
James Madison University
JMU Scholarly Commons

Masters Theses The Graduate School

Spring 2016

Improving the security of wireless sensor networks
Mauricio Tellez Nava
James Madison University

Follow this and additional works at: https://commons.lib.jmu.edu/master201019
Part of the Computer and Systems Architecture Commons, Digital Communications and

Networking Commons, Hardware Systems Commons, Other Computer Engineering Commons,
Other Operations Research, Systems Engineering and Industrial Engineering Commons, and the
Systems Engineering Commons

This Thesis is brought to you for free and open access by the The Graduate School at JMU Scholarly Commons. It has been accepted for inclusion in
Masters Theses by an authorized administrator of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.

Recommended Citation
Tellez Nava, Mauricio, "Improving the security of wireless sensor networks" (2016). Masters Theses. 87.
https://commons.lib.jmu.edu/master201019/87

https://commons.lib.jmu.edu/?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/master201019?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/grad?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/master201019?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/310?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/master201019/87?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dc_admin@jmu.edu

Improving The Security Of Wireless Sensor Networks

Mauricio Tellez Nava

A thesis submitted to the Graduate Faculty of

JAMES MADISON UNIVERSITY

In

Partial Fulfillment of the Requirements

for the degree of

Master of Science

Department of Computer Science

May 2016

FACULTY COMMITTEE:

Committee Chair: M. Hossain Heydari

Committee Members/Readers:

Samy El-Tawab

Florian Buchholz

Xunhua Wang

Dedication

This work is dedicated to my parents Edgar and Miriam. Without your sacrifice of moving away

from Bolivia, I would not be standing where I am as a professional. This thesis and all my

accomplishments shows that your sacrifice of leaving behind your family, friends and culture was

not a waste. I will forever be thankful for you guys.

I love you both.

Mau

ii

Acknowledgments

First, I would like to thank my advisors, Dr. Samy El-Tawab and Dr. Mohammed Heydari, for

their support throughout the completion of my thesis. Second, I would like to thank Dr. Florian

Buchholz and Dr. Xunhua Wang for serving on my thesis committee. I have been fortunate to have

classes with each of them over the last 4 years and it has been a very valuable experience. Third,

I would like to thank my family, Edgar, Miriam, Marilia, and Mayra for their support throughout

my 6 years at James Madison University.

Finally, I would like to thank my girlfriend, Rachel. Without her love, support, and making sure I

took breaks to eat, this year-long journey would not have been possible.

iii

Table of Contents

Dedication ii

Acknowledgments iii

List of Tables vii

List of Figures x

Abstract xi

1 Introduction 1

2 Related Work 4

2.1 Applications . 4

2.2 Cipher Protocols . 5

2.3 Key Management Protocols . 7

2.4 Node Capture . 8

2.5 Node Tampering . 10

3 Secure Temperature Monitoring System In A WSN Enviroment 12

3.1 Design . 12

3.2 Implementation . 14

3.2.1 TelosB Platform . 14

3.2.2 Secure Temperature Monitoring System (STMS) 17

3.3 System Testing . 22

3.3.1 IEEE802154 Capture Packets & Analysis . 25

3.3.2 L1-Secure Capture Packets & Analysis . 30

3.4 Chapter Summary . 33

4 Breaking The MSP430-BSL Password 35

4.1 Programming the MSP430 . 35

4.2 Analyzing The BSL Password . 37

iv

4.3 Breaking The BSL Password . 41

4.3.1 Brute Forcing The MSP430-BSL 32-bytes Password 42

4.3.2 Generating Password Samples . 44

4.3.3 Password Pattern Algorithm . 45

4.3.4 Brute Forcing Using Password Prediction . 50

4.4 Chapter Summary . 61

5 Reverse Engineering MSP430 Applications 62

5.1 Flash Memory Dump . 63

5.2 Disassemble and Code Analysis Process . 64

5.2.1 msp430-objcopy . 65

5.2.2 msp430-objdump & msp430static . 65

5.2.3 Code Analysis . 66

5.3 Chapter Summary . 74

6 Protecting MPS430 Firmware With Secure-BSL 75

6.1 Original-BSL Code . 75

6.2 Secure-BSL Design . 76

6.2.1 Security Level One . 77

6.2.2 Security Level Two . 82

6.3 Secure-BSL Implementation . 83

6.3.1 Security Level One Implementation . 86

6.3.2 Security Level Two Implementation . 88

6.4 Secure-BSL Testing . 90

6.4.1 Security Level One Tests . 90

6.4.2 Security Level Two Tests . 92

6.5 Chapter Summary . 94

7 Results and Evaluations of Secure-BSL 96

7.1 Resource Overhead Evaluation . 96

7.2 Password Strength Investigation Results . 98

7.3 Chapter Summary . 106

8 Conclusion and Future Work 107

v

A Script Results For tos-bsl 110

B Script Results For Secure-BSL 115

Bibliography 122

vi

List of Tables

3.1 MSP430 Memory . 16

4.1 MSP430-BSL Commands . 36

4.2 IVT Sample 1 . 46

4.3 IVT Sample 2 . 47

4.4 Number of Applications With Unused Interrupts . 48

5.1 MSP430 Registers . 68

5.2 MSP430 Addressing Modes . 68

5.3 MSP430 Instructions Set . 69

7.1 Password Cracking Times . 105

A.1 Correct Password Check Times . 110

A.2 Incorrect Password Check Times . 110

A.3 Password Check Times Using Baud Rate 38400 . 111

A.4 Code Size vs. Unused Interrupts . 114

B.1 Sample of IVTs Generated By Secure-BSL . 118

B.2 Code Size vs. Unused Interrupts Using Secure-BSL 121

B.3 Secure-BSL Patterns vs. tos-bsl Patterns . 121

vii

List of Figures

3.1 STMS Design Diagram . 13

3.2 TelosB Mote Diagram . 15

3.3 MSP430F1611 MCU Frequency . 16

3.4 WSN Stack . 20

3.5 STMS Hardware Set Up . 23

3.6 motelist Ouput . 23

3.7 STMS IEEE802154 LED Results . 26

3.8 STMS IEEE802154 Screen Results . 27

3.9 IEEE802154 Wireshark Results 1 . 28

3.10 IEEE802154 Wireshark Results 2 . 29

3.11 IEEE802154 Wireshark Results 3 . 30

3.12 IEEE802154 Wireshark Results 4 . 30

3.13 STMS L1-Secure LED Results . 31

3.14 STMS L1-Secure Screen Results . 32

3.15 L1-Secure Wireshark Results 1 . 32

3.16 L1-Secure Wireshark Results 2 . 33

4.1 MSP430 IVT . 38

4.2 Correct vs. Incorrect Password Check Time . 43

4.3 Baud Rates Check Times . 44

4.4 Number of Unused Interrupts . 49

4.5 Sorted IVT Patterns . 49

4.6 Patterns With 7 Unused Interrupts . 51

4.7 IVT Entry 0 - IVT Entry 15 . 52

4.8 IVT Entry 6 - IVT Entry 2 . 53

4.9 IVT Entry N - IVT Entry N . 54

4.10 IVT Entry 1 - IVT Entry 4 . 55

4.11 IVT Entry 9 - IVT Entry 1 . 55

viii

4.12 IVT Entry 8 - IVT Entry 9 . 56

4.13 Patterns With 11 Unused Interrupts . 58

4.14 Patterns With 5 Unused Interrupts . 60

5.1 MSP430 Memory Stack . 63

5.2 Flashing MSP430 applications Process . 64

5.3 MSP430 MCU Diagram . 67

5.4 Copy Data To RAM Instructions . 72

5.5 RAM Dump Sample . 72

5.6 Instructions Referencing RAM . 73

5.7 The L1-Secure Cryptographic Key . 74

6.1 BSL Password Protection . 75

6.2 BSL Password Protection . 76

6.3 Secure-BSL Level One I/O . 78

6.4 Secure-BSL Level One Components . 78

6.5 Unused Flash Memory . 79

6.6 Secure-BSL ISR Generator . 80

6.7 Secure-BSL Random Password Generator . 81

6.8 Secure-BSL Two-Factor I/O . 82

6.9 Secure-BSL Two-Factor Components . 82

6.10 Secure-BSL Two-Factor Dump . 83

6.11 Secure-BSL UML Diagram . 84

6.12 Secure-BSL AES-256 Encrypt I/O . 89

6.13 Secure-BSL AES-256 Decrypt I/O . 90

6.14 Secure-BSL Testing Environment . 90

6.15 Secure-BSL Flashing Using One-Factor . 91

6.16 Secure-BSL One-Factor Password . 91

6.17 Secure-BSL Firmware Dump 1 . 92

6.18 Secure-BSL Firmware Dump 2 . 92

6.19 Secure-BSL Flashing Using Two-Factor . 93

6.20 Secure-BSL Two-Factor Password . 93

6.21 Secure-BSL Firmware Dump 3 . 94

6.22 Secure-BSL Firmware Dump 4 . 94

ix

7.1 Secure-BSL Memory Dump Sample . 97

7.2 Secure-BSL vs tos-bsl Comparison 1 . 100

7.3 Secure-BSL Sorted IVT Entry 1 . 100

7.4 Secure-BSL Sorted All . 101

7.5 Secure-BSL vs. tos-bsl Comparison 2 . 102

x

Abstract

With the rapid technological advancements of sensors, Wireless Sensor Networks (WSNs) have be-

come the main technology for the Internet of Things (IoT). We investigated the security of WSNs in

an environmental monitoring system with the goal to improve the overall security. We implemented

a Secure Temperature Monitoring System (STMS), which served as our investigational environment.

Our results revealed a security flaw found in the bootstrap loader (BSL) password used to protect

firmware in the MSP430 MCU. We demonstrated how the BSL password could be brute forced in a

matter of days. Furthermore, we illustrate how an attacker can reverse engineer firmware and obtain

copies of cryptographic keys. We contributed a solution to improve the BSL password and better

protect firmware found in the MSP430 chips. The Secure-BSL software we contributed allows the

randomization of the BSL password. Our solution increases the brute force time to decades. The

impractical brute force time improves the security of firmware and prevents future reverse engineer-

ing tactics. In addition, our Secure-BSL software supports two-factor authentication that allows

developers to specify a user-defined passphrase to further protect the MSP430 MCU. Our research

serves as proof that any security implemented in a WSN environment is broken if an attacker has

access to firmware found in sensor devices.

xi

Chapter 1

Introduction

The Internet of Things (IoT) has become a popular subject in the industry and will soon reach the

popularity level of smartphones. With the rapid technological advancements of sensors, Wireless

Sensor Networks (WSNs) have become the main technology for IoT [5]. WSNs are composed of a

large number of sensors that are physically small, communicate wirelessly among each other, and are

deployed without prior knowledge of the network topology [1]. The deployment environments could

be over small or large geographical areas in locations that are either public or hostile. Typically, the

environments require little human interaction and go unattended for months or even years. The three

key characteristics of sensor networks are to continuously monitor surroundings, trigger any alerts

based on circumstances occurring, and provision of information on demand [2]. Sensor applications

can be broken down into two categories: tracking or monitoring. Tracking examples include the

tracking of enemies in a military environment or tracking inventory in a commercial environment

[3]. Monitoring examples include monitoring room temperatures in a building or home monitoring

used in burglar alarm systems.

The main difference between WSNs and wireless networks is the characteristics of the devices

that are part of the network. In wireless networks, most of the connected devices are computers,

laptops, tablets, or smart phones. In a WSN, the connected devices are solely sensors that use

a machine-to-machine paradigm. Unlike the devices found in a wireless network, sensor devices

are very limited in processing power, battery life, communication bandwidth, and memory [4]. In

particular, battery energy is the main resource to conserve in a WSN because of the domino effect–

it has on other resources. For example, if the battery power decreases then the computational

power and communication bandwidth decreases with an overall effect on the sensor. With that

being said, current protocols used in wireless networks are meant for devices that support expensive

computations and not suitable for sensor devices. WSN research has shown a significant shift to

proposing new protocols and algorithms that take into consideration the limited battery life and

computation power of sensor devices. A popular research topic has been the security of a WSN

environment.

2

According to Gartner, there will be nearly 26 billion IoT devices by 2020 [5]. As we witness

more IoT devices connecting to the Internet, the overall security of systems is more vulnerable. As

discussed by OFlaherty, sensor devices will become the favored point of entry for compromising

other, bigger targets [5]. Even worst, botnets will find millions of new ”recruits” in the form of

zombie appliances or ”sensor devices” [6]. Securing WSNs at an early stage will be a critical role in

protecting the future of the Internet. Using todays cryptographic protocols, such as RSA and AES,

raises two problems in a WSN environment. The first problem is the fact that these protocols are

computationally expensive. The second problem is the fact that these protocols do not protect the

nature of sensor devices going unattended for years. A shift in looking at security with different

points of view has been seen in WSNs research.

Encryption and authentication are vital components in WSNs. In the past, many researchers

have proposed efficient cipher protocols with one goal in mind: to reduce computational power

[7][8][9][4][10][11][12][1][13][14][15][16][17][18]. Although Skipjack has been a popular cipher for

WSNs, latest research has shifted towards using hardware implementation encryption. The Se-

cure Temperature Monitoring System (STMS) that we have implemented makes use of the AES

inline encryption built in to the CC2420 Radio Frequency chips. The STMS is used as our WSN

experimental environment to evaluate the overall security of WSNs. In Chapter 3, we discuss the

design, the implementation, as well as the test results for our STMS.

Other than efficient ciphers research, there has also been numerous proposals in implementing

Public Key Cryptography on WSNs. Using RSA as a key management crypto system for WSNs

is possible, however, not practical when it comes to saving battery life on constraint sensor de-

vices. Research has shown a shift towards using ECC as the default key management protocol for

implementing PKC in WSNs [19][20][21][22]. Experimental results show that implementing PKC

on WSNs is possible and more importantly maintains low computational power requirements. In

Chapter 2.3, we highlight survey results of various key management protocols and algorithms pro-

posed for WSNs. Our goal is to provide background information on key management protocols

and demonstrate how we have broken all these protocols. In Chapter 5, we demonstrate how we

reverse engineered firmware found in one of our STMS nodes and were able to obtain a copy of the

cryptographic key used in our secure WSN environment.

Similar to the key management protocols proposed, preventing node capture attacks has been

a popular research topic for WSNs. Node capture attacks is a well respected research field within

WSN due to the fact that sensor devices are deployed in unattended environments with easy physical

access. Unlike computers or servers that are either physically locked or encrypted, sensor devices lack

3

these features. In Chapter 2.4, we highlight various algorithms and schemes proposed to mitigate

information leakage from physically capturing nodes. All of the proposed schemes have one thing in

common: they all assume that a node has been captured but do not highlight the consequence of

capturing a node. The most popular schemes make the assumption that N number of nodes must

be compromised before breaking the security of the entire WSN [23][24][25].

Not a lot of research has been done in evaluating node tampering methodologies to extract

firmware found in sensor nodes. Most of the research out there has overlooked the consequences of

tampering captured nodes. The physical security of sensor nodes is a vital component of the overall

security of WSNs. For instance, recent research has shown that the MSP430 MCU family chips

are vulnerable to brute force attacks. The bootstrap loader passwords used to protect unwanted

access to the micro-controller is weak. The actual password is stored at the same address location

as the Interrupt Vector Table (IVT) for the MSP430 chips [26]. Storing the IVT and the password

at the same address location suggests that the password is identical to the IVT. Using the IVT as

the password makes the physical security of MSP430 chips weak and research has shown that the

256-bit password can be lowered to a 40-bit password [27]. However, brute forcing a 40-bit key space

in the best case scenario is impractical because it would take 32 years [28].

In this thesis, we reduced the brute force time from years to a matter of days. Instead of

reducing bits of a passwords, we used a different approach of using a password prediction technique.

In Chapter 4, we highlight our approach of analyzing password samples and presenting the password

patterns found between applications. In Chapter 6, we discuss our contributions of implementing

the Secure-BSL software to improve the password used to protect access to the MSP430 through

randomization. Our results and evaluations of our improved Secure-BSL password generator are

highlighted in Chapter 7. We hope that this thesis can serve as motivation for further research in

the physical security of sensors.

4

Chapter 2

Related Work

In this chapter, we provide related work to support different components of our thesis as well as

highlight the overall history of WSNs research. We highlight various sensor applications and provide

examples of related temperature monitoring systems. We discuss in detail the two security problems

with WSNs that have been popular topics of research. In addition, we present various research in

protecting WSNs from node capture attacks. Lastly, we end our chapter with a discussion on the

not so popular topic of node tampering attacks.

2.1 Applications

There are numerous WSN applications, but ultimately they all fall into two categories: monitoring

and tracking. Monitoring examples include temperature levels, humidity levels, ultra-violet levels,

pressure levels, noise levels, etc. Tracking examples include movements of objects, directions of

objects, traveling speeds, absence or presence of objects. Furthermore, applications vary depending

on the environment where the sensors are deployed. A WSN can be deployed in the following

environments: military, environmental, health, public and personal. In a military environment

sensors can be an integral component for battlefield surveillance or reconnaissance of opposing forces

and terrain [3]. In environmental applications sensors can play a critical role for example in detecting

forest fires [29] or monitoring micro climates in crop fields [30]. In a health environment sensors can

be used for example to monitor patients’ health by implanting a cubic-millimeter computer into a

patient’s body [31]. In a commercial environment sensors can used for example to detect car thefts

[32] or management of inventory tracking [33]. In a personal environment sensors can be integrated

on every day appliances [34] and ultimately create a smart home environment [35]. It is up to our

imagination on where WSNs can be integrated.

Most of the applications, including the former examples, are deployed in environments that are

resource expensive to simulate. Our research concentrates in the physical security of sensor devices

and not the actual sensor applications. For example, simulating a Wildfire Monitoring System [36]

requires the purchase of expensive equipment that is unnecessary for our research purpose. We

5

instead concentrate in researching sensor applications that are inexpensive to simulate so we don’t

have to buy expensive hardware. These inexpensive systems have similar security concerns as the

more complex systems. Without a loss of generality, we chose a temperature monitoring system

application of sensor networks for this research. In fact, we found that temperature monitoring

systems using WSN is a popular field of research.

The researchers at Sirindhorn International Institute of Technology (SIIT) implemented a remote

temperature monitoring system that collected classroom temperature levels and provided necessary

data for the energy consumption management of air conditioning units [38]. The SIIT implemen-

tation made use of the Zigbee protocol to implement their network, consisting of a Coordinator,

End-Devices and a web server for a GUI. A similar system was implemented at Berkley to monitor

room temperatures using the Coordinator and End-Devices approach [39]. The difference between

the two is the implementation software used; SIIT used XBee, where as Berkley used Code::Blocks

software. Another temperature monitoring system was implemented using MATLAB software, which

also made use of the Zigbee protocol [40]. All three systems suggest that building on top of the

Zigbee protocol is a popular choice. The Zigbee protocol serves at the network layer and is built

on top of the IEEE 802.15.4 protocol. Besides Zigbee, another commonality found between the

monitoring systems is the use of unencrypted and unauthenticated communications. Although the

Zigbee protocol provides security services, to our knowledge there is no open source implementation

of the security features. Furthermore, there is a limited Zigbee open source code available but most

Zigbee software is proprietary [41]. Keep in mind that Zigbee is built on top of the IEEE 802.15.4

layer; therefore, if the physical layer is broken then all upper layers, including Zigbee, are no longer

secure. We give details about the physical security of motes in Section 2.5. Please note that our

temperature monitoring system builds on top of the IEEE 802.15.4 layer.

2.2 Cipher Protocols

One of the main problems with securing WSNs is the limited resources supported by the sensor

devices. In particular, resources such as battery power, computational power and memory size

are limited. Almost all sensor devices are deployed in open environments and will go unattended

for months or even years. Therefore, common encryption systems used by computers or smart

phones are not practical for sensor devices. A lot of research has been devoted into proposing cipher

protocols that use less computational power, thus increasing the battery lifetime of sensor devices.

We highlight popular ciphers that have been proposed for WSNs with the goal to provide information

6

why we chose the in-line AES cipher for our WSN environment.

Previous research has shown a connection between ciphers and the type of micro-controller used.

For example, the MD5, SHA-1, IDEA, RC4, and RC5 ciphers were evaluated using 8-bit, 16-bit,

and 32-bit micro-controllers. The results showed that 32-bit micro-controllers out performed 8-bit

and 16-bit roughly by a factor of two because of the 64-bit block sizes used in these ciphers [4].

On the other hand, 8-bit micro-controllers out perform 32-bit micro-controllers when evaluating the

performance of stream ciphers such as LEX [9]. The type of micro-controller and security policies

play an important role in selecting the appropriate cipher. Law et al. [1] provides a good verdict

of how to choose a suitable cipher and recommends Skipjack as the best cipher choice for WSN.

Using a MSP430 emulator, experimental results showed that Skipjack is the most energy efficient

compared to RC5, RC6, Rijndael, Twofish, MISTY1, KASUMI, and Camellia [1].

In fact, TinySec uses Skipjack to provide the first fully-implemented link layer security supporting

two modes of operation: encryption only (CBC) or encryption and authentication (CBC-MAC) [11].

The research presented by Karlof et al. has been one of the most respected and many researchers

have proposed improved versions of TinySec. For example, MiniSec was proposed as an improvement

to reduce power consumption of TinySec by using OCB cipher modes to encrypt and authenticate

simultaneously [14]. As another example, FlexiSec was proposed to improve the security of TinySec

by implementing Bloom-filters to prevent replay attacks [10]. Other protocols, such as the LLSP,

have been proposed as a link layer security; however, they’re just replicas of TinySec with a few

modifications [13]. Besides Skipjack, another cipher family that has been a respected choice for

WSNs is the RC4 and RC5 ciphers. The first ever WSN security proposal was the SPINS protocol,

which used the RC5 cipher to implement encryption and broadcast authentication [15]. Recent

research has shown a shift towards stream ciphers by improving the key generation process of RC4

[12]. All of the proposed ciphers are software implementations that did not take into consideration

the efficiency of using hardware implementation.

Although AES is one of the most computational expensive ciphers, it has still been used in at least

three research proposals [16] [42] [17]. However, all three proposals made use of the AES software

implementation. The micro-controller used in [16] and [42] was the MSP430. The CC2420 RF chips

have an inline AES-128 hardware implementation that supports three different modes of operation:

encryption only (CTR), authentication only (CBC-MAC) or encryption and authentication (CCM)

[43]. Running the hardware implementation version of AES on the CC2420 is significantly more

efficient than running the software implementation version of AES on the MSP430. Andersen and

Tranberg prove that the CC2420 radio inline CCM security mechanism is 42 times faster and uses

7

4.5 times less energy than the similar software implementation running on the MSP430 MCU [7].

Furthermore, Buesching and Wolf demonstrated that the throughput of the AES-128 CBC mode

implementations to be 1,085kb/s for hardware version and 28kb/s for software version [8]. Tranberg

[18] evaluated that the CC2420 security features out perform the TinySec and MiniSec protocols

both in security level and efficiency. We make use of the CC2420 inline security feature because of

the reasons presented, as well as the fact that we used TelosB motes with our WSN environment.

2.3 Key Management Protocols

In todays Internet, RSA is the most commonly used crypto system to manage the Public Key Infras-

tructure (PKI). The computational overhead of RSA is significant and unreasonable to implement

in WSNs. Lots of research has been done to find algorithms that significantly reduce the resource

overhead for key management technologies. We highlight popular key management algorithms that

have been proposed and show the major security flaws found on each, when a sensor device has been

physically captured.

One of the first key management algorithms was proposed by Jolly et al. Their key management

approach pre-deploys a shared symmetric key used for future key exchange and key renewal secure

communication [44]. The major security flaw found with the algorithm proposed by Jolly is not

knowing when the shared symmetric key has been compromised. An attacker can impersonate the

central node by obtaining a copy of the share symmetric key through reverse engineering techniques.

Watro el at. proposed TinyPK which makes use of RSA to prevent impersonation attacks [45].

TinyPK is inefficient and does not handle the problem of revoking compromised private keys. A

compromised sensor node can be used to maliciously authenticate to the WSN by obtaining a copy

of the private keys. The following two examples were proposed back in 2003 when WSNs were first

introduced.

Between 2006 and 2015, there was a shift towards using Elliptic Curve Cryptography (ECC)

to implement PKI in WSNs. For example, one of the first proposed technologies that made use of

ECC was NanoECC. NanoECC was implemented using TinyOS and evaluated on the Mica2 and

TelosB sensor nodes. The evaluation results showed that the energy consumption to compute point

multiplication in the MSP430-F1611 MCU was 7.95mJ [19]. Although NanoECC is more efficient

than TinyPK, the security flaw of not revoking compromised private keys remained in the NanoECC.

The researchers at Harvard University also implemented ECC for PKI in WSNs. Their EccM 2.0

PKI software is open source for future research purposes [20]. The EccM 2.0 was tested using Mica2

8

motes, and compared to NanoEcc , the EccM 2.0 results show higher energy consumptions because

bigger key sizes were evaluated. Even if the key size improved security in the EccM 2.0, it is still

vulnerable to node capture attacks. The foundation of most key management research has been

TinyECC, which also uses ECC for PKI in WSNs. Compared to NanoECC [19] and EccM 2.0 [20],

TinyECC’s main feature is the flexibility to configure ECC to best fit specific application needs [21].

Similar to the previous two technologies, TinyECC suffers from node capture attacks. Researchers

at William and Mary proposed their own ECC implementation which still suffers from the same

problem of not securing the private keys [22].

Other proposed algorithms suffer from the same security flaw of not protecting the private keys

from being compromised. For example, Nilsoon and Roosta proposed a key management scheme that

uses three pre-installed keys: one authentication key, one encryption key and one network key [46].

Du et al. also proposed a scheme that pre-loads a secret key for future key exchange communication

[47]. Similarly, Alfandi et al. proposed that each sensor node on a WSN has a certificate signed by a

Certificate Authority [48]. Mansour et al. attempted to improve the security of the private keys by

using a pre-shared key to renew the private keys [42]. All three proposals suffer from node capture

attacks where the private keys can be compromised. Zhang et al. highlighted various pre-deployment

schemes, which all suffer from node capture attacks [49]. All of the highlighted technologies have

one thing in common: they all do not consider the consequences of capturing a sensor node, reverse

engineering data found in memory, and obtaining secret information such as private keys. Without

keeping the private keys a secret, all of these proposed solutions are broken.

2.4 Node Capture

Unlike the technologies discussed in Section 2.3, there has been other research proposals that handle

cases when a sensor node has been captured. The technologies proposed can be divided into four

categories. The first category is key distribution technologies that require large number of nodes

to be captured in order to gain any significant results. The second category is key revocation

technologies that prevent the compromise of future encrypted information. The third category is

intrusion detection systems (IDS) that detect capture nodes in a WSN. The fourth category is

intrusion prevention systems (IPS) that prevent the disclosure of sensitive WSN information.

The first category is key distribution technologies that require the capture of large number of

nodes to attain any significant gain. Eschenauer and Gligor proposed a pair-wise pre-distribution

of keys to allow private sharing of keys between every sensor nodes and avoids large scale WSN

9

compromise [23]. The proposed scheme does not protect the security of small WSNs and only

protects distributed sensor networks. Chan et al. proposed an approach to improve the security

under small scale attacks at the cost of greater vulnerability to large scale attacks. The approach uses

a scheme where cryptographic rekeying increases the resilience of the network against node captures

[24]. Xiao et al. key management survey results showed that pairwise key distribution schemes

are the best for network resilience by enforcing large fractions of the network to be compromised

to attain any significant gain [25]. All of the proposed key distribution algorithms accept a small

portion of the WSN to be compromised. If reverse engineering tactics are used to obtain copies of

the pair-wised keys then the whole WSN can eventually be compromised.

The second category is key revocation technologies that prevent the compromise of future en-

crypted information by revoking the keys shared with the compromised sensor node. Wang et al.

proposed the KeyRev technology that makes use of a centralized key revocation technique to prevent

future information leakage. The functionality of the KeyRev technology makes use of session keys

to prevent compromised sensors from obtain new session keys [50]. However, the problem of the

KeyRev technology is that it does not know how to detect if a sensor node has been compromised.

