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Abstrak 

Pemasalahan sebenar dalam sistem kawalan adalah berkaitan dengan penyelesaian 

persamaan matriks Sylvester teritlak sama ada menggunakan kaedah analitik atau 

kaedah berangka. Walau bagaimanapun, dalam banyak aplikasi, persamaan matriks 

Sylvester teritlak klasik tidak mampu untuk menangani ketidakpastian dalam masalah 

sebenar seperti keperluan yang bercanggah semasa pemprosesan sistem, gangguan bagi 

sebarang unsur dan hingar. Oleh itu, nombor rapuh dalam persamaan matriks ini 

digantikan dengan nombor kabur dan dipanggil persamaan matriks Sylvester kabur 

penuh teritlak yang mana semua parameter adalah dalam bentuk kabur. Kaedah analitik 

kabur sedia ada mempunyai empat kelemahan iaitu pengelakan penggunaan nombor 

kabur hampir sifar, kekurangan dalam mendapatkan penyelesaian yang tepat, had saiz 

sistem, dan pembatasan tanda positif pada pekali matriks kabur dan penyelesaian kabur. 

Sementara itu, penumpuan, ketersauran, kewujudan dan kebitaraan penyelesaian kabur 

tidak diteliti dalam banyak kaedah berangka kabur. Tambahan lagi, kebanyakan kajian 

dihadkan kepada sistem kabur positif disebabkan oleh batasan operasi aritmetik kabur, 

terutamanya dalam pendaraban antara nombor kabur trapezoid. Oleh itu, kajian ini 

bertujuan untuk membina kaedah analitik dan kaedah berangka baharu, iaitu 

pengvektoran matriks kabur, nilai mutlak kabur, Bartle’s Stewart kabur, lelaran 

kecerunan kabur dan lelaran kuasa dua terkecil kabur untuk menyelesaikan persamaan 

matriks Sylvester teritlak arbitrari bagi kes khas dan gandingan persamaan matriks 

Sylvester. Dalam membina kaedah ini, operator pendaraban aritmetik kabur baharu 

bagi nombor kabur trapezoid dibangunkan. Kaedah yang dibina dapat menangani 

pembatasan positif dengan membenarkan nombor kabur negatif atau hampir sifar 

sebagai pekali dan penyelesaian kabur. Syarat perlu dan cukup bagi kewujudan, 

kebitaraan, dan penumpuan penyelesaian kabur dibincangkan, dan analisis lengkap 

bagi penyelesaian kabur diperuntukkan. Beberapa contoh berangka dan pengesahan 

penyelesaian dibentangkan untuk menentusahkan kaedah yang dibina. Hasilnya, 

kaedah yang dibina berjaya menunjukkan penyelesaian bagi persamaan matriks 

Sylvester teritlak arbitrari sama ada untuk kes khas atau umum berdasarkan operasi 

aritmetik kabur baharu, dengan kekompleksan operasi kabur yang minimum. Kaedah 

yang dibina boleh digunakan sama ada untuk matriks pekali segi empat sama atau 

bukan segi empat sama sehingga 100×100 saiz matriks. Kesimpulannya, kaedah yang 

dibangunkan mempunyai sumbangan bererti kepada aplikasi teori sistem kawalan tanpa 

sebarang pembatasan ke atas sistem. 
 

 

 

Kata kunci: Sistem kabur arbitrari, Persamaan matriks Sylvester teritlak, Nombor kabur 
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Abstract 

Many real problems in control systems are related to the solvability of the generalized 

Sylvester matrix equation either using analytical or numerical methods. However, in 

many applications, the classical generalized Sylvester matrix equation are not well 

equipped to handle uncertainty in real-life problems such as conflicting requirements 

during the system process, the distraction of any elements and noise. Thus, crisp 

number in this matrix equation is replaced by fuzzy numbers and called generalized 

fully fuzzy Sylvester matrix equation when all parameters are in fuzzy form. The 

existing fuzzy analytical methods have four main drawbacks, the avoidance of using 

near-zero fuzzy numbers, the lack of accurate solutions, the limitation of the size of the 

systems, and the positive sign restriction of the fuzzy matrix coefficients and fuzzy 

solutions. Meanwhile, the convergence, feasibility, existence and uniqueness of the 

fuzzy solution are not examined in many fuzzy numerical methods. In addition, many 

studies are limited to positive fuzzy systems only due to the limitation of fuzzy 

arithmetic operation, especially for multiplication between trapezoidal fuzzy 

numbers.Therefore, this study aims to construct new analytical and numerical methods, 

namely fuzzy matrix vectorization, fuzzy absolute value, fuzzy Bartle’s Stewart, fuzzy 

gradient iterative and fuzzy least-squares iterative for solving arbitrary generalized 

Sylvester matrix equation for special cases and couple Sylvester matrix equations. In 

constructing these methods, new fuzzy arithmetic multiplication operators for 

trapezoidal fuzzy numbers are developed. The constructed methods overcome the 

positive restriction by allowing the negative, near-zero fuzzy numbers as the 

coefficients and fuzzy solutions. The necessary and sufficient conditions for the 

existence, uniqueness, and convergence of the fuzzy solutions are discussed, and a 

complete analysis of the fuzzy solution is provided. Some numerical examples and the 

verification of the solutions are presented to demonstrate the constructed methods. As 

a result, the constructed methods have successfully demonstrated the solutions for the 

arbitrary generalized Sylvester matrix equation for special and general cases based on 

the new fuzzy arithmetic operations, with minimum complexity fuzzy operations. The 

constructed methods are applicable to either square or non-square coefficient matrices 

up to 100 × 100. In conclusion, the constructed methods have significant contribution 

to the application of control system theory without any restriction on the system. 
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CHAPTER ONES 

INTRODUCTION 

1.1 Research Background 

In applied mathematics, some fields consist of problems that can be represented by 

linear matrix equations, such as in economics, finance, engineering, and physics. The 

linear matrix equation in the form  

𝐴𝑋𝐵 + 𝐶𝑋𝐷 = 𝐸,                                                           (1.1) 

is known as the Generalized Sylvester Matrix Equation (GSME)(Duan, 2015). GSME 

plays an essential role in the design and analysis of linear control systems (Datta, 2004), 

reduction of large-scale dynamical systems (Paige & Van Loan, 1981), restoration of 

noisy images (Bouhamidi & Jbilou, 2007; Calvetti & Reichel, 1996), medical imaging 

data acquisition, model reduction (Sorensen & Antoulas, 2002), stochastic control, 

image processing and filtering (Bouhamidi & Jbilou, 2007). The GSME has various 

generalizations of many well-known matrix equations. It is worth mentioning that  

Eq. (1.2) - Eq. (1.9) are discussed by Datta (2004). For instance, in the GSME, if 𝐵 and 

𝐶 are identity matrices and 𝐷 = 𝐴𝑇, where 𝐴𝑇 is the transpose of 𝐴, then the GSME is 

called the Continuous-Time Lyapunov Matrix Equation (CTLME), 

𝐴𝑋 + 𝑋𝐴𝑇 = 𝐸,                                                                (1.2)                  

which is a special case of another classical matrix equation, known as the Sylvester 

Matrix Equation (SME) which is possibly the most broadly employed linear matrix 

equation, which can be written as,  

𝐴𝑋 + 𝑋𝐷 = 𝐸,                                                                (1.3) 

CTLME and SME have massive applications in control theory (Qiu & Chen, 1999; 

Wimmer, 1994; Wu et al., 2008), optimal control (Saberi & Sannuti, 2000), linear 
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descriptor systems (Darouach, 2006), sensitivity analysis (Lesecq et al., 2001), 

perturbation theory (Li, 1999), system design  (Syrmos & Lewis, 1994), theory of orbits 

(Terán & Dopico, 2011), design and analysis of linear control systems (Datta, 2004), 

reduction of large-scale dynamical systems (Paige & Van Loan, 1981), restoration of 

noisy images (Bouhamidi & Jbilou, 2007; Calvetti & Reichel, 1996), medical imaging 

data acquisition, model reduction (Sorensen & Antoulas, 2002), and image processing 

and filtering (Bouhamidi & Jbilou, 2007). In addition to the CTLME and SME, the 

GSME has many other special cases. They are discussed as follows: 

The discrete-time Lyapunov matrix equation, which can be written in the form 

𝐴𝑋𝐴𝑇 + 𝑋 = 𝐸,                                                                          (1.4) 

which is a special case of the discrete-time Sylvester matrix equation     

𝐴𝑋𝐵 + 𝑋 = 𝐸,                                                                        (1.5 ) 

and the Stein Matrix Equation (StME), which can be written as  

𝑋 + 𝐶𝑋𝐷 = 𝐸,                                                                        (1.6 ) 

In addition, the Linear Matrix Equation (LME) in the form 

𝐴𝑋 = 𝐸,                                                                         (1.7) 

which can be expanded to the linear matrix equation (ELME) in the form 

                      𝐴𝑋𝐵 = 𝐸.                                                                    (1.7𝑎) 

Furthermore, many researchers in the literature considered a more general form of the 

GSME. The system of linear matrix equations in the form 

{
𝐴𝑋 + 𝑌𝐵 = 𝐸,
𝐶𝑋 + 𝑌𝐷 = 𝐹,

                                                                   (1.8) 

is called Coupled Sylvester Matrix Equation (CSME), and the system of equations in 

the form 

{
𝐴1𝑋1𝐵1 + 𝐶1𝑋2𝐷1 = 𝐸1,
𝐴2𝑋1𝐵2 + 𝐶2𝑋2𝐷2 = 𝐸2,

                                                        (1.9) 
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is known as Coupled Generalized Sylvester Matrix Equation (CGSME). There are 

many applications where CSME and CGSME are required to be solved simultaneously. 

The CSME and CGSME are essential in making the computational process less 

complicated, especially in analyzing the stability of control systems so that the control 

system always performs well according to its specifications (Faizi et al., 2017).  

 

Researchers for many years have proposed many analytical and numerical methods for 

solving different forms of GSME and its special and general cases with crisp numbers. 

Analytical approaches are usually based on Vec-operator and Kronecker product 

(Sasaki & Chansangiam, 2020a), where the GSME and its special cases are converted 

to a corresponding LME. Then, the solution was obtained using many analytical 

methods, such as the matrix inversion method (Hernández & Gassó,1989). Alternative 

analytical approaches exist in which the coefficients of the GSME and its special cases 

are transformed into forms for which solutions may be readily computed, such as the 

Jordan canonical form (Heinen, 1971) and Hessenberg–Schur form (Golub et al., 1979). 

Hu and Cheng (2006) proposed a different method for solving GSME when the solution 

is unique; a closed-form solution is obtained and expressed as a polynomial of known 

matrices. A recent study by Bekkar et al. (2020)  discussed the sufficient and necessary 

condition of the existence of the solution to the GSME with sub normality of bounded 

operators infinite dimension complex separable Hilbert space.  

 

Although analytical solutions are important, the computational efforts rapidly increase 

with the dimensions of the matrices to be solved. For example, the conversion of 𝑚 × 𝑛 

GSME by Vec-operator and Kronecker product increases the dimension of the system 

by 𝑚𝑛 ×𝑚𝑛, which make the computational more complex and impracticable. 
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Therefore, analytical methods are limited to GSME with small coefficients only. 

However, many real-life problems are represented in large dimensional systems. 

Therefore, for GSME with large dimensions, iterative algorithms to find an 

approximated solution are more practical (Climent & Perea, 2003; Sasaki & 

Chansangiam, 2020b). Many authors have developed numerical approaches for solving 

the GSME and its special and general cases, such as Krylov subspace method, 

generalized minimum residual method, global Arnoldi method, biconjugate residual 

method, Gradient Iterative Method (GIM) and the Least-Square Iterative Method 

(LSIM). Among these numerical methods, the gradient-based methods are very 

effective in solving the GSME and its special and general cases. Since the sequence of 

approximated solutions for the gradient-based approaches converges to the exact 

solution for any initial value (Sasaki & Chansangiam, 2020b). 

 

A relaxed gradient-based algorithm for solving CGSME was introduced by Sheng  

(2018) in addition to the conjugate gradient least squares algorithm  

(Hu & Ma, 2018) and gradient-based approach (Lv et al., 2018). Many authors studied 

least-squares solutions of crisp GSME and CSME (Dehghan & Hajarian, 2010; Ding 

& Chen, 2005, 2006; Feng & Yagoubi, 2017; Huang & Ma, 2018; Li, 2010; Ramadan 

& ElDanaf, 2015; Steeleworthy & Dewan, 2013; Wang et al., 2016; Wang & He, 2014; 

Zhang, 2011). Recently, (Sasaki & Chansangiam, 2020b) developed a modified 

gradient algorithm for solving GSME by decomposing the coefficient matrices to be 

the sum of its diagonal elements. 

 

Furthermore, all the parameters in the matrix equations in Eq. (1.1) - Eq. (1.9) are only 

in the form of crisp numbers. However, real situations are often not crisp and 
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deterministic and cannot be precisely described (Zimmermann, 2011).  In many 

scenarios, the classical linear system is not well suited to handle the uncertainty in 

actual-life problems. Some coefficient values may be vague and imprecise because of 

incomplete information. 

 

Furthermore, the parameters of linear equation systems are not always necessarily 

defined and consistent in many applications. This imprecision may be due to the 

distraction of elements and noise (Alkhaldi & Winkler, 2015), which are sometimes not 

well equipped by the classical matrix equation. In addition to the unreliable knowledge, 

continuous economic and environmental changes, and conflicting requirements during 

the system process (Asari et al., 2016). Thus, fuzzy numbers should be the most 

effective tool that can be used to model the equation in the form of fuzzy equations. 

Fuzzy number arithmetic is commonly used and is useful in computing linear systems 

whose parameters are in the form of fuzzy numbers. 

 

 Since its inception in 1965, fuzzy sets theory has proliferated. Nowadays, in most 

scientific disciplines, applications of fuzzy sets are considered, such as decision-

making (Bashir et al., 2017; Faizi et al., 2017), probability (Chen & Huang, 2017), 

control theory (Hou et al., 2016), medical sciences (Sałabun & Piegat, 2017) and 

characterization of complex systems (Bucolo et al., 2004), among others. The theory of 

fuzzy numbers was developed and introduced by Zadeh (1965). Later, the theory was 

expanded by introducing the fuzzy arithmetic operation for the left-right fuzzy numbers 

(LR-FNS) by Dubois and Prade (1978) as well as for the particular fuzzy numbers form 

by Kaufman and Gupta (1991). Since then, there has been increasingly rapid progress 

in this field, leading to significant contribution in many fields such as Fuzzy Linear 
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Systems (FLS) in the form 𝐴𝑋̃ = 𝐸̃, and Fully Fuzzy Linear System (FFLS) in the form 

𝐴̃𝑋̃ = 𝐸̃, in three different types of fuzzy numbers namely Parametric Fuzzy Numbers 

(PFN), Triangular Fuzzy Numbers (TFN) and also Trapezoidal Fuzzy Numbers (TrFN) 

(Malkawi et al., 2014c). The coefficent matrix 𝐴̃ and the fuzzy solution 𝑋̃ of the FFLS 

are cosidered to be both positive, negative and near-zero. 

 

The main intention of the FFLS is to broaden the scope of FLS in scientific applications 

by removing the crispness assumption on the entries of the coefficient matrix 𝐴. In 

solving FFLS, the most important property considered is the sign of the parameters, 

either it is positive, negative, near-zero or arbitrary fuzzy numbers. This property is 

very contrary with the FLS because in the FLS, the multiplication between the 

coefficient matrix 𝐴 and fuzzy solution vector 𝑋̃ does not depend on the parameter’s 

sign, while in the FFLS, the multiplication of fuzzy coefficient 𝐴̃ and fuzzy vector 𝑋̃ 

depend on the signs of both (Babbar et al., 2013).  

 

If the coefficients of FLS and FFLS are in the form of matrices, then the equation is 

called Fuzzy Matrix Equation (FME) and Fully Fuzzy Matrix Equation (FFME), 

respectively. FME can be written in the form 

𝐴𝑋̃ = 𝐸̃,                                                               (1.10) 

where the coefficient matrix 𝐴 is an 𝑚 × 𝑛 crisp matrix, the matrix 𝐸̃ is an 𝑚 × 𝑙 fuzzy 

matrix, and the fuzzy solution matrix 𝑋̃ is an 𝑛 × 𝑙 fuzzy matrix. The first study for 

FME was by Guo and Gong (2010a; 2010b). Their study uses the PFN, where the FME 

is converted to a crisp linear system by using the embedding method proposed by 

Friedman, Ming, and Kandel (1998). Then, the system is solved numerically to obtain 

the approximate solution. Gong and Guo (2011) improved their previous method, by 



 

7 

 

solving inconsistent FME, which was previously unavailable in Guo and Gong (2010a; 

2010b).  

 

Additionally, Guo and Shang (2012a) and Otadi and Mosleh (2012) solved the FME by 

adapting the numerical method proposed in Allahviranloo, Salahshour, and Khezerloo 

(2011) to obtain a symmetric solution of the FME. Meanwhile, Guo and Shang (2012b) 

used the LR-TFN where the FME is converted into two crisp matrix equations by 

introducing a generalization of Dubois and Prade Multiplication Operations (DPMO) 

(Dubois & Prade, 1978), which is a simpler approach than their previous studies (Guo 

and Gong, 2010a; Guo and Gong, 2010b).  

 

If the coefficient matrix 𝐴 in the FME is a fuzzy matrix, then the FME is extended to 

FFME in the form 

𝐴̃𝑋̃ = 𝐸̃,                                                                   (1.11 ) 

where 𝐴̃ = (𝑎̃𝑖𝑗)𝑚×𝑝, 𝑋̃ = (𝑥̃𝑖𝑗)𝑝×𝑛 and 𝐸̃ = (𝑒̃𝑖𝑗)𝑚×𝑛 ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛,𝑚. Since all the 

elements in all parameters are fuzzy numbers, the FFME can significantly contribute to 

many real applications. The first study on FFME was conducted by Otadi and Mosleh 

(2012b), in which the Linear Programming (LP) method was extended to find the non-

negative solution for arbitrary FFME, where all the entries of 𝐴̃, 𝑋̃ and 𝐸̃ were 

represented by TFNs. Nevertheless, the method was unable to detect all the possible 

fuzzy solutions, even though it has an infinitely many solutions. A subsequent study 

has been conducted by Guo and Shang (2013b), which used direct multiplication 

operations for solving the Extended Fully Fuzzy Matrix Equation (EFFME) in the form 

𝐴̃𝑋̃𝐵̃ = 𝐸̃,                                                                   (1.12) 
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where 𝐴̃, 𝑋̃ and 𝐵̃ are 𝑝 × 𝑝, 𝑝 × 𝑞 and 𝑞 × 𝑞 non-negative LR-FNS matrices, 

respectively. Apart from that, many researchers were also interested in exploring Fuzzy 

Sylvester Matrix Equation (FSME), which can be written as, 

𝐴𝑋̃ + 𝑋̃𝐷 = 𝐸̃,                                                              (1.13) 

where only 𝐸̃ and the fuzzy solution 𝑋̃ are in fuzzy forms, and 𝐴 and 𝐷 are in crisp 

forms, respectively. Basically, in solving the FSME, the most important method used 

is the Vec-operator and Kronecker product. This method converts the FSME in Eq. 

(1.13) to the LME in Eq. (1.7), and then the solution can be obtained by many methods 

such as matrix inversion or the Cramer rule. The first study of FSME was carried out 

by Salkuyeh (2011), in which the author applied the accelerated over relaxation method 

in finding the fuzzy solutions using PFNs. In addition, Guo (2011) applied the  

Vec-operator and Kronecker product to convert the FSME to FLS and then into a crisp 

matrix equations. Then the solution was obtained by using the classical matrix inversion 

method. However, the solution cannot be obtained if the coefficient matrix is singular.  

In addition, Guo and Shang (2013a) converted the singular FSME into FLS with TFNs 

and extended the FLS into two different systems of linear equations using the TFNs 

arithmetic multiplication operations. Then the fuzzy solution is obtained by 

pseudoinverse method.  

 

In addition, there were also a few numerical methods proposed for solving FSME, 

which was carried out by Araghi and Hossinzadeh (2012) and Guo and Shang (2012b). 

These methods required fewer multiplication operations compared to the analytical 

methods. However, these numerical methods required many iterations to reach the final 

solutions and huge memory usage. Moreover, another study for FSME was carried out 

by He et al. (2018), where the FSME is converted to two crisp Sylvester matrix 
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equations and the solution is obtained by EXTALG algorithm. This method can solve 

a much larger FSME than the method proposed in Salkuyeh (2011). However, getting 

the solution is very long.  

 

There were a few studies conducted in 2015, which aimed to solve the fully fuzzy 

Sylvester matrix equation (FFSME) in the form, 

𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃,                                                         (1.14) 

where, 𝐴̃ = (𝑎̃𝑖𝑗)𝑛×𝑛, 𝐷̃ = (𝑑̃𝑖𝑗)𝑚×𝑚, 𝐸̃ = (𝑒̃𝑖𝑗)𝑛×𝑚 and 𝑋̃ = (𝑥̃𝑖𝑗)𝑛×𝑚, 

 ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛,𝑚. Triangular Fully Fuzzy Sylvester Matrix Equation (TFFSME) has 

been studied only analytically by many researchers. Most analytical methods are based 

on converting the FFSME to LME by applying the Vec-operator and Kronecker 

products. The main advantage of this analytical method is that the exact fuzzy solution 

to the FFSME is obtained, and the existence and uniqueness of the solution can be 

examined. However, this method converts the 𝑚 × 𝑛 FFSME to a much larger LME 

sized 𝑚𝑛 ×𝑚𝑛. Therefore, this approach is usually applied to small-sized FFSME. 

 

Shang et al. (2015) converted the 𝑚 × 𝑛 TFFSME into a system of three LME using 

Vec-operator and Kronecker product. However, the method was restricted only for 

TFFSME with positive fuzzy numbers only and required getting the inverse for 

𝑚𝑛 ×𝑚𝑛 matrices and therefore not applicable to large TFFSME with near-zero TFNs.  

Similarly,  authors in Daud et al. (2018d) and Malkawi et al. (2015) converted the 

𝑚 × 𝑛 TFFSME into a system of three LME using Vec-operator and Kronecker product 

and transferred the LME into an associated linear system where the solution is obtained 

by matrix inversion method and reduced row echelon form, respectively. This method 
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is able to solve TFFSME up to 10 × 10. However, it required getting the inverse of  

3𝑚𝑛 × 3𝑚𝑛 matrices and it is restricted to positive TFFSME only.  

 

TFFSME with arbitrary coefficients has been studied by Daud et al. (2018a, 2018c, 

2017) using fuzzy Vec-operator and Kronecker products. However, these methods need 

further modifications as the Vec-operator and Kronecker product method is not 

applicable for arbitrary fuzzy systems with near-zero fuzzy numbers. It is worth 

mentioning that the properties of crisp numbers multiplication cannot be applied to 

fuzzy number multiplication, especially for near-zero fuzzy numbers. Therefore, the 

Vec-operator and Kronecker product approach is not applicable for arbitrary fuzzy 

systems with near-zero fuzzy numbers, which is proved in the following examples.  

Example 1.1:  Consider the following FFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ where  

𝐴̃ = (
(1, 2, 3, 4) (1, 2, 5, 7)
(1, 2, 3, 5) (4, 5, 6, 7)

) , 𝐷̃ = (
(3, 5, 7, 9) (2, 4, 6, 7)
(1, 2, 3, 4) (3, 5, 6, 7)

) , 

𝑋̃ = (
(1, 4, 5, 8) (1, 3, 5, 7)
(1, 2, 4, 5) (4, 5, 7, 8)

)  and 𝐸̃ = (
(6, 38, 85, 167) (10, 47, 110, 189)
(12, 38, 88, 152) (31, 64, 123, 182)

). 

By applying fuzzy arithmetic operation on the given FFSME, the left-hand side is 

 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = (
(6, 38, 85, 167) (10, 47, 110, 189)
(12, 38, 88, 152) (31, 64, 123, 182)

) which is equal to the right-hand 

side (𝐸̃). 

Applying the Vec-operator and Kronecker product on the given FFSME gives,  

 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ ⟹ [(𝐼⨂𝐴̃) + (𝐷̃𝑇 ⨂𝐼)]𝑉𝑒𝑐(𝑋̃) = 𝑉𝑒𝑐(𝐸̃). 

(

(4, 7, 10, 13) (1, 2, 5, 7) (1, 2, 3, 4) (0, 0, 0, 0)
(1, 2, 3, 5) (7, 10, 13, 16) (0, 0, 0, 0) (1, 2, 3, 4)
(2, 4, 6, 7) (0, 0, 0, 0) (4, 7, 9, 11) (1, 2, 5, 7)
(0, 0, 0, 0) (2, 4, 6, 7) (1, 2, 3, 5) (7, 10, 12, 14)

)(

(1, 4, 5, 8)
(1, 2, 4, 5)
(1, 3, 5, 7)
(4, 5, 7, 8)

) = (

(6, 38, 85, 167)
(12, 38, 88, 152)
(10, 47, 110, 189)
(31, 64, 123, 182)

). 

The left-hand side of the given FFSME is 
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[(𝐼⨂𝐴̃) + (𝐷̃𝑇 ⨂𝐼)]𝑉𝑒𝑐(𝑋̃) = (

(6, 38, 85, 167)
(12, 38, 88, 152)
(10, 47, 110, 189)
(31, 64, 123, 182)

), 

which is equal to the right-hand side 𝑉𝑒𝑐(𝐸̃). 

The following Example 1.2 shows that the Vec-operator and Kronecker product method 

cannot be applied to fuzzy systems with near-zero fuzzy numbers. 

Example 1.2: Consider the following FFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃, 

where 

𝐴̃ = (
(−7,−4, 3, 4) (−6,−3, 1, 4)
(−5,−4,−3, 1) (−4,−2, 4, 7)

) ; 𝐷̃ = (
(−3,−2, 3, 4) (−3,−2, 3, 4)
(−7,−4,−3, 5) (−2,−1, 4, 5)

) ; 

𝑋̃ = (
(−2,−1, 1, 3) (−5,−2, 1, 4)
(−5,−4, 1, 5) (−4,−1, 4, 7)

)  and  

𝐸̃ =  (
(−88,−15, 27, 91) (−104,−29, 19, 95)

(−119,−48, 24, 100) (−88,−28, 48, 129)
). 

In the given FFSME, the left-hand side is, 

 𝐴̃𝑋̃ + 𝑋̃𝐵̃ = (
(−88,−15, 27, 91) (−104,−29, 19, 95)
(−119,−48, 24, 100) (−88,−28, 48, 129)

), which is equal to the 

right-hand side (𝐸̃). 

Applying the Vec-operator and Kronecker product on the given FFSME gives,  

(

(−10,−6, 6, 8) (−6,−3, 1, 4) (−7, −4,−3, 5) (0, 0, 0, 0)
(−5,−4,−3,−1) (−7,−4, 7, 11) (0, 0, 0, 0) (−7,−4,−3, 5)
(−3,−2, 3, 4) (0, 0, 0, 0) (−9,−5, 7, 9) (−6,−3, 1, 4)
(0, 0, 0, 0) (−3,−2, 3, 4) (−5, −4,−3, 1) (−6,−3, 8, 12)

)(

(−2,−1, 1, 3)
(−5,−4, 1, 5)
(−5,−2, 1, 4)
(−4,−1, 4, 7)

) 

= (

(−88,−14, 26, 89)
(−119,−48, 24, 100)
(−96,−29, 17, 85)
(−88,−28, 48, 129)

). 

The left-hand side of the given FFSME is,  

[(𝐼⨂𝐴̃) + (𝐷̃𝑇  ⨂𝐼)]𝑉𝑒𝑐(𝑋̃) = (

(−88,−14, 26, 89)
(−119,−48, 24, 100)
(−96,−29, 17, 85)
(−88, −28, 48, 129)

) ≠ (

(−88,−15, 27, 91)
(−119,−48, 24, 100)
(−104, −29, 19, 95)
(−88,−28, 48, 129)

). 
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Examples 1.1 and 1.2 show that the Vec-operator and Kronecker product method has 

two main disadvantages: 

I) It cannot be applied to fuzzy systems with near-zero fuzzy numbers. 

II) It can be applied only to fuzzy systems with positive or negative fuzzy numbers. 

Moreover, the Vec-operator and Kronecker product method for 𝑚 × 𝑛 positive or 

negative fuzzy system required getting the inverse of 𝑚𝑛 ×𝑚𝑛 matrices, which is not 

possible for large systems. 

 

On the other hand, there was a study by Dookhitram et al. (2015) on the other form of 

TFFSME,  

𝐴̃𝑋̃ − 𝑋̃𝐷̃ = 𝐸̃,                                                              (1.15) 

where the minimal and maximal-symmetric solutions of the FFSME with PFN was 

obtained. This method enables solving the FFSME with fewer multiplications’ steps 

compared to the previous studies by Shang, Guo and Bao (2015) and  

Malkawi et al. (2015). However, this method is very complicated to be handle, 

especially by researchers in other fields (S. Daud et al., 2016).  

 

In addition to that, Daud et al. (2018b) obtained the positive solution of the TFFSME 

in Eq. (1.15) with arbitrary triangular fuzzy coefficients using Vec-operator and 

Kronecker product. The FFSME in Eq. (1.14) can be extended to the following general 

form 

𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃,                                                          (1.16)  

where, 𝐴̃ = (𝑎̃𝑖𝑗)𝑞×𝑝, 𝐵̃ = (𝑏̃𝑖𝑗)𝑛×𝑟, 𝐶̃ = (𝑐̃𝑖𝑗)𝑞×𝑝, 𝐷̃ = (𝑑̃𝑖𝑗)𝑛×𝑟, 𝑋̃ = (𝑥̃𝑖𝑗)𝑝×𝑛 and 

𝐸̃ = (𝑒̃𝑖𝑗)𝑞×𝑟 and it is called Generalized Fully Fuzzy Sylvester Matrix Equation 

(GFFSME). If 𝐴̃, 𝑋̃, 𝐵̃, 𝐶̃, 𝐷̃, and 𝐸̃  in the GFFSME are trapezoidal fuzzy matrices, then 
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the GFFSME is called Generalized Trapezoidal Fully Fuzzy Matrix Equation 

(GTrFFSME). It is worth mentioning that in the literature, most of the existing methods 

are for GFFSME’s special cases, such as FFSME, FFME and FFLS, and no study in 

the literature addressed the GFFSME. On the other side, authors in the literature 

extended their studies to a Pair of Fuzzy Matrix Equations (PFME). 

Sadeghi et al. (2011) proposed a method for solving a PFME in the form 

{
𝐴𝑋̃ + 𝑋̃𝐵 = 𝐶̃,

𝐷𝑋̃𝐸 = 𝐹̃.
                                                                (1.17)                                     

In their method, the PFME is converted to a system of LME using Vec-operator and 

Kronecker product, and the solution is obtained numerically by the least-square 

iterative method. Meanwhile, Daud et al. (2018a; 2019) proposed analytical methods 

for solving a Pair of Fully Fuzzy Matrix Equations (PFFME) in the form 

{
𝐴̃𝑋̃ + 𝑋̃𝐵̃ = 𝐶̃,

𝐷̃𝑋̃𝐸̃ = 𝐹̃,
                                                              (1.18)   

 

A CSME are required to be solved simultaneously in many applications, such as 

analyzing the stability of control systems (Faizi et al., 2017). The CSME can be 

extended to form Coupled Fuzzy Sylvester Matrix Equation (CFSME). Bayoumi and 

Ramadan (2020b) studied CFSME in the form  

{
𝐴𝑋̃ + 𝑌̃𝐵 = 𝐸̃,

𝐶𝑋̃ + 𝑌̃𝐷 = 𝐹̃,
 

where the numerical algorithms are constructed by applying the hierarchical 

identification principle, where the fuzzy solution is obtained using the generalized 

inverse of the coefficient matrix. When all parameters of the CSME are in the fuzzy 

form, then it is called CFFSME, which can be written in the form               

 {
𝐴̃𝑋̃ + 𝑌̃𝐵̃ = 𝐸̃,

𝐶̃𝑋̃ + 𝑌̃𝐷̃ = 𝐹̃,
                                                 (1.19) 
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where 𝐴̃ = (𝑎̃𝑖𝑗)𝑚×𝑛, 𝑋̃ = (𝑥̃𝑖𝑗)𝑛×𝑝, 𝑌̃ = (𝑦̃𝑖𝑗)𝑚×𝑟, 𝐵̃ = (𝑏̃𝑖𝑗)𝑟×𝑝, 𝐶̃ = (𝑐̃𝑖𝑗)𝑚×𝑛, 

𝐷̃ = (𝑑̃𝑖𝑗)𝑟×𝑝, 𝐸̃ = (𝑒̃𝑖𝑗)𝑚×𝑝, and 𝐹̃ = (𝑓𝑖𝑗)𝑚×𝑝. Until now, there is no single study 

found on solving the CFFSME with restricted or unrestricted coefficient.  

1.2 Problem Statement 

Based on the discussion on methods for solving a FLS, FFLS, FFME and FFSME, it is 

apparent that these methods have the following drawbacks: 

The existing methods for solving FFME and FFSME based on DPMO have sign 

restrictions on its coefficients and fuzzy solutions, where either the coefficients or the 

fuzzy solutions are strictly positive. It is also observed that most researchers in the 

literature applied only analytical approaches for solving FFSME. However, these 

analytical methods are limited to FFSME with small size only. In addition, the 

numerical methods that can solve FFSME with large size are not developed in the 

literature.  

 

It is further observed that the theoretical development of the existence, uniqueness and 

feasibility of the fuzzy solution is not investigated in many existing methods. In 

addition, in most existing studies, researchers converted the fuzzy matrix equations into 

a corresponding system of linear equations without checking the equivalency between 

the fuzzy equation and the linear system. Furthermore, the accuracy and convergence 

of numerical methods in the literature are not examined in many studies.  

 

Moreover, while TFNs were widely used in earlier works, TrFNs have been overlooked 

for a long time, especially for FFME and FFSME. In addition to that, most researchers 
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considered only the square coefficient matrices. In the following subsections, these 

limitations are discussed in detail. 

1.2.1 Arithmetic Fuzzy Multiplication Operations 

Existing methods in the literature for FFLS, FFME and FFSME can be classified based 

on the arithmetic fuzzy multiplication operations used. The multiplication between 

fuzzy numbers is not always a fuzzy number. Therefore, many researchers 

approximated the multiplication between fuzzy numbers such as DPMO  

(Dubois & Prade, 1978) and Kaufmann and Gupta Multiplication Operator (KGMO) 

(Kaufmann et al., 1986). 

 

DPMO is restricted to positive fuzzy numbers only. Having sign restrictions means all 

parameters of the system are assumed as positive. Therefore, most researchers 

implement DPMO to avoid the long fuzzy multiplication operations required for 

solving arbitrary fuzzy systems. Some authors discussed the limitations of DPMO for 

multiplication on TFNs. Babbar, Kumar and Bansal (2013) claimed that this 

approximation is suitable only if the right and left spreads of the TFN are negligible 

compared to the mean value of the TFN. Fortin, Dubois and Fargier (2008) mentioned 

that DPMO is very suitable for a positive TFN only; it can give a closed-form result for 

the basic arithmetic multiplication of positive numbers. However, in fuzzy equations, 

the mean value 𝑚 may be too remote of the left and right spreads 𝛼 or 𝛽. 

 

Furthermore, the sign is not required to be positive all time. Thus, Kaufmann and Gupta 

(Kaufmann et al., 1986) introduced an approximation for multiplication of arbitrary 

TFN. Even though researchers were able to solve FFLS with fully arbitrary fuzzy 
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numbers using KGMO, the methods cannot be extended to solve FFSME with arbitrary 

coefficients.  

 

Furthermore, although KGMO can be applied directly to the fuzzy equations, however 

the obtained non-linear min-max system of equations is very challenging to be solved. 

Therefore many authors proposed modification to the KGMO in order to reduce the  

non-linear min-max linear system of equations such as in  

Babbar et al. (2013) and Malkaw et al. (2015). However, this modification is limited to 

TFNs only and need to be extended to TrFNs. In addition, fuzzy arithmetic 

multiplication operations for TrFNs are limited to positive TrFNs and cannot be applied 

to fuzzy equations with near-zero TrFNs. Therefore, new arithmetic fuzzy 

multiplication operations must be developed to overcome this shortcoming. 

1.2.2 Type of The Methods Used 

Researchers applied many analytical and numerical methods in the literature for solving 

FLS, FFLS, FME, FFME and FFSME. The limitations of the existing methods are as 

follows: 

I) Analytical methods involve many arithmetic fuzzy operations and require many   

            multiplications processes and long computational times (Ahmad et al., 2016).  

            Therefore, analytical methods are limited only to small size systems. 

II) Existing methods for solving TFFSME and TrFFSME can only obtain positive  

            fuzzy solutions and cannot be extended to fuzzy equations with arbitrary fuzzy  

            solutions.  
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III) The existing analytical methods proposed for solving different arbitrary systems  

            are based on Vec-operator and Kronecker products. Vec-operator and    

            Kronecker product approach is applicable for fuzzy systems with positive or  

            negative fuzzy numbers only and cannot be applied to fuzzy systems with near- 

            zero fuzzy numbers. In addition, the Kronecker product method for 𝑚 × 𝑛 fuzzy  

            system requires getting the inverse of 𝑚𝑛 ×𝑚𝑛 matrix, which is not possible  

            for large systems (Sasaki & Chansangiam, 2020b). 

IV) Most of the researchers converted the fuzzy equations to an equivalent system  

            of linear equations. However, the equivalency between the solution to the fuzzy  

            systems and the corresponding linear system is not proved. In other words, by  

             applying some of the existing methods, we cannot guarantee to have a fuzzy  

             solution for solving randomly chosen examples.  

 

In addition, the obtained fuzzy solution in some existing numerical methods is not 

compatible with the fuzzy system. Malkawi et al. (2015a; 2015b; 2015) noted that the 

obtained fuzzy solution in some existing methods is incompatible with the fuzzy 

system. Some existing methods are incomplete and have many flaws. Since the 

proposed solution is incorrect, this flaw can be easily identified by verifying the 

obtained fuzzy solution using direct substitution, and this can be seen in solving the 

given examples in the studies by Liu (2010), Allahviranloo et al. (2012; 2014) and 

Abbasbandy and Hashemi (2012).  

 

Some numerical methods such as in Otadi et al. (2011), required information about the 

solution to choose suitable initial values before solving the system, which means the 

method is insufficient to solve arbitrary systems when these initial values are not 
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available. In addition, the methods by Fariborzi and Hosein (2012) and Guo and Bao 

(2013) required many iterations to reach the final solutions and consequently, huge 

memory storage. In addition, some of the numerical methods in the literature are 

applied to a fuzzy equation with small fuzziness only, such as the method proposed by 

Liu (2010).  

1.2.3 Size of the Fuzzy Equations 

Most of the existing studies restricted the size of the coefficient matrix for most of the 

fuzzy systems. Many studies are limited only to the small size of matrices. Some 

methods provide easy implementation, but the calculation was time-consuming, 

especially when it involves large size of matrices with 𝑛 > 3. When the size increases, 

many steps are required to find the fuzzy solution. For instance, Babbar, Kumar and 

Bansal (2013) proposed that the optimization problem may have 3𝑛 + 2𝑛2 constraints 

to solve arbitrates 𝑛 × 𝑛 fuzzy system.  

 

Meanwhile, before constructing the optimization problem, Allahviranloo et al. (2014) 

must solve more than six different linear systems or nonlinear, which comprised two 

fully interval linear systems, three 2𝑛 × 2𝑛 linear systems, a 4𝑛 × 4𝑛 nonlinear 

equations, and 𝑛 × 𝑛 nonlinear equations. Therefore, in dealing with this shortcoming, 

development of new efficient algorithms producing positive and negative solutions for 

FFSME with TrFNs with large size matrices is necessary. 

1.2.4 Type of Fuzzy Numbers 

The fuzzy numbers applied in the literature were in the form of triangular or parametric 

fuzzy numbers. In the literature of FLS, FFLS, FME, FFME and FFSME, researchers 
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contributed significantly to systems with PFNs or TFNs. However, TrFNs have been 

overlooked for a long time, especially for FFME and FFSME. TrFNs span all the TFNs 

entirely, as it is an extension of the triangular case and will cover more real-life 

applications (Grzegorzewski et al., 2020). Since TFN is a special case of TrFNs and 

TrFN is considered a generalization of TFN (Ebadi et al., 2013), it is useful and more 

practical to generalize FFLS, FFME and FFSME with TrFNs parameters.  

 

In addition, TrFNs in the general form (𝑎, 𝑏, 𝑐, 𝑑) have some of the following 

advantages over other linear and non-linear membership functions. Firstly, trapezoidal 

fuzzy numbers form the most generic class of fuzzy numbers with linear membership 

functions. Thus, this class of fuzzy numbers spans entirely the widely discussed class 

of triangular fuzzy numbers implying its more generic property and therefore has more 

applicability in modelling linear uncertainty in scientific and applied engineering 

problems, including fully fuzzy linear systems and fuzzy transportation problems 

(Bansal, 2011; Purushothkumar & Ananathanarayanan, 2017). In addition, the TrFN 

general form, (𝑎, 𝑏, 𝑐, 𝑑) is simpler and more practical as compared to the LR-form 

( 𝑚, 𝑛, 𝛼, 𝛽) due to the conceptual and computational simplicity type of the fuzzy 

coefficient matrices. 

 

Generally, in a FLS, FFLS, FFME and FFSME, the coefficient matrices can be 

categorized into square and non-square forms (Kocken & Albayrak, 2015). However, 

many researchers in the literature proposed methods to solve systems with square 

coefficient matrices only while the non-square form is overlooked, especially for FFME 

and FFSME representing linear equation systems. Even though non-square FFME 
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models real-life problems in a more flexible way, it has received far less attention from 

researchers.  

1.2.5 Variety of Fuzzy Matrix Equations 

In a FLS, FFLS, FFME and FFSME, the coefficient matrices can be categorized into a 

square and non-square forms (Kocken & Albayrak, 2015). However, many researchers 

in the literature proposed methods to solve fuzzy systems with square coefficient 

matrices only where the non-square form is overlooked, especially for FFME and 

FFSME—representing linear equation systems, as non-square FFME models real-life 

problems in a more flexible way. However, it has received far less attention from 

researchers. In addition to that, the number of studies in solving various fully fuzzy 

matrix equations and pair fully fuzzy matrix equations is still limited, particularly with 

trapezoidal fuzzy numbers as the coefficients of the equations. Therefore, it is necessary 

to study the solutions of GFFSME and its special and general cases while addressing 

the issues of previous studies at the same time.  

1.2.6 Fuzzy Solutions Analyses 

The theoretical development of the existence and uniqueness of the fuzzy solution is 

not investigated in many existing methods, such as the methods in  

Bayoumi and Ramadan (2020),  Daud et al. (2018a; 2018b; 2016; 2017) and 

Vijayalakshmi et al. (2020). In other words, the necessary and sufficient conditions for 

having a unique positive fuzzy solution is not studied. Some methods provided a 

positive solution to fuzzy equations where the fuzzy equation has no solution, such as 

the examples in Abbasbandy and Hashemi (2012). Therefore, by applying these 

methods, we cannot examine the existence of the fuzzy solution before applying the 
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method. Motivated by the limitation discussed above, the research objectives are stated 

below.  

1.3 Research Objectives 

The main objective of this study is to solve arbitrary GTrFFSME and its special and 

general cases using analytical and numerical approaches. In order to achieve this main 

objective, the following sub-objectives are needed: 

I) To construct analytical and numerical methods for solving GTrFFSME with     

            positive and arbitrary coefficients. 

II) To modify the constructed methods of GTrFFSME for different fuzzy   

            equations, numbers, and forms. 

III) To construct analytical and numerical methods for solving CTrFFSME with     

positive and arbitrary coefficients by extending the constructed methods of 

GTrFFSME. 

IV) To verify the constructed methods by analyzing the solutions in terms of 

feasibility of the solution and graphical representation and checking the 

numerical method’s performance in terms of accuracy and efficiency.  

1.4 Scope of Study 

This study develops new analytical and numerical methods for solving positive 

GTrFFSME, TrFFSME, TrFFCTLME, TrFFStME, TrEFFME, TrFFME and 

CTrFFSME. In addition, a new analytical method for solving arbitrary GTrFFSME, 

TrFFSME, TrFFCTLME, TrFFStME, TrEFFME, TrFFME and CTrFFSME is also 

developed. The software used is Mathematica 12.1 and Maple 2019. 
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1.5 Significance of Findings 

The newly developed methods have both theoretical and practical contributions as 

follows: 

I) New fuzzy arithmetic multiplication operations, which provide simpler fuzzy   

            operations compared to the existing ones. 

II) New constructed methods for solving fuzzy problems in different forms of   

            generalized Sylvester matrix equations that would be useful in the applications  

            of medical imaging and control system theory. 

III) Theoretical development on the existence of fuzzy solutions based on the newly    

            developed method. 

1.6 Organization of the Thesis 

This thesis has eight chapters. Chapter One contains the research introduction and 

discusses the research background and a brief survey of fuzzy systems, the problem 

statement, the research objectives, the study's scope, and the study's significance.  

 

Chapter Two presents the selected reviews of matrix theory and fuzzy numbers, 

definitions, basic concepts and established results of fuzzy systems. In addition to that, 

it also provides some fundamental concepts for fuzzy theory and fuzzy Sylvester matrix 

equation and method for solving fuzzy systems.  

 

In Chapter Three, arithmetic fuzzy multiplication operations between TrFNs in the 

general form are developed, reduced, and used to develop the methods for solving 

positive GTrFFSME and its special cases. In addition, the analytical and numerical 

positive fuzzy solutions to the positive GTrFFSME and its special cases which include 
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TrFFSME, TrFFME, TrEFFME, TrFFCTLME and TrFFStME are obtained 

analytically by developing the fuzzy matrix vectorization method and numerically by 

fuzzy gradient and fuzzy least-square iterative methods. The necessary conditions to 

have a unique positive solution are discussed in addition to the convergence of the 

numerical methods. The developed methods are illustrated by solving some examples 

up to size 100 × 100. 

 

In Chapter Four, new analytical methods for solving arbitrary GTrFFSME and its 

special cases are presented. The arbitrary GTrFFSME is converted to an equivalent 

system of non-linear equations using the extended arithmetic fuzzy multiplication 

operations for arbitrary TrFNs. Then, the reduced system is converted to a system of 

absolute equations where the fuzzy solutions are obtained by solving that system. In 

addition, the solutions to arbitrary TrFFSME and arbitrary TrFFME with TrFNs and 

TFNs are obtained. The developed methods are illustrated by solving some examples. 

 

Chapter Five demonstrate the construction of analytical and numerical methods for 

solving a couple positive TrFFSME, where the coefficients are positive TrFNs. The 

analytical fuzzy solutions are obtained by extending the fuzzy matrix vectorization 

methods for solving positive TrFFSME. Meanwhile the numerical solutions are also 

obtained by extending the fuzzy gradient and fuzzy least-square iterative methods for 

solving positive TrFFSME. The necessary conditions for the coupled positive 

TrFFSME to have unique positive solution are discussed in addition to the convergence 

of the numerical methods. The developed methods are illustrated by solving some 

examples up to size 100 × 100. 
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In Chapter Six, the analytical methods for solving arbitrary TrFFSME are extended for 

a couple of arbitrary TrFFSME. The couple arbitrary TrFFSME is converted to an 

equivalent system of non-linear equations using the reduced arithmetic fuzzy 

multiplication operations for arbitrary TrFNs. Then, the reduced system is converted to 

a system of absolute equations where the fuzzy solutions are obtained by solving that 

system. The developed method is illustrated by solving some examples. 

 

In Chapter Seven, the developed analytical methods in Chapter Three for solving 

TrFFSME with TrFNs in general form are modified and applied to TrFFSME with  

LR-TrFNs in the form 𝐴̃𝑋̃ + 𝑋̃𝐵̃ = 𝐶̃ and 𝐴̃𝑋̃ − 𝑋̃𝐵̃ = 𝐶̃ with positive and negative LR 

fuzzy numbers. In addition to a new fuzzy coefficient method, the necessary conditions 

for the TrFFSME to have unique solution are discussed. The developed methods are 

illustrated by solving some examples. 

 

Finally, Chapter Eight concludes the whole thesis with a summary of this study and 

discusses some insights into the possibilities for future research in this area of study. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

This chapter discusses the research background and a brief review of fuzzy systems, 

fuzzy numbers, basic definitions and concepts of matrix, set theory, fuzzy set theory, 

and classical methods for solving fuzzy systems. In addition, some of the existing 

methods for solving the FFLS, FFME, FFSME and SME are also reviewed.  

2.2 Fuzzy Set Theory 

The concept of fuzzy numbers was introduced in Zadeh (1965) to describe the 

vagueness and uncertainty numbers or variables. The definitions of fuzzy numbers are 

explained as follows: 

Definition 2.2.1. (Zadeh, 1965) If 𝑋 is a collection of objects denoted generically by 𝑥, 

then a fuzzy set 𝐴̃  in 𝑋 is a set of ordered pairs of two elements 𝑥 and its membership 

function:  

𝐴̃ = {(𝑥, 𝜇𝐴̃(𝑥))/ 𝑥 ∈ 𝑋}. 

The membership function can be written as: 

𝜇𝐴̃(𝑥): 𝑋 → [0,1]. 

Definition 2.2.2. (Zadeh, 1965) A fuzzy number is a convex normalized fuzzy set of 

the real line R whose membership function is piecewise continuous. 

The following Definitions 2.2.3, 2.2.4 and 2.2.5 are referred from (Dehghan et al., 

2009). 

Definition 2.2.3. A matrix  𝐴̃ = (𝑎̃𝑖𝑗) is called a fuzzy matrix, if each element of  𝐴̃  is 

a fuzzy number.  
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Definition 2.2.4. A fuzzy matrix 𝐴̃ is:  

I) Positive (negative) and denoted by 𝐴̃ > 0, (𝐴̃ < 0) if each element of 𝐴̃ is a 

positive (negative) fuzzy number.                                                                          (2.1a) 

II) Non-negative (non-positive) and denoted by 𝐴̃ ≥ 0, (𝐴̃ ≤ 0) if each element 

of 𝐴̃  is a non-negative (non-positive) fuzzy number.                                            (2.1b)                                                                     

III) Arbitrary, if at least one element of 𝐴̃ is near-zero fuzzy number.             (2.1c)                              

Definition 2.2.5. A vector 𝑋̃ = (𝑥̃1, 𝑥̃2, … , 𝑥̃𝑛)
𝑇 is called a fuzzy vector if all elements 

of 𝑋̃ are fuzzy numbers. 

The types of fuzzy numbers are discussed in the following Section 2.3. 

2.3 Types of Fuzzy Numbers 

This section discusses three types of fuzzy numbers: PFN, TFN, and TrFN (Kaufmann 

& Gupta, 1991; Zadeh, 1965). 

2.3.1 Parametric Form of Fuzzy Numbers 

In this section, the PFN is discussed. PFN has been applied mostly in solving the FLS. 

The definition of the PFN is given as follows: 

Definition 2.3.1.1.  A PFN 𝐴̃ is represented by an ordered pair of functions  

 𝐴̃ = (𝑎(𝑟), 𝑎̅(𝑟)) , for  0 ≤ 𝑟 ≤ 1 which will satisfy the following conditions: 

I) 𝑎(𝑟) ≤ 𝑎̅(𝑟),  for  0 ≤ 𝑟 ≤ 1.  

II) 𝑎̅(𝑟) is a bounded right continuous non−increasing function on [0, 1].  

III) 𝑎(𝑟) is a bounded left continuous non−decreasing function on [0, 1]. 

Among the several fuzzy numbers, the most common fuzzy number used in the 

literature of FFLS, FFME and FFSME is the TFN. 
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2.3.2 Triangular Fuzzy Numbers 

A TFN in the form (𝑚, 𝛼, 𝛽) is said to be in LR-form, and if it is represented as 

(𝑎1, 𝑎2, 𝑎3), then it is in a general form. In the following Section 2.3.2.1, the LR-TFN 

is discussed. 

2.3.2.1 Triangular Fuzzy Numbers in LR-Form 

In this section, the LR-TFN is discussed. The LR-TFN 𝐴̃ = (𝑚, 𝛼, 𝛽)  can be written 

as a PFN 𝐴̃ = (𝑎(𝑟), 𝑎̅(𝑟)) where 𝑎(𝑟) = 𝑟𝛼 +𝑚 − 𝛼 and 𝑎̅(𝑟) = 𝑚 + 𝛽 − 𝑟𝛽. 

In the following Definition 2.3.2.1, the membership function of the LR-TRN is 

introduced. 

Definition 2.3.2.1. A fuzzy number  𝐴̃ = (𝑚, 𝛼, 𝛽) is said to be an LR-TFN, if its 

membership function is given by, 

𝜇𝐴̃(𝑥) =

{
 
 

 
 1 −

𝑚 − 𝑥

𝛼
,       𝑚− 𝛼 ≤ 𝑥 ≤ 𝑚   ,   𝛼 > 0, 

1 −
𝑥 −𝑚

𝛽
,      𝑚 ≤ 𝑥 ≤ 𝑚 + 𝛽   ,  𝛽 > 0,

0,                             otherwise.

                 

In this case, 𝑚 is the mean value of 𝐴̃, 𝛼 is the right spread, and 𝛽 is the left spread. 

