8,001 research outputs found

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519

    Robot Autonomy for Surgery

    Full text link
    Autonomous surgery involves having surgical tasks performed by a robot operating under its own will, with partial or no human involvement. There are several important advantages of automation in surgery, which include increasing precision of care due to sub-millimeter robot control, real-time utilization of biosignals for interventional care, improvements to surgical efficiency and execution, and computer-aided guidance under various medical imaging and sensing modalities. While these methods may displace some tasks of surgical teams and individual surgeons, they also present new capabilities in interventions that are too difficult or go beyond the skills of a human. In this chapter, we provide an overview of robot autonomy in commercial use and in research, and present some of the challenges faced in developing autonomous surgical robots

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Multimodal Noncontact Tracking of Surgical Instruments

    Get PDF
    For many procedures, open surgery is being replaced with minimally invasive surgical (MIS) techniques. The advantages of MIS include reduced operative trauma and fewer complications leading to faster patient recovery, better cosmetic results and shorter hospital stays. As the demand for MIS procedures increases, effective surgical training tools must be developed to improve procedure efficiency and patient safety. Motion tracking of laparoscopic instruments can provide objective skills assessment for novices and experienced users. The most common approaches to noncontact motion capture are optical and electromagnetic (EM) tracking systems, though each approach has operational limitations. Optical trackers are prone to occlusion and the performance of EM trackers degrades in the presence of magnetic and ferromagnetic material. The cost of these systems also limits their availability for surgical training and clinical environments. This thesis describes the development and validation of a novel, noncontact laparoscopic tracking system as an inexpensive alternative to current technology. This system is based on the fusion of inertial, magnetic and distance sensing to generate real-time, 6-DOF pose data. Orientation is estimated using a Kalman-filtered attitude-heading reference system (AHRS) and restricted motion at the trocar provides a datum from which position information can be recovered. The Inertial and Range-Enhanced Surgical (IRES) Tracker was prototyped, then validated using a MIS training box and by comparison to an EM tracking system. Results of IRES tracker testing showed similar performance to an EM tracker with position error as low as 1.25 mm RMS and orientation error \u3c0.58 degrees RMS along each axis. The IRES tracker also displayed greater precision and superior magnetic interference rejection capabilities. At a fraction of the cost of current laparoscopic tracking methods, the IRES tracking system would provide an excellent alternative for use in surgical training and skills assessment

    Navigated Ultrasound in Laparoscopic Surgery

    Get PDF

    Virtual and Augmented Reality Techniques for Minimally Invasive Cardiac Interventions: Concept, Design, Evaluation and Pre-clinical Implementation

    Get PDF
    While less invasive techniques have been employed for some procedures, most intracardiac interventions are still performed under cardiopulmonary bypass, on the drained, arrested heart. The progress toward off-pump intracardiac interventions has been hampered by the lack of adequate visualization inside the beating heart. This thesis describes the development, assessment, and pre-clinical implementation of a mixed reality environment that integrates pre-operative imaging and modeling with surgical tracking technologies and real-time ultrasound imaging. The intra-operative echo images are augmented with pre-operative representations of the cardiac anatomy and virtual models of the delivery instruments tracked in real time using magnetic tracking technologies. As a result, the otherwise context-less images can now be interpreted within the anatomical context provided by the anatomical models. The virtual models assist the user with the tool-to-target navigation, while real-time ultrasound ensures accurate positioning of the tool on target, providing the surgeon with sufficient information to ``see\u27\u27 and manipulate instruments in absence of direct vision. Several pre-clinical acute evaluation studies have been conducted in vivo on swine models to assess the feasibility of the proposed environment in a clinical context. Following direct access inside the beating heart using the UCI, the proposed mixed reality environment was used to provide the necessary visualization and navigation to position a prosthetic mitral valve on the the native annulus, or to place a repair patch on a created septal defect in vivo in porcine models. Following further development and seamless integration into the clinical workflow, we hope that the proposed mixed reality guidance environment may become a significant milestone toward enabling minimally invasive therapy on the beating heart

    On uncertainty propagation in image-guided renal navigation: Exploring uncertainty reduction techniques through simulation and in vitro phantom evaluation

