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Constructive Interference in 802.15.4:
A Tutorial

Tengfei Chang, Thomas Watteyne, Xavier Vilajosana, Pedro Henrique Gomes

Abstract—Constructive Interference (CI) can happen when
multiple wireless devices send the same frame at the same time.
If the time offset between the transmissions is less than 500 ns, a
receiver will successfully decode the frame with high probability.
CI can be useful for achieving low-latency communication or low-
overhead flooding in a multi-hop low-power wireless network.
The contribution of this article is three-fold. First, we present the
current state-of-the-art CI-based protocols. Second, we provide
a detailed hands-on tutorial on how to implement CI-based
protocols on TelosB motes, with well documented open-source
code. Third, we discuss the issues and challenges of CI-based
protocols, and list open issues and research directions. This article
is targeted at the level of practicing engineers and advanced
researchers and can serve both as a primer on CI technology
and a reference to its implementation.

I. INTRODUCTION

IEEE802.15.4 [1] is a standard which defines both the physi-
cal and link layers for low-rate wireless personal area networks
(LR-WPAN). Numerous low-power wireless industrial tech-
nologies build upon it, including Zigbee [2], Z-Wave, WIA-
PA, ISA100.11a [3] and WirelessHART [4]. The 2015 revision
of IEEE802.15.4 includes the Time Slotted Channel Hopping
(TSCH) link-layer mode, targeting deterministic access and
industrial-grade reliability. 6TiSCH, a standardization activity
at the IETF, integrates TSCH with IPv6 [5], [6], yielding
Internet-enabled low-power wireless networks with industrial
performance. This combination is seen as a key enabler for
the Industrial Internet of Things. Even though many different
technologies and protocols are – and will be – exploited to
improve the performance of low-power wireless applications,
everything indicates that IEEE802.15.4 will remain a major
standard in this field.

Just like any wireless communication technology,
IEEE802.15.4 is subject to external interference. This is
all the more true in the unlicensed spectrum, such as the
2.400–2.485 GHz “Industrial, Scientific and Medical” (ISM)
band. In face of this challenge, several techniques have
been developed to cope with external interference. Examples
include channel hopping, network coding and temporal
diversity, all of which exploit some sort of diversity.

In an entirely counter-intuitive manner, however, interfer-
ence can be beneficial for the network, which occurs when
one exploits “constructive interference” (CI) [7]. The idea of
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CI is simple: if two or more devices send the exact same frame
at the exact same time1, there is no collision, and the receiver
perfectly decodes the frame. Better, in some cases, the frame
is received at a signal strength higher than if only one device
were transmitting.

For a protocol designer, having CI in his/her toolbox
changes everything. In the past, he/she had to make absolutely
sure concurrent communications happened at different times
(TDMA), different frequencies (FDMA) or using different
coding schemes (CDMA). CI relaxes those requirements: if
multiple devices have the same information to transmit, they
can do so provided they send it at exactly the same time.

Constructive interference enables at least 2 very interesting
network features.

First, stateless relaying, a simplification in networking.
Traditionally, a routing protocol operates in the network to
elect, for each node, a “next hop” neighbor. When the node
has a packet to relay, it sends it to just that neighbor. With
CI, a node can broadcast the packet to all of its neighbors.
And, provided those neighbors repeat the packet at the same
time, the information floods the network, eventually reaching
the destination. Of course, many optimizations can be added
to this uncontrolled flooding (see Section V), but avoiding the
need for a rigid routing scheme opens up many possibilities,
including “lazy routing” and mobility.

Second, ultra-low latency, a service to the application. In-
line with stateless relaying, a device can relay packets without
having to worry about solving contention to the medium.
Without CI, solving contention can mean waiting for the right
time slot, or adopting a back-off scheme, all of which takes
time. With CI, a device can relay immediately. Assuming short
packets, per-hop latencies of 100’s of µs can be achieved.

There are, of course, challenges associated with the use of
CI. First, from an implementation point of view, maintaining
synchronization is hard, as devices need to transmit within
500 ns (see Section II), a very short time. Even with state-of-
the-art TSCH protocol, network-wide sub-µs synchronization
is not achievable at a reasonable energy cost. Synchronization
hence needs to rely on a local and ephemeral time reference
such as the reception timestamp of the last frame. We have
crafted the hands-on portion of this article (Section VIII) to
go into a deep discussion of how to efficiently implement CI.
Section VIII should hence lift this challenge.

Second, from a protocol design point of view, achieving
energy efficiency remains a challenge. If the radios of all

1 To be precise, in IEEE802.15.4, the signals must be sent within 500 ns
of one another, as detailed in Section II.
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devices remain continuously on, using CI is a solved problem.
But, to challenge the energy efficiency of today’s state-of-
the-art TSCH networks [8], sub-50 µA average current draw
must be achieved, which necessarily translates into aggressive
radio duty cycling. As discussed in Section IX, there is a
real opportunity for combining the scheduled nature of TSCH
networks with CI. This is largely not addressed in the literature
at this point, leaving energy efficiency as an open problem,
especially in large networks.

Third, and probably most importantly, security remains a
major question mark. Not so much at the application layer,
as the data communicated between the source and destination
can be end-to-end protected. But while it is traversing the
network, all relaying devices need to send the exact same
frame, which eliminates the opportunity of using per-link keys
or even authenticated tags in which the MAC address of the
transmitter is used as part of the link-layer keying material.
The simplest approach is to have a single network-wide key
for link-layer protection. This is undesirable as it makes device
repudiation hard. As discussed in Section IX, security is one
of the strong remaining barriers to using CI in an industrial
setting.

IEEE802.15.4 TSCH brings low power consumption and
high-reliability to industrial applications [9], [10], [11].
6TiSCH adds the Internet Protocol (IP) to TSCH for industrial
IoT. With the RPL routing layer, the end-to-end latency for a
TSCH network could be in the order of a few seconds. It meets
the general requirements of industrial application for classes 4
and 5 defined in RFC5673 [12] (detailed in Section. IX). But
for some applications involving control loops, more stringent
requirements may be necessary (classes 2 and 3 in RFC5673).
CI brings down the latency to the millisecond level. At the
same time, it is possible to completely remove the routing
layer and achieve end-to-end communication through flooding.
Introducing CI into IEEE802.15.4 could improve its overall
performance dramatically.

This article is crafted to be a primer on constructive inter-
ference in IEEE802.15.4 networks. It is tailored to the level
of practicing engineers and advanced researchers and serves
three roles. First, it introduces CI, taking the reader through
a comprehensive presentation of the state-of-the-art literature
on CI-based protocols, which are classified in three different
categories. Second, it is a hands-on tutorial, explaining in a
simple yet comprehensive manner how CI is implemented on a
reference platform, the TelosB mote. All the source code used
is provided as open-source alongside this article, allowing the
reader to repeat the tutorial, and to use any part of the code,
including in a commercial setting. Third, it offers a use-case
driven discussion on the issues and challenges and research
directions on the use of CI technique.

The organization of this article reflects these three goals,
with three distinct sections focusing on a primer on CI
(Sections IV, V and VI), a hands-on tutorial (Section VIII)
and issues, challenges and future work (Section IX). While
numerous internal references link these three sections together,
each of them can be read independently and used as a
reference.

Before going through the CI tutorial, it is important to

introduce the key concepts that will help the reader under-
stand the underlying phenomena that make CI work, and the
reason behind some decision-making during the design of the
protocols to be introduced in Sections IV, V and VI. These
concepts are introduced in Section II.

II. BASIC CONCEPTS OF CONSTRUCTIVE INTERFERENCE

Interference is a phenomenon that happens whenever signals
overlap in frequency, time and space. If two (or more) different
signals interfere with one another, the probability of correctly
decoding either is reduced. Another common phenomenon in
wireless communication is the capture effect. It occurs when
one single signal is “captured” and correctly demodulated in
spite of other interfering signal(s) being received at the same
time. Capture happens if one signal is much stronger (higher
receive power) than the others, or if it starts to be demodulated
earlier than the others. When the capture effect dominates the
reception, interfering signals are not perceived by the receiver.
This phenomenon is present in low-power networks and can
influence the behavior of protocols.

When exactly the same signal is transmitted by nodes A
and B to node C, what C receives is the sum of both signals.
This sum can be constructive or destructive, depending on the
time offset between the signals. Two sine waves shifted by
90 degrees completely cancel each other out; on the other
hand, two in-phase sine waves add up. The same happens
with more complex modulation schemes, such as O-QPSK in
IEEE802.15.4. For CI to work, the different signals should
be sent precisely at the same time. What is the maximum
allowable time offset between the signals for CI to work?

The answer depends on modulation and bit rate. We focus
on IEEE802.15.4 [1] at 2.4 GHz, which uses Offset Quadrature
Phase-Shift Keying (O-QPSK) modulation and Direct Se-
quence Spread Spectrum (DSSS). Transmission can be divided
into 3 phases: (i) bit-to-symbol conversion, (ii) symbol-to-
chip conversion, (iii) modulation of the chip stream. The data
stream is initially grouped into 4-bit symbols. Each symbol
is then converted into a 32-bit pseudo-random noise (PN)
sequence, specified in the IEEE802.15.4 standard. Each binary
value in a PN sequence is called a chip. The stream of chips
is then modulated onto a carrier using O-QPSK with half-sine
pulse shaping. The transmission chip rate is 2 Mcps (Mega-
chips per second), which results in a data rate of 250 kbps.
The chip duration Tc is 500 ns. Fig. 1 shows that Q-phase
chip is delayed by Tc with respect to the I-phase chips.

When receiving a signal, the same happens, in reverse order.
The modulated carrier is first converted to chips, which are
grouped in PN sequences. A decision-making process in the
receiver then converts PN sequences to 4-bit symbols. The
redundancy included in the PN sequences is such that the bits
can be recovered even when some chips have been corrupted
during transmission.

The effect of delayed replicas in MSK baseband signals
on bit error rate is a well-understood problem. Even though
MSK and O-QPSK signals are similar, the introduction of PN
sequences makes the theoretical analysis harder. The work
in [13] includes a simulator-based statistical analysis. The
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Fig. 1. The Q-phase chip is delayed by Tc with respect to the I-phase, where
Tc is the inverse of the chip rate.

result is that, when two frames are offset by 250 ns, the
receiver still correctly receives 98% of them. An offset larger
than 500 ns reduces that to less than 20%. Similar results
appear in [14], in which a mathematical analysis is used to
show a frame reception rate of 90% for DSSS signals offset by
150 ns. These results are confirmed by additional experimental
and theoretical analysis [15], [16]. The resulting rule-of-thumb
is that, when using IEEE802.15.4 at 2.4 GHz, for CI to work
with high probability, frames need to be offset by at most
500 ns.