Definition 2.3.2.2. The sign of 𝐴̃ = (𝑚, 𝛼, 𝛽) is classified as follows: 

I) 𝐴̃ is called positive (negative) iff 𝑚 − 𝛼 ≥ 0 (𝛽 + 𝑚 ≤ 0 ).                    (2.2a) 

II) 𝐴̃ is called zero iff  (𝑚 = 0, 𝛼 = 0 𝑎𝑛𝑑 𝛽 = 0).                                       (2.2b) 

III) 𝐴̃ is called near-zero iff 𝑚 − 𝛼 ≤ 0 ≤ 𝛽 +𝑚.                                          (2.2c) 

Remark 2.3.2.1. If the spreads 𝛼 and 𝛽 increase in 𝐴̃ = (𝑚, 𝛼, 𝛽), 𝐴̃ becomes fuzzier 

and fuzzier (Dubois & Prade, 1978). Moreover, it is considered as non-fuzzy (crisp 

number) when 𝛼, 𝛽 = 0. Figure 2.1. displays the LR-form of the TFN. 
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Figure 2.1. Representation of LR-TFN 

Definition 2.3.2.3.   Two TFNs 𝐴̃1 = (𝑚1, 𝛼1, 𝛽1) and 𝐴̃2 = (𝑚2, 𝛼2, 𝛽2) are equal, 

iff  𝑚1 = 𝑚2,  𝛼1 = 𝛼2 𝑎𝑛𝑑 𝛽1 = 𝛽2.  

2.3.2.2 Triangular Fuzzy Numbers in General Form 

In this section, the TFN in general form is discussed. The general form of the TFN can 

be derived from the LR-form if we let: 𝑎1 = 𝑚 − 𝛼, 𝑎2 = 𝑚, 𝑎3 = 𝑚 + 𝛽, then  

𝐴̃ = (𝑎1, 𝑎2, 𝑎3) and the membership function for 𝐴̃ is, 

𝜇𝐴̃(𝑥) =

{
 
 

 
 
𝑥 − 𝑎1
𝑎2 − 𝑎1

                          𝑎1 ≤ 𝑥 ≤ 𝑎2,

𝑎3 − 𝑥

𝑎3 − 𝑎2
                            𝑎2 ≤ 𝑥 ≤ 𝑎3,

    0                                    otherwise  

       

In the Figure 2.2. the general form of the TFN 𝐴̃ is represented. 

 

 

 

 

 

Figure 2.2. Representation of TFN in a general form. 

𝑥 
𝑎3 𝑎2 𝑎1 0 

1 

𝜇𝐴̃(𝑥) 

𝑥 
𝑚 + 𝛽 𝑚 𝑚 − 𝛼 0 

1 

𝜇𝐴̃(𝑥) 
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2.3.3 Trapezoidal Fuzzy Numbers 

In this section, the TrFN is discussed. The LR-TrFNs is a generalization to the  

LR-TFNs by extending the mean value 𝑚 in LR-TFNs to produce an interval [𝑚, 𝑛].  

LR-TrFN in the form (𝑚, 𝑛, 𝛼, 𝛽) is said to be in LR-form (LR-TrFN), and if it is 

represented as (𝑎1, 𝑎2, 𝑎3, 𝑎4), then it is in general form. In the following  

Section 2.3.3.1, the graphical representation and arithmetic operations of LR-TrFNs are 

reviewed. 

2.3.3.1 Trapezoidal Fuzzy Numbers in LR-Form 

In this section, the LR-TrFN are discussed. In the following Definition 2.3.3.1.1, the 

membership function of the LR-TrFN is introduced. 

Definition 2.3.3.1.1. A fuzzy number 𝐴̃ = (𝑚, 𝑛, 𝛼, 𝛽) is said to be a LR-TrFN, if its 

membership function is given by: 

𝜇𝐴̃(𝑥) =

{
 
 

 
 1 −

𝑚 − 𝑥

𝛼
 𝑚− 𝛼 ≤ 𝑥 ≤ 𝑚   ,   𝛼 > 0,

1  𝑚 < 𝑥 < 𝑛,

1 −
𝑥 − 𝑛

𝛽
0

𝑛 ≤ 𝑥 ≤ 𝑛 + 𝛽   ,  𝛽 > 0,
otherwise.

 

In the following Figure 2.3, the LR-TrFN is presented. 

 

 

 

 

 

Figure 2.3. Representation of LR-TrFN. 
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Remark 2.3.2.   In the LR-TrFN (𝑚, 𝑛, 𝛼, 𝛽), 𝛼, 𝛽 are called the left and right spread, 

respectively, while 𝑚, 𝑛 are the mean points. 

Definition 2.3.3.1.2. A LR-TrFN 𝐴̃ = (𝑚, 𝑛, 𝛼, 𝛽) is called symmetric if 𝛼 = 𝛽.  

Definition 2.3.3.1.3.  In the LR-TrFN 𝐴̃ = (𝑚, 𝑛, 𝛼, 𝛽) if 𝛼, 𝛽 are negative or 𝑚 > 𝑛 

then it is not a LR-TrFN. 

Definition 2.3.3.1.4. The sign of 𝐴̃ = (𝑚, 𝑛, 𝛼, 𝛽)  is classified as follows: 

I) 𝐴̃ is called positive (negative) iff 𝑚 − 𝛼 ≥ 0, (𝛽 + 𝑛 ≤ 0 ).                           (2.3a) 

II) 𝐴̃ is called zero iff 𝑚 = 0, 𝑛 = 0, 𝛼 = 0 𝑎𝑛𝑑 𝛽 = 0.                                        (2.3b) 

III) 𝐴̃ is called near-zero iff 𝑚 − 𝛼 ≤ 0 ≤ 𝛽 + 𝑛.                                                          (2.3c) 

Definition 2.3.3.1.5. Two LR-TrFN 𝐴̃ = (𝑚1, 𝑛1, 𝛼1, 𝛽1) and  𝐵̃ = (𝑚2, 𝑛2, 𝛼2, 𝛽2) 

are called equal, iff 𝑚1 = 𝑚2,  𝑛1 = 𝑛2,  𝛼1 = 𝛼2 and 𝛽1 = 𝛽2.                            (2.4) 

Definition 2.3.3.1.6. (Dubois & Prade, 1978; Kumar et al., 2011; Kumar & Neetu, 

2010; Marni et al., 2018; Safitri & Mashadi, 2019) The arithmetic operations for two 

LR-TrFN  𝐴̃ = (𝑚1, 𝑛1, 𝛼1, 𝛽1) and 𝐵̃ = (𝑚2, 𝑛2, 𝛼2, 𝛽2) are represented as follows: 

I) Addition:  

𝐴̃ +  𝐵̃ =  (𝑚1 +𝑚2, 𝑛1 + 𝑛2, 𝛼1 + 𝛼2, 𝛽1 + 𝛽2).                                  (2.5𝑎) 

II) Opposite:  

− 𝐴̃ = −(𝑚1, 𝑛1, 𝛼1, 𝛽1) = (−𝑛1, −𝑚1, 𝛽1, 𝛼1).                                  (2.5𝑏) 

III) Subtraction: 

𝐴̃ − 𝐵̃  = (𝑚1 − 𝑛2, 𝑛1 −𝑚2, 𝛼1 + 𝛽2, 𝛽1 + 𝛼2).                                    (2.5𝑐) 

IV) Scalar multiplication: Let 𝜆 ∈ ℝ. Then,  

𝜆 ⊗ (𝑚, 𝑛, 𝛼, 𝛽) = {
(𝜆𝑚, 𝜆𝑛, 𝜆𝛼, 𝜆𝛽),           𝜆 ≥ 0
(𝜆𝑛, 𝜆𝑚,−𝜆𝛽,−𝜆𝛼),    𝜆 < 0

            

Multiplication:  

Case I: If  𝐴̃ > 0 and 𝐵̃ > 0 then: 
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  𝐴̃ × 𝐵̃ = (𝑚1𝑚2, 𝑛1𝑛2, 𝑚1𝛼2 +𝑚2𝛼1, 𝑛1𝛽2 + 𝑛2𝛽1).                  (2.6𝑎) 

Case II: If  𝐴̃ < 0 and  𝐵̃ < 0  then:  

 𝐴̃ × 𝐵̃ = (𝑚1𝑚2, 𝑛1𝑛2, −(𝑚1𝛼2 +𝑚2𝛼1), −(𝑛1𝛽2 + 𝑛2𝛽1)).      (2.6𝑏) 

Case III: 𝐴̃ > 0 and  𝐵̃ < 0  then:  

 𝐴̃ × 𝐵̃ = (𝑛1𝑚2, 𝑚1𝑛2, 𝑛1𝛼2 −𝑚2𝛽1, 𝑚1𝛽2 − 𝑛2𝛼1).                       (2.6𝑐) 

Case IV: 𝐴̃ < 0 and  𝐵̃ > 0  then:  

 𝐴̃ × 𝐵̃ = (𝑚1𝑛2, 𝑛1𝑚2, 𝑛2𝛼1 −𝑚1𝛽2, 𝑚2𝛽1 − 𝑛1𝛼2).                       (2.6𝑑) 

2.3.3.2 Trapezoidal Fuzzy Numbers in General Form  

In this section, the graphical representation and arithmetic operations of TrFN in the 

general form are discussed. In the LR-TrFN 𝐴̃ = (𝑚, 𝑛, 𝛼, 𝛽) if we let, 𝑎1 = 𝑚 − 𝛼, 

𝑎2 = 𝑚, 𝑎3 = 𝑛 𝑎𝑛𝑑 𝑎4 = 𝑛 + 𝛽, then we get the general form of the TrFN which can 

be symbolically written as 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4).  

Definition 2.3.3.2.1. A fuzzy number 𝐴̃ is said to be an unrestricted (arbitrary) fuzzy 

number if the domain of its membership function is a set of real numbers (𝑅), i.e., 

𝜇𝐴̃(𝑥): 𝑅 →  [0, 1]. The set of unrestricted fuzzy numbers can be represented by 𝐹(𝑅). 

Definition 2.3.3.2.2.  A fuzzy number 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4) is said to be a TrFN if its 

membership function is given by, 

𝜇𝐴̃(𝑥) =

{
 
 

 
 
𝑥 − 𝑎1
𝑎2 − 𝑎1

𝑎1 ≤ 𝑥 ≤ 𝑎2,

1 𝑎2 < 𝑥 < 𝑎3,
𝑎4 − 𝑥

𝑎4 − 𝑎3
0

𝑎3 ≤ 𝑥 ≤ 𝑎4,
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                

where  𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤ 𝑎4.  
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The following Figure 2.4. represents the TrFN in general form 

 

 

 

Figure 2.4. Representation of TrFN in a general form. 

Remark 2.3.3.2.1. In the TrFN 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4), 𝑎1 and 𝑎4 are called left and right 

endpoints respectively, while 𝑎2 and 𝑎3 are called the mean points. 

Definition 2.3.3.2.3. (Bansal, 2011) A TrFN 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4) is said to be non-

negative (non-positive) TrFN i.e. 𝐴̃ ≥ 0 (𝐴̃ ≤ 0) if and only if 𝑎1 ≥ 0 (𝑎1 ≤ 0).  

A TrFN is said to be positive (negative) TrFN i.e. 𝐴̃ > 0 (𝐴̃ < 0) if and only if 𝑎1 > 0 

(𝑎1 < 0).                                                                                                                 (2.7) 

Definition 2.3.3.2.4. (Bansal, 2011) A TrFN 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4) is said to near-zero 

TrFN if 𝑎1 < 0 < 𝑎4, and can be classified as follows: 

I) 𝐴̃ is called 𝑁1 − 𝑧𝑒𝑟𝑜 TrFN iff 𝑎1 ≤ 𝑎2 ≤ 𝑎3 < 0 <  𝑎4.                       (2.8a) 

II) 𝐴̃ is called 𝑁2 − 𝑧𝑒𝑟𝑜 TrFN iff 𝑎1 ≤ 𝑎2 < 0 < 𝑎3 ≤ 𝑎4.                               (2.8b) 

III) 𝐴̃ is called 𝑁3 − 𝑧𝑒𝑟𝑜 TrFN iff 𝑎1 < 0 <  𝑎2 ≤ 𝑎3 ≤ 𝑎4.                              (2.8c) 

 

Definition 2.3.3.2.5. (Bansal, 2011)  

Two TrFNs numbers 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4) and 𝐵̃ = (𝑏1, 𝑏2, 𝑏3, 𝑏4) are said to be equal, 

if and only if 𝑎1 = 𝑏1, 𝑎2 = 𝑏2, 𝑎3 = 𝑏3 and 𝑎4 = 𝑏4.                                          (2.9) 

𝑎3 
𝑥 

𝑎4 𝑎2 𝑎1 

 

0 

1 

𝜇𝐴̃(𝑥) 
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Definition 2.3.3.2.6. (Bansal, 2011) The arithmetic operations for two non-negative 

TrFN 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4) and 𝐵̃ = (𝑏1, 𝑏2, 𝑏3, 𝑏4) are represented as follows: 

V) Addition:  

𝐴̃ + 𝐵̃ =  (𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 + 𝑏3, 𝑎4 + 𝑏4).                            (2.10𝑎) 

VI) Opposite: 

− 𝐴̃ = −(𝑎1, 𝑎2, 𝑎3, 𝑎4) = (−𝑎4, −𝑎3, −𝑎2, −𝑎1).                 (2.10𝑏) 

VII) Subtraction: 

𝐴̃ − 𝐵̃  = (𝑎1 − 𝑏4, 𝑎2 − 𝑏3, 𝑎3 − 𝑏2, 𝑎4 − 𝑏1 ).                           (2.10𝑐) 

Multiplication:  

𝐴̃ × 𝐵̃ = (𝑎1𝑏1, 𝑎2𝑏2, 𝑎3𝑏3, 𝑎4𝑏4).                                             (2.10𝑑) 

2.4 Systems of Linear Equations 

A system of linear equations or linear system is a collection of linear equations 

involving the same set of equations that deals with all variables at once. A linear system 

of equations is the simplest and the most helpful method to solve these equations. In 

the following Section 2.4.1, the Crisp Linear System (CLS) is reviewed. 

2.4.1 Crisp Linear System 

In mathematics, a crisp system of linear equations is a set of one or more linear 

equations involving the same set of variables (Anton & Rorres, 2013; Beauregard, 

1973; Burden et al., 1981). A solution to a linear system is an assignment of values to 

the variables such that all the equations are simultaneously satisfied. 

Computational algorithms for finding the solutions are an important part of numerical 
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linear algebra and plays a prominent role in many fields such as 

engineering, chemistry, computer science and economics.  

Definition 2.4.1.1. (Andrilli & Hecker, 2003) A system of 𝑚 linear equations in 

𝑛 variables can be written as follows: 

{

𝑎11𝑥1 + 𝑎12𝑥2 +⋯… .+𝑎1𝑛𝑥𝑛 = 𝑏1,
𝑎21𝑥1 + 𝑎22𝑥2 +⋯… .+𝑎2𝑛𝑥𝑛 = 𝑏2,

⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 +⋯… .+𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚.

 

This system of linear equations is equivalent to the matrix equation 𝐴𝑋 = 𝐵 

where 𝐴 = (

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛

), 𝑋 = (

𝑥1
𝑥2
⋮
𝑥𝑛

) and 𝐵 = (

𝑏1
𝑏2
⋮
𝑏𝑚

). 

In most real applications, this equation has played a prominent role in representing 

models related to various sectors such as manufacturing, economics, engineering, and 

other fields of science. Normally, when the linear equations system is used to solve any 

real problem, the parameters used in the equation are only in the form of crisp numbers, 

which are single-valued numbers. However, real situations are often not crisp and 

deterministic and cannot be described precisely (Zimmermann, 2011). In many cases, 

the classical linear system is not well equipped to handle uncertainties of information 

in real-life problems because some values of the coefficients may be vague and 

imprecise due to incomplete data.  

 

In addition to that, the variables in the equation that contain crisp numbers are less 

adequate to represent the uncertainty, vague and ambiguous information such as 

unstable economics nature or insufficient data on quantity demand and supply  

(Kocken & Albayrak, 2019). In this case, the variables of the equation should be 
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replaced by fuzzy numbers. In practice, the data of the mathematical method are not 

always exactly known.  

 

Ramon (1979) declared that exact numerical data might be unrealistic, but vague data 

can consider more features of a real-life problem. A natural way to describe vague data 

is using fuzzy data. Thus, in this case, fuzzy numbers are a better usage than crisp 

numbers for modelling uncertain problems.  Fuzziness can be found in many areas of 

daily life, such as in engineering (Blockley, 1980), in medicine (Vila & Delgado, 1983), 

in meteorology (Cao & Chen, 1983) and in manufacturing (King & Mamdani, 1977). 

However, it is particularly frequent in areas in which human judgment, evaluation, and 

decisions are important. The fuzzy number theory was introduced by Zadeh (1965). 

Later on, the theory was expanded by introducing the fuzzy arithmetic operation for the 

LR-FNS (Dubois & Prade, 1978) and the particular form of fuzzy numbers  

(Kaufmann & Gupta, 1991). Since then, increasingly rapid advances in this field have 

contributed to various fields, including the FLS and FFLS.  

2.4.2 Fuzzy Linear System 

The FLS is a linear system that can be written as 𝐴𝑋̃ = 𝐵̃, where the coefficient matrix 

𝐴 is a crisp matrix, 𝐵̃ is a fuzzy vector and 𝑋̃ is the fuzzy solution vector. The first and 

most achievable approach of the FLS 𝐴𝑋̃ = 𝐵̃ was obtained by Friedman, Ming and 

Kandel (1998). They proposed a generic method for solving an 𝑛 × 𝑛 FLS by 

employing an embedding approach. In this method, they used fuzzy numbers in a 

particular form to construct the FLS. The 𝑛 × 𝑛  FLS was replaced by a 2𝑛 × 2𝑛 crisp 

linear system and the solution was obtained by inverse matrix method. Though this 

method contributed significantly in solving FLS, there were also various methods 
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applied in obtaining the solution such as LU decomposition  

(Abbasbandy et al., 2006) and the steepest descent method (Abbasbandy & Jafarian, 

2006). However, they were still based on Friedman’s embedding method for converting 

the coefficient of FLS to 2𝑛 × 2𝑛 crisp linear system.  

 

However, in some applications, the obtained 2𝑛 × 2𝑛 crisp linear system became a 

singular even though the original 𝑛 × 𝑛 FLS was non-singular. Mansouri and Asady 

(2011) pointed out this issue as the weakness of Friedman’s method. Besides that, 

Allahviranloo et al. (2011) also disclosed the failure of Friedman’s method in 

classifying the weak or strong of the fuzzy solution, they have proved that the definition 

of the weak fuzzy solution was not always correct, or in other words, it did not always 

produce a fuzzy number vector.  

 

In general, solving systems using constants is easier than using variables. For example,  

Allahviranloo et al. (2013) and Salahshour et al. (2016) have attempted to extend FLS 

to LR-FLS by replacing the entries of the vector 𝐵̃ with LR-TFN. Additionally,  

Nasseri et al. (2011) have attempted to extend FLS to a trapezoidal fuzzy linear system 

by replacing the entries of the vector 𝐵̃ with LR-TrFN. Moreover, Nasseri et al. (2014) 

introduced a general model for solving the trapezoidal overdetermined FLS of 

equations with 𝑛 variables (𝑚 >  𝑛).  

 

In addition, Ahmed et al. (2015) solved the LR-FLS by converting the LR-FLS to a 

corresponding linear system where no fuzzy operations are required to obtain the 

solution. The method solved large FLS and required less multiplication process and, 

therefore, less computational time. Despite that, the technique by   
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Friedman et al (1998) is still relevant, and there are still many studies that are based on 

this technique, such as in Otadi and Mosleh (2015), Salahshour et al. (2016) and Zhou 

and Wei (2014) which took advantage of this technique in solving the FLS. In the 

following Section 2.4.3, all the parameters’ entries of the FLS are replaced by fuzzy 

numbers in order to construct the FFLS. 

2.4.3 Fully Fuzzy Linear System 

In addition to the FLS, another fuzzy linear system implements the fuzzy numbers in 

all of its parameters’ entries. This fuzzy linear system is known as FFLS or written as  

𝐴̃𝑋̃ = 𝐵̃, where all entries in 𝐴̃, 𝑋̃ and 𝐵̃ are fuzzy numbers. In solving the FFLS, the 

most important property considered is the sign of the parameters, either it is positive, 

negative or near-zero fuzzy numbers (Kocken & Albayrak, 2015). This property is very 

contrary with the FLS because in the FLS, the multiplication between the coefficient 𝐴 

and fuzzy solution vector 𝑋̃ does not depend on the parameter’s sign, while in the FFLS 

the multiplication of fuzzy coefficient 𝐴̃ and fuzzy vector 𝑋̃ depend on signs of both 

(Babbar et al., 2013).  

Theorem 2.4.3.1 (Malkawi et al., 2014b) Let the min-max system for 𝑖 = 1,… , 𝑛,  

∑𝜓𝑗(𝑓𝜓𝑗
1 (𝑥1, … , 𝑥𝑛), … ,

𝑛

𝑗=1

𝑓𝜓𝑗
4 (𝑥1, … , 𝑥𝑛) = 𝜙𝑗(𝑥1, … , 𝑥𝑛). 

If the two functions 𝑓𝜓𝑗
𝑘  for 𝑗 = 1,… , 𝑛 and 𝑘 = 1,2,3,4 are positive, and two functions 

are negative in the min-max system, then the system can be reduced for an absolute 

linear system, where 𝜓𝑗 for 𝑖 = 1,… , 𝑛 is minimum or maximum function. 
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Definition 2.4.3.1 (Kumar et al., 2011) The solution 𝑋̃ = (𝑥, 𝑦, 𝑧) of the FFLS is 

termed as (feasible) strong fuzzy solution if 𝑦 − 𝑥 ≥ 0 and 𝑧 − 𝑦 ≥ 0. Otherwise, the 

solution would be termed as (infeasible) weak fuzzy solution. 

Remark 2.4.3.1. Based on Definition 2.4.3.1, the solution to fuzzy equations can be 

classified as follows: 

I) Strong fuzzy solution (feasible) if the solution obtained is fuzzy and satisfies 

the fuzzy equation. 

II) Weak fuzzy solution (infeasible) if the obtained solution does not satisfy the 

fuzzy equation. 

III) The non-fuzzy solution if the obtained solution is not fuzzy but satisfies the 

fuzzy equation. 

Definition 2.4.3.2 (Malkawi et al., 2014b) An absolute system or a system of absolute 

equations is a collection of equations such that one of them is at least an absolute 

equation. 

 

Definition 2.4.3.3 (Malkawi et al., 2014b) The solution set of a system is called a finite 

solution, where the number of solutions is more than one and not infinite solutions. 

 

The following Definition 2.4.3.4 gives the relation between the minimum and 

maximum values of two unknowns and their absolute values. 

Definition 2.4.3.4 (Malkawi et al., 2014b) For any integers 𝑥 and 𝑦, 𝑚𝑖𝑛 (𝑥, 𝑦) and 

𝑚𝑎𝑥 (𝑥, 𝑦) denote the minimum and maximum of 𝑥 and 𝑦, respectively as follows 

(Malkawi et al., 2014b), 

𝑚𝑖𝑛(𝑎, 𝑏) =  (
𝑎 + 𝑏

2
 − 

| 𝑎 −  𝑏 |

2
),       𝑚𝑎𝑥(𝑎, 𝑏) =  (

𝑎 + 𝑏

2
+ 
| 𝑎 −  𝑏 |

2
).  (2.11) 

In the following Section 2.4.3.1, the existing analytical methods for FFLS is discussed. 
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2.4.3.1 Existing Analytical Methods for Solving FFLS 

In this section, previous analytical methods for solving FFLS are reviewed. The 

preliminary study of FFLS conducted by Dehgan, Hashemi and Ghatee (2006) has 

shown that the representation of all the parameters 𝐴̃, 𝐵̃ and 𝑋̃ were based on the  

LR-TFN. In their study, they obtained positive solution 𝑋̃ when the parameters 𝐴̃ and 

𝐵̃ were also positive fuzzy numbers. They converted the FFLS to a linear system of 

equations. The fuzzy solution was obtained using linear algebra methods, namely 

Cramer’s rule, Gaussian elimination and LU decomposition.  

 

The revolution in this area has been going so quickly from 2006 on. Many studies have 

applied various methods in solving the FFLS, such as Gauss-Cholesky decomposition, 

row-reduced echelon method, and block matrix method (Malkawi et al., 2014b, 2014c; 

Malkawi et al., 2014, 2015). However, these studies are limited to some conditions 

since the sign of the LR-FNS were only restricted to be positive for all entries of the 

FFLS.  

 

Due to that reason, some studies were conducted that have less restriction on the sign 

of parameters. The earliest studies of the FFLS with less restriction on the parameters 

were conducted in Kumar et al. (2010). In these studies, they considered the coefficient 

matrix 𝐴̃ was a near-zero fuzzy matrix, while 𝑋̃ and 𝐵̃ were positive fuzzy vectors. The 

𝑛 × 𝑛 FFLS was converted to a system of 4𝑛 × 4𝑛 equations by applying KGMO. 

Subsequently, the fuzzy solution 𝑋̃ was obtained analytically by the matrix inversion 

method. This study, however, was quite limited to small fuzzy systems due to the long 

multiplication process.  
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Therefore, the author extended their works by applying the LP approach  

(Babbar et al., 2013) which was a great approach to overcome the sign restriction of the 

previous methods. In this work, they obtained for the first time an arbitrary fuzzy 

solution to arbitrary FFLS. Unfortunately, this method also has its disadvantages, and 

it fails to find all the fuzzy solutions of the arbitrary FFLS (Malkawi et al., 2014b).   

Kumar et al. (2013) introduced two computational methods for solving FFLS when the 

coefficient matrix is either negative or opposite. In these studies, they improved KGMO 

so that both solutions could be obtained effectively. In contrast to their previous studies, 

a proper way of determining the consistency and feasibility of the solutions was 

demonstrated clearly in this study. Nevertheless, the examples are shown in this study 

only involve the fuzzy matrix 𝐴̃ of size 2 × 2, which described that this method is only 

limited for a certain size of matrices.  

 

Kocken et al. (2016) developed an algorithm for solving FFLS with TrFN where there 

are no restrictions on the sign of the parameters nor the variables in the linear system. 

The FFLS converted to a system of equations based on newly developed arithmetic 

operations where the solution to this system is obtained using the matrix inversion 

method. Muruganandam et al. (2019) studied the FFLS with LR-TFN, the solution 

obtained using the Gauss-Jordan Elimination. At the same time, Abbasi & Jalali (2019) 

proposed a new approach based on the relative-distance-measure fuzzy interval 

arithmetic for solving FFLS and their duals. Khalid and Othman (2019) used 

decomposition and extended decomposition methods to solve different FFLS problems. 

While, Vijayalakshmi et al. (2020) proposed the python coding ST decomposition 

method for solving the FFLS with LR-TFN and TrFN, where the solutions of the FFLS 

both have positive and negative values. 
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2.4.3.2 Numerical Methods for Solving FFLS 

In this section, the existing numerical methods in the literature for solving FFLS are 

reviewed. Most researchers converted the FFLS to a corresponding system of linear 

equations where the solution to that system is obtained mainly by Gauss-Seidel and 

Jacobi Adomian decomposition method such as the methods by Dehghan and Hashemi 

(2006; 2006a). Similarly, authors in Abbasbandy and Hashemi (2012), Ezzati et al. 

(2014), Jing and Qiang (2009), Kumar et al. (2012), Nasseri et al. (2008, 2013), Nasseri 

and Zahmatkesh (2010) and Edalatpanah (2014) introduced new numerical methods for 

solving positive FFLS similar to Dehghan’s method (2006). However, all these 

methods are only restricted to FFLS with a positive solution. In addition, Otadi and 

Mosleh (2012b) investigated the unique and infinitely many solutions of the FFLS. In 

addition, another study by Liu (2010) found a positive solution for FFLS with  

LR-TFNs by Homotopy Perturbation Method. However, the method could only solve 

FFLS with LR-TFNs with small fuzziness 𝛼, 𝛽 compared with the mean value 𝑚. In 

addition, the obtained solution does not satisfy the given FFLS. 

 

 Araghi et al. (2017) approximated the positive fuzzy solution to the positive FFLS with 

LR-TFN using the Gauss-Seidel, Jacobi, Richardson and SOR iterative methods. They 

have obtained accurate results; however, the methods were only applied to small size 

FFLS. Siahlooei and Fazeli (2018) developed a new method for solving the FFLS with 

TrFN. They have used a decomposition technique to convert a FFLS into two types of 

decomposition in the form of interval matrices. Then the solution of the FFLS is 

obtained by using interval operations. Abidin et al. (2019) applied the Gauss–Jacobi 

method to solve FFLS using the trapezoidal area to decompose the FFLS into two 

equations with positive and negative fuzzy numbers. However, this method can be 
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applied to small FFLS only.  In the following Table 2.1, the advantage and 

disadvantages of the existing method for FFLS are compared. In the following Section 

2.5, the linear matrix equations are discussed.  

2.5 Matrix Equations 

Information in science and mathematics is often organized into rows and columns to 

form rectangular arrays known as a matrix  (Anton & Rorres, 2013). This section 

provides explanations on matrix equation either with crisp or fuzzy numbers.   
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Table 2.1  

Comparison Between the Advantages and Disadvantages of Analytical and Numerical 

Methods for Solving FFLS. 

Method Analytical Methods Numerical Methods 

Advantages • Simple and easy to 

understand. 

• Many classical linear 

algebra methods can cope 

with this method. 

• The existence and 

uniqueness of the FFLS can 

be checked before getting 

the solution. 

• Able to avoid long fuzzy 

arithmetic operations. 

• Can solve large FFLS. 

• It does not require a long 

multiplication process, and 

hence long computational 

times. 

Disadvantages • Required long 

multiplication process, and 

hence long computational 

times. 

• Direct methods involve a 

lot of arithmetic fuzzy 

operations and are therefore 

limited only for small size 

FFLS. 

• Fuzzy operations are 

calculated manually and 

require more computational 

time. 

• Sign restriction, numerical 

methods only can solve 

positive FFLS. 

• Some methods are only 

limited to small sizes of 

matrices, which is does not 

exceed 𝑛 =  2 or 𝑛 =  3. 
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2.5.1 Crisp Linear Matrix Equation 

In this section, the crisp linear matrix equation is discussed. The equation in the form 

𝐴𝑋 = 𝐵 is known as a linear matrix equation, where 

𝐴 = (𝑎𝑖𝑗)𝑚×𝑛 = (

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑚1 … 𝑎𝑚𝑛

), 𝐵 = (𝑏𝑖𝑗)𝑚×𝑝 = (

𝑏11 ⋯ 𝑏1𝑝
⋮ ⋱ ⋮
𝑏𝑚1 … 𝑏𝑚𝑝

) and  

𝑋 = (𝑥𝑖𝑗)𝑛×𝑝 = (

𝑥11 ⋯ 𝑥1𝑝
⋮ ⋱ ⋮
𝑥𝑛1 … 𝑥𝑛𝑝

) such that 𝑎𝑖𝑗, 𝑏𝑖𝑗 and 𝑥𝑖𝑗 are all in the crisp numbers 

form for every 1 ≤ 𝑖, 𝑗 ≤ 𝑚. 

Definition 2.5.1.1. (Mathai & Haubold, 2017) The linear matrix equations are 

consistent if the matrix 𝐴 is invertible  (𝑑𝑒𝑡 (𝐴)  ≠  0). 

2.5.2 Fuzzy Matrix Equation 

A fuzzy matrix equation (FME) is a matrix equation that only allows some of the 

parameters in fuzzy numbers. It can be written as: 

𝐴𝑋̃ = 𝐵̃, 

where 𝐴 is an 𝑚 × 𝑛 crisp matrix, while the matrices 𝑋̃ and 𝐵̃ are 𝑛 × 𝑙 and 𝑚 × 𝑙 fuzzy 

matrix, respectively. The first studies for FME were by Guo and Gong (2010a; 2010b). 

In these studies, the FME is converted to a crisp linear system using the embedding 

method proposed by Friedman et al. (1998). Then, the system is solved numerically to 

obtain the approximate solution. A year later, Gong and Guo (2011) improved their 

previous method, which solved the inconsistent FME, which was previously 

unavailable in Guo and Gong (2010a; 2010b).  
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Additionally, Guo and Shang (2012a) and Otadi and Mosleh (2012) solved the FME by 

modifying the numerical method proposed by Allahviranloo et al. (2011) to obtain a 

symmetric solution of the FME. Meanwhile, Guo and Shang (2012b) used the LR-TFN 

where the FME is converted into two crisp matrix equations by introducing a 

generalization of DPMO; the authors proposed a simpler approach than the previous 

studies. In the following Section 2.5.3, the FFME is considered.   

2.5.3 Fully Fuzzy Matrix Equation 

In this section, the FFME 𝐴̃𝑋̃ = 𝐵̃ is discussed. In the following Definition 2.5.3.1, the 

FFME is introduced. 

Definition 2.5.3.1. (Guo & Shang, 2013b) The matrix equation in the form 𝐴̃𝑋̃ = 𝐵̃ is 

known as FFME, where 𝐴̃ = (𝑎̃𝑖𝑗)𝑚×𝑛 = (
𝑎̃11 ⋯ 𝑎̃1𝑛
⋮ ⋱ ⋮
𝑎̃𝑚1 … 𝑎̃𝑚𝑛

) , ∀ 1 ≤ 𝑖 ≤ 𝑚, 

 1 ≤ 𝑖 ≤ 𝑛 , 𝐵̃ = (𝑏̃𝑖𝑗)𝑚×𝑝 = (

𝑏̃11 ⋯ 𝑏̃1𝑝
⋮ ⋱ ⋮
𝑏̃𝑚1 … 𝑏̃𝑚𝑝

) , ∀ 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑝 and 

 𝑋̃ = (𝑥̃𝑖𝑗)𝑛×𝑝 = (

𝑥̃11 ⋯ 𝑥̃1𝑝
⋮ ⋱ ⋮
𝑥̃𝑛1 … 𝑥̃𝑛𝑝

).  

∀ 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑖 ≤ 𝑝, such that 𝑎𝑖𝑗, 𝑏𝑖𝑗 and 𝑥𝑖𝑗 are fuzzy numbers.  

 

The number of studies conducted on the FFME also is very limited. There was a study 

conducted by Otadi and Mosleh (2012b), in which the LP method was extended to find 

the non-negative solution for arbitrary FFME, where all the entries of 𝐴̃𝑋̃  and 𝑋̃ were 

represented by LR-TFN. This study used a similar method inspired by Kumar and Singh 

(2012). Nevertheless, the method is unable to find all the possible fuzzy solutions, even 
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though it has infinitely many solutions. Guo and Shang (2013b) applied DPMO for 

solving 𝐴̃𝑋̃𝐵̃ = 𝐶̃ where 𝐴̃, 𝐵̃ and 𝐶̃ are square non-negative LR-TFN respectively. This 

method provided the easiest implementation, however, the solution to the FFME 

required solving three equations separately, consequently the calculation was time-

consuming especially when it applied to large matrices with 𝑛 > 3.  

 

In addition, the methods for solving FFME are inherited from the methods proposed 

for solving FFLS; therefore, all the stated problems in the previous methods proposed 

for solving FFLS are effective for solving FFME, such as methods in  

Kargar et al. (2014) and Otadi and Mosleh (2012b). Moreover, there are two further 

problems: 

I) The fuzzy arithmetic multiplication is computed between fuzzy matrices to 

produce FFLS, such as in Guo and Shang (2013a, 2013b) which required much more 

computational time due to applying fuzzy multiplication operations. 

II) Basic definitions and operations in crisp matrices such as identity and transpose 

are not developed to fuzzy matrices, where these definitions are essential to establish 

required theorems. For example, the Kronecker product cannot be applied between 

fuzzy and crisp matrices. Because of that, in Guo and Jin (2011), the fuzzy matrix 

equations are separated to solve each value of 𝑚,𝛼 and 𝛽, then collected  again in one 

system to obtain the fuzzy solution. 

2.5.4 Fuzzy Sylvester Matrix Equation 

In this section, the FSME is discussed. In addition to the FME and the FFME, many 

researchers were also interested in exploring the FSME. This equation is represented 

by 𝐴𝑋̃ + 𝑋̃𝐵 = 𝐶̃, where the parameter 𝐶̃ and 𝑋̃ as fuzzy, while 𝐴 and 𝐵 are crisp 
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values. In solving FSME, the most important method used is Vec-operator and 

Kronecker product, where the FSME is converted to a linear system, and many methods 

can obtain the solution. In 2010, the first study of FSME was carried out by Salkuyeh 

(2011), in which the author applied the Accelerated Over Relaxation (AOR) method in 

order to get the fuzzy solution. Moreover, Guo (2011) applied an embedding method 

suggested in Friedman et al. (1998) to transfer the obtained FLS to crisp linear matrix 

equations. Then the fuzzy solution is obtained by the matrix inversion method. 

However, the fuzzy solution cannot be obtained easily if the coefficients are singular 

matrices. Thus, the author has taken the initiative by performing the Moore Penrose 

method to obtain the solution for singular FSME. In addition, Guo and Shang (2013a) 

solved the FSME by applying the LR-FNS to deal with the fuzzy parameters. 

 

Similarly, in Guo and Shang (2012a), they found the negative solution for a parametric 

form of LR-FNS. Other than that, some numerical methods are proposed to solve the 

FSME, which was carried out by Fariborzi and Hosein (2012) and Guo and Bao (2013). 

Despite having proposed a significant method with fewer multiplication operations, 

these iterative methods required many iterations to reach the final solutions and, 

therefore, huge memory storage. 

2.5.5 Fully Fuzzy Sylvester Matrix Equation 

In this section, the FFSME is considered. In the following Definition 2.5.5.1, the 

FFSME is discussed. 

Definition 2.5.5.1. A fully fuzzy matrix equation that can be written as 

𝐴̃𝑋̃ + 𝑋̃𝐵̃ = 𝐶̃, 
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where 𝐴̃ = (𝑎̃𝑖𝑗)𝑚×𝑚, 𝐵̃ = (𝑏̃𝑖𝑗)𝑛×𝑛, 𝐶̃ = (𝑐̃𝑖𝑗)𝑚×𝑛 and 𝑋̃ = (𝑥̃𝑖𝑗)𝑚×𝑛 is called fully 

fuzzy Sylvester matrix equation (FFSME). Which can be represented as follows: 

∑ 𝑎𝑖𝑘
(𝑘)
𝑥𝑘𝑗
(𝑙)
+ ∑ 𝑥𝑖𝑘

(𝑙)
𝑏𝑘𝑗
(𝑘)
= 𝑐𝑖𝑗

(𝑙)

𝑚

𝑖,𝑗=1
𝑘,𝑙=1,…,4

𝑛

𝑖,𝑗=1
𝑘,𝑙=1,…,4

.  

The FFSME with TFN is TFFSME. TFFSME has been studied analytically only.  

Shang et al. (2015) converted the TFFSME to a system of crisp SME where the fuzzy 

solution was obtained using the Vec-operator and Kronecker product. However, this 

method is restricted only to positive TFNs and requires long multiplication processes 

and, consequently, long computational timing.  

 

There was an alternative method proposed by Malkawi et al. (2015) in solving the 

TFFSME contrary to the method in (Shang et al., 2015), where the authors converted 

the TFFSME to FFLS using Vec-operator and Kronecker product. They have applied 

their suggested method for solving the associated linear system obtained  

(Malkawi et al., 2014c), where the FFLS was converted into a system of linear 

equations. The fuzzy solution was then obtained by using the inverse matrix method. 

The method was able to solve the TFFSME with less computational time.  

 

Indeed, this method required shorter computational timing than Shang’s method; 

however, it is also restricted to positive TFFSME. In addition, both methods are limited 

to non-singular TFFSME. To overcome the shortcoming in these methods,  

Daud et al. (2018a) obtained a positive solution for singular TFFSME by applying an 

associated linear matrix system approach where the solution is obtained by using the 

pseudoinverse method. Moreover, Daud et al. (2018a, 2018c, 2017) proposed another 

algorithm for solving TFFSME with arbitrary coefficients which utilized KGMO 
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(Kaufmann et al., 1986). The authors obtained the fuzzy solution by applying Vec-

operator and Kronecker products. However, the proposed method was able to obtain a 

positive fuzzy solution only. In addition, the Vec-operator and Kronecker product 

method cannot be applied to TFFSME with arbitrary coefficients.  

 

A study was conducted by Dookhitram et al. (2015) on the TFFSME in the form 

 𝐴̃𝑋̃ − 𝑋̃𝐵̃ = 𝐶̃, which used the α-cuts expansion approach in the parameters. The 

method proposed has an advantage in the sense that it provides maximal and minimal 

symmetric solutions of the TFFSME; however, the method required long fuzzy 

operations in obtaining the solution. Similarly, the authors in Daud et al. (2018a) 

proposed an algorithm for obtaining the positive solution of TFFSME with arbitrary 

coefficients. However, the method was restricted only to positive fuzzy solutions. The 

summary of the previous studies for the TFFSME is illustrated in Table 2.2. 

2.6 Matrix Theory 

In this section, a review of some basic concepts of matrix theory is provided. These 

concepts are used in the development of the methods for solving GFFSME in the 

following chapters. 

2.6.1 Fundamental Concepts of Matrix Theory 

Matrix theory is a theory in mathematics used to solve the system of linear equations 

and various types of matrix equations. The basic fundamental of matrix theory is 

defined in the following definitions, which have been referred from  

Ben-Israel and Greville (2003), Datta (2004) and Zhang (2011). The following are basic 

definitions in matrix theory that are normally used in solving fuzzy systems. 
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Definition 2.6.1.1.  A collection of 𝑚𝑛 elements arranged in a rectangular array of 𝑚 

rows and 𝑛 columns is called a matrix of order 𝑚 × 𝑛. It has the form 

𝐴 = (

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑚1 … 𝑎𝑚𝑛

). 

Table 2.2  

FFSME Studies 

Authors Method applied Advantages Disadvantages 

Guo and 

Shang 

(2013b) 

• Vec-operator and 

Kronecker product. 

• The solution 

obtained by matrix 

inversion method 

and pseudoinverse. 

• The method can 

solve singular and 

nonsingular 

FFSME. 

• Required long 

multiplication 

processes and 

therefore long 

computational 

time. 

• Limited to positive 

FFSME. 

 Malkawi 

et al. 

(2015c) 

• Vec-operator and 

Kronecker product. 

• Matrix inversion to  

an associated 

linear system.  

• It is simple 

compared to Shang 

method.  

• Able to solve large 

size FFSME up to 

𝑛 = 10. 

• Limited only to 

non-singular 

FFSME. 

• Limited to positive 

FFSME. 

 Daud et al. 

(2018d) 

• Vec-operator and 

Kronecker product. 

• Pseudoinverse. 

• Able to handle the 

singularity 

problems. 

• It is also simple, 

compared to Shang 

method.  

• Restricted only for 

positive FFSME. 

• It required long 

computational 

time. 

 Daud et al. 

(2018c) 

• Vec-operator and 

Kronecker product. 

• Definition of min- 

max function. 

• No restriction on 

the coefficient 

matrices. 

• The method is 

based on Vec-

operator and 

Kronecker product 

which cannot be 

applied to near-

zero fuzzy 

numbers. 
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It is denoted by 𝐴 = (𝑎𝑖𝑗)𝑚×𝑛 or simply by 𝐴 =  (𝑎𝑖𝑗), where it is understood that 

 𝑖 =  1, . . . , 𝑚 and 𝑗 =  1, . . . , 𝑛. 

Definition 2.6.1.2. A 𝑚 × 𝑛 matrix is called a square matrix if 𝑚 =  𝑛. 

Definition 2.6.1.3. The square matrix having 1's along the main diagonal and zeros 

everywhere else is called the identity matrix and is denoted by 𝐼. Sometimes a 𝑛 × 𝑛 

identity matrix is denoted by 𝐼𝑛or by 𝐼𝑛×𝑛.  

Definition 2.6.1.4. An 𝑚 × 𝑛 square matrix 𝐴 is called a non-singular (also known as 

invertible) matrix, if there exists an 𝑚 × 𝑛 square matrix 𝐵 such that 𝐴𝐵 = 𝐵𝐴 = 𝐼𝑛, 

where 𝐼𝑛 denotes the 𝑛 × 𝑛 identity matrix. 

Definition 2.6.1.5.  The sum of two matrices 𝐴 = (𝑎𝑖𝑗) and 𝐵 = (𝑏𝑖𝑗) is a matrix of 

the same order as 𝐴 and 𝐵 and is given by 𝐴 + 𝐵 = (𝑎𝑖𝑗 + 𝑏𝑖𝑗). 

Definition 2.6.1.6.  If 𝑐 is a scalar, then 𝑐𝐴 is a matrix given by 𝑐𝐴 =  (𝑐𝑎𝑖𝑗). 

Definition 2.6.1.7. The transpose of an 𝑚 × 𝑛 matrix 𝐴 is the 𝑛 × 𝑚 matrix 

𝐴𝑇 = (

𝑎11 ⋯ 𝑎1𝑚
⋮ ⋱ ⋮
𝑎𝑛1 … 𝑎𝑚𝑛

). 

Definition 2.6.1.8. A matrix 𝐴 = (𝑎𝑖𝑗)𝑚×𝑛 is called a non-negative matrix if and only 

if all the elements of the matrix are equal to or greater than zero, such that 𝑎𝑖,𝑗 ≥ 0, ∀𝑖, 𝑗. 

Meanwhile, a matrix 𝐴 = (𝑎𝑖𝑗)𝑚×𝑛is called a positive matrix when all the elements are 

greater than zero, 𝑎𝑖,𝑗 > 0, ∀𝑖, 𝑗. 

Definition 2.6.1.9. (Mathai & Haubold, 2017) A diagonal matrix is a square matrix 

with non zeros entries on the main diagonal and zeros entries elsewhere. 
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Definition 2.6.1.10. (Mathai & Haubold, 2017) The inverse of a diagonal matrix 𝐴 is 

another diagonal matrix 𝐵 whose diagonal elements are the reciprocals of the diagonal 

elements of 𝐴. 

Definition 2.6.1.11. (Eves, 1980) A matrix 𝐴 = (𝑎𝑖𝑗) is called a block matrix, which 

can be decomposed into sub-matrices by inserting horizontal and vertical rules between 

the selected rows and columns. 

Definition 2.6.1.12. (Eves, 1980) A block matrix is a block diagonal matrix if the 

diagonal elements have square matrices of any size (possibly even 1 × 1), and the other 

elements are zeroes. 

Definition 2.6.1.13. (Mathai & Haubold, 2017) A block diagonal matrix is invertible if 

and only if each of its main-diagonal blocks is invertible, and in this case, its inverse is 

another block diagonal matrix given by  

(

𝐴1 0 ⋯ 0
0 𝐴2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐴𝑛

)

−1

= (

𝐴1
−1 0 ⋯ 0

0 𝐴2
−1 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐴𝑛

−1

). 

Definition 2.6.1.14. (Mathai & Haubold, 2017) The determinant of the block diagonal 

matrix 𝐴 = (

𝐴1 0 ⋯ 0
0 𝐴2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐴𝑛

), is  det(𝐴) = det(𝐴1) × ⋯× det(𝐴𝑛). 

The following Section 2.6.2 described the Vec-operator and Kronecker product. 

2.6.2 Fundamental Concepts of Vec-Operator and Kronecker Products 

Vec-operator and Kronecker products have wide applications in solving matrix 

equations (Agoujil et al., 2014; Sadeghi, 2016), especially for reducing or transforming 

the matrix equations into a simpler form of linear equations (Harville, 1997; Schacke, 
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2004; Zhang & Ding, 2013). The definitions and theorems of the Vec-operator and 

Kronecker product are provided as follows: 

VIII) Definition 2.6.2.1.  Let 𝐴 =  (𝑎𝑖𝑗)𝑚×𝑛 and 𝐵 =  (𝑏𝑖𝑗)𝑝×𝑞. The Kronecker 

product for 𝐴⊗ 𝐵 is given as follows: 

𝐴⊗𝐵 = (
𝑎11𝐵 ⋯ 𝑎𝑛𝐵
⋮ ⋱ ⋮

𝑎𝑚1𝐵 ⋯ 𝑎𝑚𝑛𝐵
) = (𝑎𝑖𝑗𝐵)𝑚𝑝×𝑛𝑞. 

Let 𝐴, 𝐵 and 𝐶 be the matrices that have some appropriate sizes, 𝐴𝑇and 𝐴𝐻 denote the 

transpose and the Hermitian transpose of matrix 𝐴 respectively, and 𝐼𝑚 is an identity 

matrix with order 𝑚 ×𝑚. The following properties of Kronecker product are given as 

follow: 

1. 𝐼𝑚⨂𝐴 = 𝑑𝑖𝑎𝑔[𝐴, 𝐴,… , 𝐴]. 

2. If 𝐴 = [𝐴𝑖𝑗] is a block matrix, then for any matrix 𝐵, 𝐴𝐵 = [𝐴𝑖𝑗𝐵]. 

3. (𝐴 + 𝐵)⨂𝐶 =  (𝐴⨂𝐶) + (𝐵⨂𝐶). 

4. 𝐴⨂(𝐵⨂𝐶)  =  (𝐴⨂𝐵)⨂𝐶 = 𝐴⨂𝐵⨂𝐶. 

Definition 2.6.2.2. The Vec-operator generates a column vector from a matrix 𝐴 by 

stacking the column vectors of 𝐴 = (

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

) as,  

 𝑉𝑒𝑐(𝐴) = (

𝑎11
𝑎21
⋮
𝑎𝑛𝑛

).                                                                (2.12) 

Additionally, if 𝑉𝑒𝑐(𝐴) = (

𝑎11
𝑎21
⋮
𝑎𝑛𝑛

), then 𝐴 = 𝑉𝑒𝑐−1(

𝑎11
𝑎21
⋮
𝑎𝑛𝑛

) = (

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

). 

Definition 2.6.2.3. (Henderson & Searle, 1981)  

Let 𝐴 = (𝑎𝑖𝑗)𝑞×𝑞, 𝐵 = (𝑏𝑖𝑗)𝑝×𝑝 and 𝑋 = (𝑥𝑖𝑗)𝑞×𝑝, then: 
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1. 𝑉𝑒𝑐[𝐴𝑋] =  [𝐼𝑝⊗𝐴]𝑉𝑒𝑐(𝑋),                                                                                 (2.13a) 

2. 𝑉𝑒𝑐[𝑋𝐵] =  [𝐵𝑇⊗ 𝐼𝑞]𝑉𝑒𝑐(𝑋),                                                                         (2.13b)                                              

3. 𝑉𝑒𝑐[𝐴𝑋𝐵] =  [𝐵𝑇⊗𝐴]𝑉𝑒𝑐(𝑋).                                                                         (2.13c) 

The following equations show a few examples of how the Vec-operator and Kronecker 

product applied to matrix equations: 

1. 𝐴𝑋 =  𝐵         ⟹ (𝐼⨂𝐴)𝑉𝑒𝑐(𝑋)  = 𝑉𝑒𝑐(𝐵).                                                 (2.14a) 

2. 𝐴𝑋 + 𝑋𝐵 = 𝐶 ⟹ [(𝐼⨂𝐴) + (𝐵𝑇 ⨂𝐼)]𝑉𝑒𝑐(𝑋) = 𝑉𝑒𝑐(𝐶).                             (2.14b)         

                            ⟹ [𝐴⨁𝐵𝑇]𝑉𝑒𝑐(𝑋) = 𝑉𝑒𝑐(𝐶). 

3. 𝐴𝑋𝐵 = 𝐶        ⟹ (𝐵𝑇  ⨂𝐴)𝑉𝑒𝑐(𝑋)  = 𝑉𝑒𝑐(𝐶).                                                          (2.14c) 

4. 𝐴𝑋 + 𝑌𝐵 = 𝐶 ⟹ [(𝐼⨂𝐴)𝑉𝑒𝑐(𝑋) + (𝐵𝑇 ⨂𝐼)]𝑉𝑒𝑐(𝑌)  = 𝑉𝑒𝑐(𝐶).                (2.14d) 

5.  𝑋𝐴 + 𝐵𝑋 = 𝐶 ⟹ [(𝐴𝑇⨂𝐼) + (𝐼 ⨂𝐵)]𝑉𝑒𝑐(𝑋) = 𝑉𝑒𝑐(𝐶). 

                             ⟹ [𝐵⨁𝐴𝑇]𝑉𝑒𝑐(𝑋) = 𝑉𝑒𝑐(𝐶). 

Definition 2.6.2.4. (Broxson, 2006) The Kronecker sum of two matrices ⨁ can be 

considered as a matrix sum defined by 

𝐴⨁𝐵 = 𝐴⨂𝐼𝑏 + 𝐼𝑎⨂𝐵,                                                         (2.15)                

where 𝐴 is 𝑚 ×𝑚, 𝐵 is 𝑛 × 𝑛, ⨂ represents the Kronecker product and 𝐼𝑎, 𝐼𝑏 are 

identity matrices order 𝑚 ×𝑚 and 𝑛 × 𝑛 respectively.  

 

For example, the Kronecker sum of two 2 × 2 matrices 𝑎𝑖𝑗  and 𝑏𝑖𝑗 is as follows: 

(
𝑎11 𝑎12
𝑎21 𝑎22

)⨁(
𝑏11 𝑏12
𝑏21 𝑏22

) = (

𝑎11 + 𝑏11 𝑏12 𝑎12 0
𝑏21 𝑎11 + 𝑏22 0 𝑎12
𝑎21 0 𝑎22 + 𝑏11 𝑏12
0 𝑎21 𝑏21 𝑎22 + 𝑏22

). 

Definition 2.6.2.5. The Kronecker difference ⊖ is the matrix difference defined by 

𝐴⊖𝐵 = 𝐴⨂𝐼𝑏 − 𝐼𝑎⨂𝐵,                                                     (2.16) 



 

55 

 

where 𝐴 is 𝑚 ×𝑚, 𝐵 is 𝑛 × 𝑛, ⨂ represents the Kronecker product and 𝐼𝑎, 𝐼𝑏 are 

identity matrices order 𝑚 ×𝑚 and 𝑛 × 𝑛 respectively.  

