction. The original image I is dilated by the structuring element B
being a 3 × 3 matrix of ones and masked by Ic. The rightmost image shows
the isolated filled hole. Dark pixels represent the foreground. (Figure similar

to a figure in Gonzalez & Woods (2008).)

rest of the image, i.e. it would not only fill holes but also abrade potentially
relevant structures of the object contour. A more robust, iterative approach is
employing morphological reconstruction. As described in detail by Gonzalez &
Woods (2008), morphological reconstruction uses two images and a structuring
element instead of only one image and a structuring element. Generally, the so-
called marker image F defines the starting points for a morphological operation
whereas the mask image G, e.g. the original image, constrains the operations
to specific regions.

For hole filling of a binary image, the mask G is the complement Ic of the
original image I. The marker F is a matrix of the same size as I with zeros
everywhere except for the borders where it is 1 − I (see figure 1.14). Hole filling
can be accomplished by iteratively dilating F by the structuring element B,
e.g. a 3 × 3 matrix of ones, and computing the set intersection with Ic until
the resulting image does not change any more. The essential operation is called
geodesic dilation and is defined iteratively as

D
(n)
G (F ) = D

(1)
G

(
D

(n−1)
G (F )

)
(1.15)

with
D

(1)
G (F ) = (F ⊕ B) ∩ G and D

(0)
G (F ) = F. (1.16)

As shown in figure 1.14, the dilation of F with B starts at the borders and
proceeds inward. The set intersection with Ic protects the original foreground
pixels from changing during the iterations. In this simple example, one iteration
is already sufficient to fill the hole as indicated in the final result H.
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1.5 Machine Learning

The aim of the presented work is to measure the quality of ABUS images au-
tomatically. Due to the increasing throughput of medical images especially in
a screening scenario, machine learning suggests itself to be included to the so-
lution of this task, i.e. the computerized emulation of an image quality rating
that had been provided originally by a clinician. The basic principles of machine
learning as it will be used in this work are described in the following.

“The ease with which we recognize a face, understand spoken words, read
handwritten characters, identify our car keys in our pocket by feel, and decide
whether an apple is ripe by its smell belies the astoundingly complex processes
that underlie these acts of pattern recognition” (Duda et al. 2001). What seems
to be a very easy task for us with our highly sophisticated neural and cognitive
capabilities can be a tough challenge for a machine. Nevertheless, we want
machines to support us by recognizing patterns reliably and accurately as for
example in object recognition and image classification, and thus, make them
learn.

Whereas unsupervised learning approaches focus on the detection of patterns
and clusters in data sets of unknown classes and categories, supervised learning
provides an annotated set of training instances to derive concepts that can then
be applied to an unseen instance in order to predict its class. Each instance
is characterised by the values of attributes (or features) that measure different
aspects of the instance (Witten & Frank 2005). The latter approach will be
employed throughout this thesis. Features will be derived from the images using
image processing on different scales, i.e. describing the image as a whole or on
the level of smaller patches. They can be categorical or numerical, describing
geometrical measures or histogram attributes, and can be based on the original
images or on corresponding parameter maps.

In conclusion, the three main issues of supervised machine learning are the an-
notation of a sufficiently large training data set, the definition and computation
of meaningful attributes (feature extraction), and the selection and instantia-
tion of a suitable classifier algorithm. In order to evaluate whether a trained
classifier will be able to predict the class of an unseen instance reliably, it is gen-
erally applied to a test data set of annotated instances that are disjunct from
the training instances.

1.5.1 Feature Ranking

The design of a meaningful set of attributes from scratch is a challenging task.
Prior knowledge, e.g. the particular view of an image, has to be translated into
nominal attributes and visual characteristics have to be simplified until they can
be computed automatically. As soon as a potential set of attributes has been
defined and determined for a training data set, often the importance of those
attributes to discriminate between the classes, i.e. their discriminant power, is
computed using feature ranking (or attribute selection). Various methods are
available for this purpose, out of which two are described below.
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Pearson’s Correlation

A straight forward approach to measuring the correlation between particular
features and the class in an annotated training data set is to compute Pearson’s
correlation coefficient. It expresses the linear correlation between two quadrat-
ically integrable random variables X and Y and takes a value of 1 (-1) if there
is a perfectly positive (negative) linear correlation. It is defined as

ρ(X, Y ) = Cov(X, Y )
σ(X)σ(Y ) (1.17)

with σ being the true standard deviation and Cov(X, Y ) describing the true
covariance of the distribution. The empirical correlation coefficient ρe for paired
values of a measurement (sample) is defined as

ρe =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2 ·

∑n
i=1(yi − ȳ)2 , (1.18)

where x̄ and ȳ are the empirical mean values of the measurement.
Since ρe is intended to uncover linear correlation between two variables that

are on an interval scale, it is intuitive but not suitable to analyse the relevance of
features for a separation into only two classes (class labels are not on an interval
scale). Furthermore, if ρe = 0, there might still be a non-linear correlation
between a feature and the class.

Information Gain Ratio

Another method to evaluate the relevance of single attributes for classification is
to compute the information gain ratio with respect to the class. The information
is defined in Witten & Frank (2005) as a measure of purity in a subset of training
instances with respect to the amount of positive and negative class instances in
this subset, i.e. the entropy H. Using the picture of a decision tree, the measure
represents the expected amount of additional information that is needed to
decide on the class of a new instance when it has arrived at a specific node of
the tree.

If a training data set contains p positive and q negative instances with p+q =
n, the contained information is computed as

info([p, q]) := H(p/n, q/n) = −(p/n) log(p/n) − (q/n) log(q/n). (1.19)

If the data set is split into two subsets s1 and s2 based on two values a1 and a2
that a specific attribute a can take, s1 and s2 will contain p1 and p2 positive
as well as q1 and q2 negative instances with p1 + q1 = n1 and p2 + q2 = n2,
respectively. The information gain by the split on attribute a will then be

gain(a1, a2) = info([p, q]) − info([p1, q1], [p2, q2]) (1.20)
= H(p/n, q/n) − H(p1/n1, q1/n1) − H(p2/n2, q2/n2).(1.21)

The entropy is chosen as it is the only function that satisfies all of the following
three necessary properties.
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• If a data subset is pure, i.e. contains only instances of one class, the
measure is zero.

• If the impurity (or randomness) is maximal, i.e. all classes are equally
likely, the measure is maximal.

• The measure obeys the multi-stage property, meaning that it can reflect
data splits into more than two classes. Such a split can be performed by
splitting data into two subsets in a first stage, and then splitting up these
subsets again in a second stage.

The information measure is however biased towards attributes with a large
number of values since subsets of data are more likely to be pure if there are
many different attribute values, each of which theoretically could serve as split
criteria. These so-called highly branching attributes, thus, can cause over-fitting
or fragmentation, meaning that the data is split into (too) many small sets.
Therefore, the intrinsic information of a split is computed as the entropy of
distribution of instances into branches. It reflects the amount of information
that is needed to tell which subset an instance belongs to. Hence, attributes
with higher intrinsic information are less useful. For the split described above,
the intrinsic info is

infoint(a1, a2) = H(n1/n, n2/n). (1.22)

Finally, these two metrics are combined to the information gain ratio as

GR(a1, a2) = info(a1, a2)
infoint(a1, a2) (1.23)

which can be calculated for each feature to indicate its relevance for the auto-
mated classification.

1.5.2 Random Forests
A popular approach to machine learning is a decision tree, which is grown
using a training data set X = x1, ..., xn with ground truth class annotations
Y = y1, ..., yn. A decision tree is made up of nodes, where the data splits into
branches, and ends up in leaves if no further splitting is possible. A sample
instance x′ will follow a particular branch of the tree until it ends up in a leaf
corresponding to a specific class, which x′ is then assigned to. Tree growing
starts from the whole training data set. Out of all features the one with the
largest variance is used to introduce a linear split of data such that the intra-
class variance of the resulting subsets is minimal. The procedure is repeated
at each node using the corresponding data subset until either the class of all
instances in the node is the same or another stopping criterion is satisfied, e.g.
specified depth of the tree or number of instances in the node. Advantages of the
decision tree method are the invariance under scaling and various other trans-
formations of feature values, the robustness to inclusion of irrelevant features,
and the descriptive, presentable models it produces. However, decision trees
tend to learn highly irregular patterns and over-fit their training sets if they are
grown too deep.
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Random forests were proposed by Breiman (2001) to average multiple deep
decision trees that are trained on different subsets of the available data, which
will in turn reduce the variance, i.e. avoid over-fitting. The output class of
a new instance is then the mode of the classes each tree voted for. For every
decision tree in the forest the following steps are applied:

(i) Out of N instances in the training data set, n < N objects are randomly
selected with replacement (“bagging”).

(ii) Out of M attributes, m < M attributes are randomly chosen at each node
and used to perform the data split, e.g. by minimizing the entropy.

(iii) The tree is fully grown (until a defined stopping criterion is satisfied), but
not pruned.

Several parameters need to be defined before growing a random forest. The
number of trees can range from some hundreds to several thousands and is an
important factor for computational speed. The maximum depth dmax of a tree
can be limited, e.g. to the number M of available features. The minimum
number nmin of samples (instances) required at a leaf node for it to be split can
be restricted, e.g. to a low percentage of the available instances in the training
set. Finally, the number m of randomly selected features at each node has to
be defined. Breiman (2001) proposed to set it to log2(M) + 1.

1.5.3 Receiver Operating Characteristic

Measuring the performance of a classifier is normally achieved by comparing
the class label output for each instance of a test data set to a corresponding
ground truth annotation. In a two class system, talking of a “positive” and
a “negative” class is common. If an actually positive instance was assigned
the correct class label by the classifier, it is considered a “true positive” (TP),
otherwise it is counted as “false negative” (FN). A factually negative instance
that is classified correctly is called “true negative” (TN), whereas it is a “false
positive” (FP) if it is assigned to the positive class. The true positive rate
(TPR), also called sensitivity, is the amount of TPs divided by all actually
positive instances (TP+FN). The false positive rate (FPR), on the other hand,
is computed as FP/(FP + TN). The specificity is defined as 1 − TPR. These
measures can also be used to compare the ratings of two readers with each other.

A more detailed analysis of the classifier can be retrieved from the receiver
operating characteristic (ROC) curve, that displays the TPR as a function of
the FPR for all possible decision thresholds (operating points) of the classi-
fier. Whereas the diagonal through the origin in this plot represents a random
classification, curves that have a steep slope and come close to the upper left
corner of the plot, which stands for high sensitivity at high specificity, describe
a good classification. The area under this curve (AUC) is therefore a standard
measure in machine learning applications. In figure 1.15 two different types of
ROC curves originating from the same cross-validation experiment are shown.
The ROC plots in figure 1.15a are directly retrieved from the empirical data,
whereas the curve in figure 1.15b represents the bivariate normal fit of the data.
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Figure 1.15: Sample ROC curves. In (a), empiric ROC curves resulting from
a 10-fold cross-validation experiment are plotted. The thin lines describe the
single folds, whereas the bold line is the merged ROC curve combining all folds.
The given AUC value is derived from this merged curve. In (b), the same data
has been fitted to generate smooth ROC curve of the merged folds. The 95 %
confidence interval has been computed from the fitted curves of the single folds

(not shown).

If the available training data is not large enough, it is common practice to
perform cross-validation instead of a simple train-test approach. In n-fold cross-
validation, the annotated data set is split into n folds, out of which n−1 are used
for training and the remaining one for testing. This is repeated until each fold
has been employed once as test data. In “stratified” cross-validation, the data is
distributed such that the amount of positive and negative instances is the same
in each fold. In order to estimate a confidence interval of the measures retrieved
in cross-validation, several runs with newly assorted data are performed. This
opens different options for the computation of statistical measures describing
the classifier performance as outlined in detail by Forman & Scholz (2010).

Generally, precision and recall are defined as Pr := TP/(TP + FP) and Re :=
TP/(TP + FN). The F-measure of a classifier is then given as

F = 2 · Pr · Re

Pr + Re
. (1.24)

When it comes to cross-validation, one can average over all F (i) of all folds i

Favg = 1
n

·
n∑

i=1
F (i). (1.25)

Another option is to first average precision and recall over all folds and then
compute the F-measure

Pr = 1
n

·
n∑

i=1
Pr(i) (1.26)

Re = 1
n

·
n∑

i=1
Re(i) (1.27)

Fpr,re = 2 · Pr · Re

Pr + Re
. (1.28)
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Similarly, the AUC measure can be determined as average over all folds

AUCavg = 1
n

·
n∑

i=1
AUC(i) (1.29)

or as the area AUCmerge under the merged ROC curve resulting from all in-
stances of all folds sorted for their output probabilities. This merging implies
however that the classifier is assumed to produce well-calibrated probability
estimates.
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2 Materials and Methods

All developments and computations presented in the next sections were based on
original ABUS images that had been acquired in routine clinical care (screening
or diagnosis) and were provided to all partners of the ASSURE project. All data
was anonymised. The Institutional Review Board waived the need for informed
consent and approved the use of anonymised images for the studies performed
within the project. In total, 815 ABUS volumes of 104 women acquired either
at Radboud University Medical Centre (RUNMC) (Nijmegen, Netherlands) or
at Jules-Bordet-Institute (IJB) (Brussels, Belgium) using a Siemens ACUSON
S2000 ABVS or U-Systems somo-v device have been provided. The images were
organized in subsets as listed in table 2.1. A*, B*, and C* consist of those
ABUS volumes from A, B, and C, respectively, that actually contain the nipple.
Visibility of the nipple is an important aspect for some evaluations presented
in this work and was assessed manually. As will be described in the following
sections, each of the data subsets was rated manually by two out of three readers
providing the ground truth for this study.

Furthermore, all computations described in this thesis were performed on a
Windows 7 machine with an IntelÂő CoreâĎć i7-2627M processor at 2.7 GHz
and with 6 GB of RAM. All computing times that are given in the following
chapters refer to this specific hardware.

Table 2.1: Data subsets used in this work

Name Images Women Institute Scanner Nipple visible Readers

A 37 14 RUNMC U-Systems yes & no 1 & 2
A* 28 14 RUNMC U-Systems yes 1 & 2
B 331 23 RUNMC Siemens yes & no 1 & 2
B* 312 22 RUNMC Siemens yes 1 & 2
C 447 67 IJB Siemens yes & no 2 & 3
C* 394 66 IJB Siemens yes 2 & 3

2.1 Empirical Analysis of ABUS Artefacts
In the previous chapter, diverse imaging artefacts that can occur in ABUS im-
ages have been mentioned. In order to analyse their frequency in clinical practice
and their relevance for diagnosis, 368 ABUS volumes were evaluated manually
with respect to image quality. Two radiologists (“Reader 1” and “Reader 2”) in-
spected the images visually and annotated them separately, i.e. if they thought
a specific image quality criteria was not fulfilled properly, the image was labelled
accordingly. Inter-rater agreement analysis was performed to evaluate the ob-
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jectivity of the defined criteria. The results of the manual artefact annotation
served as basis for the envisaged software development.

There have been publications treating image quality or special artefacts of
ultrasound (Keeble et al. 2013), breast ultrasound (Baker et al. 2001), and even
automated breast ultrasound (Boehler & Peitgen 2008), but to the author’s
knowledge, this was the first time that a statistical analysis of specific image
artefacts for ABUS was performed. Arleo et al. (2014) reported that in the first
month of using ABUS in their institution the recall rate due to BI-RADS 0-
incomplete scans was 25 % but trended down to under 13 % in the third month.
These numbers show that ABUS has a learning curve, meaning that technicians
learn to acquire better images over time and with training. This encourages the
implementation of an automated quality assessment system that supports the
technicians as proposed in this work.

Manual Annotation Process

In order to facilitate the manual annotation of a substantial amount of ABUS
images, a dedicated software tool was developed. The tool allowed easy access
to a defined list of ABUS images that were supposed to be classified by the
radiologist. It comprised a standard medical viewer, such that artefacts could
be detected and analysed in similar environment as for clinical diagnosis. A list
of the possible artefacts was provided electronically for simple processing and
automatic structured storage of the manual ratings.

Two medical researchers with several years of experience in ABUS image
interpretation manually annotated the images of data sets A and B. The readers
were explicitly asked to evaluate each single ABUS image individually without
considering potentially available other views of one breast. In most cases, a
region affected by an artefact can be examined better in another view of the
same breast such that the radiologist is still enabled to make a proper diagnosis.
However, a classification of the whole study across the different available views
is only the next step after rating each ABUS image individually. Having said
this, high quality of all images in one examination is an essential prerequisite for
both efficient and effective diagnostic image read as well as for CAD algorithms.

Inter-rater Agreement

The inter-rater agreement of the manual annotation was computed as Cohen’s
κ coefficient (Cohen 1960). It is defined as

κ = p0 − pc

1 − pc
(2.1)

with p0 being the relative observed agreement between the two raters and pc be-
ing the hypothetical probability of random agreement. The latter one expresses
the probability that both raters agree by chance and is based on the empirical
probability of each rater choosing each category. A complete agreement between
the two observers yields κ = 1. If there is no agreement between the two raters
other than what would be expected for random selection, then p0 = pc and
consequently κ = 0.
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There is no universally accepted interpretation of the κ value, however many
diverse guidelines have appeared in the literature. Landis & Koch (1977) stated
that one could interpret κ values in the range of 0 to 0.20 as slight, 0.21 to
0.40 as fair, 0.41 to 0.60 as moderate, 0.61 to 0.80 as substantial, and 0.81 to
1 as almost perfect agreement. Fleiss (1973) characterized κ values below 0.40
as poor, between 0.40 and 0.75 as fair to good, and above 0.75 as excellent
agreement. In conclusion, inter-rater agreement with κ between 0.40 and 0.60
might be acceptable and values above 0.75 express good agreement whereas κ
values below 0.40 should be considered sceptically (Greve & Wentura 1997).
This latter interpretation will be adopted throughout this work.

