
Architecture and prototype implementation for
process-aware intrusion detection in electrical grids

Robert Flosbach†
r.flosbach@gmx.de

Justyna Chromik∗
j.j.chromik@utwente.nl

†University of Münster, Münster, Germany
∗University of Twente, Enschede, the Netherlands

Anne Remke†∗
anne.remke@wwu.de

Abstract—Supervisory Control and Data Acquisition (SCADA)
systems monitor and control electric power distribution. Recent
history has shown that cyber-attacks pose a tremendous risk
for the economy and safety of modern countries. This paper
introduces an architecture and a prototype implementation for a
process-aware, network-based Intrusion Detection System (IDS)
to secure control networks in the domain of power distribution.
Based on a recently proposed process model, the system continu-
ously assesses the local physical process and all control commands
with regard to consistency and safety of the underlying physical
process. Its detection capabilities focus on process-based attacks
like manipulated control commands, which appear legitimate to
traditional IDS but might nevertheless have devastating effects on
the power distribution. The architecture separates the evaluation
part from the traffic processing, which ensures extensibility and
scalability. The developed implementation has been successfully
tested at a Dutch power distribution substation. Its detection
performance is characterized by a very low miss rate and high
precision.

Index Terms—SCADA, Intrusion detection, power distribution,
Zeek, process-aware

I. INTRODUCTION

In 2015 unknown hackers compromised control networks

of multiple Ukrainian electricity distribution companies and

were able to shut down the power supply of approximately

225,000 customers for up to 6 hours. Unauthorized commands

were sent to open circuit breakers at over fifty medium- and

low-voltage distribution stations [1]–[3]. Best practices, such

as security policies and identity management, make it harder

for outsiders to access control networks. Intrusion Detection

Systems (IDS) can identify anomolous activities inside the

control networks and detect cyber-attacks on Industrial Control

Systems (ICS). Most modern ICS and SCADA systems rely on

well-known and standardized communication protocols, which

often operate over TCP/IP.

Given the large-scale distribution of the electrical grid,

remote control (e.g., over the Internet) is essential. This

provides, however, a vast attack surface for malicious outsiders

[4]. In the power grid, a hacker could either physically

compromise substations or place malware on workstations

within a company. Once in the network, the hacker might be

able to intercept and modify, replay or forge commands that

have detrimental physical effects on the electrical grid [5].

The main contribution of the paper is the implementation

and evaluation of a prototype for process-aware intrusion

detection, which can be placed locally at remote terminal

units (RTU). We propose a novel and protocol-independent

architecture, separating the traffic parsing with Zeek1 from

the knowledge of the process, which is at the heart of process-

aware intrusion detection.

The underlying process model for electrical grids (c.f. [6]–

[9]) distinguishes between a static system topology describing

physical properties of the system, and a variable system state,

which is updated upon sensor readings. The physical process

variables are evaluated w.r.t. consistency and safety rules when

commands, measurements and configuration changes are sent

to the RTU. In contrast to earlier work, the proposed tool is

able to automatically match the relevant consistency and safety

rules, for a given topology.

The feasibility of the approach was validated with real IEC-

104 traffic obtained at a Dutch Distribution System Operator

on August 15, 2018. We evaluated the intrusion detection

capabilities and practical issues of applicability in distribution

stations, as well as potential limitations.

a) Related Work: Many intrusion detection approaches

for SCADA systems focus solely on traffic patterns [10]–[18],

which are rather regular. Work on anomalies in protocol usage

[16], [19]–[24] is able to detect traditional network attacks

and more general SCADA-specific attacks like the usage

of malicious or normally unused function codes. However,

they are not able to detect semantic attacks, which refer

to malicious commands that are syntactically correct. These

attacks can only be detected, if the physical process is taken

into consideration, as, e.g., proposed in [25].

Specification-based approaches detect malicious commands,

e.g., issued to local protective relays [26] or combine different

locations to identify measurement and command anomalies

[27]–[29]. [30] executes a power flow analysis on process

values to estimate the effect of control commands. These

approaches all require process and configuration specifications,

while other approaches infer a general process model auto-

matically [25], [31]. Many approaches have not been tested

on real SCADA networks but only in (simulation) testbeds,

1Bro network monitor was renamed to Zeek in October 2018.

42

2019 38th Symposium on Reliable Distributed Systems (SRDS)

2575-8462/19/$31.00 ©2019 IEEE
DOI 10.1109/SRDS47363.2019.00015

as criticized by [16], [32], [33]. In contrast, we propose a

prototype IDS based on [6]–[9], who propose a local and

process-aware intrusion detection model for electrical grids,

which is evaluated on real traffic.

b) Outline: Section II discusses the overall architecture.

Section III evaluates the prototype on a real-life traffic capture

and Section IV discusses feasibility and practicality of the

proposed approach. Finally, Section V concludes the paper.

II. ARCHITECTURE

The proposed architecture ensures extensibility by separat-

ing the evaluation engine and the packet inspection part. This

leads to a protocol independent prototype and allows for easy

inclusion of new safety rules and/or new grid components.

Section II-A provides an overview of the architecture.

Section II-B describes the implementation in more detail. The

connection to the IDS Zeek, the traffic parsing unit and the

event engine are addressed in Section II-C.

A. Overview of architecture

The prototype is split into two main components as depicted

in Figure 1, which both run as completely separate processes.

The left-hand side of the figure, marked with number 1,

shows the electrical grid model and the intrusion detection

evaluation, which are written in Python. This component is

split into three major subcomponents: the state management,

the topology data structures, and the rule evaluation logic.

Furthermore, an event engine, which offers an interface to

receive process measurements and commands, connects this

first component to its input source, e.g., Zeek. Event engine

triggers the evaluation of rules on different occasions. Note,

that this component works protocol-independent.

The second component, marked with number 2 in Figure

1, is the extension of the IDS Zeek. It encompasses the

protocol parser, the protocol-specific events and a component

for translating and converting the packets’ raw contents into

interpreted and converted values from the physical process.

Zeek is an open-source, passive network traffic analyzer with

Fig. 1. Overview of the prototype’s architecture. Network traffic is the
evaluated input, illustrated as white box. Topology and RTU configuration are
directly based on inputs from the power operator, and are used to generate
rules. They are marked as bright gray boxes.