 

For example, the Kronecker difference of two 2 × 2 matrices 𝑎𝑖𝑗 and 𝑏𝑖𝑗 is as follows: 

(
𝑎11 𝑎12
𝑎21 𝑎22

) ⊖ (
𝑏11 𝑏12
𝑏21 𝑏22

) = (

𝑎11 − 𝑏11 −𝑏12 𝑎12 0
−𝑏21 𝑎11 − 𝑏22 0 𝑎12
𝑎21 0 𝑎22 − 𝑏11 −𝑏12
0 𝑎21 −𝑏21 𝑎22 − 𝑏22

). 

2.7 Interval Arithmetic Operations 

In this section, basic arithmetic operations on intervals and 𝛼 − 𝑐𝑢𝑡 intervals are 

discussed. 

2.7.1 Arithmetic Operations of Intervals 

In this section the interval arithmetic operations are discussed. Interval arithmetic was 

first suggested by Dwyer (1951, 1964). Development of interval arithmetic as a formal 

system and evidence of its value as a computational device was provided by  

Moore (1979). After this motivation and inspiration, several authors, such as Alefeld 

and Herzberger (2012), Dubois et al. (2000) and Kaufmann and Gupta (1985), have 

studied interval arithmetic. The following arithmetic operations on interval numbers 

are well known (Ganesan & Veeramani, 2005; Hickey et al., 2001). 

Definition 2.7.1.1. Interval arithmetic operations. 

If 𝐴 = [𝑎1, 𝑎2], 𝐵 = [𝑏1, 𝑏2], then ∀ 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ 𝑅, we have, 

IX)  Addition 

𝐴 + 𝐵 = [𝑎1 + 𝑏1, 𝑎2 + 𝑏2].                                                            (2.17𝑎) 

X)  Subtraction 
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                        𝐴 − 𝐵 = [𝑎1 − 𝑏2, 𝑎2 − 𝑏1].                                                            (2.17𝑏) 

XI)  Multiplication 

Case I) If 𝐴 and 𝐵 are arbitrary real numbers then: 

𝐴 × 𝐵 = [𝑚𝑖𝑛(𝑎1𝑏1, 𝑎1𝑏2, 𝑎2𝑏1, 𝑎2𝑏2) ,𝑚𝑎𝑥(𝑎1𝑏1, 𝑎1𝑏2, 𝑎2𝑏1, 𝑎2𝑏2)].       (2.18𝑎) 

Case II) If 𝐴 > 0 and 𝐵 > 0 then: 

𝐴 × 𝐵 = [𝑎1𝑏1, 𝑎2𝑏2].                                                                 (2.18𝑏) 

Case III) If 𝐴 < 0 and 𝐵 < 0 then: 

𝐴 × 𝐵 = [𝑎2𝑏2, 𝑎1𝑏1].                                                                 (2.18𝑐) 

Case IV) If 𝐴 > 0 and 𝐵 < 0 then: 

𝐴 × 𝐵 = [𝑎2𝑏1, 𝑎1𝑏2].                                                                (2.18𝑑) 

Case V) If 𝐴 < 0 and 𝐵 > 0 then: 

𝐴 × 𝐵 = [𝑎1𝑏2, 𝑎2𝑏1].                                                               (2.18𝑒) 

XII)  Division 

  
𝐴

𝐵
=

[𝑎1,𝑎2]

[𝑏1,𝑏2]
= [𝑚𝑖𝑛(𝑎1/𝑏1, 𝑎1/𝑏2, 𝑎2/𝑏1, 𝑎2/𝑏2) ,𝑚𝑎𝑥 (𝑎1/𝑏1, 𝑎1/𝑏2, 𝑎2/𝑏1, 𝑎2/𝑏2)] 

   where 𝑏1, 𝑏2 ≠ 0. 

XIII)  Inverse interval 

 𝐴−1 = [𝑎1, 𝑎2]
−1 = [𝑚𝑖𝑛 (1/𝑎1, 1/𝑎2),𝑚𝑎𝑥 (1/𝑎1, 1/𝑎2)], where 𝑎1, 𝑎2 ≠ 0. 

XIV)   Equality 

 Two intervals  𝐴 = [𝑎1, 𝑎2] and 𝐵 = [𝑏1, 𝑏2] are equal, if and only if  

 𝑎1 = 𝑏1,  𝑎2 = 𝑏2.                                                                                                  (2.19) 

XV)  Scalar multiplication:  Let 𝜆 ∈ 𝑅  then, 

XVI) 𝜆𝐴 = 𝜆[𝑎1, 𝑎2]  = [𝑚𝑖𝑛 (𝜆𝑎1, 𝜆𝑎2),𝑚𝑎𝑥 (𝜆𝑎1, 𝜆𝑎2)]. 
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2.7.2 Operations on 𝜶 − 𝒄𝒖𝒕 Intervals 

The 𝛼 − 𝑐𝑢𝑡 intervals can be used to represent different types of fuzzy numbers 

(Hassanzadeh et al., 2018). An 𝛼 − 𝑐𝑢𝑡 interval is a standard way for performing 

different fuzzy arithmetic operations such as addition, multiplication, division and 

subtraction (Bojadziev & Bojadziev, 1995). In the following definitions, some 

necessary backgrounds and notions of α-cut intervals are reviewed (Dutta et al., 2011). 

Definition 2.7.2.1. The 𝛼 − 𝑐𝑢𝑡 intervals of fuzzy numbers 𝐴̃ = [𝑎1, 𝑎2] and 

 𝐵̃ = [𝑏1, 𝑏2], as crisp set are 𝐴𝛼 = [𝑎1
𝛼 , 𝑎2

𝛼], 𝐵𝛼 = [𝑏1
𝛼 , 𝑏2

𝛼] respectively, ∀𝛼 ∈ [0,1], 

𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑎1
𝛼 , 𝑎2

𝛼 , 𝑏1
𝛼 , 𝑏2

𝛼 ∈ 𝑅, where 𝐴𝛼, 𝐵𝛼 are a crisp interval  (Hassanzadeh et al., 

2018). As a result, the operations of interval reviewed in Definition 2.7.1.1 can be 

applied to the 𝛼 − 𝑐𝑢𝑡 interval 𝐴𝛼 and 𝐵𝛼. Operations between 𝐴𝛼 and 𝐵𝛼 can be 

represented as follow: 

I) Addition  

𝐴𝛼 + 𝐵𝛼 = [𝑎1
𝛼 , 𝑎2

𝛼] + [𝑏1
𝛼 , 𝑏2

𝛼] = [𝑎1
𝛼 + 𝑏1

𝛼 , 𝑎2
𝛼 + 𝑏2

𝛼].                  (2.20a) 

II) Subtraction 

                     𝐴𝛼 − 𝐵𝛼 = [𝑎1
𝛼 , 𝑎2

𝛼] − [𝑏1
𝛼 , 𝑏2

𝛼] = [𝑎1
𝛼 − 𝑏2

𝛼 , 𝑎2
𝛼 − 𝑏1

𝛼].                  (2.20b)  

III) Multiplication 

                         𝐴𝛼 ⋅ 𝐵𝛼 = [𝑎1
𝛼 , 𝑎2

𝛼] ⋅ [𝑏1
𝛼 , 𝑏2

𝛼] 

= [𝑚𝑖𝑛 (𝑎1
𝛼𝑏1

𝛼 , 𝑎1
𝛼𝑏2

𝛼 , 𝑎2
𝛼𝑏1

𝛼 , 𝑎2
𝛼𝑏2

𝛼),𝑚𝑎𝑥(𝑎1
𝛼𝑏1

𝛼 , 𝑎1
𝛼𝑏2

𝛼 , 𝑎2
𝛼𝑏1

𝛼 , 𝑎2
𝛼𝑏2

𝛼)].      (2.20c) 

IV) Equality: Two intervals 𝐴𝛼 = [𝑎1
𝛼 , 𝑎2

𝛼] and 𝐵𝛼 = [𝑏1
𝛼 , 𝑏2

𝛼] are equal, if and 

only if 

 𝑎1
𝛼 = 𝑏1

𝛼 and 𝑎2
𝛼 = 𝑏2

𝛼 .                                                      (2.20d)  
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Definition 2.7.2.2. (Lee, 2005) Triangular fuzzy number’s 𝛼 − 𝑐𝑢𝑡 interval 

An 𝛼 − 𝑐𝑢𝑡 interval for a TFN 𝐴̃ = (𝑎1, 𝑎2, 𝑎3) is: 

𝐴̃𝛼 = [𝑎1
𝛼 , 𝑎2

𝛼] = [(𝑎2 − 𝑎1)𝛼 + 𝑎1, −(𝑎3 − 𝑎2)𝛼 + 𝑎3], ∀𝛼 ∈ [0,1].           

In the following Definition 2.7.2.3, 𝛼 − 𝑐𝑢𝑡 intervals for TrFNs are found based on the 

definition of membership function of TrFNs in Definition 2.3.3.2.2 and the definition 

of 𝛼 − 𝑐𝑢𝑡 intervals for TFNs in Definition 2.7.2.2. 

Definition 2.7.2.3. (Lee, 2005) Trapezoidal fuzzy number’s 𝛼 − 𝑐𝑢𝑡 interval. 

An 𝛼 − 𝑐𝑢𝑡 interval for a TrFN 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4) can be written as: 

𝐴̃𝛼 = [𝑎1
𝛼 , 𝑎2

𝛼] = [(𝑎2 − 𝑎1)𝛼 + 𝑎1, −(𝑎4 − 𝑎3)𝛼 + 𝑎4], ∀𝛼 ∈ [0,1]. 

2.8 Existing Methods for Solving Crisp Sylvester Matrix Equation 

In this section, analytical methods for SME 𝐴𝑋 + 𝑋𝐷 = 𝐸 as stated in Eq. (1.3), are 

discussed. Analytical solution to the SME can be obtained by either applying the 

concept of Vec-operator and Kronecker product or decomposing the coefficient 

matrices. In the following Section 2.8.1, the method of Vec-operator and Kronecker 

product for solving SME is reviewed.  

2.8.1 Vec-Operator and Kronecker Product Method for Solving SME. 

The solution to the crisp SME can be obtained using the Vec-operator and Kronecker 

product method. Usually Vec-operator and Kronecker product convert the 𝑚 × 𝑛 crisp 

SME to a linear matrix equation of dimension 𝑚𝑛 ×𝑚𝑛. The main advantage of this 

method is that the solution to this linear matrix equation can be obtained by many 

classical methods such as matrix inversion method, reduced row Echelon form, 

Cramer’s rule, etc.  
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Using the Kronecker product notation and the vectorization operator, the crisp SME 

𝐴𝑋 + 𝑋𝐷 = 𝐸 can be written in the form  

⟹ [(𝐼𝑛⨂𝐴) + (𝐷
𝑇 ⨂𝐼𝑚)]𝑉𝑒𝑐(𝑋) = 𝑉𝑒𝑐(𝐸)                    (2.21)         

                                   ⟹ [𝐴⨁𝐷𝑇]𝑉𝑒𝑐(𝑋) = 𝑉𝑒𝑐(𝐸), 

where  𝐴 is of dimension 𝑚 ×𝑚, 𝐷 is of dimension 𝑛 × 𝑛, 𝑋 of dimension 𝑚 × 𝑛 and 

𝐼𝑘 is the 𝑘 × 𝑘 identity matrix.  

 

Apart from that, another existing method to solve the crisp SME is by transforming the 

matrix coefficients into a Schur or Hessenberg form (Golub et al., 1979). In the 

following Section 2.8.2, the method of Schur decomposition and Bartels-Stewart is 

reviewed (Bartels & Stewart, 1972). 

2.8.2 Schur Decomposition and Bartels-Stewart Method for Solving SME 

In this section, the Bartels-Stewart method (BSM) for solving the SME 𝐴𝑋 + 𝑋𝐷 = 𝐸,  

is discussed. The development of this method is based on the Schur decomposition of 

the coefficient matrices 𝐴 and 𝐷 respectively.  

Definition 2.8.2.1.  (Paige & Van Loan, 1981) The Schur decomposition of a matrix 𝐴 

is the factorization 𝐴 = 𝑄𝑇𝑅𝑄, where 𝑅 is an upper triangular matrix which is called 

a Schur form of A, and 𝑄 is a unitary matrix (𝑄𝑄𝑇 = 𝐼). 

Let 𝐴 = 𝑈𝐴′𝑈𝑇and 𝐷 = 𝑉𝐷′𝑉𝑇 be the lower (the upper) Schur decomposition of 𝐴  

(of 𝐵), where 𝑈 and 𝑉 are orthogonal matrices and 𝐴′ (𝐵′) be a lower (an upper) 

triangular matrix such that,  

https://en.wikipedia.org/wiki/Kronecker_product
https://en.wikipedia.org/wiki/Vectorization_(mathematics)
https://en.wikipedia.org/wiki/Identity_matrix
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𝐴′ = (

𝐴11
′ 0 ⋯ 0

𝐴21
′ 𝐴22

′ ⋯ 0
⋮ ⋮ ⋱ ⋮

𝐴𝑚1
′ 𝐴𝑚2

′ ⋯ 𝐴𝑚𝑚
′

)    and  𝐷′ = (

𝐷11
′ 𝐷12

′ ⋯ 𝐷1𝑛
′

0 𝐷22
′ ⋯ 𝐷2𝑛

′

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐷𝑛𝑛

′

). 

Thus, the SME in Eq. (1.3) then becomes 𝑈𝐴′𝑈𝑇𝑋 + 𝑋𝑉𝐷′𝑉𝑇 = 𝐸, which corresponds 

to the following equation, 

 𝐴′𝑋′ + 𝑋′𝐷′ = 𝐸′,                                                       (2.21) 

where 𝑋′ = 𝑈𝑇𝑋𝑉 and 𝐶′ = 𝑈𝑇𝐶𝑉. To solve for 𝑋 in Eq. (1.3), we solve for 𝑋′ in  

Eq. (2.21), and then we get 𝑋 = 𝑈𝑋′𝑉𝑇.  

In the following Section 2.9, the GIM and LSIM methods for solving the ELME are 

reviewed.  

2.9 Existing Numerical Methods for Solving Linear Matrix Equations 

The numerical solution of the LME 𝐴𝑋 = 𝐵 and the ELME 𝐴𝑋𝐵 = 𝐸, can be 

approximated numerically using the GIM and LSIM, respectively. The following 

theorems discuss the numerical solution to the ELME by the GIM. 

Theorem 2.9.1. (Ding et al., 2008) If the linear matrix equation 𝐴𝑋 = 𝐸 has a unique 

solution 𝑋, then the iterative solution 𝑋̂(𝑘) given by  

𝑋̂(𝑘)  = 𝑋̂(𝑘 − 1)  + 𝛼 ∙ (𝐴)𝑇(𝐸 − 𝐴𝑋̂(𝑘 − 1)) converges to 𝑋 or 𝑙𝑖𝑚
𝑘→∞

(𝑋̂(𝑘) ) = 𝑋 

for any initial value 𝑋̂(0). 

Theorem 2.9.2 (Ramadan et al., 2015) If the crisp linear matrix equation 𝐴𝑋𝐵 = 𝐸 has 

a unique solution 𝑋, then the least-square iterative solution 𝑋̂(𝑘) given by 

𝑋̂(𝑘)  = 𝑋̂(𝑘 − 1)  + 𝛼 ∙ ((𝐴)𝑇 ∙ 𝐴)−1(𝐴)𝑇(𝐸 − 𝐴𝑋̂(𝑘 − 1)) converges to 𝑋 or 

𝑙𝑖𝑚
𝑘→∞

(𝑋̂(𝑘) ) = 𝑋 for any initial value 𝑋̂(0). 
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Theorem 2.9.3 (Ding et al., 2008) If the ELME 𝐴𝑋𝐵 = 𝐸 has a unique solution 𝑋, then 

the gradient iterative solution 𝑋̂(𝑘) given by  

𝑋̂(𝑘)  = 𝑋̂(𝑘 − 1)  + 𝛼 ∙ (𝐴)𝑇(𝐸 − 𝐴𝑋̂(𝑘 − 1)𝐵)(𝐵)𝑇 converges to 𝑋 or 

𝑙𝑖𝑚
𝑘→∞

(𝑋̂(𝑘) ) = 𝑋 for any initial value 𝑋̂(0). 

Theorem 2.9.4 (Ding et al., 2008) If the ELME 𝐴𝑋𝐵 = 𝐸 has a unique solution 𝑋, then 

the least-square iterative solution 𝑋̂(𝑘) given by  

𝑋̂(𝑘)  = 𝑋̂(𝑘 − 1)  + 𝛼 ∙ ((𝐴)𝑇 ∙ 𝐴)−1(𝐴)𝑇(𝐸 − 𝐴𝑋̂(𝑘 − 1)𝐵)(𝐵)𝑇((𝐵(𝐵)𝑇)−1 

converges to 𝑋 or 𝑙𝑖𝑚
𝑘→∞

(𝑋̂(𝑘) ) = 𝑋 for any initial value 𝑋̂(0). 

2.10 Overview of The Literature Review 

This section presents an overview of the literature review. In the following Figure 2.5, 

the literature review is summarized.
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      Figure 2.5. Literature review summary. 
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CHAPTER THREE 

RESTRICTED GENERALIZED TRAPEZOIDAL FULLY FUZZY 

SYLVESTER MATRIX EQUATION 

In this chapter, arithmetic fuzzy multiplication operations on TrFNs in general form are 

developed based on the arithmetic multiplication operations of 𝛼 − 𝑐𝑢𝑡 intervals. These 

operations are used to develop the four methods for solving positive GTrFFSME and 

its special cases. In addition, the new developed arithmetic fuzzy multiplication 

operations are modified and reduced to a simpler form based on signs of trapezoidal 

fuzzy numbers: positive, negative, and near-zero. In illustrating the constructed 

methods, analytical and numerical approaches are utilized to the positive GTrFFSME 

and its special cases using the reduced multiplication operators. In the following 

Section 3.1, arithmetic fuzzy multiplication operations on TrFNs are discussed. 

3.1 Arithmetic Multiplication Operations Between Trapezoidal Fuzzy Numbers 

Most of the existing literatures approximated the TrFNs multiplication using many 

methods as discussed in Section 2.3.3.1 and Section 2.3.3.2, respectively. The previous 

multiplication operations are limited to positive or negative TrFNs only. However, 

there are numerous scenarios for the multiplication between TrFNs, due to the existing 

signs of TrFNs that can be positive, negative or near-zero, as discussed in  

Section 2.3.3.2. 

 

Therefore, in this section, new arithmetic multiplication operations on TrFNs in general 

form are developed that are able to consider all the signs of TrFNs. The new arithmetic 

multiplication operations are based on converting TrFNs to their equivalent 𝛼 − 𝑐𝑢𝑡 

intervals using Definition 2.7.2.3. Then, the arithmetic multiplication operation of  
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𝛼 − 𝑐𝑢𝑡 intervals in Definition 2.7.2.1 is applied to obtain the product of TrFNs. The 

new developed fuzzy arithmetic multiplication operations on TrFNs can be applied to 

all different signs of TrFNs. This construction provides a more direct computation than 

previous operators in Definition 2.3.3.1.6 and Definition 2.3.3.2.6 due to the 

complexity of the operations involved. In this thesis, the new arithmetic multiplication 

operators are called as Ahmd Multiplication Operator (AMO). The construction and 

reduction of the newly developed arithmetic multiplication operators are discussed in 

the following sections. In Section 3.1.1, arithmetic fuzzy multiplication operations 

between arbitrary TrFNs are developed and reduced in Section 3.1.2 and Section 3.1.3 

for restricted and semi-restricted TrFNs, respectively. 

3.1.1 Ahmd Multiplication Operator for Arbitrary Trapezoidal Fuzzy Numbers  

In this section, arithmetic fuzzy multiplication operations between arbitrary TrFNs are 

developed based on the arithmetic multiplication operations of 𝛼 − 𝑐𝑢𝑡 intervals in  

Definition 2.7.2.1.  

Theorem 3.1.1.1.  

Suppose that 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4) and 𝐵̃ = (𝑏1, 𝑏2, 𝑏3, 𝑏4) are two arbitrary TrFNs 

respectively, then: 

𝐴̃𝐵̃ = (𝑎, ℎ,𝑚, 𝑑),                                                          (3.1) 

where 

𝑎 = 𝑚𝑖𝑛(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4), 

ℎ = 𝑚𝑖𝑛(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3), 

𝑚 = 𝑚𝑎𝑥(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3), 

𝑑 = 𝑚𝑎𝑥(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4). 
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Proof: Let 𝐴̃ and 𝐵̃ be two arbitrary TrFNs. Then by Definition 2.7.2.3, the 𝛼 − 𝑐𝑢𝑡 

intervals for 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4) and 𝐵̃ = (𝑏1, 𝑏2, 𝑏3, 𝑏4) are, 

𝐴̃𝛼 = [𝑎1
𝛼 , 𝑎2

𝛼] = [(𝑎2 − 𝑎1)𝛼 + 𝑎1, −(𝑎4 − 𝑎3)𝛼 + 𝑎4], 

𝐵̃𝛼 = [𝑏1
𝛼 , 𝑏2

𝛼] = [(𝑏2 − 𝑏1)𝛼 + 𝑏1, −(𝑏4 − 𝑏3)𝛼 + 𝑏4], 

 ∀𝛼 ∈ [0,1] respectively.                  

By applying the multiplication operations of α − cut interval in Definition 2.7.2.1 in  

Eq. (2.20c), which is based on the interval multiplication in Definition 2.7.1.1 in  

Eq. (2.18a), the product of 𝐴̃𝛼 and 𝐵̃𝛼 is: 

          𝐴̃𝛼 × 𝐵̃𝛼 = [𝑎1
𝛼 , 𝑎2

𝛼] × [𝑏1
𝛼 , 𝑏2

𝛼]. 

                         = [𝑚𝑖𝑛 (𝑎1
𝛼𝑏1

𝛼 , 𝑎1
𝛼𝑏2

𝛼 , 𝑎2
𝛼𝑏1

𝛼 , 𝑎2
𝛼𝑏2

𝛼),𝑚𝑎𝑥(𝑎1
𝛼𝑏1

𝛼 , 𝑎1
𝛼𝑏2

𝛼 , 𝑎2
𝛼𝑏1

𝛼 , 𝑎2
𝛼𝑏2

𝛼)]. 

                         = [𝑒1
𝛼 , 𝑒2

𝛼]. 

where,  

𝑒1
𝛼 = 𝑚𝑖𝑛 (𝑎1

𝛼𝑏1
𝛼 , 𝑎1

𝛼𝑏2
𝛼 , 𝑎2

𝛼𝑏1
𝛼 , 𝑎2

𝛼𝑏2
𝛼) = 𝑚𝑖𝑛(((𝑎2 − 𝑎1)𝛼 + 𝑎1) ∙ ((𝑏2 − 𝑏1)𝛼 +

𝑏1), ((𝑎2 − 𝑎1)𝛼 + 𝑎1) ∙ (−(𝑏4 − 𝑏3)𝛼 + 𝑏4), (−(𝑎4 − 𝑎3)𝛼 + 𝑎4) ∙ ((𝑏2 − 𝑏1)𝛼 +

𝑏1), (−(𝑎4 − 𝑎3)𝛼 + 𝑎4) ∙ (−(𝑏4 − 𝑏3)𝛼 + 𝑏4)),  

𝑒2
𝛼 = 𝑚𝑎𝑥(𝑎1

𝛼𝑏1
𝛼 , 𝑎1

𝛼𝑏2
𝛼 , 𝑎2

𝛼𝑏1
𝛼 , 𝑎2

𝛼𝑏2
𝛼) = 𝑚𝑎𝑥(((𝑎2 − 𝑎1)𝛼 + 𝑎1) ∙ ((𝑏2 − 𝑏1)𝛼 +

𝑏1), ((𝑎2 − 𝑎1)𝛼 + 𝑎1) ∙ (−(𝑏4 − 𝑏3)𝛼 + 𝑏4), (−(𝑎4 − 𝑎3)𝛼 + 𝑎4) ∙ ((𝑏2 − 𝑏1)𝛼 +

𝑏1), (−(𝑎4 − 𝑎3)𝛼 + 𝑎4) ∙ (−(𝑏4 − 𝑏3)𝛼 + 𝑏4)), 

By Remark 2.3.3, the left and right endpoints of the TrFN 𝐴̃𝐵̃ can be found if 𝛼 = 0. 

Thus, at 𝛼 = 0,  

𝐴̃0 × 𝐵̃0 = [𝑒1
0, 𝑒2

0] = [𝑚𝑖𝑛(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4),𝑚𝑎𝑥(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4)].  

 

 



 

66 

 

The following Figure 3.1 represents the product 𝐴̃0 × 𝐵̃0.  

 

 

 

 

 

Figure 3.1. Representation of the product 𝐴̃0 × 𝐵̃0 at 𝛼 = 0. 

Meanwhile the mean points of the TrFN 𝐴̃𝐵̃ can be found if we let 𝛼 = 1. Thus, at  

𝛼 = 1,  

𝐴̃1 × 𝐵̃1 = [𝑒1
1, 𝑒2

1] = [𝑚𝑖𝑛(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3),𝑚𝑎𝑥(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3)]. 

The following Figure 3.2 represents the product 𝐴̃1 × 𝐵̃1.  

 

 

 

 

 

Figure 3.2. Representation of the product 𝐴̃1 × 𝐵̃1 at 𝛼 = 1. 

By combining the endpoints and mean points of 𝐴̃𝐵̃ using the definition of TrFNs in  

Definition 2.3.3.2.2 and Remark 2.3.3.2.1, the product 𝐴̃𝐵̃ is 

𝐴̃𝐵̃ = (𝑎, ℎ,𝑚, 𝑑).  

where 

𝑎 = 𝑚𝑖𝑛(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4), 

ℎ = 𝑚𝑖𝑛(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3), 

𝑚 = 𝑚𝑎𝑥(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) 

𝑥 
𝑒2 𝑒1 

 

𝛼 = 1 

𝛼 = 0 

𝑥 
𝑒2 𝑒1 

 

𝛼 = 1 

𝛼 = 0 
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𝑑 = 𝑚𝑎𝑥(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4). 

□ 

The following Figure 3.3 represents the product 𝐴̃𝐵̃.  

 

 

 

 

Figure 3.3. Representation of the product 𝐴̃𝐵̃. 

Definition 3.1.1.1. 

If 𝐴̃ and 𝐵̃ are two arbitrary TrFNs respectively, then the product 𝐴̃𝐵̃ = (𝑎, ℎ,𝑚, 𝑑) is 

called AMO for arbitrary TrFNs. 

The implementation of AMO is illustrated in the following Example 3.1.1.1. 

Example 3.1.1.1: Let  𝐴̃ = (−4,−2, 1, 3) and 𝐵̃ = (−5, 2, 4, 7) be two arbitrary TrFNs 

respectively, then 

𝑎 = 𝑚𝑖𝑛(−4 × −5,−4 × 7, 3 × −5, 3 × 7) = −28, 

ℎ = 𝑚𝑖𝑛(−2 × 2,−2 × 4, 1 × 2, 1 × 4) = −8, 

𝑚 = 𝑚𝑎𝑥(−2 × 2,−2 × 4, 1 × 2, 1 × 4) = 4, 

𝑑 = 𝑚𝑎𝑥(−4 × −5,−4 × 7, 3 × −5, 3 × 7) = 21. 

Therefore, 𝐴̃𝐵̃ = (−28,−8, 4, 21). 

ℎ 𝑚 
𝑥 

𝑑 𝑎 

a 

𝛼 = 1 

𝛼 = 0 
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Remark 3.1.1.1. Based on Theorem 3.1.1.1, the TrFN 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4) can be 

expressed as a combination of two intervals; the first is [𝑎1, 𝑎4] and the second is 

[𝑎2, 𝑎3]. 

 

As shown in Example 3.1.1.1, AMO can find the product of arbitrary TrFNs. However, 

when applying AMO to solve arbitrary fuzzy equations, they are converted to a non-

linear system of equations, which is challenging to solve since it involves a min-max 

of four terms. Moreover, this non-linear system of min-max cannot be solved by 

classical known methods as discussed in Section 1.2.1. Therefore, reducing the non-

linear system of equations from min-max of four terms to two terms makes the solution 

to the fuzzy equations much easier in terms of computational time and memory usage.  

 

Thus, a further modification to AMO needs to be done to make it more practical in 

solving arbitrary fuzzy equations. TrFNs can be expressed as a combination of two 

separated intervals based on Remark 3.1.1.1; therefore, interval arithmetic 

multiplication operators in Definition 2.7.1.1 are used to modify and reduce AMO in 

Theorem 3.1.1.1 for restricted and semi-restricted TrFNs. Therefore, in Section 3.1.2, 

AMO is reduced to so-called reduced Ahmd multiplication operators (RAMO) based 

on the sign of the restricted TrFNs that are positive or negative.  

3.1.2 Reduced Ahmd Multiplication Operators for Restricted Trapezoidal Fuzzy 

Numbers  

In this section, AMO for arbitrary TrFNs in Section 3.1.1 is reduced based on the sign 

of the restricted TrFNs in Definition 2.3.3.2.3, which are positive or negative. In the 

following Corollary 3.1.2.1, AMO in Eq. (3.1) is reduced for positive TrFNs. 



 

69 

 

Corollary 3.1.2.1. Reduced Ahmd Multiplication Operators for Positive TrFNs. 

Suppose that 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4) and 𝐵̃ = (𝑏1, 𝑏2, 𝑏3, 𝑏4) are two positive TrFNs 

respectively then: 

𝐴̃𝐵̃ = (𝑎1𝑏1, 𝑎2𝑏2, 𝑎3𝑏3, 𝑎4𝑏4).                                               (3.2) 

Proof: Let 𝐴̃ and 𝐵̃ be two positive TrFNs. Then by Theorem 3.1.1.1 and  

Remark 3.1.1.1, AMO in Eq. (3.1) can be reduced using interval arithmetic 

multiplication operations in Definition 2.7.1.1, since 𝐴̃ and 𝐵̃ are two positive TrFNs. 

Then by Eq. (2.18b), the product 𝐴̃𝐵̃ is reduced as follows: 

𝑚𝑖𝑛(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎1𝑏1, 

𝑚𝑖𝑛(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎2𝑏2, 

𝑚𝑎𝑥(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎3𝑏3, 

𝑚𝑎𝑥(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎4𝑏4. 

Therefore, RAMO between the positive TrFNs 𝐴̃ and 𝐵̃ is: 

𝐴̃𝐵̃ = (𝑎1𝑏1, 𝑎2𝑏2, 𝑎3𝑏3, 𝑎4𝑏4). 

□ 

Definition 3.1.2.1. If 𝐴̃ and 𝐵̃ are two positive TrFNs respectively, then the 

multiplication 𝐴̃𝐵̃ = (𝑎1𝑏1, 𝑎2𝑏2, 𝑎3𝑏3, 𝑎4𝑏4) is called reduced Ahmd Multiplication 

Operators (RAMO) for Positive TrFNs. 

In the following Example 3.1.2.1, the RAMO in Eq. (3.2) for positive TrFNs is 

illustrated. 

Example 3.1.2.1: Let 𝐴̃ = (1, 3, 4, 6) and 𝐵̃ = (5, 6, 7, 8) be two positive TrFNs 

respectively, then 𝐴̃𝐵̃ can be found either by using AMO in Eq. (3.1) or RAMO for 

positive TrFNs in Eq. (3.2) as follows: 
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I) 𝐴̃𝐵̃ by AMO in Eq. (3.1) is, 

                                        𝑎 = 𝑚𝑖𝑛(1 × 5, 1 × 8, 6 × 5, 6 × 8) = 1 × 5 = 5, 

                                        ℎ = 𝑚𝑖𝑛(3 × 6, 3 × 7, 4 × 6, 4 × 7) = 3 × 6 = 18, 

                                       𝑚 = 𝑚𝑎𝑥(3 × 6, 3 × 7, 4 × 6, 4 × 7) = 4 × 7 = 28, 

                                        𝑑 = 𝑚𝑎𝑥(1 × 5, 1 × 8, 6 × 5, 6 × 8) = 6 × 8 = 48. 

Thus, 𝐴̃𝐵̃ = (5, 18, 28, 48). 

II) 𝐴̃𝐵̃ by RAMO in Eq. (3.2) is, 

𝐴̃𝐵̃ = (1 × 5, 3 × 6, 4 × 7, 6 × 8) = (5, 18, 28, 48). 

Remark 3.1.2.1. It is evident from Example 3.1.2.1 that the RAMO in Eq. (3.2) is more 

practical than AMO in Eq. (3.1) for positive TrFNs. 

In the following Corollary 3.1.2.2, AMO in Eq. (3.1) is reduced for negative TrFNs. 

Corollary 3.1.2.2. Reduced Ahmd Multiplication Operator for Negative TrFNs. 

Suppose that 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4) and 𝐵̃ = (𝑏1, 𝑏2, 𝑏3, 𝑏4) are two negative TrFNs 

respectively, then: 

𝐴̃𝐵̃ = (𝑎4𝑏4, 𝑎3𝑏3, 𝑎2𝑏2, 𝑎1𝑏1).                                               (3.3) 

Proof: Let 𝐴̃ and 𝐵̃ be two negative TrFNs, respectively. Then by Eq. (2.18c), the 

product 𝐴̃𝐵̃ by AMO in Eq. (3.1) is reduced as follows: 

𝑚𝑖𝑛(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎4𝑏4, 

𝑚𝑖𝑛(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎3𝑏3, 

𝑚𝑎𝑥(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎2𝑏2, 

𝑚𝑎𝑥(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎1𝑏1. 

Therefore, RAMO between two negative TrFNs is: 

𝐴̃𝐵̃ = (𝑎4𝑏4, 𝑎3𝑏3, 𝑎2𝑏2, 𝑎1𝑏1). 

□ 
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In the following Example 3.1.2.2, the RAMO in Eq. (3.3) for negative TrFNs is 

illustrated. 

Example 3.1.2.2: Let  𝐴̃ = (−5,−4,−2,−1) and 𝐵̃ = (−9,−6,−3,−2) be two 

negative TrFNs respectively, then the product 𝐴̃𝐵̃ can be found using the RAMO in  

Eq. (3.3) as follows, 

𝐴̃𝐵̃ = (−1 × −2,−2 × −3,−4 × −6,−5 × −9) = (2, 6, 24, 45). 

In the following Corollary 3.1.2.3, AMO in Eq. (3.1) is reduced for the product of 

positive and negative TrFNs, respectively. 

Corollary 3.1.2.3. Reduced Ahmd Multiplication Operator for Positive and Negative 

TrFNs.  

Suppose that 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4) is positive TrFN and 𝐵̃ = (𝑏1, 𝑏2, 𝑏3, 𝑏4)  is negative 

TrFNs, then: 

𝐴̃𝐵̃ = (𝑎4𝑏1, 𝑎3𝑏2, 𝑎2𝑏3, 𝑎1𝑏4).                                          (3.4) 

Proof: Let 𝐴̃ and 𝐵̃ be two positive and negative TrFNs, respectively. Then, by  

Eq. (2.18d), the AMO in Eq. (3.1) is reduced as follows: 

𝑚𝑖𝑛(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎4𝑏1, 

𝑚𝑖𝑛(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎3𝑏2, 

𝑚𝑎𝑥(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎2𝑏3, 

𝑚𝑎𝑥(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎1𝑏4. 

Therefore, RAMO of positive and negative TrFNs is: 

𝐴̃𝐵̃ = (𝑎4𝑏1, 𝑎3𝑏2, 𝑎2𝑏3, 𝑎1𝑏4). 

□ 

In the following Example 3.1.2.3, the RAMO in Eq. (3.4) for TrFNs is illustrated. 
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Example 3.1.2.3: Let 𝐴̃ = (3, 4, 6, 8) and 𝐵̃ = (−5,−4,−3,−2) be positive and 

negative TrFNs respectively, then the product 𝐴̃𝐵̃ can be found using the RAMO in  

Eq. (3.4) as follows, 

𝐴̃𝐵̃ = (8 × −5, 6 × −4, 4 × −3, 3 × −2) = (−40,−24,−12,−6). 

In the following Corollary 3.1.2.4, AMO in Eq. (3.1) is reduced for the product of 

negative and positive TrFNs. 

Corollary 3.1.2.4. Reduced Ahmd Multiplication Operators for Negative and Positive 

TrFNs. 

Suppose that  𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4)  is negative TrFN and 𝐵̃ = (𝑏1, 𝑏2, 𝑏3, 𝑏4) is positive 

TrFNs then: 

𝐴̃𝐵̃ = (𝑎1𝑏4, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎4𝑏1).                                                  (3.5) 

Proof: Let 𝐴̃ and 𝐵̃ be negative and positive TrFNs, respectively. Then, by  

Eq. (2.18e), the AMO in Eq. (3.1) is reduced as follows: 

𝑚𝑖𝑛(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎1𝑏4, 

𝑚𝑖𝑛(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎2𝑏3, 

𝑚𝑎𝑥(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎3𝑏2, 

𝑚𝑎𝑥(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎4𝑏1. 

Therefore, RAMO of negative and positive TrFNs is: 

𝐴̃𝐵̃ = (𝑎1𝑏4, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎4𝑏1). 

□ 

In the following Example 3.1.2.4, the RAMO in Eq. (3.5) for TrFNs is illustrated. 

Example 3.1.2.4: Let 𝐴̃ = (−7,−6,−3,−2)  and 𝐵̃ = (2, 4, 6, 7) be negative and 

positive TrFNs respectively, then the product 𝐴̃𝐵̃ can be found using the RAMO in  

Eq. (3.5) as follows, 

𝐴̃𝐵̃ = (−7 × 7,−6 × 6,−3 × 4,−2 × 2) = (−49,−36,−12,−4). 
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In the following Section 3.1.3, the AMO in Section 3.1.1 is reduced for semi-restricted 

TrFNs.  

Remark 3.1.2.2. The term semi-restricted TrFNs means one TrFN is restricted to 

positive or negative, and the other TrFN is arbitrary (positive, negative or near-zero). 

3.1.3 Reduced Ahmd Multiplication Operators for Semi-Restricted TrFNs  

In this section, the developed fuzzy multiplication operator (AMO) for arbitrary TrFNs 

in Theorem 3.1.1.1 is reduced for semi-restricted TrFNs. In the following corollaries, 

the multiplication between semi-restricted TrFNs is reduced from four terms into two 

terms only. This reduction contributes significantly to the solution of a family of fuzzy 

equations in Chapters Four and Six. 

Corollary 3.1.3.1 Suppose that 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4) is positive TrFN and 

 𝐵̃ = (𝑏1, 𝑏2, 𝑏3, 𝑏4) is arbitrary TrFN, then: 

𝐴̃𝐵̃ = (𝑚𝑖𝑛 (𝑎1𝑏1, 𝑎4𝑏1),𝑚𝑖𝑛 (𝑎2𝑏2, 𝑎3𝑏2),𝑚𝑎𝑥 (𝑎2𝑏3, 𝑎3𝑏3),𝑚𝑎𝑥(𝑎1𝑏4, 𝑎4𝑏4)).          (3.6) 

Proof: 

Let 𝐴̃ be a positive TrFN and 𝐵̃ be arbitrary TrFN. The sign of 𝐵̃ could be positive, 

negative or near-zero, respectively. Therefore, this corollary is proven in three parts as 

follows: 

I) If both 𝐴̃ and 𝐵̃ are positive TrFNs, then by Corollary 3.1.2.1, the following 

product is obtained, 

𝐴̃𝐵̃ = (𝑎1𝑏1, 𝑎2𝑏2, 𝑎3𝑏3, 𝑎4𝑏4). 

II) If 𝐴̃ is positive TrFN and 𝐵̃ is negative TrFN, then by Corollary 3.1.2.1, the 

following product is obtained, 

𝐴̃𝐵̃ = (𝑎4𝑏1, 𝑎3𝑏2, 𝑎2𝑏3, 𝑎1𝑏4). 
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III) If 𝐴̃ is positive TrFN and 𝐵̃ is near-zero TrFN, then by Definition 2.3.3.2.4, the 

product 𝐴̃𝐵̃ is classified as follows:   

Case I) Let 𝐴̃ be positive TrFN and 𝐵̃ be 𝑁1 − 𝑧𝑒𝑟𝑜 TrFN then, 

0 < 𝑎1 < 𝑎4 and 𝑏1 < 0 < 𝑏4. 

Therefore,  

𝑎4𝑏1 < 𝑎1𝑏1 < 0 and  0 < 𝑎1𝑏4 < 𝑎4𝑏4. 

 Consequently,              

      𝑎4𝑏1 < 𝑎1𝑏1 < 0 < 𝑎1𝑏4 < 𝑎4𝑏4.                                                       (3.7a) 

In addition, since 0 < 𝑎2 ≤ 𝑎3 and 𝑏2 < 𝑏3 < 0, then,  

𝑎3𝑏2 < 𝑎2𝑏2 < 𝑎2𝑏3 < 0 and 𝑎3𝑏2 < 𝑎3𝑏3 < 𝑎2𝑏3 < 0.                   (3.7b) 

By Eq. (3.7a) and Eq. (3.7b), AMO in Eq. (3.1) is reduced as follows:  

𝑎 = 𝑚𝑖𝑛(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎4𝑏1, 

ℎ = 𝑚𝑖𝑛(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎3𝑏2, 

𝑚 = 𝑚𝑎𝑥(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎2𝑏3, 

𝑑 = 𝑚𝑎𝑥(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎4𝑏4. 

Therefore, if 𝐴̃ is positive TrFN and 𝐵̃ is 𝑁1 − 𝑧𝑒𝑟𝑜 then: 

𝐴̃𝐵̃ = (𝑎4𝑏1, 𝑎3𝑏2, 𝑎2𝑏3, 𝑎4𝑏4).                                               (3.7c) 

Case II) Let 𝐴̃ be positive TrFN and 𝐵̃ be 𝑁1 − 𝑧𝑒𝑟𝑜 TrFN then, 

0 < 𝑎1 < 𝑎4 and 𝑏1 < 0 < 𝑏4. 

Therefore  𝑎4𝑏1 < 𝑎1𝑏1 < 0 and  0 < 𝑎1𝑏4 < 𝑎4𝑏4  Consequently,  

𝑎4𝑏1 < 𝑎1𝑏1 < 0 < 𝑎1𝑏4 < 𝑎4𝑏4.                                                  (3.8a) 

In addition, since 

 0 < 𝑎2 ≤ 𝑎3, 𝑏2 < 0 < 𝑏3, 𝑎3𝑏2 ≤ 𝑎2𝑏2 < 0 and  0 < 𝑎2𝑏3 < 𝑎3𝑏3.  Therefore,  

𝑎3𝑏2 ≤ 𝑎2𝑏2 < 0 < 𝑎2𝑏3 < 𝑎3𝑏3.                                                (3.8b) 

By Eq. (3.8b) and Eq. (3.8c), AMO in Eq. (3.1) is reduced as follows:  



 

75 

 

𝑎 = 𝑚𝑖𝑛(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎4𝑏1, 

ℎ = 𝑚𝑖𝑛(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎3𝑏2, 

𝑚 = 𝑚𝑎𝑥(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎3𝑏3, 

𝑑 = 𝑚𝑎𝑥(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎4𝑏4. 

Therefore, if 𝐴̃ is positive TrFN and 𝐵̃ is 𝑁2 − 𝑧𝑒𝑟𝑜 then: 

𝐴̃𝐵̃ = (𝑎4𝑏1, 𝑎3𝑏2, 𝑎3𝑏3, 𝑎4𝑏4).                                                 (3.8c) 

Case III) Let 𝐴̃ be positive TrFN and 𝐵̃ be 𝑁1 − 𝑧𝑒𝑟𝑜 TrFN then, 

0 < 𝑎1 < 𝑎4 and 𝑏1 < 0 < 𝑏4. 

Therefore  𝑎4𝑏1 < 𝑎1𝑏1 < 0 and  0 < 𝑎1𝑏4 < 𝑎4𝑏4  Consequently  

𝑎4𝑏1 < 𝑎1𝑏1 < 0 < 𝑎1𝑏4 < 𝑎4𝑏4.                                               (3.9a) 

In addition, since 0 < 𝑎2 ≤ 𝑎3 and 0 < 𝑏2 < 𝑏3, then,  

0 < 𝑎2𝑏2 < 𝑎2𝑏3 < 𝑎3𝑏3, and 0 < 𝑎2𝑏2 < 𝑎3𝑏2 < 𝑎3𝑏3.                            (3.9b) 

By Eq. (3.9b) and Eq. (3.9c), AMO in Eq. (3.1) is reduced as follows:  

𝑎 = 𝑚𝑖𝑛(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎4𝑏1, 

ℎ = 𝑚𝑖𝑛(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎2𝑏2, 

𝑚 = 𝑚𝑎𝑥(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎3𝑏3, 

𝑑 = 𝑚𝑎𝑥(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎4𝑏4. 

Therefore, if 𝐴̃ is positive TrFN and 𝐵̃ is 𝑁3 − 𝑧𝑒𝑟𝑜 then: 

𝐴̃𝐵̃ = (𝑎4𝑏1, 𝑎2𝑏2, 𝑎3𝑏3, 𝑎4𝑏4).                                      (3.9c) 

By combining Eq. (3.2), Eq. (3.4), Eq. (3.7c), Eq. (3.8c) and Eq. (3.9c), If 𝐴̃ is positive 

TrFN and 𝐵̃  is arbitrary TrFN, then the product 𝐴̃𝐵̃ is:  

𝐴̃𝐵̃ = (𝑚𝑖𝑛 (𝑎1𝑏1, 𝑎4𝑏1),𝑚𝑖𝑛 (𝑎2𝑏2, 𝑎3𝑏2),𝑚𝑎𝑥 (𝑎2𝑏3, 𝑎3𝑏3),𝑚𝑎𝑥(𝑎1𝑏4, 𝑎4𝑏4)). 

□ 

Example 3.1.3.1: Let 𝐴̃ = (1, 2, 4, 5) be positive TrFNs and 𝐵̃ = (−6,−4, 6, 7) be 

𝑁2 − 𝑧𝑒𝑟𝑜, then 𝐴̃𝐵̃ is found using the RAMO in Eq. (3.6) as follows, 
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𝐴̃𝐵̃ = (𝑚𝑖𝑛(1 × −6, 5 × −6),𝑚𝑖𝑛 (2 × −4, 4 × −4),𝑚𝑎𝑥(2 × 6, 4 × 6) ,𝑚𝑎𝑥 (1 × 7, 5 × 7)). 

Therefore,  

𝐴̃𝐵̃ = (−30,−16, 24, 35). 

Corollary 3.1.3.2: Suppose that 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4) is negative TrFN and 

 𝐵̃ = (𝑏1, 𝑏2, 𝑏3, 𝑏4) is arbitrary TrFN, then: 

𝐴̃𝐵̃ = (𝑚𝑖𝑛 (𝑎1𝑏4, 𝑎4𝑏4),𝑚𝑖𝑛 (𝑎2𝑏3, 𝑎3𝑏3),𝑚𝑎𝑥 (𝑎3𝑏2, 𝑎2𝑏2),𝑚𝑎𝑥(𝑎4𝑏1, 𝑎1𝑏1)). 

(3.10) 

Proof: Let 𝐴̃ be negative TrFN and 𝐵̃ be arbitrary TrFN. The sign of 𝐵̃ could be 

positive, negative or near-zero TrFN. Therefore, this proof is divided in three parts as 

follows: 

I) If both 𝐴̃ and 𝐵̃ are negative TrFNs, then by Corollary 3.1.2.2, the following 

product is obtained, 

𝐴̃𝐵̃ = (𝑎4𝑏4, 𝑎3𝑏3, 𝑎2𝑏2, 𝑎1𝑏1). 

II) If 𝐴̃ is negative TrFN and 𝐵̃ is positive TrFN, then by Corollary 3.1.2.4, the 

following is obtained, 

𝐴̃𝐵̃ = (𝑎1𝑏4, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎4𝑏1). 

III) If 𝐴̃ is negative TrFN and 𝐵̃ is near-zero TrFN, then by in Definition 2.3.3.2.4, 

the product 𝐴̃𝐵̃ is classified as follows:   

Case I) Let 𝐴̃ be negative TrFN and 𝐵̃ be 𝑁1 − 𝑧𝑒𝑟𝑜 TrFN then, 

𝑎1 < 𝑎4 < 0 and 𝑏1 < 0 < 𝑏4. 

Thus, 0 < 𝑎1𝑏1, 0 < 𝑎4𝑏1, 𝑎1𝑏4 < 0 and 𝑎4𝑏4 < 0. 

In addition, 𝑎4𝑏1 > 𝑎1𝑏1 > 0 and 𝑎1𝑏4 < 𝑎4𝑏4 < 0. Therefore,  

𝑎1𝑏4 < 𝑎4𝑏4 < 0 < 𝑎1𝑏1 < 𝑎4𝑏1.                                                            (3.11a) 

In addition, since 𝑎2 ≤ 𝑎3 < 0 and 𝑏2 < 𝑏3 < 0, therefore,  

0 < 𝑎3𝑏3 < 𝑎3𝑏2 < 𝑎2𝑏2 and 0 < 𝑎3𝑏3 < 𝑎2𝑏3 < 𝑎2𝑏2.                        (3.11b) 
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By Eq. (3.11a) and Eq. (3.11b), AMO in Eq. (3.1) is reduced as follows:  

𝑎 = 𝑚𝑖𝑛(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎4𝑏1, 

ℎ = 𝑚𝑖𝑛(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎3𝑏3, 

𝑚 = 𝑚𝑎𝑥(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎2𝑏2, 

𝑑 = 𝑚𝑎𝑥(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎4𝑏1. 

Therefore, if 𝐴̃ is negative TrFN and 𝐵̃ is 𝑁1 − 𝑧𝑒𝑟𝑜 then: 

𝐴̃𝐵̃ = (𝑎4𝑏1, 𝑎3𝑏3, 𝑎2𝑏2, 𝑎4𝑏1).                                          (3.11c) 

Case II) Let 𝐴̃ be negative TrFN and 𝐵̃ be 𝑁2 − 𝑧𝑒𝑟𝑜 TrFN then, 

𝑎1 < 𝑎4 < 0 and 𝑏1 < 0 < 𝑏4. Therefore  0 < 𝑎4𝑏1 < 𝑎1𝑏1 and  𝑎1𝑏4 < 𝑎4𝑏4 < 0.  

Consequently,  

𝑎1𝑏4 < 𝑎4𝑏4 < 0 < 𝑎4𝑏1 < 𝑎1𝑏1.                                     (3.12𝑎) 

In addition, since 𝑎2 < 𝑎3 < 0 and 𝑏2 < 0 < 𝑏3. 0 < 𝑎3𝑏2 ≤ 𝑎2𝑏2 and 

  𝑎2𝑏3 < 𝑎3𝑏3 < 0, consequently,  

𝑎2𝑏3 < 𝑎3𝑏3 < 0 < 𝑎3𝑏2 < 𝑎2𝑏2.                                               (3.12𝑏) 

By Eq. (3.12a) and Eq. (3.12b), AMO in Eq. (3.1) is reduced as follows:  

𝑎 = 𝑚𝑖𝑛(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎1𝑏4, 

ℎ = 𝑚𝑖𝑛(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎2𝑏3, 

𝑚 = 𝑚𝑎𝑥(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎2𝑏2, 

𝑑 = 𝑚𝑎𝑥(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎1𝑏1. 

Therefore, if 𝐴̃ is negative TrFN and 𝐵̃ is 𝑁2 − 𝑧𝑒𝑟𝑜, then: 

𝐴̃𝐵̃ = (𝑎1𝑏4, 𝑎2𝑏3, 𝑎2𝑏2, 𝑎1𝑏1).                                      (3.12c) 

Case III) Let 𝐴̃ be positive TrFN and 𝐵̃ be 𝑁3 − 𝑧𝑒𝑟𝑜 TrFN then, 

𝑎1 < 𝑎4 < 0 and 𝑏1 < 0 < 𝑏4. Therefore  0 < 𝑎4𝑏1 < 𝑎1𝑏1 and  𝑎1𝑏4 < 𝑎4𝑏4 < 0.  

Consequently,  

𝑎1𝑏4 < 𝑎4𝑏4 < 0 < 𝑎4𝑏1 < 𝑎1𝑏1.                                    (3.13𝑎) 
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In addition, since 𝑎2 ≤ 𝑎3 < 0 and 0 < 𝑏2 < 𝑏3, then 𝑎2𝑏3 < 𝑎2𝑏2 < 𝑎3𝑏2 and  

𝑎2𝑏3 < 𝑎2𝑏2 < 𝑎3𝑏3. In addition, 𝑎3𝑏3 < 𝑎3𝑏2. Consequently,  

𝑎2𝑏3 ≤ 𝑎2𝑏2 < 𝑎3𝑏3 < 𝑎3𝑏2.                                                 (3.13𝑏) 

By Eq. (3.13a) and Eq. (3.13b), AMO in Eq. (3.1) is reduced as follows:  

𝑎 = 𝑚𝑖𝑛(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎1𝑏4, 

ℎ = 𝑚𝑖𝑛(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎2𝑏3, 

𝑚 = 𝑚𝑎𝑥(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎3𝑏2, 

𝑑 = 𝑚𝑎𝑥(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎1𝑏1. 

Therefore, if 𝐴̃ is negative TrFN and 𝐵̃ is 𝑁2 − 𝑧𝑒𝑟𝑜 then: 

𝐴̃𝐵̃ = (𝑎1𝑏4, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎1𝑏1).                               (3.13c) 

By combining Eq. (3.2), Eq. (3.4), Eq. (3.11c), Eq. (3.12c) and Eq. (3.13c), the 

following is obtained.  

𝐴̃𝐵̃ = (𝑚𝑖𝑛 (𝑎1𝑏4, 𝑎4𝑏4),𝑚𝑖𝑛 (𝑎2𝑏3, 𝑎3𝑏3),𝑚𝑎𝑥 (𝑎3𝑏2, 𝑎2𝑏2),𝑚𝑎𝑥(𝑎4𝑏1, 𝑎1𝑏1)).  

