1,638 research outputs found

    Higher coordination with less control - A result of information maximization in the sensorimotor loop

    Full text link
    This work presents a novel learning method in the context of embodied artificial intelligence and self-organization, which has as few assumptions and restrictions as possible about the world and the underlying model. The learning rule is derived from the principle of maximizing the predictive information in the sensorimotor loop. It is evaluated on robot chains of varying length with individually controlled, non-communicating segments. The comparison of the results shows that maximizing the predictive information per wheel leads to a higher coordinated behavior of the physically connected robots compared to a maximization per robot. Another focus of this paper is the analysis of the effect of the robot chain length on the overall behavior of the robots. It will be shown that longer chains with less capable controllers outperform those of shorter length and more complex controllers. The reason is found and discussed in the information-geometric interpretation of the learning process

    In silico case studies of compliant robots: AMARSI deliverable 3.3

    Get PDF
    In the deliverable 3.2 we presented how the morphological computing ap- proach can significantly facilitate the control strategy in several scenarios, e.g. quadruped locomotion, bipedal locomotion and reaching. In particular, the Kitty experimental platform is an example of the use of morphological computation to allow quadruped locomotion. In this deliverable we continue with the simulation studies on the application of the different morphological computation strategies to control a robotic system

    Automation and robotics for the Space Exploration Initiative: Results from Project Outreach

    Get PDF
    A total of 52 submissions were received in the Automation and Robotics (A&R) area during Project Outreach. About half of the submissions (24) contained concepts that were judged to have high utility for the Space Exploration Initiative (SEI) and were analyzed further by the robotics panel. These 24 submissions are analyzed here. Three types of robots were proposed in the high scoring submissions: structured task robots (STRs), teleoperated robots (TORs), and surface exploration robots. Several advanced TOR control interface technologies were proposed in the submissions. Many A&R concepts or potential standards were presented or alluded to by the submitters, but few specific technologies or systems were suggested

    Multi-threat containment with dynamic wireless neighborhoods

    Get PDF
    Advances in the areas of robotics have greatly increased the complexity and number of problems that groups of robots are able to solve. This work deals with the use of homogeneous and autonomous robots to dynamically form teams in order to solve a multi-threat containment problem. The multi-threat containment problem has the robot teams surround a number of threats which may occur randomly. Approaches with and without utilizing wireless communication are proposed and analyzed with a focus on the effects of using wireless. Simulation results show the benefit of the proposed integrated algorithm and its performance in different scenarios. Simulations will be run in the MAHESHDAS simulator, a simulation tool designed for modeling of autonomous robots. MAHESHDAS allows for the simulation of dynamic robot teams and wireless communication between robots. Simulated scenarios will also examine known issues that have been found in previous work in multi-threat containment

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any productā€™s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Representation recovers information

    Get PDF
    Early agreement within cognitive science on the topic of representation has now given way to a combination of positions. Some question the significance of representation in cognition. Others continue to argue in favor, but the case has not been demonstrated in any formal way. The present paper sets out a framework in which the value of representation-use can be mathematically measured, albeit in a broadly sensory context rather than a specifically cognitive one. Key to the approach is the use of Bayesian networks for modeling the distal dimension of sensory processes. More relevant to cognitive science is the theoretical result obtained, which is that a certain type of representational architecture is *necessary* for achievement of sensory efficiency. While exhibiting few of the characteristics of traditional, symbolic encoding, this architecture corresponds quite closely to the forms of embedded representation now being explored in some embedded/embodied approaches. It becomes meaningful to view that type of representation-use as a form of information recovery. A formal basis then exists for viewing representation not so much as the substrate of reasoning and thought, but rather as a general medium for efficient, interpretive processing

    May We Have Your Attention: Analysis of a Selective Attention Task

    Get PDF
    In this paper we present a deeper analysis than has previously been carried out of a selective attention problem, and the evolution of continuous-time recurrent neural networks to solve it. We show that the task has a rich structure, and agents must solve a variety of subproblems to perform well. We consider the relationship between the complexity of an agent and the ease with which it can evolve behavior that generalizes well across subproblems, and demonstrate a shaping protocol that improves generalization

    3D printed pneumatic soft actuators and sensors: their modeling, performance quantification, control and applications in soft robotic systems

    Get PDF
    Continued technological progress in robotic systems has led to more applications where robots and humans operate in close proximity and even physical contact in some cases. Soft robots, which are primarily made of highly compliant and deformable materials, provide inherently safe features, unlike conventional robots that are made of stiff and rigid components. These robots are ideal for interacting safely with humans and operating in highly dynamic environments. Soft robotics is a rapidly developing field exploiting biomimetic design principles, novel sensor and actuation concepts, and advanced manufacturing techniques. This work presents novel soft pneumatic actuators and sensors that are directly 3D printed in one manufacturing step without requiring postprocessing and support materials using low-cost and open-source fused deposition modeling (FDM) 3D printers that employ an off-the-shelf commercially available soft thermoplastic poly(urethane) (TPU). The performance of the soft actuators and sensors developed is optimized and predicted using finite element modeling (FEM) analytical models in some cases. A hyperelastic material model is developed for the TPU based on its experimental stress-strain data for use in FEM analysis. The novel soft vacuum bending (SOVA) and linear (LSOVA) actuators reported can be used in diverse robotic applications including locomotion robots, adaptive grippers, parallel manipulators, artificial muscles, modular robots, prosthetic hands, and prosthetic fingers. Also, the novel soft pneumatic sensing chambers (SPSC) developed can be used in diverse interactive human-machine interfaces including wearable gloves for virtual reality applications and controllers for soft adaptive grippers, soft push buttons for science, technology, engineering, and mathematics (STEM) education platforms, haptic feedback devices for rehabilitation, game controllers and throttle controllers for gaming and bending sensors for soft prosthetic hands. These SPSCs are directly 3D printed and embedded in a monolithic soft robotic finger as position and touch sensors for real-time position and force control. One of the aims of soft robotics is to design and fabricate robotic systems with a monolithic topology embedded with its actuators and sensors such that they can safely interact with their immediate physical environment. The results and conclusions of this thesis have significantly contributed to the realization of this aim
    • ā€¦
    corecore