198 research outputs found

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Wireless Sensor Network: At a Glance

    Get PDF

    Improving the security of wireless sensor networks

    Get PDF
    With the rapid technological advancements of sensors, Wireless Sensor Networks (WSNs) have become the main technology for the Internet of Things (IoT). We investigated the security of WSNs in an environmental monitoring system with the goal to improve the overall security. We implemented a Secure Temperature Monitoring System (STMS), which served as our investigational environment. Our results revealed a security flaw found in the bootstrap loader (BSL) password used to protect firmware in the MSP430 MCU chips. We demonstrated how the BSL password could be brute forced in a matter of days. Furthermore, we illustrate how an attacker can reverse engineer firmware and obtain copies of cryptographic keys. We contributed a solution to improve the BSL password and better protect firmware found in the MSP430 chips. The Secure-BSL software we contributed allows the randomization of the BSL password. Our solution increases the brute force time to decades. The impractical brute force time improves the security of firmware and prevents future reverse engineering tactics. In addition, our Secure-BSL software supports two-factor authentication that allows developers to specify a user-defined passphrase to further protect the MSP430 MCU. Our research serves as proof that any security implemented in a WSN environment is broken if an attacker has access to firmware found in sensor devices

    Politecast - a new communication primitive for wireless sensor networks

    Get PDF
    Wireless sensor networks have the potential for becoming a huge market. Ericsson predicts 50 billion devices interconnected to the Internet by the year 2020. Before that, the devices must be made to be able to withstand years of usage without having to change power source as that would be too costly. These devices are typically small, inexpensive and severally resource constrained. Communication is mainly wireless, and the wireless transceiver on the node is typically the most power hungry component. Therefore, reducing the usage of radio is key to long lifetime. In this thesis I identify four problems with the conventional broadcast primitive. Based on those problems, I implement a new communication primitive. This primitive is called Politecast. I evaluate politecast in three case studies: the Steal the Light toy example, a Neighbor Discovery simulation and a full two-month deployment of the Lega system in the art gallery Liljevalchs. With the evaluations, Politecast is shown to be able to massively reduce the amount of traffic being transmitted and thus reducing congestion and increasing application performance. It also prolongs node lifetime by reducing the overhearing by waking up neighbors

    Constructive Interference in 802.15.4: A Tutorial

    Get PDF
    International audienceConstructive Interference (CI) can happen when multiple wireless devices send the same frame at the same time. If the time offset between the transmissions is less than 500 ns, a receiver will successfully decode the frame with high probability. CI can be useful for achieving low-latency communication or low-overhead flooding in a multi-hop low-power wireless network. The contribution of this article is threefold. First, we present the current state-of-the-art CI-based protocols. Second, we provide a detailed hands-on tutorial on how to implement CI-based protocols on TelosB motes, with well documented open-source code. Third, we discuss the issues and challenges of CI-based protocols, and list open issues and research directions. This article is targeted at the level of practicing engineers and advanced researchers and can serve both as a primer on CI technology and a reference to its implementation

    Energy-Efficient Communication in Wireless Networks

    Get PDF
    This chapter describes the evolution of, and state of the art in, energy‐efficient techniques for wirelessly communicating networks of embedded computers, such as those found in wireless sensor network (WSN), Internet of Things (IoT) and cyberphysical systems (CPS) applications. Specifically, emphasis is placed on energy efficiency as critical to ensuring the feasibility of long lifetime, low‐maintenance and increasingly autonomous monitoring and control scenarios. A comprehensive summary of link layer and routing protocols for a variety of traffic patterns is discussed, in addition to their combination and evaluation as full protocol stacks

    Flexi-WVSNP-DASH: A Wireless Video Sensor Network Platform for the Internet of Things

