1,802 research outputs found

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Cyber Attack Challenges and Resilience for Smart Grids

    Get PDF
    Date of Acceptance: 31/08/2015Peer reviewedPostprin

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    Graph-based feature enrichment for online intrusion detection in virtual networks

    Get PDF
    The increasing number of connected devices to provide the required ubiquitousness of Internet of Things paves the way for distributed network attacks at an unprecedented scale. Graph theory, strengthened by machine learning techniques, improves an automatic discovery of group behavior patterns of network threats often omitted by traditional security systems. Furthermore, Network Function Virtualization is an emergent technology that accelerates the provisioning of on-demand security function chains tailored to an application. Therefore, repeatable compliance tests and performance comparison of such function chains are mandatory. The contributions of this dissertation are divided in two parts. First, we propose an intrusion detection system for online threat detection enriched by a graph-learning analysis. We develop a feature enrichment algorithm that infers metrics from a graph analysis. By using different machine learning techniques, we evaluated our algorithm for three network traffic datasets. We show that the proposed graph-based enrichment improves the threat detection accuracy up to 15.7% and significantly reduces the false positives rate. Second, we aim to evaluate intrusion detection systems deployed as virtual network functions. Therefore, we propose and develop SFCPerf, a framework for an automatic performance evaluation of service function chaining. To demonstrate SFCPerf functionality, we design and implement a prototype of a security service function chain, composed of our intrusion detection system and a firewall. We show the results of a SFCPerf experiment that evaluates the chain prototype on top of the open platform for network function virtualization (OPNFV).O crescente número de dispositivos IoT conectados contribui para a ocorrência de ataques distribuídos de negação de serviço a uma escala sem precedentes. A Teoria de Grafos, reforçada por técnicas de aprendizado de máquina, melhora a descoberta automática de padrões de comportamento de grupos de ameaças de rede, muitas vezes omitidas pelos sistemas tradicionais de segurança. Nesse sentido, a virtualização da função de rede é uma tecnologia emergente que pode acelerar o provisionamento de cadeias de funções de segurança sob demanda para uma aplicação. Portanto, a repetição de testes de conformidade e a comparação de desempenho de tais cadeias de funções são obrigatórios. As contribuições desta dissertação são separadas em duas partes. Primeiro, é proposto um sistema de detecção de intrusão que utiliza um enriquecimento baseado em grafos para aprimorar a detecção de ameaças online. Um algoritmo de enriquecimento de características é desenvolvido e avaliado através de diferentes técnicas de aprendizado de máquina. Os resultados mostram que o enriquecimento baseado em grafos melhora a acurácia da detecção de ameaças até 15,7 % e reduz significativamente o número de falsos positivos. Em seguida, para avaliar sistemas de detecção de intrusões implantados como funções virtuais de rede, este trabalho propõe e desenvolve o SFCPerf, um framework para avaliação automática de desempenho do encadeamento de funções de rede. Para demonstrar a funcionalidade do SFCPerf, ´e implementado e avaliado um protótipo de uma cadeia de funções de rede de segurança, composta por um sistema de detecção de intrusão (IDS) e um firewall sobre a plataforma aberta para virtualização de função de rede (OPNFV)

    Ensuring Cyber-Security in Smart Railway Surveillance with SHIELD

    Get PDF
    Modern railways feature increasingly complex embedded computing systems for surveillance, that are moving towards fully wireless smart-sensors. Those systems are aimed at monitoring system status from a physical-security viewpoint, in order to detect intrusions and other environmental anomalies. However, the same systems used for physical-security surveillance are vulnerable to cyber-security threats, since they feature distributed hardware and software architectures often interconnected by ‘open networks’, like wireless channels and the Internet. In this paper, we show how the integrated approach to Security, Privacy and Dependability (SPD) in embedded systems provided by the SHIELD framework (developed within the EU funded pSHIELD and nSHIELD research projects) can be applied to railway surveillance systems in order to measure and improve their SPD level. SHIELD implements a layered architecture (node, network, middleware and overlay) and orchestrates SPD mechanisms based on ontology models, appropriate metrics and composability. The results of prototypical application to a real-world demonstrator show the effectiveness of SHIELD and justify its practical applicability in industrial settings
    corecore