Chattopadhyay and Turuk proposed a similar approach; however, it is a decentralize approach where

each individual node is responsible for revoking keys shared between compromised sensor nodes. The

proposed technology made use of a voting scheme where sensor nodes vote on each other whether a

sensor is suspected to be a compromised node [51]. Both proposed technologies made the assump-

tions of having an IDS built in to one of the nodes on the WSN. The key revocation technologies

does protect a WSN from node capture attacks; however, making the assumption that a IDS is in

place is not reliable.

The third category is intrusion detection systems that detect capture nodes in a WSN. An

implemented example of an IDS was presented by Krontiris et al. where an IDS was deployed to

detect sinkhole attacks. The rules implemented in their IDS use the overhead route update packet

to check for the sender field and produce an alert if the sender ID is not one of the sensor IDs found

in the WSN [52]. Although the IDS did not directly detect node capture attacks, it can detect if

the capture node has been modified to use a different sensor ID. Another example of an IDS that

is more applicable to our scenario of node capture attacks was a proposed scheme by Sun et al.

The IDS scheme proposed made use of a pattern classification problem, in which classifiers were

designed to classify and observed activities as normal or intrusive [53]. The proposed scheme was

not implemented but proposed on paper. Not much research has been published on implementing

IDS for WSN because of the characteristics of the technology compared to wireless networks.

10

The fourth category is intrusion prevention systems that prevent the use of capture nodes to

disclose sensitive information about a WSN. Out of all the categories discussed in this section, the

IPS category is the most promising in securing WSN from node capture attacks. In particular,

Priya and Sathyanarayana proposed a unique method of protecting the security of WSN from node

capture attacks by using a threshold secret sharing scheme. The threshold secret sharing scheme

divides the master key into several sub keys and as long as the attacker captures fewer than the

threshold, he/she cannot reconstruct the master key [54]. The threshold can be application specific

and protects the master secret key from being disclosed. Another prevention technology proposed

by Soroush et al. is to delete the master key after the key establishment has been accomplished

[55]. The proposed scheme makes the assumption that the master key eventually gets deleted from

memory in order to make the scheme more secure against node capture attacks [55]. We proved later

that this assumption is broken because an attacker can obtain the master key before it is deleted.

2.5 Node Tampering

Node capture attacks are often discussed as a potential vulnerability in WSNs; however, only few

papers have been published to prove the feasibility of such attacks [56]. Proposed papers date

back to 1997 with the most latest one written in 2008 that highlight node tampering attacks.

Skorobogatov describes in detail various node tampering attacks and has classified the techniques

into three categories: invasive, semi-invasive, and non-invasive attacks [57]. Invasive attacks require

access to the micro-controllers internals and typically make use of expensive equipment used in

manufacturing and testing. Semi-Invasive attacks require access to the micro-controllers internals

and typically make use of cheaper equipment and less time than invasive attacks. Non-invasive

attacks are the easiest that require access to the micro-controllers but does not require additional

equipment.

The invasive node capture attacks are more practical in a laboratory environment instead of in-

field type of attacks. Anderson and Kuhn discussed an invasive type of attack that used differential

fault analysis, where a micro-controller was exposed to low level of ionising radiation to introduce

one-bit errors [58]. Other examples from Anderson include the use of chip rewriting attack by

specifically targeting gates to overwrite memory locations [58]. A more practical invasive attack was

demonstrated by Goodspeed. The invasive attack consisted of implementing the BSLCracker 3.0

hardware that uses a voltage glitching attacks to skip over a ”jz $+0” loop and gain unauthorized

entry to the BSL [59]. The attack only applies to two versions of the MSP430: the F1101 and the

11

F4618 chips.

The semi-invasive node capture attacks are more practical for in-field types of attacks. For

example, Deng et al. discussed an attack on the MICA motes where a computer, a programming

board, and a debugging interface (JTAG) device are all that is need it to physically access the

internals of a micro-controller [56]. However, we must keep in mind that the attack only works if the

JTAG fuse has not been blown. If the JTAG fuse is blown then access through JTAG is no longer

supported and is irreversible [60]. Another example of a semi-invasive attack was demonstrated by

Skorobogatov and Anderson by making use of inexpensive laser equipment. They demonstrated

that illumination to a target transistor causes it to conduct; thereby inducing a transient fault [61].

Both examples require the use of additional hardware that can be inconvenient when attacks are

performed in-field.

The non-invasive node capture attacks are the least expensive and are the ideal choice for in-field

types of attacks. A great example of a non-invasive attack was discussed by Becher. The attack

exploited the BSL password used to protect MSP430 micro-controllers. Becher demonstrated that

the 256-bit BSL password was vulnerable to brute force attacks by reducing the key space to 40 bits

[27]. Since the BSL password is stored at the address space as the IVT, the password is identical

to the IVT. The 256-bit password was first reduced to 240-bit by considering code addresses to be

aligned on a 16-bit word boundary, thus the least significant bit of every interrupt vector is 0. The

240-bit was reduced to 225-bit by considering that the reset interrupt or power-up interrupt was

always fixed to the start address of main memory. The 225-bit was reduced to 60-bit by considering

that in the worst case scenario the unused interrupts point to the same fixed address. The 60-bit

was further reduced to 40-bit by considering that code is placed by the compiler in a contiguous

area of memory starting at the lowest flash memory address, thus leaving with a key space of fewer

possible addresses. Becher suggested that the brute force time for 40-bit key space would be 128

years. Goodspeed was able to reduce the 128 years to 32 years by changing the baud rate of the

MSP430 to the highest supported baud rate of 38400 [28]. Although brute force can be reduced by

capturing more nodes, it is not practical to brute force in a matter of years.

This thesis uses a different approach from Becher and Goodspeed. We analyzed the IVT values

instead of reducing the number of bits in the key space. We analyzed the passwords to find any

patterns that are persistent between sensor applications and use the results to predict future pass-

words. Our results show that we have lowered the brute force time to a matter of days rather than

years.

12

Chapter 3

Secure Temperature Monitoring System In A WSN Enviroment

In Chapter 2, we study various types of WSN environments and investigated different applications

such as monitoring and tracking applications. The number of applications that can be supported by

WSNs are numerous; however, most of the systems require an environment that is resource expensive.

Simulating a WSN environment can be very expensive [37][30][32][33][36][29], thus the cost outweighs

the sole purpose of our research. With that being said, in this chapter we implement the Secure

Temperature Monitoring System which we refer to it as STMS. STMS has similar features to the

three different temperature monitoring systems implemented by Boosawat et al.[38], Risteska et al.

[40] and Mon et al.[39]. However, to our knowledge our STMS is the only temperature monitoring

system that encrypts the communication in a WSN. Our STMS is able to securely monitor room

temperatures in real time in a university environment such as the Computer Science department at

James Madison University. Therefore, STMS is the proper choice to demonstrate the security flaw

found in the MSP430 family chips. Our chapter discusses the design of our STMS, implementation,

the modes of operation, system set up, system testing, and network monitoring using Wireshark.

3.1 Design

Figure 3.2 shows the WSN topology used with our STMS consisting of a computer used to display

temperature levels, a Coordinator used as a base station, a PPPSniffer used to monitor the WSN

and three End-Devices used to collect temperature levels. STMS makes use of a star topology where

the Coordinator serves as the central node and the three End-Devices serve as the end nodes. The

computer serves as an extension of the Coordinator to provide the user with a visual representation

of the temperature data collected by each End-Device. Furthermore, the PPPSniffer node is also

connected to the computer in order to provide a visual representation of the packets captured by

the PPPSniffer.

13

Figure 3.1: The network topology of the STMS. The solid lines represent a physical connection and
the dashed lines represent a wireless connection.

• Computer:

The computer has a main role of displaying temperature data in real time. The computer

displays temperature data that was sent by the Coordinator through one of the computer’s

USB serial ports. In addition, the computer also displays capture packets sent by the

PPPSniffer through one of the computer’s USB serial ports using Wireshark.

• Coordinator:

The Coordinator has three main roles: listening for incoming packets, decrypting packets,

and forwarding packets. The Coordinator always listens for any incoming packets sent

by the End-Devices. The packets received by the Coordinator are encrypted temperature

readings collected by the End-Devices. The Coordinator will decrypt the packets using a

network-wide shared key and forward the decrypted data to the laptop. The sole purpose

of forwarding the packets to the laptop is to provide the user with a screen to display the

temperature readings.

• End-Device:

The three End-Devices roles are: collecting temperature readings, encrypting the temper-

ature data, and sending the temperature data. The three End-Devices are to be placed

in three different rooms to periodically collect the current temperature of each room. The

End-Device uses a built-in sensor to collect real time temperature readings of each room

14

[62]. The temperature readings are encrypted by the End-Devices using a network-wide

shared key and the encrypted data is sent to the Coordinator.

• PPPSniffer:

The PPPSniffer has two main roles: capturing packets and forwarding the packets. The

PPPSniffer is responsible for sniffing all traffic within the STMS. The PPPSniffer uses

Point-to-Point Protocol to forward the capture packets to the computer and the computer

will display the received packets using Wireshark. The PPPSniffer allows to monitor the

network traffic within our STMS and check for secure communication between motes.

3.2 Implementation

The two tasks to set up our WSN environment was to implement our STMS and connect/test the

necessary equipment. The hardware subsection provides the specifications of the TelosB motes used

within our STMS. The software subsection will provide details of the IDE used and the implemen-

tation of our STMS.

3.2.1 TelosB Platform

The three most popular motes for research purposes are: the MICAz motes, IRIS motes, and TelosB

motes [2]. The listed three motes are manufactured by MEMSIC, a sensing solutions company [63].

Although all three motes provide similar services, the best choice for our STMS is the TelosB mote.

The TelosB comes with an integrated Temperature, Light and Humidity sensor [62], where as the

MICAz and IRIS have expansion connecters for Light and Temperature sensors. The TelosB mote

did not require us to buy additional sensor hardware since it already comes with the three built in

sensors. Additionally, most of the applications in the TinyOS open source project have been tested

using TelosB motes and has a great reputation of being popular mote of research [64]. For someone

new to the WSN community the use of the TelosB motes eases the learning phase of the thesis

project. Therefore, we purchased 5 TelosB motes from MEMSIC at a price of $140 for each mote.

Figure 3.2 shows a front and back view of the TelosB mote [65].

15

Figure 3.2: The top image shows the front of the TelosB mote. The bottom image shows the back
of the TelosB.

MCU Specifications:

The TelosB mote uses the ultra low power Texas Instrument MSP430-F1611 micro-controller.

The MSP430-F1611 is a 16-bit RISC processor capable of an extremely low active current con-

sumption that permits the TelosB mote to run for years on a single pair of AA batteries [66].

The MSP430 MCU has an internal digitally controlled oscillator that if the power is at 3.6V may

operate at 8MHz. If the TelosB were plugged into a USB port at a power level of 3V then the

MCU speed would be roughly 7MHz. If the TelosB mote is powered by a pair of AA batteries

then the MCU speeds will vary depending on the power level provided by the batteries. Fig-

ure 3.3 shows the supply voltage versus the MCU speed[66]. The voltage versus MCU speeds

demonstrates how the battery life affects the overall functionality of the TelosB.

16

Figure 3.3: Clock frequency vs. supply voltage for MSP430-F15x/F16x/F161x

Memory Specifications:

As shown in Table 3.1, the TelosB mote is equipped with a 10kB of RAM, 48 kB of flash memory,

16kB of EEPROM, and 1024kB of M25P80 External Flash memory [65]. The 10kB of RAM is

used when the TelosB mote is powered on to make use of program variables. The 48kB of

flash memory is used to store the users program in our case the Coodinator, End-Device or

PPPSniffer programs. The 16kB of EEPROM is used for mote hardware configuration purposes

like the sensor calibration coefficients. Lastly, the 1024kB for M25P80 External Flash memory is

used to store data logging information over time. It is important to note that the security flaw

found during our investigations involves the 48kB of flash memory.

Table 3.1: The 4 types of memories found in the TelosB mote.

Memory Type Size Purpose
RAM 10kB Store Variables
Flash Memory 48kB Store User Code
EEPROM 16kB Store Mote Configurations
M25P80 1024kB Store Data Over Time

Radio Specifications:

The TelosB mote is equipped with a Chipcon CC2420 radio chip to support wireless communi-

cations [43]. The CC2420 operates on 2.4 GHz to 2.4835 GHz ranges, which means it is in the

Industrial, Scientist Medical (ISM) band compliant. The data rate supported by the CC2420 is

250 kbps but data rates may drop depending on the power level. The CC2420 chip is also IEEE

802.15.4 compliant and has a built-in inline AES-128 encryption in which we make use of with

our STMS application.

Sensor Specifications:

17

The TelosB mote has four integrated sensors that do not require additional hardware, unlike

the IRIS and MICAz motes [65]. The first two sensors are used to measure light levels, such

as measuring photosynthetically active radiation levels (S1087 sensor) and measuring the entire

visible spectrum (S1087-01 sensor). The other two sensors are used to measure the humidity

levels (SHT11 sensor) and temperature levels (SHT15 sensor) [62]. We only make use of the

SHT15 sensor to monitor the temperature levels with our STMS.

The specifications of the TelosB mote suggests that all sensor technologies are resource limited and

have low power consumption. Resources such as computation power, memory, and the communi-

cation bandwidth are to be kept in mind during a sensor application development process. Unlike

computers or smart phones, sensors are very limited in their capabilities and require special protocols

that keep low power consumption in mind.

3.2.2 Secure Temperature Monitoring System (STMS)

The Secure Temperature Monitoring System section is broken down into two parts: TinyOS IDE

and STMS Implementation. The TinyOS IDE subsection describes the process of setting up an

Integrated Development Environment for TinyOS. The STMS Implementation subsection discusses

details on how our application works and the roles of each mote in our network.

(A) TinyOS IDE

The first step to set up the WSN environment was to create/install a designated OS that was solely

used for research. In our case, we used OS X El Capitan as the host machine and Ubuntu 14.04 TLS

as the guest machine using VMWARE Fusion. The Ubuntu is a 64-bit architecture and runs a Linux

3.16.0-57-generic kernel. We choose TinyOS as the WSN OS because of the big community and the

popularity usage in sensor research. Other OS for sensors networks include Contiki and LiteOS;

however, both lack applications samples for the MSP430 chips[67]. TinyOS is an open source OS

designed for low-power wireless devices in which the reader may obtain a free copy from the TinyOS

Github Project[68]. TinyOS was written in nesC, which is programming language that incorporates

event-driven execution, a flexible concurrency model, and component-oriented application design[69].

Steps to install TinyOS:

1. Unzip the TinyOS project downloaded from Github [68]

2. Open a terminal window and cd into ../tinyos-main/tools

3. Execute the following commands to install the make system for TinyOS

• $./Bootstrap

18

• $./configure

• $ make

• $ sudo make install

4. cd into /etc/apt/sources.list.d and execute the following commands to install TinyOS tools

development packages

• $ sudo echo ”deb http://tinyprod.net/repos/debian squeeze main” >> tinyprod-debian.list

• $ sudo echo ”deb http://tinyprod.net/repos/debian msp430-46 main” >> tinyprod-debian.list

• $ sudo apt-get update

• $ sudo apt-get install msp430-46 nesc tinyos-tools-devel

The next step was to install software that can support an IDE for TinyOS, the software needed

are Eclipse and Yeti2. Eclipse can be simply installed by downloading the latest Eclipse SDK version

from their website. After installing Eclipse, the next step was to install the Yeti2 Eclipse plugin for

TinyOS IDE support. Yeti2 is a nesC editor implemented as a plugin for Eclipse aim to provide

developers with the convenience functions expected from a modern development environment [70].

There are other IDE for TinyOS such as NESCDT [71] or TinyDT [72]; however, based on blogs

most of the developers recommend using Yeti2 due to its simplicity and user-friendly style.

Steps to install Yeti2:

1. Open Eclipse and go to Help > Install New Software

2. Click on Add to add a new repository

3. Use the following to create a new repository:

• $ Name: Yeti2

• $ Location: http://tos-ide.ethz.ch/update/site.xml

4. Make sure that the following boxes are checked:

• $ Yeti 2 Core

• $ Yeti2 Optional

• $ Yeti2 Environments (make sure the Yeti 2 TinyOS 2.x in Cygwin is unchecked)

5. Install Yeti2 and let Eclipse restart

19

6. Open the TinyOS perspective by going to Window > Open Perspective > Other

7. Choose TinyOS and click OK

8. Set up the plugin environments by going to Window > Preferences

9. Select TinyOS > Environments > TinyOS 2.x unix-environment

10. Make sure TinyOS Root Directory, TinyOS TOS Directory, TinyOS Application Directory,

and TinyOS App Makerules reference the TinyOS installation

If all steps were followed correctly the reader should now have a TinyOS IDE for developing WSN

applications. In our case, we used our TinyOS IDE to implement STMS.

(B) STMS Implementation

The contribution of this thesis is to investigate the security flaw found in the MSP430-BSL password

that is used to protect flash memory firmware. To demonstrate the outcomes of dumping flash mem-

ory firmware, we reverse engineered our STMS End-Device application to obtain the cryptographic

keys. With that being said, our STMS is built on top of Layer 1 and Layer 2 of the OSI model.

Figure 3.4 shows the comparison of the OSI model between wireless networks and wireless sensor

networks [73]. The IEEE 802.15.4 standard is similar to the 802.11 but the protocol is built on the

idea of low power consumption and limited transport rates of 250Kbps [74]. We make use of the

IEEE 802.15.4 protocol at the data link layer to establish an association between the Coordinator

and an End-Device. We also make use of the CC2420 inline AES-128 encryption at the physical

layer to encrypt the communication between the Coordinator and the End-Devices [43]. If the se-

curity is broken at the physical layer by obtaining copies of the cryptographic keys through reverse

engineering then all upper layers, like the 6LoWPAN protocol, Zigbee protocol and CoAP protocol

will be broken because of the OSI model domino effect. Additional reasons why we build on top of

the L1 and L2 layers is to limit the code size added when using the CoAP or 6LoWPAN protocols.

TinyOS provides sample applications that make use of the 6LoWPAN or CoAP protocols, but when

attempting to build the examples we encounter a ”region rom overflowed by N number of bytes”

error. Making use of the upper layers (6LoWPAN, Zigbee or CoAP) exceed the allotted TelosB

48kB rom size when compiling the application.

20

Figure 3.4: A comparison of the OSI model between a wireless network (left) vs. a wireless sensor
network (right).

We have implemented two versions of our Secure Temperature Monitoring System: we call the

first version IEEE802154 and the second version L1-Secure. The IEEE802154 version is built on top

of the IEEE 802.15.4 MAC layer, which allows an End-Device to associate with the Coordinator

before sending temperature reading packets. The communication in the IEEE802154 version is

unencrypted and the purpose is to demonstrate how motes can join the STMS network. The L1-

Secure version is built on top of the Physical layer (L1), which allows an End-Device to encrypt

the data before sending temperature reading packets to the Coordinator. The L1-Secure version

does not require the End-Device to associate with the Coordinator before sending the encrypted

packet. We have implemented two versions (IEEE802154 and L1-Secure) of STMS because at the

time of this writing there is no implementation of the secure MAC layer using the IEEE 802.15.4

protocol [74]. We have successfully built a secure WSN solely using the L1 layer, thus avoiding any

implementation required to include the IEEE 802.15.4 MAC layer. Since the purpose of this thesis

is the security of firmware at the L1 layer and not the upper layers, then building on top of the L1

layer suffices the proof of concept. The STMS code has been made open source for research purposes

and can be downloaded from our GitHub project[75].

• Coodinator:

As previously mentioned, the Coordinator is the central node of our STMS. Since we

have two versions of the Coordinator the operations slightly vary between the IEEE802154

version and the L1-Secure version. Both versions support the operations of listening for

incoming packets and forwarding the received data. The difference is that the IEEE802154

21

version supports association responses and the L1-secure version supports decryption. To

support association responses the IEEE802154 version uses the MAC sub-Layer Man-

agement Entity (MLME) interface provided by TinyOS. The MLME interface provides

access to the management services provided by the MAC sub-layer. In particular, the

following MLME components are used: MLME RESET, MLME SET, MLME START,

MLME ASSOCIATE, and MLME COMM STATUS. The MLME RESET allows the Co-

ordinator to request a MLME reset and initialize the MAC to be able to use other MAC

primitives. The MLM SET is used to set the values on the Personal Area Network Infor-

mation Base (PIB), which is a database that stores information to manage the MAC layer.

MLME START is used to begin acting as Coordinator of a PAN and will always be called

after the MLME SET. The MLME ASSOCIATE is used to notify the Coordinator that an

End-Device has requested to associate with the PIB. The MLME COMM STATUS is used

to indicate communication status between the Coordinator and the End-Devices. As far

as listening for incoming packets, the IEEE802154 version uses the MCPS DATA interface

where as the L1-Secure version uses the Receive interface. The decryption operation of the

L1-Secure version makes use of the CC2420Keys interface to set or ”send” the key from

the MSP430 flash memory to the CC2420 chip. When a packet is received the payload is

decrypted by the CC24020 chip using a network wide shared key. The actual data content

received by the Coordinator is a 14-bit digital readout value that is converted to Fahrenheit

using the follow formula in (3.1)[62]. The final operation requires both versions to forward

the temperature reading to the Ubuntu VM in order to print the Node ID and Fahrenheit

value on the screen. The C printf library is used to display the temperature readings on

the screen using the Serial port terminal tool available on the Ubuntu Software Center.

−39.3 + (0.018× data) (3.1)

• End-Device:

The End-Devices are the end-nodes of our STMS; they are responsible for collecting tem-

perature readings of various locations. Similar to the Coordinator, we have two versions of

the End-Device with slight variation between the IEEE802154 version and the L1-Secure

version. Both versions support the operations of collecting temperature readings and send-

ing temperature packets to the Coordinator. The difference is that the IEEE802154 version

supports association requests, where as the L1-secure version supports encryption. To sup-

port association requests the IEEE802154 version uses the MAC sub-Layer Management

22

Entity (MLME) interface provided by TinyOS. In particular, the following MLME com-

ponents are used: MLME RESET, MLME SET, MLME GET, and MLME ASSOCIATE.

The MLME RESET, MLME SET, and MLME ASSOCIATE have the same roles as dis-

cussed in the Coordinator section. The new interface used with the End-Device is the

MLME GET, which is used to get specific information about the PIB. Both versions re-

quire collecting temperature readings using the built-in temperature sensor SHT15. The

SensirionSht11C interface is used by both versions to read temperature levels in real time

using the SHT15 sensor. The IEEE802154 reads temperatures every 5 seconds, where as

the L1-Secure reads temperatures every 3 seconds. The temperature reading is a 14-bit

digital output value that is sent to the Coordinator along with the Node ID. However,

before sending the data the L1-Secure version encrypts the payload of the packet by using

the CC2420Keys interface and CC2420SecurityMode interface. The CC2420Keys interface

is used to set or ”send” the network wide shared key from the MSP430 chip to the CC2420

chip. The CC2420SecurityMode interface is used to set AES-128-CTR security mode in

order to encrypt the payload portion of the packets. The final operation requires both ver-

sions to send the temperature packets to the Coordinator. The IEEE802154 version uses the

MCPS DATA interface to send the temperature packets to the Coordinator after an asso-

ciation has been established. The L1-Secure version uses the AMSend interface to send the

encrypted temperature packets to the Coordinator with no pre-association establishments.

• PPPSniffer:

The PPPSniffer node has one main role of capturing packets being sent from the End-

Devices to the Coordinator in our STMS. TinyOS provides the PPPSniffer application that

can be linked to Wireshark. The application is found under the /tinyos-main/apps/PPPSniffer

directory of the TinyOS Github Project [68]. The application receives and snoops pack-

ets on the IEEE 802.15.4 channel and forwards the packets to the Ubuntu VM using the

Point-to-Point protocol. The Ubuntu VM then uses Wireshark to allow us to view details

about the packets being sent on our STMS network or any WSN.

3.3 System Testing

The following section will provide the steps to set up STMS along with the PPPSniffer to display

the capture packets using Wireshark. We assume the TinyOS IDE (refer to Section 3.2.2) has

been setup and the STMS code has been downloaded from our GitHub project[75]. To avoid any

23

path compilation errors, it is important that the downloaded STMS code is stored under the /tiny-

main/apps directory. The first step of setting up the WSN environment is to plugin the TelosB

motes to USB ports found on a computer. Figure 3.5 shows a USB Hub we setup to allow us to

plugin all our TelosB motes to the computer that is running the Ubuntu VM. Furthermore, using

a terminal window on the Ubuntu VM we ran the motelist command to list all the current motes

recognized by the Ubuntu VM. Figure 3.6 displays the output of the motelist commands which

matches the labels and TelosB motes seen in Figure 3.5. We are now ready to flash the PPPSniffer,

IEEE802154, and L1-Secure applications to the plugged in TelosB motes.

Figure 3.5: A picture taken of our USB hub and TelosB motes and the corresponding port number

Figure 3.6: The output of the mostelist command

24

• PPPSniffer Setup

The PPPSniffer requires the Wireshark tool, which can installed by either obtaining a copy

from the Ubuntu Software Manager or using the apt-get command. The two procedures to

setup the PPPSniffer will be the same for both STMS versions. The setup consists of first

flashing the PPPSniffer application to the mote that is plugged in to the /dev/ttyUSB2 port.

The second step is to establish an internet link between the /dev/ttyUSB2 port and the ppp

interface using the pppd command.

Steps to setup PPPSniffer:

1. Open a terminal window

2. $cd /opt/tinyos-main/apps/PPPSniffer

3. $make telosb cc2420x 32khz install,1 bsl,/dev/ttyUSB2

4. $sudo pppd debug passive noauth nodetach 115200 /dev/ttyUSB2 nocrtscts nocdtrcts

lcp-echo-interval 0 noccp noip ipv6 ::23,::24

5. The last line of the previous command output should be ”Script /etc/ppp/ipv6-up finished

(pid 14415), status = 0x0”

6. The terminal window should be left open

• STMS Setup

The setup procedures between the two versions of IEEE802154 and L1-Secure are the same

except they differ in flashing the appropriate application. However, the same procedures should

be followed to flash the Coordinator and the three End-Devices on either versions. Setting up

the Coordinator requires additional steps compared to the PPPSniffer setup steps. The first

step is to flash the Coordinator application to the mote that is plugged in to the /dev/ttyUSB0

port. The second step is to establish an internet link between the /dev/ttyUSB0 port and the

ppp interface using the pppd command. The third step is add the ppp1 interfaces to the list

network interfaces by using the ifconfig command. The last step is to open up Wireshark and

start capturing packets on the ppp0 interface.

Steps to setup Coordinator:

1. Open a terminal window

2. $cd /opt/tinyos-main/apps/STMS/IEEE802154/Coordinator/src (for IEEE802154 ver-

sion) or

$cd /opt/tinyos-main/apps/STMS/L1-Secure/Coordinator/src (for L1-Secure version)

25

3. $make telosb install.1 bsl,/dev/ttyUSB0

4. $sudo pppd debug passive noauth nodetach 115200 /dev/ttyUSB0 nocrtscts nocdtrcts

lcp-echo-interval 0 noccp noip ipv6 ::25,::26

5. The output of the previous command should be interval messages of

”sent [LCP ConfReq id=0x1 <asyncmap 0x0><magic 0xc9580e><pcomp><accomp>]”

6. The terminal window should be left open

7. Open a new terminal window

8. $sudo ifconfig ppp1 add fec0::101/64

9. $sudo wireshark

10. Wireshark will start and proceed to capture packets on the ppp0 interface.

The steps to setup the End-Devices is straight forward because it only requires flashing the

End-Device application to the three End-Device motes.