TABLE I
PHYSICAL CONSTRAINTS AND SAFETY REQUIREMENTS

id explanation

P1
Kirchhoff’s current law: the incoming current at a bus must equal
the outgoing current

P2 all reported voltages at the bus are equal
P3 if a switch is open, then the current on the line equals 0

P4
the current and the voltage equal at the beginning and end of each
power line

P5
the power law formula P = I · V holds true for all generators
and consumers

P6
transformation ratio at transformers is consistent with
measurements for both current and voltage

R1 the current does not exceed the defined safety threshold
R2 the voltage level is within its allowed bounds
R3 all fuses and protective relays are functional (i.e., connected)

R4
the current measured on the power line with a fuse / protective
relay does not exceed the cutting current of that device

R5
the secondary voltage value at a transformer does is within the
allowed reference voltage bounds

R6 all consumers are connected to power

R7
the total generated power should equal the power consumed in the
electrical grid

R8
set points are in a proper interval around the physical threshold
values

R9
the systems interlocks (mutually dependent switch states) are not
violated

many intrusion detection capabilities. It offers a capable event-

based scripting language for user-defined extensions [34]–

[36]. Furthermore, Zeek’s protocol parser capabilities can be

extended with parsers written and compiled in the open source

Spicy framework, which makes it the perfect choice for parsing

network traffic also for protocols that are not yet supported

[37], [38].

B. Electrical grid model and evaluation logic

Component 1 of the prototype strictly separates the system

state from the topology representation, which contains the

static components of the grid and their connections. While

the topology is set up once at the initialization of the IDS, the

state is continuously updated every time new measurements

are detected in the traffic.

1) Topology representation: Every component of the elec-

trical grid, such as power lines, buses, consumers, transform-

ers, sensors, is implemented as a class with its properties

defined as attributes. An example of an attribute of a power

line is the maximum allowed current. Specific components are

instances of the corresponding class with their values defined

according to the information about topology2. State-dependent

information, such as currently measured value of current or

voltage, or other process variables are not saved in the objects

themselves but are referenced by so-called tags, which act like

a key to retrieve the value from a state object. Those tags are

also saved in attributes of the objects.

2A class diagram for the data structures that compose a topology can be
accessed at https://github.com/jjchromik/RuleGeneratorSCADA/blob/master/
img/ClassDiagram.pdf.

43

The evaluation engine supports all components and prop-

erties of the electrical grid model defined in [8]. The rules

evaluated by the tool are described in Table I. Classes define a

function for every safety and consistency rule that is applicable

to that component type. Abstract parent classes may be used

if the evaluation applies to multiple component types.

Rule evaluating functions always return False if there

is a violation and True otherwise. The evaluation of

a component can be either called isolated (e.g., by

checkR1(state)) or by functions which bundle all con-

sistency and safety rules for that component (e.g., by

executeSafetyCheck(state)). A rule evaluation of an

observed or calculated state of the topology is done recursively.

For each tested RTU in a topology those bundled functions are

called on each connected node component.

All rules are implemented in a fail-safe way, which means

that all exceptions and errors that occur during the evaluation

process are caught and do not propagate. All comparisons of

floating-point numbers are done with a special function which

takes either an allowed relative or absolute error margin as a

parameter for its precision.

2) Managing system state: If a command (for example, a

switch opening command) is captured, the tool should be able

to evaluate, whether this command could lead the system into

an unsafe state. To achieve this, it calculates new possible state

STc based on the previously observed state STo and evaluates

its rules over many states of the same immutable topology.

On the implementation’s side, the state of the electrical

grid is saved in a dictionary. Every time a new measured

or reported value is seen on the traffic, the previous value is

updated in the observed state dictionary. Every state depending

property is referenced in the dictionary by a globally unique

key u ∈ U . As described before, this key is part of the

immutable topology. For example, the key which references

the measured voltage is saved in the attribute voltageKey
of the class Meter. A state property (v, t, i) ∈ V contains the

observed value v, the time of observation t, which is important

to judge its freshness, and its validity. Mathematically speaking

a state ST is defined as a function. Let U be the set of all

keys defined in the topology, V ∈ Q × Q≥0 × {0, 1} and

V ε = V ∪ {(ε, ε, 0)}: ST : U → V ε

u �→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(v, t, 1)
if value v of property u was seen most

recently at time t and still holds.

(v, t, 0)
if value v of property u was seen most

recently at time t and is invalidated.

(ε, ε, 0) otherwise.

For example, if the key u ∈ U references the measured

voltage of a specific meter, then ST (u)1 would return the

last measured voltage value, which has been seen on traffic at

time ST (u)2. The second element contains the elapsed time

in seconds. Implementation-wise it uses UNIX epoch time.

Milliseconds are represented by the decimals of this number.

ST (u)3 indicates if this value is still considered valid. A more

recent change in switching or transformer configuration could

have invalidated the value. If there has been no corresponding

measurement anytime before, then its state is unknown and

ST (u) = (ε, ε, 0). This state is considered as invalidated data

when evaluating the rules. One more task of the state manager

is the management of a history of all measured values for

offline analyses.

3) Event engine and intrusion detection execution: The

event engine offers the interface for process data input. It

acts in an event-based manner. If connected to Zeek, it uses

the Python bindings from the Bro Client Communications
Library, called “broccoli” [39], which allows to receive and

send events and data between a Python application and a

running Zeek instance in a client-server fashion. Every time a

process variable has been parsed from the traffic, Zeek triggers

an event in the state manager (written in Python) containing

the measured value, its physical context and the time. The

same applies to commands sent over the network.

The evaluation of the intrusion detection rules are triggered

by different events:

(i) Measurements: periodical batch-processing assessment

of the observed state. Ideally each time a new measurement is

parsed, all rules are immediately checked. In real deployment

this approach might provoke performance, concurrency and

consistency issues. This is due to the fact that the measure-

ments can arrive in different packets (with delays), and it

can take up to few seconds until new values are reported

(e.g., after switching). To mitigate these issues, the evaluation

process is triggered periodically every x seconds if there has

not been a state update in the last y seconds. If there was

an update within this time, the evaluation is postponed until

the next point in time for which there was no update in the

last y seconds. To prevent denial of service attacks on the

IDS, the evaluation is forced after z seconds of delay. These

values depend on the configuration of the system at hand,

but for our case study x = 5, y = 1, z = 10 proved

as good values. (ii) Switching and tap position changes:
real-time and continuous assessment of their predicted effect.

