1,649 research outputs found

    Retinal Fundus Anjiyografi Görüntülerinde Drusen Alanlarının Otomatik Tespiti ve Hesaplanması

    Get PDF
    Computer aided detection (CAD) systems are widely used in the analysis of biomedical images. In this paper, we present a novel CAD system to detect age-related macular degeneration (ARMD) on retinal fundus fluorescein angiography (FFA) images, and we provide an areal size calculation of pathogenic drusen regions. The purpose of this study is to enable identification and areal size calculation of ARMD-affected regions with the developed CAD system; hence, we aim to discover the condition of the disease as well as facilitate long-term patient follow-up treatment. With the aid of this system, assessing the marked regions will take less time for ophthalmologists and observing the progress of the treatment will be a simpler process. The CAD system consists of four stages, a) preprocessing, b) segmentation, c) region of interest detection and d)feature extraction and drusen area detection. Detection through CAD and calculation of drusen regions were performed with a dataset composed of 75 images. The results obtained from the developed CAD system were examined by a specialist ophthalmologist, and the performance criteria of the CAD system are reported as conclusions. As a result, with 66 correct detections and 9 incorrect detections, the developed CAD system achieved an accuracy rate of 88%.Bilgisayar destekli tespit (BDT) sistemleri biyomedikal görüntülerin analizinde geniş bir kullanım alanına sahiptir. Bu çalışmada retinal fundus anjiyografi görüntüleri üzerinde yaşa bağlı makula dejenerasyonu (YBMD) hastalığının tespiti için bir BDT sistemi gerçekleştirilmiş ve patojenik drusen alanlarının büyüklüğünün hesaplanması sağlanmıştır. Çalışmanın amacı YBMD hastalığının görüldüğü alanların tespitinin ve büyüklüğünü hesaplamanın yanında hastalığa karşı uygulanan tedavinin sonucunun takibini de sağlamaktır. Geliştirilen sistemin yardımıyla optalmoloji uzmanları işaretlenen alanları kısa sürede tespit edebilecek ve hastalığın tedaviye verdiği cevabı basit bir şekilde gözlemleyebileceklerdir. Geliştirilen BDT sistemi 4 aşamadan oluşmaktadır, a) önişleme aşaması, b) bölütleme aşaması, c) ilgi alanı tespiti ve d) öznitelik çıkarma ve tespit aşaması. Geliştirilen BDT sistemi 75 görüntüden oluşan bir verisetiyle test edilmiştir. BST sisteminin elde ettiği sonuçlar bir optalmoloji uzmanıyla karşılaştırılarak sonuç bölümünde sunulmuştur. Geliştirilen BDT sistemi 66 doğru, 9 hatalı tespit yaparak %88 doğruluk oranı sağlamıştır

    Automatic Segmentation of Optic Disc in Eye Fundus Images: A Survey

    Get PDF
    Optic disc detection and segmentation is one of the key elements for automatic retinal disease screening systems. The aim of this survey paper is to review, categorize and compare the optic disc detection algorithms and methodologies, giving a description of each of them, highlighting their key points and performance measures. Accordingly, this survey firstly overviews the anatomy of the eye fundus showing its main structural components along with their properties and functions. Consequently, the survey reviews the image enhancement techniques and also categorizes the image segmentation methodologies for the optic disc which include property-based methods, methods based on convergence of blood vessels, and model-based methods. The performance of segmentation algorithms is evaluated using a number of publicly available databases of retinal images via evaluation metrics which include accuracy and true positive rate (i.e. sensitivity). The survey, at the end, describes the different abnormalities occurring within the optic disc region

    Automated retinal analysis

    Get PDF
    Diabetes is a chronic disease affecting over 2% of the population in the UK [1]. Long-term complications of diabetes can affect many different systems of the body including the retina of the eye. In the retina, diabetes can lead to a disease called diabetic retinopathy, one of the leading causes of blindness in the working population of industrialised countries. The risk of visual loss from diabetic retinopathy can be reduced if treatment is given at the onset of sight-threatening retinopathy. To detect early indicators of the disease, the UK National Screening Committee have recommended that diabetic patients should receive annual screening by digital colour fundal photography [2]. Manually grading retinal images is a subjective and costly process requiring highly skilled staff. This thesis describes an automated diagnostic system based oil image processing and neural network techniques, which analyses digital fundus images so that early signs of sight threatening retinopathy can be identified. Within retinal analysis this research has concentrated on the development of four algorithms: optic nerve head segmentation, lesion segmentation, image quality assessment and vessel width measurements. This research amalgamated these four algorithms with two existing techniques to form an integrated diagnostic system. The diagnostic system when used as a 'pre-filtering' tool successfully reduced the number of images requiring human grading by 74.3%: this was achieved by identifying and excluding images without sight threatening maculopathy from manual screening
    corecore