Steps to setup End-Devices:

1. Open a terminal window

2. $cd /opt/tinyos-main/apps/STMS/IEEE802154/End-Device/src (for IEEE802154 ver-

sion) or

$cd /opt/tinyos-main/apps/STMS/L1-Secure/End-Device/src (for L1-Secure version)

3. $make telosb install.4 bsl,/dev/ttyUSB1 (for sensor in Room 4)

4. $make telosb install.6 bsl,/dev/ttyUSB3 (for sensor in Room 6)

5. $make telosb install.8 bsl,/dev/ttyUSB4 (for sensor in Room 8)

3.3.1 IEEE802154 Capture Packets & Analysis

The IEEE802154 version of the STMS makes use of the LED lights for demonstration purposes and

checking if the application is working as expected. As shown in Figure 3.7 there are various lights

turned on for each TelosB. The TelosB mote in port USB0 is the Coordinator which blinks the

green LED light for every successful End-Device association and blinks the blue light for every packet

received. The TelosB motes in ports USB1, USB3 and USB4 are the the End-Devices, which turn

on the green LED light when successfully establishing a association with the Coordinator and blink

the blue LED light for every packet sent. The TelosB mote in port USB2 is the PPPSniffer which

blinks the green LED light for every packet capture and the red LED light for every capture packet

sent to the computer.

26

Figure 3.7: A picture taken of our USB hub and TelosB motes with the IEEE802154 version and
PPPSniffer running

To display the actual temperature readings collected from the End-Device we use the Serial Port

Terminal (SPT), which can be installed through the Ubuntu Software Center. Once opened the SPT

requires setting the proper configurations by clicking on ”Configurations > Port” then setting the

Port field to /dev/ttyUSB0 and Baud Rate field to 115200. Figure 3.8 shows the results of displaying

the data received by the Coordinator which is plugged in to port USB0. As we can see from the

results, the sensors located in Room 4 and Room 8 were reading temperature levels of 81oF or 82oF .

The two sensors were located in the same graduate lab room in the Computer Science Department at

James Madison University. The environment for sensor 6 was changed to demonstrate that sensors

can be powered by batteries and may collect different temperature levels. We used two double AA

batteries to power sensor 6 and placed the sensor in our graduate lab refrigerator. As seen in the

results, the temperature readings for Room 6 were 48oF or 49oF , which was the same temperature

set in the refrigerator. We must point out that the temperature readings may be affected by 1oF or

2oF due to heat generated by the MSP430 when constantly being used.

27

Figure 3.8: The output generated by the serial port terminal, which displays temperature readings
received by the Coordinator

The information collected by Wireshark shows detailed traffic going across our STMS IEEE802154

network and the results have been saved in the IEEE802154.pcapng file, which can be accessed

through our Github project [75]. Before analyzing the information, Wireshark must be configured

properly to interpret IEEE 802.15.4 packets. First click on ”Edit > Preferences...”, then on the

Wireshark Preferences - Profile window select ”Protocols > IEEE 802.15.4” and make sure that

the ”TI CC24xx FCS format” box is checked. Apply the new settings and, once the Wireshark

Preferences - Profile window closes, right click on any of the packets and click on ”Decode as...”.

On the Wireshark Decode As window select the link tab and make sure the value for the Ethertype

0x86dd value ”IEEE 802.15.4” is selected. The capture packets between the Coordinator and the

End-Devices will be decoded as IEEE 802.15.4 format and will make the interpretation process eas-

ier. Figure 3.9 shows the results of capturing packets going across the STMS IEEE802154 network.

As we can see from the results, packets 1, 2 and 3 belong to the association between the Coordinator

and the first End-Device sensor. Packets 4, 5, and 6 belong to the association between the Coordi-

nator and the second End-Device sensor. Packets 8, 9, and 10 belong to the association between the

Coordinator and the third End-Device sensor. The rest of the packets are the temperature readings

collected by the End-Devices and sent to the Coordinator.

28

Figure 3.9: The packets going across the STMS IEEE802154 network.

Figure 3.10 shows details about packet 1, which is the Association Request packet sent by the

End-Device to the Coordinator. Some of the interesting fields found are the Destination Personal

Area Network (PAN), Destination, Source PAN, and Extended Source. A sensor device will either

have an extended address (also known as ”unique address”) or a short address that was allocated by

the PAN Coordinator when the End-Device associated[74]. The destination PAN identifier address

0x1234 allows communication between PANs and serves transmissions between End-Devices across

independent networks. The destination address 0x9999 is the short address of the Coordinator and

was predefined along with the destination PAN during the development of the STMS IEEE802154.

The source PAN address 0xffff is the short address of the End-Device and by default is set to

0xffff if the End-Device has not yet been associated with a PAN. The extended source address

01:01:48:43:54:2f:26:b5 is the unique address of the End-Device requesting to join the PAN. As

shown in Figure 3.11, the response sent by the Coordinator to the End-Device is an Association

Response packet. In this case, the extended source address 00:00:83:4e:21:ac:75:e2 is the unique

address of the Coordinator. The short address assigned to the End-Device by the Coordinator is

0x002b, which is unique with the 0x1234 PAN. The Coordinator assigns short addresses to new End-

Devices that join the network by incrementing from the previously assigned address. In this case the

next End-Device that joins the network will receive the value of 0x002c. The short address value will

29

be reset to 0x0000 when the Coordinator has rebooted by pressing the reset button on the motes.

Once the association has been established the communication continues by sending temperature

readings from the End-Device to the Coordinator. Figure 3.12 shows the hex values found on the

payload section of the packet. The payload consists of 8 bytes, where the first four bytes 0x0004,

or 4, is the Node ID and the last 4 bytes 0x1b13, or 6913, is the temperature data. If we convert

the 6913 to Fahrenheit using the Sensirion formula we get −39.3 + (0.018 × 6913) or 85oF . The

temperature value has increased because the motes were running for a long period of time; therefore,

sending temperature packets every 3 seconds affected the temperature sensor by 3oF .

Figure 3.10: An example of the association request packet sent from the End-Device to the Coordi-
nator.

30

Figure 3.11: An example of the association response packet sent from the Coordinator to the End-
Device.

Figure 3.12: An example of the payload portion found in the packet sent from the End-Device to
the Coordinator.

3.3.2 L1-Secure Capture Packets & Analysis

The L1-Secure version of STMS also makes use of the LED lights for demonstration purposes and

checking if the application is working as expected. As shown in Figure 3.13, there are fewer lights

turned on compared to the IEEE802154 version. The TelosB mote in port USB0 is the Coordinator,

which blinks the blue LED light for every packet received. The TelosB motes in ports USB1, USB3

and USB4 are the the End-Devices, which blink the blue LED light for every packet sent. The

TelosB mote in port USB2 is the PPPSniffer, which blinks the green LED light for every packet

captured and the red LED light for every capture packet sent to the computer.

31

Figure 3.13: A picture taken of our USB hub and TelosB motes with the IEEE802154 and PPPSniffer
running

Similar to the IEEE802154 version, we display the data received by the Coordinator using the

Serial Port Terminal (SPT) tool in our L1-Secure version. Figure 3.14 shows the results of displaying

the data received by the Coordinator plugged in to port USB0. The results show the sensors located

in Room 4 and Room 8 were reading temperature levels of 83oF to 85oF . Again, the sensors were

reading higher temperatures because the motes had been running for an extended period of time,

thus making the MSP430 chips produce heat. If the sensors were programmed to the collected

temperature measurements every 3 hours, instead of 3 seconds, then the temperature measurements

would be more accurate. We can also observe from the results that the sensor in Room 6 was no

where to be found and, instead, random data was displayed. We modified the code for the sensor

in Room 6 to use a different key than the network wide shared key, thus the Coordinator was not

able to decrypt the message sent by the sensor in Room 6. The purpose was to demonstrate that

if the correct key is not used then the Coordinator can be programmed to ignore the ”garbage,” or

random data.

32

Figure 3.14: The output generated by the serial port terminal, which displays temperature readings
received by the Coordinator

Figure 3.15: The packets going across the STMS L1-Secure network.

The detailed traffic collected by Wireshark for the STMS L1-Secure network is found in the

L1-Secure.pcapng file, which can be accessed through our Github project[75]. The same procedures

discussed in the previous sample were used to Decode the packets to IEEE 802.15.4 format. Figure 3.9

shows the results of capturing packets going across the STMS L1-Secure network. All of the packets

are data packets sent by the End-Devices to the Coordinator. We do not see any Association packets

because the L1-Secure version does not require the End-Devices to associate with the Coordinator.

The End-Devices will collect temperature levels, encrypt the payload of a packet and ”broadcast”

33

the temperature packets on the network. Therefore, any motes within the range of communication

will be able to capture the broadcast packets but will not be able to interpret the data without

the encryption key. Figure 3.16 shows an example of a mote ”PPPSniffer” that is within the range

collecting the packets going across the L1-Secure network. The samples show the hex values found

on the payload section of three packets sent by the sensor in Room 4 to the Coordinator. The data

is supposed to be the Node ID along with the temperature data; however, the data appears to be

random. The payload portion of the packets are being encrypted by the network wide shared key

used by the Coordinator and End-Devices. If the PPPSniffer knew the network wide shared key

then the eavesdropper would be able to decrypt the traffic in the L1-Secure network.

(a) Sensor 4 Sample 1

(b) Sensor 4 Sample 2

(c) Sensor 4 Sample 3

Figure 3.16: An example of the encrypted payload portion found in the packet sent from the End-
Device in Room 4 to the Coordinator.

3.4 Chapter Summary

In this chapter, we contributed a working implementation of our Secure Temperature Monitoring

System. We discussed our approach of using a star topology, where the central node was the Coor-

dinator and the end nodes were the End-Devices. The STMS design has two versions: one version

supporting associations between sensors and the second version supporting encrypted communica-

tions. We used TinyOS to implement our STMS as well as the TelosB motes to test our STMS. The

association between the Coordinator and End-Device was first established before sending the tem-

34

perature reading to the Coordinator. The temperature readings are encrypted by the End-Devices

before sending them to the Coordinator. We deployed a TelosB mote as a packet sniffer to check

the functionality of the STMS. Our results show that our STMS was successfully able to associate

sensors that join the network, as well as encrypt the communication within our STMS network.

35

Chapter 4

Breaking The MSP430-BSL Password

With the Secure Temperature Monitoring System in place, this chapter discusses how the security

of a WSM environment can be broken. As mentioned in Chapter 2 there has been numerous

proposals presented to improve the security of WSNs; however, most of them are concentrated in

the Application, Network, and Link layers [4][9][1][11][14][13][15][12][16][42][17][8][18]. Most of the

security research papers make node capture attack assumptions with no details on the outcome

of having direct physical access to the sensor node [23][24][25][51][50][52][53][54][55]. Therefore, the

purpose of Chapter 4 is to evaluate the time needed to break into a TelosB mote and dump firmware.

First, a brief discussion of the two methods used to program MSP430 chips will be reviewed. Next,

the password used to protect access to the MSP430 firmware will be analyzed. Lastly, the process

of brute forcing the password to get access to MSP430 and dump the firmware will be investigated.

4.1 Programming the MSP430

The MSP430 can be programmed in two different ways. The first way is through the use of JTAG

connector, which requires additional hardware. The second and more convenient way is through the

use of the USB serial bootstrap loader (BSL).

1. JTAG

The TelosB motes support MSP430 programing through the use of the JTAG 8-pin 2mm

connector. In addition to programming, the JTAG connector allows on-chip debugging, single

stepping through code, reading from memory, and writing to memory. Texas Instrument

provides the FET debugger, which is a USB interface that connects to the JTAG interface to

allow programing and debugging MSP430 code [60]. For the most part the JTAG connector

is mainly used by developers to test the functionality of their equipment. With that being

said, access to the JTAG is unprotected, allowing anyone with a JTAG adapter full access

to code store in flash memory or RAM. In our case, the JTAG interface allowed us to access

the STMS application and locate the encryption keys used for our secure WSN environment.

Furthermore, proprietary firmware can be easily downloaded using the JTAG interface and

36

dumped code can be replicated for personal benefit [57]. To prevent unwanted access to the

JTAG interface, the MSP430 provides a feature of fuse blowing. The JTAG port is protected

by a fuse; blowing the fuse completely disables the entire JTAG test circuitry in the micro-

controller and is irreversible [60]. Once the fuze is blown the only way to program the MSP430

is through the USB bootstrap loader.

2. BSL

Unlike the JTAG interface, access to the USB bootstrap loader (BSL) is password protected,

which makes it ideal for after production. Furthermore, the MSP430-BSL interface provides

access to flash memory as well as RAM, making the programing task easier by not requiring

additional hardware. Even after the JTAG fuse has been blown, the BSL interface continues to

function as expected making it optimal for in the field mote maintenance. The MSP430-BSL

is a unique code located in a factory-masked boot ROM, which does not allow write or erase

access to prevent the BSL code from being altered. The BSL code consists of commands that

use the UART protocol with RS232 interfacing to allow communication between a computer

and the MSP430 [26]. The key feature of the MSP430-BSL is the restricted commands allowed

if the user does not have the password. Table 4.1 shows the commands allowed with and

without the password.

Table 4.1: MSP430-BSL Commands Allowed Without vs. With The Password

Command Without Password With Password
Mass Erase Yes Yes
Transmit BSL Version Yes Yes
Change Baud Rate Yes Yes
Receive Password Yes Yes
Receive Data Block No Yes
Transmit Data Block No Yes
Erase Segment No Yes
Erase Check No Yes
Set Memory Offset No Yes
Load Program Counter No Yes
Start User Program No Yes

In Table 4.1 full access to the MSP430 is allowed only if the user provides the correct password. If no

password is provided then the only useful commands allowed to the user is to send the password to

the MSP430 or mass erase all of the content in the MSP430 flash memory. The mass erase will allow

full access to the mote since the password will be reset to default (details will be provided in Section

4.2). Mass erasing the flash memory defeats the purpose of getting access to the firmware stored

in the MSP430 mote. Therefore, providing the correct password is ideal to obtaining meaningful

37

information about the applications stored in sensor nodes. We are interested in the Transmit Data

Block command, which is only allowed if the correct password has be entered. The Transmit Data

Block command allowed us to dump the firmware found in flash memory, which later can be reverse

engineered to get encryption keys used in a secure WSN environment. Furthermore, proprietary

firmware can also be obtained if the correct password is entered. We have left details about the

password for a dedicated section since the main security flaw of MSP430 is found with the password

used for the BSL.

4.2 Analyzing The BSL Password

The MSP430-BSL used a 32-bytes password to protect firmware found in flash memory. As discussed

in the previous section, the memory address used for the MSP430-BSL password was the same as

the Interrupt Vector Table (IVT); therefore, the BSL password was identical to the IVT. Since the

password was the IVT, the BSL password resides at the top of the memory at address 0xFFFE to the

memory address 0xFFE0 (refer to Figure 5.1). Furthermore, the 32-bytes password was broken down

into sixteen values, each 2-bytes (16-bit addressing) in size. Each of the 2-bytes values corresponds

to the address of an interrupt handler. With that being said, Figure 4.1 shows the Interrupt Vector

Table for the MSP430F15x, MSP430F16x, and MSP430F161x chips [66]. In order to understand how

the MSP430-BSL password is generated we had to understand how the IVT was created. First of all,

the address that was generated for each interrupt vector handler was dependent on the application

used and the compiler version. For instance, if the application being compiled used various event

handlers then the values in the IVT would change accordingly. Furthermore, different compiler

versions would generate different address values for each interrupt vector handler. Second of all, we

must discuss in detail how the address for each interrupt handler was determined by examining the

16 interrupt handlers supported by the MSP430 chips. Before discussing each interrupt handler,

we must highlight some of the data found in Figure 4.1. As we can see from priority column, the

highest priority level of 15 was located at the top of the memory address (0xFFFE). The priority

level decreased as the memory address decreased all the way up to the lowest priority level of 0,

located at the bottom of the memory address (0xFFE0). As we discuss more about each interrupt

handler, we will reference the values located in each column of Figure 4.1 [66].

38

Figure 4.1: The interrupt vector table for the MSP430F15x, MSP430F16x, and MSP430F161x chips.

• 0xFFFE: WDTIFG, KEYV

The watchdog timer interrupt flag (WDTIFG) is responsible for handling any system resets

due to any security key violations (KEYV), reset on VCC power-on, or a reset on application

malfunction [60].

• 0xFFFC: NMIIFG, OFIFG, ACCVIFG

The non-maskable interrupt flag (NMIIFG) is responsible for handling non-recoverable

hardware errors. The oscillator fault interrupt flag (OFIFG) is responsible for handling

any oscillator rate errors. The flash memory access violation interrupt flag (ACCVIFG) is

39

responsible for handling any erase or programming requests sent while the flash memory is

busy [76].

• 0xFFFA: TBCCR0 CCIFG

The Timer B7 is one of the two general purpose 16-bit counters that counts up until the

value in the TBCCR0 register is reached. The capture/compare interrupt flag (CCIFG) is

set once the counter has reached the value store in TBCCR0 register. The CCIFG will be

set until the interrupt request has been handled and will be reset to 0 after completion[77].

• 0xFFF8: TBCCR1 to TBCCR6 CCIFGs, TBIFG

The Timer B7 is one of the two general purpose 16-bit counters that counts up until the

value in either TBCCR1 through TBCCR6 registers is reached. The capture/compare

interrupt flag (CCIFG) is set once the counter has reached the value store in either TBCCR1

through TBCCR6 registers. The CCIFG will be set until the interrupt request has been

handled and will be reset to 0 after completion. The timer rollover interrupt flag (TBIFG)

will be set when the timer counts down from the value in TACCR0 register to 0 [77].

• 0xFFF6: CAIFG

The comparator a interrupt flag (CAIFG) is responsible for handing any analog-to-digital

conversions, battery-voltage supervision, and monitoring of external analog signals [60].

• 0xFFF4: WDTIFG

The watchdog timer interrupt flag (WDT) is responsible for handling any system resets

software problem that occurs. The watchdog timer can also be configured to serve as an

interval timer and will generate interrupts at selected time intervals[66].

• 0xFFF2: URXIFG0

The UART and SPI receive interrupt flags (URXIFG0) are responsible for handling serial

data communication through the universal synchronous/asynchronous receiver peripheral.

The USART0 supports synchronous SPI, asynchronous UART and I2C communication

protocols using the receive buffer channel[66].

• 0xFFF0: UTXIFG0 I2CIFG

The UART and SPI transmit interrupt flags (URXIFG0) are responsible for handling serial

data communication through the universal synchronous/asynchronous transmit peripheral.

40

The USART0 supports synchronous SPI, asynchronous UART and I2C communication

protocols using the transmit buffer channel [66]. The I2C interrupt flag is set when I2C is

being used for the serial data communication.

• 0xFFEE: ADC12IFG

The ADC12 interrupt vector flag (ADC12IFG) is responsible for handling efficient analog-

to-digital conversions through the use of a 16 work conversion-and-control buffer[66]

• 0xFFEC: TACCR0 CCIFG

The Timer A3 is one of the two general purpose 16-bit counters that counts up until the

value in the TACCR0 register is reached. The capture/compare interrupt flag (CCIFG) is

set once the counter has reached the value store in TACCR0 register. The CCIFG will be

set until the interrupt request has been handled and will be reset to 0 after completion[77].

• 0xFFEA: TACCR1 and TACCR2 CCIFGs, TAIFG

The Timer A3 is one of the two general purpose 16-bit counters that counts up until the

value in either TACCR1 or TACCR2 registers is reached. The capture/compare interrupt

flag (CCIFG) is set once the counter has reached the value store in any of the TACCR1 or

TACCR2 registers. The CCIFG will be set until the interrupt request has been handled

and will be reset to 0 after completion. The timer rollover interrupt flag (TAIFG) will be

set when the timer counts down from the value in TACCR0 register to 0 [77].

• 0xFFE8: P1IFG.0 to P1IFG.7

The port 1 interrupt flag (P1IFG.#) is responsible for handling general Input and Output

interrupts. Each interrupt flag has the I/O following description [66]:

– IFG.0 - clock signal TACLK input

– IFG.1 - capture: CCI0A input and compare: Out0 output/BSL transmit

– IFG.2 - capture: CCI1A input, compare: Out1 output,

– IFG.3 - capture: CCI2A input, compare: Out2 output

– IFG.4 - signal output

– IFG.5 - compare: Out0 output

– IFG.6 - compare: Out1 output

– IFG.7 - compare: Out2 output

41

• 0xFFE6: URXIFG1

The UART and SPI receive interrupt flags (URXIFG1) are responsible for handling serial

data communication through the universal synchronous/asynchronous receiver peripheral.

The USART1 supports synchronous SPI and asynchronous UART communication protocols

using the receive buffer channel[66].

• 0xFFE4: UTXIFG1

The UART and SPI transmit interrupt flags (URXIFG1) are responsible for handling serial

data communication through the universal synchronous/asynchronous transmit peripheral.

The USART1 supports synchronous SPI and asynchronous UART communication protocols

using the transmit buffer channel[66].

• 0xFFE2: P2IFG.0 to P2IFG.7

The port 2 interrupt flag (P2IFG.#) is responsible for handling general Input and Output

interrupts. Each interrupt flag has the I/O following description [66]:

– IFG.0 - output

– IFG.1 - clock signal at INCLK

– IFG.2 - capture: CCI0B input/Comparator A output/BSL receive

– IFG.3 - compare: Out1 output/Comparator A input

– IFG.4 - compare: Out2 output/Comparator A input

– IFG.5 - external resistor defining the DCO nominal frequency

– IFG.6 - 12-bit ADC/DMA channel 0 external trigger

– IFG.7 - compare: Out0 output

• 0xFFE0: DAC12 0IFG, DAC12 1IFG, DMA0IFG, DMA1IFG, DMA2IFG

The DAC12 interrupt flags (DAC12 0IFG and DAC12 1IFG) are responsible for handling

any digital-to-analog conversion and are used in conjunction with the DMA controller. The

DMA interrupt flags (DMA0IFG, DMA1IFG and DMA2IFG) are responsible for handling

any movement of data from one memory address to another without CPU intervention[66].

4.3 Breaking The BSL Password

The following section will be broken down into four subsections in order to help the reader understand

the process of breaking the MSP430-BSL password. The first section will discuss the time it takes

42

to brute force the 32-bytes MSP430-BSL password. The second section will discuss how a sample

of passwords were collected using various sensor applications. The third section will discuss the

technique used in this thesis to predict the MSP430-BSL password. Lastly, the fourth section

will discuss the time it takes to break the MSP430-BSL password using our password prediction

technique.

4.3.1 Brute Forcing The MSP430-BSL 32-bytes Password

To brute force the 32-bytes (256-bit) MSP430-BSL password required a significant amount of time.

A key that is 256-bits in length has a key space of 2256 or 1.1579× 1077 possible keys. Brute forcing

a 256-bit key space is unreasonable but for the sake of argument we evaluated how long it takes

to brute force the MSP430-BSL 32-bytes password using our TelosB motes. To demonstrate how

long it takes to check a password we used our IEEE802154 Coordinator application as an example.

The correct password for our tests is the IVT table generated by the compiler when building out

IEEE802154 Coordinator application. We implemented a python script that calculated the time it

took to check the correct password vs the incorrect password with our TelosB mote. The pwd-time-

check.py script can be accessed through our Github project [75]. Figure 4.2 shows the time it took

to check 1, 200, 400, 600, and 1000 correct passwords and incorrect passwords. The data presented

in the graph is an average time of 10 trials performed to check the correct password (Table A.1)

and 10 trials to check the incorrect password (Table A.2). The results show the time to guess a

correct password vs a incorrect password is equivalent. Our results are roughly the same as the ones

presented by Becher et al. [27].

43

Figure 4.2: The bar graph above displays the time it takes in seconds to guess N number of correct
passwords and incorrect passwords.

The results show us that on average the TelosB mote is able to check 15 passwords per second

regardless if the password is correct or incorrect. However, we were able to increase the passwords

check significantly by changing the baud rates. The results in Figure 4.2 are an average of checking

the passwords using the default BSL baud rate of 9600. Our TelosB mote supported baud rates

up to 38400; therefore, significantly increasing the number of passwords checked per second. Using

the same pwd-time-check.py script we added a code to change the default baud rate of 9600 to

the maximum supported TelosB baud rate of 38400. Figure 4.3 shows the comparison of using the

default baud rate of 9600 to a faster TelosB baud rate of 38400. Similar procedures were followed

by checking 1, 200, 400, 600, and 1000 passwords with 10 trials (Table A.3). The results show us

that on average the TelosB mote using a baud rate 38400 was able to check 38 passwords per second

regardless if the password was correct or incorrect. That is 23 passwords more per second than using

the default baud rate of 9600. Our results are roughly the same as the ones presented by Goodspeed

[28].

44

Figure 4.3: The bar graph above display the time it takes in seconds to guess N number of correct
passwords using different baud rates (9600 vs 19200 vs 38400).

With that being said, using a baud rate of 38400 allowed us to guess 38 passwords per second

or 2280 passwords per minute. To brute force a key space of 2256 would require 9.66 × 1067 (4.1)

years! Becher et al. [27] was actually able to reduce the 9.66× 1067 years to 128 years by evaluating

MSP430-BSL password bits. The 256-bit password was reduced to a 40-bit password by considering

that MSP430 instructions must be even-aligned (240-bit), the reset vector always points to the

beginning of main memory (225-bit), not all interrupts are used (60-bits), and assuming that the

program uses 2kb of flash memory (40-bits)[27]. Furthermore, Goodspeed[28] was able to reduce the

128 years to 32 years by making use of the 38400 baud rate. However, 32 years is still not practical

and further key space reduction is necessary to make the breaking of the MSP430-BSL password

plausible.

((((2256 ÷ 2280)÷ 60)÷ 24)÷ 365) or 9.66× 1067 (4.1)

4.3.2 Generating Password Samples

The best way to reduce the brute force times for the MSP430-BSL password is to use a pat-

tern/prediction technique instead of reducing the bits. In order to predict a password we first had

to collect password samples to analyze and evaluate. Since the MSP430-BSL password is identical

to IVT, then we needed various MSP430 sensor applications to generate password samples. Luckily

45

for us, TinyOS provides numerous sensor applications under their /tinyos-main/apps directory[68].

A bash script was implemented to iterate through all the applications under the /apps directory to

build each application. Building the application generates an Intel HEX (main.ihex) file, which was

the binary representation of the application in ASCII text format. The main.ihex file contains the

IVT; therefore, the bash script uses a python script to dump the IVT from the main.ihex file. Both

the bash script generate-pwds.sh and the pythons script dump-pwd.py can be accessed through our

Github project [75].

Unfortunately, out of the 200 TinyOS application samples, only 93 were able to be successfully

compiled and build. There are three main reasons why the other 107 applications did not compile.

First of all, not all applications were properly ported from TinyOS 1.x to TinyOS 2.x; therefore,

some applications have compile-time errors [78]. Second of all, the TelosB motes only have 48kb of

flash memory; therefore, if the application was bigger than 48kb then an error occurred. Third, not

all applications were built for the TelosB mote; therefore, a few of them were solely meant for MICA

motes. With that being said, the password sample size of 93 applications showed promising results

for future password predictions.

4.3.3 Password Pattern Algorithm

The following section proposes the algorithm used to predict future passwords and reduce brute

force times for the MSP430-BSL password. The 93 passwords obtained from the generate-pwds.sh

script were used to create the password pattern algorithm. Before proposing our algorithm it is im-

portant to first discuss how the 32-bytes password is identical to the IVT. The dump-pwd.py script

outputs a copy of the data stored at address 0xFFE0 to 0xFFFF. The 32 bytes copied from the the

address range is the MSP430-BSL password or IVT. The following 32 bytes dumped correspond to

the TinyOS Blink application.

0xe2 0x43 0xe2 0x43 0xe2 0x43 0xe2 0x43 0xe2m 0x43 0x7c 0x49 0x5e 0x49 0xe2 0x43

0xe2 0x43 0xe2 0x43 0xe2 0x43 0xe2 0x43 0xc0 0x49 0xa2 0x49 0xe2 0x43 0x00 0x40

The 32-bytes map to the 16 interrupts found in the IVT of the MSP430 chips. With that being said,

the 32-bytes can be broken down into sixteen 2-bytes blocks. The values in each block corresponds

to the address of the Interrupt Service Routine (ISR). The values must be translate to little endian

to obtain the corresponding memory address. Table 4.2 shows the conversion of the 32-bytes to the

corresponding IVT entry for the Blink TinyOS application. As we can see from Table 4.2, 11 out of

16 IVT entries are duplicates. These entries are duplicates because they point to the same address in

memory. The IVT entries point to the same address in memory because those interrupts are unused.

