443 research outputs found

    Unrestricted solutions of arbitrary linear fuzzy systems

    Get PDF
    Solving linear fuzzy system has intrigued many researchers due to its ability to handle imprecise information of real problems. However, there are several weaknesses of the existing methods. Among the drawbacks are heavy dependence on linear programing, avoidance of near zero fuzzy numbers, lack of accurate solutions, focus on limited size of the systems, and restriction to the matrix coefficients and solutions. Therefore, this study aims to construct new methods which are associated linear systems, min-max system and absolute systems in matrix theory with triangular fuzzy numbers to solve linear fuzzy systems with respect to the aforementioned drawbacks. It is proven that the new constructed associated linear systems are equivalent to linear fuzzy systems without involving any fuzzy operation. Furthermore, the new constructed associated linear systems are effective in providing exact solution as compared to linear programming, which is subjected to a number of constraints. These methods are also able to provide accurate solutions for large systems. Moreover, the existence of fuzzy solutions and classification of possible solutions are being checked by these associated linear systems. In case of near zero fully fuzzy linear system, fuzzy operations are required to determine the nature of solution of fuzzy system and to ensure the fuzziness of the solution. Finite solutions which are new concept of consistency in linear systems are obtained by the constructed min-max and absolute systems. These developed methods can also be modified to solve advanced fuzzy systems such as fully fuzzy matrix equation and fully fuzzy Sylvester equation, and can be employed for other types of fuzzy numbers such as trapezoidal fuzzy number. The study contributes to the methods to solve arbitrary linear fuzzy systems without any restriction on the system

    A modification of fuzzy arithmetic operators for solving near-zero fully fuzzy matrix equation

    Get PDF
    Matrix equations have its own important in the field of control system engineering particularly in the stability analysis of linear control systems and the reduction of nonlinear control system models. There are certain conditions where the classical matrix equation are not well equipped to handle the uncertainty problems such as during the process of stability analysis and reduction in control system engineering. In this study, an algorithm is developed for solving fully fuzzy matrix equation particularly for ~ A ~X ~B  ~X = ~ C, where the coefficients of the equation are in near-zero fuzzy numbers. By modifying the existing fuzzy multiplication arithmetic operators, the proposed algorithm exceeds the positive restriction to allow the near-zero fuzzy numbers as the coefficients. Besides that, a new fuzzy subtraction arithmetic operator has also been proposed as the existing operator failed to satisfy the both sides of the nearzero fully fuzzy matrix equation. Subsequently, Kronecker product and V ec-operator are adapted with the modified fuzzy arithmetic operator in order to transform the fully fuzzy matrix equation to a fully fuzzy linear system. On top of that, a new associated linear system is developed to obtain the final solution. A numerical example and the verification of the solution are presented to demonstrate the proposed algorithm

    Complex fuzzy linear systems

    Full text link
    In paper the complex fuzzy linear equation nbspnbspin which nbspis a crisp complex matrix and nbspis an arbitrary complex fuzzy numbers vector, is investigated. The complex fuzzy linear system is converted to a equivalent high order fuzzy linear system . Numerical procedure for calculating the complex fuzzy solution is designed and thenbsp sufficient condition for the existence of strong complex fuzzy solution is derived. A example is given to illustrate the proposed method.nbs

    Solution of arbitrary fully fuzzy matrix equations and pair fully fuzzy matrix equations

    Get PDF
    Control system theory often involved the application of matrix equations and pair matrix equations where there are possibilities that uncertainty conditions can exist. In this case, the classical matrix equations and pair matrix equations are not well equipped to handle these conditions. Even though there are some previous studies in solving the matrix equations and pair matrix equations with uncertainty conditions, there are some limitations that include the fuzzy arithmetic operations, the type of fuzzy coefficients and the singularity of matrix coefficients. Therefore, this study aims to construct new methods for solving matrix equations and pair matrix equations with all the coefficients of the matrix equations are arbitrary left-right triangular fuzzy numbers (LR-TFN), which either positive, negative or near-zero. In constructing these methods, some modifications on the existing fuzzy subtraction and multiplication arithmetic operators are necessary. By modifying the existing fuzzy arithmetic operators, the constructed methods exceed the positive restriction to allow the negative and near-zero LR-TFN as the coefficients of the equations. The constructed methods also utilized the Kronecker product and Vec-operator in transforming the fully fuzzy matrix equations and pair fully fuzzy matrix equations to a simpler form of equations. On top of that, new associated linear systems are developed based on the modified fuzzy multiplication arithmetic operators. The constructed methods are verified by presenting some numerical examples. As a result, the constructed methods have successfully demonstrated the solutions for the arbitrary fully fuzzy matrix equations and pair fully fuzzy matrix equations, with minimum complexity of the fuzzy operations. The constructed methods are applicable for singular and non-singular matrices regardless of the size of the matrix. With that, the constructed methods are considered as a new contribution to the application of control system theory

    Solving sylvester matrix equations with LR bipolar triangular fuzzy numbers in electric circuits problems