Relevance and Frequency of Artefacts

The incidence of the considered artefacts was evaluated and used to estimate
the relevance of each single artefact. The higher the relative frequency of a
specific artefact, the higher the significance and usefulness of an automated
artefact detection are. The outcome of the manual annotation influenced the
subsequent software development process in two ways. It defined the relevant
artefacts that should be covered by the envisaged image quality assessment tools,
and served as training basis for the classifiers that were employed as described
in the following sections.
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2.2 Computer-aided Analysis of ABUS Artefacts
In the following sections, the methods for an automated detection of diverse
image artefacts will be described in detail. Generally, the artefact detection was
based on image processing and machine learning, meaning that several image
features were extracted and used for classifier training. The feature extraction
was performed on different scales depending on the considered problem. For
the relative nipple position, the nipple shadow, and the breast contour shape,
features describing the image as a whole were used yielding a classification on
image level. The workflow diagram describing how these three quality aspects
were approached is shown in figure 2.1. For the air artefacts, a sliding window
approach was employed leading to a classification on pixel level. The visibility
of the nipple was assessed by features based on a set of probability maps.

Figure 2.1: Schematic overview of the workflow and data usage for the au-
tomatic classification of the relative nipple position, the nipple shadow, the

breast contour shape and a combination of these three.

2.2.1 Relative Nipple Position

The position of the nipple relative to the breast contour line is a relevant image
quality aspect in ABUS imaging. If the nipple is pushed too close towards
the borders of the imaged breast or not supported correctly by the designated
cushions, the nipple shadow often gets very prominent and the contour line of
the breast cannot be clearly distinguished any more. As a consequence, it is

Figure 2.2: Two ABUS of the same breast acquired in different views.
Whereas the nipple is pushed to the very edge of the breast in the LAT view

image in (a), the AP view image in (b) shows no artefacts at all.



2.2 Computer-aided Analysis of ABUS Artefacts 35

Figure 2.3: Single steps for breast mask computation: (a) smoothed coronal
projection, (b) binary mask after applying Otsu’s threshold, (c) dilated mask,
(d) closed mask, (e) holes are filled, (f) eroded and contoured mask with a

marker at the nipple position (set by technician during image acquisition).

often unclear whether all relevant parts of the breast were imaged correctly. A
sample case is shown in figure 2.2.

Pre-Processing

The ABUS images were prepared for feature extraction in several pre-processing
steps. First, a 2D coronal breast mask was computed similarly to the approach
proposed by Tan et al. (2013a). Therefore, a coronal mean projection of a stack
of 120 slices close to the skin was performed. However, the top 50 slices from
the skin were excluded from the breast mask computation to avoid responses
from the skin tissue. The projection image was smoothed using a Gaussian filter
with a sigma of 0.2 mm and binarized by applying Otsu’s threshold filter (Otsu
1975). In order to close holes within the breast mask or at its edges, the binary
image was dilated and holes were filled before it was eroded again. Finally, the
breast contour line was computed based on the mask image as shown in figure
2.3.

Following the standard acquisition protocol, the technicians generally pin-
point the actual nipple position (xT, yT) in the coronal view at the end of each
acquisition. Therefore, the absolute nipple position coordinates were considered
as given and used as input for feature extraction.

Feature Computation

Based on the extracted breast mask and the given nipple position, nine presum-
ably meaningful features were computed.

• cview:The view of the considered image strongly influences the absolute
nipple position and may affect the impact of a nipple being close to the
contour line of the breast. Thus, a categorical feature cview that can be one
of the four available standard views (AP, LAT, MED, SUP) was extracted
from the information provided in the header of the DICOM file.
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• xT and yT: The given nipple coordinates (xT, yT) were considered as pos-
sibly important features since the absolute nipple position in the image
may correlate with the position relative to the breast. As the appear-
ance of ABUS images differs a lot depending on the breast size and the
transducer position, the absolute nipple position is however not coupled
directly to the nipple position relative to the breast image.

• dmin: The shortest Euclidean distance dmin between the nipple position
(xT, yT) and the breast mask contour line was computed.

• cio: It was determined whether the nipple was located inside or outside
the breast mask. The latter case can occur when the shadow around the
nipple is very dark and close to the breast contour such that this region
is—by mistake—not included in the breast mask. A categorical feature
cio ∈ {1, −1} was included.

• d∗
min: The signed distance between nipple position and contour line was

computed as d∗
min = dmin · cio.

• AB: The total 2D physical area of the breast AB was computed using the
pixel size and the number of pixels within the breast mask.

• AB/I: The ratio of the physical 2D area of the breast AB to the total image
size was calculated.

• dCOM: The centre of masses (xCOM, yCOM) of the breast area and the
Euclidean distance dCOM between (xCOM, yCOM) and (xT, yT) was deter-
mined.

Classification

The learning step was based on data sets A* and B*, i.e. 342 ABUS volumes
actually containing the nipple in order to prevent bias from calculations that
were based on incorrect assumptions for the nipple coordinates. As described
in section 2.1, the ground truth annotation for classification was done by two
medical experts with several years of experience in ABUS image interpretation.
The relative nipple position was categorised by each reader separately as “too
close to the contour line of the breast”, “acceptable”, or “good”. For classifier
training, this rating was transformed to a two class annotation: If both readers
agreed that the nipple position was “too close to the contour line of the breast”,
the case was given the positive class. All other cases were summarized in the
negative class.

Information gain ratio feature ranking (see section 1.5) was then performed
in order to estimate the relevance and discriminant capacity of the computed
attributes. The standalone application WEKA 1 (Hall et al. 2009) was employed
for this purpose. Machine learning was implemented using a Random Forest
classifier (Breiman 2001) as provided by the OpenCV library 2 (Bradski 2000).
Classifier performance was measured in 10-run 10-fold stratified cross-validation.

1Version 3.7.11, http://www.cs.waikato.ac.nz/ml/weka/
2Version 2.4.10, http://opencv.org
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The number of trees in a forest was set to 100, whereas the maximum depth of
each tree was set to 15. The minimum sample count required at each node to be
split was set to 10 % of the total number of samples, yielding 35. The number
m of random features considered at each node for decision tree construction was
set to log2(M) + 1 as proposed by Breiman (2001) with M being the number
of features, and thus was 4. The 10 folds for cross-validation were randomly
assorted under the constraint of similar class distribution in each fold.
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2.2.2 Nipple Shadow
A major issue in sonographic imaging is the strong reflection of ultrasound
waves at tissue-air boundaries, which causes regions adjacent to air cavities to
be occluded by acoustic shadows on the resulting images. In breast sonography,
the nipple being surrounded by a potentially uneven areola and connected to
ducts is very difficult to be imaged properly. If an insufficient amount of contact
fluid is applied to the areola region or the ducts are filled with air, the tissue
behind the nipple cannot be seen on the ultrasound image (see figure 2.4).
Another reason for a badly imaged nipple region is inadequate support of the
breast (by cushions) in lateral or medial view, which could lead to insufficient
contact between transducer and areola.

Although the tissue behind the nipple might be sufficiently visible in other
views of one breast, an automated detection of extremely prominent nipple
shadows could help to sensitise the technicians to this issue.

Feature Computation

In order to estimate the size of a potential nipple shadow, it was assumed that
the shape of the shadow could be approximated by a cylinder around the nipple
with the axis going in antero-posterior direction (see figure 2.5). As the nipple
is (approximately) a disk in the coronal plane, once it has stopped the US wave
it produces a cylindrical shadow region. The nipple position (xT, yT) in coronal
plane was obtained from the DICOM header as given by the technician during
image acquisition and assumed to be the same for all coronal slices. The size of
the potentially dark cylindrical region around the nipple position was estimated
by counting cylinder segments (rings) that had low pixel intensity. The radius
of the different cylinder segments varied from 4.0 mm to 20.0 mm in steps of
4.0 mm (see figure 4). In AP direction, the height of each cylinder segment was
approximately 2.0 mm. The top layer was positioned starting at 6.0 mm below
the skin avoiding potentially disturbing high intensity signals due to skin fat or
sound reflections within the coupling layers of the transducer. The bottom layer
ended at 26.0 mm below the skin. The following seven features were extracted:

• cview: The view of the considered image affects the absolute nipple position
and the possibilities to support the breast properly by cushions. Thus, a

Figure 2.4: Sample case for prominent nipple shadow. (a) shows the MED
view of a left breast with very dominant shadow behind the nipple. (b) is the

same breast imaged in AP view with nearly no shadow behind the nipple.
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Figure 2.5: Arrangement of cylinder segments that were used to estimate the
size of a nipple shadow. The symmetry axis was at the nipple position as shown
on the left, which is a segmented 3D view of a sample ABUS with the nipple
area marked by the magenta cylinder. Three out of ten used layers and three

out of five used rings (radii) are shown on the right.

categorical feature cview that can be one of the four available standard
views (AP, LAT, MED, SUP) was introduced.

• NI<50 and NI<60: The segments showing a lower mean intensity than a
specific threshold value were counted. The intensity threshold was set
to 50 and 60, respectively, yielding two features, NI<50 and NI<60, for
every image. In the present 8-bit grey scale images, these threshold values
yielded reasonable differentiation between tissue and shadow signals.

• NPix: The amount of pixels NPix in the cylinder segments that had a mean
intensity below 60 was counted. This number accounted for the different
sizes of the considered cylinder segments.

• σ2
bright: The variance σ2

bright of brightness in one cylindrical region of
4.0 mm radius around the nipple was calculated since ultrasound shadow
signals tend to have a lower variance than signals reflected from struc-
tured tissue. The cylinder went from the skin to a depth of 25.0 mm in
antero-posterior direction.

• xT and yT : The coordinates (xT , yT ) describing the absolute position of
the nipple in coronal plane were included.

Classification

Automatic classification of ABUS images according to the size of a potential
nipple shadow was again based on data sets A* and B* and performed simi-
larly to the procedure described in section 2.2.1 for the relative nipple position.
The ground truth annotation was provided by two medical experts (see section
2.1) independently rating the nipple shadow of an image as “too prominent”,
“acceptable” or “good”. Those images which both radiologists found a “too
prominent” nipple shadow in were assigned the positive class. All other images
were given the negative class label in order to focus on high specificity of the
trained classifier.

Again, information gain ratio feature ranking was performed prior to Random
Forest training and testing in 10-fold 10-run stratified cross-validation experi-
ments. The number of trees in a forest was set to 100 whereas the maximum
depth of each tree was set to 15. The minimum sample count required at each
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node to be split was set to 10% of the total number of samples, yielding 34.
The number of random features considered at each node for decision tree con-
struction was set to log2(M) + 1 = 3, since the number M of attributes was
7.
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2.2.3 Breast Contour Shape

The shape of the breast contour is an important indicator of the completeness
of an ABUS image. Breast size and shape as well as the distribution of dense
and fatty tissue vary strongly among different women. Nevertheless, the typical
shape of a breast in the coronal plane of an ABUS scan is round. Whereas large
breasts may fill the whole image, small breasts generally result in a rather circu-
lar structure with a smooth contour line in the coronal plane. A very irregular,
uneven breast contour line is an indicator for incomplete breast coverage during
image acquisition caused, e.g., by insufficient support of the breast by cushions.
In figure 2.6 two views of the same breast illustrate the described effect: The
MED view in figure 2.6a is missing some parts of the breast indicated by the
very irregular contour line in the upper right quadrant of the coronal plane. The
AP view of this breast in figure 2.6b proves that the breast was of normal shape
and could be imaged correctly.

Pre-Processing

In order to extract the breast mask and its contour line, several pre-processing
steps were performed. They were similar to those described in section 2.2.1 but
with focus on the breast contour line. A 4 mm stack of coronal slices starting at
a distance of 7 mm from the skin was used for breast mask generation. The top
7 mm of coronal slices were excluded since they often contain spurious signals
caused by sound reflections within contact fluid on parts of the transducer that
do not have skin contact. Coronal slices lying deeper than 11 mm were not
included in order to avoid signals from the ribs that can already appear from
this depth on, depending on the breast size and the transducer positioning. The
4 mm stack of slices was projected to one 2D coronal slice that was binarized
using Otsu’s threshold filter (Otsu 1975). Morphologic closing with a circular
structuring element of 3 mm radius was performed to smooth the contour and
potential small irregularities. Holes that were lying completely within the binary
breast mask were closed. If more than one connected component were in the
image, the largest area was kept as breast mask and the others were ignored.
This may happen if large parts of the armpit or the ribcage are imaged.

Figure 2.6: Sample case for irregular breast contour shape. (a) shows the
MED view of a left breast with very irregular contour line in the upper right
quadrant of the coronal image. (b) is the same breast imaged completely in

AP view with roundish breast contour line.



42 2 Materials and Methods

Feature Computation

The 2D coronal breast mask and breast contour line were used to extract 17
presumably discriminative features for the detection of prominent background
regions and irregular breast contour shapes.

• cview: The view direction was taken into account since breast positioning
and cushion support depend on the intended view. The typically available
four views of one breast (AP, MED, LAT, SUP) were used as categorical
feature cview.

• AB: The physical area AB in 2D coronal view of the breast mask was
assessed as a first indicator for the amount of tissue being imaged.

• pMask: The perimeter pMask of the breast mask was determined and cor-
responded to the length of the breast contour line. The higher pMask, the
more curves and irregularities might be in the contour line.

• xC and yC: The position (xC, yC) of the breast mask centroid was com-
puted as an indicator for the position and “mass distribution” of the breast
within the image.

• l1, l2, and F : An ellipsoid was fitted to the breast contour line, and the
lengths l1 and l2 of the ellipsoid axes were determined. The flatness F
was computed as the ratio l2/l1 to indicate whether the breast contour is
extremely elongated in one direction or rather roundish.

• pCircle and rCircle: The perimeter pCircle and the radius rCircle of a circle
that has the same surface as the breast mask were computed.

• NBorder and pborder: The amount of pixels NBorder that belong to the breast
mask and are touching the edges of the image, as well as the physical length
pborder of these pixels (perimeter on border) were measured. The higher
these measures, the higher is the probability that the imaged breast is very
large.

• RBorder: The ratio RBorder = pBorder/pMask of the breast mask perimeter
along the border and the total breast mask perimeter was computed.

• RRound: The roundness RRound = pCircle/pMask was determined as the
inverse ratio between the actual perimeter of the mask and the perimeter
of a circle with the same surface. Since the circle is the geometrical shape
with the lowest ratio between perimeter and surface, RRound being close
to 1 is a strong indicator for a round and smooth breast contour line. If
RRound is very small, the determined breast contour line is supposed to be
“inefficient”, meaning that it has many turns and irregularities.

• p1 and p2: The first two principal moments p1 and p2 of the breast mask
were determined.

• AB/I: The relative size of the breast mask AB/I = AB/AImage compared
to the total size of the image was computed. The higher this value, the
higher the probability that the breast was imaged completely is.
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Classification

Automatic classification of the breast contour shape in ABUS images was based
on data sets A and B, i.e. a total of 368 volumes, and conducted similarly to
the procedure described in section 2.2.1 for the relative nipple position. The
ground truth annotation was provided by two medical experts (see section 2.1)
independently rating irregularities in the shape of the breast contour in cor-
relation to predominant background regions as “too irregular”, “acceptable” or
“not detected”. Those images in which both radiologists found the contour to be
“too irregular” were assigned the positive class. All other images were given the
negative class label in order to focus on high specificity of the trained classifier.

Again, feature ranking based on information gain ratio and subsequent Ran-
dom Forest classifier training were conducted. The forests consisted of 100 trees,
each. The maximum depth of each tree was set to 15, the minimum number
of samples for a node to be split was 35, and the number of selected random
features was 4. Ten runs of 10-fold stratified cross-validation were performed.
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2.2.4 Joint Image Quality Rating
The three ABUS imaging artefacts described in the previous sections—the nip-
ple position, the nipple shadow, and the breast contour shape—are correlated
to each other and thus, often appear at the same time in an image. If the ul-
trasound transducer is not positioned properly or with insufficient pressure, the
relative position of the nipple might be inadequate, and, at the same time, the
breast contour shape might show irregularities. A prominent nipple shadow,
especially if caused by insufficient support of the breast in lateral or medial
view, often appears in correlation with an inadequate nipple position (too close
to the breast contour in the image), and leads to an irregular breast contour
shape. This observation motivates the idea of combining the different computed
image features in order to create a single, joint image quality rating. Whereas a
dedicated artefact detection method provides more detailed information to the
user concerning the origin of an artefact and potential corrective actions, a joint
approach might be more stable relying on more features and exploiting the fact
that different image artefacts can emerge from the same source.

The three ABUS imaging issues described hitherto were approached by the
same method: Features describing the image as a whole were computed and
utilized by a classifier to reproduce a manual ground truth annotation. In this
part of the work, the previously extracted features were combined and employed
to retrace a condensed expert annotation.

The ground truth for a joint image quality rating was extracted from the
manual expert annotations introduced in section 2.1. For the distinct consider-
ation of single artefacts, an image was assigned the positive class if both readers
agreed to see the specific artefact and that it had the potential to impede diag-
nosis. This was the case if the nipple was “too close to the breast contour”, if
the nipple shadow was “too prominent”, or if the breast contour shape was “too
irregular”. In the proposed joint approach, an image was considered to be of
low(er) quality if at least one of the three aforementioned image quality aspects
was detected concordantly by both readers.

The image features described in the previous sections were combined to a
joint feature set describing different image properties. In total, 29 features were
used for this classification:

• cview: The view direction was taken into account since it was an important
factor for all aforementioned imaging issues. The four standard views (AP,
MED, LAT, SUP) were used as categorical feature cview.

• Eight features as derived for the classification of the relative nipple position
(without cview).

• Four features describing the intensity distribution around the nipple posi-
tion (without cview, xT , and yT ) as described for the nipple shadow clas-
sification.

• 16 features characterizing the breast contour shape (without cview).

The machine learning step was performed in the same way as for the three
single artefacts described before using data sets A* and B*. 10-run 10-fold strat-
ified cross-validation of Random Forest classifier was conducted to categorise the
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quality of an ABUS volume as a whole. There were 100 trees in each forest, the
maximum depth of each tree was set to 15, the minimum number of samples at
each node to be split was 34, and the number of random features considered at
each node was 5.
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Figure 2.7: (a) Sample ABUS image showing an air artefact. The top part
shows one original transversal slice, the left part shows one reconstructed sagit-
tal slice and the mean window shows one reconstructed coronal slice. The red
arrows mark the air artefact region. (b) is a magnified view of the artefact as

it is visible in transversal view.