    Get PDF
    abstract: Video capture, storage, and distribution in wireless video sensor networks (WVSNs) critically depends on the resources of the nodes forming the sensor networks. In the era of big data, Internet of Things (IoT), and distributed demand and solutions, there is a need for multi-dimensional data to be part of the Sensor Network data that is easily accessible and consumable by humanity as well as machinery. Images and video are expected to become as ubiquitous as is the scalar data in traditional sensor networks. The inception of video-streaming over the Internet, heralded a relentless research for effective ways of distributing video in a scalable and cost effective way. There has been novel implementation attempts across several network layers. Due to the inherent complications of backward compatibility and need for standardization across network layers, there has been a refocused attention to address most of the video distribution over the application layer. As a result, a few video streaming solutions over the Hypertext Transfer Protocol (HTTP) have been proposed. Most notable are Apple’s HTTP Live Streaming (HLS) and the Motion Picture Experts Groups Dynamic Adaptive Streaming over HTTP (MPEG-DASH). These frameworks, do not address the typical and future WVSN use cases. A highly flexible Wireless Video Sensor Network Platform and compatible DASH (WVSNP-DASH) are introduced. The platform's goal is to usher video as a data element that can be integrated into traditional and non-Internet networks. A low cost, scalable node is built from the ground up to be fully compatible with the Internet of Things Machine to Machine (M2M) concept, as well as the ability to be easily re-targeted to new applications in a short time. Flexi-WVSNP design includes a multi-radio node, a middle-ware for sensor operation and communication, a cross platform client facing data retriever/player framework, scalable security as well as a cohesive but decoupled hardware and software design.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Implementation of Secure Key Management Techniques in Wireless Sensor Networks

    Get PDF
    Creating a secure wireless sensor network involves authenticating and encrypting messages that are sent throughout the network. The communicating nodes must agree on secret keys in order to be able to encrypt packets. Sensor networks do not have many resources and so, achieving such key agreements is a difficult matter. Many key agreement schemes like Diffie-Hellman and public-key based schemes are not suitable for wireless sensor networks. Pre-distribution of secret keys for all pairs of nodes is not viable due to the large amount of memory used when the network size is large. We propose a novel key management system that works with the random key pre-distribution scheme where deployment knowledge is unknown. We show that our system saves users from spending substantial resources when deploying networks. We also test the new systemñ€ℱs memory usage, and security issues. The system and its performance evaluation are presented in this thesis

    Routing algorithms for wireless sensor : networks based on the duty cycle of its components