46

Applications that have unused interrupts have lower brute force times because the password size is

12-bytes (6 IVT entries, 2-bytes each) or 96-bits. The password size of 96-bits is still not practical

and not all applications have 11 unused interrupts.

Interrupt Flag Address Priority Value

WDTIFG, KEYV 0xFFFE 15 0x4000

NMIIFG, OFIFG, ACCVIFG 0xFFFC 14 0x43e2

TBCCR0 CCIFG 0xFFFA 13 0x49a2

TBCCR1 to TBCCR6 CCIFGs, TBIFG 0xFFF8 12 0x49c0

CAIFG 0xFFF6 11 0x43e2

WDTIFG 0xFFF4 10 0x43e2

URXIFG0 0xFFF2 9 0x43e2

UTXIFG0 I2CIFG 0xFFF0 8 0x43e2

ADC12IFG 0xFFEE 7 0x43e2

TACCR0 CCIFG 0xFFEC 6 0x495e

TACCR1 and TACCR2 CCIFGs, TAIFG 0xFFEA 5 0x497c

P1IFG.0 to P1IFG.7 0xFFE8 4 0x43e2

URXIFG1 0xFFE6 3 0x43e2

UTXIFG1 0xFFE4 2 0x43e2

P2IFG.0 to P2IFG.7 0xFFE2 1 0x43e2

DAC12 0IFG, DMA2IFG 0xFFE0 0 0x43e2

Table 4.2: A sample of the IVT for the Blink application

For example, the PPPSniffer application provided by TinyOS had less unused interrupts com-

pared to the Blink application. Table 4.3 shows the IVT values for the PPPSniffer TinyOS applica-

tion. As we can see from Table 4.3, 7 out of 16 IVT entries are unused , which shortens the password

brute force size to 20-bytes (10 IVT entries, 2-bytes each), or 160 bits.

47

Interrupt Flag Address Priority Value

WDTIFG, KEYV 0xFFFE 15 0x4000

NMIIFG, OFIFG, ACCVIFG 0xFFFC 14 0x4680

TBCCR0 CCIFG 0xFFFA 13 0x71d0

TBCCR1 to TBCCR6 CCIFGs, TBIFG 0xFFF8 12 0x71ee

CAIFG 0xFFF6 11 0x4680

WDTIFG 0xFFF4 10 0x4680

URXIFG0 0xFFF2 9 0x73c8

UTXIFG0 I2CIFG 0xFFF0 8 0x743a

ADC12IFG 0xFFEE 7 0x4680

TACCR0 CCIFG 0xFFEC 6 0x714e

TACCR1 and TACCR2 CCIFGs, TAIFG 0xFFEA 5 0x7168

P1IFG.0 to P1IFG.7 0xFFE8 4 0x7214

URXIFG1 0xFFE6 3 0x4680

UTXIFG1 0xFFE4 2 0x4680

P2IFG.0 to P2IFG.7 0xFFE2 1 0x7316

DAC12 0IFG, DMA2IFG 0xFFE0 0 0x4680

Table 4.3: A sample of the IVT for the PPPSniffer application

With that being said, it was important to test whether there was a correlation between the

number of unused interrupts and the code size of the application. One would assume the bigger

the application the more likely interrupts would be used. We wrote a script to convert the 32-bytes

passwords to their corresponding IVT entries (little endian) for each application. Due to the size of

the password sample, the table with all the IVT entries was not added to the Appendix A; however,

the results along with the convert-endianess.py script can be access through our Github project

[75]. Using the results from the convert-endianess.py script, we wrote a python script that iterated

through all the applications and determined the number of unused interrupts for each application.

Furthermore, an additional bash script (get-apps-size.sh) was implemented to iterate through all

the TinyOS applications and obtain the code size of each application. Table A.4 shows the results

of the scripts in descending order (from largest to smallest) for code size. The results show us the

assumption made was incorrect and there was no correlation between code size and the number of

unused interrupts. For instance, /apps/TCPEcho application was 35-kB in size and had 7 unused

48

interrupts, where as the /apps/tests/storage/block application was 9-kB is size and had the same

number of unused interrupts. The relation between the code size of an application to the number

of unused interrupts was not coherent and suggests that interrupts are only used if the application

specifically makes use of the interrupt. Applications that have unused interrupts point to an address

in memory with the following instruction:

address: br #0x4321

...

0x4321: reti

The designated memory address simply executes the RETI instruction to end an interrupt service

routine; hence, the reason why we see IVT entry duplicates regardless of the code size. The next

step was to determine exactly how many applications have N number of unused interrupts. Table 4.4

shows the number of applications that have either eleven, ten, nine, seven, six, five or four unused

interrupts. We will reference Table 4.4 later on in this section to help explain the password pattern

algorithm used to reduce brute force times for the MSP430-BSL password.

Table 4.4: The number of unused interrupts with the number of applications

Unused Interrupts Applications
Eleven 13
Ten 3
Nine 9
Seven 47
Six 2
Five 12
Four 7
Total Applications 93

Even though the unused interrupts shortens the key space it is still not practical to brute force

without determining patterns found in the IVT entries. To obtain more intel about the IVT entries,

we implemented our password pattern algorithm using python. Our password pattern algorithm

consists of first sorting the addresses found in each IVT entry and second taking the differences

between the sorted addresses. Since the values stored in each IVT entry point to an ISR address

then the output of the sort-order.py script is the ISR addresses in ascending order. The python script

also provided the corresponding IVT entry position to assist in maintaining the order of the IVT

entries. Keeping track of the IVT entries order is very important since the order of the interrupts

matters when reconstructing the password. The rest of this section will discuss how the sorted

IVT entry values were used to our advantage to reduce the brute force time of the MSP430-BSL

password.

49

First, sorting the addresses found in the IVT entries showed us which interrupts were most

commonly unused in our applications. Figure 4.4 shows the interrupts that were unused in our

applications sample. The IVT entry 15 always points to the start of the program (0x4000); thus, it

will always be the same for all applications. The IVT entries 0, 10, 11 and 14 were never used by the

applications we analyzed (refer to Figure 4.5). The IVT entries 5, 6, 12, and 13 were always used by

applications we analyzed and corresponded to the Timer B and Timer A interrupt handlers. The

results make sense since TinyOS is an event-driven operating system that relies heavily on triggers

such as timers[79].

Figure 4.4: The number of unused IVT entries for our application sample size.

Figure 4.5: Patterns found when sorting the IVT entries.

50

Second, using the sorted addresses of the IVT entries we analyzed the differences between two

consecutive addresses. We implemented a python script (IVT-Entry-Diff.py) that iterated through

all the sorted addresses in the IVT for each application and took differences between the addresses.

The results of the script showed significant consistency between applications when evaluating the

differences between IVT entry values. The consistency between addresses found in the IVT entries

allowed use to significantly decrease the brute force time of the MSP430-BSL password.

4.3.4 Brute Forcing Using Password Prediction

Before evaluating the consistent differences between addresses found in the IVT entries we must

point out that the order of the IVT entires matter. Since the positions of the IVT entries changed

after sorting, the order of the new sorted IVT entry positions are important when reconstructing the

IVT or password. To demonstrate our theory of reducing the brute force time for the MSP430-BSL

password we provide experiment results of 3 different categories of unused interrupts. The categories

are 7 unused interrupts (Category 1), 11 unused interrupts (Category 2) and 5 unused interrupts

(Category 3).

Experiment 1

Experiment 1 consisted of applications that had 7 unused interrupts and the applications sample

size is 47 applications. Most of the applications of our sample fell within Category 1; therefore,

having a more promising brute force success. The results of the IVT-Entry-Diff.py script showed

us a consistency difference between addresses found in the IVT entries of applications that have 7

unused interrupts . Figure 4.6 shows an example of the differences between the sorted addresses

found in the IVT entries of 10 applications. For example, for App42 (/apps/tests/TestAM), the

value stored in IVT entry 15 (p15) is 0x4000 and the value stored in IVT entry 0 (p0) is 0x450E

then the difference between p0 and p15 is 0x50E (1294). We also see that the IVT entries p0, p10,

p11, p14, p7, p3, and p2 are the IVT entry duplicates (unused interrupts) because the difference

between these values will always be 0.

51

Figure 4.6: The patterns found when taking the difference between two consecutive sorted address
found in the IVT entries

To predict the value stored in IVT entry 0 as well as all the other unused interrupts, we evaluated

the differences found between entry 0 and entry 15 with all the 47 applications. Figure 4.7 shows

results of taking the difference between entry 0 and entry 15. As we can see from the results, the

difference between the address stored in entry 0 and the address stored in entry 15 (0x4000) will

always fall within the range of 1,000 (0x3E8) to 2,000 (0x7D0). Therefore, to predict the address

in IVT entry 0 we must brute force all possible even numbers between 0x43E8 and 0x47D0. Since

the address had to be an even number we had 500 possible combinations to try when brute forcing

values for IVT entries p0, p10, p11, p14, p7, p3, and p2.

52

Figure 4.7: The patterns found when taking the difference between IVT entry 0 and entry 15

The next value that is not a duplicate in Figure 4.6 is the difference between IVT entry 6 and

IVT entry 2. Figure 4.7 shows the results of taking the difference between entry 6 and entry 2. As we

can see from the results the difference between the address stored in entry 6 and the address stored

in entry 2 will always fall within the range of 5,000 (0x1388) to 30,000 (0x7530). Furthermore, we

can see the difference between the p6 to p2 decrease from application 1 to 47 that is because the

applications were sorted from largest to smallest in code size. Therefore, since all but one application

that have 7 unused interrupts are roughly 10kB in size (reference Table A.4), then it is safe to say

the smallest application with 7 unused interrupts would be 9kB in size. We can further define the

range to brute force the value in IVT entry 6 from 7,000 (0x1B58) to 29,000 (0x7148). Since the

address had to be an even number we had 11,000 possible combinations to try when brute forcing

values for IVT entry 6.

53

Figure 4.8: The patterns found when taking the difference between IVT entry 6 and entry 2

The next value in Figure 4.6 is the difference between IVT entry 5 and IVT entry 6. In Figure

4.9 the point blue shows results of taking the difference between entry 5 and entry 6. As we can see

from the results, the difference between the address stored in entry 5 and the address stored in entry

6 will always be 30 (0x1E). Therefore, we would only have to add 30 (0x1E) to the address stored

in the IVT entry 6 in order to obtain the address in IVT entry 5. We had 1 possible combination to

try when brute forcing values for IVT entry 5. The next value in Figure 4.6 is the difference between

IVT entry 13 and IVT entry 5. In Figure 4.9 point red shows results of taking the difference between

entry 13 and entry 5. As we can see from the results, the difference between the address stored in

entry 13 and the address stored in entry 5 will always be 38 (0x26). Therefore, we would only have

to add 38 (0x26) to the address stored in the IVT entry 5 in order to obtain the address in IVT

entry 13. We had 1 possible combination to try when brute forcing values for IVT entry position 13.

The next value in Figure 4.6 is the difference between IVT entry 12 and IVT entry 13. In Figure 4.9

point green shows results of taking the difference between entry 12 and entry 13. As we can see from

the results, the difference between the address stored in entry 12 and the address stored in entry 13

will always be 30 (0x1E). Therefore, we would only have to add 30 (0x1E) to the address stored in

the IVT entry 13 in order to obtain the address in IVT entry 12. We had 1 possible combination

to try when brute forcing values for IVT entry position 12. The next value in Figure 4.6 is the

difference between IVT entry 4 and IVT entry 12. In Figure 4.9 point purple shows results of taking

the difference between entry 4 and entry 12. As we can see from the results, the difference between

the address stored in entry 4 and the address stored in entry 12 will always be 38 (0x26). Therefore,

54

we would only have to add 38 (0x26) to the address stored in the IVT entry 12 in order to obtain

the address in IVT entry 12. We had 1 possible combination to try when brute forcing values for

IVT entry 4.

Figure 4.9: The patterns found when taking the difference between the next four values of IVTs

The next value in Figure 4.6 is the difference between IVT entry 1 and IVT entry 4. Figure 4.10

shows results of taking the difference between entry 1 and entry 4. As we can see from the results,

the difference between the address stored in entry 1 and the address stored in entry 4 will always

fall within the range of 240 (0xF0) to 265 (0x109). Therefore, we would only have to add between

240 (0xF0) and 265 (0x109) to the address stored in the IVT entry 4 in order to obtain the address

in IVT entry 1. Since the address had to be a even number we had 12 possible combinations to try

when brute forcing values for IVT entry 4.

55

Figure 4.10: The patterns found when taking the difference between IVT entry 1 and entry 4

The next value in Figure 4.6 is the difference between IVT entry 9 and IVT entry 1. Figure 4.11

shows results of taking the difference between entry 9 and entry 1. As we can see from the results,

the difference between the address stored in entry 9 and the address stored in entry 1 will always be

either 174 (0xAE) or 178 (0xB2). Therefore, we would only have to add either 174 (0xAE) or 178

(0xB2) to the address stored in the IVT entry 1 in order to obtain the address in IVT entry 9. We

had 2 possible combinations to try when brute forcing values for IVT entry 9.

Figure 4.11: The patterns found when taking the difference between IVT entry 9 and entry 1

56

The next value in Figure 4.6 is the difference between IVT entry 8 and IVT entry 9. Figure 4.12

shows results of taking the difference between entry 8 and entry 9. As we can see from the results,

the difference between the address stored in entry 8 and the address stored in entry 9 will always be

either 62 (0x3E) or 92 (0x5C). Therefore, we would only have to add either 62 (0x3E) or 92 (0x5C)

to the address stored in the IVT entry 9 in order to obtain the address in IVT entry 8. We had 2

possible combinations to try when brute forcing values for IVT entry 8.

Figure 4.12: The patterns found when taking the difference between IVT entry 8 and entry 9

The analysis results show us that the key space for applications that had 7 unused interrupts

would roughly be 264,000,000 (4.2) possibilities. Using the baud rate of 38400, a total of 2,280

passwords can be brute forced in 1 minute (refer to Figure 4.3). With that being said, to brute force

the MSP430-BSL password with applications that had 7 unused interrupts it would take 80 (4.3)

days.

500× 11000× 1× 1× 1× 1× 12× 2× 2 or 264, 000, 000 (4.2)

(((264000000÷ 2280)÷ 60)÷ 24) or 80 (4.3)

Experiment 2

Experiment 2 consisted of applications that had 11 unused interrupts and the application sample

size used was 13 applications. The results of the IVT-Entry-Diff.py script showed us a consistent

difference between addresses found in the IVT entries of applications that had 11 hlunused interrupts.

Figure 4.13 shows the results of differences found between the sorted addresses of 13 applications.

57

We can see see that the IVT entries p0, p10, p11, p14, p7, p3, p2, p1, p8, p9 and p4 are the unused

interrupts because the difference between these values are always 0. Using the same approach used

in Experiment 1, we evaluated the differences between addresses found in the IVT entry where there

were spikes because of a significant difference. The differences found between the address stored in

position 0 and the address stored in position 15 (0x4000) will fall within the range of 100 (0x64)

to 1,500 (0x5DC). Since the address had to be an even number we had 750 possible combinations

to try when brute forcing values for IVT entries p0, p10, p11, p14, p7, p3, p2, p1, p8, p9 and p4.

Next, the differences found between the address stored in IVT Entry position 6 and the address

stored in IVT Entry position 4 will fall within the range of 200 (0xC8) to 9,000 (0x2328). Since

the address had to be an even number then we have 4400 possible combinations to try when brute

forcing values for IVT entry position 6. Next the differences found between the address stored in

IVT entry 5 and the address stored in IVT entry 6 will either be 158 (0x9E) or 30 (0x1E). We had 2

possible combinations to try when brute forcing values for IVT entry 5. Next, the differences found

between the address stored in IVT entry 13 and the address stored in IVT entry 5 will always be 38

(0x26). We had 1 possible combination to try when brute forcing values for IVT entry 13. Next, the

differences found between the address stored in IVT entry 12 and the address stored in IVT entry

13 will always be 30 (0x1E). We had 1 possible combination to try when brute forcing values for

IVT entry 12. The analysis results show us that the key space for applications that had 11 unused

interrupts would roughly be 6,600,000 (4.4) possibilities. With that being said, to brute force the

MSP430-BSL password with applications that have 11 unused interrupts it would take 2 (4.5) days.

750× 4400× 2× 1× 1 or 6, 600, 000 (4.4)

(((6600000÷ 2280)÷ 60)÷ 24) or 2 (4.5)

58

Figure 4.13: The patterns found when taking the difference between two consecutive sorted address
found in the IVT entries

Experiment 3

Experiment 3 consisted of applications that had 5 unused interrupts and the application sample

size used was 12 applications. The results of the IVT-Entry-Diff.py script showed us a consistent

difference between addresses found in the IVT entries of applications that had 5 unused interrupts

. Figure 4.14 shows the results of differences between the sorted addresses found in the IVT entries

of 12 applications. We can see see that the IVT entries p0, p10, p11, p14, and p7 are the unused

interrupts because the difference between these values are always 0. Using the same approach used in

Experiment 1 and 2, we evaluated the differences between addresses found in the IVT entries where

there were spikes due to a significant difference. The differences found between the address stored

in entry 0 and the address stored in entry 15 (0x4000) will fall within the range of 1,000 (0x3E8)

to 2,000 (0x7D0). Since the address had to be an even number we had 500 possible combinations

to try when brute forcing values for IVT entries p0, p10, p11, p14, and p7. Next, the differences

found between the address stored in IVT entry 6 and the address stored in IVT entry 7 will fall

within the range of 10,000 (0x2710) to 30,000 (0x7530). Since the address had to be an even number

we had 10,000 possible combinations to try when brute forcing values for IVT entry 6. Next, the

address found in IVT entry 5 will always be 30 (0x1E), the IVT entry 13 will always be 38 (0x26),

and the IVT entry 12 will always be 30 (0x1E0). Therefore, all three IVT entries had 1 possible

combination to try when brute forcing for IVT entries 5, 13, and 12. Next, the differences found

between the address stored in IVT entry 4 and the address stored in IVT entry 12 will either be 42

59

(0x2A) or 38 (0x26). We had 2 possible combinations to try when brute forcing values for IVT entry

4. Next, the differences found between the address stored in IVT entry 1 and the address stored in

IVT entry 4 will either be 242 (0xF2), 244 (0xF4), 248 (0xF8) or 256 (0x104). We had 4 possible

combinations to try when brute forcing values for IVT entry 1. Next, the differences found between

the address stored in IVT entry 9 and the address stored in IVT entry 1 will either be 174 (0xAE)

or 178 (0xB2). We had 2 possible combinations to try when brute forcing values for IVT entry 9.

Next, the differences found between the address stored in IVT entry 8 and the address stored in IVT

entry 9 will always be 92 (0x5C) or 256 (0x100). We had 2 possible combinations to try when brute

forcing values for IVT entry 8. Next, the differences found between the address stored in IVT entry

3 and the address stored in IVT entry 8 will always be 174 (0xAE) or 34 (0x22). We had 2 possible

combinations to try when brute forcing values for IVT entry 3. Next, the differences found between

the address stored in IVT entry 2 and the address stored in IVT entry 3 will always be 134 (0x86)

or 92 (0x5C). We had 2 possible combinations to try when brute forcing values for IVT entry 2.

The analysis results show us that the key space for applications that had 5 unused interrupts would

roughly be 640,000,000 (4.6) possibilities. With that being said, to brute force the MSP430-BSL

password with applications that have 5 unused interrupts it would take 194 (4.7) days.

500× 10000× 2× 4× 2× 2× 2× 2 or 640, 000, 000 (4.6)

(((640000000÷ 2280)÷ 60)÷ 24) or 194 (4.7)

60

Figure 4.14: The patterns found when taking the difference between two consecutive sorted address
found in the IVT entries

Our samples prove that the time estimates made by Becher et al. [27] of 128 years and

Goodspeed[59] of 32 years to brute force the MSP430-BSL password can be decreased to a matter

of days. Keep in mind that if our application’s sample sizes were in the thousands instead of 93

applications then we would be able to further decrease the brute force times to a matter of hours.

Furthermore, a bigger sample size can be useful in determining patterns in applications that make

use of various interrupts. Although our application’s sample was small, there was a variety of in-

terrupts used as well as a variety of unused interrupts. With our sample size we were able to find

significant patterns between various applications, which allowed us to to reduce the brute for times.

Even if the brute force times takes couple days, brute forcing using our approach is still practical by

simultaneously brute forcing multiple capture motes. Making use of more motes is plausible because

End Devices in a WSN will most likely have the same application stored in flash memory. The only

difference found would be the sensor ID or any cryptographic keys used with the sensor node. Since

the MSP430-BSL passwords are only affected by using specific interrupts then identical passwords

will be found in similar applications. Therefore, since most of the applications in our sample fall in

the category of 7 unused interrupts then capturing 10 motes would decrease the brute force time to

roughly 8 (4.8) days. Brute forcing in 8 days is more practical than brute forcing in 128 years or

even 32 years.

80days÷ 10motes or 8 (4.8)

61

4.4 Chapter Summary

In this chapter, we contributed investigation results of analyzing the BSL passwords used to protect

access to the MSP430 MCU. We demonstrated that the password used to restrict BSL access is

identical to the IVT values. We highlighted that the address range used to store the password is

the same as the address range used to store the IVT values. Using TinyOS sample applications, we

generated a password sample size of 93 to evaluate any patterns found between applications. We

found significant patterns between passwords by sorting the addresses found in the IVT and taking

the differences between addresses. Using the results from the applications we analyzed we lowered

the brute force time from years to only days. We proof the brute force time for applications with

11 unused interrupts to be 2 days. To brute force the applications that have 7 unused interrupts it

would take 80 days and for applications that have 5 unused interrupts it would take 194 days.

62

Chapter 5

Reverse Engineering MSP430 Applications

In this chapter we demonstrate the process of reverse engineering MSP430 applications found in flash

memory. As shown in Table 4.1, having the password gives anyone access to all the commands that

can be used with the MSP430. An attacker who knows the password will most likely be interested

in the commands that allow the exchange of information between a computer and the MSP430. In

particular, the attacker will be interested in the ”Transmit Data Block” command to allow a com-

puter to extract binary data found in MSP430 flash memory [26]. Dumping MSP430 applications

found in flash memory will allow an attacker to either make copies of the binary or reverse engineer

the binary. For example, an attacker may be interested in making copies of proprietary applications

found in flash memory for redistribution purposes. More importantly, an attacker is going to be

interested in finding important information about a WSN application by reverse engineering the

sensor applications. For example, an attacker would be interested in reverse engineering our STMS

application to obtain a copy of the cryptographic keys. We prove that the asymmetric cryptography

proposals [44][45][19][20][46][42][48][49] are broken through reverse engineering. For all these pro-

posals the private keys are pre-deployed on the sensor device; therefore obtaining a copy of the keys

allows attackers to authenticate themselves to the WSN. Reverse engineering MSP430 applications

will also allow the attacker to understand the functionality of the system and ultimately use the

captured node as an entry point to the bigger targets [5]. In most cases the central unit will be the

base station of a WSN that is most likely plugged in to a computer or server. With that being said,

the purpose of Chapter 5 is to provide an example of how an attacker can reverse engineer MSP430

applications and obtain critical information about a WSN. First, we will discuss the characteristics

of the MSP430 flash memory and provide instructions on how to dump MSP430 applications found

in flash memory. We captured one of our End-Devices from the L1-Secure STMS to demonstrate

the process of reverse engineering to obtain a copy of the network wide shared key.

63

5.1 Flash Memory Dump

Understanding the memory layout of the MSP430 flash memory is an important step before dumping

MSP430 applications and reverse engineering. Figure 5.1 shows the flash memory for the MSP430.

For our purposes we will concentrate on the MSP430-F161x 48kB since that is the MSP430 version

used with our TelosB mote. However, other MSP430 versions are very similar with the only differ-

ence being the starting address of memory regions. The flash memory is partitioned into 512-byte

segments and it is the smallest size of flash memory that can be erased [76]. The flash memory

is broken down into 3 regions: information memory, RAM and main memory. There is no differ-

ence in the operations of main memory and information memory besides segment size and physical

address[60]. The information memory region consists of two segments: A and B, both 128-bytes

in size. The main memory region consist of 95 segments starting at Segment 0 and going up to

Segment 94; each segment is 512-bytes in size. The RAM region starts at address 0x1100 and it is

10,239 bytes in size. Flash memory grows downward; therefore, Segment 0 starts at address 0xFFFF

and ends at address 0xFE00. Segment 1 starts at address 0xFDFF and ends at address 0xFC00

and so on until Segment 94, which starts at address 0x41FF and ends at address 0x4000. The main

memory starts at address 0x4000 and ends at address 0xFFFF. Since user code (the application) is

stored in main memory then dumping data found within the main memory region is of our interest.

Figure 5.1: The layout of the MSP430-F161x flash memory

64

Before discussing details on dumping MSP430 applications found in flash memory, we need to

discuss exactly how a TinyOS application is flashed into main memory. Figure 5.2 shows the four-

phase process of flashing a TinyOS application into MSP430 flash memory. The first phase compiles

the source code (TinyOS application) using the nescc compiler and outputs a native C version of

the application. The second phase compiles the native C application using the gcc compiler and

outputs an ELF object file. The third phase converts the ELF object file to an IHEX object file using

the msp430-objcopy command. The fourth, and final, phase flashes the binary to flash memory by

reading the ASCII Text representation of the binary using the tos-bsl bootstrap loader software.

Figure 5.2: The process of flashing a TinyOS application to the MSP430 flash memory

We created a modified version of the tos-bsl to fit our specific memory dump needs. Our modified

version allows a user to pass as a parameter the file that contains the password obtained during the

brute force process. The original tos-bsl requires the main.ihex file to be passed as the password file

because the main.ihex file contains a copy of the password or the IVT. The IVT values are the last 32

bytes of the main.ihex file which are sent to the MSP430 to allow full access to the chip. Our dump-

binary.py script took four parameters: the USB port, the password file, the start address, and the

size in bytes to dump from flash memory. For example, since we used a TelosB mote equipped with a

MSP430-F1611, the start address would be 0x4000 and the dump size would be 0xFFFF − 0x4000

or 0xBFFF. The output of the script was stored in a file called app-bin, which contained the binary

that was found in flash memory of the capture mote. We used our dump-binary.py script to dump

the binary found in our ”capture mote”, which has a copy of the L1-Secure End-Device application.

The app-bin file contained the MSP430 applications that was found in the L1-Secure End-Device

mote and will be used to demonstrate the reverse engineering process.

5.2 Disassemble and Code Analysis Process

The two tools that are the most useful for reverse engineering MSP430 applications are msp430-

objcopy and msp430-objdump. The msp430 tools was installed when the MSP430 Tool Chain was

installed. One additional tool that could be useful is the msp430static which can be downloaded

from the msp430static source forge website[80]. The subsection below will demonstrate the process of

65

converting the dumped MSP430 application , disassembling the MSP430 application , and analyzing

the assembly instructions. Regardless of the application found in a mote, the disassembly process

will apply to all MSP430 applications and the only difference between the readers dumped MSP430

application and our dumped MSP430 application will be the code analysis of the application itself.

5.2.1 msp430-objcopy

Assuming the reader has used our script to dump the MSP430 application , the following section

will describe the conversion process of the dumped MSP430 application. The app-bin file generated

by the dump-binary.py script contains binary data that is used by the MSP430 to execute the sensor

application. Before disassembling the binary we converted the binary in app-bin file to an ELF

format using the msp430-objcopy command. The msp430-objcopy allows to copy and translate

content from a source object file to a destination object file in a format different than (or the same

as) the source object file. The supported targets for the msp430-objcopy are: elf32-msp430, elf32-

little, elf32-big, srec, symbolsrec, verilog, tekhex, binary, and ihex. We were interested in converting

from a binary object file to an elf32-msp430 object file. The desired conversation was performed by

executing the following command:

$msp430-objcopy -I binary -O elf32-msp430 –set-start 0x4000 app-bin app-elf-msp430

The –set-start flag allowed us to specify the start address of where the converted program began.