2.2.5 Air Artefacts
Ultrasound waves can only be transmitted to the patient’s skin if a sufficient
amount of contact fluid is applied to the transducer. Otherwise, the ultrasound
waves cannot leave the ultrasound probe but are reflected back and forth within
the coupling layers (see figure 1.5). This effect can originate from skin folds or
air bubbles under the transducer as well as in sparsely applied contact fluid.

The reflection of ultrasound waves on air and subsequently within the coupling
layers of the transducer produces a regular pattern of 3–6 bright and dark stripes
in the top of the image parallel to the transducer surface (see figure 2.7b top).
No further signal reaches the affected transducer elements, which causes fading
reverberations in the image and consequently posterior acoustic shadowing of
variable extents.

Lesions detected in ABUS screening images are typically very small; reported
mean diameters range from 10 mm (Brem et al. 2015) to 14.3 mm (Giuliano &
Giuliano 2013). Air bubbles between transducer and skin can be of similar size,
illustrating that the posterior shadowing caused by air artefacts may even mask
invasive cancers, which otherwise would have been detected by radiologists. Fur-
thermore, the described reverberation pattern could mimic suspicious acoustic
shadowing (Baker et al. 2001). Additionally, shadows might be problematic for
computerised approaches (Tan et al. 2012; Kuo et al. 2013; Moon et al. 2012),
i.e. they affect the intensity profile of the image and can increase the rate of
false positive region candidates of automated lesion detection or segmentation.

As described in the following, the properties of air artefacts were analysed
in detail in order to develop an automated detection method. Subsequently,
features related to the characteristic reverberation pattern were extracted using
a sliding window approach yielding 2D parameter maps. This way, a locally
operating classifier could be trained.

Data Set

Regarding the relative occurrence of air artefacts, no previous systematic large
scale studies exist, but in the present study, all available, i.e. 815 (see table 2.1),
ABUS scans were used to generate statistically meaningful output. Each ABUS
volume was screened by two of three radiologists for the presence of air artefacts
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resulting in 79 “positive” ABUS volumes of 48 women, in which air artefacts
were observed by both radiologists. For classification purposes, the data was
split into a training set and a test set: The 60 positive volumes of data sets C1
and C2 were chosen as training set, whereas the 19 positive volumes of data
sets A and B were assigned to the test set. This way, it was also assured that
no overlap of patients or studies existed between training and test set avoiding
training bias. The test set was extended by 17 additional volumes without air
artefacts. The non-artefact images had been acquired from the same breasts
as the artefact images (different view), respectively. These were however not
available for all cases.

Properties of Air Artefacts

In those 79 images that had been found to contain air artefacts by both ra-
diologists, a researcher with over two years of experience in ABUS processing
annotated the artefact regions in detail by drawing outlines on the edges of the
artefact (in 2D coronal reconstruction). These annotations served as ground
truth to determine the performance of the proposed algorithms. Artefact regions
smaller than 20 mm2 were considered clinically irrelevant—typical ultrasound-
detected lesions are bigger in size—and therefore excluded from the study.

The manually annotated artefacts were examined with respect to their (2D)
size in the coronal plane, the number of visible reverberation lines (reflections),
the spatial frequency of these lines and the depth of the ultrasound shadow
connected to the artefacts.

Pre-Processing

In order to exclude the background as well as irrelevant tissue from further
evaluation, a breast mask was computed for each image. As the ultrasound
transducer was a linear array, it was assumed that the breast mask was approx-
imately the same in all coronal slices. Therefore, a mean projection image was
calculated out of 50 coronal slices. Otsu’s threshold filter (see section 1.4.1) was
applied to separate the foreground from the background. The largest connected
component was kept and decreased by erosion. This eliminates, e.g., parts of
the axilla that have been considered as relevant foreground by mistake. The
breast masks were designed to cover only the most relevant part of the image
leaving out the background and non-breast structures spuriously appearing in
the image.

Feature Computation

In this study, features were not computed for each image as a whole, but were
extracted using a sliding window approach. Therefore, a window of 3 mm in
superior, 3 mm in lateral, and 20 mm in anterior direction was slid over the
coronal reconstruction of the image and at each window position, 28 features
were calculated. Feature extraction was only performed within the previously
computed coronal breast mask to exclude background regions from evaluation.
In antero-posterior direction, the sliding window had a total depth of 20 mm
(starting at the skin) and was divided into a “small” part Vs including the first
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5 mm from the skin and a “large” part Vl comprising the remaining 15 mm. The
step size for the sliding window was 1.5 mm in superior and lateral direction
(half the window size in coronal plane). Based on the standardized coronal
elongation of the ABUS images used in this study, which is 154 mm × 168 mm,
at most 11 450 window positions were possible. Due to the excluded background
regions, however, the number of sliding window positions, i.e. feature vectors,
was much smaller, around 6400.

Two main types of features were used in this study: 1) Statistical features
based on the pixel intensities of the volumes Vs and Vl, and 2) Sine fit features
as well as Fourier Transform-based features from Vs, which should capture the
characteristic periodic stripe pattern present in air artefacts. Feature extraction
was performed using Matlab (MATLAB R2011a, The MathWorks, Inc., Natick,
Massachusetts, United States) and inbuilt functions. In the following, the dif-
ferent types of features that were extracted from the 3D images to generate 28
2D coronal parameter maps for each image are described.

The discriminant capacity of all 28 computed features was evaluated by in-
formation gain ratio feature ranking test that was applied to the entire training
data set.

Statistical features Since air artefacts typically cause a deep shadow on the
ultrasound image, standard statistic measures were computed to describe the
intensity distribution in the two parts of the sliding window, Vs and Vl. The
mean µs, µl, the standard deviation σs, σl, the median ms, ml, and the entropy
Hs, Hl of Vs and Vl, as well as the respective ratios of these values µs/µl, σs/σl,
ms/ml, and Hs/Hl were computed.

The entropy Hi was defined as

Hi = −
256∑
j=1

pj(Vi) · log2(pj(Vi)), i ∈ {s, l} , (2.2)

where p(Vi) contains the 256 histogram counts of the sliding window part Vi.
Furthermore, the skewness ss, sl, and kurtosis ks, kl of Vs and Vl as well as

the respective products ss · sl, ks · kl were determined. The skewness si was
computed as

si =

1
n

n∑
j=1

(Ij − µi)3

√
1
n

n∑
j=1

(Ij − µi)2
3 , (2.3)

where n is the number of voxels in Vi, and Ij is the intensity of voxel j. si is a
measure of the asymmetry of the data around the sample mean.

The kurtosis ki describes how outlier-prone a distribution is and was calcu-
lated as

ki =

1
n

n∑
j=1

(Ij − µi)4

(
1
n

n∑
j=1

(Ij − µi)2
)2 . (2.4)
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Figure 2.8: (a, d) Examples for transversal projections of the sliding window,
(b, e) the corresponding 1D projections (thin line) and sinus fits (bold line),
and (c, f) the single sided amplitude spectrum of the Fourier Transform. (a-
c) illustrate the characteristic stripe pattern of an artefact-affected instance
(positive class), whereas (d-f) represent normal tissue (negative class). Note
that the data plotted in (b,e) is the one dimensional projection Vs of Vs − µs,
i.e. it was shifted by the mean value, resulting in partially negative intensity

values.

Apart from that, the 70th and 90th percentiles of Vs and Vl were computed.

Sine fit features Other features were extracted from a sine fit to the one-di-
mensional projection Vs of Vs − µs to the antero-posterior axis. The motivation
behind this was that, if the sliding window covered an air artefact, the charac-
teristic stripe pattern was expected to be visible as sine curve in this projected
view (see figure 2.8). The function to be fitted was

f(x) = A · sin
(2πx

p
+ 2π

q

)
+ b · x + d (2.5)

with amplitude A and period p, allowing for a shift 1/q in x−direction and d in
y−direction, respectively. The slope b describes the loss of intensity within the
top coronal image slices. Start parameters were set to

A0 = max
(
Vs

)
− min

(
Vs

)
q0 = −1
b0 = −1
d0 = 0.

Start parameter for p was the expected period pe, empirically determined from
the ground truth annotations. Since the reverberation patterns originate from
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acoustic reflections within the coupling layers of the transducer, pe should be
characteristic for a specific transducer. The mean fit error ∆ was determined as
the mean squared distance between original data and fitted curve.

Fourier Transform features Furthermore, Fourier Transform was applied to
Vs. Whereas a sine fit can only model an oscillation with one single frequency,
Fourier Transform was considered to be more robust against superposition of
slightly de-phased signals. Consequently, if the sliding window was at an air arte-
fact, a peak should appear around the empirically determined mean frequency
fe, which was computed as the ratio between the depth of Vs and the measured
period pe. The maximum amplitude of the Fourier spectrum within the range
of fe ± 2σf (approximately) was retrieved as feature Y (fe). σf describes the
standard deviation of fe derived from the measured standard deviation σp of
the period pe as

σf = dfe

dpe
· σp. (2.6)

As shown in figure 2.8 (c), the continuous signal decay in an artefact region is
represented by an additional peak Y (flow) below 2 Hz in the Fourier spectrum.

Classification

As described in the following, the derived feature information was combined
with the ground truth in order to decide which of these features were most
relevant for region classification, i.e. for determining which regions were actual
air artefacts. In a second step, the information gained in the training step was
applied to test images in order to locate potential air artefact regions.

Again, Random Forest classification was employed. The classification for this
two class (artefact or no artefact) problem was separated in two stages: First,
10-fold cross validation was applied to the training data to evaluate the perfor-
mance on the level of the sliding window (each window position yielding one
sample). Secondly, the classifier was trained on the whole training data set and
applied to the disjunct test data set containing artefact and non-artefact images.
The performance of this train/test step was evaluated in terms of true positive
(correctly detected) and false positive instances (on window-level), artefact re-
gions, and images, respectively. The workflow design and data usage of this
experiment is depicted in figure 2.9. In contrast to the workflow of the previous
section (see figure 2.1), the training and test data included not all available im-
ages but only those, that contained air artefacts. Furthermore, the evaluation
was done on different scales, i.e. first on window-level and then on region-level,
whereas the previous classifications always referred to the images as a whole.

For the cross-validation experiment, the ten folds were sorted such that images
of the same visit were in one fold to avoid bias from very similar instances being
in different folds. Each Random Forest was built of 100 trees. The maximum
depth dmax of a tree was set to the number of available features M , thus dmax =
M = 28. The minimum number NSamples of samples required at a leaf node
for it to be split was set to 1 % of the shadow pixel instances in the data set:
NSamples = 27. The number NFeatures of randomly selected features at each node
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Figure 2.9: Schematic overview of workflow and data usage for the above
described air artefact detection.

was set to 5. In a second step, the classifier was trained on the whole training
data set and applied to the test data set.

The above described classification yielded a prediction of class on the level
of the sliding window. Since air artefacts are generally bigger than the chosen
size of the sliding window, the classifier performance was also evaluated on (dy-
namic) region-level in the test data set. Therefore, pixels that were assigned the
positive class (artefact) by the trained algorithm were segmented as connected
components, representing air artefact region candidates. This artefact mask
produced by the classifier was superimposed to the manual ground truth delin-
eations. Any overlap between both masks was counted as true positive region.
Positive regions in the classifier-mask that had no correspondence in the ground
truth annotation were considered false positive regions. In order to account for
imperfect manual delineation of the artefact regions when creating the ground
truth, they were given a margin of 4 mm before comparing them to the classifier
outputs.

False positive reduction was achieved by introducing a lower threshold for the
region size of the connected components. Artefact region candidates with a size
smaller than this threshold were ignored in the evaluation. The physical area of
each connected component in coronal plane was computed based on the amount
of included pixels and the pixel size. To measure the classifier performance, the
number of false positive regions per image as well as the true positive regions
were determined for different threshold values.
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2.2.6 Automated Assessment of Nipple Visibility
The nipple is an important landmark on ABUS images for the radiologists to
localise the quadrants of a breast lesion (Karnan & Thangavel 2007). Further-
more, it serves as reference marker in CAD systems, which gained significant
interest in recent years (Tan et al. 2015). Registration algorithms that fuse
ABUS data with other imaging modalities, such as mammography, MRI or to-
mosynthesis, use the nipple position as reference with stable spatial correlation
to improve accuracy (Tan et al. 2013a).

In standard ABUS acquisition routine, the nipple position in coronal view is
annotated manually by the technicians and saved in the header of the DICOM
file. In some cases, however, the manual annotation is not correct, e.g. due
to slight inattentiveness or because the nipple is not visible at all. The latter
case can occur if the breast is very big or not supported sufficiently by the
cushions that are generally used for MED or LAT views. Sample cases are
shown in figure 2.10. Automated detection of incorrectly annotated cases has
the potential to improve and facilitate any further processing of ABUS images.
This section describes a fully automatic approach to assess the correctness of
the nipple position made by the technician during the acquisition process. A
Random Forest classifier was used to detect the cases with incorrectly marked
nipple positions. Feature computation was based on an extension of a previously
presented multi-scale Laplacian- and Hessian-based automatic nipple detection
method (Wang et al. 2014) by adding prior knowledge encoded in a probabilistic
atlas, which accounts for the empirical probability distribution of the nipple
position per view.

Data Set

For this study, the images of data sets B and C as well as 7 additional ABUS
volumes3, which had not been included in the previous sections, were used.

If the nipple was not visible on the image, it was manually tagged as class
14, otherwise, the centre of the nipple was pinpointed in coronal view. If the

3accomplishing data set B, i.e. additional scans of the women already included in data set B
and acquired with the same scanner at the same institution

4A more rigid manual classification of nipple visibility than in the previous sections was
applied here. If the nipple was still partly visible, it was already tagged class 1, whereas
the classification of nipple shadow (section 2.2.2) and nipple position (section 2.2.1) were
designed to handle those cases regularly.

Figure 2.10: ABUS scans of the left breast of one woman, illustrating the
nipple positions in different views. Note that in the MED view of this case,

the nipple is barely visible.
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Figure 2.11: Class distribution of the training and test data sets used in this
study.

distance between the ground truth annotation and the position marked by the
technicians was more than 16 mm, i.e. the original annotation was inaccurate,
the image was labelled as class 2. The remaining images were assigned to class
0.

The data set was separated into a training and test data set such that images
of the same women were within the same set in order to avoid bias in classifier
training5. The class distribution is presented in figure 2.11. Atlas generation
and classifier training were performed on the training data set. 100, 94, 95, and
26 images from the training data set where used to generate the atlas for AP,
MED, LAT, and SUP view, respectively.

Automatic Nipple Detection

Since it is presumed that the nipple itself is located at the skin (anterior-most
slices) whereas a potentially adjacent shadow and the ducts are at the same
coronal coordinates (x, y) in deeper slices, the nipple position is generally de-
termined on a 2D coronal map derived from the volumetric information of an
ABUS image. Wang et al. (2014) previously presented a hybrid automatic nip-
ple detection method using multi-scale Laplacian and Hessian filters to generate
a probability map, which incorporated the blobness of the nipple as well as
the tubular structure of the nipple shadow. The detection rate of this method
was reported to be around 88 % for a tolerance in distance error of 10 mm.
The method was extended by incorporating an atlas expressing the empirical
probability map for the nipple position in different views. A confidence fac-
tor measuring the reliability of the computed nipple position resulting from the
original algorithm was implemented. In those cases, where the original algo-
rithm failed to detect the correct nipple position, multiplying the original map
with the atlas added empirical information to the joint probability distribution
of nipple position. A schematic overview of the proposed workflow is given in
figure 2.12.

5Note however that patients of data sets B and C were mixed up in this case in order to
achieve a more balanced training and test data set.
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Figure 2.12: Schematic workflow for the proposed joint nipple detection
method.

Original nipple detection method As described in detail by Wang et al.
(2014), the nipple position is originally retrieved from the multiplication of a 2D
Laplacian-based probability map and a 2D Hessian-based probability map. To
generate the Laplacian map, a 2D breast mask is computed as minimum inten-
sity projection of a coronal slab of thickness 1.5 mm starting at 1.85 mm from
the skin. The nipple position is searched within this breast mask on a nipple
slab. This nipple slab is computed from coronal slices starting at 0.35 mm from
the skin and going to 1.85 mm. The maximum intensity projection of the nipple
slab is first down-sampled and then smoothed by a Gaussian kernel with σ = 3.
The blobness of the nipple (shadow) is measured by a Laplacian of Gaussian
(LoG) filter at different scales (Huertas & Medioni 1986; Lindeberg 1998), i.e.
σ of the Gaussian kernel ranged from 1.5 mm to 15 mm. The scale that delivers
the globally minimal response is selected resulting in a 2D probability map.

A Hessian filter is employed to detect the position of the characteristic tubular
acoustic nipple shadow. Eigen values of the Hessian matrix present different
specific patterns for various geometrical structures in 3D, e.g. blobs, tubes or
disks (Descoteaux et al. 2008). Assuming that the Eigen values are sorted as
λ1 ≥ λ2 ≥ λ3, a dark tubular structure will result in a pattern of λ3 ≈ 0
and λ1 ≈ λ2 ≫ 0. A 3D breast mask is generated by thresholding the ABUS
image at its 25th percentile. For each voxel within the mask, the Eigen values
are calculated. In order to save computing time, a simplified analysis of Eigen
values in introduced: The second Eigen value is summed up over all voxels along
the antero-posterior direction resulting in a 2D likelihood map.

Finally, the Laplacian map is inverted and multiplied with the Hessian map
such that the most probable nipple position can be extracted as the global
maximum of this combined map.

Reliability of original nipple detection method The original automatic nipple
detection method described by Wang et al. (2014) determines the local maxima
of the Laplacian- and Hessian-based probability map. The local maximum with
the highest probability value v1 in range [0, 1] is considered to be the nipple
position. The ratio between v1 and the second highest local maximum with
value v2 < v1 was chosen as confidence measure C and rescaled to [0, 100] as
follows

C =
(

v1
v1 + v2

− 0.5
)

· 2 · 100 (2.7)
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Figure 2.13: Schematic overview of the atlas generation. First, the nipple and
areola region were marked in every image by an adapted ellipse (red circles in
the left most original images). Then, the arithmetic mean of all binary nipple

masks of one view was computed (right most image).