III. CLASSIFYING CI PRIOR ART

The use of CI in (low power) wireless networks has been
explored for almost a decade. The first work that applies
CI to IEEE802.15.4-based nodes is from 2008, by Dutta et
al. [17]. In this early work, hardware-generated acknowledg-
ment frames are used to facilitate anycast communication.
In 2010, the same concept is employed as the basis for
asynchronous receiver-initiated MAC protocol A-MAC [18],
which outperformed the state-of-the-art protocols at that time.
A larger interest emerged more recently after the publication
in 2012 of Glossy protocol by Ferrari et al. [13]. Glossy
provides a thorough investigation on how to achieve optimized
network flooding in IEEE802.15.4-based networks using CI.
It leverages CI to enable simple network-wide synchronization
and implements an efficient network flooding mechanism.
Results in [13] on end-to-end delay and reliability triggered
further optimizations.

We categorize the main prior-art considering three main
aspects:

1) modeling and optimization (Section IV) includes sem-
inal papers [18], [13], as well as recent develop-
ments [19], [15], [14]. These studies are concerned with
understanding how constructive interference takes place,
and focus on specific “atomic” issues, such as time drift,
capture effect or packet length.

2) protocol proposals (Section V) which utilize CI to
target a particular problem, such as data prediction [20],
bulk transfer [21], neighbor counting and identify-
ing [22], etc. through the proposal of new networking

protocols. Most of the studies take a stable implementa-
tion such as Glossy, and build on top of it. In addition,
the International Conference on Embedded Wireless
Systems and Networks (EWSN) has held a dependability
competition in its 2016, 2017 and 2018 editions, in
which most competitors have based their implementation
on CI.

3) security challenges (Section VI) focuses on security
aspects and possible attacks on CI-based networks. This
is an important and not (yet) solved issue that impacts
the adoption of a CI-based solution in industrial settings.

Different types of tutorials and surveys on low-power
wireless already exist. Some of them are focused on use
cases, for example illustrating different mobility management
protocols using 6LoWPAN technology [23], discussing the
application of WSN in Urban Areas [24] and multiple stream-
ing in WSN [25]. Others are focused on protocol stack
design, for example, analyzing the performance of multiple
resource allocation algorithms at different protocol layers [26]
and multichannel routing algorithms [27]. A third type is
focused on specific techniques, for example utilizing channel
bonding to increase the bandwidth of wireless networks [28]
and presenting a new fuzzy logic based node localization
mechanism [29]. This article is part of the third type of work.
We present a overview of CI and a hands-on tutorial.

The requirement of a maximum offset of 500 ns limits the
design of the MAC layer in CI-based networks. Flooding is
generally the employed method for constructive interference
to disseminate the message throughout the network. These fea-
tures distinguish our tutorial on CI from the general low-power
wireless surveys, which usually cover different MAC and
routing layer designs. Section IV focuses on the techniques
at the physical layer closely related to the core of CI. Since
CI-based protocols have a very simple layering approach, we
group all upper-layer designs together as protocol proposals
in Section V. Most of the protocols are either MAC layer or
application-oriented designs. Security in CI is presented as a
topic that needs further work (Section VI).

IV. MODELING AND OPTIMIZING CI

This section illustrates how CI and related approaches have
evolved over time.

A. Optimizing CI

The first work that employs CI in IEEE802.15.4 is Back-
cast [17], presented in 2008. Backcast utilizes the hardware
automatically acknowledge (ACK) reply features to enable
anycast communication. The transmitter node sends a frame
and all receivers that match the destination address – which can
be unicast, multicast or broadcast – reply with identical ACKs
that constructively interfere and are received by the transmitter.
Backcast allows the sender to know that at least one node
has correctly received the transmitted packet. Backcast is not
focused on relaying data in a multi-hop manner using CI, but
to allow acknowledgment for anycast communication.
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Later on, the authors of Backcast proposed the receiver-
initiated low-power protocol A-MAC [18]. The receiver pe-
riodically sends probe frames; a probe frame has the “ac-
knowledgment requested” bit set in the IEEE802.15.4 header.
Senders that have pending frames to the receiver set their
radio to automatically generate ACKs. When a receiver sends a
probe and hears back an ACK, it knows at least one sender has
a frame pending for it. The receiver then leaves its radio on.
A back-off mechanism is used to solve collisions when there
are multiple transmitters. The receiver can optionally send ad-
ditional probes to randomly spread the packet retransmissions.

A-MAC was implemented and evaluated on CC2420 ra-
dios [30]. The evaluation shows higher packet delivery ratio
and lower energy consumption when compared to LPL [31]
and RI-MAC [32], the state-of-the-art transmitter-initiated
and receiver-initiated protocols at the time, respectively. An
emulator-based evaluation in [18] shows that the packet deliv-
ery ratio decreases significantly if the time between two ACKs
is greater than 500 ns, the chip period Tc of IEEE802.15.4 (see
Section II).

Backcast nor A-MAC provide a thorough design analysis
on CI. However, this changed with Glossy [13]. Among all
work related to CI technique, Glossy had the highest influence
and it is currently the basis of most of CI-based protocol
implementations.

Glossy uses CI in the forwarding process of all frames
across multi-hop routes. It is based on controlled flooding,
where the network activity is decoupled from other application
tasks running on the nodes. Simulation results focus on how
the time offset between different IEEE802.15.4 frames affects
the capacity of correctly receiving them. The results show that,
when the timing offset between two current transmissions is
less than 500 ns, there is a high probability of achieving CI.
These results are in-line with Section II.

The synchronization of nodes in Glossy is done implicitly
through the flooding process. The source node (flood initiator)
adds a 1-byte relay counter c to the frames. Counter c is
initialized to 0 and is incremented at each hop. A node only
retransmits packets in which counter c is higher than previous
copies it has received. The counter has an upper limit to scope
the flooding process.

Fig. 2 shows the state machine when a flooding process
of Glossy is executed. There are mainly four states: Off,
Transmit, Receive and Wait. Initially, all nodes turn their
radio off and wait for the beginning of Glossy flooding. When
Glossy starts, the initiator transmits a packet and changes
its state to Transmit. The other nodes change their state to
Receive at the same time. Once a node recognizes the start of a
packet reception, its micro-controller starts to read the packet
from the receive buffer and transitions to Receive state. If the
frame reception fails, the node returns to Wait state and keeps
listening. If the frame reception succeeds, the node modifies
the received packet by incrementing the counter C by one and
writes it into the transmit buffer. This action corresponds to a
transition of Transmit. To increase the reliability of Glossy, a
node transmits the packet N times. After N re-transmissions,
the node turns its radio off and waits for the next Glossy
execution period.

Fig. 2. The Glossy [13] state machine.

Glossy can be used as a loose network-wide synchronization
mechanism. This relies on the assumption that it takes a
deterministic time for a packet to be relayed by a node. That
time is expressed in (1), in which Tsw is the delay introduced
by the software, Tcal is the delay due to radio calibration,
Tpr, Tf , Tl and Tm are the transmission durations for the
preamble, SFD, length and MPDU, respectively, and Td is
the delay introduced by the receiver radio at the beginning of
frame reception.

Thop = Tsw + Tcal + Tpr + Tf + Tl + Tm + Td (1)

All durations are due to the radio operation, except Tsw
which is introduced by the micro-controller. Glossy details
how to make Tsw deterministic by limiting code execution,
choosing a fixed packet size, and calibrating the unstable dig-
itally controlled oscillator which clocks the micro-controller
using a stable low-power crystal.

In Glossy, network flooding happens periodically. The
nodes switch between a flooding period and a period when
the micro-controller executes non-deterministic tasks. During
that second period, the node switches off its radio to conserve
energy. The ratio between the two periods trades off energy
conservation and end-to-end communication delay. Nodes only
need to be loosely synchronized, as an arbitrarily large guard
time can be introduced at the beginning of the flooding period
to account for the synchronization inaccuracy between nodes.

Glossy became a seminal work on the exploitation of CI in
IEEE802.15.4 networks. Several other works have improved
upon it. Glossy improvements add features such as frequency
hopping, power and topology control, or exploit hardware
features to solve issues and limitations of the original proposal.

SCIF [33] is an improvement of Glossy for large-scale
networks. The challenge with scalability and CI is that the
synchronization error accumulates with the number of hops.
Some neighbor nodes far from the source node may be off by
more than 500 ns because they synchronize across different
multi-hop paths. Assuming M is the number of independent
paths to the sink, and H the depth of the network in hops, if
M → ∞ and H → ∞, the probability of communication at
the edge of the network is zero.

SCIF uses Glossy-like flooding, with two twists. First, the
multi-hop synchronization paths interleave with each other
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whenever possible. Second, independent propagation paths
with a large number of hops are avoided whenever possible.
These two rules, which together form the Spine-based Con-
structive Interference Flooding (SCIF) algorithm, reduces the
number of nodes involved in the flooding and, consequently,
the time drift.

In practice, SCIF consists of two phases: spine construction
and flooding. During the spine construction phase, the position
of the nodes and their (theoretical) communicating range are
used to estimate how a packet would flood the network. If
a node is part of two independent branches of the flooding
tree, it is not part of the “spine” of the network. During the
flooding phase, only nodes which belong to the spine relay
packets. Simulation results based on real data traces show that,
for a network with 4,000 nodes, SCIF yields an end-to-end
reliability of 94%. In the same setting, regular Glossy yields
only 30% end-to-end reliability.

TriggerCast [19] selects the links that participate in CI
based on detailed observations on the capture effect on CI.
The authors observe that when the difference of reception
power between two frames is above 3 dB, the capture effect
dominates and no further improvement is provided by CI.
They also observe that, when nodes participating in CI are
at very different distances from the receiver, the difference in
propagation delay can significantly reduce the packet delivery
ratio. Distance differences higher than 40 m may reduce the
packet delivery ratio (PDR) by 20%.

Through mathematical derivation based on the signal to
noise ratio (SNR) and signal power, the authors propose the
following three rules for CI to work:

1) concurrent frames should have a time offset below
500 ns.

2) the time offset between the i-th frame and the frame
with the strongest reception power should be less than
a threshold which is a function of their relative received
power.

3) the ratio between the minimum and maximum SNR
of concurrent signals should be larger than a threshold
which is a function of the time offset between all
concurrent signals.

TriggerCast selects only the links that satisfy those con-
ditions. TriggerCast compensates clock skew and radio pro-
cessing delay, to increase the probability of CI to work.

The results from a real experiment using TelosB motes show
that TriggerCast achieves 95% reliability when the time offset
between frames is below 250 ns, a situation in which Glossy
only achieves 85% reliability. Further experiments carried out
with different levels of PDR links (<5%, 5%-95%, >95%)
show that TriggerCast increases the RSSI and packet delivery
ratio of links with different qualities, and make very weak links
become stronger.

B. Modeling CI

Wilhelm et al. [14] extend the mathematical analysis of
TriggerCast by building a model to predict the outcome of
concurrent transmissions. The model takes into account the
power ratio (SINR), the timing offset between concurrent

frames, the channel coding, the packet content, and the carrier
phase. The model considers two different types of chip-to-
symbol decoding mechanisms for DSSS signals. Hard Deci-
sion Decoding (HDD) considers the highest bit-wise cross-
correlation of the chip sequences. Soft Decision Decoding
(SDD) adds weights to the bits, improving the quality of
demodulation.