When commands like circuit breaks are parsed by the IDS,

it might be desired to calculate their effect on the observed

state. Depending on the information available - or the lack

thereof - an accurate or a worst-case prediction is represented

as a calculated state. The safety of this state is subsequently

analyzed to assess the goodness of the command. (iii) Set
point changes: real-time assessment, whether they are safe or

not. (iv) Manual: the assessment of the observed state can be

triggered manually. This option allows testing and debugging

the intrusion detection process.

C. Connection to IDS Zeek

All described components discussed so far work indepen-

dently from the network traffic. This section presents the

usage of Zeek to extract process information from IEC-104

network traffic. Section II-C1 briefly describes the parser and

its connection to the event engine. Then, Section II-C2 outlines

the conversion of raw traffic content into values of the physical

process variables.

44

RTU ioa m ioa c Description TagName Min Max

101 501 1001 Current RTU1 BUS1 M11 I -2 2
101 502 1002 Voltage RTU1 BUS1 M11 V -10 10
101 531 1031 Switch RTU1 BUS1 SW11 ST

TABLE II
EXCERPT FROM THE RTU CONFIGURATION OF A POSSIBLE RTU1.

1) Protocol parser and observed events: Zeek itself does

not support the parsing of IEC-104 traffic, but the develop-

ers offer a seamless integration of custom protocol parsers

written in Spicy language [35], [37], [38]. The actual process

information in the Application Service Data Unit (ASDU) part

of the Application Protocol Data Unit (APDU) was initially

only supported for a small set of only six functions [16]. We

extended the parser to trigger events for all IEC-104 function

codes used at the Dutch substation [40].

Zeek offers an event-based scripting engine, which calls

user-defined scripts written in Zeek language upon different

events. With Spicy’s integration into Zeek it is possible to

define new Zeek events for parsing events, for example, upon

a successfully parsed ASDU. This is utilized to trigger Zeek

events for every parsed measured or commanded value. The

user-defined event handler also has knowledge about the actual

parsed raw value and its info object address, which are both

passed as parameters to user-defined Zeek code.

2) Value and physical context interpretation: Event han-

dlers for all relevant IEC-104 function types of measured and

commanded variables have been developed. They convert the

parsed raw values into the actual physical value and its context.

At first, the common address, which refers to a unique SCADA

device like the local RTU, and the info object address, which

refers to a memory register on that device, are translated into

the physical process context. Depending on the context and

IEC-104 function, the raw value is subsequently converted

into the right data type and right value scale according to

its normalization properties.

All necessary information for this preprocessing can be

found in an RTU configuration. The RTU configuration is

a table which contains information about what is stored in

different memory addresses on the RTU. Table II shows an

excerpt of three configuration rows and the most important

columns from a (fictional) RTU configuration. The first col-

umn, RTU, refers to the common address of the local device.

The information object addresses (IOA_M, IOA_C) refer to

the memory location at the local device. Please note, that

they both refer to the same underlying memory location as

IEC-104 uses different virtual address spaces for measurement

and command functions.3 Then, a description of the physical

process context and other information like its value dimension

(not depicted in this excerpt) is given. The fifth column,

TagName, is a globally unique identifier for the process

variable. As described earlier, the grid model and the state

manager do not work with info object addresses as they are

3In the real RTU configuration of the case study, even four different info
object addresses are configured for every process variable.

protocol-specific. Instead, they use this tag in the topology as

a key to reference the corresponding value in the state.

The state manager expects a tuple (tag , value) as its

input format for process variables. Hence, Zeek must do

a conversion of the protocol-specific unique address tuple

(RTU , IOA) to its protocol-independent tag . Depending on

the IEC-104 function used, the process values are not transmit-

ted as floating-point numbers but normalized values instead.

The normalization process takes a value and a normalization

interval and outputs the value’s relative position within this

interval as a value in [−1;+1[[41]. For example, if a current

of 1000A is measured at M11 and the normalization interval

is [−2000, 2000] as in the depicted table, the transmitted

normalized value is +0.5. A parsed raw value of +0.75 can

hence be interpreted as 1500A. The normalization interval is

saved in the last two columns of the RTU configuration and is

needed for the interpretation, because the real process variable

cannot be inferred without this interval from traffic alone.

To enhance Zeek with the capabilities to map the protocol-

specific and RTU-depending (RTU , IOA, rawValue) tuple to

an independent (tag , value) tuple, a script was developed

which reads an RTU configuration and automatically gener-

ates Zeek code for the conversion process. Subsequently, the

(tag , value) tuple is passed as input into the state manager.

The state manager uses “broccoli” (see Section II-B3) and

is connected to Zeek as a client, whereas Zeek acts as a

server. Hence, Zeek can trigger events remotely in the state

manager. Each parsed measurement and command trigger

a corresponding event in the state manager and pass the

(tag , value) tuple with the current time as an argument.

III. EVALUATION ON A REAL DISTRIBUTION STATION

The prototype was used to analyze real SCADA traffic at a

Dutch distribution substation, as described in Section III-A.

Section III-B describes the captured data traffic and Sec-

tion III-C the designed scenarios and their evaluation.

A. Topology of distribution station

Figure 2 shows an excerpt of the grid topology at the

distribution station, as described by the file provided by

the operator. The four power lines: L2, L5, L10 and L13

are feeders which are represented as incoming power lines.

All other lines are outgoing. Their allowed maximal current

threshold is depicted in the figure. All power lines have a

meter and a switch and are guarded by a protective relay.

Those components are denoted as MX , SX and RX , where

X is the number of the corresponding power line. Feeders L5,

L10 and L13 are directly connected to the same source bus.

B. Test setup and description of the captured data

The tests were conducted on August 15th, 2018 at a

Dutch power distribution substation implementing the IEC-104

protocol. For the purpose of the tests, a hub was used to copy

the incoming packets not only to the local RTU but also to

the monitoring device. The monitoring device could therefore

analyze the incoming commands without interrupting the

45

M13

S13, R13

L12

B2

L13

L14

L2

L1

L3

L4

L6

L9

L5

L10 L11

L12.Imax = 157.5A

L2.Imax = 157.5A

L5.Imax = 157.5A

L10.Imax = 157.5A

L13.Imax = 225A

L14.Imax = 112A

L1.Imax = 157.5A

L4.Imax = 157.5A

L6.Imax = 22A

L9.Imax = 225A

L11.Imax = 157.5A

L3.Imax = 360A

Fig. 2. Excerpt from the electrical grid topology at the case study substation.