Atlas generation Based on those training images where the nipple was actually
visible, one atlas image was created for each of the four available views. There-
fore, the nipple and areola region were manually encircled in every single image
by an ellipse adapted to the actual size of this region in coronal view. Pixels
within the ellipse were given a value of 1, and pixels outside the ellipse were set
to 0. The arithmetic mean of all ellipse images was computed for each view sep-
arately. Since the images of left and right breast were assumed to be symmetric,
they were mirrored along the axial direction, such that all images contributed
to the atlas for the left and right breast of each view, respectively. Finally,
the atlas images were re-sampled to a spatial resolution of 0.6 mm × 0.6 mm. A
schematic overview of the atlas generation is given in figure 2.13.

Joint detection method The 2D probability maps of the original nipple de-
tection method were computed for a test data set and re-sampled to the spatial
resolution of the atlas images. The most probable nipple position (xO, yO) as
well as the confidence measure C were determined as described in equation (2.7).
For varying threshold values C∗, the joint detection method was applied to those
images with C < C∗. In these cases, the existing probability map was multiplied
with the corresponding atlas image and the new most probable nipple position
(xM, yM) was determined as the global maximum of this joint map (see figure
2.14). Thus, the predicted nipple position (xP, yP) of the joint detection method
was

(xP, yP) =
{

(xO, yO) if C ≥ C∗

(xM, yM) otherwise
(2.8)

The root-mean-square distance d in mm from the ground truth nipple position
(xG, yG) to the automatically determined nipple position was used as quality
measure for the automatic detection method:

d =
√

(xP − xG)2 + (yP − yG)2. (2.9)

Furthermore, the distribution of nipple detection rates was computed for vari-
able tolerance thresholds of distance errors.
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(a) (b) (c) (d) (e)

Figure 2.14: Sample case with C = 12 % for joint nipple detection method.
(a) Coronal image slice, the arrow marks the nipple. (b) Coronal image slice
at different depth with misleading structures marked by the arrows. (c) Heat
map of probability distribution as computed by the original method. The max-
imum (arrow) is not the actual nipple position. (d) Corresponding atlas. (e)
Multiplication of (c) with (d). The new global maximum (arrow) corresponds

to the actual nipple position.

Image Classification

The above described extended nipple detection method was employed to extract
13 features from the ABUS images, which allowed predicting correctness of
the manual nipple position annotation made by the technicians during image
acquisition.

• The view (AP, MED, LAT, or SUP)

• The distance between the nipple position (xT, yT) that was marked by the
technician and the most probable nipple position (xP, yP) determined in
the joint detection method described above. If they are very similar, they
are most probably correct.

• The distance between (xT, yT) and the most probable nipple position
(xO, yO) according to the original detection method.

• The confidence value C produced by the original nipple detection method.

• The value vO
T of the original probability map at (xT, yT) indicates whether

the original algorithm detected structures at this position that could be-
long to a nipple.

• The value vA
T of the atlas (=empirical probability map) at (xT, yT) gives

an intuition how typical or atypical the marked position is.

• The value vM
T of the joint probability map at (xT, yT) (= vO

T · vA
T).

• The value vO
O of the original probability map at (xO, yO), which corre-

sponds to the maximum value of the original probability map.

• The value vA
O of the atlas at (xO, yO). The higher this value, the more

typical is the prediction.

• The value vM
O of the joint probability map at (xO, yO) (= vO

O · vA
O). The

higher this value, the better might be the prediction.
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• The difference between vO
O and vO

T indicating which position is more prob-
able.

• The difference between vA
O and vA

T indicating which position is more typical
for the respective view.

• The difference between vM
O and vM

T indicating which position is more prob-
able with regard to the respective view.

A Random Forest classifier was trained on the training data set and applied
to the test data set. The Random Forest was built of 100 trees at a maximum
depth of 13 layers, using 3 randomly selected features per split. The minimum
number of samples at a node for it to be split was 3. For classification, class 1
and 2 images were merged in the positive class, whereas class 0 cases composed
the negative class. The trained classifier was evaluated by applying it to the
images of the test data set.
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2.3 Performance of Automated Image Quality
Assessment on disjunct data

The following analysis of the developed algorithms was designed to measure
their performance when applied to an unseen data set that was acquired at a
different institution and rated manually by a different reader than the training
data set. For this purpose, data set C was employed. Note that the algorithms
introduced in section 2.2 had been trained on data sets A and B, which are
independent from data set C (see table 2.1).

The data was annotated manually by two radiologists regarding the occur-
rence of inadequate nipple positioning, prominent nipple shadows, or irregular
breast contour shapes. Furthermore, the ground truth for the joint image qual-
ity rating as described in section 2.2.4 was inferred from this rating. One of
the two readers (“Reader 2”) had also annotated the ABUS images that were
used for algorithm development and classifier training (see section 2.1), and his
ratings were thus supposed to be in line with the automatic method. The second
reader (“Reader 3”) was a senior radiologist with several years of experience in
diagnostic breast ultrasound and ABUS image interpretation. He had not been
involved in any classifier training steps.

Classification of nipple shadow and relative nipple position requires nipple
coordinates as input information. These coordinates were assessed manually in
order to evaluate the classifier performance independently of nipple detection or
annotation errors, i.e. in a best case scenario. In a second step, the automated
joint nipple detection method described in section 2.2.6 was employed to gen-
erate the required nipple coordinates yielding a less optimistic evaluation. In
both cases, data set C* was used, i.e. 53 images were excluded from the study
since the nipple was not visible at all in these scans.

The automatic image quality assessment was designed to produce a proba-
bility score between 0 and 1 for each single artefact as well as for the joint
score. Specific thresholds to decide whether an image was assigned a positive
or a negative rating were derived from classifier training based on the training
data sets A and B. From the resulting ROC statistics, the decision thresholds
corresponding to distinct specificities were determined (see section 3.2). In this
case, a target specificity of 0.97 was sighted, i.e. the decision thresholds were
chosen such that a specificity of 0.97 was achieved in the training data.

The manual annotations of the two clinicians were evaluated by measuring the
inter-rater agreement using Cohen’s κ coefficient. The same metric was applied
to compare the results of the automated image quality assessment to those of
each single reader. Furthermore, specificity, sensitivity and ROC statistics were
used to depict the congruence between automatic and manual image quality
rating.

When combining the annotations of two readers to one quality rating per im-
age, there are different options. For classifier training, an image was considered
to be affected by a certain artefact if and only if both readers detected this spe-
cific artefact in the respective image. This mode was aiming at a classification
with high specificity since only those images that clearly contained the artefact
were considered as positive. Ambiguous images were assigned the negative class.
The same approach was chosen for the present study.
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2.4 Clinical Implementation
In order to evaluate three of the developed automated quality assessment
(AQUA) algorithms in clinical routine, they were implemented into an already
existing framework for data handling and workflow management. The three
AQUA modules included in the image processing pipeline were designed to de-
tect images with an inappropriate nipple position, a prominent nipple shadow
or with a very irregular breast contour shape. In the following, the technical as-
pects of the installation at Radboud University Medical Centre (Nijmegen, The
Netherlands) as well as the different methods of evaluation will be described.
The performance of this prototype was measured in terms of usability for the
technicians.

2.4.1 Technical Aspects

The employed software framework, called MIRIAM (Medical Image pRocessIng
And Management) consists of a database for medical images and a workflow
engine. It comprises several back-end components which deliver the functional-
ity of the medical image database. Diverse front-end components represent the
GUI or provide a connection to other software systems.

The complete back-end logic is implemented in Java on the basis of a Java
Application Server which is EE 6 (Enterprise Edition) compliant. Amongst
others, the back-end contains the workflow engine of the system. It relies on a
SOUP (Software Of Unknown Provenance) component called “Activiti” which
accomplishes workflow related tasks. BPMN 2.0 (Business Process Model and
Notation) workflow processes can be deployed to the workflow engine to fulfil a
specific customer need and guide the user through an interactive pipeline. Apart
from that, the workflow engine can be configured to execute non-interactive
tasks. It can, e.g., send mails or perform automatic data manipulation actions.
In addition, it can wrap an AQUA module and execute it in the context of an
active workflow. The MIRIAM front-end provides different kinds of secured and
structured access to the data stored in the back-end. For example, MIRIAM
provides several web based user interfaces to interact with the end user via a
modern web browser using the SOUP component “Vaadin”, which is a Java
framework to build modern web applications. There are different interfaces for
users with and without administrative access rights. The administration user
interface provides system relevant operations like administration of users and
roles, or system configurations. The simple user interface allows, e.g., executing
interactive workflow activities or viewing medical image data.

The framework retrieved the image data from a DICOM node in the clinic
where the images were sent directly via network after acquisition. Together
with a configuration file in XML-format, the image data was passed through the
different AQUA modules, which operated on the images and produced output
images, e.g. breast masks, as well as meta information (in XML), e.g. computed
features or classifier rating results. These were captured and evaluated by the
framework for an image quality rating.

The chosen set up for the integration into clinical routine is depicted in figure
2.15. Generally, the images are acquired by a technician and stored automati-
cally on a server PC. The standard protocol does not include any image quality
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checks before the radiologist performs the diagnostic read. If the images are
of low quality, proper diagnosis might be hampered or even impossible, which
could entail a recall of the patient. This might take several days and cause
anxiety to the patient. Following the proposed extended workflow, in case of a
low-quality image, the technician was supposed to be alerted and provided with
recommendations how to improve the image. With the patient still present in
the examination room, it should be no problem for the technician to redo the
scan.

Technically, this was achieved by an additional PC in the examination room,
which was connected via internal network to the AQUA server PC. After login,
the technicians launched the MIRIAM application in the web-browser where
the current examination with the corresponding rating results were displayed
timely.

2.4.2 Usability
The usability of the above described software prototype was evaluated by seven
technicians who were asked to fill in a questionnaire after the first usage of the
system. The questionnaire is attached in Appendix A.

Figure 2.15: Proposed workflow for ABUS AQUA in clinical routine. The
current standard procedure does not include any image quality check before the
radiologist performs the diagnostic read. The new steps of automated image

quality assessment will only take a few minutes.
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3.1 Empirical Analysis of ABUS Artefacts

In order to facilitate and standardize the manual annotation of a large amount of
ABUS images with respect to diverse potential image artefacts, an unpretentious
software suite was developed. The tool consisted of a comprehensive medical
image viewer, check boxes for all the artefacts that should be considered, and a
text box for free comments. The viewer displayed one ABUS image at a time in
the three available orthogonal views and provided standard scrolling, zooming,
and windowing operations. A screenshot of the rating tool is shown in figure
3.1. Rating results were stored locally in XML format and could be reloaded
and changed if necessary.

A data set of 368 ABUS images (A and B) was manually annotated by two
medical researchers (“Reader 1” and “Reader 2”) with respect to the occurrence
of specific image artefacts. The inter-rater agreement was analysed as well as
the relative frequency of each artefact.

Inter-rater Agreement

The inter-rater agreement of the two readers is listed for each artefact in table
3.1. The κ value varied strongly between the different image artefacts, indicating
that some of them were easier to define objectively than others. The position of
the nipple relative to the breast contour line on the image was a clear criterion,
which reached a very good agreement with κ = 0.84. Visibility of at least
three ribs, breast contour shape and nipple shadow had κ values between 0.41
and 0.71, which expressed acceptable agreement. The wavy pattern and the
air artefacts showed low κ values around 0.3, and the rating of discontinuities
yielded a negative κ. The image quality rating based on the latter mentioned
artefacts differed significantly between the two raters.

Three sample images that the two readers disagreed upon are shown in figure
3.2. The relative position of the nipple is very close to the contour line of the
breast (and to the edges of the image) in figure 3.2a, which made Reader 1
noting an insufficient nipple position down. On the other hand, the nipple area
is still visualized completely explaining why Reader 2 did not mark this image.
The acoustic shadow caused by the nipple in figure 3.2b was perceived as too
prominent by Reader 1, whereas Reader 2 was content with the information that
still could be retrieved from the area behind the nipple. The case shown in figure
3.2c is a large breast, which renders breast contour shape rating more difficult.
Reader 1 rated this case as positive emphasizing that there is a large background
region in the upper left corner albeit the breast is not imaged completely. Reader
2 was focussing on the shape of the contour, which is indeed very smooth in this
case and, thus, rated it as negative.
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Table 3.1: Computed inter-rater agreement for manual annotation of specific
ABUS artefacts

Artefact Cohen’s κ

Relative nipple position 0.84
Visibility of ribs 0.71

Breast contour shape 0.61
Nipple shadow 0.44
Wavy pattern 0.30
Air artefacts 0.32

Discontinuities < 0

(a) (b) (c)

Figure 3.2: Sample images that the two readers disagreed upon concerning
the classification of (a) the relative nipple position, (b) the nipple shadow, and

(c) the breast contour shape.
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Figure 3.3: Frequency of specific artefacts in the considered data set (368
images) as annotated by two raters. Red bars indicate the number of images

that were rated concordantly as showing the artefact.

Relevance and Frequency of Artefacts

The results of the manual annotation process are shown in figure 3.3. The
red bars indicate the amount of images that were rated as showing the specific
artefact by both readers. The green bars represent the images with no artefacts
found, whereas the orange and yellow bars stand for the images which got one
positive and one negative vote. Nevertheless, the general trend for the incidence
of specific artefacts is clearly visible and similar for both readers. The shadow
caused by the nipple is the most prominent artefact which was marked by both
observers in almost 40 % of the images. The relative position of the nipple
in the ABUS image was found by both raters to be too close to the contour
line of the breast in 31 % of the considered images. The third most frequent
imaging issue was a very irregular shape of the breast contour line which was
annotated in 13 % of the images. The inter-rater agreement for these three
artefacts ranged from acceptable to good. The other four considered artefacts
were detected concordantly in less than 10 % of the images and yielded generally
low inter-rater agreements.
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3.2 Computer-aided analysis of ABUS Artefacts

3.2.1 Relative Nipple Position

Feature extraction and classifier training based on 340 manually annotated im-
ages (data sets A* and B*) was performed in order to detect those images where
the nipple was pushed too far aside during transducer positioning. In total,
nine features characterizing the position of the nipple relative to the rest of the
breast were computed per image. The average computing time for all features
was (3 ± 2) s per volumetric image. 10-run 10-fold stratified cross validation was
done to evaluate the reliability of the selected features.

A feature ranking test (see section 1.5) applied to the whole data set revealed
the relative relevance of the single features with respect to the classification of
the nipple position. The higher a feature was ranked, the higher its discriminant
capacity was. The six top ranked features are listed in table 3.2. The values
differ clearly from each other and allow a clear sorting of the features. Since
the first three features are highly correlated to each other, as can be seen in
the feature space plot in figure 3.4a, the 2D feature space spanned by the first
and the fourth feature, d∗min and dCOM, are plotted in figure 3.4b. One can see
that these features already offer a fair distinction between the two classes. This
potential was exploited and amplified by applying a Random Forest classifier
based on all available features.

In figure 3.5 two ROC curves of the proposed nipple position classification
are plotted. Figure 3.5a shows sample ROC curves of one run of 10-fold cross-
validation. The thin lines represent the single folds; the bold line is the merged
ROC curve. In figure 3.5b the merged ROC curves of the ten runs are plotted.
Partly due to the small number of cases within one fold, the ROC curves of the
single folds vary clearly. The merged ROC curves, however, are all very similar
indicating the stability of the proposed classification model. Furthermore, the
sensitivity and specificity of each reader when compared to the other one, re-
spectively, are marked in figure 3.5b. It can be seen that they only performed
slightly better than the algorithm, i.e. Reader 1 achieved a sensitivity of 0.95
and a specificity of 0.91 if the rating of Reader 2 is considered ground truth,
whereas Reader 2 has a sensitivity of 0.80 and a specificity of 0.98 in the opposite
case.

The ten repetitions of 10-fold cross-validation resulted in an AUCmerge of
0.987 ± 0.002 (95 % CI). Numbers for specificity, sensitivity and F-Measure are
given in table 3.3 for different operating points along the ROC curves. The
mean value of specificity at the best cut-off point of the ten runs was 0.91
correlating with a sensitivity of 0.93. Other points along the ROC curve could
however be chosen, e.g. aiming at a very high specificity to avoid false positive
classifications. In this case, the proposed Random Forest classifier achieved a
sensitivity of 0.36 at a specificity of 0.99.

In figure 3.6, extreme outlier cases are shown. A false positive case is shown in
figure 3.6a where the breast is very large and not completely visible in the image.
In this case, the breast mask fails to describe the true contour of the breast.
The breast in figure 3.6b is small and skinny which impedes proper ultrasound
coupling. As a consequence, a bright rectangle caused by reflections is visible in
the upper right corner of the image and breast mask segmentation using Otsu’s
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Table 3.2: Features for classification of relative nipple position ranked after
their information gain ratio

Info gain ratio Feature

0.4492 Signed distance to contour d∗min = dmin · cio
0.4092 Unsigned distance to contour dmin
0.3522 Is the nipple inside the breast mask? cio
0.1674 Distance to COM dCOM
0.1258 xT
0.0786 cview

0 all others

filter failed. Figure 3.6c shows a false negative case caused by the irregular
breast contour shape of the breast, which in turn produces an erroneous breast
mask.
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Figure 3.4: 2D feature space plots of (a) first and second, and (b) first and
fourth features as ranked according to the information gain ratio measure for

nipple position classification.
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Figure 3.5: Sample (a) and mean (b) ROC curves of the 10 runs of 10-fold
cross-validation for the classification of the relative nipple position.

Table 3.3: Performance measures of the proposed classification of the relative
nipple position obtained in 10-run 10-fold cross-validation

Spec. 95 % CI Sens. 95 % CI Favg 95 % CI FPr,Re 95 % CI

0.905 0.009 0.926 0.013 0.882 0.010 0.886 0.010
0.950 0.002 0.780 0.011 0.882 0.010 0.887 0.010
0.969 0.001 0.594 0.024 0.882 0.010 0.887 0.010
0.990 0.002 0.363 0.064 0.697 0.026 0.725 0.025

Figure 3.6: Examples for outliers of the nipple position classification. (a)
shows a false positive case where a significant part of the breast is not visible
in the scan. (b) is a false negative due to an erroneous breast mask caused
by intense reflections within the coupling layers of the transducer. (c) shows a

false negative case caused by the irregular breast contour shape.
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3.2.2 Nipple Shadow
Seven features describing the nipple were extracted from every image. In total,
340 ABUS images (instances) with a clearly visible nipple were included in this
study. On average, it took (5 ± 2) s per ABUS image to compute all features.