□ 

Example 3.1.3.2: If 𝐴̃ = (−11,−7,−4,−2)  and 𝐵̃ = (−1, 4, 5, 7) two TrFNs, then 

𝐴̃𝐵̃ is found using the RAMO in Eq. (3.10) as follows, 

𝐴̃𝐵̃ = (𝑚𝑖𝑛(−11 × 7,−2 × 7),𝑚𝑖𝑛 (−7 × 5,−4 × 5),𝑚𝑎𝑥(−4 × 4,−7 ×

4) ,𝑚𝑎𝑥 (−2 × −1,−11 × −1). 

Therefore,  

𝐴̃𝐵̃ = (−77,−35,−16, 11). 

Corollary 3.1.3.3 If 𝐴̃ is near-zero TrFN and 𝐵̃ is arbitrary TrFN and based on the 

definition of near-zero TrFNs in Definition 2.3.3.2.4, the product 𝐴̃𝐵̃ can be classified 

as follows:   

Case I) If 𝐴̃ is 𝑁1 − 𝑧𝑒𝑟𝑜 TrFN and 𝐵̃ arbitrary TrFN then: 

𝐴̃𝐵̃ = (𝑚𝑖𝑛 (𝑎1𝑏4, 𝑎4𝑏1),𝑚𝑖𝑛 (𝑎2𝑏3, 𝑎3𝑏3),𝑚𝑎𝑥 (𝑎3𝑏2, 𝑎2𝑏2),𝑚𝑎𝑥(𝑎4𝑏4, 𝑎1𝑏1)). 
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(3.14a) 

Case II) If 𝐴̃ is 𝑁2 − 𝑧𝑒𝑟𝑜 TrFN and 𝐵̃ arbitrary TrFN then: 

𝐴̃𝐵̃ = (𝑚𝑖𝑛 (𝑎1𝑏4, 𝑎4𝑏1),𝑚𝑖𝑛 (𝑎2𝑏3, 𝑎3𝑏2),𝑚𝑎𝑥 (𝑎2𝑏2, 𝑎3𝑏3),𝑚𝑎𝑥(𝑎4𝑏4, 𝑎1𝑏1)). 

(3.14b) 

Case III) If 𝐴̃ is 𝑁3 − 𝑧𝑒𝑟𝑜 TrFN and 𝐵̃ arbitrary TrFN then: 

𝐴̃𝐵̃ = (𝑚𝑖𝑛 (𝑎1𝑏4, 𝑎4𝑏1),𝑚𝑖𝑛 (𝑎2𝑏2, 𝑎3𝑏2),𝑚𝑎𝑥 (𝑎2𝑏3, 𝑎3𝑏3),𝑚𝑎𝑥(𝑎4𝑏4, 𝑎1𝑏1)). 

(3.14c) 

Proof: Straightforward similar to Corollaries 3.1.3.1 and 3.1.3.2.  

□ 

Corollary 3.1.3.4 If 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4) is arbitrary TrFN and 𝐵̃ is positive TrFN then: 

𝐴̃𝐵̃ = (𝑚𝑖𝑛 (𝑎1𝑏1, 𝑎1𝑏4),𝑚𝑖𝑛 (𝑎2𝑏2, 𝑎2𝑏3),𝑚𝑎𝑥 (𝑎3𝑏2, 𝑎3𝑏3),𝑚𝑎𝑥(𝑎4𝑏1, 𝑎4𝑏4)). 

(3.15) 

Proof: Straightforward similar to Corollaries 3.1.3.1 and 3.1.3.2.  

□ 

Corollary 3.1.3.5 If 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4) is arbitrary TrFN and 𝐵̃ is negative TrFN then: 

𝐴̃𝐵̃ = (𝑚𝑖𝑛 (𝑎4𝑏1, 𝑎4𝑏4),𝑚𝑖𝑛 (𝑎3𝑏2, 𝑎3𝑏3),𝑚𝑎𝑥 (𝑎2𝑏3, 𝑎2𝑏2),𝑚𝑎𝑥(𝑎1𝑏4, 𝑎1𝑏1)). 

(3.16) 

Proof: Straightforward similar to Corollaries 3.1.3.1 and 3.1.3.2.  

□ 

Corollary 3.1.3.6 If 𝐴̃ is arbitrary TrFNs and 𝐵̃ is near-zero TrFN and based on the 

definition of near-zero TrFN in Definition 2.3.3.2.4, the product 𝐴̃𝐵̃ is classified as 

follows:   

Case I) If 𝐴̃ is arbitrary TrFN and 𝐵̃ is 𝑁1 − 𝑧𝑒𝑟𝑜 TrFN then: 

𝐴̃𝐵̃ = (𝑚𝑖𝑛 (𝑎4𝑏1, 𝑎1𝑏4),𝑚𝑖𝑛 (𝑎3𝑏2, 𝑎3𝑏3),𝑚𝑎𝑥 (𝑎2𝑏3, 𝑎2𝑏2),𝑚𝑎𝑥(𝑎1𝑏1, 𝑎4𝑏4)).  

(3.17a) 
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Case II) If 𝐴̃ is arbitrary TrFN and 𝐵̃ is 𝑁2 − 𝑧𝑒𝑟𝑜 TrFN then: 

𝐴̃𝐵̃ = (𝑚𝑖𝑛 (𝑎4𝑏1, 𝑎1𝑏4),𝑚𝑖𝑛 (𝑎3𝑏2, 𝑎2𝑏3),𝑚𝑎𝑥 (𝑎2𝑏2, 𝑎3𝑏3),𝑚𝑎𝑥(𝑎1𝑏1, 𝑎4𝑏4)). 

(3.17b) 

Case III) If 𝐴̃ is arbitrary TrFN and 𝐵̃ is 𝑁3 − 𝑧𝑒𝑟𝑜 TrFN then: 

𝐴̃𝐵̃ = (𝑚𝑖𝑛 (𝑎4𝑏1, 𝑎1𝑏4),𝑚𝑖𝑛 (𝑎2𝑏2, 𝑎2𝑏3),𝑚𝑎𝑥 (𝑎3𝑏2, 𝑎3𝑏3),𝑚𝑎𝑥(𝑎1𝑏1, 𝑎4𝑏4)). 

(3.17c) 

Proof: Straightforward similar to Corollaries 3.1.3.1 and 3.1.3.2.               

                                     □ 

The following Figure 3.4 summarizes AMO and RAMO for TrFNs. 
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Figure 3.4. Summary of AMO and RAMO for Two TrFNs. 

(𝑚𝑖𝑛(𝑎1𝑏1,  𝑎1𝑏4,  𝑎4𝑏1,  𝑎4𝑏4), 𝑚𝑖𝑛(𝑎2𝑏2,  𝑎2𝑏3,  𝑎3𝑏2,  𝑎3𝑏3), 𝑚𝑎𝑥(𝑎2𝑏2,  𝑎2𝑏3,  𝑎3𝑏2,  𝑎3𝑏3), 𝑚𝑎𝑥(𝑎1𝑏1,  𝑎1𝑏4,  𝑎4𝑏1,  𝑎4𝑏4)). 

{
 
 

 
 (𝑎1𝑏1, 𝑎2𝑏2, 𝑎3𝑏3, 𝑎4𝑏4)         𝐴̃, 𝐵̃ > 0,

(𝑎4𝑏4, 𝑎3𝑏3, 𝑎2𝑏2, 𝑎1𝑏1)         𝐴̃, 𝐵̃ < 0,

(𝑎4𝑏1, 𝑎3𝑏2, 𝑎2𝑏3, 𝑎1𝑏4)  𝐴̃ > 0,  𝐵̃ < 0,

(𝑎1𝑏4, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎4𝑏1) 𝐴̃ < 0,  𝐵̃ > 0.

 

{
 
 

 
 
(𝑚𝑖𝑛(𝑎

1
𝑏1, 𝑎4𝑏1), 𝑚𝑖𝑛(𝑎2𝑏2, 𝑎3𝑏2),  𝑚𝑎𝑥(𝑎2𝑏3, 𝑎3𝑏3), 𝑚𝑎𝑥(𝑎1𝑏4, 𝑎4𝑏4))  𝐴̃ > 0, 𝐵̃ 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦

(𝑚𝑖𝑛(𝑎
1
𝑏4, 𝑎4𝑏4), 𝑚𝑖𝑛(𝑎2𝑏3, 𝑎3𝑏3),  𝑚𝑎𝑥(𝑎3𝑏2, 𝑎2𝑏2), 𝑚𝑎𝑥(𝑎4𝑏1, 𝑎1𝑏1)) 𝐴̃ < 0, 𝐵̃ 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦

(𝑚𝑖𝑛(𝑎
1
𝑏1, 𝑎1𝑏4), 𝑚𝑖𝑛(𝑎2𝑏2, 𝑎2𝑏3),  𝑚𝑎𝑥(𝑎3𝑏2, 𝑎3𝑏3), 𝑚𝑎𝑥(𝑎4𝑏1, 𝑎4𝑏4))  𝐴̃ 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,  𝐵̃ > 0

(𝑚𝑖𝑛(𝑎
4
𝑏1, 𝑎4𝑏4), 𝑚𝑖𝑛(𝑎3𝑏2, 𝑎3𝑏3),  𝑚𝑎𝑥(𝑎2𝑏3, 𝑎2𝑏2), 𝑚𝑎𝑥(𝑎1𝑏4, 𝑎1𝑏1)) 𝐴̃ 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,  𝐵̃ < 0.

 

{
  
 

  
 
(𝑚𝑖𝑛 (𝑎1𝑏4, 𝑎4𝑏1),𝑚𝑖𝑛 (𝑎2𝑏3, 𝑎3𝑏3),  𝑚𝑎𝑥 (𝑎3𝑏2, 𝑎2𝑏2),𝑚𝑎𝑥(𝑎4𝑏4, 𝑎1𝑏1))  𝐴̃ is 𝑁1 − 𝑧𝑒𝑟𝑜, 𝐵̃ 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦

(𝑚𝑖𝑛 (𝑎1𝑏4, 𝑎4𝑏1),𝑚𝑖𝑛 (𝑎2𝑏3, 𝑎3𝑏2),  𝑚𝑎𝑥 (𝑎2𝑏2, 𝑎3𝑏3),𝑚𝑎𝑥(𝑎4𝑏4, 𝑎1𝑏1)) 𝐴̃ is 𝑁2 − 𝑧𝑒𝑟𝑜, 𝐵̃ 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦

(𝑚𝑖𝑛 (𝑎1𝑏4, 𝑎4𝑏1),𝑚𝑖𝑛 (𝑎2𝑏2, 𝑎3𝑏2),  𝑚𝑎𝑥 (𝑎2𝑏3, 𝑎3𝑏3),𝑚𝑎𝑥(𝑎4𝑏4, 𝑎1𝑏1)) 𝐴̃ is 𝑁3 − 𝑧𝑒𝑟𝑜, 𝐵̃ 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦

(𝑚𝑖𝑛 (𝑎4𝑏1, 𝑎1𝑏4),𝑚𝑖𝑛 (𝑎3𝑏2, 𝑎3𝑏3),  𝑚𝑎𝑥 (𝑎2𝑏3, 𝑎2𝑏2),𝑚𝑎𝑥(𝑎1𝑏1, 𝑎4𝑏4)) 𝐴̃ 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,  𝐵̃ is 𝑁1 − 𝑧𝑒𝑟𝑜

(𝑚𝑖𝑛 (𝑎4𝑏1, 𝑎1𝑏4),𝑚𝑖𝑛 (𝑎3𝑏2, 𝑎2𝑏3),  𝑚𝑎𝑥 (𝑎2𝑏2, 𝑎3𝑏3),𝑚𝑎𝑥(𝑎1𝑏1, 𝑎4𝑏4)) 𝐴̃ 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,  𝐵̃ is 𝑁2 − 𝑧𝑒𝑟𝑜

(𝑚𝑖𝑛 (𝑎4𝑏1, 𝑎1𝑏4),𝑚𝑖𝑛 (𝑎2𝑏2, 𝑎2𝑏3),  𝑚𝑎𝑥 (𝑎3𝑏2, 𝑎3𝑏3),𝑚𝑎𝑥(𝑎1𝑏1, 𝑎4𝑏4)) 𝐴̃ 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,  𝐵̃ is 𝑁3 − 𝑧𝑒𝑟𝑜
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Multiplication of three TrFNs whereby one of them is unknown requires that the 

constructed AMO and RAMO to be extended. In the next Section 3.3 the solution of 

the GTrFFSME 𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ requires getting the product of three TrFNs. 

Therefore, in the following Section 3.2, AMO and RAMO in Sections 3.1.1 and 3.1.2 

are extended to three TrFNs. The newly obtained arithmetic multiplication operators 

for three TrFNs are applied to solve the GTrFFSME in Chapters Three and Four. 

3.2 Extended Ahmd Multiplication Operation for Three TrFNs 

This section develops new arithmetic multiplication operations between three TrFNs, 

namely extended Ahmd arithmetic multiplication operations (EAMO) based on AMO 

and RAMO in Sections 3.1.1 and 3.1.2. The new extended arithmetic multiplication 

operations are necessary for solving the GTrFFSME 𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃. In solving the 

GTrFFSME, the fuzzy solution matrix 𝑋̃ is unknown and consequently the product 

𝐴̃𝑋̃𝐵̃ and 𝐶̃𝑋̃𝐷̃ are very challenging to be obtained using AMO or RAMO. In the 

following Corollary 3.2.1, the EAMO are discussed. 

Corollary 3.2.1. Extended Ahmed Multiplication Operators for Three Arbitrary 

TrFNs 

Suppose that 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4), 𝐵̃ = (𝑏1, 𝑏2, 𝑏3, 𝑏4) and 𝑋̃ = (𝑥1, 𝑥2, 𝑥3, 𝑥4) are 

three arbitrary TrFNs. Then: 

𝐴̃𝑋̃𝐵̃ = (𝛹1, 𝛹2, 𝛹3, 𝛹4)                                                  (3.18) 

where, 

      𝛹1 = 𝑀𝑖𝑛[𝑚𝑖𝑛(𝑎1𝑥1, 𝑎1𝑥4, 𝑎4𝑥1, 𝑎4𝑥4) ⋅ 𝑏1, 𝑚𝑖𝑛(𝑎1𝑥1, 𝑎1𝑥4, 𝑎4𝑥1, 𝑎4𝑥4) ⋅ 𝑏4, 

         𝑚𝑎𝑥(𝑎1𝑥1, 𝑎1𝑥4, 𝑎4𝑥1, 𝑎4𝑥4) ⋅ 𝑏1, 𝑚𝑎𝑥(𝑎1𝑥1, 𝑎1𝑥4, 𝑎4𝑥1, 𝑎4𝑥4) ⋅ 𝑏4]. 

𝛹2 = 𝑀𝑖𝑛[𝑚𝑖𝑛(𝑎2𝑥2, 𝑎2𝑥3, 𝑎3𝑥2, 𝑎3𝑥3) ⋅ 𝑏2, 𝑚𝑖𝑛(𝑎2𝑥2, 𝑎2𝑥3, 𝑎3𝑥2, 𝑎3𝑥3) ⋅ 𝑏3, 
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                          𝑚𝑎𝑥(𝑎2𝑥2, 𝑎2𝑥3, 𝑎3𝑥2, 𝑎3𝑥3) ⋅ 𝑏2, 𝑚𝑎𝑥(𝑎2𝑥2, 𝑎2𝑥3, 𝑎3𝑥2, 𝑎3𝑥3) ⋅ 𝑏3], 

𝛹3 = 𝑀𝑎𝑥[𝑚𝑖𝑛(𝑎2𝑥2, 𝑎2𝑥3, 𝑎3𝑥2, 𝑎3𝑥3) ⋅ 𝑏2, 𝑚𝑖𝑛(𝑎2𝑥2, 𝑎2𝑥3, 𝑎3𝑥2, 𝑎3𝑥3) ⋅ 𝑏3, 

𝑚𝑎𝑥(𝑎2𝑥2, 𝑎2𝑥3, 𝑎3𝑥2, 𝑎3𝑥3) ⋅ 𝑏2, 𝑚𝑎𝑥 (𝑎2𝑥2, 𝑎2𝑥3, 𝑎3𝑥2, 𝑎3𝑥3) ⋅ 𝑏3]. 

𝛹4 = 𝑀𝑎𝑥[𝑚𝑖𝑛(𝑎1𝑥1, 𝑎1𝑥4, 𝑎4𝑥1, 𝑎4𝑥4) ⋅ 𝑏1, 𝑚𝑖𝑛(𝑎1𝑥1, 𝑎1𝑥4, 𝑎4𝑥1, 𝑎4𝑥4) ⋅ 𝑏4, 

𝑚𝑎𝑥(𝑎1𝑥1, 𝑎1𝑥4, 𝑎4𝑥1, 𝑎4𝑥4) ⋅ 𝑏1, 𝑚𝑎𝑥(𝑎1𝑥1, 𝑎1𝑥4, 𝑎4𝑥1, 𝑎4𝑥4) ⋅ 𝑏4]. 

Proof: Let 𝐴̃ and 𝑋̃ be two arbitrary TrFNs. Then, by AMO in  

Theorem 3.1.1.1, the product 𝐴̃𝑋̃ = (𝑎, ℎ,𝑚, 𝑑), where 

𝑎 = 𝑚𝑖𝑛(𝑎1𝑥1, 𝑎1𝑥4, 𝑎4𝑥1, 𝑎4𝑥4), 

ℎ = 𝑚𝑖𝑛(𝑎2𝑥2, 𝑎2𝑥3, 𝑎3𝑥2, 𝑎3𝑥3), 

𝑚 = 𝑚𝑎𝑥(𝑎2𝑥2, 𝑎2𝑥3, 𝑎3𝑥2, 𝑎3𝑥3), 

𝑑 = 𝑚𝑎𝑥(𝑎1𝑥1, 𝑎1𝑥4, 𝑎4𝑥1, 𝑎4𝑥4). 

Since the product of two arbitrary TrFNs is arbitrary TrFNs. AMO in Eq. (3.1) is 

applied to find the product of 𝐴̃𝑋̃ and 𝐵̃ as follows:  

𝐴̃𝑋̃𝐵̃ = (𝑎, ℎ,𝑚, 𝑑) × (𝑏1, 𝑏2, 𝑏3, 𝑏4) 

                                              𝐴̃𝑋̃𝐵̃ = (𝛹1, 𝛹2, 𝛹3, 𝛹4) 

where, 

𝛹1 = 𝑀𝑖𝑛[𝑚𝑖𝑛(𝑎1𝑥1, 𝑎1𝑥4, 𝑎4𝑥1, 𝑎4𝑥4) ⋅ 𝑏1, 𝑚𝑖𝑛(𝑎1𝑥1, 𝑎1𝑥4, 𝑎4𝑥1, 𝑎4𝑥4) ⋅ 𝑏4, 

                        𝑚𝑎𝑥(𝑎1𝑥1, 𝑎1𝑥4, 𝑎4𝑥1, 𝑎4𝑥4) ⋅ 𝑏1, 𝑚𝑎𝑥(𝑎1𝑥1, 𝑎1𝑥4, 𝑎4𝑥1, 𝑎4𝑥4) ⋅ 𝑏4]. 

𝛹2 = 𝑀𝑖𝑛[𝑚𝑖𝑛(𝑎2𝑥2, 𝑎2𝑥3, 𝑎3𝑥2, 𝑎3𝑥3) ⋅ 𝑏2, 𝑚𝑖𝑛(𝑎2𝑥2, 𝑎2𝑥3, 𝑎3𝑥2, 𝑎3𝑥3) ⋅ 𝑏3, 

                          𝑚𝑎𝑥(𝑎2𝑥2, 𝑎2𝑥3, 𝑎3𝑥2, 𝑎3𝑥3) ⋅ 𝑏2, 𝑚𝑎𝑥(𝑎2𝑥2, 𝑎2𝑥3, 𝑎3𝑥2, 𝑎3𝑥3) ⋅ 𝑏3], 

𝛹3 = 𝑀𝑎𝑥[𝑚𝑖𝑛(𝑎2𝑥2, 𝑎2𝑥3, 𝑎3𝑥2, 𝑎3𝑥3) ⋅ 𝑏2, 𝑚𝑖𝑛(𝑎2𝑥2, 𝑎2𝑥3, 𝑎3𝑥2, 𝑎3𝑥3) ⋅ 𝑏3, 

𝑚𝑎𝑥(𝑎2𝑥2, 𝑎2𝑥3, 𝑎3𝑥2, 𝑎3𝑥3) ⋅ 𝑏2, 𝑚𝑎𝑥 (𝑎2𝑥2, 𝑎2𝑥3, 𝑎3𝑥2, 𝑎3𝑥3) ⋅ 𝑏3]. 

𝛹4 = 𝑀𝑎𝑥[𝑚𝑖𝑛(𝑎1𝑥1, 𝑎1𝑥4, 𝑎4𝑥1, 𝑎4𝑥4) ⋅ 𝑏1, 𝑚𝑖𝑛(𝑎1𝑥1, 𝑎1𝑥4, 𝑎4𝑥1, 𝑎4𝑥4) ⋅ 𝑏4, 

𝑚𝑎𝑥(𝑎1𝑥1, 𝑎1𝑥4, 𝑎4𝑥1, 𝑎4𝑥4) ⋅ 𝑏1, 𝑚𝑎𝑥(𝑎1𝑥1, 𝑎1𝑥4, 𝑎4𝑥1, 𝑎4𝑥4) ⋅ 𝑏4]. 

□ 
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Example 3.2.1: Let  𝐴̃ = (−4,−2, 1, 3), 𝑋̃ = (−5, 2, 4, 7) and 𝐵̃ = (−1, 1, 3, 5) be three arbitrary TrFNs respectively, then by EAMO 

𝐴̃𝑋̃𝐵̃ = (𝛾1, 𝛾2, 𝛾3, 𝛾4). 

where,  

𝛾1 = 𝑀𝑖𝑛(𝑚𝑖𝑛(−4 × −5,−4 × 7, 3 × −5, 3 × 7) × −1,  𝑚𝑖𝑛(−4 × −5,−4 × 7, 3 × −5, 3 × 7) × 5,𝑚𝑎𝑥(−4 × −5,−4 × 7, 3 ×

−5, 3 × 7) × −1, 𝑚𝑎𝑥(−4 × −5,−4 × 7, 3 × −5, 3 × 7) × 5). 

 

𝛾2 = 𝑀𝑖𝑛(𝑚𝑖𝑛(−2 × 2,−2 × 4, 1 × 2, 1 × 4) × 1,𝑚𝑖𝑛(−2 × 2,−2 × 4, 1 × 2, 1 × 4) × 3,𝑚𝑎𝑥(−2 × 2,−2 × 4, 1 × 2, 1 × 4) ×

1, 𝑚𝑎𝑥(−2 × 2,−2 × 4, 1 × 2, 1 × 4) × 3).  

 

𝛾3 = 𝑀𝑎𝑥(𝑚𝑖𝑛(−4 × −5,−4 × 7, 3 × −5, 3 × 7) × −1,𝑚𝑖𝑛(−4 × −5,−4 × 7, 3 × −5, 3 × 7) × 5,𝑚𝑎𝑥(−4 × −5,−4 × 7, 3 ×

−5, 3 × 7) × −1, 𝑚𝑎𝑥(−4 × −5,−4 × 7, 3 × −5, 3 × 7) × 5). 

 

𝛾4 = 𝑀𝑎𝑥(𝑚𝑖𝑛(−2 × 2,−2 × 4, 1 × 2, 1 × 4) × 1,𝑚𝑖𝑛(−2 × 2,−2 × 4, 1 × 2, 1 × 4) × 3,𝑚𝑎𝑥(−2 × 2,−2 × 4, 1 × 2, 1 × 4) ×

1, 𝑚𝑎𝑥(−2 × 2,−2 × 4, 1 × 2, 1 × 4) × 3).                          

Thus, 

𝐴̃𝑋̃𝐵̃ = (−140,−24, 12, 105). 
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Remark 3.2.1. Example 3.2.1 can be solved by getting the product of 𝐴̃𝑋̃ and multiply 

it to 𝐵̃. However, in solving the GTrFFSME in Eq. (1.16), the product 𝐴̃𝑋̃ cannot be 

completely calculated as 𝑋̃ is unknown and therefore 𝐴̃𝑋̃𝐵̃ needs to be found similar to 

Example 3.2.1 using EAMO. 

In the following Corollary 3.2.1, EAMO for three TrFNs in Eq. (3.18) is reduced for 

three positive TrFNs using the RAMO in Corollary 3.1.2.1. 

Corollary 3.2.1. Suppose that 𝐴̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4), 𝑋̃ = (𝑥1, 𝑥2, 𝑥3, 𝑥4) and  

𝐵̃ = (𝑏1, 𝑏2, 𝑏3, 𝑏4) are three positive TrFNs then: 

𝐴̃𝑋̃𝐵̃ = (𝑎1𝑥1𝑏1, 𝑎2𝑥2𝑏2, 𝑎3𝑥3𝑏3, 𝑎4𝑥4𝑏4)                                        (3.19) 

Proof: Let 𝐴̃ and 𝑋̃ be two positive TrFNs, and based on RAMO in Corollary 3.1.2.1, 

the product 𝐴̃𝑋̃ is  

𝐴̃𝑋̃ = (𝑎, ℎ,𝑚, 𝑑), 

where 

𝑎 = 𝑚𝑖𝑛(𝑎1𝑥1, 𝑎1𝑥4, 𝑎4𝑥1, 𝑎4𝑥4) = 𝑎1𝑥1, 

ℎ = 𝑚𝑖𝑛(𝑎2𝑥2, 𝑎2𝑥3, 𝑎3𝑥2, 𝑎3𝑥3) = 𝑎2𝑥2, 

𝑚 = 𝑚𝑎𝑥(𝑎2𝑥2, 𝑎2𝑥3, 𝑎3𝑥2, 𝑎3𝑥3) = 𝑎3𝑥3 

𝑑 = 𝑚𝑎𝑥(𝑎1𝑥1, 𝑎1𝑥4, 𝑎4𝑥1, 𝑎4𝑥4) = 𝑎4𝑥4. 

Thus, EAMO in Eq. (3.18) can be reduced as follows: 

𝛹1 = 𝑀𝑖𝑛[ 𝑎1𝑥1𝑏1 , 𝑎1𝑥1𝑏4, 𝑎4𝑥4𝑏1, 𝑎4𝑥4𝑏4], 

𝛹2 = 𝑀𝑖𝑛[ 𝑎2𝑥2𝑏2 , 𝑎2𝑥2𝑏3, 𝑎3𝑥3𝑏2, 𝑎3𝑥3𝑏3], 

𝛹3 = 𝑀𝑎𝑥[ 𝑎2𝑥2𝑏2 , 𝑎2𝑥2𝑏3, 𝑎3𝑥3𝑏2, 𝑎3𝑥3𝑏3], 

𝛹4 = 𝑀𝑎𝑥[ 𝑎1𝑥1𝑏1 , 𝑎1𝑥1𝑏4, 𝑎4𝑥4𝑏1, 𝑎4𝑥4𝑏4]. 

Since 𝐵̃ = (𝑏1, 𝑏2, 𝑏3, 𝑏4) is a positive TrFN, by Definition 2.3.3.2.3, the following is 

concluded: 
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0 < 𝑏1 ≤ 𝑏2 ≤ 𝑏3  ≤ 𝑏4. 

Thus, the following can be obtained: 

𝛹1 = 𝑀𝑖𝑛[ 𝑎1𝑥1𝑏1 , 𝑎1𝑥1𝑏4, 𝑎4𝑥4𝑏1, 𝑎4𝑥4𝑏4] = 𝑎1𝑥1𝑏1, 

𝛹2 = 𝑀𝑖𝑛[ 𝑎2𝑥2𝑏2 , 𝑎2𝑥2𝑏3, 𝑎3𝑥3𝑏2, 𝑎3𝑥3𝑏3] = 𝑎2𝑥2𝑏2, 

𝛹3 = 𝑀𝑎𝑥[ 𝑎2𝑥2𝑏2 , 𝑎2𝑥2𝑏3, 𝑎3𝑥3𝑏2, 𝑎3𝑥3𝑏3] = 𝑎3𝑥3𝑏3, 

𝛹4 = 𝑀𝑎𝑥[ 𝑎1𝑥1𝑏1 , 𝑎1𝑥1𝑏4, 𝑎4𝑥4𝑏1, 𝑎4𝑥4𝑏4] = 𝑎4𝑥4𝑏4. 

Therefore, the EAMO in Eq. (3.18) can be reduced as follows:            

        𝐴̃𝑋̃𝐵̃ = (𝑎1𝑥1𝑏1, 𝑎2𝑥2𝑏2, 𝑎3𝑥3𝑏3, 𝑎4𝑥4𝑏4).                                                    □ 

 

So far, complete arithmetic multiplication operations between TrFNs have been 

developed. In the following Section 3.3, the positive GTrFFSME in Eq. (1.16) is 

converted to a system of GSME based on the EAMO in Eq. (3.19). 

3.3 Solving Positive Generalized Fully Fuzzy Sylvester Matrix Equation  

In this section, the solution to the positive GTrFFSME 𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ is discussed.  

In order to obtain the positive fuzzy solution to the positive GTrFFSME in Eq. (1.16), 

EAMO in Eq. (3.19) is applied to convert the positive GTrFFSME to an equivalent 

system of GSME where the solution to the system of GSME and GTrFFSME are 

equivalent. The analytical solution to the system of GSME is obtained by constructing 

the fuzzy matrix vectorization method (FMVM), and the numerical solution is obtained 

by constructing the Fuzzy Gradient Iterative Method (FGIM) and Fuzzy Least-Squares 

Iterative Method (FLSIM). The following Figure 3.5 displays the flow chart of the 

constructed methods for solving positive GTrFFSME. 
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Figure 3.5. Flow chart of the constructed methods for solving positive GTrFFSME. 

In the following Definition 3.3.1, the positive GTrFFSME is introduced. 

Definition 3.3.1. A matrix equation GTrFFSME 𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ is called Positive 

Generalized Trapezoidal Fully Fuzzy Sylvester Matrix Equations (PGTrFFSME) if 

 𝐴̃ = (𝑎̃𝑖𝑗)𝑞×𝑝 = (𝑎𝑖𝑗
(1), 𝑎𝑖𝑗

(2), 𝑎𝑖𝑗
(3), 𝑎𝑖𝑗

(4)), ∀ 1 ≤  𝑖, 𝑗 ≤  𝑞, 𝑝, 

  𝐶̃ = (𝑐̃𝑖𝑗)𝑞×𝑝 = (𝑐𝑖𝑗
(1), 𝑐𝑖𝑗

(2), 𝑐𝑖𝑗
(3), 𝑐𝑖𝑗

(4)), ∀ 1 ≤  𝑖, 𝑗 ≤  𝑞, 𝑝, 

 𝐵̃ = (𝑏̃𝑖𝑗)𝑛×𝑟 = (𝑏𝑖𝑗
(1), 𝑏𝑖𝑗

(2), 𝑏𝑖𝑗
(3), 𝑏𝑖𝑗

(4)), ∀ 1 ≤  𝑖, 𝑗 ≤  𝑛, 𝑟, 
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 𝐷̃ = (𝑑̃𝑖𝑗)𝑛×𝑟 = (𝑑𝑖𝑗
(1), 𝑑𝑖𝑗

(2), 𝑑𝑖𝑗
(3), 𝑑𝑖𝑗

(4)), ∀ 1 ≤  𝑖, 𝑗 ≤  𝑛, 𝑟,  

 𝑋̃ = (𝑥̃𝑖𝑗)𝑝×𝑛
= (𝑥𝑖𝑗

(1), 𝑥𝑖𝑗
(2), 𝑥𝑖𝑗

(3), 𝑥𝑖𝑗
(4)), ∀ 1 ≤  𝑖, 𝑗 ≤  𝑝, 𝑛 and 

 𝐸̃ = (𝑒̃𝑖𝑗)𝑞×𝑟 = (𝑒𝑖𝑗
(1), 𝑒𝑖𝑗

(2), 𝑒𝑖𝑗
(3), 𝑒𝑖𝑗

(4)) ∀ 1 ≤  𝑖, 𝑗 ≤  𝑞, 𝑟, are positive trapezoidal 

fuzzy matrices. 

In the following Definition 3.3.2, the system of GSME is introduced. 

Definition 3.3.2.  A system of matrix equations in the form of 

{
 
 

 
 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1)𝑏𝑖𝑗

(1) + 𝑐𝑖𝑗
(1)𝑥𝑖𝑗

(1)𝑑𝑖𝑗
(1) = 𝑒𝑖𝑗

(1),

𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2)𝑏𝑖𝑗
(2) + 𝑐𝑖𝑗

(2)𝑥𝑖𝑗
(2)𝑑𝑖𝑗

(2) = 𝑒𝑖𝑗
(2),

𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)𝑏𝑖𝑗
(3) + 𝑐𝑖𝑗

(3)𝑥𝑖𝑗
(3)𝑑𝑖𝑗

(3) = 𝑒𝑖𝑗
(3),

𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(4)𝑏𝑖𝑗
(4) + 𝑐𝑖𝑗

(4)𝑥𝑖𝑗
(4)𝑑𝑖𝑗

(4) = 𝑒𝑖𝑗
(4).

  

is called a system of GSME. 

In the following Theorem 3.3.1, the PGTrFFSME is converted to an equivalent system 

of GSME. 

Theorem 3.3.1. Fundamental Theorem of Generalized Trapezoidal Fully Fuzzy 

Sylvester Matrix Equation 

Suppose 𝐴̃, 𝑋̃, 𝐵̃, 𝐶̃, 𝐷̃, 𝐸̃ and 𝑋̃ are non-square positive trapezoidal fuzzy matrices. 

Then the PGTrFFSME 𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ is equivalent to the following system of 

GSME: 

{
 
 

 
 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1)𝑏𝑖𝑗

(1) + 𝑐𝑖𝑗
(1)𝑥𝑖𝑗

(1)𝑑𝑖𝑗
(1) = 𝑒𝑖𝑗

(1),

𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2)𝑏𝑖𝑗
(2) + 𝑐𝑖𝑗

(2)𝑥𝑖𝑗
(2)𝑑𝑖𝑗

(2) = 𝑒𝑖𝑗
(2),

𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)𝑏𝑖𝑗
(3) + 𝑐𝑖𝑗

(3)𝑥𝑖𝑗
(3)𝑑𝑖𝑗

(3) = 𝑒𝑖𝑗
(3),

𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
𝑏𝑖𝑗
(4)
+ 𝑐𝑖𝑗

(4)
𝑥𝑖𝑗
(4)
𝑑𝑖𝑗
(4)
= 𝑒𝑖𝑗

(4)
.

                                     (3.20) 

Proof: Let 𝐴̃, 𝐵̃, 𝐶̃, 𝐷̃, 𝐸̃ and 𝑋̃ in the PGTrFFSME 𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ be positive 

trapezoidal fuzzy matrices. Then by EAMO in Eq. (3.19), the product 𝐴̃𝑋̃𝐵̃ and 𝐶̃𝑋̃𝐷̃ 

are obtained as follows:  
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𝐴̃𝑋̃𝐵̃ =∑(𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1)𝑏𝑖𝑗
(1), 𝑎𝑖𝑗

(2)𝑥𝑖𝑗
(2)𝑏𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)𝑏𝑖𝑗
(3), 𝑎𝑖𝑗

(4)𝑥𝑖𝑗
(4)𝑏𝑖𝑗

(4))

𝑗

𝑖=1

. 

and, 

𝐶̃𝑋̃𝐷̃ =∑(𝑐𝑖𝑗
(1)𝑥𝑖𝑗

(1)𝑑𝑖𝑗
(1), 𝑐𝑖𝑗

(2)𝑥𝑖𝑗
(2)𝑑𝑖𝑗

(2), 𝑐𝑖𝑗
(3)𝑥𝑖𝑗

(3)𝑑𝑖𝑗
(3), 𝑐𝑖𝑗

(4)𝑥𝑖𝑗
(4)𝑑𝑖𝑗

(4))

𝑗

𝑖=1

. 

∀ 1 ≤ 𝑖 ≤ 𝑞, 1 ≤ 𝑗 ≤ 𝑟. 

By Definition 2.3.3.2.6 and Eq. (2.10a), the sum 𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ is obtained as follows: 

𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ =∑(𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1)𝑏𝑖𝑗
(1), 𝑎𝑖𝑗

(2)𝑥𝑖𝑗
(2)𝑏𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)𝑏𝑖𝑗
(3), 𝑎𝑖𝑗

(4)𝑥𝑖𝑗
(4)𝑏𝑖𝑗

(4)

𝑗

𝑖=1

+ 𝑐𝑖𝑗
(1)𝑥𝑖𝑗

(1)𝑑𝑖𝑗
(1), 𝑐𝑖𝑗

(2)𝑥𝑖𝑗
(2)𝑑𝑖𝑗

(2), 𝑐𝑖𝑗
(3)𝑥𝑖𝑗

(3)𝑑𝑖𝑗
(3), 𝑐𝑖𝑗

(4)𝑥𝑖𝑗
(4)𝑑𝑖𝑗

(4)). 

∀ 1 ≤ 𝑖 ≤ 𝑞, 1 ≤ 𝑗 ≤ 𝑟. 

By Definition 2.3.3.2.5 and Eq. (2.9), the PGTrFFSME 𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ is equivalent 

to the following system of GSME: 

{
 
 

 
 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1)𝑏𝑖𝑗

(1) + 𝑐𝑖𝑗
(1)𝑥𝑖𝑗

(1)𝑑𝑖𝑗
(1) = 𝑒𝑖𝑗

(1),

𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2)𝑏𝑖𝑗
(2) + 𝑐𝑖𝑗

(2)𝑥𝑖𝑗
(2)𝑑𝑖𝑗

(2) = 𝑒𝑖𝑗
(2),

𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)𝑏𝑖𝑗
(3) + 𝑐𝑖𝑗

(3)𝑥𝑖𝑗
(3)𝑑𝑖𝑗

(3) = 𝑒𝑖𝑗
(3),

𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(4)𝑏𝑖𝑗
(4) + 𝑐𝑖𝑗

(4)𝑥𝑖𝑗
(4)𝑑𝑖𝑗

(4) = 𝑒𝑖𝑗
(4).

 

□ 

In the following Definition 3.3.3, the trapezoidal positive fuzzy solution matrix 𝑋̃ to 

the PGTrFFSME is introduced. 

Definition 3.3.3.  The trapezoidal fuzzy matrix 𝑋̃ = (𝑥𝑖𝑗
(1)
, 𝑥𝑖𝑗
(2)
, 𝑥𝑖𝑗
(3)
, 𝑥𝑖𝑗
(4)
)  where 

𝑥𝑖𝑗
(4)
≥ 𝑥𝑖𝑗

(3)
≥ 𝑥𝑖𝑗

(2) ≥ 𝑥𝑖𝑗
(1) > 0, ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛,𝑚 is called a positive fuzzy solution of 

the PGTrFFSME. 

To solve the PGTrFFSME in Eq. (1.16), the corresponding systems of crisp GSME in  

Eq. (3.20) is considered. However, before constructing the methods for solving the 



 

90 

 

system of GSME, sufficient conditions for the system of GSME to have a unique 

positive solution are discussed. 

Theorem 3.3.2 The Uniqueness of Positive Solution to The System of GSME 

The system of GSME in Eq. (3.20) has a unique positive solution if the following 

conditions are satisfied:  

I) 𝑑𝑒𝑡(𝑟1) ≠ 0, 𝑑𝑒𝑡(𝑟2) ≠ 0, 𝑑𝑒𝑡(𝑟3) ≠ 0 and𝑑𝑒𝑡(𝑟4) ≠ 0 i.e 𝑟1, 𝑟2, 𝑟3 and 𝑟4 

are invertible matrices where 

𝑟1 = (𝑏𝑖𝑗
(1))𝑇⨂𝑎𝑖𝑗

(1) + (𝑑𝑖𝑗
(1))𝑇⨂𝑐𝑖𝑗

(1)
, 

𝑟2 = (𝑏𝑖𝑗
(2))𝑇⨂𝑎𝑖𝑗

(2) + (𝑑𝑖𝑗
(2))𝑇⨂𝑐𝑖𝑗

(2)
, 

𝑟3 = (𝑏𝑖𝑗
(3))𝑇⨂𝑎𝑖𝑗

(3) + (𝑑𝑖𝑗
(3))𝑇⨂𝑐𝑖𝑗

(3)
, 

𝑟4 = (𝑏𝑖𝑗
(4))𝑇⨂𝑎𝑖𝑗

(4) + (𝑑𝑖𝑗
(4))𝑇⨂𝑐𝑖𝑗

(4)
. 

II) 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 and 𝑟4

−1 > 0. 

Proof:  

I)  Consider the system of GSME in Eq. (3.20), and by applying the concept of 

Vec-operator and Kronecker product in Definition 2.6.2.3, the following system 

of linear matrix equations is obtained:  

{
 
 

 
 ((𝑏𝑖𝑗

(1))𝑇⨂𝑎𝑖𝑗
(1) + (𝑑𝑖𝑗

(1))𝑇⨂𝑐𝑖𝑗
(1))𝑣𝑒𝑐(𝑥𝑖𝑗

(1)) = 𝑣𝑒𝑐(𝑒𝑖𝑗
(1)),

((𝑏𝑖𝑗
(2))𝑇⨂𝑎𝑖𝑗

(2) + (𝑑𝑖𝑗
(2))𝑇⨂𝑐𝑖𝑗

(2))𝑣𝑒𝑐(𝑥𝑖𝑗
(2)) = 𝑣𝑒𝑐(𝑒𝑖𝑗

(2)),

((𝑏𝑖𝑗
(3))𝑇⨂𝑎𝑖𝑗

(3) + (𝑑𝑖𝑗
(3))𝑇⨂𝑐𝑖𝑗

(3))𝑣𝑒𝑐(𝑥𝑖𝑗
(3)) = 𝑣𝑒𝑐(𝑒𝑖𝑗

(3)),

((𝑏𝑖𝑗
(4))𝑇⨂𝑎𝑖𝑗

(4) + (𝑑𝑖𝑗
(4))𝑇⨂𝑐𝑖𝑗

(4))𝑣𝑒𝑐(𝑥𝑖𝑗
(4)) = 𝑣𝑒𝑐(𝑒𝑖𝑗

(4)).

                          (3.21) 

The system of linear matrix equations in Eq. (3.21) can be written as a linear matrix 

equation in the form, 

 𝑅𝑆 = 𝑇                                                                    (3.22) 
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Or in a matrix form as, 

(

 
 
 

(𝑏𝑖𝑗
(1))𝑇⨂𝑎𝑖𝑗

(1) + (𝑑𝑖𝑗
(1))𝑇⨂𝑐𝑖𝑗

(1) 0 0 0

0 (𝑏𝑖𝑗
(2))𝑇⨂𝑎𝑖𝑗

(2) + (𝑑𝑖𝑗
(2))𝑇⨂𝑐𝑖𝑗

(2) 0 0

0 0 (𝑏𝑖𝑗
(3))𝑇⨂𝑎𝑖𝑗

(3) + (𝑑𝑖𝑗
(3))𝑇⨂𝑐𝑖𝑗

(3) 0

0 0 0 (𝑏𝑖𝑗
(4))𝑇⨂𝑎𝑖𝑗

(4) + (𝑑𝑖𝑗
(4))𝑇⨂𝑐𝑖𝑗

(4)
)

 
 
 

(

 
 
 

𝑣𝑒𝑐(𝑥𝑖𝑗
(1))

𝑣𝑒𝑐(𝑥𝑖𝑗
(2))

𝑣𝑒𝑐(𝑥𝑖𝑗
(3))

𝑣𝑒𝑐(𝑥𝑖𝑗
(4)))

 
 
 

 

=

(

 
 
 

𝑣𝑒𝑐(𝑒𝑖𝑗
(1))

𝑣𝑒𝑐(𝑒𝑖𝑗
(2))

𝑣𝑒𝑐(𝑒𝑖𝑗
(3))

𝑣𝑒𝑐(𝑒𝑖𝑗
(4)))

 
 
 

. 

where,  

𝑅 =

(

 
 
 

(𝑏𝑖𝑗
(1))𝑇⨂𝑎𝑖𝑗

(1) + (𝑑𝑖𝑗
(1))𝑇⨂𝑐𝑖𝑗

(1) 0 0 0

0 (𝑏𝑖𝑗
(2))𝑇⨂𝑎𝑖𝑗

(2) + (𝑑𝑖𝑗
(2))𝑇⨂𝑐𝑖𝑗

(2) 0 0

0 0 (𝑏𝑖𝑗
(3))𝑇⨂𝑎𝑖𝑗

(3) + (𝑑𝑖𝑗
(3))𝑇⨂𝑐𝑖𝑗

(3) 0

0 0 0 (𝑏𝑖𝑗
(4))𝑇⨂𝑎𝑖𝑗

(4) + (𝑑𝑖𝑗
(4))𝑇⨂𝑐𝑖𝑗

(4)
)

 
 
 

, 

𝑆 =

(

 
 
 

𝑣𝑒𝑐(𝑥𝑖𝑗
(1))

𝑣𝑒𝑐(𝑥𝑖𝑗
(2))

𝑣𝑒𝑐(𝑥𝑖𝑗
(3))

𝑣𝑒𝑐(𝑥𝑖𝑗
(4)))

 
 
 

 and 𝑇 =

(

 
 
 

𝑣𝑒𝑐(𝑒𝑖𝑗
(1))

𝑣𝑒𝑐(𝑒𝑖𝑗
(2))

𝑣𝑒𝑐(𝑒𝑖𝑗
(3))

𝑣𝑒𝑐(𝑒𝑖𝑗
(4)))

 
 
 

. 
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Let, 𝑟1 = (𝑏𝑖𝑗
(1))𝑇⨂𝑎𝑖𝑗

(1) + (𝑑𝑖𝑗
(1))𝑇⨂𝑐𝑖𝑗

(1)
, 𝑟2 = (𝑏𝑖𝑗

(2))𝑇⨂𝑎𝑖𝑗
(2) + (𝑑𝑖𝑗

(2))𝑇⨂𝑐𝑖𝑗
(2)

 

𝑟3 = (𝑏𝑖𝑗
(3))𝑇⨂𝑎𝑖𝑗

(3) + (𝑑𝑖𝑗
(3))𝑇⨂𝑐𝑖𝑗

(3)
 and 𝑟4 = (𝑏𝑖𝑗

(4))𝑇⨂𝑎𝑖𝑗
(4) + (𝑑𝑖𝑗

(4))𝑇⨂𝑐𝑖𝑗
(4)

.  

Then  

𝑅 = (

𝑟1 0 0 0
0 𝑟2 0 0
0 0 𝑟3 0
0 0 0 𝑟4

).  

If we let 𝑆 =

(

 
 
 

𝑣𝑒𝑐(𝑥𝑖𝑗
(1))

𝑣𝑒𝑐(𝑥𝑖𝑗
(2))

𝑣𝑒𝑐(𝑥𝑖𝑗
(3))

𝑣𝑒𝑐(𝑥𝑖𝑗
(4)))

 
 
 
= (

𝑠1
𝑠2
𝑠3
𝑠4

), 𝑇 =

(

 
 
 

𝑣𝑒𝑐(𝑒𝑖𝑗
(1))

𝑣𝑒𝑐(𝑒𝑖𝑗
(2))

𝑣𝑒𝑐(𝑒𝑖𝑗
(3))

𝑣𝑒𝑐(𝑒𝑖𝑗
(4)))

 
 
 
= (

𝑡1
𝑡2
𝑡3
𝑡4

), then, the linear 

matrix equation in Eq. (3.22) can be written as  

(

𝑟1 0 0 0
0 𝑟2 0 0
0 0 𝑟3 0
0 0 0 𝑟4

)(

𝑠1
𝑠2
𝑠3
𝑠4

) = (

𝑡1
𝑡2
𝑡3
𝑡4

). 

Matrix 𝑅 is a block diagonal matrix, thus by Definition 2.6.1.14, 𝑑𝑒𝑡 (𝑅) is  

𝑑𝑒𝑡(𝑅) = 𝑑𝑒𝑡 [(

𝑟1 0 0 0
0 𝑟2 0 0
0 0 𝑟3 0
0 0 0 𝑟4

)]. 

𝑑𝑒𝑡 (𝑅) = 𝑑𝑒𝑡(𝑟1) × 𝑑𝑒𝑡(𝑟2) × 𝑑𝑒𝑡(𝑟3) × 𝑑𝑒𝑡(𝑟4). 

Thus, linear matrix equations 𝑅𝑆 = 𝑇 has a unique solution if 𝑑𝑒𝑡 (𝑅) ≠ 0. Which 

implies 𝑑𝑒𝑡(𝑟1) ≠ 0, 𝑑𝑒𝑡(𝑟2) ≠ 0, 𝑑𝑒𝑡(𝑟3) ≠ 0 and𝑑𝑒𝑡(𝑟4) ≠ 0 i.e., 𝑟1, 𝑟2, 𝑟3 and 𝑟4 

are invertible matrices. The system of GSME in Eq. (3.20) and the linear matrix 

equations 𝑅𝑆 = 𝑇 in Eq. (3.22) are equivalents. Therefore, the system of GSME in  

Eq. (3.20) has a unique solution if: 
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𝑑𝑒𝑡(𝑟1) ≠ 0, 𝑑𝑒𝑡(𝑟2) ≠ 0, 𝑑𝑒𝑡(𝑟3) ≠ 0 and 𝑑𝑒𝑡(𝑟4) ≠ 0, i.e 𝑟1, 𝑟2, 𝑟3 and 𝑟4 are 

invertible matrices. 

II) For the system of GSME to have a positive solution, the following matrices 

must be positive, 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 and 𝑟4

−1 > 0.  

Therefore, the system of GSME in Eq. (3.20) has a unique positive solution, and the 

proof is straightforward. 

□ 

The system of GSME obtained in Eq. (3.20) consists of four crisp GSME. Therefore, it 

can be represented in more general form as discussed in the following Remark 3.3.1. 

The general form of the system of GSME in Remark 3.3.1 is used to construct the 

numerical methods in Sections 3.3.2 and 3.3.3, respectively. 

Remark 3.3.1: The system of GSME in Eq. (3.20) can be written as  

𝑎𝑖𝑗
(𝑙)𝑥𝑖𝑗

(𝑙)𝑏𝑖𝑗
(𝑙) + 𝑐𝑖𝑗

(𝑙)𝑥𝑖𝑗
(𝑙)𝑑𝑖𝑗

(𝑙) = 𝑒𝑖𝑗
(𝑙), for 1 ≤ 𝑙 ≤ 4                                          (3.23)        

 

Now, we proceed to the methods for solving the PGTrFFSME. In the following Section 

3.3.1, the solution to the PGTrFFSME is obtained analytically by applying  

Vec-operator and Kronecker product to the system of GSME in Eq. (3.20).                                                                 

3.3.1 Fuzzy Matrix Vectorization Method for PGTrFFSME 

In this section, the solution to the PGTrFFSME 𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ is obtained 

analytically using Vec-operator and Kronecker product in Definition 2.6.2.3. The detail 

of the constructed Fuzzy Matrix Vectorization Method (FMVM) is presented in the 

following steps. 
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Step 1: Decomposing  𝐴̃, 𝐵̃, 𝐶̃, 𝐷̃, 𝐸̃ and 𝑋̃ into 𝑎𝑖𝑗
(𝑙)

, 𝑏𝑖𝑗
(𝑙)

, 𝑐𝑖𝑗
(𝑙)

, 𝑑𝑖𝑗
(𝑙)

, 𝑒𝑖𝑗
(𝑙)

 and 𝑥𝑖𝑗
(𝑙)

 where 

𝑙 = 1,2,3,4 and converting the PGTrFFSME to the system of GSME in  

Eq. (3.20) using Theorem 3.3.1. 

Step 2: Applying the Vec-operator and Kronecker product on the system of GSME in 

 Eq. (3.20) as discussed in Eq. (3.21). 

Step 3: Multiplying the system of linear matrix equation in Step 2 by matrix 

multiplicative inverse as follows: 

{
  
 

  
 𝑣𝑒𝑐(𝑥𝑖𝑗

(1)) = ((𝑏𝑖𝑗
(1))𝑇⨂𝑎𝑖𝑗

(1) + (𝑑𝑖𝑗
(1))𝑇⨂𝑐𝑖𝑗

(1))−1𝑣𝑒𝑐(𝑒𝑖𝑗
(1)),

𝑣𝑒𝑐(𝑥𝑖𝑗
(2)) = ((𝑏𝑖𝑗

(2))𝑇⨂𝑎𝑖𝑗
(2) + (𝑑𝑖𝑗

(2))𝑇⨂𝑐𝑖𝑗
(2))−1𝑣𝑒𝑐(𝑒𝑖𝑗

(2)),

𝑣𝑒𝑐(𝑥𝑖𝑗
(3)) = ((𝑏𝑖𝑗

(3))𝑇⨂𝑎𝑖𝑗
(3) + (𝑑𝑖𝑗

(3))𝑇⨂𝑐𝑖𝑗
(3))−1𝑣𝑒𝑐(𝑒𝑖𝑗

(3)),

𝑣𝑒𝑐(𝑥𝑖𝑗
(4)) = ((𝑏𝑖𝑗

(4))𝑇⨂𝑎𝑖𝑗
(4) + (𝑑𝑖𝑗

(4))𝑇⨂𝑐𝑖𝑗
(4))−1𝑣𝑒𝑐(𝑒𝑖𝑗

(4)).

