86 research outputs found

    SiC power MOSFETs performance, robustness and technology maturity

    Get PDF
    Relatively recently, SiC power MOSFETs have transitioned from being a research exercise to becoming an industrial reality. The potential benefits that can be drawn from this technology in the electrical energy conversion domain have been amply discussed and partly demonstrated. Before their widespread use in the field, the transistors need to be thoroughly investigated and later validated for robustness and longer term stability and reliability. This paper proposes a review of commercial SiC power MOSFETs state-of-the-art characteristics and discusses trends and needs for further technology improvements, as well as device design and engineering advancements to meet the increasing demands of power electronics

    Silicon carbide based DC-DC converters for deployment in hostile environments

    Get PDF
    PhD ThesisThe development of power modules for deployment in hostile environments, where the elevated ambient temperatures demand high temperature capability of the entire converter system, requires innovative power electronic circuits to meet stringent requirements in terms of efficiency, power-density and reliability. To simultaneously meet these conflicting requirements in extreme environment applications is quite challenging. To realise these power modules, the relevant control circuitry also needs to operate at elevated temperatures. The recent advances in silicon carbide devices has allowed the realisation of not just high frequency, high efficiency power converters, but also the power electronic converters that can operate at elevated temperatures, beyond those possible using conventional silicon-based technology. High power-density power converters are key components for power supply systems in applications where space and weight are critical parameters. The demand for higher power density requires the use of high-frequency DC-DC converters to overcome the increase in size and power losses due to the use of transformers. The increase in converter switching frequency reduces the size of passive components whilst increasing the electromagnetic interference (EMI) emissions. A performance comparison of SiC MOSFETs and JFETs in a high-power DC-DC converter to form part of a single phase PV inverter system is presented. The drive design requirements for optimum performance in the energy conversion system are also detailed. The converter was tested under continuous conduction mode at frequencies up to 250 kHz. The converter power efficiency, switch power loss and temperature measurements are then compared with the ultra-high speed CoolMOS switches and SiC diodes. The high voltage, high frequency and high temperature operation capability of the SiC DUTs are also demonstrated. The all SiC converters showed more stable efficiencies of 95.5% and 96% for the switching frequency range for the SiC MOSFET and JFET, respectively. A comparison of radiated noise showed the highest noise signature for the SiC JFET and lowest for the SiC MOSFET. The negative gate voltage requirement of the SiC MOSFET introduces up to 6 dBμV increase in radiated noise, due to the induced current in the high frequency resonant stray loop in the gate drive negative power plane. ii A gate driver is an essential part of any power electronic circuitry to control the switching of the power semiconductor devices. The desire to place the gate driver physically close to the power switches in the converter, leads to the necessity of a temperature resilient PWM generator to control the power electronics module. At elevated temperatures, the ability to control electrical systems will be a key enabler for future technology enhancements. Here an SiC/SOI-based PWM gate driver is proposed and designed using a current source technique to accomplish variable duty-cycle PWM generation. The ring oscillator and constant current source stages use low power normally-on, epitaxial SiC-JFETs fabricated at Newcastle University. The amplification and control stages use enhancement-mode signal SOI MOSFETs. Both SOI MOSFETs will be replaced by future high current SiC-JFETs with only minor modification to the clamp-stage circuit design. In the proposed design, the duty cycle can be varied from 10% to 90%. The PWM generator is then evaluated in a 200 kHz step-up converter which results in a 91% efficiency at 81% duty cycle. High temperature environments are incompatible with standard battery technologies, and so, energy harvesting is a suitable technology when remote monitoring of these extreme environments is performed through the use of wireless sensor nodes. Energy harvesting devices often produce voltages which are unusable directly by electronic loads and so require power management circuits to convert the electrical output to a level which is usable by monitoring electronics and sensors. Therefore a DC-DC step-up converter that can handle low input voltages is required. The first demonstration of a novel self-starting DC-DC converter is reported, to supply power to a wireless sensor node for deployment in high temperature environments. Utilising SiC devices a novel boost converter topology has been realised which is suitable for boosting a low voltage to a level sufficient to power a sensor node at temperatures up to 300 °C. The converter operates in the boundary between continuous and discontinuous mode of operation and has a VCR of 3 at 300 °C. This topology is able to self start and so requires no external control circuitry, making it ideal for energy harvesting applications, where the energy supply may be intermittent.EPSRC and BAE SYSTEMS through the Dorothy Hodgkin Postgraduate Awar

    Silicon Carbide Converters and MEMS Devices for High-temperature Power Electronics: A Critical Review

    Get PDF
    The significant advance of power electronics in today\u27s market is calling for high-performance power conversion systems and MEMS devices that can operate reliably in harsh environments, such as high working temperature. Silicon-carbide (SiC) power electronic devices are featured by the high junction temperature, low power losses, and excellent thermal stability, and thus are attractive to converters and MEMS devices applied in a high-temperature environment. This paper conducts an overview of high-temperature power electronics, with a focus on high-temperature converters and MEMS devices. The critical components, namely SiC power devices and modules, gate drives, and passive components, are introduced and comparatively analyzed regarding composition material, physical structure, and packaging technology. Then, the research and development directions of SiC-based high-temperature converters in the fields of motor drives, rectifier units, DC-DC converters are discussed, as well as MEMS devices. Finally, the existing technical challenges facing high-temperature power electronics are identified, including gate drives, current measurement, parameters matching between each component, and packaging technology