The information gain ratio feature ranking test was applied to all instances
of the data set. The feature ranking is listed in table 3.4. The values are close
to each other but still show a clear order, indicating different significance for
classification of the nipple shadow. The feature space of the two top ranked
features, NI<50 and NI<60, is shown in figure 3.7 and proves a clear tendency of
positive instances towards high numbers of low intensity cylinder segments and
of negative instances towards low values of NI<50 and NI<60. Obviously, a clear
distinction between the two classes would not have been possible based only on
the top ranked features, which speaks in favour of the applied Random Forest
classification.

Automatic classification of the nipple shadow yielded an AUCmerge of 0.842 ±
0.006. Sample ROC curves of one run of cross-validation as well as of all ten
repetitions are plotted in figure 3.8. The best cut-off point on the ROC curve
yields a specificity of 0.82 and a sensitivity of 0.73. As can be seen in table 3.5,
at a specificity of over 0.99, sensitivity of the nipple shadow classification is still
0.24. If the rating of Reader 1 is considered as ground truth, the sensitivity and
specificity of Reader 2 are 0.56 and 0.89, respectively, and therefore very close
to the performance of the classifier (see figure 3.8). The same accounts for the
reverse case, where Reader 1 achieves a sensitivity of 0.90 and a specificity of
0.56 when compared to Reader 2.

Figure 3.9 shows three sample outlier cases. The false positive case in figure
3.9a is a small and skinny breast with a clearly visible nipple shadow close to
the breast contour line. However, it was rated as negative by the readers since it
is hardly possible to get better images of such a small breast in the present view
and a repeated scan probably would not enhance the image. Figure 3.9b shows
a false negative case where the dark region is not directly below the nipple but
rather in a half ring around it. In figure 3.9c, the false negative classification
was caused by a relatively bright and fuzzy shadow. However, the algorithm
was designed to detect very prominent, low intensity nipple shadows as shown
in figure 2.4a.

Table 3.4: Features for classification of nipple shadow ranked after their in-
formation gain ratio

Info gain ratio Feature

0.3199 Number of segments NI<50
0.2331 Number of segments NI<60
0.2132 Number of pixels NPix in segments with I < 60
0.1471 Variance σ2

bright in central cylinder segments
0.0873 xT

0.0680 cview
0 yT
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Table 3.5: Performance measures of the proposed classification of the nipple
shadow obtained in 10-run 10-fold cross-validation

Spec. 95 % CI Sens. 95 % CI Favg 95 % CI FPr,Re 95 % CI

0.817 0.021 0.728 0.022 0.822 0.012 0.830 0.012
0.953 0.002 0.513 0.015 0.764 0.015 0.771 0.015
0.972 5e-18 0.454 0.020 0.676 0.021 0.693 0.019
0.991 0 0.240 0.040 0.664 0.019 0.682 0.018
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Figure 3.7: 2D feature space plot of the two top ranked features according to
the information gain ratio measure for nipple shadow classification.
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Figure 3.8: Sample (a) and mean (b) ROC curves of the 10 runs of 10-fold
cross-validation for the classification of the nipple shadow.
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Figure 3.9: Incorrectly classified cases of the nipple shadow. (a) is a false
positive case caused by the nipple being very close to the breast contour line.
(b) is a false negative with a structured, ring-like nipple shadow. (c) shows a

false negative case with fuzzy and bright nipple shadow.
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3.2.3 Breast Contour Shape
In order to detect irregularities, e.g. shadows, along the breast contour line
in the coronal plane of an ABUS image, 17 features were extracted and used
as input for a Random Forest classifier. 10-run 10-fold cross-validation was
performed to analyse the discriminant capacity of the computed features based
on data sets A and B. The average computing time for feature extraction was
(6 ± 4) s.

A feature ranking test was applied to all instances of the data set to measure
the information gain ratio of the single features with respect to the classification
of the breast contour shape (see section 1.5). The 13 features that had an
empirical information gain ratio above 0 are listed in table 3.6. The computed
values of information gain ratio are very close to each other and all below 0.19,
indicating that their discriminant character is not very pronounced. This can
also be seen in figure 3.10a, where the 2D feature space spanned by l1 and p1
is plotted. A tendency of positive instances (red crosses) towards lower values
of p1 and l1 is observable but not distinctive. As can be seen in figure 3.10a, l1
and p1 are correlated, and thus, they are ranked similarly by the information
gain ration test. Features that are totally dependent on each other, e.g. the
area of the breast mask and the equivalent spherical radius and perimeter, are
given exactly the same value of information gain ratio (see table 3.6).

Random Forest classification was performed under consideration of all avail-
able features and yielded the following results. A sample ROC plot of one run
illustrating the merged ROC curve as well as the 95 % confidence interval is
shown in figure 3.11a. Furthermore, the mean of all merged ROC curves of
all runs is plotted in figure 3.11b. One can see that the merged curves are all
very similar in shape, i.e. the AUC has a very small confidence interval. The
performance of Reader 1 when compared to Reader 2 and vice versa was very
similar to the classifier performance, i.e. the sensitivities were 0.69 and 0.68
at specificities of 0.92 and 0.93, respectively. The area under the curve was
determined as AUCmerge = 0.885 ± 0.003 (95 % CI). As can be seen in table
3.7, the specificity at the best cut-off point of the ROC curve is 0.82 yielding a
sensitivity of 0.79. Depending on the preferred operation mode of the classifier,
different decision thresholds for the computed class probabilities can be chosen.
Putting the focus, e.g., on a very high specificity (0.99), the sensitivity decreases
to 0.15.

Figure 3.12a shows a sample false positive case. The breast as such is imaged
correctly, but parts of the axilla and the arm cause atypical contour lines, which
are misinterpreted by the classifier. Figures 3.12b and c show false negative
cases where parts of the breast are not imaged correctly. Nevertheless, the
breast mask has smooth contours obscuring missing parts and misleading the
classifier.
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Table 3.6: Features for classification of breast contour shape ranked after their
information gain ratio

Info gain ratio Feature

0.1879 Length of ellipsoid axis l1
0.1837 Largest principal moment p1
0.1745 Spherical perimeter pCircle
0.1745 Physical area of breast mask AB
0.1745 Spherical radius rCircle
0.1672 Relative breast area AB/I
0.1412 Ellipsoid axis l2
0.1272 Principal moment p2
0.1122 Flatness F
0.0883 Centroid coordinate xC
0.0714 Roundness RRound
0.043 Perimeter pMask

0.0196 cview
0 all others
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Figure 3.10: 2D feature space plots of (a) first and second, and (b) third and
fourth features as ranked according to the information gain ratio measure for

breast contour shape classification.

Table 3.7: Performance measures of the proposed classification of the breast
contour shape obtained in 10-run 10-fold cross-validation

Spec. 95 % CI Sens. 95 % CI Favg 95 % CI FPr,Re 95 % CI

0.822 0.044 0.787 0.042 0.653 0.020 0.688 0.019
0.950 0.001 0.566 0.029 0.653 0.020 0.688 0.020
0.969 6e-4 0.455 0.049 0.653 0.020 0.688 0.019
0.990 9e-4 0.149 0.025 0.436 0.057 0.464 0.059
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Figure 3.11: Sample (a) and mean (b) curves of the 10 runs of 10-fold cross-
validation for the classification of the breast contour shape.

Figure 3.12: Examples for outliers of the breast contour classification: (a) is
a false positive case where parts of the axilla and the arm are visible on the
image. The false negative cases in (b) and (c) show relatively smooth contours

obscuring the fact that parts of the breast are not imaged correctly.
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3.2.4 Joint Image Quality Rating
Since the three artefacts described hitherto are correlated to each other with re-
spect to their origin and their appearance, the features characterizing the single
issues were combined to establish a joint image quality rating. The simulta-
neous appearance of these three artefacts was evaluated in data sets A* and
B* as shown in figure 3.13. The numbers in the overlapping regions indicate
the relative amount of images that showed two or three artefacts at the same
time. Out of the 340 included images, 67 showed only one of the three consid-
ered imaging issues, whereas 76 were affected by at least two artefacts at the
same time. These numbers support the assumption that there is a correlation
between these three artefacts and a general, joint image quality measure might
be a reasonable implementation. According to the expert annotation, the most
relevant overlap was observed for issues related to the nipple: 13 % of the images
were afflicted simultaneously by a prominent nipple shadow and an inadequate
nipple position. Furthermore, a co-occurrence of all three considered artefacts
was detected in 7 %.

A feature ranking test (see section 1.5) was applied to all 29 features that were
included in this joint approach. As shown in table 3.8, the top ranked features lie
very close to each other indicating that these artefact specific features might not
be specific enough for general classification when considered separately from the
other features. Altogether, however, they yielded good classifier performance as
shown below. Three of the four top ranked features were designed to classify
the nipple position with respect to the rest of the breast in the image. This
shows how the nipple position is correlated to general image quality. Most
other top ranked features originated from the nipple shadow characterisation.
It is reasonable that a feature describing the most frequent artefact plays an
important role in joint image quality classification.

The ROC curves plotted in figure 3.15 indicate a good performance of the
proposed classifier. In the ten runs of cross-validation, an AUCmerge of 0.935 ±
0.002 (95 % CI) was measured. Similarly to the ROC curves of the dedicated,
artefact specific classifiers presented in the previous sections, the deviations
between the different runs of cross-validation are very small. This shows that the
proposed method is stable and robust towards random re-sorting of instances
and folds. Again, the classifier performance was very similar to that of both
readers when compared to each other. Given the rating of Reader 1 as ground
truth, Reader 2 achieves a sensitivity of 0.65 at a specificity of 0.95. In the
opposite case, Reader 1 has a sensitivity of 0.97 and a specificity of 0.52.

The mean ROC curve of the ten runs depicted in figure 3.15 shows a very
steep gradient at high specificities (low false positive rate on the abscissa) up to
a sensitivity of 0.6. From that point, the curve has a minor slope, meaning that
a further increase in the true positive rate could only be achieved by accepting
a strong increase in the false positive rate.
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Table 3.8: Features for joint classification ranked according to their informa-
tion gain ratio

Info gain ratio Feature

0.2537 Signed distance between nipple and contour dmin · cio
0.2482 Unsigned distance between nipple and contour dmin
0.2406 Number of segments NI<50
0.2311 Is the nipple inside the breast mask? cio
0.2237 Number of segments NI<60
0.1507 Distance between nipple and COM dCOM
0.1470 Variance σ2

bright in central cylinder segments of niple shadow
0.1457 Number of pixels NPix in nipple shadow segments with I < 60
0.1280 xT
0.0917 Roundness of breast contour RRound
0.0853 cview

0 all others

Figure 3.13: Co-occurrence of prominent nipple shadow, irregular breast con-
tour shape and inadequate nipple position in ABUS images of data sets A* and

B*.
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Figure 3.14: 2D feature space plots of (a) first and second, and (b) first and
third feature as ranked according to the information gain ratio measure for

joint image quality classification.
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Figure 3.15: Sample (a) and mean (b) curves of the 10 runs of 10-fold cross-
validation for the joint classification.

Table 3.9: Performance measures of the proposed joint classification obtained
in 10-run 10-fold cross-validation

Spec. 95 % CI Sens. 95 % CI Favg 95 % CI FPr,Re 95 % CI

0.909 0.012 0.810 0.012 0.866 0.003 0.871 0.003
0.950 0.001 0.734 0.007 0.826 0.008 0.832 0.006
0.970 0.000 0.697 0.012 0.827 0.008 0.832 0.006
0.990 1e-18 0.554 0.036 0.773 0.017 0.793 0.014
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3.2.5 Air Artefacts

Properties of Air Artefacts

Based on the manually outlined artefact regions, general properties of air arte-
facts were examined within the available 79 masked ABUS images. This yielded
126 annotated air artefact regions to be considered. The results are presented
in table 3.10 and in the histogram plots of figure 3.16. The mean depth of the
stripe pattern was 5 mm and the mean depth of the shadow was 23 mm, which
is in good agreement with the chosen depths for Vs and Vl. The mean size of
the marked air artefacts was 109 mm2 in the coronal plane, whereas the small-
est annotated artefact was 21 mm2. This confirmed that a sliding window size
of 3 mm × 3 mm in coronal plane, which was approximately half the minimum
size of artefacts, was a reasonable choice for feature extraction. The median
measured size was 75 mm2, and 25 out of the 126 artefact regions even exceeded
160 mm2. Considering the reported mean sizes of ABUS detected lesions1 of
80 mm2 to 161 mm2, it becomes clear that air artefacts indeed could occlude
whole lesions. The distance between the bright stripes in air artefact regions
had a mean value of 1.2 mm with a low standard deviation of 0.2 mm, confirming
that the pattern is very similar in images produced by the same transducer.

Evaluation of the Considered Features

The feature ranking test, when applied to all instances of the training data,
showed that there was no single overly discriminant feature, but that there were
many features with similar weight. The computed values of information gain
ratio are overall very low (the highest being 0.027 for the kurtosis kl).

Fourier Transform was used to analyse the frequency distribution of Vs. The
expected frequency fe of the one dimensional projection of Vs was fe = Vs/pe =
5 mm/1.2 mm = 4.2. As shown in the Fourier spectrum of figure 2.8c, the peak
Y (fe) around 4.2 is pronounced for the characteristic stripe pattern compared
to normal tissue signals. As shown in figure 3.17e, the artefact region can be
estimated from the Y (fe) parameter map. Furthermore, the peak Y (flow) below

1Reported mean diameters d of lesions detected in ABUS screening images range from 10 mm
(Brem et al. 2015) to 14.3 mm (Giuliano & Giuliano 2013). Assuming a round shape of
lesions, this yields an area of (d/2)2 · π = 80 . . . 161 mm2

Table 3.10: Empirical properties of the 126 considered air artefact regions
segmented in 79 masked ABUS images.

Area in
coronal plane

in mm2

Depth of
stripe pattern

in mm

Depth of
shadow in

mm

Distance of
stripes in mm

Min 21 2.0 4.9 1.0
Max 607 9.5 55.1 2.1

Mean 109 5.3 22.8 1.2
Stddev 92 1.1 9.2 0.2

Median 75 5.2 22.4 1.2
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Figure 3.16: Histogram plots for the empirical analysis of air artefacts: (a)
artefact size in coronal plane, (b) depth of stripe pattern, (c) depth of acoustic
shadow, and (d) distance between single stripes. Only artefacts within the
masked breast image and with a minimum region size of 20 mm2 in the coronal

plane were considered.

2 Hz and the correlated slope b of the sine fit also provided valuable information
for classification as indicated by the parameter maps in figures 3.17d and 3.17f.
Average computing time for feature extraction was (187 ± 30) s per 3D image.
The computing times per window position were also analysed for the different
types of features as shown in table 3.11.

The feature space plot in figure 3.18 shows the values of µl and Y (flow) for
all training samples. It can be seen that these two features complement each
other in separating the two classes, but the positive and negative clusters still
overlap, which makes proper classification very difficult.

Classification

10-fold cross validation as well as receiver operating characteristic (ROC) were
used to test classifier performance and evaluate the obtained results. The re-
sults are analysed considering parts of the image of increasing sizes (windows,
regions and full images) in order to show that the algorithm is able not only to
detect images with artefacts, but also to point out the precise location of these
artefacts inside the images. This is potentially important in clinical practice, as
air artefacts happen mostly due to a lack of contact gel between the scanning
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Table 3.11: Computing times per window position for the different feature
types.

Feature type Mean in ms Stdev in ms
Sine fit 22 9

3rd and 4th order statistics 3.8 0.4
Percentiles 2.1 0.2

1st and 2nd order statistics 0.93 0.09
Entropy 0.4 0.3

Fourier Transform 0.12 0.04

probe and the patient’s body. Consequently, the present method can raise a

Table 3.12: Features for air artefact detection ranked after their information
gain ratio

Info gain ratio Feature

0.0267 Kurtosis kl

0.0220 Mean µl

0.0190 Skewness sl

0.0187 ms/ml

0.0177 Median ml

0.0163 µs/µl

0.0140 70th percentile of Vl

0.0120 Amplitude Y (flow) (FT)
0.0113 90th percentile of Vs

0.0100 Mean µs

0.0095 Standard deviation σs

0.0095 EntropyHl

0.0089 Mean ms

0.0077 Entropy Hs

0.0064 Hs/Hl

0.0044 Slope b (Sine fit)
0.0039 70th percentile of Vs

0.0033 σs/σl

0.0027 Amplitude Y (fe) (FT)
0.0024 Standard deviation σl

0.0020 90th percentile of Vs

0.0020 Skewness ss

0.0018 ss · sl

0.0015 ks · kl

0.0009 Amplitude A (Sine fit)
0.0008 Kurtosis of small window ks

0.0002 Fit error ∆ (Sine fit)
0.0002 Period p (Sine fit)
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(a) (b) (c)

(d) (e) (f)

Figure 3.17: Sample 2D coronal parameter maps showing the computed fea-
tures as heat maps. (a) Ratio of median values ms/ml, (b) mean value µl, (c)
median value ml, (d) peak Y (flow) in Fourier spectrum below 2 Hz, (e) peak

Y (fe) in Fourier spectrum within fe ± 2σf , and (f) slope of sine fit.
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Figure 3.18: Feature space plot illustrating the discriminative power of the
mean value of the large window, and the Fourier peak around 4 Hz. Positive
instances (sliding window at a specific position) are represented as red crosses,

negative instances as green circles.

warning flag if an artefact occurs as well as provide valuable information on
how to solve the problem quickly.

The classifier performance on window-level in 10-fold cross-validation applied
to the training data set is described in table 3.13 and by the ROC curve in figure
3.19a. The ROC curve proves an overall good performance of the prediction.
The area under the merged ROC curve is AUCmerge = 0.92±0.03 (95 % CI). The
numbers in table 3.13 show that a smart choice of decision thresholds for the
classifier can yield very high sensitivity (0.95) and specificity (0.99) at the same
time. Due to the unbalanced data set (positives/negatives = 2410/390568 =
0.006), it is however important to consider the F-Measure, which incorporates
the ratio of true positive and false positive instances. The F-Measure reveals
that more true positive instances are traded off by a much higher number of
false positives. In conclusion, these numbers show that the proposed method
can detect up to 95 % of positive instances (on window-level) and would benefit
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Table 3.13: Performance measures of the proposed air artefact classification
obtained in 10-fold cross-validation. Note that only one run of cross-validation

was performed and that confidence intervals are based on the ten folds.