   

Step 4: Multiplying the system of linear matrix equation in Step 3 by 𝑣𝑒𝑐−1 in 

Definition 2.6.2.2, giving the following positive fuzzy solutions: 

{
  
 

  
 𝑥𝑖𝑗

(1) = 𝑣𝑒𝑐−1(((𝑏𝑖𝑗
(1))𝑇⨂𝑎𝑖𝑗

(1) + (𝑑𝑖𝑗
(1))𝑇⨂𝑐𝑖𝑗

(1))−1𝑣𝑒𝑐(𝑒𝑖𝑗
(1))),

𝑥𝑖𝑗
(2) = 𝑣𝑒𝑐−1(((𝑏𝑖𝑗

(2))𝑇⨂𝑎𝑖𝑗
(2) + (𝑑𝑖𝑗

(2))𝑇⨂𝑐𝑖𝑗
(2))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(2))),

𝑥𝑖𝑗
(3) = 𝑣𝑒𝑐−1(((𝑏𝑖𝑗

(3))𝑇⨂𝑎𝑖𝑗
(3) + (𝑑𝑖𝑗

(3))𝑇⨂𝑐𝑖𝑗
(3))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(3))),

𝑥𝑖𝑗
(4) = 𝑣𝑒𝑐−1(((𝑏𝑖𝑗

(4))𝑇⨂𝑎𝑖𝑗
(4) + (𝑑𝑖𝑗

(4))𝑇⨂𝑐𝑖𝑗
(4))−1𝑣𝑒𝑐(𝑒𝑖𝑗

(4))).

            (3.24) 

Step 5: Combining the positive fuzzy solutions obtained in Step 4 and writing it as a 

trapezoidal fuzzy matrix as follows: 

𝑋̃ = (

(𝑥11
(1), 𝑥11

(2), 𝑥11
(3), 𝑥11

(4)) ⋯ (𝑥1𝑛
(1), 𝑥1𝑛

(2), 𝑥1𝑛
(3), 𝑥1𝑛

(4))

⋮ ⋱ ⋮

(𝑥𝑝1
(1), 𝑥𝑝1

(2), 𝑥𝑝1
(3), 𝑥𝑝1

(4)) … (𝑥𝑝𝑛
(1), 𝑥𝑝𝑛

(2), 𝑥𝑝𝑛
(3), 𝑥𝑝𝑛

(4))

). 

In the following Remark 3.3.1.1, the solution to the system of GSME in Step 4 is written 

in a general form. 

Remark 3.3.1.1: The positive fuzzy solution in Eq. (3.24) to the system of GSME in 

Eq. (3.20) can be rewritten as  
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𝑥𝑖𝑗
(𝑙) = 𝑣𝑒𝑐−1(((𝑏𝑖𝑗

(𝑙))𝑇⨂𝑎𝑖𝑗
(𝑙) + (𝑑𝑖𝑗

(𝑙))𝑇⨂𝑐𝑖𝑗
(𝑙))−1𝑣𝑒𝑐(𝑒𝑖𝑗

(𝑙))), for 1 ≤ 𝑙 ≤ 4           (3.25) 

In the following Theorem 3.3.1.1, the relation between the positive fuzzy solution 

obtained in Eq. (3.24) to the system of GSME and the PGTrFFSME is discussed. 

Theorem 3.3.1.1. The unique positive solution of the system of GSME in Eq. (3.20) 

and the positive fuzzy solution to the PGTrFFSME are equivalent if the following 

conditions are satisfied: 

I) 𝑑𝑒𝑡(𝑟1) ≠ 0, 𝑑𝑒𝑡(𝑟2) ≠ 0, 𝑑𝑒𝑡(𝑟3) ≠ 0 and𝑑𝑒𝑡(𝑟4) ≠ 0 i.e 𝑟1, 𝑟2, 𝑟3 and 𝑟4 are 

invertible matrices. 

II) 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 and 𝑟4

−1 > 0. 

III) 𝑟1
−1𝑡1 > 0, 𝑟2

−1𝑡2 > 0, 𝑟3
−1𝑡3 > 0 and 𝑟4

−1𝑡4 > 0.    

IV) 𝑟1
−1𝑡1 ≤ 𝑟2

−1𝑡2 ≤ 𝑟3
−1𝑡3 ≤ 𝑟4

−1𝑡4. 

Proof:  

The proofs of parts I and II are similar to the proof of Theorem 3.3.2. 

III) The PGTrFFSME is converted to an equivalent system of GSME in Eq. (3.20) 

By Theorem 3.3.1. The system of GSME is consequently converted to an 

equivalent linear matrix equation 𝑅𝑆 = 𝑇 in Eq. (3.22) by Theorem 3.3.2. 

Multiplying both sides of Eq. (3.22) by 𝑅−1 gives: 

(

𝑠1
𝑠2
𝑠3
𝑠4

) = (

𝑟1 0 0 0
0 𝑟2 0 0
0 0 𝑟3 0
0 0 0 𝑟4

)

−1

(

𝑡1
𝑡2
𝑡3
𝑡4

).                                                      (3.26) 

           Matrix 𝑅−1 is a block diagonal matrix, that can be computed by  

            Definition 2.6.1.13 as follows: 

(

𝑠1
𝑠2
𝑠3
𝑠4

) =

(

 
 
𝑟1
−1 0 0 0

0 𝑟2
−1 0 0

0 0 𝑟3
−1 0

0 0 0 𝑟4
−1
)

 
 
(

𝑡1
𝑡2
𝑡3
𝑡4

). 
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            The right-hand side can be simplified to the following: 

(

𝑠1
𝑠2
𝑠3
𝑠4

) =

(

 
 
𝑟1
−1𝑡1

𝑟2
−1𝑡2

𝑟3
−1𝑡3

𝑟4
−1𝑡4)

 
 
.                                             (3.27) 

           Therefore, the system of equation in Eq. (3.27) has a positive solution if 

           𝑟1
−1𝑡1 > 0, 𝑟2

−1𝑡2 > 0, 𝑟3
−1𝑡3 > 0 and 𝑟4

−1𝑡4 > 0.   

IV) The linear matrix equation in Eq. (3.27) can be written as separated equations 

as follows: 

 𝑠1 = 𝑟1
−1𝑡1, 𝑠2 = 𝑟2

−1𝑡2, 𝑠3 = 𝑟3
−1𝑡3 and 𝑠4 = 𝑟4

−1𝑡4. This can be                     

               rewritten as 

                            𝑣𝑒𝑐(𝑥𝑖𝑗
(1)) = ((𝑏𝑖𝑗

(1))𝑇⨂𝑎𝑖𝑗
(1) + (𝑑𝑖𝑗

(1))𝑇⨂𝑐𝑖𝑗
(1))−1𝑣𝑒𝑐(𝑒𝑖𝑗

(1)), 

                             𝑣𝑒𝑐(𝑥𝑖𝑗
(2)) = ((𝑏𝑖𝑗

(2))𝑇⨂𝑎𝑖𝑗
(2) + (𝑑𝑖𝑗

(2))𝑇⨂𝑐𝑖𝑗
(2))−1𝑣𝑒𝑐(𝑒𝑖𝑗

(2)), 

            𝑣𝑒𝑐(𝑥𝑖𝑗
(3)) = ((𝑏𝑖𝑗

(3))𝑇⨂𝑎𝑖𝑗
(3) + (𝑑𝑖𝑗

(3))𝑇⨂𝑐𝑖𝑗
(3))−1𝑣𝑒𝑐(𝑒𝑖𝑗

(3)), 

           𝑣𝑒𝑐(𝑥𝑖𝑗
(4)) = ((𝑏𝑖𝑗

(4))𝑇⨂𝑎𝑖𝑗
(4) + (𝑑𝑖𝑗

(4))𝑇⨂𝑐𝑖𝑗
(4))−1𝑣𝑒𝑐(𝑒𝑖𝑗

(4)). 

              For the obtained solution in Eq. (3.27) to be a fuzzy solution, the following    

              condition must be met 𝑟1
−1𝑡1 ≤ 𝑟2

−1𝑡2 ≤ 𝑟3
−1𝑡3 ≤ 𝑟4

−1𝑡4. 

Therefore, the unique positive solution of the system of GSME in Eq. (3.20) and the 

positive fuzzy solution to the PGTrFFSME are equivalent.  

□ 

Corollary 3.3.1.1. The Uniqueness of The Fuzzy Solution to The PGTrFFSME 

The PGTrFFSME has a unique positive fuzzy solution if the corresponding system of 

GSME in Eq. (3.20) has a unique positive solution.  

Proof: The positive fuzzy solution to the PGTrFFSME in Eq. (1.16) is equivalent to 

the positive solution to the system of GSME in Eq. (3.20) by Theorem 3.3.3. Therefore, 
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the PGTrFFSME has a unique positive fuzzy solution if the corresponding system of 

GSME has a unique positive solution. Therefore, by Theorem 3.3.2, the PGTrFFSME 

in Eq. (1.16) has a unique positive fuzzy. 

□ 

The sufficient conditions for PGTrFFSME to have a positive fuzzy solution are 

discussed in Corollary 3.3.1.2, which is a direct conclusion of Theorem 3.3.1.1. 

Corollary 3.3.1.2. Existence of Positive Fuzzy Solution to PGTrFFSME 

The PGTrFFSME has a positive fuzzy solution if the following conditions are satisfied: 

I) 𝑟1, 𝑟2, 𝑟3 and 𝑟4 are invertible matrices.                                                               (3.28) 

II) 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 and 𝑟4

−1 > 0.                                                                                (3.28a) 

III) 𝑟1
−1𝑡1 > 0, 𝑟2

−1𝑡2 > 0, 𝑟3
−1𝑡3 > 0 and 𝑟4

−1𝑡4 > 0.                              (3.28b) 

IV) 𝑟1
−1𝑡1 ≤ 𝑟2

−1𝑡2 ≤ 𝑟3
−1𝑡3 ≤ 𝑟4

−1𝑡4.                                                                         (3.28c) 

Proof: Part I and II can be proved as follows: 

By Corollary 3.3.1.1, the PGTrFFSME has a unique fuzzy solution only if 𝑟1, 𝑟2, 𝑟3 and 

𝑟4 are invertible and 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 and 𝑟4

−1 > 0.  

III) By Theorem 3.3.1.1, the solution of the system GSME and the PGTrFFSME is 

equivalent. Thus, from Eq. (3.27), the PGTrFFSME has a positive fuzzy 

solution only if 𝑟1
−1𝑡1 > 0, 𝑟2

−1𝑡2 > 0, 𝑟3
−1𝑡3 > 0 and 𝑟4

−1𝑡4 > 0. 

IV) By the definition of positive fuzzy solution matrix in Definition 3.3.3, the 

PGTrFFSME has a unique positive fuzzy solution if the following condition is 

satisfied,  

𝑟1
−1𝑡1 ≤ 𝑟2

−1𝑡2 ≤ 𝑟3
−1𝑡3 ≤ 𝑟4

−1𝑡4. 

□ 



 

98 

 

Now we proceed to the feasibility conditions of the positive fuzzy solution to the 

PGTrFFSME.  

Feasibility of The Positive Fuzzy Solution to The PGTrFFSME  

The positive fuzzy solution to the PGTrFFSME is feasible if for 1 ≤ 𝑙 ≤ 4, the 

following conditions are satisfied: 

I) 𝑥𝑖𝑗
(𝑙) > 0,∀ {1 ≤ 𝑖, 𝑗 ≤ 𝑝, 𝑛}.                                                                                           (3.29a) 

II) 𝑥𝑖𝑗
(4)
≥ 𝑥𝑖𝑗

(3)
≥ 𝑥𝑖𝑗

(2) ≥ 𝑥𝑖𝑗
(1)

,∀ {1 ≤ 𝑖, 𝑗 ≤ 𝑝, 𝑛}.                                                   (3.29b) 

The FMVM is illustrated in the following Example 3.3.1.1. 

Example 3.3.1.1 Solve the following 2 × 2 PGTrFFSME: 

𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ 

Given, 

𝐴̃ = (
(4, 6, 7, 8) (1, 3, 4, 5)
(1, 2, 3, 4) (3, 5, 6, 7)

), 𝐵̃ = (
(4, 6, 7, 9) (2, 3, 4, 6)
(1, 3, 4, 5) (3, 5, 6, 7)

), 

𝐶̃ = (
(5, 6, 7, 8) (1, 3, 4, 5)
(2, 4, 5, 6) (4, 6, 7, 9)

), 𝐷̃ = (
(4, 5, 6, 8) (1, 2, 3, 4)
(1, 3, 4, 5) (2, 5, 6, 7)

), 

𝐸̃ = (
(95, 474, 952, 1890) (66, 390, 828, 1680)
(76, 504, 980, 1960) (76, 430, 867, 1730)

). 

Solution: 

To solve the given PGTrFFSME, the sufficient conditions in Corollary 3.3.1.1. and 

Corollary 3.3.1.2 for having a unique positive fuzzy solution must be examined first. 

The Uniqueness of the Positive Fuzzy Solution:  

By Corollary 3.3.1.1, the given PGTrFFSME has a unique positive fuzzy solution if:  

𝑑𝑒𝑡(𝑟1) ≠ 0, 𝑑𝑒𝑡(𝑟2) ≠ 0, 𝑑𝑒𝑡(𝑟3) ≠ 0 and 𝑑𝑒𝑡(𝑟4) ≠ 0 i.e 𝑟1, 𝑟2, 𝑟3 and 𝑟4 are 

invertible matrices and 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 and 𝑟4

−1 > 0. The determinants of 

𝑟1, 𝑟2, 𝑟3 𝑎𝑛𝑑 𝑟4 can be calculated as follows: 
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𝑟1 = (𝑏𝑖𝑗
(1))𝑇⨂𝑎𝑖𝑗

(1) + (𝑑𝑖𝑗
(1))𝑇⨂𝑐𝑖𝑗

(1) = (

36 8 9 2
12 28 3 7
13 3 22 5
4 10 7 17

). 

                     𝑑𝑒𝑡(𝑟1) = 224694 ≠ 0. 

𝑟2 = (𝑏𝑖𝑗
(2))𝑇⨂𝑎𝑖𝑗

(2) + (𝑑𝑖𝑗
(2))𝑇⨂𝑐𝑖𝑗

(2) = (

66 33 36 18
32 60 18 33
36 18 66 33
16 32 32 60

). 

                     𝑑𝑒𝑡(𝑟2) = 3686400 ≠ 0. 

𝑟3 = (𝑏𝑖𝑗
(3))𝑇⨂𝑎𝑖𝑗

(3) + (𝑑𝑖𝑗
(3))𝑇⨂𝑐𝑖𝑗

(3) = (

91 52 56 32
51 84 32 52
49 28 84 48
27 45 48 78

). 

                     𝑑𝑒𝑡(𝑟3) = 8708400 ≠ 0. 

       𝑟4 = (𝑏𝑖𝑗
(4)
)𝑇⨂𝑎𝑖𝑗

(4)
+ (𝑑𝑖𝑗

(4)
)𝑇⨂𝑐𝑖𝑗

(4)
= (

136 85 80 50
84 135 50 80
80 50 112 70
48 78 70 112

). 

                  𝑑𝑒𝑡(𝑟4) = 29062800 ≠ 0.  

Since 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 𝑎𝑛𝑑 𝑟4

−1 > 0; thus, if the solution to the given PGTrFFSME exists, 

then it is a unique positive fuzzy solution. Therefore, the existence of the positive fuzzy 

solution to the given PGTrFFSME needs to be checked. 

Existence of the positive fuzzy solution of PGTrFFSME 

By Corollary 3.3.1.2., the given PGTrFFSME has a positive fuzzy solution if:  

I) 𝑟1, 𝑟2, 𝑟3 and 𝑟4 are invertible matrices. 

II) 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 and 𝑟4

−1 > 0. This condition is already checked. 

III) 𝑟1
−1𝑡1 > 0, 𝑟2

−1𝑡2 > 0, 𝑟3
−1𝑡3 > 0 and 𝑟4

−1𝑡4 > 0. 

𝑟1
−1𝑡1 = (

36 8 9 2
12 28 3 7
13 3 22 5
4 10 7 17

)

−1

(

95
76
66
76

) = (

2
1
1
3

) > 0. 



 

100 

 

𝑟2
−1𝑡2 = (

66 33 36 18
32 60 18 33
36 18 66 33
16 32 32 60

)

−1

(

474
504
390
430

) = (

3
4
2
4

) > 0. 

𝑟3
−1𝑡3 = (

91 52 56 32
51 84 32 52
49 28 84 48
27 45 48 78

)

−1

(

952
828
980
867

) = (

4
5
3
5

) > 0. 

𝑟4
−1𝑡4 = (

136 85 80 50
84 135 50 80
80 50 112 70
48 78 70 112

)

−1

(

1890
1960
1680
1730

) = (

5
6
5
6

) > 0. 

IV) 𝑟1
−1𝑡1 ≤ 𝑟2

−1𝑡2 ≤ 𝑟3
−1𝑡3 ≤ 𝑟4

−1𝑡4. 

(

2
1
1
3

) < (

3
4
2
4

) < (

4
5
3
5

) < (

5
6
5
6

). 

Since the conditions for the existence of the positive fuzzy solutions are satisfied, the 

positive fuzzy solution to the given PGTrFFSME exists.  

Therefore, the developed FMVM in Section 3.3.1 can now be applied to obtain this 

solution.  The details of the illustration of the FMVM are as follows: 

Step1: Decomposing  𝐴̃, 𝑋̃, 𝐵̃, 𝐶̃, 𝐷̃ and 𝐸̃ into  

𝑎𝑖𝑗
(1) = (

4 1
1 3

) , 𝑏𝑖𝑗
(1) = (

4 2
1 3

) , 𝑐𝑖𝑗
(1) = (

5 1
2 4

) , 𝑑𝑖𝑗
(1) = (

4 1
1 2

) , 𝑒𝑖𝑗
(1) = (

95 66
76 76

) , 

𝑎𝑖𝑗
(2) = (

6 3
2 5

) , 𝑏𝑖𝑗
(2) = (

6 4
3 6

) , 𝑐𝑖𝑗
(2) = (

6 3
4 6

) , 𝑑𝑖𝑗
(2) = (

5 2
3 5

) , 𝑒𝑖𝑗
(2) = (

474 390
504 430

), 

𝑎𝑖𝑗
(3) = (

7 4
3 6

) , 𝑏𝑖𝑗
(3) = (

7 4
4 6

) , 𝑐𝑖𝑗
(3) = (

7 4
5 7

) , 𝑑𝑖𝑗
(3) = (

6 3
4 6

) , 𝑒𝑖𝑗
(3) = (

952 828
980 867

), 

𝑎𝑖𝑗
(4) = (

8 5
4 7

) , 𝑏𝑖𝑗
(4) = (

9 6
5 7

) , 𝑐𝑖𝑗
(4) = (

8 5
6 9

) , 𝑑𝑖𝑗
(4) = (

8 4
5 7

) , and 𝑒𝑖𝑗
(4)

= (
1890 1680
1960 1730

). 

Step 2: Applying the Vec-operator and Kronecker product on Eq. (3.20) gives:                       
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{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

(

36 8 9 2
12 28 3 7
13 3 22 5
4 10 7 17

)

(

  
 

𝑥11
(1)

𝑥21
(1)

𝑥12
(1)

𝑥22
(1)
)

  
 
= (

95
76
66
76

) ,

(

66 33 36 18
32 60 18 33
36 18 66 33
16 32 32 60

)

(

  
 

𝑥11
(2)

𝑥21
(2)

𝑥12
(2)

𝑥22
(2)
)

  
 
= (

474
504
390
430

) ,

(

91 52 56 32
51 84 32 52
49 28 84 48
27 45 48 78

)

(

  
 

𝑥11
(3)

𝑥21
(3)

𝑥12
(3)

𝑥22
(3)
)

  
 
= (

952
828
980
867

) ,

(

136 85 80 50
84 135 50 80
80 50 112 70
48 78 70 112

)

(

  
 

𝑥11
(4)

𝑥21
(4)

𝑥12
(4)

𝑥22
(4)
)

  
 
= (

1890
1960
1680
1730

) .

                 (3.30) 

Step 3: Multiply the system of linear matrix equation in Eq. (3.30) by matrix 

multiplicative inverse as follows: 

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

(

  
 

𝑥11
(1)

𝑥21
(1)

𝑥12
(1)

𝑥22
(1)
)

  
 
= (

36 8 9 2
12 28 3 7
13 3 22 5
4 10 7 17

)

−1

(

95
76
66
76

) ,

(

  
 

𝑥11
(2)

𝑥21
(2)

𝑥12
(2)

𝑥22
(2)
)

  
 
= (

66 33 36 18
32 60 18 33
36 18 66 33
16 32 32 60

)

−1

(

474
504
390
430

) ,

(

  
 

𝑥11
(3)

𝑥21
(3)

𝑥12
(3)

𝑥22
(3)
)

  
 
= (

91 52 56 32
51 84 32 52
49 28 84 48
27 45 48 78

)

−1

(

952
828
980
867

) ,

(

  
 

𝑥11
(4)

𝑥21
(4)

𝑥12
(4)

𝑥22
(4)
)

  
 
= (

136 85 80 50
84 135 50 80
80 50 112 70
48 78 70 112

)

−1

(

1890
1960
1680
1730

) ,

              (3.31) 



 

102 

 

Step 4: Using matrix multiplication on the system in Eq. (3.31), the positive fuzzy 

solution to the given PGTrFFSME is as follows: 

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

(

  
 

𝑥11
(1)

𝑥21
(1)

𝑥12
(1)

𝑥22
(1)
)

  
 
= (

2
1
1
3

) ,

(

  
 

𝑥11
(2)

𝑥21
(2)

𝑥12
(2)

𝑥22
(2)
)

  
 
= (

3
4
2
4

) ,

(

  
 

𝑥11
(3)

𝑥21
(3)

𝑥12
(3)

𝑥22
(3)
)

  
 
= (

4
5
3
5

) ,

(

  
 

𝑥11
(4)

𝑥21
(4)

𝑥12
(4)

𝑥22
(4)
)

  
 
= (

5
6
5
6

) .

 

By Definition 2.6.2.2, the obtained fuzzy solution can be written as: 

(
𝑥11
(1) 𝑥12

(1)

𝑥21
(1) 𝑥22

(1)
) = (

2 1
1 3

). 

(
𝑥11
(2) 𝑥12

(2)

𝑥21
(2) 𝑥22

(2)
) = (

3 2
4 4

). 

(
𝑥11
(3) 𝑥12

(3)

𝑥21
(3) 𝑥22

(3)
) = (

4 3
5 5

). 

(
𝑥11
(4) 𝑥12

(4)

𝑥21
(4) 𝑥22

(4)
) = (

5 5
6 6

). 

Step 5: By combining the obtained positive fuzzy solution in Step 4, the positive fuzzy 

solution to Example 3.3.1.1 is  

𝑋̃ = (
(2, 3, 4, 5) (1, 2, 3, 5)
(1, 4, 5, 6) (3, 4, 5, 6)

).                                                     (3.32) 
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In the following Section 3.3.1.1, analysis of the obtained positive fuzzy solution in  

Eq. (3.32) for the PGTrFFSME in Example 3.3.1.1 is discussed. The analysis of the 

obtained positive fuzzy solution in Eq. (3.32) for the given PGTrFFSME in  

Example 3.3.1.1 includes verification of the solution, representation of the solution and 

checking the feasibility conditions for the solution. Further details of the analysis are 

given next. 

3.3.1.1 Verification of Positive Fuzzy Solution to GTrFFSME 

To verify the obtained positive fuzzy solution in Eq. (3.32) for the PGTrFFSME in 

Example 3.3.1.1, we first multiply 𝐴̃𝑋̃𝐵̃ as follows: 

𝐴̃𝑋̃𝐵̃ = (
(4, 6, 7, 8) (1, 3, 4, 5)
(1, 2, 3, 4) (3, 5, 6, 7)

) (
(2, 3, 4, 5) (1, 2, 3, 5)
(1, 4, 5, 6) (3, 4, 5, 6)

) (
(4, 6, 7, 9) (2, 3, 4, 6)
(1, 3, 4, 5) (3, 5, 6, 7)

). 

= (
(43, 252, 500, 980) (39, 210, 438, 910)
(30, 228, 450, 868) (40, 198, 402, 806)

), 

and,  

𝐶̃𝑋̃𝐷̃ = (
(5, 6, 7, 8) (1, 3, 4, 5)
(2, 4, 5, 6) (4, 6, 7, 9)

) (
(2, 3, 4, 5) (1, 2, 3, 5)
(1, 4, 5, 6) (3, 4, 5, 6)

) (
(4, 5, 6, 8) (1, 2, 3, 4)
(1, 3, 4, 5) (2, 5, 6, 7)

). 

= (
(52, 222, 452, 910) (27, 180, 390, 770)
(46, 276, 530, 1092) (36, 232, 465, 924)

). 

Therefore, 

𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = (
(95, 474, 952, 1890) (66, 390, 828, 1680)
(76, 504, 980, 1960) (76, 430, 867, 1730)

) = 𝐸̃. 

Therefore, the obtained positive fuzzy solution in Eq. (3.32) satisfies the PGTrFFSME 

in Example 3.3.1.1. In the following Section 3.3.1.2, the graphical representation of the 

obtained solution is presented. 
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3.3.1.2 Representation of Positive Fuzzy Solution to PGTrFFSME 

In the following graph, the positive fuzzy solution for Example 3.1.1.1 is represented 

in Figure 3.6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Positive fuzzy solution for Example 3.1.1.1. 

Figure 3.6 shows that, 𝑥𝑖𝑗
(4)
≥ 𝑥𝑖𝑗

(3)
≥ 𝑥𝑖𝑗

(2) ≥ 𝑥𝑖𝑗
(1) > 0, which means that the obtained 

fuzzy solution in Eq. (3.32) is positive. Therefore, the FMVM can give the unique 

positive fuzzy solution to the given PGTrFFSME. 

In the following Section 3.3.1.3, the feasibility conditions of the obtained positive fuzzy 

solution in Eq. (3.32) for the PGTrFFSME in Example 3.3.1.1 are discussed. 
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3.3.1.3 Feasibility of Positive Fuzzy Solution to PGTrFFSME 

Based on Eq. (3.29a) and Eq. (3.29b), the obtained positive fuzzy solution in Eq. (3.32) 

for the PGTrFFSME in Example 3.3.1.1 is feasible if the following feasibility 

conditions are satisfied: 

I) 𝑥𝑖𝑗
(𝑙) > 0, ∀ {1 ≤ 𝑖, 𝑗 ≤ 𝑝, 𝑛}. 

                                                    𝑥𝑖𝑗
(1)
= (

2 1
1 3

) > 0, 

𝑥𝑖𝑗
(2)
= (

3 2
4 4

) > 0, 

𝑥𝑖𝑗
(3)
= (

4 3
5 5

) > 0, 

𝑥𝑖𝑗
(4)
= (

5 5
6 6

) > 0. 

II) 𝑥𝑖𝑗
(4)
≥ 𝑥𝑖𝑗

(3)
≥ 𝑥𝑖𝑗

(2) ≥ 𝑥𝑖𝑗
(1)

, ∀ {1 ≤ 𝑖, 𝑗 ≤ 𝑝, 𝑛}.    

(
5 5
6 6

) ≥ (
4 3
5 5

) ≥ (
3 2
4 4

) ≥ (
2 1
1 3

). 

The feasibility conditions are satisfied, and therefore, the obtained positive fuzzy 

solution is feasible.  

 

The verification, representation, and feasibility of the obtained positive solution 

indicate that it satisfies the given PGTrFFSME and is a strong positive fuzzy solution. 

In the following Example 3.3.1.2, the FMVM is applied to 5 × 5 PGTrFFSME. 
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Example 3.3.1.2 Solve the following 5 × 5 PGTrFFSME:  

Given 

𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃, 

where, 

𝐴̃ =

(

 
 

(5,6,7,8) (1,3,4,6) (4,5,6,7) (3,4,5,6) (3,4,6,7)
(3,4,5,6) (5,6,8,9) (2,4,5,6) (3,4,5,7) (1,2,3,5)
(2,3,4,5) (3,5,6,7) (5,7,8,9) (1,2,4,5) (2,3,4,6)
(4,5,6,7) (2,3,4,6) (4,6,7,8) (5,7,9,10) (3,4,5,7)
(3,4,5,6) (1,5,6,7) (1,2,3,4) (3,4,5,7) (6,7,9,11))

 
 

, 

𝐵̃ =

(

 
 

(6,7,8,9) (2,3,5,6) (4,5,6,7) (3,4,5,7) (2,3,6,8)
(3,4,5,6) (5,6,7,8) (1,2,3,4) (1,3,4,5) (4,5,6,7)
(1,2,3,5) (4,5,6,7) (5,7,8,10) (3,4,5,6) (3,4,5,7)
(2,3,4,5) (1,3,4,6) (2,4,5,6) (6,8,9,11) (3,4,5,6)
(1,2,3,4) (4,5,6,7) (2,3,4,5) (4,5,6,7) (5,7,8,10))

 
 

, 

𝐶̃ =

(

 
 

(7,8,9,10) (3,4,5,6) (2,4,6,7) (2,3,4,6) (4,5,6,7)
(4,5,6,7) (5,7,8,9) (4,5,6,7) (2,4,5,6) (4,5,6,7)
(4,5,7,8) (1,2,3,5) (6,7,8,9) (3,5,6,7) (3,4,5,7)
(2,3,4,6) (1,2,3,5) (4,5,6,8) (5,7,8,9) (2,3,4,5)
(2,5,6,7) (1,2,3,4) (2,3,4,6) (1,4,5,7) (5,6,7,10))

 
 

, 

𝐷̃ =

(

 
 

(6,7,8,9) (3,4,6,7) (2,3,4,5) (2,3,4,6) (1,2,3,4)
(1,2,3,4) (5,7,8,9) (3,4,5,7) (2,3,4,5) (4,5,6,7)
(5,6,7,8) (1,2,3,4) (6,8,9,10) (2,3,4,5) (3,4,5,7)
(2,3,4,5) (1,3,4,6) (1,2,3,4) (5,7,9,11) (2,3,4,5)
(2,4,5,6) (1,2,3,7) (2,4,5,8) (3,4,5,7) (5,6,7,10))

 
 

, 
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𝐸̃  =

(

 
 

(785,2476,6202,12395) (797,2564,6399,13618) (811,2670,6587,13679) (867,2727,6794,14226) (1000,2841,6936,14685)
(829,2581,6138,12240) (781,2583,6235,13407) (854,2767,6470,13488) (902,2788,6667,14066) (1009,2885,6777,14478)
(671,2300,5969,12068) (671,2413,6100,13227) (718,2512,6263,13313) (759,2548,6471,13819) (857,2654,6593,14233)
(726,2385,5969,12540) (726,2590,6347,13923) (748,2574,6329,13783) (820,2684,6669,14535) (941,2801,6836,15031)
(565,2087,5448,11839) (565,2199,5722,13077) (574,2230,5821,13033) (678,2339,6095,13685) (768,2431,6209,14094) )

 
 
. 

Solution: By decomposing the given PGTrFFSME and applying the FMVM, the positive fuzzy solution is   

𝑋̃ =

(

 
 

(1,2,4,5) (2,3,4,6) (2,3,5,7) (1,2,3,5) (2,3,4,6)
(2,3,4,5) (1,2,3,4) (3,4,5,7) (2,3,4,6) (3,4,5,7)
(1,2,4,6) (1,3,4,5) (2,3,5,7) (1,2,4,5) (2,3,5,6)
(2,3,5,6) (3,4,5,7) (1,2,3,4) (1,2,4,6) (2,3,5,7)
(1,2,3,5) (2,3,4,5) (1,2,5,6) (2,3,5,6) (3,4,6,7))

 
 
.                                                    (3.32𝑎) 

 

Detailed solution for Example 3.3.1.2 is discussed in Appendix A. 

Solving the 5 × 5 PGTrFFSME in Example 3.3.1.2 required getting the inverse of 25 × 25 matrices. It is worth mentioning that 

solving the 𝑝 × 𝑛 PGTrFFSME in Eq. (1.16) by FMVM requires getting the inverse of 𝑝𝑛 × 𝑝𝑛 matrices, which is impractical 

for large PGTrFFSME. Therefore, approximating the positive fuzzy solution to the large size PGTrFFSME is more practical 

than getting the solution analytically, especially if the PGTrFFSME’s size is more than 10. In approximating the PGTrFFSME 

numerically, the equivalent system of GSME in Eq. (3.23) is considered.  In the following Section 3.3.2, the GI method in 

Theorem 2.9.3 is extended for solving the system of GSME. 
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3.3.2 Fuzzy Gradient Iterative Method for PGTrFFSME 

In this section, the numerical solution to the PGTrFFSME 𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ is discussed. 

To approximate the positive fuzzy solution to the PGTrFFSME, it has to be converted to 

an equivalent system of GSME as discussed in Theorem 3.3.1. Then the solution to the 

system of GSME is approximated numerically by developing the FGIM. The system of 

GSME in Eq. (3.23) can be written as two subsystems, where the GI method in  

Theorem 2.9.3 for solving 𝐴𝑋𝐵 = 𝐶 is extended to approximate the solutions of the two 

subsystems where the solution of the system of GSME is the average of the solutions of 

the two subsystems. The details to constructed FGIM is discussed as follows: 

The system of GSME in Eq. (3.23), can be written as two subsystems of equations as 

follows: for 1 ≤ 𝑙 ≤ 4 

𝜉1
(𝑙)
= 𝑒𝑖𝑗

(𝑙) − 𝑎𝑖𝑗
(𝑙)𝑥𝑖𝑗

(𝑙)𝑏𝑖𝑗
(𝑙)

 and 𝜉2
(𝑙)
= 𝑒𝑖𝑗

(𝑙) − 𝑐𝑖𝑗
(𝑙)𝑥𝑖𝑗

(𝑙)𝑑𝑖𝑗
(𝑙)

.                           (3.33) 

The numerical solution to the system of GSME in Eq. (3.23) is the average of the numerical 

solutions to the subsystems in Eq. (3.33). 

From Eq. (3.23) and Eq. (3.33), the following can be obtained: for 1 ≤ 𝑙 ≤ 4 

𝜉2
(𝑙)
= 𝑎𝑖𝑗

(𝑙)𝑥𝑖𝑗
(𝑙)𝑏𝑖𝑗

(𝑙)
                                                          (3.34a) 

and  

𝜉1
(𝑙)
= 𝑐𝑖𝑗

(𝑙)𝑥𝑖𝑗
(𝑙)𝑑𝑖𝑗

(𝑙).                                                        (3.34b) 

The numerical solution to the system of equations in Eq. (3.34a) and Eq. (3.34b) can be 

obtained by Theorem 2.9.3 as follows: 

𝑥̂1
(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) + 𝛼𝑙 ∙ (𝑎𝑖𝑗

(𝑙))
𝑇
(𝜉2

(𝑙) − 𝑎𝑖𝑗
(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑏𝑖𝑗

(𝑙))(𝑏𝑖𝑗
(𝑙))

𝑇
,         (3.35a) 
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𝑥̂2
(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) + 𝛼𝑙 ∙ (𝑐𝑖𝑗

(𝑙))
𝑇
(𝜉1

(𝑙) − 𝑐𝑖𝑗
(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑑𝑖𝑗

(𝑙))(𝑑𝑖𝑗
(𝑙))

𝑇
.        (3.35b) 

Substitute Eq. (3.33) into Eq. (3.35a) and Eq. (3.35b) as follows: 

𝑥̂1
(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) + 𝛼𝑙 ∙ (𝑎𝑖𝑗

(𝑙)
)
𝑇
(𝑒𝑖𝑗

(𝑙)
− 𝑐𝑖𝑗

(𝑙)
𝑥̂(𝑙)(𝑘 − 1)𝑑𝑖𝑗

(𝑙)
− 𝑎𝑖𝑗

(𝑙)
𝑥̂(𝑙)(𝑘 − 1)𝑏𝑖𝑗

(𝑙)
) (𝑏𝑖𝑗

(𝑙)
)
𝑇
.    

 (3.36a) 

𝑥̂2
(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) + 𝛼𝑙 ∙ (𝑐𝑖𝑗

(𝑙)
)
𝑇
(𝑒𝑖𝑗

(𝑙)
− 𝑎𝑖𝑗

(𝑙)
𝑥̂(𝑙)(𝑘 − 1)𝑏𝑖𝑗

(𝑙)
− 𝑐𝑖𝑗

(𝑙)
𝑥̂(𝑙)(𝑘 − 1)𝑑𝑖𝑗

(𝑙)
) (𝑑𝑖𝑗

(𝑙)
)
𝑇
. 

(3.36b) 

If we let  

𝑠(𝑙)(𝑘 − 1) = 𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑏(𝑙) − 𝑐(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑑(𝑙). 

Then, the average of the two numerical solutions in Eq. (3.36a) and Eq. (3.36b) is  

𝑥̂(𝑙)(𝑘) =
𝑥̂1
(𝑙)(𝑘) + 𝑥̂2

(𝑙)(𝑘)

2
.                                                             (3.37) 

Therefore, for 1 ≤ 𝑙 ≤ 4, the numerical solution to the system of GSME in Eq. (3.23) is 

𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) +
𝛼𝑙

2
((𝑎(𝑙))

𝑇
(𝑠(𝑙)(𝑘 − 1)) (𝑏(𝑙))

𝑇
+ (𝑐(𝑙))

𝑇
(𝑠(𝑙)(𝑘 − 1)) (𝑑(𝑙))

𝑇
),    

(3.38) 

where the convergence rate (step size) is given by, 

0 < 𝛼𝑙 <
2

𝜆𝑚𝑎𝑥 [(𝑎
(𝑙))𝑇𝑎(𝑙)]𝜆𝑚𝑎𝑥[𝑏

(𝑙)(𝑏(𝑙))𝑇] + 𝜆𝑚𝑎𝑥 [(𝑐
(𝑙))𝑇𝑐(𝑙)]𝜆𝑚𝑎𝑥 [𝑑

(𝑙)(𝑑(𝑙))𝑇]
 . 

(3.39𝑎) 

It can also be obtained as follows,  

0 < 𝛼𝑙 <
2

‖𝑎(𝑙)‖2‖𝑏(𝑙)‖2 + ‖𝑐(𝑙)‖2‖𝑑(𝑙)‖2
,                                   (3.39𝑏) 

where ‖𝑎(𝑙)‖
2
= 𝑡𝑟[𝑎(𝑙) ∙ (𝑎(𝑙))

𝑇
]. 

If we let 𝛼0 = ‖𝑎
(𝑙)‖

2
‖𝑏(𝑙)‖

2
+ ‖𝑐(𝑙)‖

2
‖𝑑(𝑙)‖

2
, then  
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0 < 𝛼𝑙 <
2

α0
.                                                         (3.39𝑐) 

At step 𝑘 − 𝑡ℎ of the iteration, the following error is considered: 

𝛿(𝑙)(𝑘) = ‖𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘)𝑏(𝑙) − 𝑐(𝑙)𝑥̂(𝑙)(𝑘)𝑑(𝑙)‖
2
.                                 (3.40)                                                               

The obtained numerical solution in Eq. (3.38) can be expressed as, 

𝑥̂ = (𝑥̂(1), 𝑥̂(2), 𝑥̂(3), 𝑥̂(4)). 

It can also be written in matrix form as, 

𝑥̂ = (

(𝑥̂11
(1), 𝑥̂11

(2), 𝑥̂11
(3), 𝑥̂11

(4)) ⋯ (𝑥̂1𝑛
(1), 𝑥̂1𝑛

(2), 𝑥̂1𝑛
(3), 𝑥̂1𝑛

(4))

⋮ ⋱ ⋮

(𝑥̂𝑝1
(1), 𝑥̂𝑝1

(2), 𝑥̂𝑝1
(3), 𝑥̂𝑝1

(4)) … (𝑥̂𝑝𝑛
(1), 𝑥̂𝑝𝑛

(2), 𝑥̂𝑝𝑛
(3), 𝑥̂𝑝𝑛

(4))

).                (3.41)   

Remark 3.3.2.1 The convergence rate (step size) of the FGIM in Eq. (3.39a) is calculated 

using the eigenvalues of the coefficient matrices. Therefore, the coefficients matrices must 

be in square dimension only. Thus, the approximated positive fuzzy solution matrix 

obtained in Eq. (3.41) must be square. Consequently, the FGIM can only be applied to 

PGTrFFSME with square coefficients only.  

 

In the following Theorem 3.3.2.1, it is proved that the numerical solution obtained by the 

FGIM method converges to the positive solution of the PGTrFFSME for any initial value. 

Theorem 3.3.2.1: If the system of GSME in Eq. (3.23) has a  positive solution 𝑥(𝑙), then 

the numerical solution 𝑥̂(𝑙) in Eq. (3.41) converges to 𝑥(𝑙) for any initial values 𝑥̂(𝑙)(0) (i.e. 

if 𝑘 → ∞, then 𝑥(𝑙) = 𝑥̂(𝑙)(𝑘)). 

Proof: Let, 𝜓(𝑘) be the error at each 𝑘, for 𝑘 = 1,… , 𝑛 and for 1 ≤ 𝑙 ≤ 4, 

𝜓(𝑘) = 𝑥(𝑙) − 𝑥̂(𝑙)(𝑘).                                                       (3.42) 

From Eq. (3.23), Eq. (3.38) and Eq. (3.42), the following is obtained: 
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𝜓(𝑘) = 𝜓(𝑘 − 1) +
𝛼𝑙

2
((𝑎(𝑙))

𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) − 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))(𝑏(𝑙))

𝑇
+

(𝑐(𝑙))
𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) − 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))(𝑑(𝑙))

𝑇
) .                                        (3.43) 

Taking ‖. ‖2 to both sides of Eq. (3.43) give: 

‖𝜓(𝑘)‖2 = ‖𝜓(𝑘 − 1) +
𝛼𝑙

2
((𝑎(𝑙))

𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) − 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))(𝑏(𝑙))

𝑇
+

(𝑐(𝑙))
𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) − 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))(𝑑(𝑙))

𝑇
)‖

2

                                      (3.44) 

By applying the following formula to Eq. (3.44),  

‖𝐴 + 𝐵‖2 = 𝑡𝑟((𝐴 + 𝐵)𝑇(𝐴 + 𝐵)) = ‖𝐴‖2 + 2𝑡𝑟(𝐴𝑇𝐵) + ‖𝐵‖2, 

the following is obtained, 

‖𝜓(𝑘)‖2 = ‖𝜓(𝑘 − 1)‖2 + 𝛼𝑙𝑡𝑟 [𝜓
𝑇(𝑘 − 1) ((𝑎(𝑙))

𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) −

𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))(𝑏(𝑙))
𝑇
+ (𝑐(𝑙))

𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) − 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))(𝑑(𝑙))

𝑇
)] +

𝛼𝑙
2

4
‖(𝑎(𝑙))

𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) − 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))(𝑏(𝑙))

𝑇
+ (𝑐(𝑙))

𝑇
(−𝑎(𝑙)𝜓(𝑘 −

1)𝑏(𝑙) − 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))(𝑑(𝑙))
𝑇
‖
2

.   

Applying norm properties gives: 

‖𝜓(𝑘)‖2 ≤ ‖𝜓(𝑘 − 1)‖2 + 𝛼𝑙 𝑡𝑟 [(𝜓
𝑇(𝑘 − 1)(𝑎(𝑙))

𝑇
(𝑏(𝑙))

𝑇
+ 𝜓𝑇(𝑘 −

1)(𝑐(𝑙))
𝑇
(𝑑(𝑙))

𝑇
)(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) − 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))] +

𝛼𝑙
2

4
‖(𝑎(𝑙))

𝑇
(−𝑎(𝑙)𝜓(𝑘 −

1)𝑏(𝑙) − 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))(𝑏(𝑙))
𝑇
+ (𝑐(𝑙))

𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) − 𝑐(𝑙)𝜓(𝑘 −

1)𝑑(𝑙))(𝑑(𝑙))
𝑇
‖
2

, and since ‖𝐴‖2 = 𝑡𝑟[(𝐴)𝑇𝐴] then,  
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‖𝜓(𝑘)‖2 ≤ ‖𝜓(𝑘 − 1)‖2 − 𝛼𝑙‖𝑎
(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) + 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙)‖

2
 

+
𝛼𝑙
2

4
‖(𝑎(𝑙))

𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) − 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))(𝑏(𝑙))

𝑇
+ (𝑐(𝑙))

𝑇
(−𝑎(𝑙)𝜓(𝑘 −

1)𝑏(𝑙) − 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))(𝑑(𝑙))
𝑇
‖
2

.  

 

Applying norm properties gives: 

‖𝜓(𝑘)‖2 ≤ ‖𝜓(𝑘 − 1)‖2 − 𝛼𝑙‖𝑎
(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) + 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙)‖

2
+

𝛼𝑙
2

4
(‖𝑎(𝑙)‖

2
‖𝑏(𝑙)‖

2
+ ‖𝑐(𝑙)‖

2
‖𝑑(𝑙)‖

2
) ‖𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) + 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙)‖

2

.  

 

‖𝜓(𝑘)‖2 ≤ ‖𝜓(𝑘 − 1)‖2 + (−𝛼𝑙 +
𝛼𝑙
2

4
(‖𝑎(𝑙)‖

2
‖𝑏(𝑙)‖

2
+ ‖𝑐(𝑙)‖

2
‖𝑑(𝑙)‖

2
)) 

. ‖𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) + 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙)‖
2
. 

By Eq. (3.39c), the following can be obtained: 

‖𝜓(𝑘)‖2 ≤ ‖𝜓(𝑘 − 1)‖2 + (−𝛼𝑙 +
𝛼𝑙
2

4
×
2

𝛼0
) ‖𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) + 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙)‖

2
. 

At 𝑘 = 1           ‖𝜓(1)‖2 ≤ ‖𝜓(0)‖2 − 𝛼𝑙 (1 −
𝛼𝑙

2𝛼0
) ‖𝑎(𝑙)𝜓(0)𝑏(𝑙) + 𝑐(𝑙)𝜓(0)𝑑(𝑙)‖

2
. 

At 𝑘 = 2           ‖𝜓(2)‖2 ≤ ‖𝜓(1)‖2 − 𝛼𝑙 (1 −
𝛼𝑙

2𝛼0
) ‖𝑎(𝑙)𝜓(1)𝑏(𝑙) + 𝑐(𝑙)𝜓(1)𝑑(𝑙)‖

2
. 

At 𝑘 = 3           ‖𝜓(3)‖2 ≤ ‖𝜓(2)‖2 − 𝛼𝑙 (1 −
𝛼𝑙

2𝛼0
) ‖𝑎(𝑙)𝜓(2)𝑏(𝑙) + 𝑐(𝑙)𝜓(2)𝑑(𝑙)‖

2
. 

At 𝑘 = 𝑛 − 1    ‖𝜓(𝑛 − 1)‖2 ≤ ‖𝜓(𝑛 − 2)‖2 − 𝛼𝑙 (1 −
𝛼𝑙

2𝛼0
) ‖𝑎(𝑙)𝜓(𝑛 − 2)𝑏(𝑙) +

𝑐(𝑙)𝜓(𝑛 − 2)𝑑(𝑙)‖
2
. 
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At 𝑘 = 𝑛           ‖𝜓(𝑛)‖2 ≤ ‖𝜓(𝑛 − 1)‖2 − 𝛼𝑙 (1 −
𝛼𝑙

2𝛼0
) ‖𝑎(𝑙)𝜓(𝑛 − 1)𝑏(𝑙) +

𝑐(𝑙)𝜓(𝑛 − 1)𝑑(𝑙)‖
2
. 

Therefore, the following is obtained, 

‖𝜓(𝑘)‖2 ≤ ‖𝜓(0)‖2 − 𝛼𝑙 (1 −
𝛼𝑙
2𝛼0

)∑(‖𝑎(𝑙)𝜓(𝑘)𝑏(𝑙) + 𝑐(𝑙)𝜓(𝑘)𝑑(𝑙)‖
2
)

𝑛

𝑘=1

. 

If the convergence rate 𝛼 is chosen to Eq. (3.39c) and 𝑘 → ∞, then 

∑(‖𝑎(𝑙)𝜓(𝑘)𝑏(𝑙) + 𝑐(𝑙)𝜓(𝑘)𝑑(𝑙)‖
2
) < ∞

∞

𝑘=1

. 

Therefore, 

𝑙𝑖𝑚
𝑘→∞

(𝑎(𝑙)𝜓(𝑘)𝑏(𝑙) + 𝑐(𝑙)𝜓(𝑘)𝑑(𝑙)) = 0. 

Since 𝑎(𝑙) > 0, 𝑏(𝑙) > 0, 𝑐(𝑙) > 0 𝑎𝑛𝑑 𝑑(𝑙) > 0 then, 

𝑙𝑖𝑚
𝑘→∞

𝜓(𝑘) = 0. 

 

By Eq. (3.42), the following is obtained, 

𝑙𝑖𝑚
𝑘→∞

(𝑥(𝑙) − 𝑥̂(𝑙)(𝑘)) = 0. 

Consequently, if 𝑘 → ∞, then 𝑥(𝑙) = 𝑥̂(𝑙)(𝑘) and therefore, if the system of GSME in  

Eq. (3.23) has a unique positive solution 𝑥(𝑙), then the numerical solution 𝑥̂(𝑙)(𝑘) in  

Eq. (3.41) converges to 𝑥(𝑙) for any initial values 𝑥̂(𝑙)(0) and for 1 ≤ 𝑙 ≤ 4. 

□ 

Below is the Algorithm 3.1 for the FGIM. This algorithm can be used by different software 

for solving the PGTrFFSME in Eq. (1.16). 
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Algorithm 3.1: Fuzzy Gradient Iterative Algorithm for PGTrFFSME. 

Input 𝐴̃, 𝐵̃, 𝐶̃, 𝐷̃ and 𝐸̃  # Split each matrix into four matrices (e.g., 𝑎(1), 𝑎(2), 𝑎(3), 𝑎(4)) 

for l = 1,2,3,4 

Choose 𝛼𝑙, 𝜀, 𝑥̂(𝑙)(𝑘) = 0   # 0 is the Zero matrix with the same dimension as 𝑥(𝑙)(𝑘) 

While 𝑘 = 0, 1, 2, … , 𝑛 do 

𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) +
𝛼𝑙

2
((𝑎(𝑙))

𝑇
(𝑠(𝑙)(𝑘 − 1)) (𝑏(𝑙))

𝑇
+ (𝑐(𝑙))

𝑇
(𝑠(𝑙)(𝑘 − 1)) (𝑑(𝑙))

𝑇
). 

            𝑠(𝑙)(𝑘 − 1) = 𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑏(𝑙) − 𝑐(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑑(𝑙). 

              𝛿(𝑙)(𝑘) = ‖𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘)𝑏(𝑙) − 𝑐(𝑙)𝑥̂(𝑙)(𝑘)𝑑(𝑙)‖
2

. 

      If  𝛿(𝑙)(𝑘) < 𝜀 then  

             𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘)); 

             𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

      else  

  𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) +
𝛼𝑙

2
((𝑎(𝑙))

𝑇
(𝑠(𝑙)(𝑘 − 1)) (𝑏(𝑙))

𝑇
+ (𝑐(𝑙))

𝑇
(𝑠(𝑙)(𝑘 − 1)) (𝑑(𝑙))

𝑇
). 

             update k.  

             𝑘 = 𝑘 + 1 

       end 

        𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘)), 

        𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

end  

 

The step size in the FGIM is small, and therefore the convergence rate of the FGIM 

algorithm is slow. To improve the convergence speed, in the following Section 3.3.3, the 

LSI method in Theorem 2.9.4 is extended for solving the PGTrFFSME in Eq. (1.16). 
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3.3.3 Fuzzy Least Square Iterative Method for PGTrFFSME 

In this section, the solution to the PGTrFFSME is approximated numerically by 

developing the fuzzy least-square iterative method (FLSIM). The development of the 

fuzzy least-squares iterative algorithm (FLSIM) is similar to the FGIM method. 

However, to improve the convergence rate of the FGIM algorithm in Eq. (3.38), the 

least-square term of the coefficients in Eq. (3.23) should be added to the FGIM 

algorithm obtained in Eq. (3.38). Therefore, by Theorem 2.9.4 and Eq. (3.38), the 

following is obtained:  for 1 ≤ 𝑙 ≤ 4 we have: 

𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) +
𝛼𝑙

2
(((𝑎(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

∙ (𝑎(𝑙))
𝑇
(𝑠(𝑙)(𝑘 − 1)) (𝑏(𝑙))

𝑇
((𝑏(𝑙)(𝑏(𝑙))

𝑇
)−1) +

((𝑐(𝑙))
𝑇
∙  𝑐(𝑙))

−1

(𝑐(𝑙))
𝑇
(𝑠(𝑙)(𝑘 − 1))  (𝑑(𝑙))

𝑇
((𝑑(𝑙)(𝑑(𝑙))

𝑇
)−1),                                           (3.45)                                                                                                                                                             

where the convergence rate (step size) is given by, 

0 < 𝛼𝑙 < 4                                                             (3.46) 

At step 𝑘 − 𝑡ℎ of the iteration, the following error is considered: 

𝛿(𝑙)(𝑘) = ‖𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘)𝑏(𝑙) − 𝑐(𝑙)𝑥̂(𝑙)(𝑘)𝑑(𝑙)‖
2
. 

The obtained numerical solution in Eq. (3.38) can be expressed as, 

𝑥̂ = (𝑥̂(1), 𝑥̂(2), 𝑥̂(3), 𝑥̂(4)). 

It can also be written in matrix form as, 

𝑥̂ = (

(𝑥̂11
(1), 𝑥̂11

(2), 𝑥̂11
(3), 𝑥̂11

(4)) ⋯ (𝑥̂1𝑛
(1), 𝑥̂1𝑛

(2), 𝑥̂1𝑛
(3), 𝑥̂1𝑛

(4))

⋮ ⋱ ⋮

(𝑥̂𝑝1
(1), 𝑥̂𝑝1

(2), 𝑥̂𝑝1
(3), 𝑥̂𝑝1

(4)) … (𝑥̂𝑝𝑛
(1), 𝑥̂𝑝𝑛

(2), 𝑥̂𝑝𝑛
(3), 𝑥̂𝑝𝑛

(4))

).                     (3.47) 

 

In the following Theorem 3.3.3.1, the approximated solution by the FLSIM is proved 

to be convergent to the positive solution of the PGTrFFSME for any initial value. 
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Theorem 3.3.3.1: If the system of GSME in Eq. (3.23) has a positive solution 𝑥(𝑙), then 

the numerical solution 𝑥̂(𝑙)(𝑘) in Eq. (3.41) converges to 𝑥(𝑙) for any initial values 

𝑥̂(𝑙)(0) (i.e. if 𝑘 → ∞, then 𝑥(𝑙) = 𝑥̂(𝑙)(𝑘). 