Test
Length Packet count IEC-104 Events

[min:s] Total IEC-104 Commands Measurements

Baseline 31:34 2663 300 6 4796
Set points 8:02 804 150 4 2789
Switching 4:29 479 137 4 2351
Relay 6:29 706 132 2 2369

TABLE III
SUMMARIZED INFORMATION ABOUT THE CAPTURED TRAFFIC.

working of the RTU and the physical system. The monitoring

was performed on a laptop running a Docker image4 with

all needed packages and configurations for deployment and

testing of the prototype mentioned in Section II.

In total four different files containing the network traffic

were generated. Table III summarizes the captured traffic: the

general packet count and the number of IEC-104 packets. The

first file is a baseline test and includes the whole deployment

process, four safe switching and two safe set point commands

to ensure that the tool works properly. The other tests are

shorter (all below 9 minutes), as described in Section III-C.

C. Scenarios

The baseline test was performed to confirm the proper work-

ing of the network connection, the parser and the intrusion

detection model. Later tests are based on a slightly modified

topology, imitating a “weaker” system, e.g., with smaller

4The evaluation tool is available at: https://github.com/jjchromik/
RuleGeneratorSCADA

capacity and more constraints. The real system thus was never

put at risk, but the IDS was still able to detect correct safety

violations. A general interrogation was conducted to update

the observed state before and after each command. All state

changes caused by commands (i.e., changes in set points and

switch positions) were reversed at the end of each scenario.

Below the four scenarios are analyzed in the following cate-

gories: description explains the contents of the test; objectives
define the goal of the test; precondition describes the necessary

initial state of the system; state evaluation and command
evaluation analyses the state of the system and reflects on

the effect of respective commands on the system; the rules

from Table I that were violated when performing this test are

listed in violated rules.

1) Scenario 1. The baseline scenario:
a) Description: The sequence diagram in Figure 3 vi-

sualizes all actions performed for the baseline test. After

connecting the laptop running the Docker container with

Zeek, the IDS was started and connected to Zeek. Then, a

safe current set point was configured for L10 and four safe

switching commands (opening and closing of S9 and S10,

respectively), were given. Then, the set point was changed to

its original value. Between each action a general interrogation

command was issued to update the observed state.

b) Objectives: Test the functionality of the traffic parser

and IDS prototype in a real-world application, validation of

the used topology information and RTU configuration.

c) Precondition: Switches at L9 and L10 are closed.

d) State evaluation: The initial state yielded not safe

and not consistent. The reason was twofold: (i) the set point

for L13 was not updated in the operator’s reference file after

a physical power line was upgraded by the network operator

before, and (ii) the bad precision of the measurements resulted

in around 3,5% error in the Kirchhoff’s law (P1). After

adjusting the reference file to reflect the change and adjusting

the rule P1 to include the imprecision error, the initial state

was both safe and consistent. Because of the topology, only

consistency rules P1 (Kirchhoff’s current law), P2 (equal

voltage levels) and P3 (zero current on a disconnected line)

are relevant and evaluated. The sum of incoming (332.58A)

and outgoing current (330.23A) differs by approximately 1%,

which is below the allowed relative error margin and can thus

be explained by minor precision issues in traffic and meters.

Over the course of the baseline tests, there are two unexpected

consistency alerts. After opening S10, L10.I is invalidated.

However, at the next general interrogation command M10 still

reports current on the disconnected line 16 seconds later. It

takes 22 seconds until the correct new current measurement

of 0A is reported. This delay causes inconsistency: P3 is

violated as S10 is open and the current is not equal to 0. The

same problem occurs when connecting the switch - the current

value for L10 arrives 30 seconds earlier than those for L13.

As a result of this delay, Kirchhoff’s law (P1) is violated.

e) Command evaluation: The first command changed

the set point of L10 to 154A, which is correctly classified

as safe. Also, both commands opening and closing S9 are

46

Fig. 3. Sequence diagram visualizing the baseline test of the case study.

considered safe as L9 does not carry any current and thus the

command has no effect on the power flow.

However, disconnecting the feeder L10 is unexpectedly flagged

as unsafe. L10 is connected to the same bus as L5 and L13,

which must then compensate the missing 92A of a discon-

nected L10. It is predicted that L5 carries 114A+ 92A
2 = 160A,

which is above L5.Imax = 157.5. The calculated current on

L13 is 101A + 92A
2 = 147A < L13.Imax = 225A. This is a

false positive, albeit quite a narrow one as the next general

interrogation shows, that L5.I = 157A and L13.I = 142A.

The total current passing the bus seems to decrease. This

is an indication that non-local feeders, which also connect

power sources with consumers, experience a slight increase

in current. Finally, the command that connects L10 again is

correctly predicted as a safe one.

f) Violated rules: Violating R5 is a false positive. Also

P1 and P3 are incorrectly violated due to inconsistent meter

measurements.

2) Scenario 2. Unsafe set point changing commands and
unsafe voltage measurements:

a) Description: At first, the topology information of line

L6 is changed: Vref is set to 6000. After the start of the

IDS three set point changes for line L10 are done. The first

command is safe, the second set point is too low and the third

one is too high.

b) Objectives: Validation of safety rules, evaluation of

state calculation after set point changing command.

c) Preconditions: Set point for L10 equals its Imax .

d) State evaluation: One objective for this scenario is the

validation of voltage boundary violations. L6.Vref has been set

to 6000V and thus every state evaluation correctly identifies

two rule violations. Rule R2 is violated because the measured

voltage is always far above 6000V . Also, rule R8 triggers an

alert, because the actual voltage set point is far too high for

the modified topology.

Rule R8 is violated between the second and fourth command

(described below), as the current set point of L10 is not safe.

The state is considered consistent at all times.

e) Command evaluation: All four set point changes are

correctly classified. The first one sets the current set point for

L10 to 154A which is safe. Both the second (126A) and third

(190A) command are correctly considered unsafe. Finally, the

set point is restored to its original and safe value of 157.5A =
L10.Imax .

f) Violated Rules: R2, R8 are violated.