Spec. 95 % CI Sens. 95 % CI Favg 95 % CI FPr,Re 95 % CI

0.994 0.002 0.584 0.092 0.436 0.068 0.436 0.068
0.947 0.016 0.953 0.029 0.198 0.067 0.198 0.067

strongly from a more elaborated false positive reduction.
Applied to the test data set, the trained classifier yielded an AUC of 0.96 on

window-level. For the region-level evaluation, the true and false positive regions
(connected components) in the test data set were counted. The relation between
the true positive rate TPRR (on region level) and false positive regions per image
is shown in the free response ROC (FROC) plot in figure 3.19b and in table 3.14
for two thresholds for the minimal accepted artefact size. The minimum size of
the manually annotated artefacts was 21 mm2, consequently one could decide
to only accept automatically detected potential artefacts if they exceeded this
limit. However, due to the sliding window approach, it is possible that only
parts of the actual artefact are denoted as positive instances by the classifier
and, thus, the detected region can be smaller than 21 mm2.

Considering the images as a whole and discarding all candidate artefact re-
gions smaller than 21 mm2, the classifier correctly identified 15 of the 19 artefact
images as positive images whereas 5 of 17 normal images were misclassified. Fig-
ure 3.20 illustrates sample output images of the presented method.

Many artefact regions were detected very precisely by the proposed method.
The false positive regions shown in figures 3.20c and 3.20f can be explained by
the fact that they indeed show all derived image properties of an air artefact.
However, they were not annotated as such because they are relatively small,
directly adjacent to the breast contour, and thus, not clinically relevant. The
missed artefact region (false negative) in figure 3.20f is an example for a very
small artefact that was detected only partly by the proposed method and, thus,
filtered by the lower threshold of 21 mm2 for positive regions. The differences
between the manual segmentation in figure 3.20h and the classifier result in
figure 3.20i are due to a slight lateral expansion of the acoustic shadow caused
by this kind of contact artefacts. Whereas in the upper coronal slices, two
artefact regions could be distinguished, they melted to one in the deeper slices
(as displayed).

The time needed to train the classifier was 340 s, although it is important
to notice that this step only needs to be carried out once when setting up the
system and not in every potential use. The time needed to classify an image
once the classifier had been trained was (1.0 ± 0.2) s depending on the size of
the imaged breast. Together with the time for feature computation, the total
time needed to obtain a classification for a new image is (188 ± 30) s.
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Figure 3.19: Performance of the Random Forest (RF) classifier for air artefact
detection. (a) The fitted merged ROC curve of 10-fold cross validation shows
the performance of RF on the level of sliding windows when applied to the
training data set. (b) FROC plot for the test data set showing the relation
between true positive rate TPRR (considering connected regions instead of
pixels) and the number of false positive regions per image for varying minimum

allowed sizes of potential air artefacts.

Table 3.14: True and false positive connected regions counted for two lower
thresholds for the allowed size of detected artefacts.

Min. area in coro-
nal (mm2)

FP regions
per image

Abs.
counts
of FPs

TPRR Abs.
counts
of TPs

0 2.6 93/36 0.83 24/29
21 0.58 21/36 0.55 16/29
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.20: Three sample cases showing in the left column the computed
breast mask, in the middle column the manually segmented artefact regions,
and in the right column the automatically determined artefact regions as ma-
genta overlays, respectively. In (i), the artefact was detected correctly. In (c)
and (f), there are small false positive regions (along breast contour), whereas

in (f), a very small artefact region was missed by the algorithm.
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3.2.6 Automated Assessment of Nipple Visibility

The present study was separated into two parts: First, the improved automatic
nipple detection method was evaluated on those test data set images that con-
tained the nipple. Secondly, the new nipple detection algorithm was employed
to extract features for the classification of the images with respect to the correct-
ness of the manual nipple annotation. The classifier was trained on all images
of the training data set and applied to the full test data set.

Automatic Nipple Detection

The reliability of the existing Laplacian- and Hessian-based nipple detection
method was measured with the confidence factor C, which was computed ac-
cording to equation 2.7 for those 327 test data set images that contained the
nipple. Pearson’s correlation between C and the distance d was −0.47 (p < 0.05,
95% CI [−0.39, −0.55]). This significant linear correlation supported the idea of
using the confidence measure C as indicator for the reliability of the computed
nipple position.

The atlases which represent the empirical probability distribution of the nipple
position based on the training images are shown in figure 3.21. There is a clear
tendency for the nipple position of each view, respectively. Whereas the nipple
tends to be in the centre of the image for the AP view, it is pushed aside for
MED and LAT views, as well as towards the bottom of the image for SUP view.
The SUP atlas is less smooth than the others due to a lower number of available
images for this view.

The mean distance d between ground truth nipple position (xG, yG) and the
nipple position (xP, yP) as predicted by the proposed joint method was averaged
over all 327 test images that contained the nipple. In figure 3.22, the distance d
and the detection rate are plotted over the varying threshold C∗. One can see
that the mean distance d decreases from (9 ± 17) mm to (7 ± 12) mm when C∗

increases from 0 to 34. For values between 34 and 75, d stays approximately
constant but raises slightly for threshold values above 75. The detection rate
(counting those cases where d was smaller than 10 mm) reaches a maximum
plateau of 0.85 for C∗ values between 27 and 42. When the original nipple
detection method by Wang et al. (2014) was used alone, the detection rate was
0.82. When the atlases was used for all cases, i.e. a decision threshold of 100

Figure 3.21: Atlas images for the four examined views as derived from the
training data set images. The present figures represent the probability distri-
bution of the nipple position for the left breast. They are mirrored along the

vertical axis to achieve the atlases for the right breast.
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Figure 3.22: Mean distance d and detection rate over threshold values C∗ for
confidence measure C. With increasing C∗, the distance error d decreases and

the detection rate raises until C∗ = 34.

Table 3.15: Detection rate of the original detection method, two different
modes of the joint detection method, as well as for the atlas alone, as measured

in the images of the test data set that actually contained the nipple.

Algorithm AP MED LAT SUP all

Original 0.90 0.76 0.85 0.71 0.82
Joint (opt.) 0.90 0.79 0.87 0.80 0.85
Joint (always) 0.87 0.78 0.83 0.83 0.83
Atlas alone 0.24 0.13 0.24 0.06 0.19

was chosen such that the original Laplacian and Hessian method was never used,
the detection rate was 0.83 and the distance error was (8 ± 13) mm, which is
however not significantly smaller than for the original method (p-value from
paired t-test of > 0.1).

These results suggested that the best performance can be achieved by choosing
a lower threshold C∗ of 34 to trust the original nipple detection method alone,
and adding the atlas-based method for all other cases. Detailed performance
analysis of the joint nipple detection per view is shown in tables 3.15 and 3.16.
The detection rate and the mean distance error d were evaluated for the original
method, the proposed joint detection method with the determined optimal lower
threshold C∗ = 34, the proposed joint method with C∗ = 100, and for the atlas
alone. The numbers indicate that especially for the MED and LAT views, the
joint nipple detection method that used the atlas where the original method
was not reliable helped to improve the results significantly (p = 0.04). The
original algorithm already performed very well for the AP view images. For
the SUP view, the joint method that always combines the probabilistic atlas
and the Laplacian-Hessian-method irrespective of C performs best. When the
empirical atlas was used alone, the detection rates and the mean distance error
were significantly worse than for any of the three other methods.

Image classification

The Random Forest classifier was trained on the training data set and applied
to the test data set to discriminate the cases with correctly marked nipple from
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Table 3.16: Mean distance error d (± stdev) of the original detection method,
two different modes of the joint detection method, as well as for the atlas
alone, as measured in the images of the test data set that actually contained
the nipple. p-values are computed in paired t-test and refer to the original

method.

Algorithm AP MED LAT SUP all

Original 5 ± 6 12 ± 20 7 ± 11 19 ± 29 9 ± 17
Joint (opt.) 4 ± 4 9 ± 16 5 ± 4 12 ± 22 7 ± 12
p-value 0.3 0.04 0.04 0.1 0.0007
Joint (always) 6 ± 7 10 ± 15 7 ± 14 9 ± 14 8 ± 13
p-value 0.1 0.1 0.9 0.04 0.1
Atlas 18 ± 10 23 ± 13 19 ± 16 25 ± 10 20 ± 13
p-value 7E-20 5E-5 8E-8 0.2 2E-21
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Figure 3.23: ROC plot for the classification of correctly pinpointed nipple
positions versus incorrectly annotated cases, e.g. due to invisible nipple. The
technicians’ annotation was considered to be correct if the distance to the

ground truth was less than 16 mm.

those, where the manual annotations by the technicians were wrong, e.g. because
the nipple was not in the image at all. The ROC curve of the classification is
shown in figure 3.23. The AUC is 0.92. At the point being closest to the upper
left corner of the ROC plot, the F-Measure is 0.72 corresponding to a sensitivity
of 0.90 and a specificity of 0.89. This means that 52 out of 58 positive cases
were detected correctly.
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3.3 Performance of Automated Image Quality
Assessment on disjunct data

To evaluate the performance of the automated image quality assessment tools
described in sections 2.2.1 to 2.2.4, the test data set C, which was not used
previously, was annotated manually by two medical experts with respect to the
three considered artefacts and processed by the four image quality assessment
algorithms focusing on the relative nipple position, the nipple shadow, the breast
contour shape, as well as the joint quality rating based on the three single
aspects.

The results of the manual annotation are shown in figure 3.24. Counting all
images where both readers detected the same artefact, the most frequent artefact
was a prominent nipple shadow with 108 affected images (24 %), followed by an
inadequate nipple position which was found in 83 images (19 %). An irregular
breast contour shape was found by both readers concordantly in only 14 images
(3 %). Compared to figure 3.3, the amount of low-quality images is decreased
significantly. Whereas, e.g., a prominent nipple shadow was claimed in nearly
40 % of the cases in data sets A and B, in data set C, only 24 % were annotated
as such.

The co-occurrence of artefacts in the considered data set is shown in figure
3.25. Overlapping regions indicate the number of images that were affected by
two or three issues at the same time. Note that only those cases with actually
visible nipple are considered, explaining the seeming discrepancy to the numbers
in figure 3.24. Only 1 % of the images were affected by all three artefacts,
whereas the highest co-occurrence was measured between nipple shadow and
nipple position with 8 % of the images. Compared to figure 3.13, the trend of
co-occurring image quality aspects is similar, but the total amount of affected
images is reduced. This means that in both data sets the highest co-occurrence
was measured for a prominent nipple shadow and an inadequate nipple position
whereas the shape of the breast contour seemed a bit decoupled of these two
and generally was detected in fewer cases.

The inter-rater agreement was analysed to measure the objectivity of the
selected artefacts and to estimate the reliability of the manual read. For the
expert annotation of the nipple shadow artefact and the relative nipple position,

Figure 3.24: Frequency of specific artefacts in the considered data set C (447
images) as annotated by two raters. Red bars indicate the number of images

that were rated concordantly as showing the artefact.
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Figure 3.25: Relative co-occurrence of prominent nipple shadow, irregular
breast contour shape and inadequate nipple position in data set C* (394), i.e.

those 394 images where the nipple was actually visible.

Table 3.17: Computed inter-rater agreement for manual annotation of specific
ABUS artefacts

Artefact Cohen’s κ

Relative nipple position 0.65
Nipple shadow 0.75

Breast contour shape 0.34
Joint 0.66

the agreement was very good with κ values of 0.75 and 0.65, respectively. The
agreement between Reader 2 and Reader 3 was acceptable (κ = 0.50) for the
joint quality rating, but poor for the breast contour shape (κ = 0.34). Thus, the
more frequently an artefact appeared, the more clearly it seemed to be defined
to the readers. Furthermore, the shape of the breast contour with respect to the
size and shape of the breast as well as diverse shadows is by far more complex
than the characteristics of the nipple, which is generally a clearly defined point
in the image. Reader 2 marked fewer images as artefact-affected than Reader 3.

The performance of the automated artefact detection tools using the man-
ually determined nipple position coordinates is represented by the ROC plots
in figure 3.26 and the values listed in table 3.18. The ROC curves describe the
specificity and sensitivity of the developed algorithms with regard to the manual
annotations of both readers separately (green and blue curves) as well as to the
combination of both ratings (magenta curves). One can see that the ROC curve
of Reader 2 has always a (slightly) larger AUC value than the curve of Reader
3. This can be explained by the fact that the classifiers had been trained based
on the manual annotations of Reader 2 (and Reader 1), but not of Reader 3.
Nevertheless, the discrepancies between the green and blue curves are small,
especially in the “clinically relevant” areas of small false positive rates (FPR
< 10 %). It is also evident that the magenta curve, describing the classifier
performance when compared to the common rating of both readers, is always
very close to the curve of Reader 2. This is due to the fact that Reader 2 an-
notated more conservatively than Reader 3 and, thus, was always closer to the
common rating than Reader 3 (see figure 3.24). The sensitivity and specificity
of both readers when compared to each other, respectively, are plotted as op-
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Figure 3.26: ROC plots describing classification results for artefact detection
with respect to (a) the relative nipple position, (b) the nipple shadow, (c) the

breast contour shape, and (d) the joint approach.

timistic reference points. They perform always slightly better than the AQUA
algorithm.

If the joint nipple detection algorithm was employed to infer the nipple posi-
tion coordinates, the classification of the relative nipple position and the acoustic
nipple shadow is less reliable as shown by the ROC plots in figure 3.27. These
curves having lower AUC values than the ROC plots in figure 3.26 show that the
proposed classifier strongly depends on correct input parameters. The detection
rate of the joint nipple detection method was 85 % (see section 3.2.6), whereas
the manual annotation of the nipple position coordinates can be considered as
ground truth, i.e. providing a detection rate of 100 %.

When the automated artefact detection methods were evaluated at the op-
erating point (decision threshold) that was determined in the training step for
a specificity of 0.97, they yielded the performance values listed in table 3.18.
The specificity was high for all four considered artefacts, it varied between 0.83
and 0.91. The sensitivities ranged from 0.50 for the breast contour shape to
0.86 for the relative position of the nipple. Cohen’s κ was computed for the
agreement between the automatic artefact annotation and the combined rating
of both readers.
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Figure 3.27: ROC plots describing classification results for artefact detection
with respect to (a) the relative nipple position, and (b) the nipple shadow, with
the nipple position coordinates being inferred from the joint nipple detection

algorithm.

Table 3.18: Performance measures for retrospective analysis of automated
image quality assessment

Nipple
position

Nipple
shadow

Breast
contour Joint

Specificity 0.84 0.83 0.91 0.91
Sensitivity 0.86 0.77 0.50 0.68
Cohen’s κ 0.45 0.47 0.19 0.58

AUC Reader 2 & 3 0.91 0.82 0.75 0.91
AUC Reader 2 0.91 0.84 0.86 0.91
AUC Reader 3 0.91 0.82 0.73 0.84
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3.4 Clinical Implementation
A software prototype for automated image quality assessment (AQUA) in ABUS
based on the already existing framework MIRIAM was built. Every incoming
ABUS scan was automatically checked by all modules listed below and the
outcome was displayed within two minutes on the MIRIAM dashboard. The
following image properties were checked by the AQUA system:

• Protocol Check
– Was the nipple position marked by the technicians?
– Is the image size within acceptable limits?

• Overall Image Quality (Joint rating, sec. 3.2.4)
– What is the general impression of the image?
– Only if this joint artefact detection fails, i.e. the general image quality

is rated low, the images are checked for the following quality aspects.
This two-stage procedure was chosen because a high specificity was
required.

• Relative Nipple Position (sec. 3.2.1)
– Is the nipple properly visible on the image or was it pushed far aside,

probably covering important other tissue structures?

• Nipple Shadow (sec. 3.2.2)
– Is the acoustic shadow caused by the nipple too prominent and cov-

ering important regions of the breast?

• Breast Contour Shape (sec. 3.2.3)
– Is the contour line of the breast following a roundish shape on the

image? If the contour line is rather irregular and ragged, the breast
might not have been supported properly during image acquisition
and some parts of the breast might not have been imaged correctly.

3.4.1 Technical Aspects
The GUI designed within this work was supposed to show the image quality rat-
ing results of the current examination as simple as possible and at first glance.
After a login dialogue that prevents unauthorized access to the image data, the
Monitor Board page is displayed automatically (see figure 3.28). If no other
examination is selected from the patient browser, the rating results of the cur-
rent examination are displayed as a traffic light (see figure 3.29) and updated
automatically. For each breast, there are four fields, each of which is assigned
to one of the standard views that are acquired in one acquisition. Every field
shows a sample coronal slice of the respective image as well as brief note on
potential image quality issues. Since the images could not be sent directly from
the scanner to the AQUA server, a bypass via an existing server within the
clinic’s DICOM network was implemented. Data transfer of one ABUS scan
(approx. 120 MB) took one minute. Image processing and feedback to the net-
work until display of the rating results took another minute, adding up to two
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Figure 3.28: The GUI of the AQUA software prototype. It contains a patient
browser on the left, shows the patient info of the currently selected patient
on the top and displays the rating results of the selected examination in the

centre.

Figure 3.29: The rating results for each scan are displayed as traffic light. If
the image passed all AQUA tests, the field is green. A red field indicates that
the image might be of low quality. Textual information on the detected issue

is given.

minutes time delay. The acquisition of one view takes around one minute. Since
the technicians were not able to wait for the AQUA rating results of the last
views, they were instructed to consider only the rating for the first scans and,
if applicable, to repeat these views.