Proof: Let, 𝜓(𝑘) be the error at each 𝑘, for 𝑘 = 1,… , 𝑛 and for 1 ≤ 𝑙 ≤ 4. 

𝜓(𝑘) = 𝑥(𝑙) − 𝑥̂(𝑙)(𝑘).                                                                 (3.48) 

From Eq. (3.23), Eq. (3.45) and Eq. (3.48), the following is obtained: 

𝜓(𝑘) = 𝜓(𝑘 − 1) +
𝛼𝑙

2
(((𝑎(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

∙ (𝑎(𝑙))
𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) − 𝑐(𝑙)𝜓(𝑘 −

1)𝑑(𝑙))(𝑏(𝑙))
𝑇
(𝑏(𝑙)(𝑏(𝑙))

𝑇
)−1 + ((𝑐(𝑙))

𝑇
∙  𝑐(𝑙))

−1

(𝑐(𝑙))
𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) −

𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))(𝑑(𝑙))
𝑇
(𝑑(𝑙)(𝑑(𝑙))

𝑇
)−1).                                                                (3.49) 

Taking ‖. ‖2 to both sides of Eq. (3.49) gives: 

‖𝜓(𝑘)‖2 = ‖𝜓(𝑘 − 1) +
𝛼𝑙

2
(((𝑎(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

∙ (𝑎(𝑙))
𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) −

𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))(𝑏(𝑙))
𝑇
(𝑏(𝑙)(𝑏(𝑙))

𝑇
)−1 + ((𝑐(𝑙))

𝑇
∙  𝑐(𝑙))

−1

(𝑐(𝑙))
𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) −

𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))(𝑑(𝑙))
𝑇
(𝑑(𝑙)(𝑑(𝑙))

𝑇
)−1)‖

2

.                                                            (3.50) 

 

 

Apply the following formula to Eq. (3.50) we get, 

‖𝐴(𝑋 + ((𝐴)𝑇 ∙ 𝐴)−1𝑌(𝐵(𝐵)𝑇)−1)𝐵‖2 

= 𝑡𝑟 (((𝑋 + ((𝐴)𝑇 ∙ 𝐴)−1𝑌(𝐵(𝐵)𝑇)−1)𝐵)
𝑇
((𝑋 + ((𝐴)𝑇 ∙ 𝐴)−1𝑌(𝐵(𝐵)𝑇)−1)𝐵)) . 

= ‖𝐴𝑋𝐵‖2 + 2𝑡𝑟(𝑋𝑇𝑌) + ‖(𝐴((𝐴)𝑇 ∙ 𝐴)−1𝑌(𝐵(𝐵)𝑇)−1)𝐵‖2.   

 

‖𝑎(𝑙)𝜓(𝑘)𝑏(𝑙)‖
2
= ‖𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙)‖

2
+ 𝛼𝑙 𝑡𝑟 [𝜓

𝑇(𝑘 − 1) ((𝑎(𝑙))
𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) − 𝑐(𝑙)𝜓(𝑘 −

1)𝑑(𝑙))(𝑏(𝑙))
𝑇
+ (𝑐(𝑙))

𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) − 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))(𝑑(𝑙))

𝑇
)] +

𝛼𝑙
2

4
‖(((𝑎(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

∙
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(𝑎(𝑙))
𝑇
𝑎(𝑙)(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) − 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))𝑏(𝑙)(𝑏(𝑙))

𝑇
(𝑏(𝑙)(𝑏(𝑙))

𝑇
)
−1

+ ((𝑐(𝑙))
𝑇
∙

 𝑐(𝑙))
−1
(𝑐(𝑙))

𝑇
𝑐(𝑙)(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) − 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))𝑑(𝑙)(𝑑(𝑙))

𝑇
(𝑑(𝑙)(𝑑(𝑙))

𝑇
)
−1

)‖
2

.  

Applying norm properties, we get: 

‖𝑎(𝑙)𝜓(𝑘)𝑏(𝑙)‖
2
≤ ‖𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙)‖

2
+ 2𝛼𝑙𝑡𝑟 [𝜓

𝑇(𝑘 − 1) ((𝑎(𝑙))
𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) −

𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))(𝑏(𝑙))
𝑇
+ (𝑐(𝑙))

𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) − 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))(𝑑(𝑙))

𝑇
)] +

𝛼𝑙
2

4
‖(((𝑎(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

∙ (𝑎(𝑙))
𝑇
𝑎(𝑙)(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) − 𝑐(𝑙)𝜓(𝑘 −

1)𝑑(𝑙))𝑏(𝑙)(𝑏(𝑙))
𝑇
(𝑏(𝑙)(𝑏(𝑙))

𝑇
)−1 + ((𝑐(𝑙))

𝑇
∙  𝑐(𝑙))

−1

(𝑐(𝑙))
𝑇
𝑐(𝑙)(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) −

𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))𝑑(𝑙)(𝑑(𝑙))
𝑇
(𝑑(𝑙)(𝑑(𝑙))

𝑇
)−1)‖

2

. 

Which can be written as, 

‖𝑎(𝑙)𝜓(𝑘)𝑏(𝑙)‖
2
≤ ‖𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙)‖

2
+ 2𝛼𝑙 𝑡𝑟 [(𝜓

𝑇(𝑘 − 1)(𝑎(𝑙))
𝑇
(𝑏(𝑙))

𝑇
+𝜓𝑇(𝑘 −

1)(𝑐(𝑙))
𝑇
(𝑑(𝑙))

𝑇
)(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) − 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))] +

𝛼𝑙
2

4
‖(((𝑎(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

∙

(𝑎(𝑙))
𝑇
𝑎(𝑙)(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) − 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))𝑏(𝑙)(𝑏(𝑙))

𝑇
(𝑏(𝑙)(𝑏(𝑙))

𝑇
)−1 + ((𝑐(𝑙))

𝑇
∙

 𝑐(𝑙))
−1

(𝑐(𝑙))
𝑇
𝑐(𝑙)(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) − 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))𝑑(𝑙)(𝑑(𝑙))

𝑇
(𝑑(𝑙)(𝑑(𝑙))

𝑇
)−1)‖

2

. 

Applying norm properties, we get: 

‖𝑎(𝑙)𝜓(𝑘)𝑏(𝑙)‖
2
≤ ‖𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙)‖

2
+ 2𝛼𝑙 𝑡𝑟 [(𝜓

𝑇(𝑘 − 1)(𝑎(𝑙))
𝑇
(𝑏(𝑙))

𝑇
+

𝜓𝑇(𝑘 − 1)(𝑐(𝑙))
𝑇
(𝑑(𝑙))

𝑇
)(−𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) − 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))] +

𝛼𝑙
2

4
‖−2(𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) + 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙))‖

2
,  

and since ‖𝐴‖2 = 𝑡𝑟[(𝐴)𝑇𝐴] then,  

‖𝑎(𝑙)𝜓(𝑘)𝑏(𝑙)‖
2
≤ ‖𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙)‖

2
− 2𝛼𝑙‖𝑎

(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) + 𝑐(𝑙)𝜓(𝑘 −

1)𝑑(𝑙)‖
2
+
𝛼𝑙
2

2
‖𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) + 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙)‖

2
, 

which can be written as: 

‖𝜓(𝑘)‖2 ≤ ‖𝜓(𝑘 − 1)‖2 − 2𝛼𝑙(1 −
𝛼𝑙

4
)‖𝑎(𝑙)𝜓(𝑘 − 1)𝑏(𝑙) + 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙)‖

2
. 

At 𝑘 = 1                   ‖𝜓(1)‖2 ≤ ‖𝜓(0)‖2 − 2𝛼𝑙(1 −
𝛼𝑙

4
)‖𝑎(𝑙)𝜓(0)𝑏(𝑙) + 𝑐(𝑙)𝜓(0)𝑑(𝑙)‖

2
. 

At 𝑘 = 2                  ‖𝜓(2)‖2 ≤ ‖𝜓(1)‖2 − 2𝛼𝑙(1 −
𝛼𝑙

4
)‖𝑎(𝑙)𝜓(1)𝑏(𝑙) + 𝑐(𝑙)𝜓(1)𝑑(𝑙)‖

2
. 

At 𝑘 = 3                 ‖𝜓(3)‖2 ≤ ‖𝜓(2)‖2 − 2𝛼𝑙(1 −
𝛼𝑙

4
)‖𝑎(𝑙)𝜓(2)𝑏(𝑙) + 𝑐(𝑙)𝜓(2)𝑑(𝑙)‖

2
. 
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At 𝑘 = 𝑛 − 1      

      ‖𝜓(𝑛 − 1)‖2 ≤ ‖𝜓(𝑛 − 2)‖2 − 2𝛼𝑙(1 −
𝛼𝑙

4
)‖𝑎(𝑙)𝜓(𝑛 − 2)𝑏(𝑙) + 𝑐(𝑙)𝜓(𝑛 − 2)𝑑(𝑙)‖

2
. 

At 𝑘 = 𝑛              

    ‖𝜓(𝑛)‖2 ≤ ‖𝜓(𝑛 − 1)‖2 − 2𝛼𝑙 (1 −
𝛼𝑙

4
) ‖𝑎(𝑙)𝜓(𝑛 − 1)𝑏(𝑙) + 𝑐(𝑙)𝜓(𝑛 − 1)𝑑(𝑙)‖

2
. 

Consequently,  

‖𝜓(𝑘)‖2 ≤ ‖𝜓(0)‖2 − 2𝛼𝑙 (1 −
𝛼𝑙
4
)∑(‖𝑎(𝑙)𝜓(𝑘)𝑏(𝑙) + 𝑐(𝑙)𝜓(𝑘)𝑑(𝑙)‖

2
)

𝑛

𝑘=1

, 

‖𝜓(𝑘)‖2 ≤ ‖𝜓(0)‖2 − 2𝛼𝑙 (1 −
𝛼𝑙
4
)∑(‖𝑎(𝑙)𝜓(𝑘)𝑏(𝑙) + 𝑐(𝑙)𝜓(𝑘)𝑑(𝑙)‖

2
)

𝑛

𝑘=1

. 

If the convergence rate 𝛼𝑙 is chosen to satisfy 

0 < 𝛼𝑙 < 4, 

and 𝑛 → ∞, then 

∑(‖𝑎(𝑙)𝜓(𝑘)𝑏(𝑙) + 𝑐(𝑙)𝜓(𝑘)𝑑(𝑙)‖
2
) < ∞

∞

𝑘=1

. 

Therefore,  

𝑙𝑖𝑚
𝑘→∞

(𝑎(𝑙)𝜓(𝑘)𝑏(𝑙) + 𝑐(𝑙)𝜓(𝑘)𝑑(𝑙)) = 0, 

and since 𝑎(𝑙) > 0, 𝑏(𝑙) > 0, 𝑐(𝑙) > 0 and 𝑑(𝑙) > 0 then, 

𝑙𝑖𝑚
𝑘→∞

𝜓(𝑘) = 0. 

𝑙𝑖𝑚
𝑘→∞

(𝑥(𝑙) − 𝑥̂(𝑙)(𝑘)) = 0. 

Consequently, if 𝑛 → ∞, then 𝑥(𝑙) = 𝑥̂(𝑙)(𝑘). Thus, the system of GSME in Eq. (3.23) 

has a unique positive solution 𝑥(𝑙), then the numerical solution 𝑥̂(𝑙)(𝑘) in Eq. (3.47) 

converges to 𝑥(𝑙) for any initial values 𝑥̂(𝑙)(0), (i.e., if 𝑘 → ∞, then 𝑥(𝑙) = 𝑥̂(𝑙)(𝑘)) for 

1 ≤ 𝑙 ≤ 4. 

□ 
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Below is the Algorithm 3.2 for the FLSIM. This algorithm can be used by different 

software for solving the PGTrFFSME in Eq. (1.16). 

Algorithm 3.2: Fuzzy Least-Square Algorithm for PGTrFFSME. 

Input 𝐴̃, 𝐵̃, 𝐶̃, 𝐷̃ and 𝐸̃  # Split each matrix into four matrices (e.g., 𝑎(1), 𝑎(2), 𝑎(3),

𝑎(4)) 

for l = 1,2,3,4 

Choose 𝛼𝑙, 𝜀, 𝑥̂(𝑙)(𝑘) = 0   # 0 is the Zero matrix with the same dimension as 𝑥(𝑙)(𝑘) 

While 𝑘 = 0, 1, 2, … , 𝑛 do 

      𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1)

+
𝛼𝑙
2
(((𝑎(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

∙ (𝑎(𝑙))
𝑇
(𝑠𝑙(𝑘 − 1))(𝑏(𝑙))

𝑇
((𝑏(𝑙)(𝑏(𝑙))

𝑇
)−1)

+ ((𝑐(𝑙))
𝑇
∙  𝑐(𝑙))

−1

(𝑐(𝑙))
𝑇
(𝑠𝑙(𝑘 − 1)) (𝑑(𝑙))

𝑇
((𝑑(𝑙)(𝑑(𝑙))

𝑇
)−1). 

        𝑠(𝑙)(𝑘 − 1) = 𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑏(𝑙) − 𝑐(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑑(𝑙). 

          𝛿(𝑙)(𝑘) = ‖𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘)𝑏(𝑙) − 𝑐(𝑙)𝑥̂(𝑙)(𝑘)𝑑(𝑙)‖
2

. 

        If  𝛿(𝑙)(𝑘) < 𝜀 then  

             𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘)); 

             𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

       else               
                  𝑥̂(𝑙)(𝑘)

= 𝑥̂(𝑙)(𝑘 − 1)

+
𝛼𝑙
2
(((𝑎(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

∙ (𝑎(𝑙))
𝑇
(𝑠𝑙(𝑘 − 1))(𝑏(𝑙))

𝑇
((𝑏(𝑙)(𝑏(𝑙))

𝑇
)−1)

+ ((𝑐(𝑙))
𝑇
∙  𝑐(𝑙))

−1

(𝑐(𝑙))
𝑇
(𝑠𝑙(𝑘 − 1)) (𝑑(𝑙))

𝑇
((𝑑(𝑙)(𝑑(𝑙))

𝑇
)−1). 

             update k.  

       end 

              𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘)), 

        𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

end  
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3.3.4 Comparison Between the Methods for Solving the PGTrFFSME 

To illustrate the accuracy and effectiveness of the methods for solving the PGTrFFSME 

in Eq. (1.16), various sizes of PGTrFFSME are considered, namely, small (2 × 2), 

(5 × 5), and large (100 × 100).  The solution to the PGTrFFSME is obtained 

analytically by the FMVM in Section 3.3.1 and approximated numerically by FGIM 

and FLSIM in Section 3.3.2 and 3.3.3. In addition, the performance of the FGIM and 

FLSIM is compared by calculating the number of iterations (𝑘), convergence rate (𝛼), 

error 𝛿(𝑙)(𝑘), error bound (𝜀), convergence rate, CPU time, real-time and memory 

usage. In addition to the graphical representation of the error 𝛿(𝑙)(𝑘) when 𝑘 increases 

is also compared. 

In the following Example 3.3.4.1, the FMVM, FGIM and FLSIM in Sections 3.3.1, 

3.3.2 and 3.3.3, respectively, are applied to a 2 × 2 PGTrFFSME. 

Example 3.3.4.1. Solve the following 2 × 2 PGTrFFSME: 

𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ 

Given, 

𝐴̃ = (
(4, 6, 7, 8) (1, 3, 4, 5)
(1, 2, 3, 4) (3, 5, 6, 7)

), 𝐵̃ = (
(4, 6, 7, 9) (2, 3, 4, 6)
(1, 3, 4, 5) (3, 5, 6, 7)

), 

𝐶̃ = (
(5, 6, 7, 8) (1, 3, 4, 5)
(2, 4, 5, 6) (4, 6, 7, 9)

), 𝐷̃ = (
(4, 5, 6, 8) (1, 2, 3, 4)
(1, 3, 4, 5) (2, 5, 6, 7)

), 

𝐸̃ = (
(95, 513, 1012, 1885) (66, 495, 968, 1742)
(76, 480, 960, 1875) (76, 463, 918, 1722)

). 

Solution: 

The positive fuzzy solution to the given PGTrFFSME is obtained by the three 

developed methods as follows: 
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Fuzzy Matrix Vectorization Method (FMVM): By decomposing the given 

PGTrFFSME and applying FMVM in Section 3.3.1, the analytical positive fuzzy 

solution is   

𝑋̃ = (
(2, 3, 4, 5) (1, 4, 5, 6)
(1, 3, 4, 5) (3, 4, 5, 6)

). 

This positive fuzzy solution is approximated using Algorithm 3.1 for FGIM and 

Algorithm 3.2 FLSIM as follows: 

Fuzzy gradient-iterative method (FGIM) and Fuzzy least-square iterative method 

(FLSIM): 

Algorithm 3.1 for FGIM and Algorithm 3.2 for FLSIM in Section 3.3.3 are applied to 

compute the approximated positive fuzzy solution 𝑥̂(𝑙)(𝑘) for the given PGTrFFSME 

using the following initial value, for 1 ≤ 𝑙 ≤ 4, 𝑥̂(𝑙) = (
0 0
0 0

). The analytical positive 

fuzzy solution 𝑋̃ and the approximated positive fuzzy solution 𝑥̂(𝑙)(𝑘) are shown in 

Table 3.1 with the convergence rate (𝛼), error bound (𝜀), and the total number of 

iteration (𝑘).  
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Table 3.1  

Comparison Between FMVM, FGIM and FLSIM for Example 3.3.4.1. 

 Method Analytical Solution-Approximated Solution 𝜶 𝜺 𝒌 

𝑥̂(1) FMVM (
2 1
1 3

) NA 0 NA 

FGIM (
1.99949855017298 1.00098875551005
1.00079141255138 2.99843234122586

) 0.0005 10−4 147 

FLSIM (
1.99985414539036 0.999963165192173
1.00002909178272 2.99966344885767

) 0.2 10−4 7 

𝑥̂(2) FMVM (
3 4
3 4

) NA 0 NA 

FGIM (
2.99974677876014 4.00031607313094
3.00032352010653 3.99970338494345

) 0.0001 10−4 244 

FLSIM (
2.99999955606239 3.99999959009359
2.99999667934673 3.99999527502009

) 0.2 10−4 8 

𝑥̂(3) FMVM (
4 5
4 5

) NA 0 NA 

FGIM (
3.98757299663079 5.01285881972725
4.01339431585115 4.98608683548303

) 0.00002 10−4 144 

FLSIM (
3.99999941493081 4.999999571129046
3.99999570858620 4.999994185596878

) 0.2 10−4 8 

𝑥̂(4) FMVM (
5 6
5 6

) NA 0 NA 

FGIM (
5.00156518405719 5.99802708526725
5.00018074252759 5.99996176085665

) 0.00001 10−4 133 

FLSIM (
4.99999460351041 5.99999962240993
5.00018074252759 5.99999085571824

) 0.2 10−4 8 
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Table 3.2 shows the computational time and memory usage needed for FGIM and 

FLSIM. 

Table 3.2  

Comparison Between Computational Time and Memory Usage for FGIM and FLSIM 

for Example 3.3.4.1. 

 Method 𝒌 CPU 

time 

Real 

time 

Memory 

usage 

𝑥̂(1) FGIM 147 21.59 ms 20.45 ms 3.70 MB 

FLSIM 7 17.50 ms 19.38 ms 4.01 MB 

𝑥̂(2) FGIM 244 12.23 ms 11.93 ms 2.17 MB 

FLSIM 8 11.75 ms 11.62 ms 2.43 MB 

𝑥̂(3) FGIM 144 12.26 ms 12.40 ms 2.17 MB 

FLSIM 8 13.75 ms 11.88 ms 2.43 MB 

𝑥̂(4) FGIM 133 12.10 ms 12.24 ms 2.17 MB 

FLSIM 8 17.62 ms 19.62 ms 2.43 MB 

 

Figure 3.7 shows the change in the error 𝛿𝑙(𝑘) when 𝑘 increases up to 𝑘 = 20.  



 

124 

 

                                 (a)                                 (b) 

                                (c)                                   (d) 

Figure 3.7. Comparison between the error of FGIM and FLSIM for the First 20 

Iterations for Example 3.3.4.1. 

Tables 3.1, 3.2 and Figure 3.7 show that the error 𝛿(𝑙)(𝑘) is reducing as 𝑘 increases. 

Figure 3.7 (a) shows that the error of the FGIM and FLSIM for approximating 𝑥̂(1) is 

reducing significantly as 𝑘 increasing, where the FLSIM converges to the analytical 

solution for seven iterations with step size 0.2 and error bound 10−4. However, the 
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FGIM needed 147 iterations to approximate the same solution with step size 0.0005 

and error bound 10−4. 

In Figure 37 (b), the error of the FGIM and FLSIM for approximating 𝑥̂(2) is reducing 

significantly as 𝑘 increasing especially for the FLSIM, where the FLSIM converges to 

the analytical solution for eight iterations with step size 0.2 and error bound 10−4. 

However, the FGIM needed 244 iterations to approximate the same solution with step 

size 0.0001 and error bound 10−4. Similarly, Figure 3.7 (c) shows that the error of the 

FGIM and FLSIM for approximating 𝑥̂(3) is reducing significantly as 𝑘 increasing, 

where the FLSIM converges to the analytical solution for eight iterations with step size 

0.2 and error bound 10−4. However, the FGIM needed 144 iterations to approximate 

the same solution with step size 0.0002 and error bound 10−4. 

 Finally, Figure 3.7 (d) shows that the error of the FGIM and FLSIM for approximating 

𝑥̂(4) is reducing significantly as 𝑘 increasing, where the FLSIM converges to the 

analytical solution for eight iterations with step size 0.2 and error bound 10−4. 

However, the FGIM needed 144 iterations to approximate the same solution with step 

size 0.0002 and error bound 10−4. This indicates that the developed algorithms are 

effective and convergent for the given PGTrFFSME. However, in terms of accuracy, 

error, and number of iterations, FLSIM provides extremely accurate approximations 

with very few iterations. In addition, the FLSIM takes more computational timing and 

more memory compared to FGIM. In the following Example 3.3.4.3, FMVM, FGIM 

and FLSIM methods are applied to a 5 × 5 PGTrFFSME. 

Example 3.3.4.2 Solve the following 5 × 5 PGTrFFSME: 

𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ 
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Given, 

𝐴̃ =

(

 
 

(5,6,7,8) (1,3,4,6) (4,5,6,7) (3,4,5,6) (3,4,6,7)
(3,4,5,6) (5,6,8,9) (2,4,5,6) (3,4,5,7) (1,2,3,5)
(2,3,4,5) (3,5,6,7) (5,7,8,9) (1,2,4,5) (2,3,4,6)
(4,5,6,7) (2,3,4,6) (4,6,7,8) (5,7,9,10) (3,4,5,7)
(3,4,5,6) (1,5,6,7) (1,2,3,4) (3,4,5,7) (6,7,9,11))

 
 
, 

𝐵̃ =

(

 
 

(6,7,8,9) (2,3,5,6) (4,5,6,7) (3,4,5,7) (2,3,6,8)
(3,4,5,6) (5,6,7,8) (1,2,3,4) (1,3,4,5) (4,5,6,7)
(1,2,3,5) (4,5,6,7) (5,7,8,10) (3,4,5,6) (3,4,5,7)
(2,3,4,5) (1,3,4,6) (2,4,5,6) (6,8,9,11) (3,4,5,6)
(1,2,3,4) (4,5,6,7) (2,3,4,5) (4,5,6,7) (5,7,8,10))

 
 
, 

𝐶̃ =

(

 
 

(7,8,9,10) (3,4,5,6) (2,4,6,7) (2,3,4,6) (4,5,6,7)
(4,5,6,7) (5,7,8,9) (4,5,6,7) (2,4,5,6) (4,5,6,7)
(4,5,7,8) (1,2,3,5) (6,7,8,9) (3,5,6,7) (3,4,5,7)
(2,3,4,6) (1,2,3,5) (4,5,6,8) (5,7,8,9) (2,3,4,5)
(2,5,6,7) (1,2,3,4) (2,3,4,6) (1,4,5,7) (5,6,7,10))

 
 
, 

𝐷̃ =

(

 
 

(6,7,8,9) (3,4,6,7) (2,3,4,5) (2,3,4,6) (1,2,3,4)
(1,2,3,4) (5,7,8,9) (3,4,5,7) (2,3,4,5) (4,5,6,7)
(5,6,7,8) (1,2,3,4) (6,8,9,10) (2,3,4,5) (3,4,5,7)
(2,3,4,5) (1,3,4,6) (1,2,3,4) (5,7,9,11) (2,3,4,5)
(2,4,5,6) (1,2,3,7) (2,4,5,8) (3,4,5,7) (5,6,7,10))

 
 
, 

𝐸̃ =

(

 
 

(785,2476,6202,12395) (797,2564,6399,13618) (811,2670,6587,13679) (867,2727,6794,14226) (1000,2841,6936,14685)
(829,2581,6138,12240) (781,2583,6235,13407) (854,2767,6470,13488) (902,2788,6667,14066) (1009,2885,6777,14478)
(671,2300,5969,12068) (671,2413,6100,13227) (718,2512,6263,13313) (759,2548,6471,13819) (857,2654,6593,14233)
(726,2385,5969,12540) (726,2590,6347,13923) (748,2574,6329,13783) (820,2684,6669,14535) (941,2801,6836,15031)

(565,2087,5448,11839) (565,2199,5722,13077) (574,2230,5821,13033) (678,2339,6095,13685) (768,2431,6209,14094) )

 
 
. 
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Solution: The positive fuzzy solution for the given PGTrFFSME is obtained by 

FMVM, FGIM and FLSIM methods in Sections 3.3.1, 3.3.2 and 3.3.3, respectively as 

follows: 

Fuzzy matrix vectorization method (FMVM): By decomposing the given 

PGTrFFSME and applying the FMVM, the analytical positive fuzzy solution is   

𝑋̃ =

(

 
 

(1,2,4,5) (2,3,4,6) (2,3,5,7) (1,2,3,5) (2,3,4,6)
(2,3,4,5) (1,2,3,4) (3,4,5,7) (2,3,4,6) (3,4,5,7)
(1,2,4,6) (1,3,4,5) (2,3,5,7) (1,2,4,5) (2,3,5,6)
(2,3,5,6) (3,4,5,7) (1,2,3,4) (1,2,4,6) (2,3,5,7)
(1,2,3,5) (2,3,4,5) (1,2,5,6) (2,3,5,6) (3,4,6,7))

 
 
. 

This positive fuzzy solution is approximated using Algorithm 3.1 for FGIM and 

Algorithm 3.2 for FLSIM as follows: 

Fuzzy gradient-iterative method (FGIM) and Fuzzy least-square iterative method 

(FLSIM) 

Algorithm 3.1 for FGIM and Algorithm 3.2 for FLSIM are applied to compute the 

approximated positive fuzzy solution 𝑋̂(𝑙)(𝑘) for the given PGTrFFSME using the 

following initial value for 1 ≤ 𝑙 ≤ 4,  

 𝑥̂(𝑙)(0) =

(

 
 

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0)

 
 

. The analytical positive fuzzy solution 𝑋̃ and the 

approximated positive fuzzy solution 𝑥̂(𝑙)(𝑘) are shown in Table 3.3 with the 

convergence rate (𝛼), error bound (𝜀), and the total number of iteration (𝑘), while Table 

3.4 shows the computational time and memory usage for FGIM and FLSIM. 
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Table 3.3  

Comparison Between FMVM, FGIM and FLSIM for Example 3.3.4.2. 

 Method Analytical Solution-Approximated Solution 𝜶 𝜺 𝒌 

𝑥̂(1) FMVM 

(

 
 

1 2 2 1 2
2 1 3 2 3
1 1 2 1 2
2 3 1 1 2
1 2 1 2 3)

 
 

 

NA 0 NA 

FGIM 

(

 
 

1.05652071 1.90024265 1.97882875 0.905806087 2.14852826
1.95505118 1.12033307 3.00233716 2.11027953 2.8249459
0.923598317 1.07595811 2.06031952 1.07394364 1.88634139
2.05200008 2.94183037 0.961233025 0.94719663 2.08189662
0.999899989 2.0004054 0.993946606 1.9972846 3.00334184)

 
 

 

1 × 10−6 10−5 21413 

FLSIM 

(

 
 

1.00000556 1.99999433 1.9999984 0.999995058 2.00000625
1.99999696 1.00000411 2.99999837 2.00000253 2.99999731
0.999996245 1.00000176 2.00000606 1.00000364 1.99999435
2.00000296 2.99999859 0.99999525 0.999997123 2.00000444
0.99999582 2.00000423 1.00000124 2.00000371 2.99999529)

 
 

 

0.18 10−5 51 

𝑥̂(2) FMVM 

(

 
 

2 3 3 2 3
3 2 4 3 4
2 3 3 2 3
3 4 2 2 3
2 3 2 3 4)

 
 

 

NA 0 NA 
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Table 3.3 Continued.  

 FGIM 

(

 
 

2.06922004 2.91052957 2.93131164 1.95470211 3.13502337
2.98629894 2.04306768 4.01294598 3.02621827 3.92826014
1.97113291 3.00990642 3.0267222 1.99638357 2.99875633
3.02766903 3.97919063 1.97736074 2.0004128 3.01262118
1.93465775 3.07679674 2.06145229 3.0333028 3.89569931)

 
 

 

6 × 10−7 10−5 22825 

FLSIM 

(

 
 

2.00000326 2.99999667 2.99999887 1.99999842 3.00000265
3.00000007 1.99999991 3.99999998 2.99999996 4.00000006
1.9999992 3.00000081 3.00000027 2.00000038 2.99999935
2.99999784 4.00000219 2.00000074 2.00000103 2.99999825
1.99999983 3.00000017 2.00000005 3.00000008 3.99999986)

 
 

 

0.25 10−5 36 

𝑥̂(3) FMVM 

(

 
 

4 4 5 3 4
4 3 5 4 5
4 4 5 4 5
5 5 3 4 5
3 4 5 5 6)

 
 

 

NA 0 NA 

FGIM 

(

 
 

3.88428735 3.96592786 5.04057849 2.97436561 4.14134058
4.05273915 2.91744874 4.99855769 3.97639485 5.0510836
4.04820978 4.09131166 4.9600704 4.03591445 4.860649
4.97134192 4.93824383 3.03022891 3.97657539 5.08589048
3.05703694 4.07995255 4.96611704 5.03604725 5.85810901)

 
 

 

5 × 10−7 10−5 31960 

FLSIM 

(

 
 

3.99999427 4.00000086 5.00000403 2.99999948 4.00000295
4.0000051 2.99999114 5.00000033 3.99999709 5.00000611
4.00000258 4.00000578 4.99999518 4.00000281 4.999992
4.9999983 4.99999624 3.00000314 3.99999817 5.00000521
3.00000221 4.00000359 4.99999653 5.00000184 5.99999461)

 
 

 

0.25 10−5 39 
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Table 3.3 Continued. 

𝑥̂(4) FMVM 

(

 
 

5 6 7 5 6
5 4 7 6 7
6 5 7 5 6
6 7 4 6 7
5 5 6 6 7)

 
 

 

NA 0 NA 

FGIM 

(

 
 

5.14322017 5.46686185 7.00311771 4.89158325 6.42955133
5.07660683 4.18233814 6.97306337 6.02314021 6.77034175
5.80351271 5.29891549 6.944539 5.04424804 5.93870238
6.0748883 6.75024597 4.11711073 5.99994831 7.03455845
4.89283164 5.32761062 5.96298148 6.04916625 6.80194905)

 
 

 

9 × 10−8 10−5 57632 

FLSIM 

(

 
 

5.00000486 5.99999274 7.00000055 4.99999745 6.00000433
5.00000188 4.00000619 6.99999691 6.00000145 6.9999932
5.99999323 4.99999867 7.00000343 5.00000045 6.00000473
6.00000431 6.99999949 3.99999831 5.99999934 6.99999826
4.9999929 5.00000577 6.00000097 6.00000242 6.99999822)

 
 

 

0.2 10−5 33 
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The following Table 3.4 compares the computational time and memory usage for FGIM 

and FLSIM for Example 3.3.4.2. 

Table 3.4  

Computational Time, Memory Usage for FGIM and FLSIM for Example 3.3.4.2. 

 Method 𝒌 CPU 

time 

Real 

time 

Memory 

usage 

𝑥̂(1) FGIM 21413 29.83 ms 28.19 ms 5.19 MB 

FLSIM 51 27.25 ms 27.18 ms 5.20 MB 

𝑥̂(2) FGIM 22825 14.27 ms 13.56 ms 2.68 MB 

FLSIM 36 12.90 ms 12.75 ms 2.68 MB 

𝑥̂(3) FGIM 31960 14.29 ms 13.58 ms 2.67 MB 

FLSIM 39 20.82 ms 20.08 ms 2.67 MB 

𝑥̂(4) FGIM 57632 14.29 ms 13.62 ms 2.69 MB 

FLSIM 33 12.79 ms 12.70 ms 2.69 MB 

 

The following Figure 3.8 shows the change in the error 𝛿(𝑙)(𝑘) when 𝑘 increases up to 

 𝑘 = 20.  
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(a) (b) 

(c) (d) 

Figure 3.8. Comparison between 𝛿(𝑙)(𝑘) of FGIM and FLSIM for the first 20 iterations 

for Example 3.3.4.2. 
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Table 3.3, Table 3.4 and Figure 3.8 show that the error 𝛿(𝑙)(𝑘) is reducing as 𝑘 increases. 

Figure 3.8 shows that the error of the FGIM and FLSIM for approximating 𝑥̂(1) is reducing 

significantly as 𝑘 increases, where the FLSIM converges to the analytical solution for a 

fewer number of iterations with a bigger step size compared to the FGIM. This indicates 

that the developed algorithms are effective and convergent for the given PGTrFFSME. In 

addition, the FLSIM takes more computational timing and more memory compared to 

FGIM. However, in terms of accuracy, error, and number of iterations, FLSIM provides 

extremely accurate approximations with very few iterations. 

 

Remark 3.3.4.1. Analysis of the obtained positive fuzzy solutions in Examples 3.3.4.1and 

3.3.4.2 can be obtained similar to Example 3.3.1.1 in Section 3.3.1.1. 

 

In the following Example 3.3.4.3, FMVM, FGIM and FLSIM methods in Sections 3.3.1, 

3.3.2 and 3.3.3, respectively, are applied to a 100 × 100 PGTrFFSME. 

Example 3.3.4.3. Solve the following 100 × 100 GTrFFSME: 

𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ 

where, 

𝐴(1) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  1 . . 2), 

𝐵(1) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  1 . . 2), 

𝐶(1) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  1 . . 2), 

𝐷(1) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  1 . . 2), 

𝐸(1) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 

=  2 × 105 . .  3 × 105). 
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𝐴(2) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  3 . . 4), 

𝐵(2) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  3 . . 4), 

𝐶(2) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  3 . . 4), 

𝐷(2) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  3 . . 4, ) 

𝐸(2) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 

=  3 × 106 . .  4 × 106). 

 

𝐴(3) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  5 . . 6), 

𝐵(3) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  5 . . 6), 

𝐶(3) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  5 . . 6), 

𝐷(3) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  5 . . 6), 

𝐸(3) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 

=  1 × 108 . .  2 × 108). 

 

𝐴(4) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  7 . . 8), 

𝐵(4) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  7 . . 8), 

𝐶(4) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  7 . . 8), 

𝐷(4) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  7 . . 8), 

𝐸(4) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 

=  3 × 108 . .  4 × 108). 

Solution: The positive fuzzy solution for the given 100 × 100 PGTrFFSME is obtained 

by the developed methods as follows: 
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Fuzzy matrix vectorization method (FMVM): 

To apply the FMVM, the inverse of the 10000 × 10000 matrix needed to be found, which 

required long computational timing and huge memory. Thus, FMVM is not a practical 

approach for such a large dimensional system. However, the FGIM and FLSIM can be used 

to obtain an approximated fuzzy solution to the given PGTrFFSME as follows: 

Fuzzy Gradient-Iterative Method (FGIM) and Fuzzy Least-Square Iterative Method 

(FLSIM) 

Algorithm 3.1 and Algorithm 3.2 for FGIM and FLSIM are applied to compute the 

approximated solution 𝑋̂(𝑙)(𝑘), using the following initial value for 1 ≤ 𝑙 ≤ 4, 

𝑥̂(𝑙)(0) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  0) 

FLSIM can get the solution in just four iterations with (𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 0.25). 

However, FGIM needs thousands of iterations to give the approximated solution using 

(𝛼1 = 10
−12, 𝛼2 = 10

−13, 𝛼3 = 10
−14, 𝛼4 = 10

−15). In the following Table 3.5, the step 

size, computational time and memory usage for the first 20 iterations for FLSIM and FGIM 

are compared.  
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Table 3.5  

Comparison Between FGIM and FLSIM for Example 3.3.4.3. 

 Method Step Size 

𝜶 

Number 

of 

Iteration 

CPU time Real time Memory 

usage 

𝑥̂(1) FGIM 10−12 20 14.22 s 11.40 s 2.57 GB 

FLSIM 0.25 4 116.49 s 107.21 s 15.80 GB 

𝑥̂(2) FGIM 10−13 20 15.99 s 12.97 s 2.84 GB 

FLSIM 0.25 3 119.12 s 108.52 s 16.01 GB 

𝑥̂(3) FGIM 10−14 20 16.82 s 13.61 s 3.17 GB 

FLSIM 0.25 3 120.03 s 111.34 s 16.30 GB 

𝑥̂(4) FGIM 10−15 20 18.01 s 16.35 s 4.12 GB 

FLSIM 0.25 3 121.18 s 112.45 s 16.52 GB 

 

 

The following Figure 3.9 shows the change in the error 𝛿(𝑙)(𝑘) when 𝑘 increases up to 

 𝑘 = 20.  
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(a) (b) 

(c) (d) 

Figure 3.9. Comparison between 𝛿(𝑙)(𝑘) of FGIM and FLSIM for the first 20 iterations 

for Example 3.3.4.3. 

Table 3.5 and Figure 3.9 show that the error 𝛿(𝑙)(𝑘) is reducing as 𝑘 increases for the first 

20 iterations. Figure 3.9 show that the error of the FGIM and FLSIM for approximating 
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𝑥̂(𝑙) is reducing significantly as 𝑘 increases, where the FLSIM converges to the analytical 

solution for a fewer number of iterations with a bigger step size compared to the FGIM. 

This indicates that the developed algorithms are effective and convergent for the given 

PGTrFFSME. In addition, the FLSIM takes more computational timing and more memory 

compared to FGIM. However, in terms of accuracy, error, and number of iterations, FLSIM 

provides extremely accurate approximations with very few iterations. 

Remark 3.3.4.2. The construction and solution to the PGTrFFSME in Examples 3.3.4.1, 

3.3.4.2, 3.3.4.4 and 3.3.4.4 are done by Maple 2019.0. 

In the following Table 3.6, a complete comparison between the advantages and 

disadvantages of FMVM, FGIM and FLSIM in Sections 3.3.1, 3.3.2 and 3.3.3, 

respectively, is discussed. 

The developed methods in Section 3.3.1, Section 3.3.2 and Section 3.3.3 for solving the 

PGTrFFSME in Eq. (1.16) can be modified and applied to its special cases in Eq. (1.14), 

Eq. (1.11) and Eq. (1.12). In the following Section 3.4, the positive TrFFSME in Eq. (1.14) 

is discussed. In later sections, the rest of the special cases are discussed.  
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Table 3.6  

Comparison Between the Advantages and Disadvantages of FMVM, FGIM and FLSIM.  

Method Advantages Disadvantages 

FMVM • Analytical fuzzy solutions can 

be found. 

• Does not require initial values. 

• Required getting the inverse 

of 𝑚𝑛 ×𝑚𝑛 matrices for a 

system of size 𝑚 × 𝑛 and 

therefore limited to small 

systems 

FGIM • Gives an accurate fuzzy 

approximation. 

• It can be applied to large 

PGTrFFSME. 

• Can take any initial value. 

 

• Limited to PGTrFFSME 

with square coefficients. 

• The convergence rate is very 

small (𝛼 < 10−5) which 

means it takes many 

iterations to give the desired 

fuzzy solution. 

FLSIM • It can be applied to large 

PGTrFFSME. 

• Can take any initial value. 

• Gives an accurate fuzzy 

approximation. 

• It can be applied to systems 

with non-square coefficients. 

• The convergence rate is big 

(𝛼 > 10−1) comparing to the 

FGIM. 

• It requires getting the inverse 

of the least square term, 

which means it takes longer 

computational time and 

memory usage compared to 

the FGIM 

 

3.4 Solving Positive Trapezoidal Fully Fuzzy Sylvester Matrix Equation  

In this section, the positive fuzzy solution to the positive TrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ in  

Eq. (1.14) is obtained. First, the positive TrFFSME is converted to a system of SME based 

on RAMO in Corollary 3.1.2.1 for positive TrFNs. Secondly, the obtained system of SME 

is solved analytically by modifying the FMVM in Section 3.3.1 and developing a new 

method named the fuzzy Bartle Stewart method (FBSM). The obtained analytical solution 

by the MFMVM and the FBSM is approximated numerically by modifying the FGIM and 
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FLSIM in Section 3.3.2 and 3.3.3, respectively. In the following Definition 3.4.1, the 

positive GTrFFSME is introduced. 

Definition 3.4.1. A matrix equation FFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃, is called positive trapezoidal 

fully fuzzy Sylvester matrix equations (PTrFFSME) if 

 𝐴̃ = (𝑎̃𝑖𝑗)𝑛×𝑛 = (𝑎𝑖𝑗
(1), 𝑎𝑖𝑗

(2), 𝑎𝑖𝑗
(3), 𝑎𝑖𝑗

(4)),  ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛,  

𝐷̃ = (𝑑̃𝑖𝑗)𝑚×𝑚 = (𝑑𝑖𝑗
(1), 𝑑𝑖𝑗

(2), 𝑑𝑖𝑗
(3), 𝑑𝑖𝑗

(4)), ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑚,   

𝑋̃ = (𝑥̃𝑖𝑗)𝑛×𝑚 = (𝑥𝑖𝑗
(1), 𝑥𝑖𝑗

(2), 𝑥𝑖𝑗
(3), 𝑥𝑖𝑗

(4)),  ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛,𝑚 and 

𝐸̃ = (𝑒̃𝑖𝑗)𝑞×𝑟 = (𝑒𝑖𝑗
(1), 𝑒𝑖𝑗

(2), 𝑒𝑖𝑗
(3), 𝑒𝑖𝑗

(4)) ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛,𝑚, are positive trapezoidal fuzzy 

matrices, respectively.  

 

In the following Definition 3.3.2, the system of SME is introduced. 

Definition 3.4.2. A system of matrix equations in the form 

{
 
 

 
 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1) + 𝑥𝑖𝑗

(1)
𝑑𝑖𝑗
(1)
= 𝑒𝑖𝑗

(1)
,

𝑎𝑖𝑗
(2)
𝑥𝑖𝑗
(2)
+ 𝑥𝑖𝑗

(2)
𝑑𝑖𝑗
(2)
= 𝑒𝑖𝑗

(2)
,

𝑎𝑖𝑗
(3)
𝑥𝑖𝑗
(3)
+ 𝑥𝑖𝑗

(3)
𝑑𝑖𝑗
(3)
= 𝑒𝑖𝑗

(3)
,

𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
+ 𝑥𝑖𝑗

(4)
𝑑𝑖𝑗
(4)
= 𝑒𝑖𝑗

(4)
.

  

is called a system of SME. 

In the following Theorem 3.4.1, the PTrFFSME in Eq. (1.14) is converted to an equivalent 

system of crisp SME. 

Theorem 3.4.1. Suppose 𝐴̃, 𝐷̃, 𝐸̃ 𝑎𝑛𝑑 𝑋̃ are positive trapezoidal fuzzy matrices, 

respectively, then the PTrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ is equivalent to the following system of 

SME: 



 

141 

 

{
 
 

 
 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1) + 𝑥𝑖𝑗

(1)
𝑑𝑖𝑗
(1)
= 𝑒𝑖𝑗

(1)
,

𝑎𝑖𝑗
(2)
𝑥𝑖𝑗
(2)
+ 𝑥𝑖𝑗

(2)
𝑑𝑖𝑗
(2)
= 𝑒𝑖𝑗

(2)
,

𝑎𝑖𝑗
(3)
𝑥𝑖𝑗
(3)
+ 𝑥𝑖𝑗

(3)
𝑑𝑖𝑗
(3)
= 𝑒𝑖𝑗

(3)
,

𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
+ 𝑥𝑖𝑗

(4)
𝑑𝑖𝑗
(4)
= 𝑒𝑖𝑗

(4)
.

                                                        (3.51) 

Proof: Let 𝐴̃, 𝐷̃, 𝐸̃ and 𝑋̃ in the PTrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ be positive trapezoidal fuzzy 

matrices respectively, then by RAMO in Eq. (3.2), the product 𝐴̃𝑋̃ and 𝑋̃𝐷̃ are obtained as 

follows:  

𝐴̃𝑋̃ = (𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(2)
𝑥𝑖𝑗
(2)
, 𝑎𝑖𝑗
(3)
𝑥𝑖𝑗
(3)
, 𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
) and  

𝑋̃𝐷̃ = (𝑥𝑖𝑗
(1)
𝑑𝑖𝑗
(1)
, 𝑥𝑖𝑗
(2)
𝑑𝑖𝑗
(2)
, 𝑥𝑖𝑗
(3)
𝑑𝑖𝑗
(3)
, 𝑥𝑖𝑗
(4)
𝑑𝑖𝑗
(4)
). 

By Definition 2.3.3.2.6 and Eq. (2.10a), the sum of 𝐴̃𝑋̃ and 𝑋̃𝐷̃ is found as follows: 

𝐴̃𝑋̃ + 𝑋̃𝐷̃ = (𝑎𝑖𝑗
(1)
𝑥𝑖𝑗
(1)
, 𝑎𝑖𝑗
(2)
𝑥𝑖𝑗
(2)
, 𝑎𝑖𝑗
(3)
𝑥𝑖𝑗
(3)
, 𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
) + (𝑥𝑖𝑗

(1)
𝑑𝑖𝑗
(1)
, 𝑥𝑖𝑗
(2)
𝑑𝑖𝑗
(2)
, 𝑥𝑖𝑗
(3)
𝑑𝑖𝑗
(3)
, 𝑥𝑖𝑗
(4)
𝑑𝑖𝑗
(4)
) . 

= (𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1) + 𝑥𝑖𝑗
(1)
𝑑𝑖𝑗
(1)
, 𝑎𝑖𝑗
(2)
𝑥𝑖𝑗
(2)
+ 𝑥𝑖𝑗

(2)
𝑑𝑖𝑗
(2)
, 𝑎𝑖𝑗
(3)
𝑥𝑖𝑗
(3)
+ 𝑥𝑖𝑗

(3)
𝑑𝑖𝑗
(3)
, 𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
+ 𝑥𝑖𝑗

(4)
𝑑𝑖𝑗
(4)
). 

By Definition 2.3.3.2.5 and Eq. (2.9), the PTrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ is equivalent to the 

following system of SME: 

{
 
 

 
 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1) + 𝑥𝑖𝑗

(1)
𝑑𝑖𝑗
(1)
= 𝑒𝑖𝑗

(1)
,

𝑎𝑖𝑗
(2)
𝑥𝑖𝑗
(2)
+ 𝑥𝑖𝑗

(2)
𝑑𝑖𝑗
(2)
= 𝑒𝑖𝑗

(2)
,

𝑎𝑖𝑗
(3)
𝑥𝑖𝑗
(3)
+ 𝑥𝑖𝑗

(3)
𝑑𝑖𝑗
(3)
= 𝑒𝑖𝑗

(3)
,

𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
+ 𝑥𝑖𝑗

(4)
𝑑𝑖𝑗
(4)
= 𝑒𝑖𝑗

(4)
.

 

□ 

The solution to the PTrFFSME can be found by solving the equivalent system of SME. 

However, the sufficient conditions for the system of SME in Eq. (3.51) to have a unique 

positive solution need to be checked before solving that system. Therefore, in the following 
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Theorem 3.4.2, the sufficient conditions for the system of SME to have a unique positive 

solution are discussed. 

Theorem 3.4.2 Uniqueness of Positive Solution to The System of SME 

The system of SME in Eq. (3.51) has a unique positive solution if the following 

conditions are satisfied:  

I) 𝑑𝑒𝑡(𝑟1) ≠ 0, 𝑑𝑒𝑡(𝑟2) ≠ 0, 𝑑𝑒𝑡(𝑟3) ≠ 0 and𝑑𝑒𝑡(𝑟4) ≠ 0 i.e., 𝑟1, 𝑟2, 𝑟3 and 𝑟4 are 

invertible matrices where  

𝑟1 = (𝐼𝑖𝑗
(1))𝑇⨂𝑎𝑖𝑗

(1) + (𝑑𝑖𝑗
(1))𝑇⨂𝐼𝑖𝑗

(1), 

𝑟2 = (𝐼𝑖𝑗
(2))𝑇⨂𝑎𝑖𝑗

(2) + (𝑑𝑖𝑗
(2))𝑇⨂𝐼𝑖𝑗

(2), 

𝑟3 = (𝐼𝑖𝑗
(3))𝑇⨂𝑎𝑖𝑗

(3) + (𝑑𝑖𝑗
(3))𝑇⨂𝐼𝑖𝑗

(3), 

𝑟4 = (𝐼𝑖𝑗
(4))𝑇⨂𝑎𝑖𝑗

(4) + (𝑑𝑖𝑗
(4))𝑇⨂𝐼𝑖𝑗

(4). 

II) 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 and 𝑟4

−1 > 0. 

Proof:  

I) Consider the system of SME in Eq. (3.51), and by applying the concept of  

Vec-operator and Kronecker product in Definition 2.6.2.3, the following system of 

linear matrix equation is obtained:  

{
  
 

  
 (𝐼𝑖𝑗

(1)⨂𝑎𝑖𝑗
(1) + (𝑑𝑖𝑗

(1))𝑇⨂𝐼𝑖𝑗
(1))𝑣𝑒𝑐(𝑥𝑖𝑗

(1)) = 𝑣𝑒𝑐(𝑒𝑖𝑗
(1)),

(𝐼𝑖𝑗
(2)⨂𝑎𝑖𝑗

(2) + (𝑑𝑖𝑗
(2))𝑇⨂𝐼𝑖𝑗

(2))𝑣𝑒𝑐(𝑥𝑖𝑗
(2)) = 𝑣𝑒𝑐(𝑒𝑖𝑗

(2)),

(𝐼𝑖𝑗
(3)⨂𝑎𝑖𝑗

(3) + (𝑑𝑖𝑗
(3))𝑇⨂𝐼𝑖𝑗

(3))𝑣𝑒𝑐(𝑥𝑖𝑗
(3)) = 𝑣𝑒𝑐(𝑒𝑖𝑗

(3)),

(𝐼𝑖𝑗
(4)⨂𝑎𝑖𝑗

(4) + (𝑑𝑖𝑗
(4))𝑇⨂𝐼𝑖𝑗

(4))𝑣𝑒𝑐(𝑥𝑖𝑗
(4)) = 𝑣𝑒𝑐(𝑒𝑖𝑗

(4)).

