26,077 research outputs found

    The Hierarchic treatment of marine ecological information from spatial networks of benthic platforms

    Get PDF
    Measuring biodiversity simultaneously in different locations, at different temporal scales, and over wide spatial scales is of strategic importance for the improvement of our understanding of the functioning of marine ecosystems and for the conservation of their biodiversity. Monitoring networks of cabled observatories, along with other docked autonomous systems (e.g., Remotely Operated Vehicles [ROVs], Autonomous Underwater Vehicles [AUVs], and crawlers), are being conceived and established at a spatial scale capable of tracking energy fluxes across benthic and pelagic compartments, as well as across geographic ecotones. At the same time, optoacoustic imaging is sustaining an unprecedented expansion in marine ecological monitoring, enabling the acquisition of new biological and environmental data at an appropriate spatiotemporal scale. At this stage, one of the main problems for an effective application of these technologies is the processing, storage, and treatment of the acquired complex ecological information. Here, we provide a conceptual overview on the technological developments in the multiparametric generation, storage, and automated hierarchic treatment of biological and environmental information required to capture the spatiotemporal complexity of a marine ecosystem. In doing so, we present a pipeline of ecological data acquisition and processing in different steps and prone to automation. We also give an example of population biomass, community richness and biodiversity data computation (as indicators for ecosystem functionality) with an Internet Operated Vehicle (a mobile crawler). Finally, we discuss the software requirements for that automated data processing at the level of cyber-infrastructures with sensor calibration and control, data banking, and ingestion into large data portals.Peer ReviewedPostprint (published version

    Web Data Extraction, Applications and Techniques: A Survey

    Full text link
    Web Data Extraction is an important problem that has been studied by means of different scientific tools and in a broad range of applications. Many approaches to extracting data from the Web have been designed to solve specific problems and operate in ad-hoc domains. Other approaches, instead, heavily reuse techniques and algorithms developed in the field of Information Extraction. This survey aims at providing a structured and comprehensive overview of the literature in the field of Web Data Extraction. We provided a simple classification framework in which existing Web Data Extraction applications are grouped into two main classes, namely applications at the Enterprise level and at the Social Web level. At the Enterprise level, Web Data Extraction techniques emerge as a key tool to perform data analysis in Business and Competitive Intelligence systems as well as for business process re-engineering. At the Social Web level, Web Data Extraction techniques allow to gather a large amount of structured data continuously generated and disseminated by Web 2.0, Social Media and Online Social Network users and this offers unprecedented opportunities to analyze human behavior at a very large scale. We discuss also the potential of cross-fertilization, i.e., on the possibility of re-using Web Data Extraction techniques originally designed to work in a given domain, in other domains.Comment: Knowledge-based System

    Massive ontology interface

    Get PDF
    This paper describes the Massive Ontology Interface (MOI), a web portal which facilitates interaction with a large ontology (over 200,000 concepts and 1.6M assertions) that is built automatically using OpenCyc as a backbone. The aim of the interface is to simplify interaction with the massive amounts of information and guide the user towards understanding the ontology’s data. Using either a text or graph-based representation, users can discuss and edit the ontology. Social elements utilizing gamification techniques are included to encourage users to create and collaborate on stored knowledge as part of a web community. An evaluation by 30 users comparing MOI with OpenCyc’s original interface showed significant improvements in user understanding of the ontology, although full testing of the interface’s social elements lies in the future

    Factors shaping the evolution of electronic documentation systems

    Get PDF
    The main goal is to prepare the space station technical and managerial structure for likely changes in the creation, capture, transfer, and utilization of knowledge. By anticipating advances, the design of Space Station Project (SSP) information systems can be tailored to facilitate a progression of increasingly sophisticated strategies as the space station evolves. Future generations of advanced information systems will use increases in power to deliver environmentally meaningful, contextually targeted, interconnected data (knowledge). The concept of a Knowledge Base Management System is emerging when the problem is focused on how information systems can perform such a conversion of raw data. Such a system would include traditional management functions for large space databases. Added artificial intelligence features might encompass co-existing knowledge representation schemes; effective control structures for deductive, plausible, and inductive reasoning; means for knowledge acquisition, refinement, and validation; explanation facilities; and dynamic human intervention. The major areas covered include: alternative knowledge representation approaches; advanced user interface capabilities; computer-supported cooperative work; the evolution of information system hardware; standardization, compatibility, and connectivity; and organizational impacts of information intensive environments

    Narrative Generation in Entertainment: Using Artificial Intelligence Planning

    Get PDF
    From the field of artificial intelligence (AI) there is a growing stream of technology capable of being embedded in software that will reshape the way we interact with our environment in our everyday lives. This ‘AI software’ is often used to tackle more mundane tasks that are otherwise dangerous or meticulous for a human to accomplish. One particular area, explored in this paper, is for AI software to assist in supporting the enjoyable aspects of the lives of humans. Entertainment is one of these aspects, and often includes storytelling in some form no matter what the type of media, including television, films, video games, etc. This paper aims to explore the ability of AI software to automate the story-creation and story-telling process. This is part of the field of Automatic Narrative Generator (ANG), which aims to produce intuitive interfaces to support people (without any previous programming experience) to use tools to generate stories, based on their ideas of the kind of characters, intentions, events and spaces they want to be in the story. The paper includes details of such AI software created by the author that can be downloaded and used by the reader for this purpose. Applications of this kind of technology include the automatic generation of story lines for ‘soap operas’

    MACS: Multi-agent COTR system for Defense Contracting

    Get PDF
    The field of intelligent multi-agent systems has expanded rapidly in the recent past. Multi-agent architectures and systems are being investigated and continue to develop. To date, little has been accomplished in applying multi-agent systems to the defense acquisition domain. This paper describes the design, development, and related considerations of a multi-agent system in the area of procurement and contracting for the defense acquisition community
    corecore