3.4.2 Usability

The answers of seven technicians to the distributed questionnaires after a first
contact to the ABUS AQUA software prototype are shown in figure 3.30. The
general impression of the technicians was that the proposed software needed
some improvement. From the written comments that were provided by the
technicians it could be concluded that this was mainly due to an insufficient
specificity of the software, i.e. the relative position of the nipple was found to
be too close to the breast contour in many cases of large breasts. However, large
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breasts often require such positioning to cover the whole breast volume. This
was also the reason for the frustration that four of the technicians claimed. As a
consequence, all of the technicians would like to have more user interaction with
the software, e.g. the possibility to enter comments. They wanted to explain
why they did not repeat a specific scan that was rated as low-quality image.

The graphical user interface was rated overall positively, as well as the loading
and computing time of the software. As the AQUA tool is running in the
background while the next scan is prepared, the impression of long or short
computing times depends partly on the number of acquired views and the time
that is needed for repositioning of the transducer. The amount of scans that was
proposed to be repeated was estimated to 0–1 out of 6 by most of the technicians
which corresponds to the amount that was expected from software design.

Due to a short effective test run period of only some weeks, the actual effect
of the proposed image quality assessment software could not be evaluated sta-
tistically in this clinical set up. Nevertheless, interviews with radiologists and
technicians were performed to retrieve qualitative feedback on the software. The
radiologists reported a remarkable improvement of overall ABUS image quality
over the test run period. The technicians did not repeat many scans, partly due
to the time delay between image acquisition and quality rating that precluded
the repetition especially of the last views within one exam. However, the clin-
ical technicians stated that they were sensitized to the image quality aspects
potentially influencing the radiologists in reading the images.
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Figure 3.30: Answers of seven technicians to the questionnaire on the usability
of the ABUS AQUA prototype after a first usage.
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4.1 Empirical Analysis of ABUS Artefacts

A reader study was initiated in order to evaluate the incidence of diverse imaging
artefacts that can appear in ABUS images. The four most frequent imaging
issues were a prominent nipple shadow, an inadequate relative nipple position,
an irregular breast contour shape and the occurrence of air artefacts. The
presented results suggested focusing the automated artefact detection on these
four most frequent specific imaging issues.

The inter-rater agreement for the nipple position and shadow, the visibility
of ribs as well as the breast contour shape was generally good with κ values
ranging from 0.44 to 0.84, whereas the annotation of air artefacts and the wavy
pattern only yielded mediocre agreement. The low agreement measured for the
air artefact may be due to the fact that many air artefacts only affect a very
small region. They might have been ignored by Reader 2 since they did not
affect the diagnostic value of the considered image. Basically, the present κ
values for artefact detection correspond to reported inter-rater agreement for
lesion classification in ABUS images. Kim & Hong (2014) found a substantial
agreement on lesion shape (κ = 0.71), and moderate agreement on other at-
tributes as lesion type, mass orientation, echogenicity, and posterior acoustic
features (0.44 < κ < 0.59).

For all considered quality aspects, there were more cases annotated as artefact
affected by Reader 1 than by Reader 2, i.e. Reader 1 was more restrictive than
Reader 2. Together with the varying κ values, this indicates that the annota-
tion and classification of image artefacts and image quality is a very subjective
task, which depends strongly on the experience and personal preferences of the
radiologist rating the image. This may be true for all diagnostic images, but the
complexity of 3D ABUS data sets—in comparison to, e.g., 2D mammographic
images—enforces this effect. It is clear that lower inter-rater agreement in the
ground truth results in poorer performance of a supervised machine learning
approach, which is searching for clear rules.

It has to be noted, however, that some disagreement between the readers
might also be caused by ill-posed questions, i.e. unclear instructions concerning
the annotation process. Whereas one reader might have considered the images
as self-contained instances, the other might have had in mind the correlation
to the other views of the same study. Although the readers were told to follow
the first interpretation, a radiologist might not be able to ignore the images he
seen before but intrinsically includes this information in his rating. A display of
the images in randomized order might have been beneficial to avoid this effect.
The same accounts for the degree of abstraction that the readers were asked for:
Whereas one reader might only look for the described image quality aspect, the
other might put it into context and make assumptions on the clinical relevance

95
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of the detected artefact.
Having said this, various scenarios for alternative ground truth acquisitions

open up: One could rely only on one reader. The consistency within the rating
might result in better classification results in the first place, but would lack
generalisability. Letting the same reader(s) rate the image quality several times
is another option that was evaluated in a very recent experiment (not presented
in this work). It turned out that the intra-rater agreement was very similar to
the inter-rater agreement, showing the complexity of the tackled problem.

4.2 Computer-aided Analysis of ABUS Artefacts
4.2.1 Nipple Position
The first image quality criterion that is described in this work is the position of
the nipple in the image with respect to the rest of the breast tissue. As explained
before, proper positioning of the transducer such that the nipple is well visible
on the image is an essential factor for the diagnostic value of an ABUS image.
The nipple is an important landmark not only for radiologic analysis of the
data but also for computerized post-processing approaches. The most relevant
feature to detect unsatisfying nipple positioning was the distance between nipple
and breast contour, which is an intuitive measure for the problem.

With a true positive rate of 0.78 at a false positive rate of 0.03, the proposed
algorithm reached high specificity and sensitivity at the same time. The good
performance may be correlated to the fact that the manual rating of the nip-
ple position was essentially driven by the same parameters as the automatic
classification. This means that the clinicians marked the nipple being âĂIJtoo
close to the edge of the breastâĂİ if the distance between nipple and breast
contour line was very small. Exactly the same distance measure was used as
feature for classifier training, i.e. the semantic gap between human perception
and computed attributes was very small in this case.

Nevertheless, there were some outliers that were not classified correctly. They
were generally caused by an erroneous breast mask due to irregular breast con-
tour shapes. In some other cases, the algorithm was not able to reproduce the
complex decision process that a human reader performs. Even if the described
features were determined as expected, the readers might have anticipated and
considered other aspects, e.g. parts of the breast that were not visible in the
image, as shown in figure 3.6a.

Some of the selected features in this and the following sections were highly
correlated, e.g. the signed distance measure d∗ = d·cio. This suggests that might
be a bias in the trained classifiers towards the correlated features. However, due
to the random selection of features at each node, Random Forest classifiers are
generally not biased by correlated features as long as they are used as “black box”
for classification purposes (as opposed to feature selection or ranking purposes)
(Strobl et al. 2008).

4.2.2 Nipple Shadow
In a next step, automatic classification of the acoustic shadow adjacent to the
nipple was developed. The achieved AUC is not as good as for the classifica-
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tion of the relative nipple position. This agrees with the higher complexity of
the problem and correlated uncertainty of the readers as described in section
3.1. The inter-rater agreement was much lower for the annotation of the nipple
shadow (κ = 0.44) than for the relative position (κ = 0.84), showing that the
readers were less determined about the impact of a specific nipple shadow on
the image quality.

Outliers were mainly due to an atypical appearance of the acoustic shadow.
A sample case can be seen in figure 3.9c where the region behind the nipple has
a relatively high intensity but nevertheless is fuzzy and does not contain any
anatomical information.

A prominent nipple shadow can hamper diagnosis dramatically. The size of
typical ABUS detected lesions was reported to be very small; mean diameters of
10 mm to 14 mm were found in the literature (Brem et al. 2015; Giuliano & Giu-
liano 2013). The shadowed region behind the nipple can take several cm3 of the
image and, thus, has the potential to occlude complete lesions. However, it has
to be noted that radiologists analyse up to five views per breast and that typ-
ically the whole breast—including the region adjacent to the nipple—is visible
when combining the information of all views. Whereas experienced radiologists
perform this combinatorial analysis intuitively, computer aided detection sys-
tems might reach their limits. Registration between different views might be
the first idea coming up to imitate this combinatorial task, but to the author’s
knowledge, no reliably operating full registration between different ABUS vol-
umes has been presented to date. Boehler & Peitgen (2008) proposed to use
registration between the single slices of one ABUS volume in order to reduce
motion artefacts (discontinuities, wavy patterns). This might be considered as a
first step towards full ABUS registration. However, to estimate the quality of a
complete examination, a less complex approach combining the ratings obtained
for each single view might already be sufficient. If it is assured that the tissue
behind the nipple is represented sufficiently in one view of the study, it will not
be necessary to repeat another view due to a prominent nipple shadow.

The proposed method of counting low intensity cylinder segments for measur-
ing the size of the acoustic shadow corresponds to a very rough down-sampling
of the considered region. More sophisticated approaches were also tested (not
shown in this work) but turned out to be less robust against the variable in-
tensity distributions in this region adjacent to the nipple. Specifically, a region
growing algorithm had been implemented to evaluate the dimensions of the
acoustic shadow connected to the nipple. However, defining the starting point
(“seed”) for the algorithm automatically was difficult due to the natural extent
of the nipple and the coinciding inaccuracy of the nipple position used as input
parameter.

4.2.3 Breast Contour Shape

Since the breast generally has a round and smooth shape, irregularities in the
imaged contour are strong indicators for an inappropriate image acquisition.
Although the discriminative power of each single feature was equally low, rea-
sonable classification results could be achieved, similar to the results for the
nipple shadow classification. As shown in the ROC plots of figure 3.11, the
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curves are still set clearly apart from the diagonal line indicating proper clas-
sification, which also accounts to the two classifier models described above. A
very tine confidence interval was retrieved from 10 repetitions of 10-fold cross
validation, which proves reproducibility of the presented results. Whereas the
classification of the nipple shadow was impeded by the low inter-rater agreement
in the ground truth annotation, the characterisation of the breast contour shape
was hampered by the low number of positive cases as unbalanced data sets make
classifier training harder.

As for the above discussed image quality aspects, the classifier performance
strongly depends on the suitability of the selected features. The attributes pro-
posed in this work were retrieved from the physical properties of ultrasound
propagation and the resulting appearance of a breast on an ABUS image, i.e.
they were relatively intuitive. It is of course possible to compute more abstract
features such as SIFT (scale-invariant feature transform) features (Lowe 1999)
on different scales, which are generally used for object recognition. First at-
tempts that were performed during this work (not presented) showed that these
features were computationally too expensive for the planned real-time applica-
tion. Furthermore, they could not be combined with the artefact-specific image
quality rating that was chosen in this work. They might however be better suit-
able for unsupervised learning approaches to the image quality rating problem.
This coincides with the idea of using much larger amounts of data for classifier
training, e.g. for deep learning. Although the required amount of input data
increases by several orders of magnitude, this is an active field of research and
first works on lesion classification, image annotation or segmentation using deep
learning algorithms have been presented.

4.2.4 Joint Image Quality Rating

Motivated by the fact that many images are affected by more than one artefact
at a time, the three previously investigated imaging problems were combined
into one general image quality rating. Based on the combination of all features
dedicated to characterise the images as a whole with respect to specific artefacts,
classifier training was performed with the aim to reflect the sum of the expert
annotation. Very good results were achieved in the cross-validation experiments,
i.e. the sensitivity was 0.70 at a specificity of 0.97. To achieve an even higher
sensitivity, it might be beneficial to extend the list of proposed features by more
detailed attributes as for example the breast cup size. However, computing the
actual 3D volume of the breast based on an ABUS scan is not trivial and, to the
authorsâĂŹ knowledge, has not yet been performed completely automatically
by any other group. First steps like fully automatic chest wall segmentation
have been presented by Tan et al. (2013b), who approximated the chest wall
by a cylinder. However, computing time was reported to be 6.5 min per breast
image, which would be too slow for the application we were aiming at. Thus,
extracting information from 3D images by projecting them to 2D, e.g. the
breast mask area, was more reliable, i.e. reproducible, and reduced complexity
and computational costs.

If such a joint image quality rating was applied in clinical practice, the tech-
nicians would get no information on the exact reason of a failed image quality
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check. The results of this work suggest that there is a trade-off between high sen-
sitivity in terms of correctly detected low-quality images and the level of detail
in the provided information. It would clearly depend on the preferences of the
clinical personnel whether detailed information at the cost of lower sensitivities
would be preferred over a more general quality rating.

Due to the characteristics of a trained classifier that works with class proba-
bilities, a compromise between high specificity and high sensitivity must always
be found for the final application. The proposed methods allow the user to
decide on which level the software should operate. Whereas a high specificity is
a very common setting in medical imaging (for example in algorithms that aim
at detecting potentially malignant cancerous lesions), for image quality assess-
ment, a false positive case might be less dramatic. At worst, an image rated
wrongly as low-quality may mislead the technicians to repeat a view that was
already of high quality. In this case, this increases examination time and repre-
sents a minor hassle for the patient but, as ABUS is a radiation free technique,
no adverse consequences for the patient’s health would follow.

Nevertheless, the chosen approach of summarizing those cases that have been
rated differently by both readers in the negative class was aiming at high speci-
ficities. It was decided that only those cases which could be clearly attributed
a specific image quality issue, i.e. which were rated as positive by both readers,
were assigned the positive class in order to provide the classifier with a “cleaner”
training sample. Other scenarios were also tested in this work, e.g. excluding the
differently rated images completely from classifier training and testing yielded
significantly better performances—as one would expect—but was also less real-
istic.

4.2.5 Air Artefacts

In this part of the work, a comprehensive study on air artefacts in ABUS images
was conducted. In order to assess the relative importance of the problem, the
images were examined and annotated by two expert radiologists. A considerable
amount of the images were marked concordantly by both experts as affected by
air artefacts. 58 of the 126 annotated artefact regions were bigger than 80 mm2,
which corresponds to the reported average size of lesions detected in ABUS
images. This shows how air artefacts—similar to the acoustic shadow possible
caused by the nipple—have the potential to obscure or even totally occlude
lesions. The decision to exclude artefact regions that were smaller than 20 mm2

was discussed thoroughly with radiologists who explained that artefacts below
that limit were not clinically relevant.

Specific image features were extracted on the level of a sliding window of
3 mm × 3 mm size in coronal plane and 20 mm depth in AP direction. This
window size was leaned on the empirically determined sizes of air artefacts in
the provided data set. A multi-scale approach with differently sized windows
might add relevant information to the method, but was not yet considered due
to already large computing times. Computational costs were also the reason
for the chosen workflow of two different train/test scenarios: A Random Forest
classifier was first tested in cross-validation experiments. and in the second
stage, the trained classifier was applied to the test data set where. The analysis
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of the test data set using different levels of detail showed that the proposed
algorithm was able not only to raise a warning when air artefacts were present
but also to point out which parts of the image were most likely to contain them.

Note that the 815 ABUS images evaluated in this study were randomly se-
lected from the clinical archive and not preselected in any way. They included
images acquired from four different views (AP, LAT, MED, SUP), which was
however not considered as relevant information at the chosen scale of sliding
window. Although the air artefacts of one transducer are generally very similar
in terms of stripe distance (see figure 3.16), their appearance also depends on
the surrounding tissue and the ultrasound scanner settings, e.g. time gain com-
pensation. Missed artefact regions were either very small or did not exhibit the
stripe pattern as clearly as expected, whereas false positive regions were mostly
due to an incorrect breast mask including background regions, which often show
the characteristic stripe pattern, too. Especially for very small artefact regions,
the acoustic shadow can be very small, which makes them hard to detect, but
at the same time less clinically relevant since most of the tissue behind them
can be displayed properly.

The high amount of false positive regions that indeed present the typical
stripe pattern but were not annotated manually again illustrates the problem
of bridging the semantic gap between the computer, which can only detect
the predefined pattern, and the clinician, who already interprets his findings
concerning clinical relevance. The algorithm at its current stage is not yet able
to rate the clinical relevance of its findings. A more extensive manual delineation
of the artefact regions including also very small regions might have yielded better
results at this stage.

Since air artefacts typically only take a small part of an image (if at all),
the data that was used for machine learning was very unbalanced, i.e. there
were many more negative instances (normal image) than positives (artefacts).
Synthetically balancing the data set either by excluding negative instances or
synthesizing additional positive instances might improve the performance of the
classifier but was beyond the scope of this work.

Processing time for one ABUS image (3D volume) was 188 s, which is hardly
acceptable for clinical application of direct feedback to the technician after im-
age acquisition. Analysis of the computing times per window position for the
different feature types revealed that the Sine fit features were computationally
very expensive when compared to the other feature types (see table 3.11). Al-
though they were the most intuitive measures to detect the stripe pattern, they
were not ranked very high by the information gain ratio test (see table 3.14).
Furthermore, the intrinsic correlation between Fourier Transform and Sine fit
might introduce obsolete information to the classification process. These three
facts together suggest that it might be reasonable to exclude the Sine fit features
from future versions of an air artefact detection method.

The results of the feature ranking test indeed challenge the chosen approach of
characterising the stripe pattern instead of only accounting for the much simpler
statistics comparing the histograms of the small and the large windows. It was
however found in preceding experiments that such a simplistic approach might
easily get trapped, e.g. at the nipple.

To the best of the author’s knowledge, there is no previous work the presented
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results could be directly compared to since this was the first time that this spe-
cific artefact was considered for image quality improvement. Nevertheless, other
classifier-based algorithms have been used to work with ABUS images. Specifi-
cally, the present algorithm detected 55 % of the artefacts at 0.58 false positive
regions per image (FP/image). This is very much in line with similar machine
learning applications for ABUS images (Tan et al. 2013a), where a lesion detec-
tion rate of 64 % at 1 FP/image was obtained. The highest detection rate of
the proposed method was 83 % at 2.6 FP/image (Tan et al. (2013a) obtained a
comparable 89 % detection rate at more than 10 FP/image). The clinical and
practical consequences of a false positive air artefact are however very different
from those of a false positive lesion. Whereas CAD algorithms focus on high
sensitivities in order not to miss any suspicious object, an artefact detection tool
should operate on very high specificity not bothering the technicians with un-
necessary alerts. In conclusion, the proposed method can only be considered for
clinical implementation if the specificity and the computing time are increased
significantly.

The developed algorithms and the proposed classifier approach could easily be
transferred to other ABUS devices. Only the specific properties of air artefacts
produced by a different transducer would need to be examined such that the
algorithms could be adapted, e.g. to a different mean stripe distance.

4.2.6 Automated Assessment of Nipple Visibility

Since the nipple is an important landmark in all medical breast images, au-
tomatic nipple detection is a pre-requisite for a wide range of image process-
ing tasks, i.e. image registration or computer aided diagnosis. The aim of
the present work was twofold: A previously described automatic nipple detec-
tion algorithm (Wang et al. 2014) was improved by incorporating prior location
knowledge using a probabilistic atlas. Secondly, using features computed by
this nipple detection method, a novel algorithm that assesses the quality of the
manual nipple marks given by technicians was developed.