                    (3.52) 

The system of linear matrix equation in Eq. (3.52) can be written as a linear matrix equation 

in the form of                 

𝑅𝑆 = 𝑇,                                                                         (3.53) 
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Or in a matrix form as, 

(

 
 
 

𝐼𝑖𝑗
(1)⨂𝑎𝑖𝑗

(1) + (𝑑𝑖𝑗
(1))𝑇⨂𝐼𝑖𝑗

(1) 0 0 0

0 𝐼𝑖𝑗
(2)⨂𝑎𝑖𝑗

(2) + (𝑑𝑖𝑗
(2))𝑇⨂𝐼𝑖𝑗

(2) 0 0

0 0 𝐼𝑖𝑗
(3)⨂𝑎𝑖𝑗

(3) + (𝑑𝑖𝑗
(3))𝑇⨂𝐼𝑖𝑗

(3) 0

0 0 0 𝐼𝑖𝑗
(4)⨂𝑎𝑖𝑗

(4) + (𝑑𝑖𝑗
(4))𝑇⨂𝐼𝑖𝑗

(4))𝑣𝑒𝑐(𝑥𝑖𝑗
(4)
)

 
 
 

(

 
 
 

𝑣𝑒𝑐(𝑥𝑖𝑗
(1))

𝑣𝑒𝑐(𝑥𝑖𝑗
(2))

𝑣𝑒𝑐(𝑥𝑖𝑗
(3))

𝑣𝑒𝑐(𝑥𝑖𝑗
(4)))

 
 
 

 

=

(

 
 
 

𝑣𝑒𝑐(𝑒𝑖𝑗
(1))

𝑣𝑒𝑐(𝑒𝑖𝑗
(2))

𝑣𝑒𝑐(𝑒𝑖𝑗
(3))

𝑣𝑒𝑐(𝑒𝑖𝑗
(4)))

 
 
 

. 

where,  

𝑅 =

(

 
 
 

𝐼𝑖𝑗
(1)
⨂𝑎𝑖𝑗

(1)
+ (𝑑𝑖𝑗

(1)
)𝑇⨂𝐼𝑖𝑗

(1)
0 0 0

0 𝐼𝑖𝑗
(2)
⨂𝑎𝑖𝑗

(2)
+ (𝑑𝑖𝑗

(2)
)𝑇⨂𝐼𝑖𝑗

(2)
0 0

0 0 𝐼𝑖𝑗
(3)
⨂𝑎𝑖𝑗

(3)
+ (𝑑𝑖𝑗

(3)
)𝑇⨂𝐼𝑖𝑗

(3)
0

0 0 0 𝐼𝑖𝑗
(4)
⨂𝑎𝑖𝑗

(4)
+ (𝑑𝑖𝑗

(4)
)𝑇⨂𝐼𝑖𝑗

(4)
)𝑣𝑒𝑐(𝑥𝑖𝑗

(4)
)

 
 
 

, 

𝑆 =

(

 
 
 

𝑣𝑒𝑐(𝑥𝑖𝑗
(1))

𝑣𝑒𝑐(𝑥𝑖𝑗
(2))

𝑣𝑒𝑐(𝑥𝑖𝑗
(3))

𝑣𝑒𝑐(𝑥𝑖𝑗
(4)))

 
 
 

 and 𝑇 =

(

 
 
 

𝑣𝑒𝑐(𝑒𝑖𝑗
(1))

𝑣𝑒𝑐(𝑒𝑖𝑗
(2))

𝑣𝑒𝑐(𝑒𝑖𝑗
(3))

𝑣𝑒𝑐(𝑒𝑖𝑗
(4)))

 
 
 

. 
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If we let 𝑟1 = (𝐼𝑖𝑗
(1))𝑇⨂𝑎𝑖𝑗

(1) + (𝑑𝑖𝑗
(1))𝑇⨂𝑐𝑖𝑗

(1)
, 𝑟2 = (𝐼𝑖𝑗

(2))𝑇⨂𝑎𝑖𝑗
(2) + (𝑑𝑖𝑗

(2))𝑇⨂𝑐𝑖𝑗
(2)

, 

𝑟3 = (𝐼𝑖𝑗
(3))𝑇⨂𝑎𝑖𝑗

(3) + (𝑑𝑖𝑗
(3))𝑇⨂𝑐𝑖𝑗

(3)
and 𝑟1 = (𝐼𝑖𝑗

(4))𝑇⨂𝑎𝑖𝑗
(4) + (𝑑𝑖𝑗

(4))𝑇⨂𝑐𝑖𝑗
(4)

. Then  

𝑅 = (

𝑟1 0 0 0
0 𝑟2 0 0
0 0 𝑟3 0
0 0 0 𝑟4

). 

If we let 𝑆 =

(

 
 
 

𝑣𝑒𝑐(𝑥𝑖𝑗
(1))

𝑣𝑒𝑐(𝑥𝑖𝑗
(2))

𝑣𝑒𝑐(𝑥𝑖𝑗
(3))

𝑣𝑒𝑐(𝑥𝑖𝑗
(4)))

 
 
 
= (

𝑠1
𝑠2
𝑠3
𝑠4

), 𝑇 =

(

 
 
 

𝑣𝑒𝑐(𝑒𝑖𝑗
(1))

𝑣𝑒𝑐(𝑒𝑖𝑗
(2))

𝑣𝑒𝑐(𝑒𝑖𝑗
(3))

𝑣𝑒𝑐(𝑒𝑖𝑗
(4)))

 
 
 
= (

𝑡1
𝑡2
𝑡3
𝑡4

). Then the linear matrix 

equation in Eq. (3.53) can be written as  

(

𝑟1 0 0 0
0 𝑟2 0 0
0 0 𝑟3 0
0 0 0 𝑟4

)(

𝑠1
𝑠2
𝑠3
𝑠4

) = (

𝑡1
𝑡2
𝑡3
𝑡4

).                                                      (3.54) 

Matrix 𝑅 is a block diagonal matrix, by Definition 2.6.1.14 the 𝑑𝑒𝑡 (𝑅) is obtained as 

follows: 

𝑑𝑒𝑡(𝑅) = 𝑑𝑒𝑡 [(

𝑟1 0 0 0
0 𝑟2 0 0
0 0 𝑟3 0
0 0 0 𝑟4

)]. 

𝑑𝑒𝑡 (𝑅) = 𝑑𝑒𝑡(𝑟1) × 𝑑𝑒𝑡(𝑟2) × 𝑑𝑒𝑡(𝑟3) × 𝑑𝑒𝑡(𝑟4). 

Thus, the linear matrix equation 𝑅𝑆 = 𝑇 has a unique solution if 𝑑𝑒𝑡 (𝑅) ≠ 0. That is if 

𝑑𝑒𝑡(𝑟1) ≠ 0, 𝑑𝑒𝑡(𝑟2) ≠ 0, 𝑑𝑒𝑡(𝑟3) ≠ 0 and 𝑑𝑒𝑡(𝑟4) ≠ 0 i.e., 𝑟1, 𝑟2, 𝑟3 and 𝑟4 are invertible 

matrices. Since the system of SME in Eq. (3.51) and the system of linear matrix equations  

𝑅𝑆 = 𝑇 in Eq. (3.53) are equivalent, then the system of SME in Eq. (3.51) has a unique 

solution if:  𝑑𝑒𝑡(𝑟1) ≠ 0, 𝑑𝑒𝑡(𝑟2) ≠ 0, 𝑑𝑒𝑡(𝑟3) ≠ 0 and𝑑𝑒𝑡(𝑟4) ≠ 0, i.e. 𝑟1, 𝑟2, 𝑟3 and 𝑟4 

are invertible matrices. 
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II)  If 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 and 𝑟4

−1 > 0 then the system of SME in Eq. (3.51) has a positive 

solution, and the proof is straightforward. 

□ 

The system of SMEs obtained in Eq. (3.51) consists of four SMEs, and therefore, it can be 

represented in more general form as given in the following Remark 3.4.1. 

Remark 3.4.1: The system of SME in Eq. (3.51) can be written as follows: for 1 ≤ 𝑙 ≤ 4 

we have: 

𝑎𝑖𝑗
(𝑙)𝑥𝑖𝑗

(𝑙) + 𝑥𝑖𝑗
(𝑙)𝑑𝑖𝑗

(𝑙) = 𝑒𝑖𝑗
(𝑙).                                                                (3.55) 

The PTrFFSME in Eq. (1.14) is a special case of the PGTrFFSME in Eq. (1.16), and the 

system of SME in Eq. (3.51) is also a special case of the system of GSME in Eq. (3.20). 

Thus, the FMVM, FGIM and FLSIM in Sections 3.3.1, 3.3.2 and 3.3.3, respectively, can 

be applied directly to the PTrFFSME in Eq. (1.14). However, to reduce the computational 

time and the memory usage, the FMVM, FGIM and FLSIM are modified and applied to 

the PTrFFSME. In addition, another analytical method will be developed in solving the 

PTrFFSME, which is based on the Schur decomposition and Bartels Stewart in Section 

2.10.2. The four methods are discussed in the following Sections. 

3.4.1 Modified Fuzzy Matrix Vectorization Method for PTrFFSME 

In this section, the analytical positive fuzzy solution to the PTrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ in 

Eq. (1.14) is obtained by modifying the FMVM in Section 3.3.1 and applying it to the 

system of SME in Eq. (3.51). The detail of the modified FMVM (MFMVM) is presented 

in the following steps. 
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Step1: Decomposing the matrices 𝐴̃, 𝐵̃, 𝐸̃ and 𝑋̃ into 𝑎𝑖𝑗
(𝑙)

, 𝑏𝑖𝑗
(𝑙)

, 𝑒𝑖𝑗
(𝑙)

 and 𝑥𝑖𝑗
(𝑙)

 where  

𝑙 = 1, 2, 3, 4  respectively and convert the PTrFFSME to a system of SME using  

Theorem 3.4.1. 

Step 2: Applying the Vec-operator and Kronecker product on the system of SME in  

Eq. (3.51) as discussed in Eq. (3.52). 

Step 3: Multiplying the system of linear matrix equation in Step 2 by matrix 

multiplicative inverse as follows: 

{
 
 
 

 
 
 𝑣𝑒𝑐(𝑥𝑖𝑗

(1)) = (𝐼𝑖𝑗
(1)⨂𝑎𝑖𝑗

(1) + (𝑑𝑖𝑗
(1))𝑇⨂𝐼𝑖𝑗

(1))
−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(1)),

𝑣𝑒𝑐(𝑥𝑖𝑗
(2)) = (𝐼𝑖𝑗

(2)⨂𝑎𝑖𝑗
(2) + (𝑑𝑖𝑗

(2))𝑇⨂𝐼𝑖𝑗
(2))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(2)),

𝑣𝑒𝑐(𝑥𝑖𝑗
(3)) = (𝐼𝑖𝑗

(3)⨂𝑎𝑖𝑗
(3) + (𝑑𝑖𝑗

(3))𝑇⨂𝐼𝑖𝑗
(3))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(3)),

𝑣𝑒𝑐(𝑥𝑖𝑗
(4)) = (𝐼𝑖𝑗

(4)⨂𝑎𝑖𝑗
(4) + (𝑑𝑖𝑗

(4))𝑇⨂𝐼𝑖𝑗
(4))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(4)).

                                  (3.56) 

Step 4: Multiplying the system of linear matrix equation in Eq. (3.56) by 𝑣𝑒𝑐−1 as 

follows: 

{
 
 
 

 
 
 𝑥𝑖𝑗

(1) = 𝑣𝑒𝑐−1(𝐼𝑖𝑗
(1)⨂𝑎𝑖𝑗

(1) + (𝑑𝑖𝑗
(1))𝑇⨂𝐼𝑖𝑗

(1))
−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(1))),

𝑥𝑖𝑗
(2) = 𝑣𝑒𝑐−1(𝐼𝑖𝑗

(2)⨂𝑎𝑖𝑗
(2) + (𝑑𝑖𝑗

(2))𝑇⨂𝐼𝑖𝑗
(2))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(2))),

𝑥𝑖𝑗
(3)
= 𝑣𝑒𝑐−1(𝐼𝑖𝑗

(3)
⨂𝑎𝑖𝑗

(3)
+ (𝑑𝑖𝑗

(3)
)𝑇⨂𝐼𝑖𝑗

(3)
)
−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(3)
)),

𝑥𝑖𝑗
(4) = 𝑣𝑒𝑐−1(𝐼𝑖𝑗

(4)⨂𝑎𝑖𝑗
(4) + (𝑑𝑖𝑗

(4))𝑇⨂𝐼𝑖𝑗
(4))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(4))).

                                   (3.57) 

Step 5: Combining the positive fuzzy solutions obtained in Step 4 and write it as a 

trapezoidal fuzzy matrix as follows: 

𝑋̃ = (

(𝑥11
(1), 𝑥11

(2), 𝑥11
(3), 𝑥11

(4)) ⋯ (𝑥1𝑛
(1), 𝑥1𝑛

(2), 𝑥1𝑛
(3), 𝑥1𝑛

(4))

⋮ ⋱ ⋮

(𝑥𝑚1
(1), 𝑥𝑚1

(2), 𝑥𝑚1
(3), 𝑥𝑚1

(4)) … (𝑥𝑚𝑛
(1) , 𝑥𝑚𝑛

(2) , 𝑥𝑚𝑛
(3) , 𝑥𝑚𝑛

(4))

).                                  (3.58) 
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In the following Remark 3.4.1.1, the solution in Eq. (3.57) to the system of SME is written 

in a general form. 

Remark 3.4.1.1: The solution to the system of SME in Eq. (3.57) can be written in general 

form as follows: for 1 ≤ 𝑙 ≤ 4 we have: 

𝑥𝑖𝑗
(𝑙) = 𝑣𝑒𝑐−1(𝐼𝑖𝑗

(𝑙)⨂𝑎𝑖𝑗
(𝑙) + (𝑑𝑖𝑗

(𝑙))𝑇⨂𝐼𝑖𝑗
(𝑙))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(𝑙))).                                 (3.59) 

In the following Theorem 3.4.1.1, the relation between the positive fuzzy solution to the 

PTrFFSME and the positive solution to the system of SME is discussed. 

Theorem 3.4.1.1. The positive solution to the system of SME and the positive fuzzy 

solution to the PTrFFSME are equivalent if the following conditions are satisfied: 

I) 𝑑𝑒𝑡(𝑟1) ≠ 0, 𝑑𝑒𝑡(𝑟2) ≠ 0, 𝑑𝑒𝑡(𝑟3) ≠ 0 and𝑑𝑒𝑡(𝑟4) ≠ 0 i.e 𝑟1, 𝑟2, 𝑟3 and 𝑟4 are 

invertible matrices. 

II) 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 and 𝑟4

−1 > 0. 

III) 𝑟1
−1𝑡1 > 0, 𝑟2

−1𝑡2 > 0, 𝑟3
−1𝑡3 > 0 and 𝑟4

−1𝑡4 > 0.    

IV) 𝑟1
−1𝑡1 ≤ 𝑟2

−1𝑡2 ≤ 𝑟3
−1𝑡3 ≤ 𝑟4

−1𝑡4. 

Proof:  

The proof of parts I and II is similar to the proof of Theorem 3.4.2. 

 

III) By Theorem 3.4.1, the PTrFFSME is converted to a system of SME and 

consequently to a linear matrix equation in Eq. (3.53) by Theorem 3.4.2. 

Multiplying both sides of Eq. (3.53) by 𝑅−1 gives: 

(

𝑠1
𝑠2
𝑠3
𝑠4

) = (

𝑟1 0 0 0
0 𝑟2 0 0
0 0 𝑟3 0
0 0 0 𝑟4

)

−1

(

𝑡1
𝑡2
𝑡3
𝑡4

).                                                      (3.60) 
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            Since 𝑅−1 is a block diagonal matrix, 𝑅−1 can be evaluated by Definition 2.6.1.13   

            𝑅−1 as follows: 

(

𝑠1
𝑠2
𝑠3
𝑠4

) =

(

 
 
𝑟1
−1 0 0 0

0 𝑟2
−1 0 0

0 0 𝑟3
−1 0

0 0 0 𝑟4
−1
)

 
 
(

𝑡1
𝑡2
𝑡3
𝑡4

). 

            The right-hand side can be simplified to the following: 

(

𝑠1
𝑠2
𝑠3
𝑠4

) =

(

 
 
𝑟1
−1𝑡1

𝑟2
−1𝑡2

𝑟3
−1𝑡3

𝑟4
−1𝑡4)

 
 
.                                                                     (3.61) 

Therefore, the system of equation in Eq. (3.51) has a positive solution if 𝑟1
−1𝑡1 > 0,  

           𝑟2
−1𝑡2 > 0, 𝑟3

−1𝑡3 > 0 and 𝑟4
−1𝑡4 > 0.    

IV) The linear matrix equation in Eq. (3.53) can be written as separated equations as 

follows: 

 𝑠1 = 𝑟1
−1𝑡1, 𝑠2 = 𝑟2

−1𝑡2, 𝑠3 = 𝑟3
−1𝑡3 and 𝑠4 = 𝑟4

−1𝑡4, which can be                     

             written as 

                            𝑣𝑒𝑐(𝑥𝑖𝑗
(1)) = (𝐼𝑖𝑗

(1)⨂𝑎𝑖𝑗
(1) + (𝑑𝑖𝑗

(1))𝑇⨂𝐼𝑖𝑗
(1))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(1)), 

                            𝑣𝑒𝑐(𝑥𝑖𝑗
(2)) = (𝐼𝑖𝑗

(2)⨂𝑎𝑖𝑗
(2) + (𝑑𝑖𝑗

(2))𝑇⨂𝐼𝑖𝑗
(2))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(2)), 

𝑣𝑒𝑐(𝑥𝑖𝑗
(3)) = (𝐼𝑖𝑗

(3)⨂𝑎𝑖𝑗
(3) + (𝑑𝑖𝑗

(3))𝑇⨂𝐼𝑖𝑗
(3))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(3)), 

𝑣𝑒𝑐(𝑥𝑖𝑗
(4)) = (𝐼𝑖𝑗

(4)⨂𝑎𝑖𝑗
(4) + (𝑑𝑖𝑗

(4))𝑇⨂𝐼𝑖𝑗
(4))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(4)). 

              For the obtained solution in Eq. (3.61) to be a fuzzy solution, the following   

              conditions must be met 𝑟1
−1𝑡1 ≤ 𝑟2

−1𝑡2 ≤ 𝑟3
−1𝑡3 ≤ 𝑟4

−1𝑡4. 
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Therefore, the unique positive solution of the system of GSME in Eq. (3.51) and the 

positive fuzzy solution to the PTrFFSME are equivalent.  

□ 

Corollary 3.4.1.1. The Uniqueness of Fuzzy Solution to PTrFFSME 

The PTrFFSME has a unique positive fuzzy solution if the corresponding system of SME 

in Eq. (3.51) has a unique positive solution. 

 

Proof: The solution to the PTrFFSME in Eq. (1.14) is equivalent to the solution system of 

SME in Eq. (3.51) by Theorem 3.4.1.1. Therefore, the PTrFFSME in Eq. (1.14) has a 

unique positive fuzzy solution if the corresponding system of SME in Eq. (3.53) has a 

unique positive solution. 

□ 

In the following Corollary 3.4.1.2, the sufficient conditions for the PTrFFSME to have a 

positive fuzzy solution are discussed. 

Corollary 3.4.1.2. Existence of Positive Fuzzy Solution to PTrFFSME 

The PTrFFSME has a positive fuzzy solution if 

I) 𝑟1, 𝑟2, 𝑟3 and 𝑟4 are invertible matrices.                                                             (3.62) 

II) 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 and 𝑟4

−1 > 0.                                                                           (3.62a) 

III) 𝑟1
−1𝑡1 > 0, 𝑟2

−1𝑡2 > 0, 𝑟3
−1𝑡3 > 0 and 𝑟4

−1𝑡4 > 0.                                                 (3.62b) 

IV) 𝑟1
−1𝑡1 ≤ 𝑟2

−1𝑡2 ≤ 𝑟3
−1𝑡3 ≤ 𝑟4

−1𝑡4.                                                                                   (3.62c) 

Proof: Part I and II can be proved as follows: 

By Corollary 3.4.1.1, the PTrFFSME has a unique fuzzy solution only if 𝑟1, 𝑟2, 𝑟3 and 𝑟4 

are invertible and 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 and 𝑟4

−1 > 0.  
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III) By Theorem 3.4.1.1, the solution to the system SME and the PTrFFSME are 

equivalent. Thus, from Eq. (3.61), the PTrFFSME has a positive fuzzy solution only 

if 

𝑟1
−1𝑡1 > 0, 

𝑟2
−1𝑡2 > 0, 

𝑟3
−1𝑡3 > 0, 

𝑟4
−1𝑡4 > 0. 

IV)  By the definition of positive fuzzy solution matrix in Definition 3.3.3, the 

PTrFFSME has a unique positive fuzzy solution if the following condition is 

satisfied,  

𝑟1
−1𝑡1 ≤ 𝑟2

−1𝑡2 ≤ 𝑟3
−1𝑡3 ≤ 𝑟4

−1𝑡4. 

□ 

The MFMVM for solving the PTrFFSME is illustrated by solving the following  

Example 3.4.1.1. 

Example 3.4.1.1 Consider the following PTrFFSME: 

(
(2, 4, 5, 9) (1, 2, 4, 5)
(1, 3, 5, 6) (4, 6, 7, 8)

) ∙ (
(𝑥11

(1), 𝑥11
(2), 𝑥11

(3), 𝑥11
(4)) (𝑥12

(1), 𝑥12
(2), 𝑥12

(3), 𝑥12
(4))

(𝑥21
(1), 𝑥21

(2), 𝑥21
(3), 𝑥21

(4)) (𝑥22
(1), 𝑥22

(2), 𝑥22
(3), 𝑥22

(4))
) 

+(
(𝑥11

(1)
, 𝑥11
(2)
, 𝑥11
(3)
, 𝑥11
(4)
) (𝑥12

(1)
, 𝑥12
(2)
, 𝑥12
(3)
, 𝑥12
(4)
)

(𝑥21
(1)
, 𝑥21
(2)
, 𝑥21
(3)
, 𝑥21
(4)
) (𝑥22

(1)
, 𝑥22
(2)
, 𝑥22
(3)
, 𝑥22
(4)
)
) ∙ (

(3, 6, 7, 9) (1, 3, 5, 6)
(1, 5, 6, 8) (4, 7, 9, 10)

) =

(
(10, 50, 108, 183) (10, 39, 101, 166)
(32, 89, 139, 211) (29, 73, 130, 198)

). 

Solution: The positive fuzzy solution to the given PTrFFSME can be obtained analytically 

by the MFMVM in Section 3.4.1, similar to Example 3.3.1.1. Therefore, the positive fuzzy 

solution is, 
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𝑋̃ = (
(1, 3, 5, 6) (1, 2, 4, 5)
(4, 5, 6, 7) (3, 4, 5, 7)

). 

Remark 3.4.1.3. Analysis of the obtained positive fuzzy solutions in Examples 3.4.1.1 can 

be obtained similar to Example 3.3.1.1 in Section 3.3.1.1. 

In the following Section 3.4.2, a new analytical method, namely the Fuzzy Bartle Stewart 

method (FBSM), is developed to solve the PGTrFFSME. The FBSM is based on 

decomposing the coefficient matrices to its Schur decomposition, which has been applied 

previously in BSM in Section 2.10.2 for solving a single SME. The main advantage of this 

method is that it avoids the long multiplication process of the MFMVM in Section 3.4.1.   

3.4.2 Fuzzy Bartle Stewart Method for PTrFFSME 

In this section, the positive fuzzy solution to the PTrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ in Eq. (1.14) 

is obtained analytically by FBSM, which decomposes the coefficient matrices to its Schur 

decomposition. The detail of the constructed method is presented in the following steps. 

Step 1: Suppose 𝑎𝑖𝑗
(1)

, 𝑑𝑖𝑗
(1)

, 𝑎𝑖𝑗
(2)

, 𝑑𝑖𝑗
(2)

 𝑎𝑖𝑗
(3)

, 𝑑𝑖𝑗
(3)

, 𝑎𝑖𝑗
(4)

 and 𝑑𝑖𝑗
(4)

are real and have real Schur 

decompositions. Then by Definition 2.8.2.1 in Section 2.10.2, the following Schur 

factorizations can be obtained: 

 𝑎𝑖𝑗
(1) = 𝑈1𝑅1𝑈1

𝑇, 𝑑𝑖𝑗
(1)
= 𝑉1𝑆1𝑉1

𝑇, 𝑎𝑖𝑗
(2)
= 𝑈2𝑅2𝑈2

𝑇, 𝑑𝑖𝑗
(2)
= 𝑉2𝑆2𝑉2

𝑇, 𝑎𝑖𝑗
(3) = 𝑈3𝑅3𝑈3

𝑇, 

 𝑑𝑖𝑗
(3)
= 𝑉3𝑆3𝑉3

𝑇, 𝑎𝑖𝑗
(4)
= 𝑈4𝑅4𝑈4

𝑇 and 𝑑𝑖𝑗
(4)
= 𝑉4𝑆4𝑉4

𝑇 where 𝑈 and 𝑉 are orthogonal and 𝑅 

and 𝑆 are upper quasi-triangular. Then the system of SME in Eq. (3.51) is transformed to: 
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{
 
 

 
 𝑈1

𝑇𝑎𝑖𝑗
(1)
𝑈1 ∙ 𝑈1

𝑇𝑥𝑖𝑗
(1)𝑉1 + 𝑈1

𝑇𝑥𝑖𝑗
(1)𝑉1. 𝑉1

𝑇𝑑𝑖𝑗
(1)𝑉1 = 𝑈1

𝑇𝑒𝑖𝑗
(1)𝑉1,

𝑈2
𝑇𝑎𝑖𝑗

(2)
𝑈2 ∙ 𝑈2

𝑇𝑥𝑖𝑗
(2)𝑉2 + 𝑈2

𝑇𝑥𝑖𝑗
(2)𝑉2. 𝑉2

𝑇𝑑𝑖𝑗
(2)𝑉2 = 𝑈2

𝑇𝑒𝑖𝑗
(2)𝑉2,

𝑈3
𝑇𝑎𝑖𝑗

(3)
𝑈3 ∙ 𝑈3

𝑇𝑥𝑖𝑗
(3)𝑉3 + 𝑈3

𝑇𝑥𝑖𝑗
(3)𝑉3. 𝑉3

𝑇𝑑𝑖𝑗
(3)𝑉3 = 𝑈3

𝑇𝑒𝑖𝑗
(3)𝑉3,

𝑈4
𝑇𝑎𝑖𝑗

(4)
𝑈4 ∙ 𝑈4

𝑇𝑥𝑖𝑗
(4)𝑉4 + 𝑈4

𝑇𝑥𝑖𝑗
(4)𝑉4. 𝑉4

𝑇𝑑𝑖𝑗
(4)𝑉4 = 𝑈4

𝑇𝑒𝑖𝑗
(4)𝑉4.

 

 Consequently, it can be written as: 

{

𝑅1𝑊1 +𝑊1𝑆1 = 𝑇1,
𝑅2𝑊2 +𝑊2𝑆2 = 𝑇2,
𝑅3𝑊3 +𝑊3𝑆3 = 𝑇3,
𝑅4𝑊4 +𝑊4𝑆4 = 𝑇4.

                                             (3.63) 

where, 

𝑅1 = 𝑈1
𝑇𝑎𝑖𝑗

(1)
𝑈1, 𝑅2 = 𝑈2

𝑇𝑎𝑖𝑗
(2)
𝑈2, 𝑅1 = 𝑈3

𝑇𝑎𝑖𝑗
(3)
𝑈3, and 𝑅4 = 𝑈4

𝑇𝑎𝑖𝑗
(4)
𝑈4, 

𝑊1 = 𝑈1
𝑇𝑥𝑖𝑗

(1)𝑉1, 𝑊2 = 𝑈2
𝑇𝑥𝑖𝑗

(2)𝑉2, 𝑊3 = 𝑈3
𝑇𝑥𝑖𝑗

(3)𝑉3, and 𝑊4 = 𝑈4
𝑇𝑥𝑖𝑗

(4)𝑉4, 

𝑆1 = 𝑉1
𝑇𝑑𝑖𝑗

(1)
𝑉1, 𝑆2 = 𝑉2

𝑇𝑑𝑖𝑗
(2)
𝑉2, 𝑆3 = 𝑉3

𝑇𝑑𝑖𝑗
(3)
𝑉3, and 𝑆4 = 𝑉4

𝑇𝑑𝑖𝑗
(4)
𝑉4, 

𝑇1 = 𝑈1
𝑇𝑒𝑖𝑗

(1)
𝑉1, 𝑇2 = 𝑈2

𝑇𝑒𝑖𝑗
(2)
𝑉2, 𝑇3 = 𝑈3

𝑇𝑒𝑖𝑗
(3)
𝑉3 and 𝑇4 = 𝑈4

𝑇𝑒𝑖𝑗
(4)
𝑉4. 

Applying Vec-operator and Kronecker product in Definition 2.6.2.3, Eq. (2.14b) on the 

system of equations in Eq. (3.63) gives: 

{

𝑃1𝑤1 = 𝑡1,
𝑃2𝑤2 = 𝑡2,
𝑃3𝑤3 = 𝑡3,
𝑃4𝑤4 = 𝑡4.

                                                            (3.64) 

where, 

𝑃1 = 𝐼⨂𝑅1 + 𝑆1
𝑇⨂𝐼, 𝑤1 = 𝑣𝑒𝑐(𝑊1) and  𝑡1 = 𝑣𝑒𝑐(𝑇1), 

𝑃2 = 𝐼⨂𝑅2 + 𝑆2
𝑇⨂𝐼, 𝑤2 = 𝑣𝑒𝑐(𝑊2) and  𝑡2 = 𝑣𝑒𝑐(𝑇1), 

𝑃3 = 𝐼⨂𝑅3 + 𝑆3
𝑇⨂𝐼, 𝑤3 = 𝑣𝑒𝑐(𝑊3) and  𝑡3 = 𝑣𝑒𝑐(𝑇3), 

𝑃4 = 𝐼⨂𝑅4 + 𝑆4
𝑇⨂𝐼, 𝑤4 = 𝑣𝑒𝑐(𝑊4) and  𝑡4 = 𝑣𝑒𝑐(𝑇4). 
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Step 2: Solving the system of linear matrix equation in Eq. (3.64) and by applying the 

definition of 𝑣𝑒𝑐−1in Eq. (2.12) on the obtained 𝑤1, 𝑤2, 𝑤3and 𝑤4 respectively, gives 𝑊1, 

𝑊2, 𝑊3 and 𝑊4. Consequently, the values of 𝑥𝑖𝑗
(1)

, 𝑥𝑖𝑗
(2)

, 𝑥𝑖𝑗
(3)

 and 𝑥𝑖𝑗
(4)

 can be computed as 

follows: 

𝑥𝑖𝑗
(1) = 𝑈1𝑊1𝑉1

𝑇, 

𝑥𝑖𝑗
(2) = 𝑈2𝑊2𝑉2

𝑇, 

𝑥𝑖𝑗
(3) = 𝑈3𝑊3𝑉3

𝑇, 

𝑥𝑖𝑗
(4) = 𝑈4𝑊4𝑉4

𝑇. 

Step 3: The positive solution obtained in Step 2 can be written in matrix form as follows: 

𝑋̃ = (

(𝑥11
(1), 𝑥11

(2), 𝑥11
(3), 𝑥11

(4)) ⋯ (𝑥1𝑛
(1), 𝑥1𝑛

(2), 𝑥1𝑛
(3), 𝑥1𝑛

(4))

⋮ ⋱ ⋮

(𝑥𝑚1
(1)
, 𝑥𝑚1
(2)
, 𝑥𝑚1
(3)
, 𝑥𝑚1
(4)
) … (𝑥𝑚𝑛

(1)
, 𝑥𝑚𝑛
(2)
, 𝑥𝑚𝑛
(3)
, 𝑥𝑚𝑛
(4)
)

). 

To check the accuracy of the FBSM, in the following Example 3.4.2.1, the FBSM is applied 

for solving the PTrFFSME in Example 3.4.1.1. 

 

Example 3.4.2.1 Consider the following PTrFFSME: 

(
(2, 4, 5, 9) (1, 2, 4, 5)
(1, 3, 5, 6) (4, 6, 7, 8)

) ∙ (
(𝑥11

(1), 𝑥11
(2), 𝑥11

(3), 𝑥11
(4)) (𝑥12

(1), 𝑥12
(2), 𝑥12

(3), 𝑥12
(4))

(𝑥21
(1), 𝑥21

(2), 𝑥21
(3), 𝑥21

(4)) (𝑥22
(1), 𝑥22

(2), 𝑥22
(3), 𝑥22

(4))
) 

+(
(𝑥11

(1)
, 𝑥11
(2)
, 𝑥11
(3)
, 𝑥11
(4)
) (𝑥12

(1)
, 𝑥12
(2)
, 𝑥12
(3)
, 𝑥12
(4)
)

(𝑥21
(1)
, 𝑥21
(2)
, 𝑥21
(3)
, 𝑥21
(4)
) (𝑥22

(1)
, 𝑥22
(2)
, 𝑥22
(3)
, 𝑥22
(4)
)
) ∙ (

(3, 6, 7, 9) (1, 3, 5, 6)
(1, 5, 6, 8) (4, 7, 9, 10)

) =

(
(10, 50, 108, 183) (10, 39, 101, 166)
(32, 89, 139, 211) (29, 73, 130, 198)

). 
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Solution: The positive fuzzy solution to the given PTrFFSME is obtained by the FBSM 

as follows: 

Step 1: Decomposing the coefficient matrices 𝐴̃, 𝐷̃, 𝐸̃ and 𝑋̃ as follows: 

𝑎𝑖𝑗
(1) = (

2 1
1 4

), 𝑎𝑖𝑗
(2) = (

4 2
3 6

), 𝑎𝑖𝑗
(3) = (

5 4
5 7

), 𝑎𝑖𝑗
(4) = (

9 5
6 8

), 

𝑑𝑖𝑗
(1) = (

3 1
1 4

) , 𝑑𝑖𝑗
(2) = (

6 3
5 7

) , 𝑑𝑖𝑗
(3) = (

7 5
6 9

), 𝑑𝑖𝑗
(4) = (

9 6
8 10

), 

𝑒𝑖𝑗
(1) = (

10 10
32 29

), 𝑒𝑖𝑗
(2) = (

50 39
89 73

), 𝑒𝑖𝑗
(3) = (

108 101
139 130

), 𝑒𝑖𝑗
(4) = (

183 166
211 198

), 

𝑥𝑖𝑗
(1) = (

𝑥11
(1) 𝑥12

(1)

𝑥21
(1) 𝑥22

(1)
) , 𝑥𝑖𝑗

(2) = (
𝑥11
(2) 𝑥12

(2)

𝑥21
(2) 𝑥22

(2)
) , 𝑥𝑖𝑗

(3) = (
𝑥11
(3) 𝑥12

(3)

𝑥21
(3) 𝑥22

(3)
) and 

 𝑥𝑖𝑗
(4) = (

𝑥11
(4) 𝑥12

(4)

𝑥21
(4) 𝑥22

(4)
). 

In addition, decompose the following matrices to their Schur decompositions by applying  

Definition 2.8.2.1 in Section 2.10.2 is as follows: 

𝑎𝑖𝑗
(1) = 𝑈1𝑅1𝑈1

𝑇 , 𝑑𝑖𝑗
(1)
= 𝑉1𝑆1𝑉1

𝑇, 𝑎𝑖𝑗
(2)
= 𝑈2𝑅2𝑈2

𝑇 , 𝑑𝑖𝑗
(2)
= 𝑉2𝑆2𝑉2

𝑇, 𝑎𝑖𝑗
(3) = 𝑈3𝑅3𝑈3

𝑇 , 

𝑑𝑖𝑗
(3)
= 𝑉3𝑆3𝑉3

𝑇, 𝑎𝑖𝑗
(4)
= 𝑈4𝑅4𝑈4

𝑇 and 𝑑𝑖𝑗
(4)
= 𝑉4𝑆4𝑉4

𝑇. 

where 

𝑈1 = (
−0.9238795325112866 −0.3826834323650898
0.3826834323650898 −0.9238795325112866

), 

  𝑈1
𝑇 = (

−0.9238795325112866 0.3826834323650898
−0.3826834323650898 −0.9238795325112866

) and 

 𝑅1 = (
1.585786437626905 0.

0. 4.414213562373095
). 

𝑈2 = (
−0.7721779012040573 −0.6354063966408405
0.6354063966408405 −0.7721779012040573

), 

 𝑈2
𝑇 = (

−0.7721779012040573 0.6354063966408405
−0.6354063966408405 −0.7721779012040573

) and 
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 𝑅2 = (
2.3542486889354093 −1.

0. 7.645751311064591
). 

𝑈3 = (
−0.7449054530602934 −0.6671700427934688
0.6671700427934688 −0.7449054530602934

), 

 𝑈3
𝑇 = (

−0.7449054530602934 0.6671700427934688
−0.6671700427934688 −0.7449054530602934

) and 

 𝑅3 = (
1.4174243050441593 −1.

0. 10.582575694955839
). 

𝑈4 = (
0.7071067811865475 −0.7071067811865475
0.7071067811865475 0.7071067811865475

), 

 𝑈4
𝑇 = (

0.7071067811865475 0.7071067811865475
−0.7071067811865475 0.7071067811865475

) and 

 𝑅4 = (
14. −1.
0. 3.

). 

𝑉1 = (
−0.8506508083520399 −0.5257311121191336
0.5257311121191336 −0.8506508083520399

), 

 𝑉1
𝑇 = (

−0.8506508083520399 0.5257311121191336
−0.5257311121191336 −0.8506508083520399

) and  

𝑆1 = (
2.381966011250105 0.

0. 4.618033988749895
). 

𝑉2 = (
−0.6610612078952277 −0.7503319794704894
0.7503319794704894 −0.6610612078952277

), 

 𝑉2
𝑇 = (

−0.6610612078952277 0.7503319794704894
−0.7503319794704894 −0.6610612078952277

) and 

 𝑆2 = (
2.594875162046673 −2.

0. 10.405124837953327
). 

𝑉3 = (
−0.7382981984302008 −0.6744744399862159
0.6744744399862159 −0.7382981984302008

), 

 𝑉3
𝑇 = (

−0.7382981984302008 0.6744744399862159
−0.6744744399862159 −0.7382981984302008

) and 

 𝑆3 = (
2.4322356371699785 −1.

0. 13.567764362830022
). 

𝑉4 = (
−0.6813178555401226 −0.7319876909635903
0.7319876909635903 −0.6813178555401226

), 
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 𝑉4
𝑇 = (

−0.6813178555401226 0.7319876909635903
−0.7319876909635903 −0.6813178555401226

) and 

 𝑆4 = (
2.553778005275098 −2.

0. 16.4462219947249
). 

Since 

𝑃1 = 𝐼⨂𝑅1 + 𝑆1
𝑇⨂𝐼 

𝑃2 = 𝐼⨂𝑅2 + 𝑆2
𝑇⨂𝐼 

𝑃3 = 𝐼⨂𝑅3 + 𝑆3
𝑇⨂𝐼 

𝑃4 = 𝐼⨂𝑅4 + 𝑆4
𝑇⨂𝐼 

 The definition of Kronecker sum in Definition 2.6.2.4, Eq. (2.15) is applied to obtain 𝑃1, 

𝑃2, 𝑃3 and 𝑃4 as follows: 

𝑃1 = (

3.96775244887 0. 0. 0.
0. 6.20382042637 0. 0.
0. 0. 6.79617957362 0.
0. 0. 0. 9.032247551122

), 

 𝑃2 = (

4.949123850982 0. −1. 0.
−2. 12.759373526 0. −1.
0. 0. 10.24062647311 0.
0. 0. −2. 18.05087614901

),  

𝑃3 = (

3.8496599422141 0. −1. 0.
−1. 14.985188667874 0. −1.
0. 0. 13.014811332125 0.
0. 0. −1. 24.15034005778

) 

and 

 𝑃4 = (

16.5537780052 0. −1. 0.
−2. 30.4462219947 0. −1.
0. 0. 5.553778005275 0.
0. 0. −2. 19.4462219947

). 

To calculate 𝑤1, 𝑤2 , 𝑤3 and 𝑤4, the values of 𝑇1, 𝑇2, 𝑇3 and 𝑇4 must be calculated first 

as follows: 
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𝑇1 = 𝑈1
𝑇𝑒𝑖𝑗

(1)𝑉1 = (
−1.5806234959847192 −3.16229307660537
12.306523514147834 43.60104369000036

), 

𝑇2 = 𝑈2
𝑇𝑒𝑖𝑗

(2)
𝑉2 = (

0.3467563397901774 −24.217948725153143
5.543468922165914 129.04898555159454

), 

𝑇3 = 𝑈3
𝑇𝑒𝑖𝑗

(3)
𝑉3 = (

−1.3171572069307107 −16.77512379132618
18.878912076292565 239.67988442398234

), 

𝑇4 = 𝑈4
𝑇𝑒𝑖𝑗

(4)
𝑉4 = (

−1.411184014324249 −379.29409243972896
3.0735853985288877 −29.909080106180955

). 

Therefore, by applying Definition 2.6.2.2, the following is obtained: 

𝑡1 = 𝑣𝑒𝑐(𝑇1) = (

−1.5806234959847192
−3.16229307660537
12.306523514147834
43.60104369000036

), 

 𝑡2 = 𝑣𝑒𝑐(𝑇2) = (

0.3467563397901774
−24.217948725153143
5.543468922165914
129.04898555159454

), 

 𝑡3 = 𝑣𝑒𝑐(𝑇3) = (

−1.3171572069307107
−16.77512379132618
18.878912076292565
239.67988442398234

),  

and 𝑡4 = 𝑣𝑒𝑐(𝑇4) = (

−1.411184014324249
−379.29409243972896
3.0735853985288877
−29.909080106180955

). 

In addition, since 𝑊1 = (
𝑤11
(1) 𝑤12

(1)

𝑤21
(1) 𝑤22

(1)
), 𝑊2 = (

𝑤11
(2) 𝑤12

(2)

𝑤21
(2) 𝑤22

(2)
), 𝑊3 = (

𝑤11
(3)

𝑤12
(3)

𝑤21
(3)

𝑤22
(3)
) and 

 𝑊4 = (
𝑤11
(4)

𝑤12
(4)

𝑤21
(4)

𝑤22
(4)
).   
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Then, 𝑤1 = 𝑣𝑒𝑐(𝑊1) =

(

  
 

𝑤11
(1)

𝑤12
(1)

𝑤21
(1)

𝑤22
(1)
)

  
 

, 𝑤2 = 𝑣𝑒𝑐(𝑊2) =

(

  
 

𝑤11
(2)

𝑤12
(2)

𝑤21
(2)

𝑤22
(2)
)

  
 

, 𝑤3 = 𝑣𝑒𝑐(𝑊3) =

(

  
 

𝑤11
(3)

𝑤12
(3)

𝑤21
(3)

𝑤22
(3)
)

  
 

 

and, 𝑤4 = 𝑣𝑒𝑐(𝑊4) =

(

  
 

𝑤11
(4)

𝑤12
(4)

𝑤21
(4)

𝑤22
(4)
)

  
 

. 

Therefore, the values of 𝑤1, 𝑤2, 𝑤3 and 𝑤4 are obtained as follows: 

𝑤1 = 𝑃1
−1𝑡1,  

 𝑤2 = 𝑃2
−1𝑡2,  

𝑤3 = 𝑃3
−1𝑡3,  

 𝑤4 = 𝑃4
−1𝑡4. 

𝑤1 = (

−0.3983674678172228
−0.5097331739584595
1.8108002269261616
4.827264027388111

), 𝑤2 = (

0.1794413791124418
−1.3049157455683198
0.5413212694283264
7.20915854810356

), 

 𝑤3 = (

0.03465607789157393
−0.45083919167872943
1.450571321744156
9.984557367256953

) and 𝑤4 = (

−0.05181666504141422
−12.509888689881453
0.5534224442549792
−1.4811224116172315

). 

Step 2: the values of 𝑥𝑖𝑗
(1)

, 𝑥𝑖𝑗
(2)

, 𝑥𝑖𝑗
(3)

 and 𝑥𝑖𝑗
(4)

 are computed as follows: 

𝑥𝑖𝑗
(1) = 𝑈1𝑊1𝑉1

𝑇 = (
1 1
4 3

), 

𝑥𝑖𝑗
(2) = 𝑈2𝑊2𝑉2

𝑇 = (
3 2
5 4

), 

𝑥𝑖𝑗
(3) = 𝑈3𝑊3𝑉3

𝑇 = (
5 4
6 5

), 

𝑥𝑖𝑗
(4) = 𝑈4𝑊4𝑉4

𝑇 = (
6 5
7 7

). 
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Step 3: Combining 𝑥𝑖𝑗
(1)

, 𝑥𝑖𝑗
(2)

, 𝑥𝑖𝑗
(3)

 and 𝑥𝑖𝑗
(4)

 which was obtained in Step 2. The positive 

fuzzy solution to the given PTrFFSME is represented by: 

𝑋̃ = (
(1, 3, 5, 6) (1, 2, 4, 5)
(4, 5, 6, 7) (3, 4, 5, 7)

).                                  (3.65) 

Now, we analyze the obtained positives fuzzy solution in Eq. (3.65) to the PTrFFSME in 

Example 3.4.2.1.  

3.4.2.1 Verification of Positive Fuzzy Solution to TrFFSME 

To verify the obtained positive fuzzy solution in Eq. (3.65) for the PTrFFSME in  

Example 3.4.2.1, we first multiply 𝐴̃𝑋̃ as follows: 

𝐴̃𝑋̃ = (
(2, 4, 5, 9) (1, 2, 4, 5)
(1, 3, 5, 6) (4, 6, 7, 8)

) (
(1, 3, 5, 6) (1, 2, 4, 5)
(4, 5, 6, 7) (3, 4, 5, 7)

) 

                                = (
(6, 22, 49, 89) (5, 16, 40, 80)

(17, 39, 67, 92) (13, 30, 55, 86)
), 

and,  

𝑋̃𝐷̃ = (
(1, 3, 5, 6) (1, 2, 4, 5)
(4, 5, 6, 7) (3, 4, 5, 7)

) (
(3, 6, 7, 9) (1, 3, 5, 6)
(1, 5, 6, 8) (4, 7, 9, 10)

) 

                               = (
(4, 28, 59, 94) (5, 23, 61, 86)
(15, 50, 72, 119) (16, 43, 75, 112)

). 

Therefore, 

𝐴̃𝑋̃ + 𝑋̃𝐷̃ = (
(10, 50, 108, 183) (10, 39, 101, 166)
(32, 89, 139, 211) (29, 73, 130, 198)

) = 𝐸̃. 

This means the obtained positive fuzzy solution in Eq. (3.65) satisfies the PTrFFSME in 

Example 3.4.2.1. The following Section 3.4.2.2 gives a graphical representation of the 

positive fuzzy solution obtained in Eq. (3.65). 
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3.4.2.2 Representation of the Obtained Positive Fuzzy Solution by FBSM: 

The positive fuzzy solution obtained in Eq. (3.65) for Example 3.4.2.1 is represented in  

Figure 3.10. 

 

 

 

 

 

Figure 3.10. Positive fuzzy solution for Example 3.4.2.1. 

Figure 3.10 shows that, 𝑥𝑖𝑗
(4)
≥ 𝑥𝑖𝑗

(3)
≥ 𝑥𝑖𝑗

(2) ≥ 𝑥𝑖𝑗
(1) > 0, which means that the obtained 

fuzzy solution in Eq. (3.65) is positive. Therefore, the FBSM is able to give the positive 

fuzzy solution to the given PTrFFSME. In the following Section 3.4.2.3, the feasibility 

conditions of the obtained positive fuzzy solution in Eq. (3.65) for the PTrFFSME in 

Example 3.4.2.1 are discussed. 

Positive fuzzy solution

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3.4.2.3 Feasibility of the Obtained Positive Fuzzy Solution 

To check the feasibility of the obtained positive fuzzy solution, the feasibility conditions 

in Eq. (3.29a) and Eq. (3.29) need to be satisfied. The feasibility conditions are checked as 

follow: 

I) 𝑥𝑖𝑗
(𝑙) > 0, ∀ {1 ≤ 𝑖, 𝑗 ≤ 𝑝, 𝑛}. 

                                                        𝑥𝑖𝑗
(1)
= (

1 1
4 3

) > 0, 

𝑥𝑖𝑗
(2)
= (

3 2
5 4

) > 0, 

𝑥𝑖𝑗
(3)
= (

5 4
6 5

) > 0, 

𝑥𝑖𝑗
(4)
= (

6 5
7 7

) > 0. 

II) 𝑥𝑖𝑗
(4)
≥ 𝑥𝑖𝑗

(3)
≥ 𝑥𝑖𝑗

(2) ≥ 𝑥𝑖𝑗
(1)

, ∀ {1 ≤ 𝑖, 𝑗 ≤ 𝑝, 𝑛}.    

(
6 5
7 7

) ≥ (
5 4
6 5

) ≥ (
3 2
5 4

) ≥ (
1 1
4 3

). 

The feasibility conditions are satisfied, and therefore, the obtained positive fuzzy solution 

is feasible.  

The verification, representation, and feasibility of the obtained positive solution indicate 

that it satisfies the given PTrFFSME and is a strong fuzzy positive solution. 

Remark 3.4.2.3.1 The obtained fuzzy solution by FMVM and FBSM for the PTrFFSME 

in Examples 3.4.1.1 and 3.4.2.1 are the same. Which prove the accuracy of the methods. 

  

As discussed earlier, analytical approaches give analytical fuzzy solutions. However, it is 

impractical for fuzzy equations with large sizes. Therefore, the positive fuzzy solution to 

the PTrFFSME by the MFMVM and FBSM in Sections 3.4.1 and 3.4.2, respectively, can 
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be approximated by modifying the FGIM and FLSIM. Modifying the FGIM and FLSIM 

in Section 3.3.2 and Section 3.3.3 will reduce the computation time and memory usage. 

Therefore, in Section 3.4.3, the FGIM in Section 3.3.2 is modified and applied to the 

PTrFFSME in Eq. (1.14). 

3.4.3 Modified Fuzzy Gradient Iterative Method for PTrFFSME 

In this section, the positive fuzzy solution to the PTrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃  in Eq. (1.14) 

is approximated numerically by modifying the FGIM in Section 3.3.2. In order to develop 

the modified FGIM (MFGIM), the general form of the system of SME in Eq. (3.55) is 

considered. The system of SME in Eq. (3.55) can be decomposed into two subsystems as 

follows: for 1 ≤ 𝑙 ≤ 4 

𝜉1
(𝑙)
= 𝑒𝑖𝑗

(𝑙) − 𝑎𝑖𝑗
(𝑙)𝑥𝑖𝑗

(𝑙)
 and 𝜉2

(𝑙)
= 𝑒𝑖𝑗

(𝑙) − 𝑥𝑖𝑗
(𝑙)𝑑𝑖𝑗

(𝑙),                           (3.66) 

where the numerical solution to the system of SME in Eq. (3.55) is the average of the 

numerical solution for the subsystems. The two subsystems in Eq. (3.66) can be written as 

follows:  

for 1 ≤ 𝑙 ≤ 4 

𝜉2
(𝑙)
= 𝑎𝑖𝑗

(𝑙)𝑥𝑖𝑗
(𝑙)

                                                          (3.67a) 

and  

𝜉1
(𝑙)
= 𝑥𝑖𝑗

(𝑙)𝑑𝑖𝑗
(𝑙).                                                        (3.67b) 

The numerical solution to the systems of equations in Eq. (3.67a) and Eq. (3.67b) can be 

obtained by modifying the algorithms in Eq. (3.35a) and Eq. (3.35b) as follows: 

𝑥̂1
(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) + 𝛼𝑙 ∙ (𝑎𝑖𝑗

(𝑙))
𝑇
(𝜉2

(𝑙) − 𝑎𝑖𝑗
(𝑙)𝑥̂(𝑙)(𝑘 − 1)),                (3.68a) 
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𝑥̂2
(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) + 𝛼𝑙(𝜉1

(𝑙) − 𝑥̂(𝑙)(𝑘 − 1)𝑑𝑖𝑗
(𝑙))(𝑑𝑖𝑗

(𝑙))
𝑇
.                  (3.68b) 

Substitute Eq. (3.66) into Eq. (3.68a) and Eq. (3.68b) as follows: 

𝑥̂1
(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) + 𝛼𝑙(𝑎𝑖𝑗

(𝑙))
𝑇
(𝑒𝑖𝑗

(𝑙) − 𝑥̂(𝑙)(𝑘 − 1)𝑑𝑖𝑗
(𝑙) − 𝑎𝑖𝑗

(𝑙)𝑥̂(𝑙)(𝑘 − 1)).    (3.69a)                             

𝑥̂2
(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) + 𝛼𝑙(𝑒𝑖𝑗

(𝑙) − 𝑎𝑖𝑗
(𝑙)𝑥̂(𝑙)(𝑘 − 1) − 𝑥̂(𝑙)(𝑘 − 1)𝑑𝑖𝑗

(𝑙))(𝑑𝑖𝑗
(𝑙))

𝑇
.    (3.69b)                             

If we let  

𝑠(𝑙)(𝑘 − 1) = 𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1) − 𝑥̂(𝑙)(𝑘 − 1)𝑑(𝑙). 

Then, the average of the two numerical solutions in Eq. (3.69a) and Eq. (3.69b) is  

𝑥̂(𝑙)(𝑘) =
𝑥̂1
(𝑙)(𝑘) + 𝑥̂2

(𝑙)(𝑘)

2
.                                                                  (3.70) 

Therefore, for 1 ≤ 𝑙 ≤ 4 the numerical solution to the system of SME in Eq. (3.55) is 

𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) +
𝛼𝑙
2
((𝑎(𝑙))

𝑇
(𝑠(𝑙)(𝑘 − 1)) + (𝑠(𝑙)(𝑘 − 1)) (𝑑(𝑙))

𝑇
),          (3.71) 

where the convergence rate (step size) is given by, 

0 < 𝛼𝑙 <
2

𝜆𝑚𝑎𝑥 [(𝑎
(𝑙))𝑇𝑎(𝑙)] + 𝜆𝑚𝑎𝑥 [𝑑

(𝑙)(𝑑(𝑙))𝑇]
.                                       (3.72𝑎) 

It can also be obtained as follows,  

0 < 𝛼𝑙 <
2

‖𝑎(𝑙)‖2 + ‖𝑑(𝑙)‖2
 ,                                                           (3.72 𝑏) 

where, ‖𝑎(𝑙)‖
2
= 𝑡𝑟[𝑎(𝑙) ∙ (𝑎(𝑙))

𝑇
]. 

If we let 𝛼0 = ‖𝑎
(𝑙)‖

2
+ ‖𝑑(𝑙)‖

2
, then  

0 < 𝛼𝑙 <
2

α0
.                                                                         (3.72𝑐) 

At step 𝑘 − 𝑡ℎ of the iteration, the following error is considered: 

𝛿(𝑙)(𝑘) = ‖𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘) − 𝑥̂(𝑙)(𝑘)𝑑(𝑙)‖
2
.                             (3.73)                                                                   
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The obtained numerical solution in Eq. (3.71) can be expressed as, 

𝑥̂ = (𝑥̂(1), 𝑥̂(2), 𝑥̂(3), 𝑥̂(4)). 

It can also be written in matrix form as, 

𝑋̂ = (

(𝑥̂11
(1), 𝑥̂11

(2), 𝑥̂11
(3), 𝑥̂11

(4)) ⋯ (𝑥̂1𝑛
(1), 𝑥̂1𝑛

(2), 𝑥̂1𝑛
(3), 𝑥̂1𝑛

(4))

⋮ ⋱ ⋮

(𝑥̂𝑝1
(1), 𝑥̂𝑝1

(2), 𝑥̂𝑝1
(3), 𝑥̂𝑝1

(4)) … (𝑥̂𝑝𝑛
(1), 𝑥̂𝑝𝑛

(2), 𝑥̂𝑝𝑛
(3), 𝑥̂𝑝𝑛

(4))

).                           (3.74)   

 

The following Theorem 3.4.3.1 proved that the numerical solution obtained by the MFGIM 

method converges to the positive solution of the PGTrFFSME for any initial value. 