3) Scenario 3. Switch commands violating an interlock:
a) Description: The topology is updated and a static

interlock is added for lines L9 and L10. Furthermore, the value

for Imax of line L13 is lowered to a value which is slightly

above the current at the time of the measurement. In this test,

first, switch S9, and then, switch S10, is opened.

b) Objectives: Evaluation of state calculation after

switching commands.

c) Preconditions: Switches at L9 and L10 are closed.

d) State evaluation: For this scenario L13.Imax was

reduced to 120A. This violates safety rule R8 as the set

points are based on the real topology, where the Imax equals

225A. Beside this violation, the state is considered both

consistent and safe until shortly after the opening switch L10.

As expected, the current exceeds the safety threshold and

violates R1. Additionally, the switch positions lead to interlock

violations (R9) until S10 is closed again.

Once again, P1 and P3 are violated for a few seconds until the

meters refresh their measurement (see scenario 1). No other

consistency rule was violated.

e) Command evaluation: The first two commands,

which open and close S9, are both correctly classified as

safe. Here, again, L9 does not carry any current and thus this

command has no effect on the power flow at all. The third

command, which disconnects feeder L10, is correctly classified

as unsafe. Four violations are detected: both interlocks are

violated, which results in violations of R9 (static interlocks

and dynamic interlocks). Furthermore, two violations of R1
are expected: the calculated current for L5 is 170A and the

47

one for L13 is 155A, which are both above their corresponding

Imax thresholds. The next measurement shows that the real

current values on those lines are indeed 167A and 150A.

However, it was neither expected nor intended that the current

of feeder L5 exceeds its real current threshold by 10A for

around a minute.5 Fortunately, the protective relay for L5

triggers at 300A. The artificial violation of L13 was expected

and has not violated the far higher real current threshold.

f) Violated Rules: R1, R8, R9 are violated. Again,

alerts based on P1 and P3 were produced by measurement

inconsistencies.

4) Scenario 4. Protective relay test:
a) Description: The protective relay information for R13

is changed in the topology. Its Icut is set to a lower value and

tcut is set to 10 seconds. Afterwards, the switch on line L10

is opened. The current on line L13 then exceeds the cutting

current of the protective relay.

b) Objectives: Validation of safety rules.

c) Preconditions: Switch at L10 is closed.

d) State evaluation: As expected, after disconnecting

L10 the current of L13 exceeds the pre-configured cutting

threshold of the protective relay. Thus, R4 is violated and

reports that the cutting current of the protective relay is

exceeded. At first, the alert states that the current has exceeded

its threshold very recently and was still safe 10 seconds ago

(which corresponds to the cutting time tcut). Later, the alert

changes and it attests a broken protective relay, which should

have triggered after 10 seconds of exceeding current.

No other violations were expected. Like in the previous

scenario, disconnecting line L10 led the real system into

an unsafe state though. The current at L5 exceeds its real

threshold by approximately 5A and so R1 is violated. Again,

delayed arrivals of measurements led to very few consistency

violations of P1 and P3. At the beginning and in the end the

state is considered both consistent and safe.

e) Command evaluation: Although it was intended, that

all commands are safe, the switch command leads the real

system into an unsafe state. This was correctly predicted by

the command evaluation. For power line L5 a current of 165A
was predicted and shortly afterwards 162A was measured. The

command evaluation proved to be very accurate again.

f) Violated Rules: R1 and R4 are violated and detected.

Once again, P1 and P3 are violated due to measurement

inconsistencies.

IV. PRACTICAL CONSIDERATIONS

A real-world deployment of the theoretical intrusion de-

tection model must be adjustable, since not all theoretical

assumptions of the process model hold in practice. The rep-

resentation of the physical process is further limited by the

availability, freshness and precision of local measurements.

Section IV-A introduces the concept of data unavailability in

local control networks. Section IV-B investigates the handling

5A later discussion with the grid operator revealed that the safety thresholds
are chosen very conservative. A slightly exceeded current value does not really
harm the system at hand.

of data that should be available but is, in fact, unknown. Then,

Section IV-C analyses the consequences of measurements that

are taken at different points in time. Section IV-D examines

reasons and mitigation for imprecise data. Finally, Section

IV-E studies the effect of those adjustments on the rate of

false positives and false negatives.

A. Global and local view on the system

The theoretical model assumes a complete view of the

state of the electrical grid, which could only be achieved by

capturing the traffic of the whole control network. As the

proposed prototype should primarily run on local devices at

substations, the availability of state-dependent values is limited

to data that is only locally available.

Rules that cannot be evaluated due to unavailable data will

not generate an alert in order to reduce the amount of false

positives. In the formal model, we need to decide whether a

rule can be evaluated partially, in the case of missing data. If

a rule does not contain at least one logical connection via ∧
or ∨, the IDS cannot evaluate that rule if values are missing.

Hence, no alerts are generated due to missing values. However,

if a rule contains a logical and or a logical or, the rule can be

partially evaluated on the available information.

Hence, all rules that contain logical conjunctions (∧) are

defined in a way that allows the substitution of operands with

True if their evaluation is not possible due to missing data.

All logical disjunctions (∨) are defined in a way such that non-

evaluable operands can be replaced with False without causing

false positives. As a result, the local IDS evaluates only a small

subset of all rule expressions and under the assumption of a

consistent state that corresponds to the physical process, no

false positives are caused by unavailable data. False negatives

may occur for all sub-expressions that cannot be evaluated due

to missing values, these are however not detectable due to the

unavailable information.

Some rules (e.g., the rule about total power production and

consumption) need more globally dispersed state information

than others. Table IV classifies all rules by the locality of

required values. The letter l stands for local data at one

node and g for global data from at least two different nodes.

The extension (+) indicates that the scope of the rules is

extended if global data is known, but the rule still works in

a limited evaluation scope otherwise. The consistency rules

P1, P2, P5, P6, and the safety rules R3, R4, R5, R8, R9 can

be fully evaluated with only local knowledge. Some rules, like

P3, R1, R2, R6, require information of neighboring nodes. If

this information is unavailable, the rules can be evaluated

in a restricted manner by the reduction method described

above. Some rules (P4, R7) cannot be reduced as they require

measurements from at least two different nodes.

