Abstract

Early agreement within cognitive science on the topic of representation has now given way to a combination of positions. Some question the significance of representation in cognition. Others continue to argue in favor, but the case has not been demonstrated in any formal way. The present paper sets out a framework in which the value of representation-use can be mathematically measured, albeit in a broadly sensory context rather than a specifically cognitive one. Key to the approach is the use of Bayesian networks for modeling the distal dimension of sensory processes. More relevant to cognitive science is the theoretical result obtained, which is that a certain type of representational architecture is *necessary* for achievement of sensory efficiency. While exhibiting few of the characteristics of traditional, symbolic encoding, this architecture corresponds quite closely to the forms of embedded representation now being explored in some embedded/embodied approaches. It becomes meaningful to view that type of representation-use as a form of information recovery. A formal basis then exists for viewing representation not so much as the substrate of reasoning and thought, but rather as a general medium for efficient, interpretive processing

    Similar works