Through modeling and simulation, Wilhelm et al. [14]
conclude that, if the signal power is greater than the noise
and the sum of interference signal power, the capture effect
ensures correct reception of concurrent frames at the receiver
side. For the case when the concurrent frames are identical, it
can be received correctly even when power ratio is negative.
Further, under this setting, using SDD yields a PDR radio
above 90%, if the time offset is below 150 ns, and with HDD
a PDR of 60-80% can be achieved with a maximum drift of
100 ns.

Wilhelm et al. also compare when there is a single interferer
at a high power and several interferers at low power. In the
latter case, the total power is identical to the former case,
and interferers have independent uniformly distributed time
offsets. The result is that the multiple-interferer case has a
higher impact when the frame sent are different, but no impact
when the frames are identical.

Yuan and Hollick [15] further model CI, focusing on one-
hop networks and argue that, even in simple cases, CI is hard
to be achieved and does not depend only on the timing offset
between frames. They use Glossy and CC2420 radio chips.
Their study is based on an experimental scenario with N motes
and one root; motes and root are 1 m apart. The system runs on
a 1 s time slot, which implements 2 communication patterns.
At time offset 0 ms, the root node polls all motes in a round-
robin fashion. This allows the root to continuously monitor
the received signal strength from each mote. At time offsets
250 ms, 500 ms, and 750 ms in each 1 s time slot, the root
transmits a frame and all motes retransmit it. This results in
potentially N concurrent transmissions and allows the root to
measure the success rate of CI.

Yuan and Hollick use this experimental setup to model
the one-hop delay of Glossy. They look at the three main
timing components: (i) the duration of frame transmission;
(ii) the delay between the end of transmission and the end of
reception, introduced by the radio, and (iii) the delay from
the end of the packet to the start of the acknowledgment,
introduced by the software. Transmission or reception of
frames is timestamped using a logic analyzer connected to the
Start of Frame Delimiter (SFD) pins of the CC2420 radios.

Results indicate that the duration of packet transmission
varies slightly from one frame to another. However, this
variation is larger when we compare different nodes. The
transmission time of 10-byte packets vary a maximum of about
0.04 µs but do not change between different nodes. On the
other hand, the transmission time of 126-byte packets shows
much larger variability (closer to 0.10 µs) among different
nodes. The time offset between two concurrent frames can be
modeled with (2), in which l is the frame length in bytes, and
k1 and k2 are the drifts of the two radio crystals in ppm (parts
per million).
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DT = 32(l + 12)(
1

1 + k1 × 10−6
− 1

1 + k2 × 10−6
) (2)

The latency introduced by the radio and the software are
measured and modeled as normal random variables: the mean
radio latency is 3.79 µs with a variance of 0.0019; the mean
software latency is 23.28 µs with a variance of 0.0080. Radio
and software latency can be considered independent. Eq. 3
expresses the time offset between concurrent frames sent by
two motes, where Y is a normal random variable with µY = 0
µs and σY = 0.0198.

D∆ = 32(l+12)(
1

1 + k1 × 10−6
− 1

1 + k2 × 10−6
)+Y (3)

As for the capture effect, Yuan and Hollick observe that it
takes place when the time difference between two concurrent
transmissions is less than the duration of the preamble.

Combining the results from constructive interference and
capture effect, Yuan and Hollick propose an algorithm that
predicts the success rate of concurrent transmissions. The al-
gorithm takes the set of nodes, the transmission start time and
signal strength of each node, noise floor and the SER (Symbol
Error Rate) vs. SINR model obtained from measurements as
the inputs, and returns whether the CI will be successful. In
the 2-mote case, the model has 90% accuracy when predicting
CI success, and close to 100% when predicting CI failure. In
the 6-mote case, the prediction accuracy drops to 70%.

Rao et al. [16] also provide a list of conditions necessary
for the success of CI based on real-world experiments and
introduce DIPA (Destructive Interference-based Power Adap-
tation) protocol. It considers the fact that power imbalance
among concurrent transmitters aids packet reception [19] and
proposes an algorithm that dynamically adapts power transmis-
sion in order to improve the performance of CI. The proposed
heuristic consists of a feedback byte appended to the frames
that indicates the success or failure of last transmissions of
concurrent packets. The nodes decrease transmit power if the
last n consecutive transmissions were successful; they increase
the power if a negative feedback is received, and randomly
choose a transmit power if negative feedback persists for more
than k transmissions. The main caveat of this solution is
that the CRC has to be calculated in software so that only
the feedback byte is changed in the frame and a destructive
interference of such byte indicates a negative feedback. DIPA
is able to yield up to 25% lower bit error rate (BER), and
a reduction of around 50% in energy consumption when
compared to Glossy.

C. Summary

The works listed in this section focus on better understand-
ing why CI works and predicting when/whether it does/does
not work. The following are the factors that were found to
play important roles to make CI work:

• Time offset between concurrent IEEE802.15.4 frames
must be below 500 ns. This is empirically and theoreti-
cally verified in all works in this section.

Fig. 3. Slot schedule in LWB [34] communication rounds.

• Having more concurrent nodes or more hops in the net-
work is bad for CI. This is because time synchronization
is harder to be achieved with more nodes [33].

• Having a large power imbalance is good for CI. The
difference between the minimum and maximum SNR be-
tween concurrent frames has to be larger than a threshold
to contribute to CI, which is derived from the phase shift
of all received signals [19];

• Large frames are bad for CI. This is because the bit-
error-rate tends to stay constant during a frame: the more
bits in the frame, the larger the probability that one gets
corrupted.

V. PROTOCOL PROPOSALS

This section provides a tutorial on the design of application
protocols that exploit CI.

Low-Power Wireless Bus (LWB) [34] is a protocol intro-
duced by Glossys authors that provides fast data dissemina-
tion in multi-hop low-power networks2. It supports many-to-
many, one-to-many or many-to-one communication patterns.
In LWB, data dissemination is based on floods that are
globally scheduled. All nodes participate in the transmission
and data relay; the multi-hop network operates like a bus to
which all nodes are connected.

LWB separates the communication into rounds as shown
in Fig. 3. Nodes keep their radio off between two rounds
to save energy. Each round consists of a sequence of time
slots which can be used for different purposes during the
data dissemination process. Within each time slot, a single
node initiates a data transmission, all others retransmit the
packet in a Glossy-like flood. The first slot of each round is
a schedule slot; it contains a message indicating the duration
of current round (Tl) and the mapping of the following data
slots to nodes that have previously requested a transmission
opportunity. A contention slot follows the schedule slot; nodes
can use these slots to request opportunities to send data. These
requests are used by the central scheduler to compute a new
schedule. A sequence of data slots follows the contention slot.
In each data slot, a single node starts flooding a packet through
the network.

CRYSTAL [20] uses Glossy to improve the energy con-
sumption of networks where data prediction is used. In data
prediction applications, the data generated by the nodes is

2 The authors make Glossy and LWB implementations available at https:
//github.com/ETHZ-TEC/LWB.

https://github.com/ETHZ-TEC/LWB
https://github.com/ETHZ-TEC/LWB
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Fig. 4. An example CRYSTAL [20] active period.

such that a model can predict future values based on past
values. Nodes are aware of that model, and only send data if
this data differs from what the model has predicted. In very
specific applications, this can dramatically reduce the number
of packets transmitted by the nodes.

CRYSTAL uses a sequence of synchronized slots similar to
LWB but with a different communication pattern. As shown
in Fig. 4, each active period starts with slots of type S
used for synchronizing the whole network for the following
communication and long sleep interval. It is followed by a
sequence of pairs of slots T and A for node transmission
and sink acknowledgment, respectively. The number of pairs
(slots T and A) depends on the number of nodes with data
to transmit and the desired reliability. At each slot T , a
node with data to transmit acts as a flooding initiator. If the
destination node receives the data, it floods back an ACK in
the subsequent slot A. This process repeats until all nodes
with data to transmit send their data to the destination. It
is expected that all pairs of slots T and A have an initiator
transmitting. Whenever a number of consecutive pairs contain
no data but only negative acknowledgments, the active period
ends. CRYSTAL introduces R consecutive silent pairs of slots
T and A to determine whether to sleep under two conditions:
(i) the sink sleeps after R consecutive slots T without data. So
if a data packet is not successfully delivered in a slot T , the
node has R − 1 additional attempts to transmit it before the
sink stops listening. (ii) the nodes sleep after N consecutive
negative acknowledgments, since it knows the sink is going to
sleep as well. CRYSTAL also contains a solution for handling
the case when the acknowledgment is missing. CRYSTAL is
shown to reduce the radio duty cycle by a factor of more
than 7 while keeping close to 100% end-to-end reliability
when compared to the Collection Tree Protocol CTP [35]
using Derivation Based Prediction DBP [36], the state-of-the-
art model for data prediction.

Choco [37] focuses on data collection and – similarly to
CRYSTAL – employs a specific slot type for synchronizing
all nodes. Fig. 5 shows one inner packet interval slot schedule
defined in Choco. The interval starts with a sync slot for
synchronization. The following slot is a sensing slot and allows
a node to read data from its sensor. This is followed by
multiple control/data slots, which can be used to transmit a
control packet (C), transmit data (T ), wait (W ), or transmit a
sleep packet (S). The control packet contains the schedule for
the following slots, indicating which node sends in which slot.
During the first control/data slot shown in Fig. 5 (1), the sink

Fig. 5. Slot schedule in one inner packet interval (IPI) in Choco [37].

transmits a control packet to nodes 1 and 2 using glossy-like
flooding. The following two slots are for nodes 1 and 2 to
transmit data packets. During a wait slot, a node listens for
a packet if it does not own that slot. When node 2 fails to
transmit a packet to the sink (indicated as (4) in Fig. 5), in the
following control slot (2), it schedules another transmit slot for
node 2 to re-transmit the packet. During the third control/data
slot, the sink transmits a sleep packet to nodes 1 and 2 asking
them to sleep, since there is no more data to send.

“Packet in Pipe” (PIP) [21] is designed for transferring a
large amount of data as fast as possible. Its design goal is
to fully utilize the wireless medium and collect data at the
sink node. In a linear topology, this is achieved by alternating
transmissions at odd and even hops from the destination node.
To avoid interference, communication happens at different
frequencies. In a network with a tree routing structure, the
size of each subtree can be chosen so that the destination
node receives exactly one packet in every time slot, at most.
Such structure results in optimal throughput, but solving
this in all cases is known to be NP-hard (the capacitated
minimum spanning tree problem). Besides, the interference
graph may require more channels than the number of channels
available. Every time transmitting a frame fails (no link-layer
acknowledgment is received), it needs to be re-transmitted, and
the pipeline “falls behind”. CI helps to avoid this situation as
it improves the probability of receiving both data and ACK.

Splash [38] applies constructive interference on the pipeline
networking problem of PIP. Instead of transmitting on a single
path, Splash floods data packets through the entire network.
This avoids having to maintain a routing structure and avoid
interference.