B. Availability

Local data may also be unavailable if local measurements

have not been parsed from the traffic since the start of the

intrusion detection process. Some values, for example switch

states, are not reported to the RTU regularly but only after

48

TABLE IV
AN OVERVIEW OF RULES THAT ARE EVALUATED FOR EACH TOPOLOGY COMPONENT

component P1 P2 P3 P4 P5 P6 R1 R2 R3 R4 R5 R6 R7 R8 R9

bus L L G L+ L+ L*
transformer G L L+ L+ L L*
power source/
consumer

G L L+ L+ G L*

switch L+ L+ L*
fuse/PR L L L

“L” denotes that only local information is needed for the rule to be evaluated, “G” requires knowledge of more than one RTU. Symbol “+” means that the
rule can be evaluated more thoroughly if information from more nodes is available and “*” indicates that the rule is applicable if the RTU has that aspect

configured.

changes or an explicit interrogation command. Also in this

case, rules might be reduced to allow partial evaluation.

To tackle this issue, immediately after the start of the

IDS the state information can be initialized by a general

interrogation command issued to the RTU. This command is

part of the IEC-104 protocol suite and requests the report of all

known process variables of an RTU. The IDS then captures the

traffic and obtains knowledge of all present process variables.

If the general interrogation command is not available, e.g.,

if other protocols are used or the RTU does not support the

manual issuing of this command, detection capabilities are

severely reduced until all values are received. The time of

limited evaluation can be quite long as some values (e.g.,

the switch states) are reported only very infrequently in real

systems. They are often only updated when changes occur,

which can be a matter of days or even weeks in case of

switches. Hence, a one-time general interrogation command

for initialization is highly desirable.

C. Freshness

Data may also be outdated. The freshness of data can be

impaired for three different reasons:

(i) Changes in energy flow. After a change in the connec-

tion of power lines (e.g., by a triggered fuse, protective relay

or changed switch state) or a modification of the transformer

tap position, all previous current and voltage measurements

must be considered invalid, as they do not represent the real

energy flow anymore. (ii) Different times of measurement.
More gradual changes in energy flow are caused by the chang-

ing total power consumption over a day. Comparing older

measurements then might lead to problems as they represent

the real process at different time instances. (iii) Network
and parsing delay. Values are not updated immediately due

to transmission and propagation delays. Also parsing and

processing takes time, which is however only a matter of

milliseconds at local substations.

Outdated measurements can lead to false positive violations

of consistency rules. For example, if the measurement of a

power line is older than the information that the line was

disconnected, a false-positive violation of P3 is triggered

until a new measurement is obtained. Hence, all meter mea-

surements affected are invalidated after switching or a tap

position change, i.e., rules should not be evaluated with invalid

information. This procedure can only be done for local events

as the IDS normally does not learn about remote switch and

transformer changes. Furthermore, measurements should only

be used if they are relatively young. The maximal age of values

that may be used for evaluation is defined as the freshness
period. More constant data like switch states must have a

longer freshness period than other, more fluctuating process

variables, like meter measurements. Values that are older than

the freshness period are invalidated as they are not reliable.

To overcome these challenges, an IDS should be able to

actively interact with the SCADA system at hand to allow,

e.g., issuing general interrogation commands or requesting

individual values updates. General interrogation commands

introduce traffic bursts into the control network, which might

conflict with the hard real-time property of SCADA systems.

However, when requesting only a subset of values, every value

is separately requested and answered, the average protocol

overhead is considerably increased. This trade-off needs to

be carefully analyzed for a specific instance of the IDS.

D. Precision

Lastly, received values do never fully represent the physical

process due to limitations in precision. The use of exact

equality is only feasible in the abstract model. In reality

the measurements are subject to inaccuracies caused by a)

meter quality, b) precision loss due to data types in transit

and c) by the data representation in the IDS. Especially the

precision loss in transit is strong for IEC-104 as floating-

point numbers are represented by only 2 bytes, which is very

imprecise compared with even the lowest precision data types

of common programming languages which usually reserve

4 bytes for float and 8 bytes for double variables. This

imprecision affects all supported data types like normalized,

scaled and floating-point values [42]. The effect intensifies by

comparing values of different orders of magnitude given the

underlying floating-point number format. Hence, the prototype

compares values with an allowed relative error margin.

E. Effect on false positives and false negatives

Increasing the relative error margins for comparisons will

likely lead to fewer false positives and more false negatives as

the rule evaluation becomes less tight. The increased number

of false negatives is not desirable, but necessary in order not

49

to flood the operator with too many false alerts. Increasing

the freshness period will likely increase the number of alerts,

since some rules would previously not be evaluated due to

missing values. The freshness period should be large enough

to significantly to ensure that not too many rules are skipped

and small enough to ensure a reasonable precision.

Evaluating the freshness period is tightly connected to the

relative error margin in comparisons. If the first increases,

the latter must also be increased due to the stronger effect of

value changes caused by gradual load changes. The influence

on false positives (and precision) is hence not clear. It is

expected that a reasonable increase in error margin prevents

a surge of false positives due to gradual load differences. If

this increase is too big though, a huge raise in the number of

false negatives is expected. This is because the error margin

should only compensate for relatively small differences caused

by imprecision and gradual load changes. Long freshness

periods will trigger many false positives due to load changes.

Smaller periods will however lead to potentially dangerous

false negatives, as many rules cannot evaluate.

We do not aim at indicating reasonable choices of error mar-

gins and freshness periods as they strongly context-dependent.

F. Quality aspects

Other crucial properties of the IDS are robustness, perfor-

mance and scalability, as discussed in the following.

1) Robustness: The prototype possesses an extensive ex-

ception handling to catch errors and exceptions early to

prevent, e.g., Denial of Service attacks. The only source of

potentially malicious input is network traffic. Common ways to

provoke a denial of service are malformed input, exploitation

of logic errors and flooding [43]. The latter two offer very

little attack surface: the Zeek scripts for the interpretation

and conversion of values are very simple and do not contain

looping control structures. Flooding the prototype with IEC-

104 packets is unlikely to affect its performance and would be

detected by a conventional behavior-based IDS anyway. Zeek

already implements several techniques to prevent attacks in the

form of overload and crashing attacks [34]. We tested traffic

(i) with valid packet structure, but invalid contents and (ii)

invalid malformed packets. Measurements or commands with

unknown common address, info object addresses or raw values

only cause an error message. The second type of packets might

cause an irreversible crash of the parser by a segmentation

fault, which requires a restart of the prototype. Note that this

could be prevented by adapting the used parser framework.