    FY2009 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery

    Full text link

    A Highly Integrated Gate Driver with 100% Duty Cycle Capability and High Output Current Drive for Wide-Bandgap Power Switches in Extreme Environments

    Get PDF
    High-temperature integrated circuits fill a need in applications where there are obvious benefits to reduced thermal management or where circuitry is placed away from temperature extremes. Examples of these applications include aerospace, automotive, power generation, and well-logging. This work focuses on the automotive applications, in which the growing demand for hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles (FCVs) has increased the need for high-temperature electronics that can operate at the extreme ambient temperatures that exist under the hood, which can be in excess of 150°C. Silicon carbide (SiC) and other wide-bandgap power switches that can function at these temperature extremes are now entering the market. To take full advantage of their potential, high-temperature capable circuits that can also operate in these environments are required. This work presents a high-temperature, high-voltage, silicon-on-insulator (SOI) based gate driver designed for SiC and other wide-bandgap power switches for DC-DC converters and traction drives in HEVs. This highly integrated gate driver integrated circuit (IC) has been designed to operate at ambient temperatures up to 200ºC, have a high on-chip drive current, require a minimum complement of off-chip components, and be capable of operating at a 100% high-side duty cycle. Successful operation of the gate driver circuit across temperature with minimal or no thermal management will help to achieve higher power-to-weight and power-to-volume ratios for the power electronics modules in HEVs and, therefore, higher efficiency

    4H-SiC Integrated circuits for high temperature and harsh environment applications

    Get PDF
    Silicon Carbide (SiC) has received a special attention in the last decades thanks to its superior electrical, mechanical and chemical proprieties. SiC is mostly used for applications where Silicon is limited, becoming a proper material for both unipolar and bipolar power device able to work under high power, high frequency and high temperature conditions. Aside from the outstanding theoretical and practical advantages still to be proved in SiC devices, the need for more accurate models for the design and optimization of these devices, along with the development of integrated circuits (ICs) on SiC is indispensable for the further success of modern power electronics. The design and development of SiC ICs has become a necessity since the high temperature operation of ICs is expected to enable important improvements in aerospace, automotive, energy production and other industrial systems. Due to the last impressive progresses in the manufacturing of high quality SiC substrates, the possibility of developing ICs applications is now feasible. SiC unipolar transistors, such as JFETs and MESFETs show a promising potential for digital ICs operating at high temperature and in harsh environments. The reported ICs on SiC have been realized so far with either a small number of elements, or with a low integration density. Therefore, this work demonstrates that by means of our SiC MESFET technology, multi-stage digital ICs fabrication containing a large number of 4H-SiC devices is feasible, accomplishing some of the most important ICs requirements. The ultimate objective is the development of SiC digital building blocks by transferring the Si CMOS topologies, hence demonstrating that the ICs SiC technology can be an important competitor of the Si ICs technology especially in application fields in which high temperature, high switching speed and harsh environment operations are required. The study starts with the current normally-on SiC MESFET CNM complete analysis of an already fabricated MESFET. It continues with the modeling and fabrication of a new planar-MESFET structure together with new epitaxial resistors specially suited for high temperature and high integration density. A novel device isolation technique never used on SiC before is approached. A fabrication process flow with three metal levels fully compatible with the CMOS technology is defined. An exhaustive experimental characterization at room and high temperature (300ºC) and Spice parameter extractions for both structures are performed. In order to design digital ICs on SiC with the previously developed devices, the current available topologies for normally-on transistors are discussed. The circuits design using Spice modeling, the process technology, the fabrication and the testing of the 4H-SiC MESFET elementary logic gates library at high temperature and high frequencies are performed. The MESFET logic gates behavior up to 300ºC is analyzed. Finally, this library has allowed us implementing complex multi-stage logic circuits with three metal levels and a process flow fully compatible with a CMOS technology. This study demonstrates that the development of important SiC digital blocks by transferring CMOS topologies (such as Master Slave Data Flip-Flop and Data-Reset Flip-Flop) is successfully achieved. Hence, demonstrating that our 4H-SiC MESFET technology enables the fabrication of mixed signal ICs capable to operate at high temperature (300ºC) and high frequencies (300kHz). We consider this study an important step ahead regarding the future ICs developments on SiC. Finally, experimental irradiations were performed on W-Schotthy diodes and mesa-MESFET devices (with the same Schottky gate than the planar SiC MESFET) in order to study their radiation hardness stability. The good radiation endurance of SiC Schottky-gate devices is proven. It is expected that the new developed devices with the same W-Schottky gate, to have a similar behavior in radiation rich environments.Postprint (published version

    High Efficiency Reversible Fuel Cell Power Converter

    Get PDF
    • …
    corecore