Fig. 6 shows the fours cycles of Splash, as indicated by the
sub-figures (a) to (d). During the first cycle (a), the initiator
starts to transmit the first packet P1. During the second cycle
(b), the first-hop nodes receive P1 and forward it to the
second-hop nodes using CI. During the third cycle (c), the
second-hop nodes receive P1 and forward it to the third-hop
nodes. At the same time, the initiator starts to transmit the
second packet P2 as the first-hop nodes are free to receive.
During the fourth cycle (d), similarly to cycle (b), the first-hop
nodes forward the packet P2 to the second-hop nodes. At the
same time, the third-hop nodes forward them to the fourth-hop
nodes, and so on.
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Fig. 6. Splash [38] splits traffic between hops.

P3 [39] is an improvement over Splash by the same authors.
It splits the intermediate nodes (not including source and
destination) into two different groups. The two groups are
scheduled to transmit and receive at consecutive slots. The
probability of data stalling in the middle of the pipe is thereby
reduced, and P3 is able to double the throughput of Splash.

Fig. 7 shows how P3 works in four cycles for an 8 node
network. The cycles are indicated as (a) to (d). The nodes
in the network are grouped as odd packet handler (dashed
white circles) and even packet handler (solid white circles).
The packet handlers are indicated by solid gray circles. During
the first cycle (a), the source node sends the first packet P1
to its first-hop neighbors 1, 2, 3 and 4. Since this is the odd
number packet, only nodes 1 and 2 receive it, and nodes 3 and
4 abort the reception. During the second cycle (b), the source
node sends the second packet P2 to nodes 3 and 4. At the
same time, nodes 1 and 2 forward P1 to nodes 5 and 6 using
CI. Node 7 also hears P1 transmitted by node 2, but aborts
reception since node 7 is an even packet handler. During the
third cycle (c), the source node sends the third packet P3 to
nodes 1 and 2 (which are now done transmitting P1). At the
same time, nodes 5 and 6 forward P1 received from nodes
1 and 2 to the destination node. Even packet handlers 3 and
4 forward P2 to nodes 7 and 8. During the fourth cycle (d),
similarly to (c), the source node sends P4 to nodes 3 and 4.
Nodes 7 and 8 forward P2 to the destination node at the same
time. Meanwhile, nodes 1 and 2 forward P3 to nodes 5 and
6. It can be seen that P3 doubles the throughput compared to
Splash protocol.

Different from the previous CI-based protocol designs fo-
cusing on conveying data to the destination, Dingming et
al. [22] utilize CI for neighbor discovery and identifica-
tion. Counting and identify neighbors are two fundamental
operations for most of low-power wireless networks. The
authors propose two fast and accurate mechanisms for this two
purposes: Power based Counting, (Poc) and Power based
Identification, (Poid).

The main technique behind the two mechanisms is power
assignment. In such a network, each node is assigned a
different transmit power to respond to a specific frame used
for counting purpose. In the beginning, the node broadcasts a
predicate frame. All neighbors that receive the predicate frame
respond using an identical ACK. Because of CI, the central
node receives the ACK frame as a superposed signal. Through
pre-modeled response power for each neighbor, the node can

count the number of neighbors and identify them by looking
at a mapping table between power and neighbor setting. The
advantage of the mechanism is that it utilizes CI to make the
process faster with only one transmission.

Reliable one-to-one communication is needed when a sensor
node forwards a state change to a destination. This problem
was exactly the challenge proposed in a dependability compe-
tition of the International Conference on Embedded Wireless
Systems and Networks (EWSN), in 2016 3, 2017 4 and 2018 5.
A short summary of the main works that tackled this problem
employing CI-based protocols is shown in Section V-A.

A. EWSN Dependability Competition

In the dependability competition of 2016, 2017 and 2018,
TelosB motes are randomly placed in an indoor environment.
One of the motes is the source: an external circuit controls
a bright light mounted on top of the TelosB’s light sensor.
Another mote is the destination: an external circuit timestamps
when one of the TelosB’s GPIO pins transitions low to high or
vice-versa 6. All motes are programmed by the participating
teams. The goal of the competition is to have the pin on the
destination mote reflect the state of the LED on the source
node. That is, each time the LED switches on/off, the source
node should send the corresponding signal to the destination
node so it switches its pin to high/low state. Source and
destination are far enough apart that they are out of radio
range, and other TelosB nodes need to be used as relays. All
competitors go through the same 35-min test, during which
reliability (how many transitions occur), latency and overall
energy consumption of the network are measured. During the
test, an separate set of TelosB nodes are used to generated
interference and all WiFi networks are turned off.

In the dependability competition of 2018, the setup changed
a little bit. Instead of sensing the light status, the source detects
the GPIO pins voltage level and sends those information to
a destination or a set of destinations. Multiple sources are
also presented inside the network. Those settings create the
scenarios of point to multiple point (P2MP) and multiple point
to multiple point (MP2MP). The performance indicators are

3http://ewsn2016.tugraz.at/cms/index.php%3Fid=5.html
4http://www.ewsn2017.org/dependability-competition.html
5https://ewsn2018.networks.imdea.org/call-for-competitors.html
6In the 2018 edition of the competition the source and destination nodes

are not fixed for the whole experiment, but always there is only one source
and one destination in the network

http://ewsn2016.tugraz.at/cms/index.php%3Fid=5.html
http://www.ewsn2017.org/dependability-competition.html
https://ewsn2018.networks.imdea.org/call-for-competitors.html
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Fig. 7. P3 [39] improves Splash by splitting traffic between hops and groups of neighbors.

still the same as previous competitions: reliability, latency and
energy consumption of the network.

The used of CI technique fits the competition very well.
The top 3 competitors in all 3 editions [40], [41], [42], [43],
[44], [45], [46], [47], [48] used a CI-based solution.

P. Sommer and Y.-A. Pignolet [40] added channel hopping
to Glossy. Based on the counter c, each node determines
the channel to be used from a static sequence, resulting in
channel hopping across the 16 available frequencies. The
number of employed channels impacts the reliability and
energy consumption, as explained in Section VIII.

Chaos [49] builds an all-to-all information dissemination
protocol on top of Glossy. It implements a sequence of
network-wide computations and data aggregation to optimize
dissemination. In [41], [42] the authors introduce Robust
Chaos, which extends the Chaos framework with channel
hopping and channel blacklisting to improve its performance in
environments with high levels of interference. Robust Chaos
adaptively selects a subset of channels to hop on at different
locations in the network, depending on the local pattern of
external interference sources.

RedFixHop [43], [44] improves the delay by taking advan-
tage of the hardware-generated ACK frames. In this approach,
data packets are generated by nodes when the packet relay
counter c is even. For odd values of c, hardware-generated
ACKs are employed, which completely bypasses the micro-
controller and improves the delay and synchronization. This
is the same techniques described in detail in Section VIII, the
hands-on tutorial part of this article.

R. Lim et al. [45] add a mechanism to solve the problem
of flood stalling when a subset of channels in the hopping
sequence is blocked. Relay nodes re-transmit a packet also
based on a timeout when no relayed packets are overheard.
Yet, since the timeout used for that is much longer than the
duration of a time slot, the probability of drifting by more
than 500 ns is higher. The authors overcome this by exploiting
the capture effect using a randomized transmit power among
nodes.

BigBangBus [46] does not rely simply on CI, but also on
the capture effect. The authors argue that pure CI at 2.4 GHz
is hard to achieve because of the frequency deviation problem
and the random phase of signals. In this solution, one unique
schedule is agreed by the nodes once in life time (Big Bang)
and then it is executed. The schedule does not have any idle
gap or guard time and the source is always transmitting each

event, while relays repeat the heard packet a fixed number of
time. Varying the repetition pattern and how multiple channels
is used lets you trade off energy, delay and reliability.

Trobinger et al. [47] modified the CRYSTAL [20] protocol
by adding frequency hopping over all 16 channels and used
CRYSTAL control messages (S and A) to piggy-back the
sensor information.

Mao et al. [50], [48] designed OF∂COIN to flood the mes-
sage which partially uses constructive interference. OF∂COIN
defines a special frame where parts of it are transmitted by all
nodes. Besides, the topology is studied during the first period
of the competition to assign a rank to each node. These ranks
are be carried inside the frame in the non-CI part. The capture
effect helps this part to be received correctly. For flooding
the message through the network, OF∂COIN utilizes three
channels to transmit message, and one channel is selected as
the lock channel. The node starts transmitting on the other
two channels and then on the lock channel. The transmission
restarts on the two channels and back to the lock channel
for listening. Nodes turn off their radio if it received a valid
message. A node retransmits if an invalid message or nothing
is received.

The solutions proposed for the competition add the fol-
lowing improvements to Glossy: (i) channel hopping, (ii)
hardware-generated ACK frames and (iii) power control.
The resulting solutions are highly optimized for the competi-
tion, however, and whether the solution is useful in the general
case is questionable.

Tab. I compares the protocols mentioned in this section.
LWB is a MAC layer protocol scheduling each flood using CI
in a reserved slot for each node. CRYSTAL is a MAC layer
protocol that also uses slots, but includes an ACK packet for
reliability. Choco mixes MAC and application layers by intro-
ducing a sensing slot in its schedule for reading sensor data.
Also, its schedule is dynamically created at each control slot
rather than fixed as in LWB and CRYSTAL. Crystal Clear
is an updated version of CRYSTAL that utilizing channel
hopping in its approach. The EWSN competition proposal [40]
and Chaos are the transformations of Glossy. The former
uses channel hopping to increase reliability and the later
uses cahnnel hopping and blacklisting technique to further
increase reliability. RedFixHop and BigBangBus are both
focusing on low latency. RedFixHop achieves low latency
by using hardware-ACK feature. BigBangBus achieves low
latency by increasing frequency of data sending. Splash is
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an application-oriented protocol that applies CI at different
hops at the same time to increase the throughput. P3 is an
enhancement over Splash that applies CI at different hops,
and groups the neighbors to further increase the throughput.
Finally, Poc&Poid is a protocol designed for fast neighbors
counting and identification.

VI. SECURITY CHALLENGES

Security is clearly the Achilles heel of CI. One perceived
technical reason is that the overhead associated with security
makes synchronization harder. This point is, however, largely
debunked in Section VIII. The real security problem with CI
is that all transmitting nodes need to use the same key for
encrypting the frames, making per-link keys impossible to
use. While end-to-end encryption is possible (i.e. relay nodes
cannot decrypt the payload they are relaying), the requirements
of having network-wide keys clearly favor Denial-of-Service
(DoS) attacks.

The fact that none of the solutions presented so far include
any type of security is rather astonishing. This is all the more
worrying as Glossy-like approaches are being discussed for
critical industrial applications (see discussion in Section IX).
And while, to the best of our knowledge, no real security
solution for CI has been designed, some work exists which
analyzes the vulnerability of Glossy-like solution to different
types of attacks.

K. Hewage et al. [51] provide an experimental study on
the possible attacks that CI-based network is vulnerable to.
The attacks can be classified into three types: (i) Delaying
Packet Relay attack (DPR), where the concurrent transmis-
sions are delayed by some attacker node, (ii) Relaying Packet
Earlier attack (RPE), where attacker causes early concurrent
transmissions, and (iii) Modifying packet attack (MP), where
the content of the packet to be transmitted is modified. The
experiments are carried out in a 26-node testbed deployed
across an office building floor, running Glossy. An attacker
node is placed in-between source and destination. Without the
attack, the network yields 99.99% end-to-end reliability. The
experimental results show how a single DPR and RPE at-
tacker lowers the end-to-end reliability to 99.7% and 99.87%,
respectively. The authors discuss the fact that the capture effect
can counteract the effect of the attack. An MP attack has a
much more severe impact as it replaces the relay counter field
(used for synchronization) by a random value. Nodes cannot
synchronize, and packets get lost.