2) Performance: The evaluation of state at each RTU is the

most complex task of the state manager, as it executes all rules

for all connected components. For the baseline scenario and

the required knowledge of the values, state evaluation takes

less than 0.002s on the test machine6. Command evaluation

is even faster and takes less than 0.001s for any command

in the test scenarios. The complexity of rule evaluation is

6Intel Core i5 6500, 4x 3.20GHz, 128kB/102kB/6144kB L1/L2/L3 Cache,
8GB RAM

linear in the number of nodes and power lines. Therefore, the

state evaluation can likely be executed regularly on a huge

electrical grid without performance issues. For evaluations,

which operate on local knowledge, the evaluation is clearly

less complex and hence even faster.

The performance of Zeek and its parser is analyzed using

synthetic traffic of only IEC-104 packets at a constant packet

rate. To simulate the worst case, all nodes have knowledge

of all connected components, and both command and state

evaluations are enabled. The prototype can handle 0.9Mbps
(approx. 1500 measurements and 20 commands per second)

over a longer period of time without delays. The broccoli event

engine seems to be the bottleneck. When increasing traffic,

first the evaluation is delayed before events are dropped due

to a limited event buffer.

Replaying the captured traffic of the baseline test from the

case study, Table III indicates, that traffic from real control

networks is not evenly distributed, but rather occurs in bursts

and contains more protocols. A speed multiplicator of up to

500 (0.74Mbps) was used to replay half an hour of real traffic

in less than four seconds, without exhausting Zeeks internal

buffer size at traffic bursts. Larger bandwidths may lead to

packet drops though. The evaluation demonstrates that the

prototype’s performance is suitable for deployment in real

substations. It is expected that traffic at larger substations also

does not inflict any performance issues.

3) Scalability: Scalability is considered w.r.t. global elec-

trical grid size and w.r.t. local substation size. As the present

prototype does currently not share information with remote

substations, its scalability is independent of the size of the

electrical grid. A large number of components connected to

the observed RTU leads to an linear increase in evaluation

complexity, and should hence not result in performance issues

even at large field stations.

V. CONCLUSION

Recent cyber-attacks on electrical grids demonstrated the

vulnerability of SCADA systems controlling them. Critical

infrastructures are at risk, because of outdated and vulnerable

devices and protocols, and the increasing interconnectedness

of control systems.

This paper shows the feasibility of process-aware intrusion

detection in electrical grids. Based on a theoretical grid model,

a defense-in-depth approach has been implemented into a

prototype. The tool uses a novel architecture, that separates the

traffic processing from the evaluation of the physical model.

Given a description of the physical topology, it automatically

matches the relevant rules that need to be evaluated. A case

study conducted at a local distribution station of a Dutch

distribution grid operator confirms the real-world feasibility.

We evaluated the detection capabilities of the prototype in

different scenarios and our results indicate that a network-

based and process-aware IDS can strongly increase the safety

and security of electrical grids.

Future work will investigate the required resolution of the

underlying grid model and define response strategies to alerts.

50

REFERENCES

[1] Homeland Security and Industrial Control Systems Cyber
Emergency Response Team, “Cyber-Attack Against Ukrainian Critical
Infrastructure,” 2016. [Online]. Available: https://ics-cert.us-cert.gov/
alerts/IR-ALERT-H-16-056-01

[2] R. M. Lee, M. J. Assante, and T. Conway, “Analysis of the cyber attack
on the Ukrainian power grid,” SANS Industrial Control Systems, Tech.
Rep., 2016.

[3] National Cybersecurity and Communications Integration Center, “IR-
ALERT-H-16-056-01 NCCIC / ICS-Cert Incident Alert: Cyber-Attack
against Ukrainian critical infrastructure,” 2016, from: https://ics-cert.
us-cert.gov/alerts/IR-ALERT-H-16-056-01 accessed on 5 Dec 2018.

[4] K. Stouffer and K. Scarfone, “Guide to Industrial Control Systems
Security Recommendations of the National Institute of Standards and
Technology,” 2011.

[5] R. F. Dacey, “Critical Infrastructure Protection: Challenges and Efforts
to Secure Control Systems Typical Components of a Control System,”
2004.

[6] J. J. Chromik, A. Remke, and B. R. Haverkort, “What’s under the
hood? Improving SCADA security with process awareness,” in IEEE
Proceedings of the 2016 Joint Workshop on Cyber-Physical Security
and Resilience in Smart Grids, 2016.

[7] ——, “Improving SCADA security of a local process with a power grid
model,” in Proceedings of the 4th International Symposium for ICS &
SCADA Cyber Security Research 2016, 2016, pp. 114–123.

[8] ——, “An Integrated Testbed for Locally Monitoring SCADA Systems
in Smart Grids,” Energy-Open, 2017.

[9] ——, “Bro in SCADA : dynamic intrusion detection policies based on
a system model,” in Proceedings of the 5th International Symposium for
ICS & SCADA Cyber Security Research 2018, 2018, pp. 112—-121.

[10] D. Yang, A. Usynin, and J. W. Hines, “Anomaly-based intrusion
detection for SCADA systems,” in 5th International Topical Meeting on
Nuclear Plant Instrumentation, Control and Human Machine Interface
Technologies, 2005, pp. 12–16.

[11] R. R. R. Barbosa, “Anomaly Detection in SCADA Systems: A network
based approach,” Ph.D. dissertation, University of Twente, Enschede,
2014.

[12] R. R. R. Barbosa and A. Pras, “Intrusion detection in SCADA networks,”
in Proceedings of the Mechanisms for Autonomous Management of Net-
works and Services, and 4th International Conference on Autonomous
Infrastructure, Management and Security, 2010, pp. 163–166.

[13] R. R. R. Barbosa, R. Sadre, and A. Pras, “Flow whitelisting in SCADA
networks,” International Journal of Critical Infrastructure Protection,
vol. 6, no. 3-4, pp. 150–158, 2013.

[14] O. Linda, T. Vollmer, and M. Manic, “Neural Network based Intrusion
Detection System for critical infrastructures,” in 2009 International Joint
Conference on Neural Networks. IEEE, 2009, pp. 1827–1834.

[15] A. Valdes and S. Cheung, “Communication pattern anomaly detection in
process control systems,” in Technologies for Homeland Security. IEEE,
2009, pp. 22–29.