Setting the start address to 0x4000 eased the reverse engineering process because it maintained the

default start address of main memory. Note that not all dumped MSP430 binaries support setting

the start address and unfortunately for us that was the case. However, we wrote a python script that

converts the addresses to the corresponding MSP430 main memory address, which will be discussed

in the following section.

5.2.2 msp430-objdump & msp430static

The following section will describe the process to disassemble the dumped MSP430 application found

in a mote. The msp430-objdump displayed information about MSP430 object files, such as the dis-

assembled contents of all sections in a object file. We used the following command to disassemble

the app-elf-msp430 object file created during the conversation process.

$msp430-obdump -D app-elf-msp430 > app-disassemble.txt

After executing the msp430-objdump command, the app-disassemble.txt contained the disassem-

bled version of the MSP430 application that was found in flash memory. In our case the app-

disassemble.txt file contained assembly instructions of the L1-Secure End-Device application. At

66

this point, one can start analyzing the assembly instructions to ultimately collect important char-

acteristics of the application. However, before diving into the code analysis phase we must point

out two characteristics we found that hold true for all MSP430 applications. The first characteristic

found was an address conversion problem when converting the dump binary to an ELF format using

msp430-objcopy. The MSP430 applications do not support the –set-start flag option to set the start

address to 0x4000 instead of a dumped start address of 0x0. Since opcodes are dumped as is, the

disassembly instructions will reference an address as it is stored in flash memory. For example, the

code found at address 0x4020 in flash memory is not the same as the code found at address 0x4020

in the disassemble dumped version. The equivalent code will instead be stored at address 0x20

in the disassemble dumped version. We were able to fix this problem by implementing a python

script (convert-addr.py) that converted the address of each instruction in the app-disassemble.txt

file to the corresponding main memory address by adding 0x4000. The second characteristic found

was the use of stripping to optimize binary code size. Reducing code size by stripping makes the

reverse engineering process more difficult because useful information, such as symbols, no longer

existed. We must also point out that stripping the symbols in a binary also prevented us from using

the msp430static tool, which could have significantly sped up the reverse engineering process. In

case the reader does encounter a situation where the binary is not stripped then it is important

to highlight how the msp430static can be useful. The msp430static is a disassembly analysis tool

for working with MSP430 application images and can be downloaded from the msp430static source

forge website[80]. The msp430static uses Perl to load the disassembled version of a binary into a

SQLite3 database, and through macros or ”non-parameterized queries” one can quickly filter certain

characteristics of the disassembled binary. The msp430static relies heavily on symbols to be able to

organize the database for the disassembled version of the binary[81]. The disassembly analysis can

be sped up by using macros to quickly display all the TinyOS functions that have been used with

an application or even display blocks of instructions that are of interest. Lastly, we must also point

out that the main.exe file generated during the compile process was not stripped (refer to Figure

5.2); therefore, this file can be used with the msp430static for practice purposes.

5.2.3 Code Analysis

Up to this point, the reverse engineering process of dumping MSP430 applications and disassembling

dumped MSP430 applications has been the same regardless of the application. However, the code

analysis process will vary depending on the functionalities of the application. Since the foundation

of our L1-Secure STMS implementation solely used the physical layer, then any future application

67

making use of the CC2420 inline encryption will most likely have a similar code analysis process. Fur-

thermore, research suggests WSNs are moving towards encryption using hardware implementation

due to being 42 times faster and using 4.5 times less energy than similar software implementation

running on the MSP430 MCU[7]. With that being said, we provide the reader with an overview of

the MSP430 assembly language and contribute an example on how we were able to efficiently find

the network wide shared key of our L1-Secure STMS application.

The MSP430 interconnects a 16-bit RISC Microprocessor (MPU), peripherals, and memory

through the use of a memory address bus (MAB) and memory data bus (MDB). Figure 5.3 shows

the functional block diagram of the MSP430-F161x MCU. The von-Neumann architecture has one

address space shared with flash memory, RAM, peripherals and special function registers[60]. Words

are used to address instructions and, as mentioned in Chapter 4, words are only located at even

addresses. As a Reduce Instruction Set Computer (RISC), the MSP430 only has 15 registers, 7

addressing modes and a total of 27 instructions. Table 5.1 shows all 15 registers, where registers 4

through 15 are general-purpose registers[60]. The PC/R0 program counter register is used to point

to the next instruction be executed. The SP/R1 stack pointer register is used by the MCU to store

the return address of calls or interrupts. The SR/CG1/R2 status register is used as a source and

destination register or as a constant generator register. The CG2/R3 is a constant generator register

that generates six commonly used constants without requiring an additional 16-bit word of program

code.

Figure 5.3: The functional block diagram for the MSP430-F161x MCU

68

Table 5.1: The 15 registers supported by the MSP430.

Purpose Register
Program Counter PC/R0
Stack Pointer SP/R1
Status Register SR/CG1/R2
Constant Generator CG2/R3
General-Purpose Registers R4-R15

Table 5.2 shows the 7 addressing modes supported by the MSP430 MCU (examples can be found

in the MSP430x1xx Family User’s Guide manual[60]). Essentially, the addressing modes dictate

the 7 different ways that the operands of an instruction should be identified. The most common

addressing modes that are encountered by MSP430 assembly instructions are the register mode,

absolute mode, and the immediate mode.

Table 5.2: The 7 addressing modes supported by the MSP430

Addressing Mode Syntax
Register Mode Rn
Indexed Mode X(Rn)
Symbolic Mode ADDR
Absolute Mode &ADDR
Indirect Register Mode @Rn
Indirect Auto-Increment @Rn+
Immediate Mode #N

The MPS430 instruction set is composed of 27 core instructions and 24 emulated instructions.

Table 5.3 shows all 51 instructions with the emulated instructions marked with the † symbol[60]. The

difference between the two types of instructions is that the core instructions have unique op-codes,

where as emulated instructions do not have unique opcodes. The emulated instructions are used

for making assembly code more readable/writable and are replaced automatically by the assembler

with an equivalent core instruction. All instructions in Table 5.3 that have one or more operands are

word instructions used to access word data or word peripherals. Only the instructions marked with

(.B) support byte instructions used to access byte data or byte peripherals. The columns labeled

with V, N, Z, and C represent the status bit columns. The overflow bit (V) is set when the results

of an arithmetic instructions overflows the signed-variable range. The negative bit (N) is set when

the result of a byte or word instruction is negative. The zero bit (Z) is set when the result of a byte

of work instruction is zero. The carry bit (C) is set when the result of a byte or work instructions

produces a carry. The instructions will either affect the status bit (*), not affect the status bit (-),

clear the status bit (0) or set the status bit (1).

69

Table 5.3: The instruction set of the MSP430.

Instruction Operation V N Z C
ADC(.B)† dst dst + C → dst * * * *
ADD(.B) src,dst src + dst→ dst * * * *
ADDC(.B) src,dst src + dst + C → dst * * * *
AND(.B) src,dst src ∧ dst→ dst 0 * * *
BIC(.B) src,dst ¬src ∧ dst→ dst - - - -
BIS(.B) src,dst src ∨ dst→ dst - - - -
BIT(.B) src,dst src ∧ dst 0 * * *
BR† dst dst→ PC - - - -
CALL dst PC + 2→ stack, dst→ PC - - - -
CLR(.B)† dst 0→ dst - - - -
CLRC† 0→ C - - - 0
CLRN† 0→ N - 0 - -
CLRZ† 0→ Z - - 0 -
CMP(.B) src,dst dst− src * * * *
DADC(.B)† dst dst + C → dst(decimally) * * * *
DADD(.B) src,dst src + dst + C → dst(decimally) * * * *
DEC(.B)† dst dst− 1→ dst * * * *
DECD(.B)† dst dst− 2→ dst * * * *
DINT† 0→ GIE - - - -
EINT† 1→ GIE - - - -
INC(.B)† dst dst + 1→ dst * * * *
INCD(.B)† dst dst + 2→ dst * * * *
INV(.B)† dst ¬dst→ dst * * * *
JC/JHS label Jump if C set / Jump if higher or same - - - -
JEQ/JZ label Jump if equal / Jump if Z set - - - -
JGE label Jump if greater or equal - - - -
JL label Jump if less - - - -
JMP label Jump unconditionally - - - -
JN label Jump if N set - - - -
JNC/JLO label Jump if C not set / Jump if lower - - - -
JNE/JNZ label Jump if not equal / Jump if Z not set - - - -
MOV(.B) src,dst src→ dst - - - -
NOP† No operation - - - -
POP(.B)† dst @SP → dst, SP + 2→ SP - - - -
PUSH(.B) src SP − 2→ SP, src→ @SP - - - -
RET† @SP → PC, SP + 2→ SP - - - -
RETI Return from interrupt * * * *
RLA(.B)† dst Rotate left arithmetically * * * *
RLC(.B)† dst Rotate left through C * * * *
RRA(.B) dst Rotate right arithmetically 0 * * *
RRC(.B) dst Rotate right through C * * * *
SBC(.B)† dst dst + 0xFFFF + C → dst * * * *
SETC† 1→ C - - - 1
SETN† 1→ N - 1 - -
SETZ† 1→ C - - 1 -
SUB(.B) src,dst dst + ¬src + 1→ dst * * * *
SUBC(.B) src,dst dst + ¬src + C → dst * * * *
SWPB dst Swap bytes - - - -
SXT dst Extend sign 0 * * *
TST(.B)† dst + 0xFFFF + 1 0 * * 1
XOR(.B) src,dst src⊕ dst→ dst * * * *

70

In this chapter, we contribute to the WSN community with a first ever example of how an

attacker can obtain cryptographic keys from a capture mote through reverse engineering. We have

analyzed the disassembled version of the binary that was dumped from the captured End-Device

mote that is part of L1-Secure system. All End-Devices that are part of the L1-Secure STMS have

a copy of the network wide shared key. If a network wide shared key has been pre-deployed then

the security of any WSN environment will be broken through reverse engineering. With that being

said, let us now discuss the technical details of how a cryptographic key can be obtained from an

application that is using encryption at the physical layer.

In Chapter 4, we discussed how the power-up/reset interrupt handler always points to address

0x4000 for its interrupt service routine. The reason this address holds true for all applications is

because the starting address of all MSP430 applications is 0x4000. Furthermore, the 0x4000 address

is also the starting address of main memory or ”user code”. Therefore, the reverse engineering

process will begin at address 0x4000 and execution flow will continue from this address. We have

grouped the instructions into blocks as multiple instructions achieve one overall function. First, the

instruction blocks along with a description of each instruction is presented. The preceding paragraph

describes the overall function and its importance. Since our contribution is to investigate how an

”attacker” can obtain a copy of the cryptographic keys, only the instructions that lead to finding

the keys will be highlighted.

Address Op-codes Instruction Description
4000: 55 42 20 01 mov.b &0x0120, r5 ;Watchdog-timer.byte (0x00) → r5
4004: 35 d0 08 5a bis #23048, r5 ;0x5a08 ∨ r5→ r5
4008: 82 45 06 13 mov r5, &0x1306 ;0x5a08→ &0x1306

The first block of instructions are used to establish watchdog timer peripheral support and are

found in every application. The instructions at address 0x4000 moves the low byte found in the

watchdog timer register (WDTCTL). The watchdog timer peripheral is protected from direct access

by a user code and only the WDTCTL register (0x120) can be used to get access to the watchdog

timer peripheral. The instruction reads the lower byte of WDTCTL register, which at start up

has the default value of 0x6900. The instruction at address 0x4004 performs a 0x5a08 OR 0x0000

operation resulting in the value 0x5a08 to be stored in register r15. Lastly, the instruction at address

0x4008 moves the value in register r5 (0x5a08) to the address 0x1306 located in the RAM region.

The purpose of the first block of instructions is to initiate the watchdog timer peripheral support in

order to perform or prevent application restarts. All applications are required to start the watchdog

time support in order for any application to properly function.

71

Address Op-codes Instruction Description
400c: 31 40 00 39 mov #14592, r1 ;0x3900→ r1

The second block of instructions are used to initiate the stack pointer by moving the immediate

value 0x3900 to register r1. The stack pointer is initiated to address 0x3900 which points to the top

of the RAM region in flash memory (refer to Figure 5.1).

Address Op-codes Instruction Description
4010: 3f 40 48 00 mov #72, r15 ;0x0048→ r15
4014: 0f 93 tst r15 ;r15 + 0xFFFF + 1
4016: 08 24 jz $+18 ;Jump to 0x4028 if Z is set
4018: 92 42 06 13 mov &0x1306, &0x0120 ;&0x1306→ &0x120
401c: 20 01 ;Part of previous instruction
401e: 2f 83 decd r15 ;r15− 2→ r15
4020: 9f 4f a6 7c mov 31910(r15),4352(r15) ;0x7ca6(r15)→ 0x1100(r15)
4024: 00 11 ;Part of previous instruction
4026: f8 23 jnz $-14 ;Jump to 0x4018 if Z not set

The third block of instructions are used to copy the content from the .data section into the RAM

region. The instruction at address 0x4010 moves the immediate value 0x48 to register r15. The

register r15 is used as an offset to copy data from the main memory region to the RAM region. The

instructions at address 0x4014 and 0x4016 check to see if the value in register r15 is 0x0 and if it is

jumps to address 0x4028. We know the value in register r15 is 0x48; therefore, the program counter

or register r0 points to address 0x4018 after executing the TST and JZ instructions. The only

time the TST and JZ instructions will hold true is if the .data section of the binary is empty. The

instruction at address 0x4018 moves the value at address 0x1306 to the WDTCTL register (0x120).

From the first block of instructions we know the value stored at address 0x1306 is 0x5a08; therefore,

the value stored in WDCCTL register is 0x5a08. To interpret the value 0x5a08 of the WDCCTL

register requires splitting the word into two bytes: the high byte (0x5a) and low byte (0x08). The

high byte is used to send the write password 0x5a to watchdog timer peripheral in order to grant

access to indirect access to the user code. The low byte specifies the type of action requested to

the watchdog timer peripheral by the user code. Each bit of the low byte represent a watchdog

timer mode that is set when the byte is written to the watchdog timer peripheral. In this particular

case, the watchdog timer is set to the WDTCNTCL mode which clears the reset counter value to 0

to prevent the application to reset. The next instructions at address 0x401e decrements the value

stored in register r15 by two bytes; therefore, the new value in register r15 is 0x46. The instruction

at address 0x4020 is the most important instruction of the third block because the instruction is

copying the data found at address 0x7ca6(offset) to address 0x1100(offset). The last instruction at

72

address 0x4026 jumps to address 0x4018 if the zero bit is not set. The the zero bit will be set by

the DECD instruction once the value in register r15 has reached zero. In summary, the instructions

at address 0x4018 to 0x4026 are a loop that will copy the data found in the main memory region to

the RAM region. Figure 5.4 shows what the instructions in the loop are essentially accomplishing.

Figure 5.4: An example of how main memory data is copied into RAM.

Up to this point, we know that there was a chunk of data in main memory that was copied

to the address range of 0x1100 to 0x1148. The address of 0x1100 is the starting address of RAM;

therefore, we know that the chunk of data was copied to the first 72 (0x48) bytes of the RAM region.

Investigating the data copied to RAM was of our interest because our ultimate goal was to obtain

a copy of the cryptographic keys. Unlike registers that are ”variables” internal to the MCU, all

variables used in an application are stored in RAM at start-up time[82]. Since it is a good coding

practice to use variables to hold data, then all applications that use encryption will most likely have

a variable that will be initialized to the cryptographic key. With that being said, as seen in Figure

5.5, we used our dump-binary.py script to dump the data that was copied to RAM.

Figure 5.5: The output of dumping the data that was copied to RAM during the third block of
instructions.

The 72 copied bytes found at the beginning of the RAM region match the original 72-bytes

found in main memory from address 0x7ca6 to 0x7cef. From the 72-bytes that were dumped from

the starting application of RAM we were not 100% sure which bytes were the cryptographic key

73

bytes. However, without having to continue the tedious disassembly analysis, an attacker may be

able to take shortcuts to verify which of the 72-bytes are the cryptographic bytes. In Chapter 3,

we demonstrated how a mote can be used to capture packets over a WSN. Using the PPPSniffer

results we were aware that the application was using only the physical layer IEEE802.15.4 protocol;

therefore, highly suggesting that hardware encryption was used. Since we know that the TelosB

capture more uses the CC2420 radio chip, which has a built inline AES-128 encryption, then we

know the key size has to be 128-bits or 16-bytes. Therefore, our final goal was to conclude what 16

consecutive bytes of the 72-bytes found in memory was the cryptographic key.

We know that the user code in memory referenced bytes found at address range 0x1100 to 0x1148

in RAM. Since time is of essence to an attacker, we used the cat and grep linux commands to find

instructions that made references to addresses found in the range of 0x1100 to 0x1148. Figure 5.6

shows six instructions that reference the bytes at locations 0x111b, 0x1118, 0x1144, 0x110b, 0x1108

and 0x1130. Since registers are a word in size then the instructions that move 2 bytes from RAM to

registers was not of our interest; therefore, we ignored 0x111b, 0x1118, 0x1144, 0x110b, and 0x1108

RAM address. We were left with only one valid instruction that moved the immediate value 4400

(0x1130) to address 0x1154. Therefore, the address 0x1154 pointed to the beginning of the crypto-

graphic key, which was located at address 0x1130. Figure 5.7 shows the 16-bytes of the cryptographic

key or the network wide shared key used with the L1-Secure system. There is high possibility that

the private keys for the [44][45][19][20][46][42][48][49] proposals are also stored in RAM. Furthermore,

we are more confident that the symmetric keys for the [11][14][10][13][15][12][16][42][17][7][8][18] pro-

posals are stored in RAM.

Figure 5.6: The addresses of all the instruction that reference the RAM region (0x11##).

74

Figure 5.7: The network wide shared key found through reverse engineering.

5.3 Chapter Summary

In summary, we have contributed to the WSN community with a step-by-step process of reverse

engineering MSP430 applications found in a capture sensor nodes. In particular, we investigated the

process of dumping MSP430 applications found in flash memory as well as converting the dumped

binary to a format that can be reverse engineered using a Linux machine. The results collected

during our investigations provide the WSN community with detailed characteristics of binaries found

in MSP430 flash memory. In addition, we investigated the difficulty of reverse engineering MSP430

applications to obtain a copy of cryptographic keys found in a capture node. We have presented the

reader with a point of reference guide to assist in future MSP430 application disassembly processes.

To our knowledge, our reverse engineering example is the first of its kind that demonstrates the

feasibility of obtaining cryptographic keys from a secure WSN. Chapter 5 can serve as a starting

point to future papers that concentrate in the reverse engineering MSP430 applications .

75

Chapter 6

Protecting MPS430 Firmware With Secure-BSL

In this chapter, we contribute to the WSN community with a better approach in protecting firmware

found in MSP430 flash memory. Our approach supports two levels of security. The first security

level consists of one-factor authentication in order to grant full access to the MPS430. The second

security level consists of two-factor authentication in order to grant full access to the MSP430. The

two levels of security have been implemented on top of the original bootstrap loader software and

our new Secure-BSL software is available to the WSN community through our Github project. This

chapter first discusses how the original BSL code works then goes into discussing the security design

of our Secure-BSL software and the implementation of the Secure-BSL.

6.1 Original-BSL Code

As stated in Chapter 4, the BSL code allows users or developers to communicate with the MSP430

through a USB interface. Once the TelosB mote is plugged into a USB port, a python script (tos-

bsl.py) is used to communicate with the MSP430 chip. The python script uses the serial python

library in order to establish and support communication between the computer and the MSP430 chip.

Furthermore, to support USB serial communication the MSP430 chip stores BSL code to respond

to any commands sent by the computer. The BSL code is stored in a secure location (0x0C00 -

0x0FEF) that is write protected to avoid any bypass techniques if the password is unknown. Figure

6.1 shows a diagram of the BSL commands that are supported by the MSP430. The commands in

green represent the commands that are allowed without the MSP430-BSL passwords.

Figure 6.1: The BSL commands supported by the MSP430 without the password.

76

Figure 6.2 shows a diagram of the BSL commands that are supported once the correct MSP430-

BSL password is provided. As you can see from the diagram, full access (all the commands) are

supported by the MSP430 once the correct MSP430-BSL password is provided. Therefore, if an

attacker does not know the correct MSP430-BSL password then they will not have full access to the

MSP430 chip.

Figure 6.2: The BSL commands supported by the MSP430 with the correct password.

6.2 Secure-BSL Design

As we discussed in Chapter 4, the problem of the current MSP430-BSL password lies in the fact

that it is not random. We proved that in the best case scenario the MSP430-BSL password can

be brute forced in two days. More importantly, we have lowered the brute force time to a matter

of days rather than years. Also, we have proved that the MSP430-BSL password is predictable

because of the IVT entries not being random. In particular, we have seen a correlation between the

number of unused interrupts and the brute force time (refer to Chapter 4). With that being said,

the MSP430-BSL password is strong if and only if the brute force times are impractical.

One approach that we considered but did not pursue was the use of hash functions to take the

hash of the main.ihex file and use the results as the MSP430-BSL password. Since flashing already

requires a binary as an input to the bootstrap loader software then one would assume that hashing

would be a plausible solution. For example, if we took the SHA256 of a MSP430 binary and used the

256-bit (32 bytes) hash values as the password (IVT values) then the password would be random.

Each byte of a binary would influence the output of the SHA256 hash function and would be a

unique random password per application. Meaning, if the same binary was flashed into multiple

motes then all the motes that have the same binary have the same password. Although this is a

quick and efficient solution, taking the hash of a binary and using the hash value as the password

does not work with the MSP430 MCU. The problem with using the hashing approach is the fact that

the MSP430 MCU uses the address range of the IVT as the address space to store the password.

77

The address space of the IVT and the address space for the password is the same; therefore, storing

the hash value on the IVT address space makes the mote malfunction. Modifying the IVT to use

random values prevent the application to properly start because the IVT does not have the actual

addresses of the ISRs. For example, the Power-Up interrupt needs to know where the start address

of the application is, which is 0x4000, and if the value at this interrupt is random 0x1234 then the

sensor application will never properly start. Future MCU should designate an address space to solely

store the BSL password if hashing is to be used as the password. Hashing the binary to use as the

MSP430-BSL password is not a good solution; therefore, a different approach was required.

The approach we implemented allowed us to randomize the password and still maintain proper

functionality of the interrupt handlers. Our Secure-BSL implementation is similar to the one pre-

sented by Becher et al. [27], where the IVT was randomized without affecting the overall functionality

of the IVT. The first level of security consists of randomizing the values stored in the IVT address

space and used branch instructions to maintain proper functionality of MSP430 applications. The

Secure-BSL varies from Bechers’ solution because we contributed a second level of security by using

two-factor authentication to restrict further access to the MSP430. The second level of security

consists of using a user defined password to encrypt the password file generated by the first level of

security. The rest of the this section discusses the design approach of the Secure-BSL software.

6.2.1 Security Level One

The first security level of the Secure-BSL software improved the MSP430-BSL password by random-

izing the values stored in the IVT. Similar to the original bootstrap loader software (tos-bsl) the

Secure-BSL takes as input the main.ihex or the sensor application to flash. Figure 6.3 shows the

input and output of the Secure-BSL software using the security level of one. What varies from the

Secure-BSL compared to the original tos-bsl is the output generated by the Secure-BSL. The output

of the Secure-BSL is a password file to be used for future access to the MSP430 MCU after flashing.

Where as the original tos-bsl software did not output a password file since the actual main.ihex

file has a copy of the IVT values or the MSP430-BSL password. Since the Secure-BSL software

generated random IVT values it must output the new IVT values that are independent of the IVT

values found in main.ihex file. Note if the password file generated by the Secure-BSL is lost then

future access to the MSP430 is no longer supported. In order to regain control of the MSP430 then

the MCU must be mass erased and reset to factory settings.

78

Figure 6.3: Input and output of the Secure-BSL one-factor security level.

Inside the Secure-BSL, it allows the IVT to be randomized and maintain proper functionality of

the MSP430 application. The design of the Secure-BSL using security level one consists of two main

components: the Unused Address List Generator and the Random Secure Password Generator.

Figure 6.4 shows the process of using the main.ihex file to generate the random IVT values and

output to a password file. The Unused Address List Generator component generates a list of unused

addresses based on the size of the firmware to be flashed. The Random Secure Password Generator

generates random IVT entries to be used as new IVT values, thus producing a random MSP430-BSL

password.

Figure 6.4: The high level components of the Secure-BSL security level one.

The purpose of the Unused Address List Generator is to generate all possible addresses that can

be used as new IVT values, or in other words new ISR addresses. In order to generate a list of

unused address the Secure-BSL calculates the range of addresses that are not used based on the

size of the binary found in the main.ihex file. For example, on average the size of a MSP430 binary

is 15,840 (0x3DE0) bytes in size (refer to Table A.4). Since main memory on the MSP430 starts

at address 0x4000, the average application ends at the address 0x3DE0 + 0x4000 or 0x7DE0. We

know that the IVT begins at address 0xFFE0; therefore, the range of unused addresses are from

0x7DE0 to 0xFFE0. Figure 6.5 shows the memory layout of the former example. The end address

is the same for all MSP430 applications; however, the start address varies depending on the size of

the binary being flashed into the MSP430 flash memory.

79

Figure 6.5: A sample of how MSP430 flash memory looks like after flashing firmware.

Once the unused addresses range is calculated, the Unused Address List Generator creates a list

of all possible ISR addresses to be used as new random IVT entries. Figure 6.6 shows a flow chart of

the Unused Address List Generator design. First, the generator creates an empty list (addr-list) that

holds all the possible ISR addresses to be used with the second component of the Secure-BSL security

level one. Next, the generator iterates beginning at the start address of the unused memory space

and terminates at the end address of the unused memory space. Each iteration appends the current

start address value to the end of the addr-list and increments the start address by 4. The start

address is incremented by four because each possible ISR address has to be able to store 4-bytes of

op-codes. Using our previous example, the first address appended to the addr-list was 0x7DE0, the

second address appended was 0x7DE0 + 0x4 or 0x7DE4, the third address appended was 0x7DE8

and so on. Addresses have to be skipped by 4-bytes because the 4-bytes are used to store the

branch instruction op-codes to prevent the MSP430 application from malfunctioning. The design

approach of using the unused address space allows the Secure-BSL software to add randomness to

the MSP430-BSL password. The unused memory space makes it possible to maintain information

about the ISR by storing interrupt handler addresses in the unused space. Therefore, randomizing

the IVT address space did not affect the functionality of the sensor application because the original

values stored on the IVT were saved at a different addresses.

80

Figure 6.6: The flow chart describes the process of generating a list of possible passwords (IVT
values).

The second component and last phase of the Secure-BSL was generating a random password

using the Random Secure Password Generator. Figure 6.7 shows a flow chart of the Random Secure

Password Generator design. The password generator uses the output of the Unused Address List

Generator (addr-list) as a pool of word values that can be used as new interrupt handler addresses.

Since the IVT consists of 16 words then the Get IVT Entries operation generates a list (ISR-list)

that holds all 16 original ISRs found in the IVT of the main.ihex file. The generator iterates through

each item in the ISR-list to create a new interrupt handler by randomly choosing an address from

the addr-list. The detailed process of creating a randomly chosen interrupt handler address and

maintaining the original ISR address consists of five phases. The first phase creates the op-codes

to branch to the original ISR address in order to maintain information about the original IVT. The

second phase shuffles the items in the addr-list in order to create a new random interrupt handler

address. The third phase pops the last item of the shuffled addr-list to use as the new interrupt

handler address. The fourth phase uses the op-codes generated in the first phase and programs the

81

op-codes to the new interrupt handler address. The fifth and final phase is to update the IVT to

use the new interrupt handler address, which creates a random IVT (password).

Figure 6.7: The flow chart describes the process of generating a secure random password (IVT
values).

The security level one of the Secure-BSL made it possible to increase the brute force times of

the MSP430-BSL password and better protect the MSP430 MCU. Furthermore, our design assures

the overall security of a WSN by decreasing the likelihood of each sensor node having the same

password. The use of a randomization methodology increases brute force times for each sensor node

that has a MSP430 chip. Even if the binary is the same size, the generated password will most likely

be unique using our Secure-BSL software. With that being said, the security level one increases the

brute force times for each mote on a WSN, even if the motes have the same MSP430 application in

flash memory. To get full access to a flashed MSP430 mote users will be required to have a copy of

82

the password file that was generated when the mote was originally programmed. Figure 6.3 shows

how the password file is generated when using the security level one.