In the same vein, Z. He et al. [52] proposed a simple DoS
attack called Arpeggio. It exploits the fact that IEEE802.15.4
radios stay on listening mode for the number of bytes specified
in the PHY header of the frame. By frequently sending (bogus)
frames consisting only of a length byte with the maximum
value (127), the attackers can capture the wireless medium.

Clearly, the work on security discussed above is far from
complete. While implementing interesting “tricks”, both [51]
and [52] cannot be considered “security” proposals. What is
missing from CI literature is a true security solution, in which
mechanisms are used to ensure data confidentiality, integrity,
and authentication. This solution should be based on well-
known security solutions used in standards.

VII. SUMMARY OF THE CI TECHNIQUES

Table II summarizes the work illustrated in previous sec-
tions. We group the different proposals, and for each proposal,
we provide a brief summary.

VIII. A HANDS-ON TUTORIAL ON CONSTRUCTIVE
INTERFERENCE

This section is built as a standalone hands-on tutorial of a
complete CI implementation, called Flashflood. We are strong
believers that seeing is believing, that one learns best by doing,
and the devil is in the details. We, therefore, opt for a hands-
on tutorial, which is in our mind the best way to understand
exactly how CI works. This is all the more applicable to CI
since it is a quite complex technique to implement, which
requires a good understanding of low-level concepts. This
hands-on tutorial is targeted at the level of practicing engineers
and advanced researchers who have some experience with
embedded programming. Ideally, you have a setup similar to
the one described in Section VIII-B and you replicate the
experiment as you read through this hands-on tutorial. But if
you do not, you can read this tutorial alongside the source
code, and extract (most of) the same information, without
running the code.

Flashflood implements the different techniques introduced
in Section IV, and serves as a basis for the discussion in
Section IX. As an online companion to this article, all the
source code of Flashflood is published under an open-source
BSD license7,8 To make the tutorial as useful as possible,
and to demonstrate CI does not require cutting-edge hardware
support, Flashflood is implemented on the TelosB mote, a very
popular platform in the academic and startup communities.

We take the setup from the EWSN Dependability Compe-
tition (Section V-A) as a target application. In a Flashflood
network, the information that specifies who is the source and
the sink nodes is hard-coded (see how in Section VIII-B).
When the bulb shines a bright light onto the light sensor of the
source mote, it initiates a network-wide flood which indicates
this new state. You can “see” the flood happening as other
motes switch their LED on when the flood traverses them.
With an oscilloscope or a logic analyzer, you can also see the
pin at the destination mote go high. With a probe connected
to the source mote, you can precisely measure the end-to-end
latency. Similarly, when the light is switched off, the LEDs of
all motes switch off, and the pin at the destination mote goes
low.

We recommend you read through this tutorial in-order, as
it is organized in a didactic manner. Section VIII-A describes
what Flashflood firmware does. It describes the behavior of
the devices precisely, without entering (or “getting lost”) in
minute implementation details. Section VIII-B describes how
you can run the source code on your TelosB mote. It gives the
high-level steps, but refers to the README.md instructions of

7 https://github.com/twatteyne/flashflood/
8 TEMPORARY NOTE TO REVIEWERS: we understand IEEE Surveys

& Tutorials encourages multi-media additions to the articles it publishes. We
are happy to provide the source code under a form different from a link to a
public repository.

https://github.com/twatteyne/flashflood/
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TABLE I
PROTOCOLS COMPARISON

Protocol Layer Description
LWB MAC Slot communication. Transmission for each node is pre-scheduled.

CRYSTAL MAC Slot communication. Transmission for each node is pre-scheduled. MAC layer
acknowledgement required.

Choco MAC/APP Slot communication. Reading sensor is scheduled in a slot. Transmission for
each nodes are dynamically scheduled.

Crystal Clear MAC An updated version of CRYSTAL using channel hopping.
[40] MAC Transformation of Glossy. Use channel hopping to increase reliability.

Chaos MAC Transformation of Glossy. Use channel hopping and blacklisting technique to
further increase reliability

RedFixHop MAC Low latency design utilizing hardware-ACK feature.

BigBangBus MAC Low latency design through transmitting source data frequently on multiple
channels, in a cost of energy.

Splash APP Multiple concurrent CI floods at different hops.
P3 APP Multiple concurrent CI floods at different hops. Neighbors are grouped.
Poc&Poid MAC/PHY Specific for Fast Neighbor Counting and Identifying.
[45] MAC Using capture offect to overcome non-constructive interference.

OF∂COIN MAC Partial CI-based frames flood through networks on multiple channels.

the repository for details such as what to install or specific
commands to enter. Section VIII-C goes through the imple-
mentation “gotchas” and tricks that are key to the performance
of Flashflood, including the auto-ACK feature of the radio, the
calibration of the clock sources, etc. Section VIII-D presents
the measured performance of Flashflood (reliability, latency,
lifetime, throughput) which you should be able to measure as
well.

A. Overview of Flashflood

Fig. 8 shows the setup we use to describe how Flashflood
operates. It contains many important details, the explanation
of which we refine throughout this tutorial. The setup consists
of a multi-hop topology with source and destination motes
separated by 4 hops, and with 2 relay motes at each hop.
We call “hop 1 motes” all the motes which are exactly one
hop from the source, i.e. motes 2 and 3 in Fig. 8. We
replicate this on a bench-top setup when running the code
(Section VIII-B) and when measuring the performance of
Flashflood (Section VIII-D). Section VIII-B3 details the subtle
differences in addressing between the bench-top setup (in
which multi-hop communication is forced) and a final real-
world deployment; for now, we focus on the bench-top setup.

Each mote is identified by an address my_addr, which is
used as the IEEE802.15.4 short address of the device. Several
motes have the same address, which is key for using CI.
We take advantage of the auto-ACK feature of the radio (see
Section VIII-C4), but for this to work, all frames exchanged
must be formatted according to the IEEE802.15.4 standard.
The source mote (mote 1) generates a 1-bit piece of data
indicating the state of the light (off or on). This data floods
through the network and is carried by an alternation of DATA
frames (in hops 1, 3, 5, etc.) and ACK frames (in hops 2,
4, 6, etc.). In the IEEE802.15.4 frame, the data is carried in
the 1-byte DSN (Data Sequence Number) field. This field is
normally used to match DATA and ACK frames; in Flashflood
this field is overloaded to carry the actual data. The key is
that, per the IEEE802.15.4 standard, the ACK frame contains

the same DSN as the DATA frame it acknowledges, thereby
propagating the data (light state).

Referring to Fig. 8, when mote 1 generates a DATA packet
(with the state of the light encoded in the DSN field), it is
sent to destination address 0x0002. Both motes 2 and 3 are
configured with that short address, so both motes generate an
ACK frame. This is done in hardware, so both ACK frames
are sent at exactly the same time, resulting in CI. Both motes
4 and 5 receive the ACK, and, in software, generate a new
DATA packet. Making sure that DATA frames leave the radio
of both motes 4 and 5 at the same time is the tricky part;
Section VIII-C discussed in detail how this is done. The DATA
frames sent by motes 4 and 5 are logically equivalent to that
sent by mote 1. The result is that the data floods the network
hop by hop, each hop resulting in either a DATA or an ACK
frame.

Of course, timing is everything in Flashflood as in any CI-
based solution. Fig. 9 shows a chronogram of the activity of
the different motes, annotated with different durations. The
explanation and value of these durations are shown in Table III.
Specifically, Fig. 9 shows the activity of the SFD (“Start
of Frame Delimiter”) pin of the motes, which allows us to
visualize when a mote transmits/receives a frame.

As shown in Fig. 9, Flashflood operates in cycles, with
one cycle every Tcycle, which can be tuned. In every cycle,
the source mote sends a packet which contains the state of the
light (on/off):

• source mote. It takes Tdata µs for that frame to be sent
by the source node and received by the hop 1 motes.

• hop 1 motes. The radio chip of the hop 1 motes
automatically generate and send an ACK frame, a process
that takes Dhw (the time for the hardware to generate the
ACK), plus Tpr (the time to send the physical preamble
of the ACK), plus TACK (the time to send the ACK,
excluding its physical preamble). Since the generation
of the ACK is done entirely in hardware, all hop 1
motes start transmitting the ACK at most tens of ns



12

TABLE II
CLASSIFICATION OF RESEARCH ON CONSTRUCTIVE INTERFERENCE

Category Name Description Additions to
Glossy

Modeling & Optimizing

A-MAC [18] Use hardware-generated ACKs to enable CI on receiver-initiated low-power
networks. —

Glossy [13] Flooding protocol based on CI using IEEE802.15.4 O-QPSK signals. 500 ns
maximum de-synchronization. —

SCIF [33] Mathematical analysis of CI. Limiting the number of concurrent paths and
nodes involved increases scalability. Limited paths

and nodes used

TriggerCast [19] Mathematical analysis of CI. Establishes three necessary conditions for CI and
organizes the network as a tree satisfying those conditions. —

[14] Investigates the 4 key factors that enable CI: power ratio, signal timing, channel
coding, packet contents. —

[15] Models one-hop Glossy networks. Shows the influence of packet size and
capture effect on CI. Limited packet

size

DIPA [16] Analyzes and compares most assumptions from previous works. Proposes a
power control algorithm to improve CI. Power control

Protocol Proposals

LWB Many-to-many and one-to-many protocol with Glossy-based time slots. Synchronization
& Data time slots

CRYSTAL [20] Reduces the energy waste of prediction application with Glossy time slots. —

Choco [37] Uses a control time slot to schedule the medium to nodes with data to be
collected. Control time slot

PIP [21] Creates a schedule of Glossy-based time slots for fast data transfer. Scheduling
Splash [38] &
P3 [39]

Fast data transfer based on flooding. Different channels are used to increase
throughput. Multiple

channels

Poc&Poid [22] Fast neighbor counting and identify through CI. The power of superposed signal
is used for identifying the neighbors. —

EWSN Compe-
tition: [40] Glossy with time slots and frequency hopping. Frequency Hop-

ping
EWSN
Competition:
Robust
Chaos [41],
[42]

Glossy with channel hopping and adaptive blacklisting. Frequency Hop-
ping

EWSN Compe-
tition: RedFix-
Hop [43], [44]

Glossy with hardware-generated ACK frames. Hardware-
generated ACK

EWSN Compe-
tition: [45] Glossy with re-transmissions based on timeouts. Timeouts for data

re-transmission
EWSN Compe-
tition: BigBang-
Bus [46]

Tight timeslots with no guard time and use of capture effect. —

EWSN Compe-
tition: [47]

CRYSTAL [20] protocol with channel hopping and sensor information piggy-
backing. —

EWSN Compe-
tition: [50], [48]

Flooding protocol with partial constructive interference frame on multiple
channel. —

Security Challenges [51] Explores three types of DoS attacks: delaying packet relay, relaying packet
earlier and modifying packet attack. The later shows more effectiveness. —

Arpeggio [52] The attacker sends short frames with a fake length field to capture the medium,
destroying CI. —

TABLE III
FLASHFLOOD TIMING.