    Get PDF
    Image-guided interventions (IGIs) entail the use of imaging to augment or replace direct vision during therapeutic interventions, with the overall goal is to provide effective treatment in a less invasive manner, as an alternative to traditional open surgery, while reducing patient trauma and shortening the recovery time post-procedure. IGIs rely on pre-operative images, surgical tracking and localization systems, and intra-operative images to provide correct views of the surgical scene. Pre-operative images are used to generate patient-specific anatomical models that are then registered to the patient using the surgical tracking system, and often complemented with real-time, intra-operative images. IGI systems are subject to uncertainty from several sources, including surgical instrument tracking / localization uncertainty, model-to-patient registration uncertainty, user-induced navigation uncertainty, as well as the uncertainty associated with the calibration of various surgical instruments and intra-operative imaging devices (i.e., laparoscopic camera) instrumented with surgical tracking sensors. All these uncertainties impact the overall targeting accuracy, which represents the error associated with the navigation of a surgical instrument to a specific target to be treated under image guidance provided by the IGI system. Therefore, understanding the overall uncertainty of an IGI system is paramount to the overall outcome of the intervention, as procedure success entails achieving certain accuracy tolerances specific to individual procedures. This work has focused on studying the navigation uncertainty, along with techniques to reduce uncertainty, for an IGI platform dedicated to image-guided renal interventions. We constructed life-size replica patient-specific kidney models from pre-operative images using 3D printing and tissue emulating materials and conducted experiments to characterize the uncertainty of both optical and electromagnetic surgical tracking systems, the uncertainty associated with the virtual model-to-physical phantom registration, as well as the uncertainty associated with live augmented reality (AR) views of the surgical scene achieved by enhancing the pre-procedural model and tracked surgical instrument views with live video views acquires using a camera tracked in real time. To better understand the effects of the tracked instrument calibration, registration fiducial configuration, and tracked camera calibration on the overall navigation uncertainty, we conducted Monte Carlo simulations that enabled us to identify optimal configurations that were subsequently validated experimentally using patient-specific phantoms in the laboratory. To mitigate the inherent accuracy limitations associated with the pre-procedural model-to-patient registration and their effect on the overall navigation, we also demonstrated the use of tracked video imaging to update the registration, enabling us to restore targeting accuracy to within its acceptable range. Lastly, we conducted several validation experiments using patient-specific kidney emulating phantoms using post-procedure CT imaging as reference ground truth to assess the accuracy of AR-guided navigation in the context of in vitro renal interventions. This work helped find answers to key questions about uncertainty propagation in image-guided renal interventions and led to the development of key techniques and tools to help reduce optimize the overall navigation / targeting uncertainty

    Review on Image Guided Surgery Systems

    Get PDF
    Nowadays modern imaging techniques can grant an excellent quality 3D images that clearly show the anatomy, vascularity, pathology and active functions of the tissues. The ability to register these preoperative images to each other, to offer a comprehensive information, and later the ability to register the image space to the patient space intraoperatively is the core for the image guided surgery systems (IGS). Other main elements of the system include the process of tracking the surgical tools intraoperatively by reflecting their positions within the 3D image model. In some occasions an intraoperative image may be acquired and registered to the preoperative images to make sure the 3D model used to guide the operation describes the actual situation at surgery time. This survey overviews the history of IGS and discusses the modern system components for a reliable application and gives information about the different applications in medical specialties that benefited from the use of IGS

    Development and evaluation of image-guided neuroendoscopy, with investigation of post-imaging brain distortion and accuracy of frameless stereotaxy

    Get PDF
    Neuroendoscopy enables a surgeon to operate deep within the brain whilst limiting morbidity through a minimally invasive approach. Technical advances in illumination, instrumentation and camera design, along with evidence for improved clinical outcome, have increased the indications for this technique and have ensured widespread popularity. However, broader application of neuroendoscopy is restricted by the necessity for direct vision of targets and by spatial disorientation. The aim of this investigation was to overcome these limitations by combining neuronavigation with neuroendoscopy to develop Image-Guided Neuroendoscopy (IGN). The strategy adopted for this was firstly to select, assess and validate a neuronavigation system, secondly to develop methods of endoscope tracking and frameless stereotactic implantation. Thirdly, to assess the impact of post-imaging brain distortion upon neuronavigation, fourthly to correct distortion of the endoscope image and finally to assess the use of graphics overlay in IGN. Laboratory phantom accuracy assessments revealed a mean point localisation error for the navigation system pointers of0.8mm (SD 0.4mm) with CT imaging, for the tracked endoscope of 1.5mm (SD 0.8mm) and for frameless stereotaxy of 1.3mm (SD 0.6mm). An in vivo study revealed a mean Euclidean error of 4.8mm (SD 2.0mm) for frame less stereotactic biopsy. The navigation system was evaluated through a clinical series of 100 cases, the frameless stereotactic technique was employed in 21 brain biopsy procedures and IGN evaluated in 5 procedures. The magnitude of post-imaging brain distortion was determined and correlations discovered with pre-operative image characteristics. The conclusions of this thesis are that IGN can be accomplished with acceptable accuracy, including frameless stereotactic implantation, and that the impact of postimaging brain distortion will not negate the value of IGN in most cases. Thus, the method developed for IGN has overcome both major constraints of neuroendoscopy, enabling endoscopic surgery to pass through and beyond the ventricular wall, to be undertaken safely in cases with distorted anatomy and opening the potential for wider application of these minimally invasive techniques

    ADVANCED IMAGING AND ROBOTICS TECHNOLOGIES FOR MEDICAL APPLICATIONS

    Get PDF
    Due to the importance of surgery in the medical field, a large amount of research has been conducted in this area. Imaging and robotics technologies provide surgeons with the advanced eye and hand to perform their surgeries in a safer and more accurate manner. Recently medical images have been utilized in the operating room as well as in the diagnostic stage. If the image to patient registration is done with sufficient accuracy, medical images can be used as "a map" for guidance to the target lesion. However, the accuracy and reliability of the surgical navigation system should be sufficiently verified before applying it to the patient. Along with the development of medical imaging, various medical robots have also been developed. In particular, surgical robots have been researched in order to reach the goal of minimal invasiveness. The most important factors to consider are determining the demand, the strategy for their use in operating procedures, and how it aids patients. In addition to the above considerations, medical doctors and researchers should always think from the patient's point of view. In this article, the latest medical imaging and robotic technologies focusing on surgical applications are reviewed based upon the factors described in the above. © 2011 Copyright Taylor and Francis Group, LLC.1
    corecore