6.2.2 Security Level Two

The second security level of the Secure-BSL software further protects the MSP430 MCU by encrypt-

ing the password file generated by the security level one. In other words, the security level two is

built on top of the security level one in order to provide a two-factor authentication when attempting

to gain full access to the MSP430 MCU. Figure 6.8 shows the input required by the main.ihex file as

well as a user defined passphrase. The output is an encrypted version of the password file generated

by the security level one.

Figure 6.8: Input and output for the Secure-BSL two-factor security level

Figure 6.9 shows the three components of the Secure-BSL security level two feature. The func-

tionality of the first two components are identical to the previously discussed security level one

design. Unlike security level one, the security level two adds an additional operation that encrypts

the password file that is used for future MSP430 MCU access. The AES-256 Encryption operation

encrypts the password file using a user defined passphrase. The additional encryption operations

allows the support of a two-factor authentication to grant full access to the MSP430 MCU.

Figure 6.9: The high level components of the Secure-BSL two-factor security level

Figure 6.10 shows the process of gaining full access to a MSP430 MCU using security level two.

The AES-256 Decryption operation takes the user defined password and the encrypted password file

83

as input and outputs of the decrypted version of the password file. The decrypted data will be sent

to the MSP430 MCU to check if the correct password has been sent by the user in order to grant full

access. The two-factor authentication adds an additional security to the MSP430 by only allowing

users that have the password file and the passphrase to gain full access to the MSP430 MCU.

Figure 6.10: The high level execution flow when dumping data from flash memory using two-factor
security level

Although the MSP430 Programming with BSL Manual is wrong by stating that ”access to the

MSP430 memory through the BSL is protected against misuse by a user-defined password”[26]. We

have been able to contribute to the MSP430 family with functional features of allowing users to

specify a password to protect flash memory. Our contribution of adding a two-factor authentication

strengthens the security of the MSP430 by requiring the user to enter two forms of authentication

in order to have full access to the MCU. Even if an attacker is able to gain a copy of the password

file they will not be able to gain full access to the MSP430 MCU without knowing the passphrase

to decrypt the file. Using AES-256 makes it harder for the attacker to brute force the passphrase in

order to obtain the values stored in the password file.

6.3 Secure-BSL Implementation

The implementation of our Secure-BSL software is built on top of the original bootstrap loader

(tos-bsl) software. Figure 6.11 shows the UML diagram of the Secure-BSL with the yellow boxes

representing our contributions. The UML diagram only displays the components of the Secure-BSL

that are responsible for flashing firmware and extracting firmware. However, the complete Secure-

BSL source code can be found in our Github project[75]. The Secure-BSL software has six classes,

each of which contribute a unique operation to the program. First, the main class is responsible for

collecting user parameters and initiating proper bootstrap loader functionality based on user input.

The Memory class is responsible for preparing data to be flashed into memory by parsing binary data

into segments. The Segment class provides the segment structure to represent flash memory and it

is used by the Memory class. The AES256 class is responsible for providing the security level two

84

functionality. The BootStrapLoader class is a core component of the Secure-BSL as it provides the

operations to interact/communicate with the MSP430 bootstrap loader. Lastly, the LowLevel class

is responsible for exchanging information between the MSP430 MCU and the computer running the

Secure-BSL software. The rest of this chapter discusses in detail the implementation of the two main

operations supported by the Secure-BSL: flashing firmware and extracting firmware. In particular,

we highlight how our implementation assures the security of firmware through the use of our two

levels of security.

Figure 6.11: The UML diagram of the important components of the Secure-BSL software

85

Before discussing in detail our implementation, we must first highlight how the Secure-BSL works

when flashing firmware into the MSP430 MCU. Figure 6.15 shows the flags used when flashing

firmware into the MSP430 MCU. Below are the descriptions of each flag used with the Secure-BSL

software when flashing firmware into the MSP430 MCU.

• –telosb: specifies that the sensor device connected is a TeloB mote.

• -c: specifies the port number where the TelosB mote is connected (e.g. /dev/ttyUSB0,

/dev/ttyUSB1)

• -r: reset the TelosB mote

• -e: mass erase data found in TelosB flash memory

• -l: specifies the Intel Hex file type of the program

• -p: specifies the program to flash

Using the –telosb flag sets the appropriate settings, such as baud rate speeds before initiating

any BootStrapLoader operations. The -c sets the connection port to the USB port where the TelosB

mote is plugged in. The -r flag forces the TelosB to reset after the firmware has been flashed. The

-e erases all data found in the TelosB mote; in other words, the -e flag erases all segments found in

the MSP430 flash memory. The -I lets the program know that the binary to flash is in a ASCII text

representation. The -p specifies the file that contains the binary of the sensor application to flash

into the MSP430 flash memory.

Refer to the UML diagram for any clarifications as we explain the process of how flashing firmware

works. The main class collects all the flags specified by a user when running the Secure-BSL software.

The flags are used to set the appropriate setting before initiating communication with the mote, or

in our case the MSP430 MCU. Essentially, the Secure-BSL is composed of two core components:

the BootStrapLoader class and the Memory class. The BootStrapLoader class is responsible for

exchanging information between the computer and the MSP430 using commands. For example, the

txPasswd command is used to the check the password before granting full access to the MSP430

MCU. If the password is correct then other commands are granted, such as the actionProgram,

programData or uploadData. The actionProgram command flashes data stored in a list of segments

to the MSP430 main memory. The programData command allows the user to write N number of

bytes to the flash memory without the need to re-flash the whole MCU. The uploadData command

allows the user to extract data from firmware and is triggered if the -u flag and -s flag are used. Figure

86

6.17 shows that the -u flag specifies the start address in flash memory and the -s flag specifies the

number of bytes to extract from flash memory. Other interesting commands that are supported prior

to providing the password are the actionMassErase and the actionReset. These two commands do not

allow you to extract firmware found in flash memory because the actionReset command will just reset

the mote and the actionMassErase will erase all the data in the mote. The actionMassErase will also

erase the password (IVT values) and set it to the default of 16 0xFF values. The BootStrapLoader

class inherits the LowLevel class since the LowLevel class has the operations of communicating

directly with the mote. The LowLevel class uses the python serial library to communicate directly

with the MSP430 MCU. To exchange information between the MSP430 and the computer the serial

library is used to read and write frames between the two devices. For example, to send data from

the computer to the MSP430 MCU a frame is created with the DATA FRAME (0x70) stored in

the header section. Or if data is sent from the MSP430 to the computer, the frame will have

the DATA ACK command in the header section. There are various commands that are supported

by the MSP430 that we do not list because the purpose of this chapter is to explain our Secure-

BSL implementation. With that being said, let us now discuss our implementation, which was

implemented on top of the second core components of the Secure-BSL, the Memory class.

As we can see from the UML diagram there are two components highlighted in yellow that were

added to the original tos-bsl in order to implement our Secure-BSL software. The first component

was added to the Memory class to implement the first security level of the Secure-BSL. The second

component was added as an additional class used by the Memory class to implement the second level

of security. First, we discuss the security level one implementation and then conclude by discussing

the security level two implementation.

6.3.1 Security Level One Implementation

As previously stated, the Memory class was responsible for parsing the binary found in the main.ihex

file into segments. Using -I flag with the Secure-BSL software sets the file type to ihex and invoked

the loadIHex operation from the Memory class. The loadIHex operation was responsible for reading

the data in the main.ihex file and parsing the data into a list of segments. All bytes found in the

main.ihex file were transferred into the list of segments except for the IVT bytes. The loadIHex

operation used the generateRandomIVT operation to generate random IVT values before adding

the IVT bytes into the list of segments. The generateRandomIVT operation was responsible for

generating new interrupt handler addresses, saving the old ISR, and updating the IVT values.

To generate new interrupt handler addresses at random ,the generateRandomIVT operation used

87

the generateAddrList operation and the popRandomAddr operation. To update the IVT values,

the generateRandomIVT operation used the securePassword operation. The pseudo code for the

generateRandomIVT operation is as follows:

generateAddrList()

Create empty list newIVT

FOR eachItem IN oldIVT

Create branch opcodes 30 40 eachItem

newISR = popRandomAddress()

Append opcodes newISR: 30 40 eachItem

Append newISR to newIVT list

updateNewPassword(newIVT)

The newIVT list held the new IVT values that were selected at random from the list of the unused

address. The opcodes 30 40 represented the branch instruction op codes for the MSP430 instruction

set. A branch instruction was created for every entry on the old IVT and a randomly selected unused

address was picked as the new IVT entry. The list of segments was updated accordingly and the

new randomly chosen interrupt handler address was added to the new IVT.

The generateAddrList operation was responsible for generating a list of unused address that could

be used as a new interrupt handler address. The start of the unused address space was calculated

by adding the size of the binary with the starting address of main memory. The end of the unused

address space was always the starting address of the IVT, which was always 0xFFE0. The start

address of main memory may have varied depending on the version of the MSP430 MCU (refer to

Figure 5.1). The unused addresses that were added to the list had to be able to hold 4-bytes of data

(the branch opcodes). The pseudo code for the generateAddrList operation is as follows:

Calculate start address start = sizeOfBinary + 0x4000

FOR address IN range (start to 0xffe0, skip every 4)

Append address to Unused-Address-list

After the list of unused addresses were generated, the popRandomAddr operation allowed to ran-

domly pop one on the list. Therefore, the popRandomAddr always returned an unused address at

random, and by removing the item from the list we avoided using the same address for two different

interrupt handlers. The pseudo code for the popRandomAddr operation is as follows:

Shuffle Unused-Address-list

Pop address from Unused-Address-list

The securePassword operation is discussed in the following section because it interlinks with the

88

security level two.

6.3.2 Security Level Two Implementation

The security level two feature of the Secure-BSL is built on top of the security level one implemen-

tation. The securePassword operation implemented most of the functionality of the security level

two but also implemented part of the security level one. The responsibilities of the securePassword

operation was to add the new IVT to the list of segments and output the new IVT to the user. The

new IVT was added to the list of segments and was later flashed into the MSP430 main memory

using the BootStrapLoader class. The new IVT was also written to the password file; however, this

was where the operation varied depending on the security level. The new IVT values were written to

the password file unencrypted if the security level one was used. The new IVT values were written to

the password file encrypted if the security level two was used. The -t flag specified to the Secure-BSL

software to enable a two-factor authentication by using a user defined passphrase. The pseudo code

for the securePassword operation is as follows:

Append newPwd to list of segments

Convert newPwd to hex hexPwd

IF passphrase is used

Create AES256 object encryptPWD

Encrypt hexPwd cipherPwd = encryptPWD.encrypt(hexPwd)

Write cipherPwd to password file

ELSE

Write hexPwd to password file

The AES256 class was used to encrypt the password file using a user defined password. Figure

6.12 shows the parameters passed to the AES256 class in order to encrypt the password file. The IV

used was generated using the Random python library package, which guaranteed randomness with

the password and achieved semantic security. The password file contained either the encrypted or

decrypted version of the new IVT depending on the security level used.

89

Figure 6.12: The input and output of the AES 256 encryption.

The last component of the Secure-BSL was the process of extracting binary data found in the

MSP430 flash memory. The operation to extract data from flash memory was handled by the main

class by first checking if the user had requested a memory dump. Figure 6.21 shows the flags used

to initiate a memory dump using the Secure-BSL software. The -u and -s will specified the range

of memory to extract from the MSP430 flash memory. The -P flag specifies the password file to use

which either held an encrypted or decrypted version of the IVT. The -t specified the user passphrase

to use in order to decrypt the password file before sending the IVT values to the mote. Therefore,

the main class was responsible for decrypting the password file if a user defined passphrase had been

used to encrypt the password file. The pseudo code for a memory dump operation is as follows:

IF dump firmware requested

Read password file pwdBytes

IF passphrase is used

Create AES256 object decryptPWD

Decrypt pwdBytes pwdBytes = decryptPWD.decrypt(pwdBytes)

IF decryption error occurs

THEN wrong password

FOR byte IN pwdBytes

convert byte to character

add character to password

Send password to MSP430

If the password file had not been encrypted then the values stored in the password file were converted

to characters before sending them to the MSP430. The MSP430 checked to see if the correct

password had been sent before granting full access the MCU. Figure 6.13 shows the parameters that

90

were passed to the AES256 class in order to decrypt the file.

Figure 6.13: The input and output of the AES 256 decryption.

6.4 Secure-BSL Testing

We created a Secure-BSL testing environment by creating a directory that held the main.ihex file

and the secure-bsl.py file. Figure 6.14 shows the testing environment for our Secure-BSL software.

The main.ihex file is the ASCII text representation of the binary created from the STMS L1-Secure

Coordinator application. However, any TinyOS applications can be used to obtain a main.ihex file

to be used as an example. The secure-bsl.py file is our Secure-BSL software and can be dowloaded

from our Github project[75].

Figure 6.14: The Secure-BSL testing environment consisting of the main.ihex file and secure-bsl.py
file

6.4.1 Security Level One Tests

The first test performed was to check if flashing an application to the MSP430 properly worked

when using the security level one. Figure 6.15 shows the flags used to flash firmware using our

Secure-BSL software. After programming the mote with the L1-Secure Coordinator application we

performed the same steps as discussed in Chapter 3.3 to check if the STMS L1-Secure WSN worked

properly. The results show that using the Secure-BSL software to flash firmware does not affect

the functionality of STMS. Therefore, we prove that our solution of randomizing the IVT and using

branch instructions does maintain the functionality of MSP430 application.

91

Figure 6.15: An example of using the Secure-BSL security level one to flash firmware into the
MSP430

After flashing the firmware into the MSP430 MCU, the Secure-BSL software generated a password

file that contained the new IVT values or the new password. Figure 6.16 shows the content of the

password file generated by the secure-bsl.py script. The values found in the password file were

randomly generated by the Secure-BSL software and were used for future access to the MSP430

MCU.

Figure 6.16: The content found in the password file generated by the Secure-BSL software

The second test performed was to check if extracting firmware using the correct password file

properly worked. Figure 6.17 shows the parameters used to extract firmware found in flash memory

using our Secure-BSL software. The -P flag specified the password file to use, in which we provided

the correct password file that was generated during test one. The results show a successful flash

memory dump of 64-bytes starting at address 0x4000.

92

Figure 6.17: An example of extracting firmware found in flash memory using the correct password
file

The third test performed was to check the security of extracting firmware using an incorrect

password file. Figure 6.18 shows the results of using the incorrect password file to extract firmware.

We specified to use the main.ihex file, which contained the original values of the IVT before they

were randomized using our Secure-BSL software. The results show that without having the correct

password file, full access to the mote was restricted even with a copy of the original main.ihex file.

Figure 6.18: An example of extracting firmware found in flash memory using the incorrect password
file

6.4.2 Security Level Two Tests

The fourth test performed was to check if flashing an application to the MSP430 properly works

when using the security level two. Figure 6.19 shows the additional flag (-t) used to flash the program

using the security level two. The -t flag allowed the developer to specify a user defined passphrase

to be used to protect the password file. Since the actual bytes flashed into the MSP430 memory

were not affected by the security level two there was no need to check if the functionality of STMS is

maintained. We have already shown from test one that the L1-Secure application properly worked

when using the Secure-BSL software.

93

Figure 6.19: An example of using the Secure-BSL security level two to flash firmware into the
MSP430

Flashing firmware using security level two generated a password file that contained an encrypted

version of the new IVT values. Figure 6.20 shows the content of the password file highlighted in

white. The values found in the password file were encrypted using AES-256 and the user defined

passphrase was used as the key.

Figure 6.20: The encrypted content found in the password file generated by the Secure-BSL software

The fifth test performed was to check if extracting firmware using the correct password file and

the correct passphrase properly worked. Figure 6.21 shows the additional (-t) parameter to use to

extract firmware found in flash memory. We provided the correct encrypted password file that was

generated during test four and the correct user defined passphrase. The results show a successful

flash memory dump of 64-bytes starting at address 0x4000.

94

Figure 6.21: An example of extracting firmware found in flash memory using the correct password
file and the correct passphrase

The sixth test performed was to check the security of extracting firmware using an incorrect

passphrase. Figure 6.22 shows the results of using the incorrect passphrase to decrypt the password

file. We specified to Secure-BSL software to use a different passphrase that was used to encrypt the

password file. The results show that without having the correct passphrase an attacker would not

be able to access the MSP430 MCU even after stealing a copy of the password file.

Figure 6.22: An example of extracting firmware found in flash memory using the incorrect passphrase

6.5 Chapter Summary

In summary, we have contributed to the WSN community with a working solution to the problem

of using a weak MSP430-BSL password. We investigated possible solutions to improve the MSP430-

BSL password used to protect firmware found in flash memory. Our results show that using the hash

of the binary breaks the overall functionality of the MSP430 application. Instead, we investigated

and used a randomization approach where the values of the IVT were replaced with random unused

addresses. The use of branch instructions to save the original IVT entries guarantees that our

solution does not break the overall functionality of an MSP430 application. We presented the reader

with our design approach in fixing the weak MSP430-BSL password and implemented a working

version by building on top of the default bootstrap loader software (tos-bsl). We tested our Secure-

BSL software and provided a fully functionality MSP430 bootstrap loader software to the MSP430

95

family community. Chapter 6 serves as a guideline on how the Secure-BSL software works as well as

contributes proof that our Secure-BSL software truly does secure data found in the MSP430 MCU.

96

Chapter 7

Results and Evaluations of Secure-BSL

In this chapter, we evaluate the security strength of the improved MSP430-BSL password generated

by our Secure-BSL software. We evaluate the memory overhead and computational overhead of

using our Secure-BSL software. Next, we prove that our Secure-BSL software provides security

enhancements in protecting the MSP430 MCU from feature mote capture attacks. More importantly

we contribute to the WSN community investigation results that analyze the strength of the improved

MSP430-BSL password. First, we investigate any patterns found in the randomized version of the

MSP430-BSL password. Second, we investigate worst case scenarios to calculate the brute force time

to break our secure MSP430-BSL password. Lastly, we investigate the security strength of using the

two-factor authentication and the likelihood of an attacker successfully accessing firmware.

7.1 Resource Overhead Evaluation

The memory overhead and computational overhead of randomizing the MSP430-BSL password is not

significant. The security enhancements obtained from using the Secure-BSL outweighs the overhead

added to the MSP430 MCU. We evaluated the memory overhead of adding additional opcodes used

to implement the branch instructions. Next we evaluated the computational over head of using the

branch instructions to maintain the original IVT functionality.

The memory overhead generated by the Secure-BSL depended on the number of interrupts found

in the IVT. We know that the MSP430 supported 16 interrupts; therefore, we used this number to

calculate the number of extra bytes added to memory. Figure 7.1 shows a sample of the extra bytes

added to main memory when flashing an application with the Secure-BSL software. The yellow

boxes show the 4-bytes opcodes used to implement the branch instructions and maintain proper

functionality of the IVT. For example, the last 2-bytes in the IVT highlighted in green show the

hex values 8a b2. The hex values correspond to the interrupt handler address 0xb28a (little endian)

found at IVT entry 15. The values found at address 0xb28a are 4-byte opcodes 30 40 00 44, which

translates to the following instruction: br 0x4000. The branch instruction found at address 0xb28a

is used to maintain proper functionality and points to the entry address of the application. With

97

that being said, a total of 4-bytes are needed to maintain the original 16 ISR addresses found in the

IVT. The total memory overhead generated by the Secure-BSL is 64 (7.1) bytes. The 64 bytes of

code added a minor memory overhead to the overall MSP430 flash memory.

16 interrupts× 4 bytes or 64 bytes (7.1)

Figure 7.1: A sample of memory after flashing an application using secure-BSL.

To calculate the computational overhead required investigating the number of clock cycles needed

to execute the branch instruction. As discussed in Chapter 5.2, the branch instruction was an

emulated instruction that was replaced with a core instruction (refer to Table 5.3). Since a branch

98

instruction is an unconditional jump to an address anywhere in memory then the emulated BR

instruction is replaced with the JMP core instruction[60]. Therefore, the number of clock cycles

required to execute the JMP instruction was the same as the number of clock cycles required to

execute the branch instruction. Using the MSP430 Users Guide manual[60] we determined that it

requires 2 clock cycles to execute a JMP instruction. With that being said, our random IVT approach

had a computation overhead of 2 clock cycles per interrupt event. For example, our random IVT

approach required an additional 2 clock cycles to handle a Power-Up interrupt and successfully

start a MSP430 application. The additional 2 clock cycles were only applied whenever an interrupt

occurred, which was less frequent than the actual user code execution. Since the MSP430, when

powered by a USB, handles 7 million clock cycles per second, an additional 2 clock cycles is a very

small computational overhead. The additional 64-bytes of code and 2 clock cycles per interrupt did

not affect the overall MSP430 application. Instead, the security posture of the MCU was enhanced

at little to no cost.

7.2 Password Strength Investigation Results

Using the same approach discussed in Chapter 4.3, we generated password samples using a modi-

fied version of the generate-pwds.sh script. The modified version used the Secure-BSL software to

generate the MSP430-BSL passwords for both the security levels (one-factor and two-factor). The

modified script and all other scripts used to analyze the Secure-BSL passwords can be downloaded

from our Github project[75]. In addition, the output of all of the scripts and any analysis not

included in Appendix B can be found in our Github project. The application’s sample size is 93

and was obtained from the TinyOS /apps directory. The covert-endianess.py script was used to

convert the 32-bytes password to the corresponding IVT entries (little endian) for each of the 93

applications. The results showed that the IVT entries generated by the Secure-BSL software were

indeed random and every IVT entry was unique. Unlike the original bootstrap loader (tos-bsl), our

Secure-BSL was able to generate unique IVT entries for every request made to flash firmware. For

instance, we saw in Figure 4.4 how the tos-bsl software had duplicates at IVT entries 0, 10, 11, and

14. Duplicate IVT entries are the results of applications not using all the interrupts supported by the

MSP430. Furthermore, we established that the Power-Up interrupt at IVT entry 15 was the same

for all 93 applications because it always points to the entry point of the application. Our Secure-BSL

approach improved the security of the MSP430-BSL password by randomizing the values stored in

these unused, or default, interrupts. Table B.1 shows results of generating random interrupt handler

99

addresses for IVT entries 0, 10, 11, 14, and 15 for all 93 applications. The results show that not a

single entry in the IVT were duplicates and holds true for all other 11 interrupts not shown in Table

B.1. We only presented five of the sixteen interrupts as an example; however, the complete set of

IVT entries for all 93 applications can be found in our Github project[75]. In addition, to double

check that all of the IVT entries are unique we ran the IVT-duplicates.py script on our applications

sample. Our results, shown on Table B.2, show that not a single application has a duplicate IVT

entry. Every single IVT entry is unique for all applications; hence, we see the number 16 in the IVT

entries column.

In Chapter 4.3, we demonstrated how the MSP430-BSL password can be brute forced in a matter

of days by sorting the ISR address found in the IVT. The graph in Figure 4.5 showed how sorting the

ISR addresses produced patterns than could be used to predict future MSP430-BSL passwords. For

example, the red line in Figure 7.2 represents the pattern that is persistent between 13 applications

that have eleven unused interrupts. The pattern is based on the IVT position after sorting the ISR

address found in each IVT entry. The pattern makes the password predictable because we prove

that future applications with 11 unused interrupts have the following sorted pattern: 15, 0, 10, 11,

14, 7, 3, 1, 8, 9, 2, 4, 6, 5, 13, and 12. Unlike the tos-bsl software, our Secure-BSL software truly

enforces the security of the MSP430-BSL password by randomizing the values found in the IVT.

In this chapter, we refer to the IVT generated by the Secure-BSL as ”secure IVT” and the IVT

generated by the tos-bsl as ”original IVT”. The bars in Figure 7.2 represent the IVT positions after

sorting the interrupt handler addresses found in the secure IVT entries. The same 13 applications

that were used to collect the data for the line graph were used to collect the data for the bar graphs.

The data can be found in Table B.3; however, the graph presents a visual representation of the

randomness found in the secure IVT entries. For example, for the 13 applications examined, the

first address of the sorted interrupt handlers corresponds to the following secure IVT positions: 12,

5, 9, 0, 11, 7, 2, 1, 6, 5, 1, 13, and 15, where the first address of the sorted ISRs for all 13 applications

correspond to the original IVT entry 15. We can conclude that even if the entry address 0x4000

was always stored in IVT entry 15, our Secure-BSL software was capable of randomizing the value

stored in the secure IVT entry 15 while maintaining sensor application functionality.

100

Figure 7.2: Comparing the results of the applications with 11 duplicates when using the tos-bsl vs
the Secure-BSL .

Figure 7.3: Results of the first IVT entry when sorting the IVT addresses.

101

To get an in-depth analysis of the level of randomness based on brute force times we analyzed

the rest of the applications in our sample to investigate for any predictable patterns. If any patterns

were found in the sorted version of the secure IVT entries then our approach would have practical

brute force times. For all the applications in our sample we investigated the first address (lowest

address) found in the sorted version of the secure IVT entries. Figure 7.3 shows the priority level

corresponding to the lowest address found in the secure IVT of each application. The results show

that the Secure-BSL software generated true randomness because IVT entries that correspond with

the lowest addresses were unpredictable. For example, for the first ten applications the IVT entry

that corresponded to the lowest address were as follows: 1, 0, 10, 7, 11, 3, 4, 8, and 3. Unlike

the original IVT version where the entry was always 15, our Secure-BSL did not provide practical

patterns for future password predictions. For the sake of completeness, Figure 7.4 shows the priority

levels corresponding to the sorted address found in the secure IVT of each application. The numbers

around the circle represent the applications and the numbers in the inner circle represent the IVT

entry. The circle graph shows that there was not a single line that created a perfect circle, which

would indicate the IVT entry being constant between all 93 applications. We can conclude that there

was not a single indicator of patterns when using our Secure-BSL; thus, generating unpredictable

MSP430-BSL passwords.

Figure 7.4: Results of all IVT entries when sorting the IVT addresses.

102

In Chapter 4.3, we demonstrated that the key to reducing the brute force time to a matter of days

lies behind the fact that there were significant patterns found by taking the difference between sorted

addresses found in the original IVT entries. Therefore, it was important to investigate whether

our secure IVT values lacked of this MSP430-BSL password security flaw. We used IVT-Entry-

Diff.py script to take the difference of the sorted addresses found in the secure IVT entries for each

application. Figure 7.5 shows a comparison of the MSP430-BSL password for the Blink application

using the Secure-BSL (in green) vs the tos-bsl (in red). The tos-bsl results show that taking the

difference of the sorted addresses significantly decreased the brute force time because it only required

to brute force 2 of the 16 original IVT entries. Furthermore, the possible combinations for these

2 IVT entries were in the address range of 0x4000 + 900 or 0x4380 to 0x4000 + 1500 or 0x45DC.

Where as the Secure-BSL results show that taking the difference of the sorted addresses did not

provide patterns for potential brute force time reduction. The difference between sorted addresses

for the Secure-BSL were not consistent and varied between addresses at different IVT entries. For

example, the difference between the second lowest address and the lowest address was roughly 4700

bytes. The differences between sorted addresses for the Blink application were in the range of 300

up to 8100-bytes and were random between addresses. Impractical brute for times still holds true

for the Secure-BSL approach even after taking the difference between sorted addresses found in the

secure IVT entries. The results of taking the difference between sorted addresses remain random for

all 93 applications found in our sample.

Figure 7.5: Comparison of taking the difference of the Blink application using Secure-BSL vs tos-bsl.

103

Our investigation results show that the MSP430-BSL password generated by our Secure-BSL

software significantly increases brute force times. Even if an attacker is able to generate password

samples using the Secure-BSL, they are still not able to deduct a concrete pattern to use for future

password predictions. Furthermore, even if they generate password samples for the same application

they are still not able to deduct a concrete pattern because the Secure-BSL is independent of the

bytes found in a binary. Every time a new password is generated the output is always different than

the previous result. The Secure-BSL software selects a random and unused address found in main

memory. Therefore, the only factor that affects the generated password is the binary size found in

flash memory.