Time Value Description
Tpr 160 µs physical preamble & SFD TX duration
Tdata 320 µs Data frame TX duration
TACK 192 µs ACK frame TX duration
Dsw 214 µs software delay before Data frame TX
Dhw 192 µs radio delay before ACK frame TX

from one another9. This is well below the maximum
de-synchronization of 500 ns for CI to work. Since the
hardware copies the contents of the DSN field from the

9 This is a value we have measured, and which corresponds to the CC2420
buffer setup times [30].

received DATA frame into the transmitted ACK frame,
the data originally from the source mote reaches the hop
2 motes.

• hop 2 motes. While the processing is equivalent to that
of the hop 1 motes (the data is relayed), the mechanism
is very different as there is no radio hardware feature
to forward data. Instead, when the radio of hop 2 motes
hears the ACK frame from the hop 1 motes, the micro-
controller wakes up, reads out the received ACK frame,
creates a new DATA frame (copying the contents of the
DSN field), and transmits that DATA frame. The key is
that, for CI to work, all hop 2 motes need to start sending
their DATA frames within 500 ns of one another, which
is a challenge given the available timers. How this is
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Fig. 8. Topology of the network used in the experiments.

Fig. 9. Activity of the SFD (“Start of Frame Delimiter”) pin of the motes as a packet floods the network. This pin which goes high at the beginning of a
frame, and low at the end, both when a frame is transmitted or received by the radio.

achieved is detailed in Section VIII-C5.
• odd hop motes (hops 3, 5, 7, etc.). Their behavior is

equivalent to that of the hop 1 motes.
• even hop motes (hops 2, 4, 6, etc.). Their behavior is

equivalent to that of the hop 2 motes.

B. Running Flashflood
We strongly encourage the reader to download and run

the source code, as you will be able to see the behavior
described in this article for yourself. Alternatively, you can
have the code open and read it as you go through this
tutorial. The source code consists of a single 1114-line C
file named flashflood.c. The toolchain (compiler, linker,
debugger) we have used to develop the code is IAR10, a
leading Integrated Development Environment for embedded
programming. We provide a number of IAR project files,
which differ in the debug features that are enabled. Not to
overload this article, we refer the interested reader to the

10 http://www.iar.com/

source code (and specifically the README.md file at the
root of the repository) for installation instructions as well as
instructions on which project to launch.

1) Bench-top Setup: Fig. 10 is a picture of the setup we
have used to develop and benchmark Flashflood. It consists of
8 TelosB motes connected to a USB hub. This setup exactly
replicates the topology from Fig. 8. We switch on a bright
light (not shown in Fig. 10) above mote 1 to trigger a state
switch.

In the bottom part of the figure, there is a logic analyzer that
we use to capture the timestamps of different events happening
along the protocol execution.

2) Debug Pins: Throughout the Flashflood source code,
we add statements to switch several pins of the TelosB board
high or low. We use a Saleae logic analyzer11, shown at the
bottom of Fig. 10 to visualize and trace the activity of the
motes it is connected to. We use 6 different pins, and assign
a specific meaning to each:

11 https://www.saleae.com/

http://www.iar.com/
https://www.saleae.com/
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Fig. 10. Bench-top setup. 8 TelosB motes are connected to a USB hub A
logic analyzer monitors the state of the 6 debug pins of different motes.

• The light pin indicates the state of the light of the
source mote: it is high when the light is on, low when
the light is off;

• The timerAisr pin is high when the micro-controller
executes a Timer A Interrupt Service Routine, low oth-
erwise;

• The timerBisr pin is high when the micro-controller
executes a Timer B Interrupt Service Routine, low other-
wise;

• The rxforme pin is low by default, and pulses high/low
when the incoming frame passes address recognition;

• The sfd pin mimics the status of SFD pin of CC2420.
This is the pin used to create Fig. 9;

• The radio pin is set high when the radio’s oscillator is
on, low otherwise. It can be used to see when the radio
is on and to visualize the radio duty cycle.

Tab. IV shows where those pins are located on the TelosB
board, i.e. where to connect the probes of your logic analyzer.

3) Forcing Multi-hop: Without modification, all motes hear
one another in the bench-top setup, and the communication
between the source and destination motes is single-hop. We,
therefore, hard-code two identifiers in each mote: my_addr –
its IEEE802.15.4 short address – and my_hop – the number
of hops it is from the source. Both are used to filter received
frame, artificially creating multi-hop communication.

TABLE IV
THE PINS USED FOR VISUALIZING THE ACTIVITY OF THE MOTES USING A

LOGIC ANALYZER, AND THEIR LOCATION ON THE TELOSB BOARD.

name MSP430f1611 pin TelosB expansion header pin
light P2.3 6-pin U28 header, pin 3
timerAisr P3.4 10-pin U2 header, pin 4
timerBisr P6.6 6-pin U28 header, pin 1
rxforme P2.6 6-pin U28 header, pin 4
sfd P3.5 10-pin U2 header, pin 2
radio P6.7 6-pin U28 header, pin 2

The Flashflood firmware indicates to the mote’s radio its
my_addr short address and configures it so that it drops
any DATA frame with a destination address different from
my_addr. The result is that, for example, mote 4 drops
the DATA frames it receives from mote 1. When receiving
an ACK, the Flashflood firmware verifies the “hop” field it
contains (see Section VIII-C2) and drops any frame with a
value different from my_hop. The result is that, for example,
mote 6 drops the ACK frames it receives from node 2.

In a real deployment, we disable this feature by (i) config-
uring each mote with the same my_addr short address and
(ii) disabling the filtering based on the my_hop value. This is
done in the source code by not defining the LOCAL_SETUP
symbol as a pre-compiler directive, as explained in the
README.md file.

C. Flashflood Implementation Details

The source code consists of only a single 1114-line C file.
It is written and annotated as a tutorial, the numerous in-
line comments should allow you to follow the computation
done in the different functions. Rather than repeating the
annotations in the source code, this section details the high-
level implementation principles and “tricks” that make CI
work, and the implementation efficient. We recommend you
open the flashflood.c file alongside reading this section.

1) Event-Driven Execution: The source code is organized
around a main() function – which handles the initialization
of a board – and two “Interrupt Services Routines” which han-
dle interrupts from the two onboard timers: TIMERA1_ISR
for Timer A and TIMERB1_ISR for Timer B. This means
that, once the initialization is done, the micro-controller is
only woken up for handling one of those two timers. The
micro-controller then operates exclusively in interrupt mode,
resulting in pure event-driven execution.

The code in the interrupt handlers is written very “linearly”,
with very little branching (e.g. if and switch statements),
and without relying on complex operations such as the modulo
operation, which can take hundreds of microseconds to exe-
cute. The goal is that we want the interrupt handler to execute
fast and take roughly the same time to execute every time (low
jitter).

2) Frame Formats: Fig. 11 shows the format of the two
frames used in Flashflood. Both are compliant with the
IEEE802.15.4 standard.

The DATA frame is 9 bytes long, including the 2-byte CRC.
Per IEEE802.15.4 standard, the two first bytes are the Frame
Control Field, which indicates how the rest of the fields are
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Fig. 11. The IEEE802.15.4 DATA and ACK frame formats used in the
Flashflood protocol.

TABLE V
FRAME CONTROL FIELD (FCF) CONTENTS OF THE DATA FRAME.

bit name value meaning
0-2 frame type b001 DATA frame
3 security enabled b0 no security
4 frame pending b0 no frame pending
5 ACK requested b1 ACK requested
6 intra PAN b1 source PANID elided
7-9 reserved b000 —
10-11 destination address mode b10 16-bit destination addr.
12-13 frame version b01 IEEE802.15.4-2006
14-15 source address mode b00 elided

organized. The contents are detailed in Table V. Specifically,
there is no source address present, but an ACK is always
requested.

As detailed in Section VIII-A the data is carried in the DSN
field. This field is designed to match DATA and ACK frames,
but it is overloaded in Flashflood. As shown in Fig. 11 the
1-byte field is sub-divided into 3 fields:

• the light (L) bit which contains the state of the light, the
actual data carried.

• the hop count field which indicates the hop count of
the transmitter of this frame. This is used in the bench-
top setup to artificially create a multi-hop topology (see
Section VIII-B3).

• The sequence number field is incremented by the source
node at each new packet flooded, and used for channel
hopping (see Section VIII-C7).

The ACK frame is also IEEE802.15.4-compliant, but carries
only the DSN field besides the FCF and the CRC. This frame
is auto-generated by the hardware (see Section VIII-C4). The
ACK frame is 5-byte long.

3) Pre-loading TXFIFO: The CC2420 radio has a TXFIFO
buffer which stores the frame to be sent. The radio does not
use this buffer when auto-generating an ACK frame, so in
the context of the Flashflood, the TXFIFO will always hold
DATA frames. As long as the radio is powered (including
when the front-end is off), the state of the TXFIFO is kept. In

addition, the CRC is calculated on-the-fly, i.e., while the frame
is being transmitted. As a result, to speed up the execution,
the Flashflood firmware pre-loads a DATA frame into the
TXFIFO. Whenever that frame needs to be transmitted, the
firmware overwrites the DSN field of the pre-loaded frame
and has the radio transmit it. This requires a single-byte SPI
write operation into the TXFIFO at each transmission, rather
than a full reload of the whole frame.

4) Hardware Auto-ACK: Per IEEE802.15.4 standard, a
device which receives a frame that has the “ACK requested”
flag set must send back an acknowledgment frame, echoing
the DSN field. The CC2420 has hardware support for that,
so, given the right configuration, it generates and sends an
ACK without micro-controller intervention. This auto-ACK
feature was added to the CC2420 to simplify the code running
on the micro-controller. We are using it for another benefit:
the duration between the end of the DATA frame and the
transmission of the ACK is always exactly the same value,
to within a handful of tens of ns, allowing CI.

For this to work, three bits in the MDMCTRL0 configuration
register of the CC2420 need to be set to enable (i) address
recognition and (ii) auto-ACK. The exact behavior of the
radio is then as follows. When a DATA frame with the “ACK
requested” flag set is received, the destination address of the
DATA frame is checked against the short address of the mote.
If address recognition passes, the radio creates an ACK by
copying the DSN field from the DATA and appending a 2-
byte CRC. The ACK is sent exactly 12 symbols after the end
of the reception of the DATA frame. If address recognition
fails, the CC2420 aborts the reception of the DATA frame
without sending an ACK.

5) Timer Usage: Flashflood uses both timers from the
micro-controller: TimerA and TimerB.