    Get PDF
    [eng] Wireless sensor network is one of the most important topics in the current data transferring. In fact regarding to data gathering and transformation, cost effective is the top topic and optimum point, which every vendors and sector are focusing on it. In the field of petrochemical regarding sensitive processes could not stay out of this scope and start to monitor the gas pipes and processes over the wireless fashion. Therefore some items should have been taking into considerations such as: instant monitoring, nonstop characteristic, long term investing and energy consuming. According to those aforesaid items, we have planned to do an investigation and find the feasibly of how we can to create and distribute a network to have accuracy to measurement , sending data reliability, having long term network life cycle and having minimum energy consuming. Therefore the only technology could help us was IEEE 802.15.4 with mixed of microcontrollers and transceivers, able to manipulate to reach out our objects in maximizing lifetime and minimizing latency in wsn, as an unique routing algorithm in Mobile ad Hoc Network. WSN in fact is a relatively new section of networking technology and nowadays is more popular. The reason of these advantages instead of others is low-power microcontroller and inexpensive sensor usage for any communications and also simple sensor designing. Regarding to network layers, Physical layer for WSN based on IEEE802.15.4 is fundamental of frames and packets transactions. So two main devices which are involving in this project: transceivers such as CC2520 and CC3200 ZigBee/IEEE 802.15.4 RF, managed by microcontrollers. Common controller for those transceivers such as MSP430F1611 16-bit MSP430 family for Texas instrument in the nodes and coordinators ideas were selected. One step more close to the idea, was other layer so called Link layer or in other hand MAC layer. Another advantage of WSN is ability to manipulate MAC layer, because modifications in lower layer always has low Energy consuming than other layers. Therefore according to these circumstances, MAC protocols are able to energy efficiency, also reduce and achieve to zero based of unused time in WSN. So any WSN, energy wasting could be control in MAC sub layer and even though MAC protocols. Other layer in WSN is declared as a Network layer, the logical way which those packets could be find the best way and shortest path in minimum time as possible and reachability to the main point based on node and coordinator. Nodes are programmed in upper layer and have been matched with MAC layer, now it's time to join and stick the frames in a packet and involving to each other. Meanwhile we decided to create a middle layer through MAC and Network layer to play as a bridge, mainly called VRT (Variable Response Time) and FRT (Fixed Response Time) to control the energy consumption in the process of routing in network layer. This algorithm is cooperating with MAC layer in sleep and wake up modes, in fact with VRT, nodes just received their needs and captured the vital packet in wake up mode, sends back the answer, now the task is finished and both sided transaction is done. After that, it's not need to have more listening and capturing packets from the remote nodes as a coordinator therefore, left the transmission process to save more energy for further wireless communication stream in sleep mode. Also FRT is another algorithm in MAC layer, to decrease the energy consumption. This algorithm is switch based energy control, as a same concept in VRT in sleeping and wakeup mode. Finally we have design this algorithm in Simulator and real world. The results correlate quite well results showing as a good agreement between two worlds, also we have obtained better results in battery consumption over network life cycle to other business algorithms.[spa] En este trabajo nos focalizaremos en la minimizaciĂłn del consumo a partir de la minimizaciĂłn del nĂșmero de transmisiones. Buscamos por tanto aquel algoritmo que nos permita aumentar la probabilidad de aciertos. Esta idea, diseñarĂĄ el algoritmo de enrutamiento que mejor se ajusta a la red MANET. Una vez simulada la red se diseñarĂĄ un "testbed" en donde una parte de la red se implementarĂĄ de forma real, mediante la introducciĂłn de sensores inalĂĄmbricos y la otra parte se harĂĄ de forma simulada, a travĂ©s de una interfaz que interconecta el mundo real con la simulaciĂłn de Spyder. Se pretende ver que ambos mundos progresan de forma similar. Con respecto a la capa de OSI en WSN, serĂ­a prioritaria la capa fĂ­sica o capa de hardware, por este motivo nuestra proyecto tambiĂ©n se centra en el tipo determinado de hardware que debe aplicarse para obtener resultados satisfactorios. Entonces tratamos las caracterĂ­sticas de los dos hardwares, el transceiver y el microcontroller. TambiĂ©n se trata en este apartado su concepto lĂłgico de acuerdo con la ficha tĂ©cnica oficial IEEE802.15.4. La segunda prioridad de la capa OSI se centra en el Medium Access Control (MAC) de la capa. En esta capa nuestro objetivo se lograrĂĄ mediante la manipulaciĂłn de las addresses MAC. Los protocolos MAC deben estar orientados a la reducciĂłn del consumo de energĂ­a y tambiĂ©n a la reducciĂłn del tiempo no utilizado en WSN, para ello aplicamos algunas polĂ­ticas para controlar los comportamientos del trĂĄfico en esta capa para cambiar el consumo de energĂ­a, la vida Ăștil de la red y evitar el gasto innecesario de recursos, en realidad concentramos a nuestro algoritmo VRT y FRT. Respecto de la idea principal, de controlar los sensores para aumentar la vida Ăștil de la red y disminuir el consumo de energĂ­a. En realidad se explica cĂłmo controlar la capa MAC y forzar el hardware para lograr el objetivo principal de este proyecto. De hecho podemos decir que mejoramos el reenvĂ­o de paquetes entre los sensores intermedios, buscando el promedio de distancia HOP mĂĄs corta desde el origen al destino, asĂ­ como la disminuciĂłn del consumo de energĂ­a en cada sensor
    • 

    corecore