Since the generated MSP430-BSL password depended on the unused space found in the main

memory, we investigated the correlation between unused space and brute force time. We investigated

the worst case scenario where the unused space was big enough to implement the Securel-BSL

randomization approach. In order for our Secure-BSL approach to work, there had to be at least 64-

bytes (4-bytes per interrupt) of unused space available in order to maintain application functionality.

Therefore, the following assumptions can be made for our worst case scenario.

• Attacker knows the end address of the unused space: 0xFFE0 (IVT Start Address)

• Attacker knows the start address of the unused space: 0xFFA0 (0xFFE0 - 64)

• Attacker knows memory layout: Addressing space (even numbers only)

Since code access is always performed on even addresses then out of the 64-bytes we only care

about the even numbers; therefore, reducing the set of addresses to 32. The address set N looks as

follows:

N={0xFFA0, 0xFFA2, 0xFFA4, ... , 0xFFDA, 0xFFDC , 0xFFDE}

The set N has 32 items that correspond to possible addresses that could be found in the random

IVT generated by the Secure-BSL. Since there were a total of 16 interrupts in the IVT we calculated

the number of possible combinations of 16 items (addresses) from set N. We used the permutation

formula (7.2) shown below to calculate the number of possible permutations of r items from set n

where the order of the items matter.

n!

(n− r)!
(7.2)

In our worst case scenario the value for N is 32 and the value for R is 16 (7.3).

32!

(32− 16)!
or 1.25× 1022 (7.3)

104

The total possible IVT value combinations that can be generated from a set of 32 possible

addresses is 12,576,278,705,767,096,320,000 (7.3). We know that our TelosB mote was capable of

checking 2280 passwords per second at a baud rate 38400 (refer to Figure 4.3). Therefore, to brute

force our approach of using a randomized IVT in the worst case scenario with an address space of

32 would take 1.04 × 1013 (7.4) years! We can conclude that in the worst case scenario where the

binary is (0xFFE0−64)−0x4000 or 0xBFA0 (49056) bytes in size, it is not practical to brute force.

Reducing the set of addresses to 32 still does not make it practical to brute force because of the 16

interrupts addresses required in each permutation.

((((1.25× 1022 ÷ 2280)÷ 60)÷ 24)÷ 365) or 1.04× 1013 (7.4)

We further examined the worst case scenario where the attacker was aware of how our imple-

mentation worked. For instance, the attacker was able to get a copy of this thesis and examined

Chapter 6 to get information on how the Secure-BSL was implemented. In particular, the attacker

was interested in knowing that the Secure-BSL used 4-bytes to store the opcodes used to maintain

the application functionality. By knowing that 4-bytes were stored at every address the attacker

could further reduce the set of addresses to 32÷ 2, or 16. Therefore, in the worst case scenario the

attacker had all the addresses found in the random IVT; however, the order of the addresses or the

IVT entries were unknown. The attacker would have to brute force all possible combinations of the

16 addresses that were part of the random IVT but the order was unknown. The total number of

combinations for 16 addresses is 16! or 20,922,789,888,000. With that being said, to brute force

the worst case scenario where all the addresses are known but the order is unknown it would take

17,459 (7.5) years! Our results show that even in the worst case scenario where there are only 16

addresses to combine and check it is still not practical to brute force. Adding randomization to the

MSP430-BSL password made it impossible or impractical to brute force.

((((2.09× 1013 ÷ 2280)÷ 60)÷ 24)÷ 365) or 17459 (7.5)

We would also like to take the time to point out that data stored in memory was in little endian;

therefore, when brute forcing the addresses they must be converted to little endian. For example,

using our worst case scenario example one of the permutations is as follows:

0xFFD4, 0xFFB0, 0xFFC4, 0xFFCC, 0xFFA8, 0xFFA0, 0xFFB4, 0xFFD8,

0xFFAC, 0xFFC0, 0xFFD0, 0xFFA4, 0xFFDC, 0xFFBC, 0xFFC8, 0xFFB8

105

The IVT values are converted to get the corresponding password bytes that is sent to the MSP430

to check the password. The converted IVT values that are sent to the mote looks as follows:

D4 FF B0 FF C4 FF CC FF A8 FF A0 FF B4 FF D8 FF

AC FF C0 FF D0 FF A4 FF DC FF BC FF C8 FF B8 FF

With that being said, although the password was 32-bytes, we only needed to permutate 16 addresses

since the MSP430 used the IVT address space to also store the password.

Our last evaluation consisted of examining the security strength of using the two-factor authen-

tication. Since two-factor authentication does not protect access to the actual MSP430 MCU then

if the attacker is able to somehow brute force the MSP430-BSL password the two-factor is also

broken. However, we have demonstrated that even in the worst case scenario it would take 17,459

years to brute our secure MSP430-BSL password. The two-factor authentication protects the pass-

word file generated by the Secure-BSL. The password file generated by Secure-BSL has a copy of

the IVT values found in flash memory and is used to authenticate users for future access to the

MSP430 MCU. Without the password file, future access to the MSP430 is restricted and requires

mass erasing flash memory to regain control of the MCU. With that being said, if an attacker is able

to obtain a copy of the password file they are guaranteed full access to the MSP430 MCU. The two

factor authentication is used to encrypt the file using a user defined passphrase. The Secure-BSL

requires users to enter an 8-character long password if they decide to use the security level of two

features. With a copy of the password file, the attacker can perform an offline attack to brute the

password used to encrypt the password file. Table 7.1 shows how long it would take to brute force

the password depending on the characters used in the passphrase[79].

Table 7.1: Password cracking time for passphrase of 8 characters long.

Character Types Time
Numerals 10 Seconds
Alphabet 348 minutes
Alphabet (Lower and Upper) 62 days
Alphabet (Lower and Upper) and Numerals 253 Days
Alphabet (Lower and Upper), Numerals and Symbols 23 Years

The calculated times are based on a dual processor PC capable of guessing 10,000,000 passwords

per second[79]. Enforcing the user to use 8-character long passwords better secures the encrypted

file; however, it is up to the user for the desired level of security. Ideally, the user should use a

password that has combinations of alphabetical letters, numerals and symbols, which would take

roughly 23 years to brute on a dual processor PC. The strength passphrase is out of our hands

because only the user will be able to dictate the level of security for the password file. Keep in mind,

106

that if a user forgets the password it is equivalent to losing the password file. The user has to mass

erase the MSP430 in order to regain access to the MCU. Accessing the MSP430 MCU after flashing

could become a hassle when using two-factor; however, most of the sensor devices once deployed are

not accessed until the device itself starts malfunctioning.

7.3 Chapter Summary

In summary, we evaluated the memory overhead and computational overhead of using our Secure-

BSL software to protect the MSP430 MCU. Our results showed that there is only a memory overhead

of 64-bytes and a computational overhead of 2 clock cycles when an interrupt occurs. Next, we

investigated the security posture of the randomized MSP430-BSL password generated by our Secure-

BSL software. We examined the passwords for true randomness by checking for any patterns after

sorting the IVT addresses. Furthermore, we took the differences between addresses to check or any

consistent patterns that can be used for future password predictions. The results proved that the

MSP430-BSL password is truly random and that a unique password is guaranteed even if binaries

are the same. We continued our analysis by checking for worst case scenarios where an attacker

knows the range of addresses used to generate the new IVT values. The results show that even if

the attacker is able to lower the set of addresses to 16 it still takes 17,459 years to try all possible

permutations of 16. Lastly, we investigated the worst case scenario where an attacker is able to steal

the encrypted password file and brute force the passphrase to decrypt the file. We concluded that

as long as the user uses a strong passphrase of 8 characters long with a combination of the alphabet

(Lower and Upper), numerals and symbols it would take 23 years in a dual processor PC. Chapter

7 has demonstrated that using our Secure-BSL software truly protects future access to the MSP430

MCU.

107

Chapter 8

Conclusion and Future Work

In this thesis we have evaluated and improved the security of WSNs by contributing a secure approach

to restricting physical access to the MSP430 micro-controllers units. In Chapter 2, we discussed

background information on various research topics for WSNs. We discussed various types of sensor

applications and provided examples of related WSNs that remotely monitor the temperature of

indoor environments. We evaluated various proposed cipher protocols for WSNs and concluded that

hardware implemented ciphers are the best choice for WSNs. In addition, we mentioned various

types of key management protocols and concluded that ECC is the best choice for implementing

PKC in WSNs. We highlighted on different algorithms proposed to mitigate the leaking of secret

information when nodes are captured. Lastly, we discussed related research of node tampering

attacks and shown the possibilities of obtaining information stored the internals of MSP430.

In Chapter 3, we discussed the design, implementation and testing results of our STMS. First,

we discussed our design approach of using a star topology, where the central node is a Coordinator

and the end nodes are the End-Device’s collection of temperature levels. Our implementation allows

to encrypt the communication between the Coordinator and the End-Devices using a network wide

shared key. Furthermore, we use the AES inline encryption built in to the CC2420 RF chips of

our TelosB motes. Using the PPPSniffer application and Wireshark, we were able to confirm that

the communication within our STMS was encrypted. We used STMS as our WSN experimental

environment to evaluate the security of the network.

In Chapter 4, we discussed our approach of breaking the MSP430-BSL password in a matter

of days. We highlighted the two methods of programming the MSP430 and proposed that BSL

programming is the most effective way. We analyzed the 32-bytes (256-bit) IVT or the ”BSL

password” used to protect access to the MSP430. We evaluated password samples generated from

93 TinyOS applications to check for password patterns between applications. Our results showed

that BSL password does indeed have patterns that can be used to predict future BSL passwords.

The brute force times depends on the number of unused interrupts found in a sensor application we

analyzed. If the number of unused interrupts are 11, then the brute force time would be roughly

108

2 days. If the the number of unused interrupts is 7 then the brute force time would be roughly 80

days. Using our password pattern technique we have been able to reduce the brute force time from

years to a matter of days.

In Chapter 5, we demonstrated how attackers can reverse engineer MSP430 applications found

in flash memory. We provided a step-by-step example of how an attacker can find cryptographic

keys stored in RAM. First, we presented the memory layout of the MSP430 and highlighted the

important regions in memory. We the provided instructions on how to disassemble dumped MSP430

applications by using the msp430-objcopy and the msp430-objdump tools. We provided the reader

a quick reference guide on the instruction set supported by the MSP430. Lastly, we provided

techniques that can be used effectively to reverse engineer MSP430 applications with the goal of

reducing the time to find cryptographic keys.

In Chapter 6, we contributed our solution of improving the password used to protect BSL access

to the MSP430 chips. We discussed our design of randomizing the IVT values by replacing them

with unused addresses. The randomizing of the IVT values and still maintaining functionality

of the MSP430 application was achieved by using branch instructions to save the original ISRs.

We implemented our approach on top default bootstrap loader software (tos-bsl) and made our

Secure-BSL implementation open source [75]. In addition to increasing the brute force times for

the MSP430-BSL password, our Secure-BSL software supported two factor authentication by using

a user defined passphrase. Our test results show that the brute force times for the MSP430-BSL

password is impractical.

In Chapter 7, we evaluated our Secure-BSL implementation by checking the overhead added

to the application as well as the level of security of the random generated passwords. Our results

showed that there was only a memory overhead of 64-bytes and a computational overhead of 2 clock

cycles when an interrupt occurred. The results show that in the worst case scenario, if the attacker

is able to lower the set of addresses to brute force to 16, it still takes 17,459 years to try all possible

permutations of 16. We also investigated the worst case scenario where an attacker is able to steal

the encrypted password file and brute force to decrypt the file. We concluded that as long as the

user uses a strong passphrase of 8 characters long with a combination of the alphabet (lower and

upper case), numerals and symbols it would take 23 years in a dual processor PC.

We have contributed to the WSN community with additional security investigation results. First,

this thesis provides an implemented secure temperature monitoring system that collects temperature

levels in a environment. Second, this thesis demonstrates a brute force attack on a capture node

to be practical and the password that protects access to the MSP320 MCU can be broken in a

109

matter of days. Third, to our knowledge, we have provided the first example of reverse engineering

MSP430 applications to obtain copies of cryptographic keys. Fourth, we have contributed the Secure-

BSL software that improved the password used to protect access to the MSP430 MCU. Lastly, our

evaluation results show the significant improvements of protecting MSP430 MCU from node capture

attacks.

Future work directions focus on evaluating other popular micro-controller units to test their level

of tamper resistance. In particular, we are interested in evaluating the ARM, AVR and PIC micro-

controllers [2]. We want to investigate whether any of the various micro-controllers have the same

BSL password vulnerable as well as investigate any other tampering techniques that can be used to

access the MCU internals. Lastly, we would like to increase our password sample size to thousands

or even million samples in order to find more password patterns

110

Appendix A

Script Results For tos-bsl

Table A.1: Time Results of Checking The Correct MSP430-BSL Password

1 200 400 600 800 1000
Trial 1 0.06s 12.58s 25.15s 37.80s 50.44s 63.04s
Trial 2 0.06s 12.64s 25.30s 38.03s 51.67s 64.45s
Trial 3 0.06s 12.91s 25.70s 38.67s 51.58s 64.56s
Trial 4 0.06s 12.87s 25.78s 38.62s 51.54s 64.43s
Trial 5 0.06s 12.94s 25.81s 38.67s 51.53s 64.28s
Trial 6 0.06s 12.90s 25.77s 38.65s 51.49s 64.48s
Trial 7 0.07s 12.88s 25.77s 38.71s 51.63s 64.32s
Trial 8 0.07s 12.92s 25.78s 38.64s 51.35s 64.40s
Trial 9 0.06s 12.84s 25.80s 38.53s 51.60s 64.17s
Trial 10 0.06s 12.92s 25.79s 38.70s 51.65s 64.39s
Averages 0.06s 12.84s 25.67s 38.50s 51.45s 64.25s

Table A.2: Time Results of Checking The Incorrect MSP430-BSL Password

1 200 400 600 800 1000
Trial 1 0.06s 12.58s 25.21s 37.74s 51.78s 63.47s
Trial 2 0.06s 12.86s 25.78s 38.73s 51.55s 64.57s
Trial 3 0.06s 12.95s 25.71s 38.60s 51.55s 64.50s
Trial 4 0.06s 12.86s 25.86s 38.59s 51.66s 64.45s
Trial 5 0.06s 12.86s 25.71s 38.66s 51.59s 64.50s
Trial 6 0.07s 12.92s 25.79s 38.74s 51.65s 64.46s
Trial 7 0.09s 12.85s 25.79s 38.54s 51.55s 64.34s
Trial 8 0.06s 12.85s 25.72s 38.60s 51.46s 64.47s
Trial 9 0.06s 12.79s 25.72s 38.61s 51.47s 64.27s
Trial 10 0.06s 12.91s 25.68s 38.60s 51.43s 64.41s
Averages 0.07s 12.84s 25.70s 38.54s 51.57s 64.34s

111

Table A.3: Time Results of Checking The MSP430-BSL Passwords Using a Baud Rate of 38400

1 200 400 600 800 1000
Trial 1 0.02s 5.18s 10.29s 15.57s 20.70s 25.77s
Trial 2 0.03s 5.18s 10.30s 15.41s 20.56s 25.79s
Trial 3 0.03s 5.15s 10.35s 15.45s 20.59s 25.81s
Trial 4 0.03s 5.10s 10.35s 15.43s 20.77s 25.93s
Trial 5 0.03s 5.11s 10.35s 15.48s 20.67s 25.84s
Trial 6 0.03s 5.19s 10.37s 15.55s 20.74s 25.67s
Trial 7 0.03s 5.19s 10.29s 15.53s 20.72s 25.76s
Trial 8 0.03s 5.21s 10.36s 15.46s 20.81s 25.84s
Trial 9 0.03s 5.22s 10.29s 15.51s 20.65s 25.80s
Trial 10 0.02s 5.17s 10.27s 15.51s 20.59s 25.83s
Averages 0.03s 5.17s 10.32s 15.49s 20.68s 25.80s