TimerA is used as the slow timer. It is clocked by the 32 kHz
crystal which is present on the TelosB board. That is, every
1/32768 second (roughly 30.5 µs), it increments by 1. The
micro-controllers’ low-power mode is set to LPM3, meaning
that TimerA never stops, even when the micro-controller does
not execute code. The advantage of TimerA configured like
this is that it provide a constant sense of time for a very low
power consumption (around 2 µA). The disadvantage is that
the speed of the timer does not give nearly enough precision
to kick off actions with < 500 ns timing accuracy.

For that, a second timer is used: TimerB. It is clocked from
a 4.9 MHz Digitally Controller Oscillator (DCO) inside the
micro-controller. At that speed, it gives a time accuracy of
1/4.9 MHz = 200 ns, which is below the 500 ns limit for CI
to work. The disadvantage is that the timer consumes close to
1 mA when on. The firmware hence switches on TimerB only
parsimoniously to conserve energy. TimerB also suffers from
a large drift, see Section VIII-C6.

The operation of both timers is as follows. TimerA contin-
uously runs. When TimerA signals the beginning of a cycle
(which happens every Tcycle, see Fig. 9), the firmware switches
TimerB on. TimerB is used to timestamp the reception of an
ACK time, and precisely measure Dsw (see Table III), the
duration from the end of the ACK frame reception to the
beginning of the DATA frame transmission. This measurement
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must be deterministic so different motes having received the
same ACK send a DATA frame within 500 ns of one another,
resulting in CI. After the mote has participated in the flood, it
turns its radio and TimerB off until the start of the next cycle.

6) DCO Calibration: While the DCO clocking TimerB
is very fast, it is also very unstable. That is, because it
consists of a simple resonating circuit, it is very susceptible
to temperature and supply voltage differences, and while its
nominal frequency is 4.9 MHz, it can swing between 4.4 MHz
and 5.4 MHz. The challenge is that TimerB is used for
triggering the transmission of the DATA frame. If two different
nodes have their DCO run, one at 4.9 MHz, the other at
5.4 MHz, counting 1000 ticks would take 204.08 µs and
185.19 µs, respectively. The difference, 18.89 µs, is well above
the 500 ns limit, and CI would not work.

The Flashflood firmware therefore periodically calibrates
the (unstable) DCO with the (very stable) crystal. It does so
by counting how many TimerB ticks there are in a TimerA
tick. It then uses a scaled value of the result to measure the
time between receiving an ACK frame and sending a DATA
frame.

7) Channel Hopping: To combat external interference and
multi-path fading, Flashflood implements a simple channel
hopping scheme: at each cycle, the motes switch to a different
frequency. The idea is that, if communication at 2.405 GHz
did not succeed, rather than retrying on the same frequency,
the devices retry at a different frequency, e.g. 2.485 GHz [53].
To achieve this, the motes use the current sequence number
to loop through the frequencies according to some pre-agreed
hopping sequence.

The first challenge with this is that it takes longer for a node
to hear its first packet and learn the current sequence number to
be able to join the communication. With a 16-channel hopping
sequence, it takes on average 8 cycles for a node to hear its
first packet when listening on a random channel. Assuming
a Tcycle = 20 ms (the default in Flashflood), this means that
after being switched on, a mote listens on average for 160 ms
before “joining” the network.

A second challenge is that packets can be lost. That is, a
mote can relay a packet with sequence number 10, but not hear
any packet with sequence number 11. In that case, Flashflood
has to artificially increment the sequence number every Tcycle
to be listening on the right frequency when the flood with
sequence number 12 traverses the network.

8) Radio Duty Cycling: Because each frame contains a hop
count field, any mote can compute when the current cycle
started, based on the hop count value. And because Tcycle
is known, it can also compute when the next cycle starts.
The Flashflood firmware has a mote switch off its radio after
having relayed a frame, and switch it back on at the beginning
of the next cycle.

D. Measured Flashflood Performance
The performance of Flashflood is measured using the

bench-top setup depicted in Fig. 10. We connect the logic
analyzer to different boards for different measurements and
automate the measurements to present statistically relevant
results gathered over a large number of runs.
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Fig. 12. Histogram of the time offset between both 2-hop motes. For 90%
of the packet, the time offset is below 500 ns.

1) Time Offset: The time offset is the difference in time
between different boards at the same hop transmitting frames.
For CI, we want this time offset to be below 500 ns. Per the
discussion in Section VIII-C5, the hard part is to get different
motes to relay a DATA frame at the same time. We, therefore,
connect the logic analyzer to motes 4 and 5 (both at hop 2)
and timestamp the instant at which they transmit the DATA
frame using the sfd debug pin. The logic analyzer samples at
16 MHz, giving us a timestamp granularity with an accuracy
of 62.5 ns.

We have the source node to transmit 1000 packets, and plot
in Fig. 12 the histogram of the absolute time offset between
both motes. We see that for 90% of the packet, the time offset
is below 500 ns, our target.

2) Reliability: We call reliability the portion of data sent
by the source that reaches the destination. In Fig. 8, that is the
percentage of packets sent by mote 1 that reaches mote 8. We
measure the reliability by having mote 1 send 10,000 packets,
and counting the number os packets received by mote 8.

The experiment is conducted in an office environment with
heavy 2.4 GHz WiFi and IEEE802.15.4 traffic. We use unmod-
ified Flashflood with channel hopping on all 16 IEEE802.15.4
frequencies. The experiment results in 94.88% end-to-end
reliability over 4 hops.

Packet loss happens because of external interference. Sec-
tions VIII-E and X discuss the improvements which could be
done to bring the reliability to 100%.

3) Latency: We call end-to-end latency the amount of
time between the moment the light switches on and the
moment the destination mote receives the packet containing
the information that the light has switched on.

End-to-end latency consists of three parts: (i) the time it
takes the source mote to detect the light is switched on; (ii) the
time it takes for the source mote to send the packet containing
that information; (iii) the time it takes for that packet to travel
across the network. The end-to-end latency is expressed in (4),
in which Dsensor, Dsource and Dnetwork(H) account for the
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TABLE VI
DATASHEET CURRENT CONSUMPTION NUMBERS OF THE CC2420 RADIO

state Ioff Iidle Itx Irx
current 0.02 µA 426 µA 17.4 mA 18.8 mA

3 components. H is the number of hops between source and
destination.

Lend2end(H) = Dsensor +Dsource +Dnetwork(H) (4)

Since the light sensor is read every Tcycle, Dsensor =
Tcycle/2 as it takes over average half Tcycle for a light change
to be detected.

Once the light change is detected, the mote calibrates the
radio and loads the packet to be sent. This takes Dsource =
901 µs, a value measured experimentally.

The network’s delay Dnetwork(H), expressed in (5), is the
sum of the delay at the first hop, at every odd hop and at every
even hop. The delay at the first hop, Dfirst is expressed in (6).
The delay at each odd and even hop is expressed in (7) and (8),
respectively. These equations directly result from Fig. 9.

Dnetwork(H) = Dfirst+
∑

# odd hops

Dodd+
∑

# even hops

Deven

(5)

Dfirst = Tpr + TData (6)

Dodd = Dsw + Tpr + TData (7)

Deven = Dhw + Tpr + TACK (8)

We measure the end-to-end latency by attaching the logic
analyzer to the source and destination nodes and timestamp the
instant that the light switches on, and the high-to-low transition
of the sfd at the destination (indicating it just received a full
frame). We have the source node transmit 1,000 packets to the
destination node. We verify that Dsensor follows a uniform
distribution in [0, Tcycle], with an average value of 10 ms
(Tcycle = 20 ms by default)

Fig. 13 shows the calculated and measured end-to-end
latencies side by side, for a destination node located 1, 2,
3, 4 hops from the source. It shows that calculated and
measured values match. Latency increases quasi-linearly with
the number of hops (not perfectly linearly as Dodd 6= Deven).

4) Battery Lifetime: The energy consumption of a mote
depends on how far it is from the source. The more hops
between the source and the mote, the more energy it consumes.

The charge C(h) consumed at every cycle by a mote at hop
h is given by (9). Iidle is the current of the radio when in the
idle state, i.e. when the radio has been switched on but not yet
in transmitting or reception state. Itx and Irx is the current of
the radio when in transmitting or reception state, respectively.
The radio consumes Ioff when switched off. Table VI gives
the datasheet current consumption numbers of the CC2420
radio.

hop 1 hop 2 hop 3 hop 4
hops

11000

11500

12000

12500

13000

13500

e
n
d
 t
o
 e
n
d
 l
a
te
n
cy

 (
u
s)

calculated
measured

hop calculated measured
average std.dev.

1 11381.00 11406.15 21.36
2 11925.00 11955.53 21.15
3 12619.00 12678.75 20.80
4 13163.00 13226.91 21.77

Fig. 13. Measured and calculated end-to-end latency of Flashflood.

TABLE VII
MOTE LIFETIME WHEN POWERED BY A 2000 MAH PAIR OF AA BATTERIES

hop source 1 2 3 4
charge per cycle (uC) 11 21 35 45 49
lifetime (days) 20 ms cycle 151 78 48 37 34

C(h) = DinitIidle + Ttx(h)Itx + Trx(h)Irx (9)

Ttx(h) =


Tpr + TDATA (source)

Tpr + TACK (odd)

Tpr + TDATA (even)

0 (destination)

(10)

Trx(H) =



0

(source)

Trx(H − 1) + TDATA +DHW + Tpr + TACK

(odd)

Trx(H − 1) + TACK +DSW + Tpr + TDATA

(even)
(11)

Between cycles, Flashflood turns the radio off, and leaves
the micro-controller in LPM3 mode, a low-power mode in
which only the 32 kHz crystal runs, consuming 2 µA. As-
suming a cycle every 20 ms, Table VII gives the lifetime of a
mote when powered by a 2000 mAh pair of AA batteries.

5) Throughput: The achievable throughput depends on the
value of Tcycle, which is 20 ms by default. With this setting,
the maximum throughput of Flashflood is 50 pkts/s. Changing
the value of Tcycle trades off throughput, energy consumption
and end-to-end latency.



18

E. Where Next?

With a single 1114-line C file, Flashflood is a simple
implementation built to illustrate the different concepts devel-
oped in Section II. It offers a balanced performance between
reliability, end-to-end latency, battery lifetime and throughput.
This section contains a number of ideas for modifying the base
Flashflood source code to optimize one of those parameters.

Battery lifetime could be improved by having the motes
wake up later. That is, as depicted in Fig. 9, a hop 2 mote
could wake up right before it expects to receive the hop 2
frame, rather than at the beginning of the cycle. The downside
is that a hop 2 mote could not become a hop 1 mote at a future
cycle.

Throughput could be improved by having Tcycle changed
dynamically. That is, the packet flooded could contain the
value the next Tcycle to use, allowing the source node to
change the rate at which it can generate data packets. The
downside is that this scheme would require additional signal-
ing, in an already well-used DSN field.

Reliability could be improved by having each mote monitor
whether it overhears its frame being retransmitted. If not,
it could serve as a local source during the “off” period
before the next cycle starts. The downside is that this would
require significant additional signaling to coordinate multiple
re-transmitters.

It is clear that CI opens the door for numerous intuitive
delta-improvements, yielding very specific solutions. Yet, re-
gardless of the improvements that are added, the question
is whether CI can be useful at all, in particular in critical
industrial applications.