The generated atlas images clearly depicted the tendency of nipple positioning
in the four examined views, e.g. for most AP view cases, the nipple is indeed
located close to the centre of the image. Nevertheless, when the atlas was
used alone for nipple detection, the mean detection rate was only 0.19 (with a
tolerance of 10 mm) and the mean distance error was as large as (20 ± 13) mm,
so this empirical information is only useful as adjunct to other methods, which
account for the anatomy of the nipple in correlation with the physical properties
of ultrasound imaging.

Since all source images originated from the same clinic, no detailed conclu-
sion concerning the robustness of the atlases across different clinics could be
made. Further investigations with a larger data set from other centres could
be performed to clarify this question. The same accounts for the uniformity of
patient positioning when performed by variable technicians. This issue could
not be evaluated since the images were anonymised (including the acquiring
technician).

By incorporating this prior location knowledge into the automated nipple
localisation algorithm, nipple detection rate was increased from 0.82 to 0.85
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and the mean distance error was decreased significantly from (9 ± 17) mm to
(7 ± 12) mm (p-value from paired t-test was 0.0007). The nipple detection
method presented by Kim et al. (2014b) uses the detection of elliptical struc-
tures in the coronal slices of an ABUS image. A nipple detection accuracy of
(3 ± 4) mm and a detection rate of 94 % were reported, but the algorithm was
only applied to 11 AP view images and 7 LAT view images. The joint nipple
detection method proposed in this work yielded comparable mean distance er-
rors of (4 ± 4) mm and (5 ± 4) mm as well as detection rates of 90 % and 87 %
for 109 AP and 84 LAT view images, respectively.

In a second step, the improved nipple detection method was used to extract
meaningful features for image classification according to the correctness of the
manual nipple position annotation performed by the technicians. Class 1 (nip-
ple not visible at all) and class 2 (technician’s annotation deviated more than
16 mm from ground truth) images were assigned to the positive class since in
both cases the manually tagged position should not be used for further image
processing. The features used as input for the classifier were equally sensible in
both cases. The proposed method was tested on an independent dataset of 380
ABUS volumes, resulting in sensitivity and specificity rates of 0.90 and 0.89,
with an AUC of 0.92. This means that 52 of 58 incorrectly annotated nipple
positions were detected automatically by the proposed method. The currently
used software version of the ABUS scanner obliges the technicians to locate the
nipple position manually even if it is not visible at all, which justifies the chosen
approach.

4.3 Performance of Automated Image Quality
Assessment on disjunct data

In order to evaluate some of the algorithms described in section 2.2, an additional
analysis of their performance was conducted on data set C (see beginning of
chapter 2), which was completely independent from the training data. The
focus of this analysis was put on the relative nipple position, the extent of the
nipple shadow, the shape of the breast contour, as well as on the joint quality
measure based on these three.

The analysis of the manual annotation results revealed that the relative fre-
quency of distinct artefacts was similar as in section 3.1 irrespective of the data
set and the reader (see figures 3.3 and 3.24). It has however to be noticed that
the total amount of low-quality images was significantly lower in data set C
than in data sets A and B. In general there are two possible reasons for this
disagreement: either data set C was indeed of higher image quality than A and
B, or the readers of data set C were less restrictive. Since only two readers were
available for each data set, statistics are not very strong and it is hard to infer
the true reason. Assuming that Reader 2 performed similarly for all data sets,
the conclusion would be that the data sets indeed differed in their overall image
quality.

With respect to the amount of flagged images of Reader 2, who worked
through both data sets, Reader 1 and Reader 3 were generally more restrictive
designating more artefact-affected images than Reader 2. This was a consistent
trend indicating that the image quality rating is still dependent on the personal
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preferences and experience of the reader, albeit the problem was divided to the
detection of very specific problems with the aim of increased objectivity and
measurability.

Again, the inter-rater agreement was computed as Cohen’s κ yielding very
good agreement for the nipple position and the nipple shadow, but poor agree-
ment for the annotation of the breast contour shape. This might be due to
the lower incidence of irregular breast contour lines and the fact that it is a
far more complex task to characterise the breast contour than to describe the
nipple position and shadow.

Concordance between manual and automatic image quality rating was as-
sessed for both readers separately as well as for the combination of their rating
results. The ROC curves shown in figure 3.26 prove overall good performance of
the proposed methods. The shape of the curves and the AUC values correspond
well to the results that had been obtained in classifier training (see section 3.2).
Apart from the fact that Random Forests are generally not prone to over-fitting,
the results presented in this section prove that the proposed methods are also
well applicable to independent data sets. However, using the classifier decision
thresholds that yielded a specificity of 0.97 in the training step, resulted in lower
specificities in this test run, ranging from 0.83 for the nipple shadow to 0.91 for
the joint approach. This discrepancy between training and test results shows
that the classifiers would benefit from a more diverse training data set, e.g.
including images from different clinics and annotated by more readers.

Cohen’s correlation was also computed for the agreement between automatic
rating results and expert annotation. The κ values follow similar trends for each
considered artefact, respectively, indicating once more that the automatic detec-
tion and classification of specific artefacts contends with the same uncertainties
as human readers.

4.4 Clinical Implementation
For the first time, a software prototype for ABUS image quality assessment was
integrated to clinical routine in order to evaluate the usability and reliability of
the proposed approach.

The cooperation with the Radboud University Medical Centre offered the ex-
ceptional opportunity to get feedback from clinical technicians on the usability
of the proposed system at this very early stage of development. Due to the
limited evaluation time, it was not possible to adapt the algorithms and repeat
the evaluation at a more advanced stage of the software. Nevertheless, the an-
swered questionnaires revealed potential improvements of the envisaged AQUA
system for ABUS imaging, e.g. the incorporation of the breast cup size into the
classification process, since large breasts require different positioning than small
breasts.

The feedback of the technicians showed that they were not very enthusiastic
about using the AQUA prototype. It should however be taken into account that
people are generally reluctant to changes in their daily routine, especially if the
quality of their work is being questioned by a machine.

The successful technical implementation of the prototype motivates further
steps towards a comprehensive ABUS quality assessment system. The algo-
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rithms and the hardware have potential to be optimised, e.g. by combining the
information of all views in one study. This was beyond the scope of this work,
but offers interesting tasks for the future. Albeit the implemented software was
in a very early prototype version, the image quality was reported consistently
by radiologists and technicians to have improved over the test run period. Even
though only very few scans were actually repeated, it turned out that the im-
age quality rating of previous scans sensitized and motivated the technicians
remarkably.

4.5 Impact

From discussions with radiologists and technicians carried out during this work,
it was concluded that automated software that is able to detect ABUS artefacts
could find immediate application in clinical practice. ABUS image artefacts
can generally not be amended by the technicians once the acquisition has been
performed. The only option to correct a defect is to repeat the affected scan.
An algorithm running real-time in the background during acquisition procedures
can alert technicians performing the acquisition if the image quality is low and
potentially limiting the diagnostic evaluation. With the patient still present
in the examination room, low-quality acquisitions can easily be replaced by
repeating the scan.

To date, no automatic image quality assessment is performed at all before the
radiologist reads the images. Thus, the proposed application has high potential
to improve the current clinical practice. While a low false positive rate is usually
considered essential for medical imaging tools, in this case it is supposed that
consequences of false positives (mainly increased scanning time) are less severe
than for other applications. On the other hand, false negatives might lead to
diminished image quality and impede diagnosis. In any case, the classifier-based
approach allows adjusting the sensitivity and specificity of the final application
to the user’s preferences.

The images used as data base for this thesis had all been acquired in two
centres, which are highly involved in research. The personnel in these clinics
is very experienced in breast imaging and pay high attention to image quality.
It has to be noted that the technicians were already very experienced and well
trained, and generally do not suffer from too restrict time constraints. Therefore,
it could not be expected that the improvement in image quality upon the usage
of the presented AQUA tools would be very high. Having said this, it is likely
that the observed numbers of artefact-affected images are lower bounds when
comparing to other sites where technicians might be less experienced or working
under higher temporal pressure.

Reading time for an ABUS examination has been reported to be 9 min (Skaane
et al. 2015), and thus is very high when compared to standard X-ray mammo-
graphies that can be read within 2 min (Dang et al. 2014) by an experienced
radiologist. Since reading time is very expensive, there is a demand for comput-
erised support, i.e. computer aided detection systems as proposed by Tan et al.
(2015). High image quality is not only an essential prerequisite for profound
diagnostics but also for any further image processing. Consequently, the image
quality aspects discussed in this thesis were inspired not only by the clinical
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needs of radiologists but also by the technical requirements for CAD.
According to the manual rating of the three artefacts discussed in sections

4.2.1 to 4.2.3, in 40 out of all 83 annotated examinations, there was no or only
one corrupt image, while in 43 examinations, there were two or more corrupt
images. This means that an early feedback to the technician after the first scan
that showed artefacts might have helped to avoid another image with incorrect
settings. However, throughout this work, the ABUS volumes were considered as
independent images. Their correlation to the other images of one examination
and the consequences for the usefulness of this examination was beyond the scope
of this work and will be subject to further studies in the future. Registration
between different views of one study could clarify whether the breast was imaged
completely. An important prerequisite for registration is the segmentation of
characteristic anatomical parts of the breast. Current publications focus on the
automatic detection of the nipple (Wang et al. 2014; Kim et al. 2014a), the chest
wall (Tan et al. 2013a, 2014) and the pectoralis muscle (Gubern-Mérida et al.
2015), as well as on the correspondence between lesions in different views (Tan
et al. 2013a). First attempts to register breast images acquired from different
views or even with different modalities have been taken (Georgii et al. 2013),
but are still in the fledgling stages. Work is in progress and further steps are
taken, e.g. by Gubern-Mérida et al. (2016) reporting to correlate lesions between
different views with a distance error of (8 ± 10) mm (mean ± stdev).

The methods developed in this work are tailored to the needs of ABUS ex-
aminations but could easily be extended to other modalities. If nothing else,
the general approach of using a manually annotated set of clinical images as
basis for machine learning algorithms for image quality classification was tested
and approved. The same approach has also already been applied successfully to
dynamic contrast enhanced (DCE) breast MR images in order to detect motion
between the different volumes of a time series (Wang et al. 2015).

Ultrasound image quality has been an interesting topic since the beginnings of
sonography and is gaining importance with increasing complexity of ultrasound
techniques and scanners. Various articles treating ultrasound image quality can
be found in the literature. Gibson et al. (2001) proposed software that checks im-
age quality automatically, focusing on image resolution, low- and high-contrast
penetration depths as well as low- and high-contrast sensitivity. They used
phantom images in order to examine the functionality of the ultrasound device
as such, i.e. the beam former and the transducer. A similar system was pre-
sented by Thijssen et al. (2007) who described a software package for use in a
performance testing protocol for medical ultrasound equipment. They used sim-
ple test objects (phantoms) and measured spatial resolution, contrast sensitivity,
and clutter in fundamental and (tissue) harmonic modes. The “Guidelines for
regular quality assurance testing of ultrasound scanners” of the British Medical
Ultrasound Society (Dudley et al. 2014) show once more, that there is awareness
of ultrasound image quality aspects, but rather from the technical point of view.
Nearly all references that were found in the literature deal with the functionality
of the equipment, but not with the usage of the system. The AQUA system
proposed in this thesis aims at supporting the technicians in their daily routine
during image acquisition by detecting application errors.

Manufacturers of ultrasound devices are developing algorithms that aim at
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the real-time adjustment of ultrasound parameters to produce high-quality im-
ages as the patent of Lin & Seyed-Bolorforosh (2010) shows. El-Zehiry et al.
(2013) proposed a method that runs directly on the scanner, analyses the image
data stream in real-time, and improves the depth, the focus, and the frequency
of the ultrasound device. They measured image quality by computing localized
features based on Gabor filters of different scales, which were correlated by ma-
chine learning to the manual annotations of an expert clinician. This approach
was thus similar to the methods applied in the present thesis, which, however,
aimed at a different application. Whereas standard hand-held ultrasound exam-
inations are performed by the clinician who can adjust parameters and adapt
the image until a diagnosis is confirmed, ABUS images are acquired by tech-
nicians and cannot be altered once the scan has been performed, which entails
a remote diagnostic read. Therefore, it is essential that the images are of high
quality and all important parts of the breast are imaged correctly.

The integration of the developed algorithms to clinical workflow offered the
exceptional opportunity to get direct feedback on the practicability of the pro-
posed methods in a realistic use case. The conclusions and prospects in this
work are therefore not only pure hypotheses but based on practical experience
and evaluation. Thus, this work shows the complete development process of
an image quality assessment software from requirement analysis via exploita-
tion of the physical basics and causes of specific artefacts up to the technical
implementation of a software prototype that is tested in clinical routine.
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In breast cancer screening programmes, high image quality is an essential prereq-
uisite for sound diagnosis and proper functionality of computer aided detection
(CAD) systems. The increasing throughput of diagnostic images demands for
software solutions that support the clinical personnel in their daily routine. In
this work, a novel, fully automatic image quality assessment (AQUA) system
for automated 3D breast ultrasound (ABUS) was designed from scratch and
advanced such that a prototype could be tested in clinical routine.

Thorough analysis of the most common image quality aspects in ABUS showed
that the most critical issues were related more to the acquisition process than
to technical configuration of the scanner, which had already been addressed by
other groups. With this work, for the first time, a quality assurance was tailored
to ABUS acquisition with a focus on correct positioning of the breast, handling
of the transducer and application of contact fluid. Approved image processing
algorithms and machine learning methods were combined to solve this novel
problem, i.e. the classification of ABUS images according to their quality based
on specific aspects as for example the acoustic shadow caused by the nipple. The
physical properties of ultrasound imaging were deployed to understand specific
quality aspects and extract corresponding descriptive image features to bridge
the semantic gap between human perception and computer algorithms. The
installed prototype proved to sensitise technicians to the relevance of specific
image quality aspects for reliable diagnosis such that, according to the radi-
ologists, the overall image quality increased during the test run period. This
work is by no means a finished project, but rather a first proof of concept for
on-line feedback on image quality. Nevertheless, it resulted in a valuable tool
that potentially supports technicians in their daily routine. Further studies need
however to be performed to validate these preliminary results.

The basic principles of AQUA tool development described in this thesis open
up a variety of further improvements. The accuracy of the single algorithms
could be enhanced by incorporating more prior knowledge. Combining informa-
tion of different views would yield a more realistic rating. Based on the flexible
software framework it is now possible to refine existing algorithms and extend
the portfolio of AQUA tools, e.g. by including more technical quality aspects.
The chosen machine learning approach enables enhancements by expanding the
ground truth to images from other clinics and annotated by more readers. The
clinical evaluation showed that short run times were a crucial factor for user
acceptance. The integration of AQUA tools to the ultrasound device together
with general tuning for computational speed could result in real-time feedback
clearly increasing the ease of use. The employed software framework was shown
to be capable of managing on-line feedback on image quality and, thus, could
be easily extended to other modalities or application scenarios.
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Appendix A

The following two pages show the questionnaire that was distributed to the
technicians for usability evaluation of the software prototype.
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1/2 

assure
PERSONALISED BREAST CANCER SCREENING

ASSURE
PERSONALISED BREAST CANCER SCREENING

ASSURE
PERSONALISED BREAST CANCER SCREENING

assure
PERSONALISED BREAST CANCER SCREENING

as  sure
PERSONALISED BREAST CANCER SCREENING

assur e
PERSONALISED BREAST CANCER SCREENING

assure
PERSONALISED BREAST CANCER SCREENING

assure
PERSONALISED BREAST CANCER SCREENING

 

Questionnaire on Usability of AQUA tools for ABUS 

 

The following questions are asked to evaluate the user friendliness and usability of the 

automated quality assessment (AQUA) tools that have been applied to ABUS images in 

clinical routine for a test run at the Radboud University Medical Center Nijmegen. The 

Questionnaire should be filled in after the first use and after eight weeks of using 

the AQUA system. 

 

Please, cross the options that you agree with. Comments are optional, in case you want 

to explain your answer in more detail. 

 

 

What is your general impression of the tool? 

 good  not so good 

Comment: 

 

 

Was the graphical user interface easy for you to navigate? 

 totally  a bit  not really  not at all  I don’t know 

Comment: 

 

 

Is the loading / computing time of the software acceptable? 

 totally  a bit  not really  not at all  I don’t know 

Comment: 

 

 

Would you like to have more user interaction with the software (e.g. the possibility to 

enter comments)? 

 yes  no 

Comment: 

 

 

During your experience, how many scans did you have to repeat? 

 0-1 out of 6   2-3 out of 6   4-5 out of 6   6 out of 6   I don’t know 

 

 



   

2/2 

assure
PERSONALISED BREAST CANCER SCREENING

ASSURE
PERSONALISED BREAST CANCER SCREENING

ASSURE
PERSONALISED BREAST CANCER SCREENING

assure
PERSONALISED BREAST CANCER SCREENING

as  sure
PERSONALISED BREAST CANCER SCREENING

assur e
PERSONALISED BREAST CANCER SCREENING

assure
PERSONALISED BREAST CANCER SCREENING

assure
PERSONALISED BREAST CANCER SCREENING

 

And what do you think about this amount of repeated images? 

 too many  acceptabel  too few  I don’t know 

Comment: 

 

 

How many of the repeated scans had a higher quality than the original scans? 

 0-1 out of 6   2-3 out of 6   4-5 out of 6   6 out of 6   I don’t know 

Comment:  

 

 

Do you have the impresssion that the tool supports you in producing high quality ABUS 

images? 

 totally  a bit  not really  not at all  I don’t know 

Comment: 

 

Were you frustrated by the software at any point? If so, when? 

 yes  no 

Comment: 

 

 

In general, how did you feel when using the tool? (Please, put one cross in every row.) 

 totally a bit not really not at all 
I don’t 
know 

confident      

encouraged      

supported      

supervised      

disturbed      

frustrated      

 

Thank you for taking the time! 

 

If you have any questions, feel free to contact me: 

 

Julia Schwaab 

mediri GmbH, Vangerowstr. 18, 69115 Heidelberg 

j.schwaab@mediri.com 

+49 6221 7256975 
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