APPS Size (b) IVT Entries Duplicates

tinyos-main-apps-UDPEcho.ihex 41830 12 5

tinyos-main-apps-TCPEcho.ihex 35304 10 7

beacon-enabled-TestGTS-coordinator.ihex 30830 10 7

beacon-enabled-TestMultihop-router.ihex 29668 10 7

tests-deluge-Basestation.ihex 29070 13 4

tests-deluge-GoldenImage.ihex 28480 13 4

tests-deluge-SerialBlink.ihex 27356 13 4

apps-tests-TestNetwork.ihex 27216 13 4

tutorials-LowPowerSensing-Sampler.ihex 27034 10 7

apps-tests-TestNetworkLpl.ihex 27008 13 4

STMS-Coordinator-src.ihex 26702 12 5

STMS-Coordinator-PWD-Test-src.ihex 26460 12 5

tinyos-main-apps-MultihopOscilloscope.ihex 26324 13 4

TestMultihop-pancoord.ihex 25952 10 7

TestGTS-device.ihex 24714 10 7

TestAssociate-coordinator.ihex 24348 10 7

TestMultihop-device.ihex 24178 10 7

TestAssociate-device.ihex 24042 10 7

tests-deluge-Blink.ihex 24030 11 6

TestData-coordinator.ihex 23748 10 7

TestData-device.ihex 23520 10 7

tinyos-main-apps-MultihopOscilloscopeLqi.ihex 23426 13 4

112

STMS-EndDevice-src.ihex 23204 10 7

STMS-EndDevice-PWD-Test-src.ihex 23010 10 7

beacon-enabled-TestIndirect-coordinator.ihex 22926 10 7

tkn154-nonbeacon-enabled-TestPromiscuous.ihex 22720 12 5

beacon-enabled-TestIndirect-device.ihex 22716 10 7

beacon-enabled-TestStartSync-coordinator.ihex 22156 10 7

apps-tests-TestTymo.ihex 20670 10 7

nonbeacon-enabled-TestAssociate-device.ihex 20436 10 7

nonbeacon-enabled-TestIndirectData-coordinator.ihex 20348 10 7

nonbeacon-enabled-TestAssociate-coordinator.ihex 20244 10 7

beacon-enabled-TestStartSync-device.ihex 19992 10 7

apps-tests-LinkBench.ihex 19938 10 7

nonbeacon-enabled-TestIndirectData-device.ihex 19802 10 7

nonbeacon-enabled-TestActiveScan-device.ihex 19734 10 7

nonbeacon-enabled-TestActiveScan-coordinator.ihex 19524 10 7

tests-tkn154-packetsniffer.ihex 19418 12 5

tests-TestFtsp-FtspLpl.ihex 19106 10 7

apps-MOE-MOE-BaseStation.ihex 16796 12 5

apps-MOE-MOE-Attack replay.ihex 16748 12 5

cc2420-TestSecurity-BaseStation.ihex 16716 12 5

tutorials-LowPowerSensing-Base.ihex 16238 12 5

tinyos-main-apps-Oscilloscope.ihex 15830 11 6

apps-tutorials-PacketParrot.ihex 15024 10 7

cc2420-TestSecurity-RadioCountToLeds1.ihex 14546 10 7

tinyos-main-apps-BaseStation.ihex 14462 12 5

tutorials-RssiDemo-RssiBase.ihex 14382 12 5

tutorials-RssiDemo-InterceptBase.ihex 14350 12 5

apps-MOE-MOE-BroadCast.ihex 14312 10 7

apps-MOE-MOE-Attack inject.ihex 13842 10 7

tinyos-main-apps-PPPSniffer.ihex 13768 10 7

tests-TestFtsp-FtspLplBeaconer.ihex 12796 10 7

tests-cc2420-LplBroadcastPeriodicDelivery.ihex 12678 10 7

113

tests-cc2420-LplUnicastPeriodicDelivery.ihex 12606 10 7

apps-tests-TestLpl.ihex 12496 10 7

apps-tests-TestSrp.ihex 12248 10 7

apps-tests-RadioStress.ihex 11410 10 7

apps-tests-TestPowerManager.ihex 11400 6 11

tests-cc2420-TestAcks.ihex 11234 10 7

apps-tests-TestTimerSync.ihex 11160 10 7

tutorials-RssiDemo-SendingMote.ihex 10986 10 7

tests-storage-Config.ihex 10916 10 7

apps-tests-TestAM.ihex 10888 10 7

tests-storage-Log.ihex 10848 10 7

tests-arbiters-TestRoundRobinArbiter.ihex 10748 6 11

tests-storage-CircularLog.ihex 10648 10 7

tests-arbiters-TestFcfsArbiter.ihex 10558 6 11

tests-storage-SyncLog.ihex 10192 10 7

apps-tutorials-BlinkConfig.ihex 10142 10 7

tests-msp430-Adc12.ihex 9318 8 9

tests-storage-Block.ihex 9318 10 7

apps-tests-TestEui.ihex 9046 8 9

apps-tutorials-Printf.ihex 8602 8 9

apps-tests-TestPrintf.ihex 8584 8 9

apps-tests-TestAdc.ihex 7642 7 10

tinyos-main-apps-Sense.ihex 6988 7 10

apps-tests-TestScheduler.ihex 6314 6 11

tests-TestLed-LedColor.ihex 5770 8 9

tests-TestLed-MultiLed.ihex 5710 8 9

apps-tests-TestLocalTime.ihex 5416 8 9

tests-msp430-AdcSimple.ihex 4786 7 10

apps-tests-TestSerialPrintf.ihex 4214 8 9

apps-tutorials-SharedResourceDemo.ihex 3282 6 11

tests-telosb-TestUserButton.ihex 3020 8 9

tests-TestLed-MultiLedSingle.ihex 2622 6 11

114

tests-TestLed-BlinkLed.ihex 2582 6 11

apps-tutorials-BlinkFail.ihex 2558 6 11

tinyos-main-apps-Blink.ihex 2538 6 11

apps-tutorials-BlinkTask.ihex 2458 6 11

apps-tests-TestPowerup.ihex 1378 6 11

tinyos-main-apps-Powerup.ihex 1378 6 11

tinyos-main-apps-Null.ihex 1328 6 11

Table A.4: Correlation Between Code Size vs. Number of Duplicate IVT Entries

115

Appendix B

Script Results For Secure-BSL

APPS App Size P0 P10 P11 P14 P15

UDPEcho.ihex 41830 0xfe0e 0xf15a 0xf792 0xefc6 0xf952

TCPEcho.ihex 35304 0xea3c 0xd764 0xfa10 0xd69c 0xd4bc

TestGTS-coordinator.ihex 30830 0xfb98 0xe558 0xee3c 0xc994 0xe4e4

TestMultihop-router.ihex 29668 0xedce 0xf316 0xd282 0xe626 0xc2b6

deluge-Basestation.ihex 29070 0xf504 0xf048 0xd720 0xfcd4 0xde08

deluge-GoldenImage.ihex 28480 0xe550 0xcd0c 0xc028 0xd9ec 0xcb28

deluge-SerialBlink.ihex 27356 0xfee2 0xf202 0xddca 0xf152 0xbe9a

TestNetwork.ihex 27216 0xae8a 0xf2d2 0xd94a 0xb846 0xde7a

LowPowerSensing-Sampler.ihex 27034 0xdc9a 0xc85e 0xb266 0xd296 0xf6da

TestNetworkLpl.ihex 27008 0xff74 0xb288 0xb1ec 0xcb94 0xaf48

IEEE802154-Coordinator.ihex 26438 0xa93c 0xd888 0xd79c 0xdc20 0xdfc4

MultihopOscilloscope.ihex 26324 0xf70a 0xf0aa 0xe15e 0xbf7e 0xf376

TestMultihop-pancoord.ihex 25952 0xf4c4 0xcde4 0xef50 0xb168 0xd750

TestGTS-device.ihex 24714 0xae26 0xd17e 0xf352 0xff6e 0xe0fe

TestAssociate-coordinator.ihex 24348 0xeae4 0xff1c 0xbbd0 0xa5a0 0xd8ec

TestMultihop-device.ihex 24178 0xeda8 0xbfbc 0xbbb0 0xf8e4 0xc6f4

TestAssociate-device.ihex 24042 0xcad2 0xe1ea 0xfb6a 0xfd96 0xc3de

deluge-Blink.ihex 24030 0xca96 0xe5ca 0xe492 0xb192 0xe46e

TestData-coordinator.ihex 23748 0xfdc4 0xc770 0xe0e8 0xf3a4 0xd96c

TestData-device.ihex 23520 0xf0e2 0xd14a 0xda96 0xa92e 0xbe16

MultihopOscilloscopeLqi.ihex 23426 0x9fda 0xeb62 0xc75e 0xa6f6 0xddf2

IEEE802154-End-Device-src.ihex 23010 0xe8b6 0xcde2 0xe54e 0xd3ba 0xc09a

TestIndirect-coordinator.ihex 22926 0xf644 0xb30c 0xccec 0xfea8 0xa0f8

tkn154-nonTestPromiscuous.ihex 22720 0xbc80 0xa770 0xa308 0xe030 0x9d04

TestIndirect-device.ihex 22716 0xaa5e 0xc262 0xa55a 0xae42 0xd692

116

TestStartSync-coordinator.ihex 22156 0xc114 0xd5a0 0x9c8c 0xe0bc 0xd068

TestTymo.ihex 20670 0xd2c6 0xc8de 0xf4f2 0x9b7a 0xf506

nonTestAssociate-device.ihex 20436 0xf382 0xc4da 0xda2e 0xe8a2 0xeaf2

nonTestIndirectData-coord.ihex 20348 0x940a 0xb916 0xe202 0xee36 0xa0ce

nonTestAssociate-coord.ihex 20244 0xaf18 0xe04c 0x9d78 0xc8d4 0xaab8

TestStartSync-device.ihex 19992 0xfa38 0x91b0 0xac68 0xb8c0 0x96bc

LinkBench.ihex 19938 0xc528 0xc4c0 0xbb24 0xd908 0xa384

nonTestIndirectDatadevice.ihex 19802 0xb5f4 0x8e28 0xfe38 0xbdc8 0xaba8

nonTestActiveScan-device.ihex 19734 0xb28a 0xa3e6 0xadfa 0xd226 0xfcfe

nonTestActiveScan-coord.ihex 19524 0x7cfc 0xfae4 0xcee8 0xac18 0xad2c

nonTestActiveScan-coord.ihex 19524 0xadca 0xc38a 0xeb5e 0xf93a 0xc9f6

tkn154-packetsniffer.ihex 19418 0xfa66 0xd12e 0x93de 0xb1d2 0xa732

TestFtsp-FtspLpl.ihex 19106 0xcce2 0x9cc6 0xde4e 0xa71e 0xf66e

L1-Secure-Coordinator-src.ihex 18958 0xf70e 0xb82e 0xa3c6 0xaece 0xf86e

MOE-MOE-BaseStation.ihex 16796 0x8cfa 0xb06a 0xa77a 0x8e12 0xc4a6

MOE-MOE-Attack replay.ihex 16748 0x893e 0xee52 0x907a 0x8c0a 0xeeaa

TestSecurity-BaseStation.ihex 16716 0x9a26 0x8ae2 0x8a36 0xc4b2 0xae46

LowPowerSensing-Base.ihex 16238 0xdfa4 0xa19c 0xa298 0x9648 0x98c8

Oscilloscope.ihex 15830 0xa964 0xbf38 0xa24c 0xa61c 0xae90

L1-Secure-End-Device-src.ihex 15492 0x8f5a 0xead2 0xe1e2 0xad5e 0xa466

PacketParrot.ihex 15024 0xae52 0x9c3e 0xe5e2 0xdaf6 0xdc5e

RadioCountToLeds1.ihex 14546 0xf8aa 0xa992 0x9fea 0xfaf6 0x94c6

BaseStation.ihex 14462 0xa572 0xbeae 0xc7f6 0x80f2 0xacc2

RssiDemo-RssiBase.ihex 14382 0x926e 0xa546 0x9f2e 0x7ebe 0xf98a

RssiDemo-InterceptBase.ihex 14350 0xd666 0xc236 0xb986 0x8a16 0x8336

MOE-MOE-BroadCast.ihex 14312 0xa842 0x7e36 0xb9f6 0xf12e 0x8af2

PPPSniffer.ihex 13768 0xcd4e 0x91fe 0xbaa6 0xa1b2 0xa0f6

FtspLplBeaconer.ihex 12796 0x9a48 0xae5c 0xb5bc 0xa240 0x8c30

BroadcastPeriodDelivery.ihex 12678 0xb060 0x9914 0xfc6c 0xb2c4 0x8394

UnicastPeriodicDelivery.ihex 12606 0x8880 0x80a4 0x881c 0x793c 0x8364

TestLpl.ihex 12496 0xf87c 0xd314 0xaae0 0x8a20 0xdcbc

TestSrp.ihex 12248 0xe374 0xb7d8 0xcba4 0xc29c 0xcc6c

117

RadioStress.ihex 11410 0xeb0e 0x7bda 0x6d9e 0xc88a 0xcaea

TestPowerManager.ihex 11400 0x97f6 0xee5a 0x6f76 0xc736 0xb4c2

cc2420-TestAcks.ihex 11234 0xd04a 0xaa2e 0xdf2e 0xbfda 0x9002

TestTimerSync.ihex 11160 0xc45a 0xc432 0xa592 0x913a 0xbc1a

RssiDemo-SendingMote.ihex 10986 0xc86c 0xaa84 0xb4b4 0x71e4 0xe064

storage-Config.ihex 10916 0xa694 0xcfe4 0xe2a8 0x7e04 0xf508

TestAM.ihex 10888 0xe026 0x9526 0xc07e 0xa50e 0xd3ce

storage-Log.ihex 10848 0x8c50 0xc744 0x9efc 0x9c08 0xc7bc

TestRoundRobinArbiter.ihex 10748 0xdb7c 0xeef4 0xdab8 0x7bd4 0x6c20

storage-CircularLog.ihex 10648 0x87c0 0xf3f8 0xf8b0 0xf408 0xc4e8

arbiters-TestFcfsArbiter.ihex 10558 0xe87a 0x8e1e 0xfe2e 0xb79a 0xc3ee

storage-SyncLog.ihex 10192 0x96de 0xa656 0xd196 0xb96a 0xc2be

BlinkConfig.ihex 10142 0xb2d6 0xd422 0xb0e2 0xa556 0xaece

msp430-Adc12.ihex 9318 0xa0bc 0x6fdc 0xffdc 0x88a8 0xaae8

storage-Block.ihex 9318 0xfdcc 0xa520 0x9fac 0x9ef8 0xf8d0

TestEui.ihex 9046 0xfcda 0x8ca6 0xc866 0xa4d2 0xe482

Printf.ihex 8602 0x6f34 0x7e3c 0x7bdc 0xf370 0xbd2c

TestPrintf.ihex 8584 0xd9fa 0xfa66 0xd606 0x767a 0xd572

TestAdc.ihex 7642 0x9658 0xd650 0xa9ac 0xcfa0 0xfeac

Sense.ihex 6988 0xd93c 0x6560 0xba54 0x99b0 0x9ba0

TestScheduler.ihex 6314 0x7b82 0xb57a 0x76d6 0xdfba 0xed86

TestLed-LedColor.ihex 5770 0x82c0 0x9e90 0xa824 0xc900 0xacd4

TestLed-MultiLed.ihex 5710 0x638a 0x8c66 0xd402 0xe90a 0xcb22

TestLocalTime.ihex 5416 0xfe46 0xcb7a 0xbfa6 0x9932 0x77e6

msp430-AdcSimple.ihex 4786 0x6e34 0xaab8 0xf628 0x931c 0xbda4

TestSerialPrintf.ihex 4214 0xad34 0xa844 0xaff0 0xc29c 0xc448

SharedResourceDemo.ihex 3282 0x4eae 0x7dce 0xfc8e 0xd0aa 0x8b0a

telosb-TestUserButton.ihex 3020 0xd0dc 0xeeec 0xd900 0xefb8 0xa6a0

TestLed-MultiLedSingle.ihex 2622 0xf42e 0x7262 0xad62 0xb3fe 0x76ae

TestLed-BlinkLed.ihex 2582 0xc52e 0xf9fe 0x54e6 0x9d2a 0xe736

BlinkFail.ihex 2558 0x98b2 0xe59e 0xa806 0x949e 0x6e5e

Blink.ihex 2538 0x9a8a 0x70be 0x6672 0xa396 0x8446

118

BlinkTask.ihex 2458 0xd2da 0xc6ca 0xbf62 0x95d6 0x73e6

TestPowerup.ihex 1378 0x8964 0xd178 0x91cc 0x9930 0xb718

Powerup.ihex 1378 0xacec 0xbd64 0xda80 0xa700 0xcccc

Null.ihex 1328 0x8fc6 0xb3fa 0x8f1e 0xf9ca 0x6f16

Table B.1: Sample of the values generated for IVT priority levels 0, 10, 11,14, and 15

APPS Size (b) IVT Entries Duplicates

UDPEcho.ihex 41830 16 1

TCPEcho.ihex 35304 16 1

TestGTS-coordinator.ihex 30830 16 1

TestMultihop-router.ihex 29668 16 1

deluge-Basestation.ihex 29070 16 1

deluge-GoldenImage.ihex 28480 16 1

deluge-SerialBlink.ihex 27356 16 1

TestNetwork.ihex 27216 16 1

LowPowerSensing-Sampler.ihex 27034 16 1

TestNetworkLpl.ihex 27008 16 1

IEEE802154-Coordinator.ihex 26438 16 1

MultihopOscilloscope.ihex 26324 16 1

TestMultihop-pancoord.ihex 25952 16 1

TestGTS-device.ihex 24714 16 1

TestAssociate-coordinator.ihex 24348 16 1

TestMultihop-device.ihex 24178 16 1

TestAssociate-device.ihex 24042 16 1

deluge-Blink.ihex 24030 16 1

TestData-coordinator.ihex 23748 16 1

TestData-device.ihex 23520 16 1

MultihopOscilloscopeLqi.ihex 23426 16 1

IEEE802154-End-Device-src.ihex 23010 16 1

TestIndirect-coordinator.ihex 22926 16 1

tkn154-nonTestPromiscuous.ihex 22720 16 1

TestIndirect-device.ihex 22716 16 1

119

TestStartSync-coordinator.ihex 22156 16 1

TestTymo.ihex 20670 16 1

nonTestAssociate-device.ihex 20436 16 1

nonTestIndirectData-coord.ihex 20348 16 1

nonTestAssociate-coord.ihex 20244 16 1

TestStartSync-device.ihex 19992 16 1

LinkBench.ihex 19938 16 1

nonTestIndirectDatadevice.ihex 19802 16 1

nonTestActiveScan-device.ihex 19734 16 1

nonTestActiveScan-coord.ihex 19524 16 1

nonTestActiveScan-coord.ihex 19524 16 1

tkn154-packetsniffer.ihex 19418 16 1

TestFtsp-FtspLpl.ihex 19106 16 1

L1-Secure-Coordinator-src.ihex 18958 16 1

MOE-MOE-BaseStation.ihex 16796 16 1

MOE-MOE-Attack replay.ihex 16748 16 1

TestSecurity-BaseStation.ihex 16716 16 1

LowPowerSensing-Base.ihex 16238 16 1

Oscilloscope.ihex 15830 16 1

L1-Secure-End-Device-src.ihex 15492 16 1

PacketParrot.ihex 15024 16 1

RadioCountToLeds1.ihex 14546 16 1

BaseStation.ihex 14462 16 1

RssiDemo-RssiBase.ihex 14382 16 1

RssiDemo-InterceptBase.ihex 14350 16 1

MOE-MOE-BroadCast.ihex 14312 16 1

PPPSniffer.ihex 13768 16 1

FtspLplBeaconer.ihex 12796 16 1

BroadcastPeriodDelivery.ihex 12678 16 1

UnicastPeriodicDelivery.ihex 12606 16 1

TestLpl.ihex 12496 16 1

TestSrp.ihex 12248 16 1

120

RadioStress.ihex 11410 16 1

TestPowerManager.ihex 11400 16 1

cc2420-TestAcks.ihex 11234 16 1

TestTimerSync.ihex 11160 16 1

RssiDemo-SendingMote.ihex 10986 16 1

storage-Config.ihex 10916 16 1

TestAM.ihex 10888 16 1

storage-Log.ihex 10848 16 1

TestRoundRobinArbiter.ihex 10748 16 1

storage-CircularLog.ihex 10648 16 1

arbiters-TestFcfsArbiter.ihex 10558 16 1

storage-SyncLog.ihex 10192 16 1

BlinkConfig.ihex 10142 16 1

msp430-Adc12.ihex 9318 16 1

storage-Block.ihex 9318 16 1

TestEui.ihex 9046 16 1

Printf.ihex 8602 16 1

TestPrintf.ihex 8584 16 1

TestAdc.ihex 7642 16 1

Sense.ihex 6988 16 1

TestScheduler.ihex 6314 16 1

TestLed-LedColor.ihex 5770 16 1

TestLed-MultiLed.ihex 5710 16 1

TestLocalTime.ihex 5416 16 1

msp430-AdcSimple.ihex 4786 16 1

TestSerialPrintf.ihex 4214 16 1

SharedResourceDemo.ihex 3282 16 1

telosb-TestUserButton.ihex 3020 16 1

TestLed-MultiLedSingle.ihex 2622 16 1

TestLed-BlinkLed.ihex 2582 16 1

BlinkFail.ihex 2558 16 1

Blink.ihex 2538 16 1

121

BlinkTask.ihex 2458 16 1

TestPowerup.ihex 1378 16 1

Powerup.ihex 1378 16 1

Null.ihex 1328 16 1

Table B.2: The number of duplicates found for each application using the Secure-BSL

Pos: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tos 15 0 10 11 14 7 3 1 8 9 2 4 6 5 13 12

App1 12 4 13 5 7 2 0 11 14 15 3 1 10 6 8 9

App2 5 12 13 1 15 7 9 14 6 0 11 4 3 8 10 2

App3 9 6 15 1 2 12 14 7 11 10 5 0 4 13 8 3

App4 0 6 7 4 13 10 12 5 15 8 14 9 3 2 1 11

App5 11 13 8 2 3 12 5 9 7 14 4 0 6 1 15 10

App6 7 12 10 15 11 14 6 4 13 3 2 9 8 1 5 0

App7 2 11 10 9 7 15 0 14 12 8 6 1 5 4 3 13

App8 1 13 3 5 15 4 11 0 8 7 9 10 6 12 14 2

App9 6 4 5 12 13 8 14 0 1 10 15 3 2 11 9 7

App10 5 11 13 8 0 9 1 15 14 4 2 3 12 10 7 6

App11 1 6 3 11 0 4 9 2 10 12 5 7 13 8 14 15

App12 13 12 3 4 10 6 7 8 5 1 14 15 9 0 2 11

App13 15 14 7 12 6 3 5 8 11 0 9 13 4 10 1 2

Table B.3: The results of Secure-BSL sorted passwords for the same applications that had 11 unused
interrupts when using tos-bsl software.

122

Bibliography

[1] Y. W. Law, J. Doumen, and P. Hartel, “Survey and benchmark of block ciphers for wireless

sensor networks,” ACM Transactions on Sensor Networks (TOSN), vol. 2, no. 1, pp. 65–93,

2006.

[2] R. Roman, C. Alcaraz, and J. Lopez, “A survey of cryptographic primitives and implementations

for hardware-constrained sensor network nodes,” Mobile Networks and Applications, vol. 12,

no. 4, pp. 231–244, 2007.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: a

survey,” Computer networks, vol. 38, no. 4, pp. 393–422, 2002.

[4] P. Ganesan, R. Venugopalan, P. Peddabachagari, A. Dean, F. Mueller, and M. Sichitiu, “Ana-

lyzing and modeling encryption overhead for sensor network nodes,” in Proceedings of the 2nd

ACM international conference on Wireless sensor networks and applications. ACM, 2003, pp.

151–159.

[5] K. O’Flaherty, “Securing the internet of things,” SC Magazine UK, 2015.

[6] S. McGillicuddy, “Who’s in charge here? securing the internet of things,” Information Security

Insider Edition, 2014.

[7] J. Andersen and M. T. Hansen, “Energy bucket: A tool for power profiling and debugging

of sensor nodes,” in Sensor Technologies and Applications, 2009. SENSORCOMM’09. Third

International Conference on. IEEE, 2009, pp. 132–138.

[8] F. Busching, A. Figur, D. Schurmann, and L. Wolf, “Utilizing hardware aes encryption for

wsns,” in CONFERENCE PAPER, 2013.

[9] T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, and L. Uhsadel, “A survey of lightweight-

cryptography implementations,” IEEE Design & Test of Computers, no. 6, pp. 522–533, 2007.

[10] D. Jinwala, D. Patel, and K. Dasgupta, “Flexisec: a configurable link layer security architecture

for wireless sensor networks,” arXiv preprint arXiv:1203.4697, 2012.

123

[11] C. Karlof, N. Sastry, and D. Wagner, “Tinysec: a link layer security architecture for wireless

sensor networks,” in Proceedings of the 2nd international conference on Embedded networked

sensor systems. ACM, 2004, pp. 162–175.

[12] B. Kiruthika, R. Ezhilarasie, and A. Umamakeswari, “Implementation of modified rc4 algorithm

for wireless sensor networks on cc2431,” Indian Journal of Science and Technology, vol. 8, no. S9,

pp. 198–206, 2015.

[13] L. E. Lighfoot, J. Ren, and T. Li, “An energy efficient link-layer security protocol for wireless

sensor networks,” in Electro/Information Technology, 2007 IEEE International Conference on.

IEEE, 2007, pp. 233–238.

[14] M. Luk, G. Mezzour, A. Perrig, and V. Gligor, “Minisec: a secure sensor network communication

architecture,” in Proceedings of the 6th international conference on Information processing in

sensor networks. ACM, 2007, pp. 479–488.

[15] A. Perrig, J. Stankovic, and D. Wagner, “Security in wireless sensor networks,” Communications

of the ACM, vol. 47, no. 6, pp. 53–57, 2004.

[16] S. Sciancalepore, G. Piro, G. Boggia, and L. Grieco, “Application of ieee 802.15. 4 security

procedures in openwsn protocol stack,” IEEE Standards Education e-Magazine, vol. 4, no. 2,

2014.

[17] P. Toldo, M. Saloni, and N. Manica, “Aes implementation in tinyos,” 2008.

[18] M. T. Hansen, “Asynchronous group key distribution on top of the cc2420 security mechanisms

for sensor networks,” in Proceedings of the second ACM conference on Wireless network security.

ACM, 2009, pp. 13–20.

[19] P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R. Dahab, “Nanoecc: Testing the

limits of elliptic curve cryptography in sensor networks,” in Wireless sensor networks. Springer,

2008, pp. 305–320.

[20] D. J. Malan, M. Welsh, and M. D. Smith, “Implementing public-key infrastructure for sensor

networks,” ACM Transactions on Sensor Networks (TOSN), vol. 4, no. 4, p. 22, 2008.

[21] A. Liu and P. Ning, “Tinyecc: A configurable library for elliptic curve cryptography in wireless

sensor networks,” in Information Processing in Sensor Networks, 2008. IPSN’08. International

Conference on. IEEE, 2008, pp. 245–256.

124

[22] H. Wang, B. Sheng, and Q. Li, “Elliptic curve cryptography-based access control in sensor

networks,” International Journal of Security and Networks, vol. 1, no. 3-4, pp. 127–137, 2006.

[23] L. Eschenauer and V. D. Gligor, “A key-management scheme for distributed sensor networks,”

in Proceedings of the 9th ACM conference on Computer and communications security. ACM,

2002, pp. 41–47.

[24] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes for sensor networks,”

in Security and Privacy, 2003. Proceedings. 2003 Symposium on. IEEE, 2003, pp. 197–213.

[25] Y. Xiao, V. K. Rayi, B. Sun, X. Du, F. Hu, and M. Galloway, “A survey of key management

schemes in wireless sensor networks,” Computer communications, vol. 30, no. 11, pp. 2314–2341,

2007.

[26] T. Instruments, “Msp430 programming with the bootloader (bsl),” TI Application Report

SLAU319K, 2015.

[27] A. Becher, Z. Benenson, and M. Dornseif, Tampering with motes: Real-world physical attacks

on wireless sensor networks. Springer, 2006.

[28] T. Goodspeed, “A side-channel timing attack of the msp430 bsl,” Black Hat USA, 2008.

[29] B. Son, Y.-s. Her, and J.-G. Kim, “A design and implementation of forest-fires surveillance

system based on wireless sensor networks for south korea mountains,” International Journal of

Computer Science and Network Security (IJCSNS), vol. 6, no. 9, pp. 124–130, 2006.

[30] A. Baggio, “Wireless sensor networks in precision agriculture,” in ACM Workshop on Real-

World Wireless Sensor Networks (REALWSN 2005), Stockholm, Sweden. Citeseer, 2005.

[31] B. Warneke, M. Last, B. Liebowitz, and K. S. Pister, “Smart dust: Communicating with a

cubic-millimeter computer,” Computer, vol. 34, no. 1, pp. 44–51, 2001.

[32] G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,” Communications of the

ACM, vol. 43, no. 5, pp. 51–58, 2000.

[33] M. L. McKelvin Jr, M. L. Williams, and N. M. Berry, “Integrated radio frequency identification

and wireless sensor network architecture for automated inventory management and tracking

applications,” in Proceedings of the 2005 Conference on Diversity in Computing. ACM, 2005,

pp. 44–47.

125

[34] E. M. Petriu, N. D. Georganas, D. C. Petriu, D. Makrakis, and V. Z. Groza, “Sensor-based

information appliances,” Instrumentation & Measurement Magazine, IEEE, vol. 3, no. 4, pp.

31–35, 2000.

[35] C. Herring and S. Kaplan, “Component-based software systems for smart environments,” IEEE

Personal Communications, vol. 7, no. 5, pp. 60–61, 2000.

[36] D. M. Doolin and N. Sitar, “Wireless sensors for wildfire monitoring,” in Smart Structures and

Materials. International Society for Optics and Photonics, 2005, pp. 477–484.

[37] P. Sachan and A. Saharia, “Civil applications of wireless sensor networks,” International Journal

of Science and Research, 2015.

[38] V. Boonsawat, J. Ekchamanonta, K. Bumrungkhet, and S. Kittipiyakul, “Xbee wireless sensor

networks for temperature monitoring,” in the second conference on application research and

development (ECTI-CARD 2010), Chon Buri, Thailand, 2010.

[39] Y.-J. Mon, C.-M. Lin, I. J. Rudas et al., “Wireless sensor network (wsn) control for indoor

temperature monitoring,” Acta Polytechnica Hungarica, vol. 9, no. 6, pp. 17–28, 2012.

[40] B. Risteska Stojkoska, A. Popovska Avramova, and P. Chatzimisios, “Application of wireless

sensor networks for indoor temperature regulation,” International Journal of Distributed Sensor

Networks, vol. 2014, 2014.

[41] ZBOSS, “Zigbee open source stack http://zboss.dsr-wireless.com/,” Trusted Software Develop-

ment, Tech. Rep., 2013.

[42] I. Mansour, G. Chalhoub, and P. Lafourcade, “Key management in wireless sensor networks.”

Journal of Sensor & Actuator Networks, vol. 4, no. 3, pp. 251 – 273, 2015.

[43] SmartRF, Chipcon AS SmartRF CC2420 Preliminary Datasheet (rev 1.2), Chipcon, 06 2004.

[44] G. Jolly, M. C. Kuşçu, P. Kokate, and M. Younis, “A low-energy key management protocol for

wireless sensor networks,” in Computers and Communication, 2003.(ISCC 2003). Proceedings.

Eighth IEEE International Symposium on. IEEE, 2003, pp. 335–340.

[45] R. Watro, D. Kong, S.-f. Cuti, C. Gardiner, C. Lynn, and P. Kruus, “Tinypk: securing sensor

networks with public key technology,” in Proceedings of the 2nd ACM workshop on Security of

ad hoc and sensor networks. ACM, 2004, pp. 59–64.

126

[46] D. K. Nilsson, T. Roosta, U. Lindqvist, and A. Valdes, “Key management and secure software

updates in wireless process control environments,” in Proceedings of the first ACM conference

on Wireless network security. ACM, 2008, pp. 100–108.

[47] X. Du, Y. Xiao, S. Ci, M. Guizani, and H.-H. Chen, “A routing-driven key management scheme

for heterogeneous sensor networks,” in Communications, 2007. ICC’07. IEEE International

Conference on. IEEE, 2007, pp. 3407–3412.

[48] O. Alfandi, A. Bochem, A. Kellner, C. Göge, and D. Hogrefe, “Secure and authenticated data

communication in wireless sensor networks,” Sensors, vol. 15, no. 8, pp. 19 560–19 582, 2015.

[49] J. Zhang and V. Varadharajan, “Wireless sensor network key management survey and taxon-

omy,” Journal of Network and Computer Applications, vol. 33, no. 2, pp. 63–75, 2010.

[50] Y. Wang, B. Ramamurthy, and X. Zou, “Keyrev: An efficient key revocation scheme for wire-

less sensor networks,” in Communications, 2007. ICC’07. IEEE International Conference on.

IEEE, 2007, pp. 1260–1265.

[51] S. Chattopadhyay and A. K. Turuk, “A scheme for key revocation in wireless sensor net-

works,” International Journal on Advanced Computer Engineering and Communication Tech-

nology, vol. 1, no. 2, pp. 16–20, 2012.

[52] I. Krontiris, T. Dimitriou, T. Giannetsos, and M. Mpasoukos, “Intrusion detection of sink-

hole attacks in wireless sensor networks,” in Algorithmic Aspects of Wireless Sensor Networks.

Springer, 2007, pp. 150–161.

[53] B. Sun, L. Osborne, Y. Xiao, and S. Guizani, “Intrusion detection techniques in mobile ad hoc

and wireless sensor networks,” Wireless Communications, IEEE, vol. 14, no. 5, pp. 56–63, 2007.

[54] C. K. Priya, B. Sathyanarayana, J. Mizuno, T. Kakizaki, S. Takahashi, and S. Kudo, “Energy

efficient and dynamic key management scheme for wireless sensor networks,” IEEE Xplore,

2007.

[55] H. Soroush, M. Salajegheh, and T. Dimitriou, “Providing transparent security services to sensor

networks,” in Communications, 2007. ICC’07. IEEE International Conference on. IEEE, 2007,

pp. 3431–3436.

[56] J. Deng, C. Hartung, R. Han, and S. Mishra, “A practical study of transitory master key es-

tablishment forwireless sensor networks,” in Security and Privacy for Emerging Areas in Com-

127

munications Networks, 2005. SecureComm 2005. First International Conference on. IEEE,

2005, pp. 289–302.

[57] S. P. Skorobogatov, “Semi-invasive attacks: a new approach to hardware security analysis,”

Ph.D. dissertation, Citeseer, 2005.

[58] R. Anderson and M. Kuhn, “Low cost attacks on tamper resistant devices,” in Security Proto-

cols. Springer, 1997, pp. 125–136.

[59] T. Goodspeed, “Practical attacks against the msp430 bsl,” in Twenty-Fifth Chaos Communi-

cations Congress. Berlin, Germany, 2008.

[60] MSP430x1xx Familiy, Texas Instrument, 2006.

[61] S. P. Skorobogatov and R. J. Anderson, “Optical fault induction attacks,” in Cryptographic

Hardware and Embedded Systems-CHES 2002. Springer, 2002, pp. 2–12.

[62] Datasheet SHT1x (SHT10, SHT11, SHT15) Humidity and Temperature Sensor IC, Sensirion

The Sensor Company, December 2011.

[63] MEMSIC, “Powerful sensing solutions,” http://www.memsic.com/, April 2016.

[64] T. Watteyne, A. Mehta, and K. Pister, “Reliability through frequency diversity: why channel

hopping makes sense,” in Proceedings of the 6th ACM symposium on Performance evaluation

of wireless ad hoc, sensor, and ubiquitous networks. ACM, 2009, pp. 116–123.

[65] moteiv, tmote sky - Ultra low power IEEE 802.15.4 compliant wireless sensor module, Moteiv

Corporation, 02 2006.

[66] MSP430F15x, MSP430F16x, MSP430F161x MIXED SIGNAL MICROCONTROLLER, Texas

Instruments, POST OFFICE BOX 655303 DALLAS, TEXAS 75265, March 2011.

[67] M. O. Farooq and T. Kunz, “Operating systems for wireless sensor networks: A survey,” Sen-

sors, vol. 11, no. 6, pp. 5900–5930, 2011.

[68] P. Levis, “https://github.com/tinyos/tinyos-main,” Standford University, 2016.

[69] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and D. Culler, “The nesc language:

A holistic approach to networked embedded systems,” in Acm Sigplan Notices, vol. 38, no. 5.

ACM, 2003, pp. 1–11.

128

[70] B. Sigg, “Yeti 2-tinyos 2. x eclipse plugin,” Ph.D. dissertation, ETH, Eidgenössische Technische

Hochschule Zürich, Department of Computer Science, Distribution Computing Group, 2008.

[71] T. Maas, “A basic nesc editor plugin for tinyos-2.x using eclipse,”

https://github.com/tyll/tinyos-2.x-contrib/tree/master/nescdt, 2008.

[72] M. Zukowsky’s, “Tinydt - tinyos plugin for the eclipse platform,” http://tinydt.sourceforge.net/,

2008.

[73] J. Chen, “Make of things,” Mokoversity - Innovation of Things, Tech. Rep., 2015.

[74] IEEE Standard for Local and metropolitan area network s Part 15.4: Low-Rate Wireless Per-

sonal Area Networks (LR-WPANs), IEEE Standard Association Std., April 2011.

[75] M. Tellez, “Thesis githup project: https://github.com/mtellez/wsn-thesis,” GIthub, 2016.

[76] Flash Memory Controller, Texas Instrument, POST OFFICE BOX 655303 DALLAS, TEXAS

75265, May 2015.

[77] M. Jenihhin, MSP430 Teaching. Tallinn University of Technology, 2009.

[78] J. Paek, “Porting your tinyos-1.x code to tinyos-2.x code,” University of Southern California,

2010.

[79] I. Lucas, “Password recovery speeds,” The Home Computer Security Centre, 2009.

[80] T. Goodspeed, “msp430static - http://msp430static.sourceforge.net/,” Source Forge, 2008.

[81] ——, “Reversing and exploiting wireless sensors,” Arlington, VA, February, 2009.

[82] G. Litovsky, “Beginning microcontrollers with the msp430 tutorial,” Texas Instruments, 2010.

	James Madison University
	JMU Scholarly Commons
	Spring 2016

	Improving the security of wireless sensor networks
	Mauricio Tellez Nava
	Recommended Citation

	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Abstract
	Introduction
	Related Work
	Applications
	Cipher Protocols
	Key Management Protocols
	Node Capture
	Node Tampering

	Secure Temperature Monitoring System In A WSN Enviroment
	Design
	Implementation
	TelosB Platform
	Secure Temperature Monitoring System (STMS)

	System Testing
	IEEE802154 Capture Packets & Analysis
	L1-Secure Capture Packets & Analysis

	Chapter Summary

	Breaking The MSP430-BSL Password
	Programming the MSP430
	Analyzing The BSL Password
	Breaking The BSL Password
	Brute Forcing The MSP430-BSL 32-bytes Password
	Generating Password Samples
	Password Pattern Algorithm
	Brute Forcing Using Password Prediction

	Chapter Summary

	Reverse Engineering MSP430 Applications
	Flash Memory Dump
	Disassemble and Code Analysis Process
	msp430-objcopy
	msp430-objdump & msp430static
	Code Analysis

	Chapter Summary

	Protecting MPS430 Firmware With Secure-BSL
	Original-BSL Code
	Secure-BSL Design
	Security Level One
	Security Level Two

	Secure-BSL Implementation
	Security Level One Implementation
	Security Level Two Implementation

	Secure-BSL Testing
	Security Level One Tests
	Security Level Two Tests

	Chapter Summary

	Results and Evaluations of Secure-BSL
	Resource Overhead Evaluation
	Password Strength Investigation Results
	Chapter Summary

	Conclusion and Future Work
	Script Results For tos-bsl
	Script Results For Secure-BSL
	Bibliography