IX. ISSUES AND CHALLENGES OF CONSTRUCTIVE
INTERFERENCE IN IEEE802.15.4

IEEE802.15.4 is a standard for wireless low-power, low
data-rate networks. All CI techniques discussed in Sections IV,
V and VI are based on the IEEE802.15.4 physical layer. The
IEEE802.15.4 standard specifies four different MAC layer
protocols focusing on different applications, including TSCH
that targets industrial networking. CI being integrated into
MAC layer protocols specified in the IEEE802.15.4 standard
would be beneficial for a large adoption of the technique and
its employment in more practical scenarios.

For industrial applications, reliability, latency, energy con-
sumption and security are important KPIs (Key Performance
Indicators). The nature of flooding in CI provides a protocol
design that has a very low latency. The energy consumption
can also be optimized when using CI, given that proper tuning
is done between energy and latency. Through a sophisticated
design, latency and energy consumption should not be a major
issue in CI technology.

We discuss in this section the issues and challenges of CI
in the scope of IEEE802.15.4 industrial standards, mainly
focusing on security and reliability aspects, which are the
two most critical yet-to-solve aspects of CI-based protocols.
We also discuss the amount of data CI could carry with
the IEEE802.15.4 and the new IEEE802.15.4g (sub-GHz)
protocols and the possibility of standardizing CI. We base

this discussion on the state-of-the-art articles in Sections IV,
V and VI, and the hands-on experience from the tutorial
in Section VIII. The goal of this section is to look for the
possibility of bringing CI from purely academic world to
industry.

This section organized as following. Section IX-A discuss
the big challenges that CI may face to become industrially
applicable. Section IX-B discuss the reliability that CI could
achieve to meet the industrial requirements. Section IX-C
discuss the amount of data CI is capable to convey, referring
IEEE802.15.4 standard. Section IX-D discuss the possibility
to bring CI to standard.

A. Security
One of the two most critical issues of CI is security. CI is

often presented as a solution for industrial emergency buttons.
Yet, we are not aware of any real attempt to come up with
a security scheme for CI. Some of the literature surveyed in
Section VI which falls under “security” merely present attacks
on CI, but are far from defining a security solution.

A security solution, as defined for example by the ANIMA
and ACE working groups in the IETF12 rely on cryptographic
mechanisms to secure frames (yielding confidentiality, in-
tegrity), and Key Management Protocols to manage the keying
material used by the communicating devices (yielding secure
joining and repudiation). In the security communities cited
above, if there exists a single exploit, a solution is considered
unsecured; “probabilistic security” does not exist. A CI solu-
tion which could be considered by the industrial community is
one that ensures only trusted devices are accepted in a network,
that a device can be removed from the trusted set at any time,
and which ensures confidentiality, integrity, and authentication
during communication.

Yet, the work needed does not appear technically over-
complicated, as all the security foundations are in place.
The IEEE802.15.4 standard has shipped with built-in link-
layer security mechanisms since its first version in 2003,
and virtually all commercial chips complying with it include
hardware acceleration. Using CCM*, the security mode most
commonly used, an entire frame can be secured (encrypted
and authenticated) in less time than it takes to transmit a single
byte.

What does remain to be answered are questions including
How does a new device securely join a CI-based network?
How does that device acquire link-layer keys? How are those
keys used? How does the network repudiate a device?

The flooding nature of CI presents an additional challenge.
Since the different frames participating in CI need to be
identical, they need to be secured using the same key. This
translates into the need of using network-wide link-layer keys,
rather than per-link link-layer keys.

B. Reliability
The second most critical issue with CI is reliability. To be

precise, end-to-end reliability. Reliability has received signif-
icant attention from the academic community, and virtually

12 http://tools.ietf.org/wg/anima/charters, https://tools.ietf.org/wg/ace/
charters

http://tools.ietf.org/wg/anima/charters
https://tools.ietf.org/wg/ace/charters
https://tools.ietf.org/wg/ace/charters
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all related work discussed in Section IV, Section V and
Section V-A touch upon it. CI is presented essentially as an
efficient flooding scheme; communication between source and
destination is very fast when it works, but it does not always
work.

Related work has put significant focus on increasing the
probability that a message gets to its destination. Yet, what is
missing is the ability for the device sending to know whether
its data got there. In the emergency button use case, the button
does not know whether the machine has stopped, using today’s
CI solutions. If it knew the machine had not stopped, it could
restart a CI flood within a handful of milliseconds after the first
try. And while worst-case latency necessary goes up with the
number of retries, the end-to-end reliability (including retries)
must be 100%.

C. Amount of Data

Based on the analysis of CI in [15], the longer the duration
of the transmissions is, the worse packet delivery ratio CI
would achieve. This is because the drift of clock between
two radios increases proportionally to the size of the packet.
IEEE802.15.4 allows a maximum length frame 127 bytes to
be transmitted. According to the result from [15], transmitting
126 bytes introduces offset between two transmissions close
to 0.10 µs. This is acceptable since does not exceeding the
0.5 µs limit of CI.

IEEE802.15.4g is an amendment for IEEE802.15.4 to
supports multiple sub-GHz physical layers to enable long-
range communication. It allows a maximum length frame of
2047 bytes. The large frame may introduce higher time offset
between two concurrent transmissions. In addition, the lower
chip rate (100 kcps or 1 Mcps depending on the frequency
band used) increases even more the clock drift and makes it
hard to comply with the 500 ns maximum offset. Theoretically,
there should be no limitation on the amount of data for CI to
be used with IEEE802.15.4g. However, the limits on the clock
offset between two concurrent transmissions when sending
long frames needs to be investigated experimentally.

D. Standardization

Large industrial end-users rarely use single-vendor solu-
tions, i.e. solutions which are sold only by a single company.
A good way to ensure interoperability is through standardiza-
tion. Having a standard that covers a technology serves two
purposes: (i) it acknowledges the interest of enough companies
to push the technology through the standardization process and
(ii) it ensures to a large extent multiple interoperable products
on the market.

To the best of our knowledge, no communication standard
exploits CI, and there is no ongoing standardization activity
that proposes it.

X. RESEARCH DIRECTIONS

According to the summary from the previous section, it
is clear that CI has two main issues – on security and
on reliability – for meeting the industrial requirements. CI

simply does not provide a complete solution to be adopted
by industrial standards. However, it could be a solution in
the future if it becomes part of a standardized protocol.
Time Synchronized Channel Hopping (TSCH), as a technique
adopted by multiple industrial standards, could be a target
protocol for standardization of CI.

In this section, we first introduced the TSCH protocol and
its related challenges. Second, we provide a discussion on
research directions to integrate CI with TSCH and possibly
solve the challenges exposed.

A. Time Synchronized Channel Hopping

For a wireless low-power industrial network, the standard
leading the market today is WirelessHART, a wireless exten-
sion of the HART standard. First published in 2008, Wire-
lessHART is now ubiquitous in the industrial space. The core
technology of WirelessHART is TSCH, a low-power wireless
medium access technique which combines synchronization to
achieve ultra-low power consumption and channel hopping to
achieve wire-like reliability.

In 2016, TSCH has become standardized as part of the
IEEE802.15.4 standard. 6TiSCH, a standardization working
group at the IETF, was created to combine IEEE802.15.4
TSCH with IPv6. Today, pre-6TiSCH products, such as Analog
Devices’ SmartMesh product lines, are on the market with the
following key performance indicators [8]:

• wire-like end-to-end reliability over 99.999%
• < 50 µA average power consumption at 3.6 V, yielding

over a decade of battery lifetime
• certified security
Tens of thousands of TSCH networks are operating today.

One vendor alone, Emerson13, announced at the time of
writing over 35,400 networks deployed, with an accumulated
mote operation time of over 10,616,346,164 hours14.

TSCH has also become an important research topic. An in-
dication of this is that the 3 leading open-source IoT stack im-
plementations (OpenWSN, Contiki, RIOT) now use 6TiSCH at
the core of their protocol stack. A largely unanswered question
which is actively investigated is whether latency can be pre-
dicted in TSCH networks, which is essential for using TSCH
networks in control applications. Early demonstrations showed
a 6TiSCH network used to control an inverted pendulum [54].

B. Integrate CI with TSCH

Based on the discussion in Sec IX, CI will not replace
established solutions such as TSCH, as it covers only a very
small subset of the capabilities of TSCH. We do believe,
however, that there is a benefit in having a system for
transporting/flooding alarm messages across a network fast.
We also believe CI offers a performance trade-off between
the amount of data, latency and power consumption which
TSCH does not attain.

We, therefore, state that there is a benefit in adding CI
capabilities to TSCH. This could be done by (i) dedicated

13 www.emerson.com
14 http://www.emerson.com/en-us/expertise/automation/

industrial-internet-things/pervasive-sensing-solutions/wireless-technology

www.emerson.com
http://www.emerson.com/en-us/expertise/automation/industrial-internet-things/pervasive-sensing-solutions/wireless-technology
http://www.emerson.com/en-us/expertise/automation/industrial-internet-things/pervasive-sensing-solutions/wireless-technology
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TSCH cells to CI communications and (ii) adding a link-layer
acknowledgment to CI, in a way similar to [17]. CI would
benefit from the security solution being developed for example
in the IETF 6TiSCH working group. CI could appear as an
additional service offered by a TSCH network.

XI. CONCLUSION

This article starts by introducing the Constructive Interfer-
ence (CI) technique and presents the state-of-the-art in this
vibrant research topic. This tutorial covers related work which
spans 10 years and is presented in a chronological order to
highlight the progression of the technology.

It then provides a comprehensive hands-on tutorial about
CI. The Flashflood implementation is the example presented
and published as open-source as an online addition to this
article. All low-level subtleties (and complexities) related to
implementing CI are explained, including event-based pro-
gramming, frame formats, autoAck configuration, Timer us-
age, DCO calibration, channel hopping strategy and low power
duty cycling setting.

This article concludes with a discussion about the usefulness
of CI for Industrial IoT applications. Its relevance is very small
today. And although CI does not provide functionalities for the
IIoT solutions, as TSCH does, CI has sufficient potential for
justifying the effort of combining it with TSCH.
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ACRONYMS

Follow is the acronyms used in this paper and ordered by
the subsequence they appear in the paper.

CI Constructive Interference
LR-WPAN Low-Rate Wireless Personal Area Networks
TSCH Time slotted Channel Hopping
IIoT Industrial Internet of Thing
ISM Industrial, Scientific and Medical
TDMA Time Division Multiple Access
FDMA Frequency Division Multiple Access
CDMA Coding Devision Multiple Access
MAC Media Access Control
O-QPSK Offset Quadrature Phase-shift Keying
HDD Hard Decision Decoding
SDD Soft Decision Decoding
MSK Minimum Shift keying
DSSS Discrete Sequence Spread Spectrum
SFD Start of Frame delimiter
MPDU MAC protocol Data Unit
PDR Packet Delivery Ratio
SINR Signal to Interference plus Noise Ratio
DoS Denial of Service
DSN Data Sequence Number
DCO Digitally Controlled Oscillator
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