[16] R. Udd, M. Asplund, M. Kazemtabrizi, S. Nadjm-Tehrani, and M. Ek-
stedt, “Exploiting Bro for Intrusion Detection in a SCADA System,” in
Proceedings of the 2nd ACM International Workshop on Cyber-Physical
System Security, 2016, pp. 44–51.

[17] N. Goldenberg and A. Wool, “Accurate Modeling of Modbus / TCP for
Intrusion Detection in 1 Introduction,” International Journal of Critical
Infrastructure Protection, vol. 6, no. 2, pp. 63–75, 2013.

[18] A. Mahmood, C. Leckie, J. Hu, Z. Tari, and M. Atiquzzaman, Network
traffic analysis and SCADA security. Springer, 2010.

[19] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, and
A. Valdes, “Using Model-based Intrusion Detection for SCADA Net-
works,” in Proceedings of the SCADA security scientific symposium,
2007.

[20] U. K. Premaratne, J. Samarabandu, T. S. Sidhu, R. Beresh, and J. C. Tan,
“An intrusion detection system for IEC61850 automated substations,”
IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 2376–2383,
2010.

[21] J. Nivethan and M. Papa, “Dynamic rule generation for SCADA intru-
sion detection,” in 2016 IEEE Symposium on Technologies for Homeland
Security, 2016.

[22] H. Lin, A. Slagell, C. Di Martino, Z. Kalbarczyk, and R. K. Iyer,
“Adapting Bro into SCADA: building a specification-based intrusion
detection system for the DNP3 protocol,” in Proceedings of the 8th

Annual Cyber Security and Information Intelligence Research Workshop,
2013.

[23] Y. Yang, K. McLaughlin, T. Littler, S. Sezer, and B. Pranggono, “Intru-
sion Detection System for IEC 60870-5-104 based SCADA networks,”
in Power and Energy Society General Meeting. IEEE, 2013.

[24] W. Gao, T. Morris, B. Reaves, and D. Richey, “On SCADA control sys-
tem command and response injection and intrusion detection,” eCrime
Researchers Summit, 2010.

[25] M. Caselli, E. Zambon, and F. Kargl, “Sequence-aware Intrusion De-
tection in Industrial Control Systems,” in Proceedings of the 1st ACM
Workshop on Cyber-Physical System Security, 2015, pp. 13–24.

[26] G. Koutsandria, V. Muthukumar, M. Parvania, S. Peisert, C. McParlan,
and A. Scaglione, “A Hybrid Network IDS for Protective Digital
Reays in the Power Transmission Grid,” in Proceedings of Smart Grid
Communications, 2014, pp. 908–913.

[27] J. L. Rrushi and R. H. Campbell, “Detecting Attacks in Power Plant
Interfacing Substations through Probabilistic Validation of Attack Effect
Bindings,” in Proceedings of the SCADA Security Scientific Symposium,
2008.

[28] S. Pan, T. Morris, and U. Adhikari, “A specification-based intrusion
detection framework for cyber-physical environment in electric power
system,” International Journal of Network Security, vol. 17, no. 2, pp.
174–188, 2015.

[29] Y. Wang, Z. Xu, J. Zhang, L. Xu, H. Wang, and G. Gu, “SRID: State
relation based intrusion detection for false data injection attacks in
SCADA,” in European Symposium on Research in Computer Security.
Springer, 2014, pp. 401–418.

[30] H. Lin, A. Slagell, Z. Kalbarczyk, P. Sauer, and R. K. Iyer, “Runtime
Semantic Security Analysis to Detect and Mitigate Control-related
Attacks in Power Grids,” IEEE Transactions on Smart Grid, vol. 9,
no. 1, pp. 163–178, 2018.

[31] D. Hadziosmanovic, R. Sommer, E. Zambon, and P. Hartel, “Through the
Eye of the PLC: Towards Semantic Security Monitoring for Industrial
Control Systems,” in Proceedings of the 30th Annual Computer Security
Applications Conference. New Orleans, Louisiana, USA: International
Computer Science Institute, 2014, pp. 126–135.

[32] B. Zhu and S. Sastry, “SCADA-specific Intrusion Detection/Prevention
Systems: A Survey and Taxonomy,” in Proceedings of the 1st Workshop
on Secure Control Systems, 2010.

[33] J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths,
N. O. Tippenhauer, R. Candell, N. O. Tippenhauer, and H. Sandberg, “A
Survey of Physics-Based Attack Detection in Cyber-Physical Systems,”
ACM Computing Surveys, vol. 51, no. 1, p. 76, 2018.

[34] V. Paxson, “Bro: A system for detecting network intruders in real-time,”
Computer Networks, vol. 31, no. 23, pp. 2435–2463, 1999.

[35] The Bro Network Security Monitor, “Bro Introduction,” 2018. [Online].
Available: https://www.bro.org/sphinx/intro/index.html

[36] P. Mehra, “A brief study and comparison of Snort and Bro Open
Source Network Intrusion Detection Systems,” International Journal
of Advanced Research in Computer and Communication Engineering,
vol. 1, no. 6, pp. 383–386, 2012.

[37] R. Sommer, J. Amann, and S. Hall, “Spicy: a unified deep packet
inspection framework for safely dissecting all your data.” in Proceedings
of the 32nd Annual Conference on Computer Security Applications.
ACM, 2016, pp. 558–569.

[38] International Computer Science Institute and Networking and Security
Group, “About Spicy,” 2018. [Online]. Available: http://www.icir.org/
hilti/

[39] The Bro Network Security Monitor, “Broccoli: The Bro Client
Communications Library,” 2018. [Online]. Available: https://www.bro.
org/sphinx/components/broccoli/broccoli-manual.html

[40] J. J. Chromik, A. Remke, B. R. Haverkort, and G. Geist, “A Parser for
Deep Packet Inspection of IEC-104: A Practical Solution for Industrial
Applications.” in IEEE/IFIP International Conference on Dependable
Systems and Networks, 2019.

[41] G. Clarke, D. Reynders, and E. Wright, Practical Modern SCADA
Protocols: DNP3, 60870.5 and Related Systems. Elsevier, 2004.

[42] International Electrotechnical Commission, “IEC 60870-5-104: Tele-
control equipment and systems - Part 5-104: Transmission protocols -
Network access for IEC 60870-5-101 using standard transport profiles,”
2006.

[43] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher, Internet Denial of
Service: Attack and Defense Mechanisms. Upper Saddle River, NJ,
USA: Prentice-Hall, 2004.

51