    Get PDF
    Bipolar crisp numbers refer to two different functions and information in a given system, namely positive and negative components. Likelihood and unlikelihood information can be simultaneously represented by bipolar crisp numbers rather than classical crisp numbers. However, since bipolar crisp numbers are inadequate in dealing with uncertainty problem, bipolar fuzzy numbers (BFN) are used instead. BFN in Sylvester matrix equations (SME) plays an essential role in the control system such as in electrical controller. An electrical controller of RLC circuit consisting of resistor (R), inductor (L), and capacitor (C), is used to control the amount of electric currents flowing across the electric circuits. Besides, complex numbers which consist of real and imaginary parts are used in solving RLC circuit, where real numbers denote resistance, while imaginary numbers denote inductance or capacitance. To the best of our knowledge, the integration of SME with either BFN or complex BFN is not yet explored. Therefore, this study aims to construct analytical approaches in solving bipolar fuzzy Sylvester matrix equation (FSME), complex bipolar FSME, bipolar fully fuzzy Sylvester matrix equation (FFSME), and complex bipolar fully fuzzy linear system (FFLS) in left-right (LR) bipolar triangular fuzzy numbers. In order to obtain the solutions, bipolar FSME, complex bipolar FSME, and bipolar FFSME are converted into the bipolar linear system by utilizing Kronecker product and Vecoperator. Next, an equivalent bipolar linear system (EBLS), equivalent complex bipolar linear system (ECBLS), associated bipolar linear system (ABLS), and associated complex bipolar linear system (ACBLS) are established. Then, the final solutions of the constructed methods are obtained using inverse method. Therefore, four analytical approaches have been constructed in solving bipolar FSME, complex bipolar FSME, bipolar FFSME, and complex bipolar FFLS in LR forms. Several examples are presented to illustrate the constructed methods. Moreover, the application of RLC circuits with complex bipolar FSME and complex bipolar FFLS are also carried out. In conclusion, the new findings of analytical approaches add to the fuzzy equations body of knowledge with significant applications in bipolar electrical controllers

    Minimal Solution of Complex Fuzzy Linear Systems

    Get PDF
    This paper investigates the complex fuzzy linear equation Cz~=w~ in which C is a crisp complex matrix and w~ is an arbitrary LR complex fuzzy vector. The complex fuzzy linear system is converted to equivalent high order fuzzy linear system Gx~=b~. A new numerical procedure for calculating the complex fuzzy solution is designed and a sufficient condition for the existence of strong complex fuzzy solution is derived in detail. Some examples are given to illustrate the proposed method

    Arbitrary generalized trapezoidal fully fuzzy sylvester matrix equation and its special and general cases

    Get PDF
    Many real problems in control systems are related to the solvability of the generalized Sylvester matrix equation either using analytical or numerical methods. However, in many applications, the classical generalized Sylvester matrix equation are not well equipped to handle uncertainty in real-life problems such as conflicting requirements during the system process, the distraction of any elements and noise. Thus, crisp number in this matrix equation is replaced by fuzzy numbers and called generalized fully fuzzy Sylvester matrix equation when all parameters are in fuzzy form. The existing fuzzy analytical methods have four main drawbacks, the avoidance of using near-zero fuzzy numbers, the lack of accurate solutions, the limitation of the size of the systems, and the positive sign restriction of the fuzzy matrix coefficients and fuzzy solutions. Meanwhile, the convergence, feasibility, existence and uniqueness of the fuzzy solution are not examined in many fuzzy numerical methods. In addition, many studies are limited to positive fuzzy systems only due to the limitation of fuzzy arithmetic operation, especially for multiplication between trapezoidal fuzzy numbers.Therefore, this study aims to construct new analytical and numerical methods, namely fuzzy matrix vectorization, fuzzy absolute value, fuzzy Bartle’s Stewart, fuzzy gradient iterative and fuzzy least-squares iterative for solving arbitrary generalized Sylvester matrix equation for special cases and couple Sylvester matrix equations. In constructing these methods, new fuzzy arithmetic multiplication operators for trapezoidal fuzzy numbers are developed. The constructed methods overcome the positive restriction by allowing the negative, near-zero fuzzy numbers as the coefficients and fuzzy solutions. The necessary and sufficient conditions for the existence, uniqueness, and convergence of the fuzzy solutions are discussed, and a complete analysis of the fuzzy solution is provided. Some numerical examples and the verification of the solutions are presented to demonstrate the constructed methods. As a result, the constructed methods have successfully demonstrated the solutions for the arbitrary generalized Sylvester matrix equation for special and general cases based on the new fuzzy arithmetic operations, with minimum complexity fuzzy operations. The constructed methods are applicable to either square or non-square coefficient matrices up to 100 × 100. In conclusion, the constructed methods have significant contribution to the application of control system theory without any restriction on the system

    Computational Mathematics: Solving Dual Fully Fuzzy Nonlinear Matrix Equations Numerically using Broyden’s Method

    Get PDF
    Fuzzy numbers have many applications in various mathematical models in both linear and nonlinear forms. In the form of a nonlinear system, fuzzy nonlinear equations can be constructed in the form of matrix equations. Unfortunately, the matrix equations used to solve the problem of dual fully fuzzy nonlinear systems are still relatively few found in the publication of research results. This article attempts to solve a dual fully fuzzy nonlinear equation system involving triangular fuzzy numbers using Broyden’s method. This article provides the pseudocode algorithm and the implementation of the algorithm into the MATLAB program for the iteration process to be carried out quickly and easily. The performance of the given algorithm is the fastest in finding system solutions and provides a minimum error value
    • …
    corecore