Theorem 3.4.3.1: If the system of SME in Eq. (3.55) has a unique positive solution 𝑥(𝑙), 

then the numerical solution 𝑥̂(𝑙)(𝑘) in Eq. (3.71) by the MFGIM converges to 𝑥(𝑙) for any 

initial values 𝑥̂(𝑙)(0) (i.e. if 𝑘 → ∞, then 𝑥(𝑙) = 𝑥̂(𝑙)(𝑘)). 

Proof: Let, 𝜓(𝑘) be the error at each 𝑘, for 𝑘 = 1,… , 𝑛 and for 1 ≤ 𝑙 ≤ 4. 

𝜓(𝑘) = 𝑥(𝑙) − 𝑥̂(𝑙)(𝑘).                                                                        (3.75) 
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From Eq. (3.51), Eq. (3.71) and Eq. (3.75), the following is obtained: 

𝜓(𝑘) = 𝜓(𝑘 − 1) +
𝛼𝑙

2
((𝑎(𝑙))

𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 − 1)𝑑(𝑙)) + (−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 − 1)𝑑(𝑙))(𝑑(𝑙))

𝑇
).            (3.76)                                                                                                                

Taking ‖. ‖2 to both sides of Eq. (3.76) give: 

‖𝜓(𝑘)‖2 = ‖𝜓(𝑘 − 1) +
𝛼𝑙

2
((𝑎(𝑙))

𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 − 1)𝑑(𝑙)) + (𝑐(𝑙))

𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 −

1)𝑑(𝑙))(𝑑(𝑙))
𝑇
)‖

2

.                                                                                                                                                                                      (3.77)                                                             

Apply the following formula to Eq. (3.77)  

‖𝐴 + 𝐵‖2 = 𝑡𝑟((𝐴 + 𝐵)𝑇(𝐴 + 𝐵)) = ‖𝐴‖2 + 2𝑡𝑟(𝐴𝑇𝐵) + ‖𝐵‖2, 

the following is obtained, 

‖𝜓(𝑘)‖2 = ‖𝜓(𝑘 − 1)‖2

+ 𝛼𝑙𝑡𝑟 [𝜓
𝑇(𝑘 − 1) ((𝑎(𝑙))

𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 − 1)𝑑(𝑙)) + (−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 − 1)𝑑(𝑙))(𝑑(𝑙))

𝑇
)]

+
𝛼𝑙
2

4
‖(𝑎(𝑙))

𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 − 1)𝑑(𝑙)) + (−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 − 1)𝑑(𝑙))(𝑑(𝑙))

𝑇
‖
2

. 

Applying norm properties gives: 

‖𝜓(𝑘)‖2 ≤ ‖𝜓(𝑘 − 1)‖2 + 𝛼𝑙 𝑡𝑟 [(𝜓
𝑇(𝑘 − 1)(𝑎(𝑙))

𝑇
+ 𝜓𝑇(𝑘 − 1)(𝑑(𝑙))

𝑇
)(−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 − 1)𝑑(𝑙))]

+
𝛼𝑙
2

4
‖(𝑎(𝑙))

𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 − 1)𝑑(𝑙)) + (−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 − 1)𝑑(𝑙))(𝑑(𝑙))

𝑇
‖
2

. 
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And since ‖𝐴‖2 = 𝑡𝑟[(𝐴)𝑇𝐴] then,  

 

‖𝜓(𝑘)‖2 ≤ ‖𝜓(𝑘 − 1)‖2 − 𝛼𝑙‖𝑎
(𝑙)𝜓(𝑘 − 1) + 𝜓(𝑘 − 1)𝑑(𝑙)‖

2

+
𝛼𝑙
2

4
‖(𝑎(𝑙))

𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 − 1)𝑑(𝑙)) + (−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 − 1)𝑑(𝑙))(𝑑(𝑙))

𝑇
‖
2

. 

Applying norm properties gives: 

‖𝜓(𝑘)‖2 ≤ ‖𝜓(𝑘 − 1)‖2 − 𝛼𝑙‖𝑎
(𝑙)𝜓(𝑘 − 1) + 𝜓(𝑘 − 1)𝑑(𝑙)‖

2
+
𝛼𝑙
2

4
(‖𝑎(𝑙)‖

2
+ ‖𝑑(𝑙)‖

2
) ‖𝑎(𝑙)𝜓(𝑘 − 1) + 𝜓(𝑘 − 1)𝑑(𝑙)‖

2

. 

‖𝜓(𝑘)‖2 ≤ ‖𝜓(𝑘 − 1)‖2 + (−𝛼𝑙 +
𝛼𝑙
2

4
(‖𝑎(𝑙)‖

2
+ ‖𝑑(𝑙)‖

2
)) ‖𝑎(𝑙)𝜓(𝑘 − 1) + 𝜓(𝑘 − 1)𝑑(𝑙)‖

2
. 

By Eq. (3.72c), the following can be obtained: 

‖𝜓(𝑘)‖2 ≤ ‖𝜓(𝑘 − 1)‖2 + (−𝛼𝑙 +
𝛼𝑙
2

4
×
2

𝛼0
) ‖𝑎(𝑙)𝜓(𝑘 − 1) + 𝜓(𝑘 − 1)𝑑(𝑙)‖

2
. 

At 𝑘 = 1               ‖𝜓(1)‖2 ≤ ‖𝜓(0)‖2 − 𝛼𝑙 (1 −
𝛼𝑙

2𝛼0
) ‖𝑎(𝑙)𝜓(0) + 𝜓(0)𝑑(𝑙)‖

2
. 

At 𝑘 = 2               ‖𝜓(2)‖2 ≤ ‖𝜓(1)‖2 − 𝛼𝑙 (1 −
𝛼𝑙

2𝛼0
) ‖𝑎(𝑙)𝜓(1) + 𝜓(1)𝑑(𝑙)‖

2
. 
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At 𝑘 = 3                  ‖𝜓(3)‖2 ≤ ‖𝜓(2)‖2 − 𝛼𝑙 (1 −
𝛼𝑙

2𝛼0
) ‖𝑎(𝑙)𝜓(2) + 𝜓(2)𝑑(𝑙)‖

2
. 

At 𝑘 = 𝑛 − 1          

  ‖𝜓(𝑛 − 1)‖2 ≤ ‖𝜓(𝑛 − 2)‖2 − 𝛼𝑙 (1 −
𝛼𝑙

2𝛼0
) ‖𝑎(𝑙)𝜓(𝑛 − 2) + 𝜓(𝑛 − 2)𝑑(𝑙)‖

2
. 

At 𝑘 = 𝑛              

    ‖𝜓(𝑛)‖2 ≤ ‖𝜓(𝑛 − 1)‖2 − 𝛼𝑙(1 −
𝛼𝑙

2𝛼0
)‖𝑎(𝑙)𝜓(𝑛 − 1) + 𝜓(𝑛 − 1)𝑑(𝑙)‖

2
. 

Therefore, the following is obtained, 

‖𝜓(𝑘)‖2 ≤ ‖𝜓(0)‖2 − 𝛼𝑙 (1 −
𝛼𝑙
2𝛼0

)∑(‖𝑎(𝑙)𝜓(𝑘) + 𝜓(𝑘)𝑑(𝑙)‖
2
)

𝑛

𝑘=1

. 

If the convergence rate 𝛼 is chosen to Eq. (3.72c) and 𝑘 → ∞, then 

∑(‖𝑎(𝑙)𝜓(𝑘) + 𝜓(𝑘)𝑑(𝑙)‖
2
) < ∞

∞

𝑘=1

. 

Therefore,                                           𝑙𝑖𝑚
𝑘→∞

(𝑎(𝑙)𝜓(𝑘) + 𝜓(𝑘)𝑑(𝑙)) = 0. 

Since 𝑎(𝑙) > 0 𝑎𝑛𝑑 𝑑(𝑙) > 0 then,       𝑙𝑖𝑚
𝑘→∞

𝜓(𝑘) = 0. 

By Eq. (3.75), the following is obtained,     𝑙𝑖𝑚
𝑘→∞

(𝑥(𝑙) − 𝑥̂(𝑙)(𝑘)) = 0. 

Consequently, if 𝑘 → ∞, then 𝑥(𝑙) = 𝑥̂(𝑙)(𝑘) and therefore, the system of SME in  

Eq. (3.55) has a unique positive solution 𝑥(𝑙), then the numerical solution 𝑥̂(𝑙)(𝑘) in  

Eq. (3.71) converges to 𝑥(𝑙) for any initial values 𝑥̂(𝑙)(0) and for 1 ≤ 𝑙 ≤ 4.      

□ 

 

Below is the Algorithm 3.3 for the FGIM. This algorithm can be used by different 

software for solving the PTrFFSME in Eq. (1.14). 
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Algorithm 3.3: Modified Fuzzy Gradient Iterative Algorithm for PTrFFSME. 

Input 𝐴̃, 𝐷̃ and 𝐸̃  # Split each matrix into four matrices (e.g., 𝑎(1), 𝑎(2), 𝑎(3), 𝑎(4)) 

for l = 1,2,3,4 

Choose 𝛼𝑙, 𝜀, 𝑥̂(𝑙)(𝑘) = 0   # 0 is the Zero matrix with the same dimension as 𝑥(𝑙)(𝑘) 

While 𝑘 = 0, 1, 2, … , 𝑛 do 

𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) +
𝛼𝑙

2
((𝑎(𝑙))

𝑇
(𝑠(𝑙)(𝑘 − 1)) + (𝑠(𝑙)(𝑘 − 1)) (𝑑(𝑙))

𝑇
). 

            𝑠(𝑙)(𝑘 − 1) = 𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1) − 𝑥̂(𝑙)(𝑘 − 1)𝑑(𝑙). 

              𝛿(𝑙)(𝑘) = ‖𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘) − 𝑥̂(𝑙)(𝑘)𝑑(𝑙)‖
2

. 

        If  𝛿(𝑙)(𝑘) < 𝜀 then  

             𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘)); 

             𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

       else  

𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) +
𝛼𝑙

2
((𝑎(𝑙))

𝑇
(𝑠(𝑙)(𝑘 − 1)) + (𝑠(𝑙)(𝑘 − 1)) (𝑑(𝑙))

𝑇
), 

             update k.  

             𝑘 = 𝑘 + 1 

        end 

        𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘)), 

        𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

end  

 

As discussed earlier, the convergence rate of the FGIM algorithm is slow. To improve 

the convergence speed, in the following Section 3.4.4, the FLSIM in Section 3.3.2 is 

modified and applied to the PTrFFSME in Eq. (1.14). 

3.4.4 Modified Fuzzy Least Square Iterative Method for PTrFFSME 

In this section, the approximated fuzzy solution to the PTrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃  in 

Eq. (1.14) is obtained by modifying the FLSIM in Section 3.3.3. The development of 



 

169 

 

the modified FLSIM (MFLIM) is similar to the MFGIM method in Section 3.4.3. 

However, in order to improve the convergence rate of the FGIM algorithm in Eq. (3.71), 

the least-square term of the coefficients in Eq. (3.55) should be added to the MFGIM 

algorithm obtained in Eq. (3.71). Therefore, by Theorem 2.9.4 and Eq. (3.38), the 

following can be obtained:  For 1 ≤ 𝑙 ≤ 4 we have: 

𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) +
𝛼𝑙

2
(((𝑎(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

∙ (𝑎(𝑙))
𝑇

(𝑠𝑙(𝑘 − 1))) +

(𝑠𝑙(𝑘 − 1))(𝑑(𝑙))
𝑇
((𝑑(𝑙)(𝑑(𝑙))

𝑇
)−1).                                                                          (3.78)                                                                                                                                                                                                                                                                  

The convergence rate (step size) is given by, 

0 < 𝛼𝑙 < 2.                                                                    (3.79) 

As step 𝑘 − 𝑡ℎ of the iteration, the following error is considered: 

𝛿(𝑙)(𝑘) = ‖𝑠𝑙(𝑘 − 1)‖2. 

The obtained numerical solution in Eq. (3.38) can be expressed as, 

𝑥̂ = (𝑥̂(1), 𝑥̂(2), 𝑥̂(3), 𝑥̂(4)). 

It can also be written in matrix form as, 

𝑋̂ = (

(𝑥̂11
(1), 𝑥̂11

(2), 𝑥̂11
(3), 𝑥̂11

(4)) ⋯ (𝑥̂1𝑛
(1), 𝑥̂1𝑛

(2), 𝑥̂1𝑛
(3), 𝑥̂1𝑛

(4))

⋮ ⋱ ⋮

(𝑥̂𝑝1
(1), 𝑥̂𝑝1

(2), 𝑥̂𝑝1
(3), 𝑥̂𝑝1

(4)) … (𝑥̂𝑝𝑛
(1), 𝑥̂𝑝𝑛

(2), 𝑥̂𝑝𝑛
(3), 𝑥̂𝑝𝑛

(4))

).                            (3.80) 

In the following Theorem 3.4.4.1, we prove that the numerical solution obtained by the 

FLSIM method converges to the positive solution of the PTrFFSME for any initial 

value. 

Theorem 3.4.4.1: If the system of SME in Eq. (3.55) has a unique positive solution 

𝑥(𝑙), then the numerical solution 𝑥̂(𝑙)(𝑘) in Eq. (3.78) by the MFLSIM converges to 

𝑥(𝑙) for any initial values 𝑥̂(𝑙)(0) (i.e. if 𝑘 → ∞, then 𝑥(𝑙) = 𝑥̂(𝑙)(𝑘). 

Proof: Let, 𝜓(𝑘) be the error at each 𝑘, for 𝑘 = 1,… , 𝑛 and for 1 ≤ 𝑙 ≤ 4. 
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𝜓(𝑘) = 𝑥(𝑙) − 𝑥̂(𝑙)(𝑘)                                                       (3.81) 

From Eq. (3.51), Eq. (3.78) and Eq. (3.81), the following is obtained: 

𝜓(𝑘) = 𝜓(𝑘 − 1) +
𝛼𝑙

2
(((𝑎(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

(𝑎(𝑙))
𝑇

(−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 − 1)𝑑(𝑙)) +

(−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 − 1)𝑑(𝑙))(𝑑(𝑙))
𝑇
(𝑑(𝑙)(𝑑(𝑙))

𝑇
)−1).                                     (3.82)                                                                                                                      

Taking ‖. ‖2 to both sides of Eq. (3.82) give: 

‖𝜓(𝑘)‖2 = ‖𝜓(𝑘 − 1) +
𝛼𝑙

2
(((𝑎(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

(𝑎(𝑙))
𝑇

(−𝑎(𝑙)𝜓(𝑘 − 1) −

𝜓(𝑘 − 1)𝑑(𝑙)) + (−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 − 1)𝑑(𝑙))(𝑑(𝑙))
𝑇
(𝑑(𝑙)(𝑑(𝑙))

𝑇
)−1)‖

2

.   

                                                                                                                               (3.83)                              

Applying the following formula to Eq. (3.83), we get, 

‖𝐴(𝑋 + ((𝐴)𝑇 ∙ 𝐴)−1𝑌‖2 = 𝑡𝑟((𝑋 + ((𝐴)𝑇 ∙ 𝐴)−1𝑌)𝑇(𝑋 + ((𝐴)𝑇 ∙ 𝐴)−1𝑌)).   

                                           = ‖𝐴𝑋‖2 + 2𝑡𝑟(𝑋𝑇𝑌) + ‖𝐴((𝐴)𝑇 ∙ 𝐴)−1𝑌‖2. 

‖𝑎(𝑙)𝜓(𝑘)‖
2
= ‖𝑎(𝑙)𝜓(𝑘 − 1)‖

2
+ 𝛼𝑙 𝑡𝑟 [𝜓

𝑇(𝑘 − 1) ((𝑎(𝑙))
𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 − 1)𝑑(𝑙)) +

(−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 − 1)𝑑(𝑙))(𝑑(𝑙))
𝑇
)] +

𝛼𝑙
2

4
‖(((𝑎(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

(𝑎(𝑙))
𝑇

𝑎(𝑙)(−𝑎(𝑙)𝜓(𝑘 − 1) −

𝜓(𝑘 − 1)𝑑(𝑙)) + (−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 − 1)𝑑(𝑙))𝑑(𝑙)(𝑑(𝑙))
𝑇
(𝑑(𝑙)(𝑑(𝑙))

𝑇
)−1)‖

2

. 

Applying norm properties, we get: 

‖𝑎(𝑙)𝜓(𝑘)‖
2
≤ ‖𝑎(𝑙)𝜓(𝑘 − 1)‖

2
+ 2𝛼𝑙𝑡𝑟 [𝜓

𝑇(𝑘 − 1) ((𝑎(𝑙))
𝑇
(−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 − 1)𝑑(𝑙)) +

(−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 − 1)𝑑(𝑙))(𝑑(𝑙))
𝑇
)] +

𝛼𝑙
2

4
‖(((𝑎(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

(𝑎(𝑙))
𝑇

𝑎(𝑙)(−𝑎(𝑙)𝜓(𝑘 − 1) −

𝜓(𝑘 − 1)𝑑(𝑙)) + (−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 − 1)𝑑(𝑙))𝑑(𝑙)(𝑑(𝑙))
𝑇
(𝑑(𝑙)(𝑑(𝑙))

𝑇
)−1)‖

2

,  

 

which can be written as, 
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‖𝑎(𝑙)𝜓(𝑘)‖
2
≤ ‖𝑎(𝑙)𝜓(𝑘 − 1)‖

2
+ 2𝛼𝑙 𝑡𝑟 [(𝜓

𝑇(𝑘 − 1)(𝑎(𝑙))
𝑇
+𝜓𝑇(𝑘 − 1)(𝑑(𝑙))

𝑇
)(−𝑎(𝑙)𝜓(𝑘 −

1) − 𝜓(𝑘 − 1)𝑑(𝑙))] +
𝛼𝑙
2

4
‖(((𝑎(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

(𝑎(𝑙))
𝑇

𝑎(𝑙)(−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 − 1)𝑑(𝑙)) +

(−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 − 1)𝑑(𝑙))𝑑(𝑙)(𝑑(𝑙))
𝑇
(𝑑(𝑙)(𝑑(𝑙))

𝑇
)−1)‖

2

.  

 

Applying norm properties, we get: 

‖𝑎(𝑙)𝜓(𝑘)‖
2
≤ ‖𝑎(𝑙)𝜓(𝑘 − 1)‖

2
+ 𝛼𝑙  𝑡𝑟 [(𝜓

𝑇(𝑘 − 1)(𝑎(𝑙))
𝑇
(𝑏(𝑙))

𝑇
+ 𝜓𝑇(𝑘 −

1)(𝑑(𝑙))
𝑇
)(−𝑎(𝑙)𝜓(𝑘 − 1) − 𝜓(𝑘 − 1)𝑑(𝑙))] +

𝛼𝑙
2

2
‖𝑎(𝑙)𝜓(𝑘 − 1) + 𝑐(𝑙)𝜓(𝑘 − 1)𝑑(𝑙)‖

2
. 

And since ‖𝐴‖2 = 𝑡𝑟[(𝐴)𝑇𝐴] then,  

‖𝑎(𝑙)𝜓(𝑘)‖
2
≤ ‖𝑎(𝑙)𝜓(𝑘 − 1)‖

2
− 𝛼𝑙‖𝑎

(𝑙)𝜓(𝑘 − 1) + 𝜓(𝑘 − 1)𝑑(𝑙)‖
2
+

𝛼𝑙
2

2
‖𝑎(𝑙)𝜓(𝑘 − 1) + 𝜓(𝑘 − 1)𝑑(𝑙)‖

2
. 

 

‖𝜓(𝑘)‖2 ≤ ‖𝜓(𝑘 − 1)‖2 − 𝛼𝑙(1 −
𝛼𝑙

2
)‖𝑎(𝑙)𝜓(𝑘 − 1) + 𝜓(𝑘 − 1)𝑑(𝑙)‖

2
. 

At 𝑘 = 1                     ‖𝜓(1)‖2 ≤ ‖𝜓(0)‖2 − 𝛼𝑙(1 −
𝛼𝑙

2
)‖𝑎(𝑙)𝜓(0) + 𝜓(0)𝑑(𝑙)‖

2
 

At 𝑘 = 2                       ‖𝜓(2)‖2 ≤ ‖𝜓(1)‖2 − 𝛼𝑙(1 −
𝛼𝑙

2
)‖𝑎(𝑙)𝜓(1) + 𝜓(1)𝑑(𝑙)‖

2
. 

At 𝑘 = 3                       ‖𝜓(3)‖2 ≤ ‖𝜓(2)‖2 − 𝛼𝑙(1 −
𝛼𝑙

2
)‖𝑎(𝑙)𝜓(2) + 𝜓(2)𝑑(𝑙)‖

2
 

At 𝑘 = 𝑛 − 1              ‖𝜓(𝑛 − 1)‖2 ≤ ‖𝜓(𝑛 − 2)‖2 − 𝛼𝑙(1 −
𝛼𝑙

2
)‖𝑎(𝑙)𝜓(𝑛 − 2) +

𝜓(𝑛 − 2)𝑑(𝑙)‖
2
 

At 𝑘 = 𝑛                      ‖𝜓(𝑛)‖2 ≤ ‖𝜓(𝑛 − 1)‖2 − 𝛼𝑙(1 −
𝛼𝑙

2
)‖𝑎(𝑙)𝜓(𝑛 − 1) +

𝜓(𝑛 − 1)𝑑(𝑙)‖
2
 

Consequently,           ‖𝜓(𝑘)‖2 ≤ ‖𝜓(0)‖2 − 𝛼𝑙(1 −
𝛼𝑙

2
)∑ (‖𝑎(𝑙)𝜓(𝑘) +𝑛

𝑘=1

𝜓(𝑘)𝑑(𝑙)‖
2
) 
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‖𝜓(𝑘)‖2 ≤ ‖𝜓(0)‖2 − 𝛼𝑙(1 −
𝛼𝑙
2
)∑(‖𝑎(𝑙)𝜓(𝑘) + 𝜓(𝑘)𝑑(𝑙)‖

2
)

𝑛

𝑘=1

 

if the convergence rate α is chosen to satisfy   0 < 𝛼𝑙 < 2   and 𝑛 → ∞, then 

∑(‖𝑎(𝑙)𝜓(𝑘) + 𝜓(𝑘)𝑑(𝑙)‖
2
) < ∞

∞

𝑘=1

 

Then 𝑙𝑖𝑚
𝑘→∞

(𝑎(𝑙)𝜓(𝑘) + 𝜓(𝑘)𝑑(𝑙)) = 0 

Since 𝑎(𝑙) > 0 𝑎𝑛𝑑 𝑑(𝑙) > 0 then, 𝑙𝑖𝑚
𝑘→∞

𝜓(𝑘) = 0 and therefore, 

𝑙𝑖𝑚
𝑘→∞

(𝑥(𝑙) − 𝑥̂(𝑙)(𝑘)) = 0. 

Consequently, if 𝑛 → ∞, then 𝑥(𝑙) = 𝑥̂(𝑙)(𝑘). Thus, the system of SME in Eq. (3.55) 

has a unique positive solution 𝑥(𝑙), then the numerical solution 𝑥̂(𝑙)(𝑘) in Eq. (3.82) 

by the MFLSIM converges to 𝑥(𝑙) for any initial values 𝑥̂(𝑙)(0), (i.e., if 𝑘 → ∞, then 

𝑥(𝑙) = 𝑥̂(𝑙)(𝑘)) for 1 ≤ 𝑙 ≤ 4. 

□ 
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Below is the Algorithm 3.4 for the MFLSIM. This algorithm can be used by different 

software for solving the PTrFFSME in Eq. (1.14). 

Algorithm 3.4: Modified Fuzzy Least-Square Algorithm for PGTrFFSME. 

Input 𝐴̃, 𝐷̃ and 𝐸̃  # Split each matrix into four matrices (e.g., 𝑎(1), 𝑎(2), 𝑎(3), 𝑎(4)) 

for l = 1,2,3,4 

Choose 𝛼𝑙, 𝜀, 𝑥̂(𝑙)(𝑘) = 0   # 0 is the Zero matrix with the same dimension as 𝑥(𝑙)(𝑘) 

While 𝑘 = 0, 1, 2, … , 𝑛 do 

𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) +
𝛼𝑙

2
(((𝑎(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

∙ (𝑎(𝑙))
𝑇

(𝑠𝑙(𝑘 − 1))) + (𝑠𝑙(𝑘 −

1))(𝑑(𝑙))
𝑇
((𝑑(𝑙)(𝑑(𝑙))

𝑇
)−1).   

        𝑠(𝑙)(𝑘 − 1) = 𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑏(𝑙) − 𝑐(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑑(𝑙). 

          𝛿(𝑙)(𝑘) = ‖𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘) − 𝑥̂(𝑙)(𝑘)𝑑(𝑙)‖
2

. 

      If  𝛿(𝑙)(𝑘) < 𝜀 then  

             𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘)); 

             𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

     else         

 

 𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) +
𝛼𝑙

2
(((𝑎(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

∙ (𝑎(𝑙))
𝑇

(𝑠𝑙(𝑘 − 1))) + (𝑠𝑙(𝑘 −

1))(𝑑(𝑙))
𝑇
((𝑑(𝑙)(𝑑(𝑙))

𝑇
)−1).  

          update k.  

           𝑘 = 𝑘 + 1 

       end 

              𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘)), 

        𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

end  
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In the following Example 3.4.4.1, the analytical fuzzy solution to the given PTrFFSME in 

Example 3.4.1.1 is approximated numerically by the MFGIM and the MFLSIM in Section 

3.4.3 and Section 3.4.4, respectively. 

Example 3.4.4.1 Consider the following PTrFFSME: 

(
(2, 4, 5, 9) (1, 2, 4, 5)
(1, 3, 5, 6) (4, 6, 7, 8)

) ∙ (
(𝑥11

(1), 𝑥11
(2), 𝑥11

(3), 𝑥11
(4)) (𝑥12

(1), 𝑥12
(2), 𝑥12

(3), 𝑥12
(4))

(𝑥21
(1), 𝑥21

(2), 𝑥21
(3), 𝑥21

(4)) (𝑥22
(1), 𝑥22

(2), 𝑥22
(3), 𝑥22

(4))
) 

+(
(𝑥11

(1), 𝑥11
(2), 𝑥11

(3), 𝑥11
(4)) (𝑥12

(1), 𝑥12
(2), 𝑥12

(3), 𝑥12
(4))

(𝑥21
(1), 𝑥21

(2), 𝑥21
(3), 𝑥21

(4)) (𝑥22
(1), 𝑥22

(2), 𝑥22
(3), 𝑥22

(4))
) ∙ (

(3, 6, 7, 9) (1, 3, 5, 6)
(1, 5, 6, 8) (4, 7, 9, 10)

) 

= (
(10, 50, 108, 183) (10, 39, 101, 166)
(32, 89, 139, 211) (29, 73, 130, 198)

). 

Solution: 

The analytical positive fuzzy solution to the given PTrFFSME obtained by the MFMVM 

and FBSM in Eq. (3.65) is: 

𝑋̃ = (
(1, 3, 5, 6) (1, 2, 4, 5)
(4, 5, 6, 7) (3, 4, 5, 7)

). 

This positive fuzzy solution is approximated using the MFGIM algorithm in Eq. (3.71) and 

the MFLSI algorithm in Eq. (3.78) as follows:  

 For 1 ≤ 𝑙 ≤ 4, let 𝑥̂(𝑙) = (
0 0
0 0

). The approximated solution of 𝑋̃ is shown in Table 3.7 

with the convergence rate (𝛼), error bound (𝜀), and the total number of iteration (𝑘).  
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Table 3.7  

Comparison Between MFMVM, FBSM, MFGIM and MFLSIM for Example 3.4.4.1. 

 Method Analytical Solution and 

Approximated Solution 

𝜶 𝜺 𝒌 

𝑥̂(1) MFMVM 

FBSM 
(
1 1
4 3

) NA 0 NA 

MFGIM (
1.0012371986 0.99923606220
3.9994874013 3.00031651628

) 0.00004 10−5 875 

MFLSIM (
0.9999977991 0.99999620789
3.9999936200 2.99999149093

) 0.09 10−5 28 

𝑥̂(2) MFMVM 

FBSM 
(
3 2
5 4

) NA 0 NA 

MFGIM (
2.9969862374 2.0023811684
5.0019342637 3.9984994743

) 0.00009 10−5 922 

MFLSIM (
2.9999953731 1.9999965941
4.9999926972 3.9999930211

) 0.09 10−5 28 

𝑥̂(3) MFMVM 

FBSM 
(
5 4
6 5

) NA 0 NA 

MFGIM (
4.9954821314 4.00357501
6.0038532854 4.99695837

) 0.00009 10−5 1428 

MFLSIM (
4.9999953637 3.9999950151
5.9999936406 4.9999929581

) 0.09 10−4 29 

𝑥̂(4) MFMVM 

FBSM 
(
6 5
7 7

) NA 0 NA 

MFGIM (
5.9979551954 5.0017600723
7.0023468830 6.9979864717

) 0.00008 10−4 1730 

MFLSIM (
5.9999908311 4.9999921331
6.9999916765 6.9999914519

) 0.09 10−4 29 

 

Meanwhile Table 3.8 shows the computational time and memory usage needed for MFGIM 

and MFLSIM. 
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Table 3.8  

Comparison Between Computational Time, Memory Usage for MFGIM and MFLSIM for 

Example 3.4.4.1. 

 Method 𝒌 CPU 

time 

Real 

time 

Memory 

usage 

𝑥̂(1) MFGIM 875 6.04 ms 6.81 ms 1.09 MB 

MFLSIM 28 9.46 ms 9.93 ms 2.01 MB 

𝑥̂(2) MFGIM 922 6.05 ms 5.88 ms 1.09 MB 

MFLSIM 28 10.61 ms 9.79 ms 1.22 MB 

𝑥̂(3) MFGIM 1428 5.96 ms 5.93 ms 1.09 MB 

MFLSIM 29 5.93 ms 5.93 ms 1.22 MB 

𝑥̂(4) MFGIM 1730 5.91 ms 5.83 ms 1.09 MB 

MFLSIM 29 5.93 ms 6.00 ms 1.22 MB 

 

The following Figure 3.11 shows the change in the error 𝛿(𝑙)(𝑘) when 𝑘 increases up to 

𝑘 = 20.  
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(a) (b) 

(c) (d) 

Figure 3.11. Comparison between the error of MFGIM and MFLSIM for the first 20 

iterations for Example 3.4.4.1. 
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Tables 3.7, 3.8 and Figure 3.11 show that the error 𝛿(𝑙)(𝑘) is reducing as 𝑘 increases. 

Figure 3.11 show that the error of the MFGIM and MFLSIM for approximating 𝑥̂(𝑙) is 

reducing significantly as 𝑘 increasing, where the MFLSIM converges to the analytical 

solution for a fewer number of iterations with a bigger step size compared to the MFGIM. 

This indicates that the developed algorithms are effective and convergent for the given 

PTrFFSME. In addition, the MFLSIM takes more computational timing and more memory 

compared to the MFGIM. However, in terms of accuracy, error, the number of iterations, 

MFLSIM provide extremely accurate approximations with very few iterations. 

3.5 Solution of Other Positive Fuzzy Matrix Equations 

In this section, the methods of FMVM, FGIM and FLSIM in Sections 3.3.1, 3.3.2 and 3.3.3, 

respectively, for solving the PGTrFFSME in Eq. (1.16) are modified and applied to other 

positive fuzzy equations, including the continuous-time Lyapunov fully fuzzy matrix 

equation, Stein fully fuzzy matrix equation and fully fuzzy matrix equation.  

In the following Definition 3.5.1, the continuous-time Lyapunov fully fuzzy matrix 

equation is introduced. 

Definition 3.5.1 If 𝐵̃ and 𝐶̃ are identity fuzzy matrices and 𝐷̃ = 𝐴̃𝑇. Then the GTrFFSME 

in Eq. (1.16) can be written as 

𝐴̃𝑋̃ + 𝑋̃𝐴̃𝑇 = 𝐸̃,                                                            (3.85)  

where, 𝐴̃ = (𝑎̃𝑖𝑗)𝑝×𝑝, 𝐴̃𝑇 = (𝑎̃𝑖𝑗
𝑇)𝑝×𝑝, 𝑋̃ = (𝑥̃𝑖𝑗)𝑝×𝑝 and 𝐸̃ = (𝑒̃𝑖𝑗)𝑝×𝑝 is called fully 

fuzzy continuous-time Lyapunov matrix equation (FFCTLME).  
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Definition 3.5.2 If 𝐴̃ and 𝐵̃ are identity fuzzy matrices, then the GTrFFSME in Eq. (1.16) 

can be written as 

𝑋̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃,                                                                 (3.86)  

where 𝐶̃ = (𝑐̃𝑖𝑗)𝑝×𝑝, 𝐷̃ = (𝑑̃𝑖𝑗)𝑛×𝑛, 𝑋̃ = (𝑥̃𝑖𝑗)𝑝×𝑛 and 𝐸̃ = (𝑒̃𝑖𝑗)𝑝×𝑛 is called a Fully 

Fuzzy Stein Matrix Equation (FFStME).  

In the following Sections 3.5.1, 3.5.2, 3.5.3 and 3.5.4, the methods of FMVM, FGIM and 

FLSIM in Sections 3.3.1, 3.3.2 and 3.3.3, respectively, are modified and applied to the 

fuzzy equations in Eq. (1.11), Eq. (1.12), Eq. (3.85) and Eq. (3.86) respectively.  

3.5.1 Solving the Positive Trapezoidal Fully Fuzzy Matrix Equation  

In this section, the positive TrFFME 𝐴̃𝑋̃ = 𝐸̃ in Eq. (1.11) is solved analytically by 

modifying the FMVM in Section 3.3.1 and numerically by modifying the FGIM and 

FLSIM in Sections 3.3.2 and 3.3.3, respectively.  

 

In the following Definition 3.5.1.1, the positive TrFFME is introduced. 

Definition 3.5.1.1. A matrix equation FFME 𝐴̃𝑋̃ = 𝐸̃, is called Positive Trapezoidal Fully 

Fuzzy Matrix Equations (PTrFFME) if 

 𝐴̃ = (𝑎̃𝑖𝑗)𝑚×𝑛 = (𝑎𝑖𝑗
(1), 𝑎𝑖𝑗

(2), 𝑎𝑖𝑗
(3), 𝑎𝑖𝑗

(4)), ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑚, 𝑛, 

 𝑋̃ = (𝑥̃𝑖𝑗)𝑛×𝑟 = (𝑥𝑖𝑗
(1), 𝑥𝑖𝑗

(2), 𝑥𝑖𝑗
(3), 𝑥𝑖𝑗

(4)), ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑟 and 

 𝐸̃ = (𝑒̃𝑖𝑗)𝑚×𝑟 = (𝑒𝑖𝑗
(1), 𝑒𝑖𝑗

(2), 𝑒𝑖𝑗
(3), 𝑒𝑖𝑗

(4)) ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑚, 𝑟, are positive trapezoidal fuzzy 

matrices, respectively. 

In the following Definition 3.5.1.2, the system of LME is introduced. 
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Definition 3.5.1.2. A system of matrix equations in the form 

{
 
 

 
 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1) = 𝑒𝑖𝑗

(1)
,

𝑎𝑖𝑗
(2)
𝑥𝑖𝑗
(2)
= 𝑒𝑖𝑗

(2)
,

𝑎𝑖𝑗
(3)
𝑥𝑖𝑗
(3)
= 𝑒𝑖𝑗

(3)
,

𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
= 𝑒𝑖𝑗

(4)
.

  

is called a system of LME. 

In the following Theorem 3.5.1.1, the PTrFFME 𝐴̃𝑋̃ = 𝐸̃ in Eq. (1.11) is converted to an 

equivalent system of LME. 

Theorem 3.5.1.1. Suppose that 𝐴̃, 𝐸̃ and 𝑋̃ are positive trapezoidal fuzzy matrices, then 

the PTrFFME 𝐴̃𝑋̃ = 𝐸̃ is equivalent to the following system of LME: 

{
 
 

 
 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1) = 𝑒𝑖𝑗

(1)
,

𝑎𝑖𝑗
(2)
𝑥𝑖𝑗
(2)
= 𝑒𝑖𝑗

(2)
,

𝑎𝑖𝑗
(3)
𝑥𝑖𝑗
(3)
= 𝑒𝑖𝑗

(3)
,

𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
= 𝑒𝑖𝑗

(4)
.

                                                    (3.87) 

Proof: Let 𝐴̃, 𝐸̃ and 𝑋̃ in the PTrFFME 𝐴̃𝑋̃ = 𝐸̃ be positive trapezoidal fuzzy matrices, 

then by RAMO in Eq. (3.2), the product 𝐴̃𝑋̃ is  

𝐴̃𝑋̃ = (𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(2)
𝑥𝑖𝑗
(2)
, 𝑎𝑖𝑗
(3)
𝑥𝑖𝑗
(3)
, 𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
). 

By Definition 2.3.3.2.5 and Eq. (2.9), the PTrFFME 𝐴̃𝑋̃ = 𝐸̃ is equivalent to the following 

system of LME: 

                                                         

{
 
 

 
 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1) = 𝑒𝑖𝑗

(1)
,

𝑎𝑖𝑗
(2)
𝑥𝑖𝑗
(2)
= 𝑒𝑖𝑗

(2)
,

𝑎𝑖𝑗
(3)
𝑥𝑖𝑗
(3)
= 𝑒𝑖𝑗

(3)
,

𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
= 𝑒𝑖𝑗

(4)
.

 

□ 
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In the following Remark 3.5.1.1, the system of LME obtained in Eq. (3.87) is written in a 

general form. 

Remark 3.5.1.1: Based on Eq. (3.87), the system of LME can be written as follows:  

for 1 ≤ 𝑙 ≤ 4 we have: 

𝑎𝑖𝑗
(𝑙)𝑥𝑖𝑗

(𝑙) = 𝑒𝑖𝑗
(𝑙).                                                                  (3.88)                                                                         

Since the PTrFFME in Eq. (1.11) is a special case of the PGTrFFSME in Eq. (1.16), and 

the system of LME in Eq. (3.87) is a special case of the system of GSME in Eq. (3.20). 

Thus, the existence and uniqueness of the positive fuzzy solution to the PTrFFME can be 

proved similar to PGTrFFSME in Section 3.3.1. In the following Theorem 3.5.1.1, the 

uniqueness of the positive solution to the system of LME is proved. 

Theorem 3.5.1.1 Uniqueness of Positive Solution to System of LME 

The system of LME in Eq. (3.87) has a unique positive solution if the following conditions 

are satisfied:  

I) 𝑑𝑒𝑡(𝑟1) ≠ 0, 𝑑𝑒𝑡(𝑟2) ≠ 0, 𝑑𝑒𝑡(𝑟3) ≠ 0 and𝑑𝑒𝑡(𝑟4) ≠ 0, i.e., 𝑟1, 𝑟2, 𝑟3 and 𝑟4 are 

invertible matrices where  

𝑟1 = (𝐼𝑖𝑗
(1))𝑇⨂𝑎𝑖𝑗

(1)
, 

𝑟2 = (𝐼𝑖𝑗
(2))𝑇⨂𝑎𝑖𝑗

(2)
. 

𝑟3 = (𝐼𝑖𝑗
(3))𝑇⨂𝑎𝑖𝑗

(3)
. 

𝑟4 = (𝐼𝑖𝑗
(4))𝑇⨂𝑎𝑖𝑗

(4)
. 

II) 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 and 𝑟4

−1 > 0. 

 

Proof: The proof of this theorem is similar to the proof of Theorem 3.3.2. 

□ 
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Now, we will proceed to the solution of the PTrFFME by modifying the FMVM, FGIM 

and FLSIM in Sections 3.3.1, 3.3.2 and 3.3.3, respectively. The methods are discussed in 

the following Sections. 

3.5.1.1 Modified Fuzzy Matrix Vectorization Method for PTrFFME 

In this section, the FMVM in Section 3.3.1 for the PGTrFFSME in Eq. (1.16) is modified 

and applied to the PTrFFME 𝐴̃𝑋̃ = 𝐸̃ in Eq. (1.11). The detail of the MFMVM is presented 

in the following steps. 

Step1: Decomposing  𝐴̃, 𝑋̃ and 𝐸̃ into 𝑎𝑖𝑗
(𝑙)

, 𝑥𝑖𝑗
(𝑙)

 and 𝑒𝑖𝑗
(4)

 respectively and convert the 

PTrFFME in Eq. (1.11) to the system of linear matrix equations in Eq. (3.87) using 

Theorem 3.5.1.1. 

Step 2: Applying the Vec-operator and Kronecker product on Eq. (3.60) gives:                       

{
  
 

  
 (𝐼𝑖𝑗

(1)⨂𝑎𝑖𝑗
(1))𝑣𝑒𝑐(𝑥𝑖𝑗

(1)) = 𝑣𝑒𝑐(𝑒𝑖𝑗
(1)),

(𝐼𝑖𝑗
(2)⨂𝑎𝑖𝑗

(2))𝑣𝑒𝑐(𝑥𝑖𝑗
(2)) = 𝑣𝑒𝑐(𝑒𝑖𝑗

(2)),

(𝐼𝑖𝑗
(3)⨂𝑎𝑖𝑗

(3))𝑣𝑒𝑐(𝑥𝑖𝑗
(3)) = 𝑣𝑒𝑐(𝑒𝑖𝑗

(3)),

(𝐼𝑖𝑗
(4)⨂𝑎𝑖𝑗

(4))𝑣𝑒𝑐(𝑥𝑖𝑗
(4)) = 𝑣𝑒𝑐(𝑒𝑖𝑗

(4)),

                                               (3.89) 

Step 3: Multiplying the system of LME in Eq. (3.89) by matrix multiplicative inverse as 

follows: 

{
 
 
 

 
 
 𝑣𝑒𝑐(𝑥𝑖𝑗

(1)) = (𝐼𝑖𝑗
(1)⨂𝑎𝑖𝑗

(1))
−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(1)),

𝑣𝑒𝑐(𝑥𝑖𝑗
(2)) = (𝐼𝑖𝑗

(2)⨂𝑎𝑖𝑗
(2))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(2)),

𝑣𝑒𝑐(𝑥𝑖𝑗
(3)) = (𝐼𝑖𝑗

(3)⨂𝑎𝑖𝑗
(3))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(3)),

𝑣𝑒𝑐(𝑥𝑖𝑗
(4)) = (𝐼𝑖𝑗

(4)⨂𝑎𝑖𝑗
(4))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(4)).

                                           (3.90) 

Step 4: Multiplying the system of matrix equations in Eq. (3.90) by 𝑣𝑒𝑐−1 as follows: 
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{
 
 
 

 
 
 𝑥𝑖𝑗

(1) = 𝑣𝑒𝑐−1(𝐼𝑖𝑗
(1)⨂𝑎𝑖𝑗

(1))
−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(1))),

𝑥𝑖𝑗
(2) = 𝑣𝑒𝑐−1(𝐼𝑖𝑗

(2)⨂𝑎𝑖𝑗
(2))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(2))),

𝑥𝑖𝑗
(3) = 𝑣𝑒𝑐−1(𝐼𝑖𝑗

(3)⨂𝑎𝑖𝑗
(3))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(3))),

𝑥𝑖𝑗
(4) = 𝑣𝑒𝑐−1(𝐼𝑖𝑗

(4)⨂𝑎𝑖𝑗
(4))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(4))).

                                          (3.91) 

Step 5: Combining the positive fuzzy solutions obtained in Step 4 and write it as a 

trapezoidal fuzzy matrix as follows: 

𝑋̃ = (

(𝑥11
(1), 𝑥11

(2), 𝑥11
(3), 𝑥11

(4)) ⋯ (𝑥1𝑟
(1), 𝑥1𝑟

(2), 𝑥1𝑟
(3), 𝑥1𝑟

(4))

⋮ ⋱ ⋮

(𝑥𝑛1
(1), 𝑥𝑛1

(2), 𝑥𝑛1
(3), 𝑥𝑛1

(4)) … (𝑥𝑛𝑟
(1), 𝑥𝑛𝑟

(2), 𝑥𝑛𝑟
(3), 𝑥𝑛𝑟

(4))

).                (3.92) 

In the following Remark 3.5.1.1.1, the solution to the system of LME in step 4 is written 

in a general form. 

Remark 3.5.1.1.1: The positive fuzzy solution in Eq. (3.91) to the PTrFFME in Eq. (1.11) 

can be written as follows: For 1 ≤ 𝑙 ≤ 4 we have: 

𝑥𝑖𝑗
(𝑙) = 𝑣𝑒𝑐−1(((𝐼𝑖𝑗

(𝑙))𝑇⨂𝑎𝑖𝑗
(𝑙))−1𝑣𝑒𝑐(𝑒𝑖𝑗

(𝑙))).                                       (3.93) 

The equivalency between the solution to the system of LME in Eq. (3.87) and the positive 

fuzzy solution to the PTrFFME in Eq. (1.11) is discussed in the following Theorem 

3.5.1.1.1. 

Theorem 3.5.1.1.1. The positive solution to the system of LME and the positive fuzzy 

solution to the PTrFFME are equivalent if the following conditions are satisfied: 

I) 𝑑𝑒𝑡(𝑟1) ≠ 0, 𝑑𝑒𝑡(𝑟2) ≠ 0, 𝑑𝑒𝑡(𝑟3) ≠ 0 and𝑑𝑒𝑡(𝑟4) ≠ 0 i.e 𝑟1, 𝑟2, 𝑟3 and 𝑟4 are 

invertible matrices. 

II) 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 𝑎𝑛𝑑 𝑟4

−1 > 0. 

III) 𝑟1
−1𝑡1 > 0, 𝑟2

−1𝑡2 > 0, 𝑟3
−1𝑡3 > 0 and 𝑟4

−1𝑡4 > 0.    
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IV) 𝑟1
−1𝑡1 ≤ 𝑟2

−1𝑡2 ≤ 𝑟3
−1𝑡3 ≤ 𝑟4

−1𝑡4. 

Proof: The proof of this theorem can be obtained similar to the proof of Theorem 3.3.1.1. 

□ 

The following Corollary 3.5.1.1.1 discusses the uniqueness of the positive solution to the 

PTrFFME. 

Corollary 3.5.1.1.1. The Uniqueness of Fuzzy Solution to PTrFFME 

The PTrFFME has a unique positive fuzzy solution if the corresponding system of LME in 

Eq. (3.87) has a unique positive solution.  

Proof: The proof of this corollary is similar to the proof of Corollary 3.3.1.1. 

□ 

In the following Corollary 3.5.1.1.2, the sufficient conditions for the PTrFFME to have a 

positive fuzzy solution are discussed. 

Corollary 3.5.1.1.2. Existence of Positive Fuzzy Solution to PTrFFME 

The PTrFFME has a positive fuzzy solution if: 

I) 𝑑𝑒𝑡(𝑟1) ≠ 0, 𝑑𝑒𝑡(𝑟2) ≠ 0, 𝑑𝑒𝑡(𝑟3) ≠ 0 and𝑑𝑒𝑡(𝑟4) ≠ 0 i.e 𝑟1, 𝑟2, 𝑟3 and 𝑟4 are 

invertible matrices, 

II) 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 𝑎𝑛𝑑 𝑟4

−1 > 0, 

III) 𝑟1
−1𝑡1 > 0, 𝑟2

−1𝑡2 > 0, 𝑟3
−1𝑡3 > 0 and 𝑟4

−1𝑡4 > 0, 

V) 𝑟1
−1𝑡1 ≤ 𝑟2

−1𝑡2 ≤ 𝑟3
−1𝑡3 ≤ 𝑟4

−1𝑡4. 

Proof: The proof of this corollary is similar to Corollary 3.3.1.2. 

□ 
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The positive fuzzy solution in Eq. (3.92) to the PTrFFME in Eq. (1.11) can be 

approximated numerically by modifying the FGIM in Section 3.3.2 as discussed in the 

following Section 3.5.1.2. 

3.5.1.2 Modified Fuzzy Gradient-Iterative Method for PTrFFME 

In this section, the positive fuzzy solution in Eq. (3.92) to the PTrFFME 𝐴̃𝑋̃ = 𝐸̃ in  

Eq. (1.11) is approximated numerically by modifying the FGIM method in Section 3.3.2 

and applying it to the system of LME in Eq. (3.87). The algorithm for solving the PTrFFME 

is obtained directly from the algorithm in Eq. (3.38) as follows: for 1 ≤ 𝑙 ≤ 4 we have: 

𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) + 𝛼𝑙 ((𝑎
(𝑙))

𝑇
(𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1))).                (3.94)                                                                                                                                                                                                                                       

where the convergence rate (step size) is given by, 

0 < 𝛼𝑙 <
2

𝜆𝑚𝑎𝑥 [(𝐴
(𝑙))𝑇𝐴(𝑙)]

.                                                  (3.95𝑎) 

It can also be obtained as follows,  

0 < 𝛼𝑙 <
2

‖𝑎(𝑙)‖2
.                                                                    (3.95𝑏) 

where, ‖𝑎(𝑙)‖
2
= 𝑇𝑟[𝑎(𝑙) ∙ (𝑎(𝑙))

𝑇
]. 

At step 𝑘 − 𝑡ℎ of the iteration, the following error is considered: 

𝛿(𝑙)(𝑘) = ‖𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘)‖
2
.                                     (3.96) 

The obtained numerical solution in Eq. (3.94) can be expressed as, 

𝑥̂ = (𝑥̂(1), 𝑥̂(2), 𝑥̂(3), 𝑥̂(4)). 

It can also be written in matrix form as, 
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𝑋̂ = (

(𝑥̂11
(1), 𝑥̂11

(2), 𝑥̂11
(3), 𝑥̂11

(4)) ⋯ (𝑥̂1𝑛
(1), 𝑥̂1𝑛

(2), 𝑥̂1𝑛
(3), 𝑥̂1𝑛

(4))

⋮ ⋱ ⋮

(𝑥̂𝑝1
(1), 𝑥̂𝑝1

(2), 𝑥̂𝑝1
(3), 𝑥̂𝑝1

(4)) … (𝑥̂𝑝𝑛
(1), 𝑥̂𝑝𝑛

(2), 𝑥̂𝑝𝑛
(3), 𝑥̂𝑝𝑛

(4))

).               (3.97)   

 

In the following Theorem 3.5.1.2.1, it is proven that if the system of LME in Eq. (3.87) has 

a unique solution, then the approximated fuzzy solution in Eq. (3.94) by the MFGIM 

converges to the solution of the system of LME for any initial value. 

Theorem 3.5.1.2.1. If the system of LME in Eq. (3.87) has a unique positive solution 𝑥(𝑙), 

then the numerical solution 𝑥̂(𝑙)(𝑘) in Eq. (3.94) converges to 𝑥(𝑙) for any initial values 

𝑥̂(𝑙)(0) (i.e. if 𝑘 → ∞, then 𝑥(𝑙) = 𝑥̂(𝑙)(𝑘). 

Proof: The proof of this theorem can be obtained similar to the proof of Theorem 3.3.2.1. 

□ 

Below is the Algorithm 3.5 for the MFGIM. This algorithm can be used by different 

software for solving the PTrFFME in Eq. (1.11). 
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Algorithm 3.5: Modified Fuzzy Gradient Iterative Algorithm for PTrFFME. 

Input 𝐴̃ and 𝐸̃  # Split each matrix into four matrices (e.g., 𝑎(1), 𝑎(2), 𝑎(3), 𝑎(4)) 

for l = 1,2,3,4 

Choose 𝛼𝑙, 𝜀, 𝑥̂(𝑙)(𝑘) = 0   # 0 is the Zero matrix with the same dimension as 𝑥(𝑙)(𝑘) 

While 𝑘 = 0, 1, 2, … , 𝑛 do 

            𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) + 𝛼𝑙 ((𝑎
(𝑙))

𝑇
(𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1))). 

              𝛿(𝑙)(𝑘) = ‖𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘)‖
2

. 

        If  𝛿(𝑙)(𝑘) < 𝜀 then  

             𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘)); 

             𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

       else  

             𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) + 𝛼𝑙 ((𝑎
(𝑙))

𝑇
(𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1))), 

             update k.  

             𝑘 = 𝑘 + 1 

        end 

        𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘)), 

        𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

end  

 

The positive solution to the PTrFFME in Eq. (1.11) can also be approximated 

numerically by modifying the FLSIM in Section 3.3.3. In the following Section 3.5.1.3, 

the FLSIM in Section 3.3.3 is modified and applied to the PTrFFME in Eq. (1.11). 

3.5.1.3 Modified Fuzzy Least-Square Iterative Method for PTrFFME 

In this section, the positive fuzzy solution in Eq. (3.91) to the PTrFFME 𝐴̃𝑋̃ = 𝐸̃  in 

Eq. (1.11) is approximated numerically by modifying the FLSIM method in  

Section 3.3.3 and applying it to the system of LME in Eq. (3.87). To approximate 
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positive fuzzy solution, the obtained fuzzy solution in Eq. (3.94) by the MFGIM can be 

modified by adding the least-square term as follow: For 1 ≤ 𝑙 ≤ 4 we have: 

𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) + 𝛼𝑙 (((𝑎
(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

(𝑎(𝑙))
𝑇
(𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1))),       

                                                                                                                               (3.98)                                                                                                                                                                                                                                     

where the convergence rate (step size) is given by, 

0 < 𝛼𝑙 < 2.                                                                    (3.99) 

At step 𝑘 − 𝑡ℎ of the iteration, the following error is considered: 

𝛿(𝑙)(𝑘) = ‖𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘)‖
2
.                                    (3.100) 

The obtained numerical solution in Eq. (3.98) can be expressed as, 

𝑥̂ = (𝑥̂(1), 𝑥̂(2), 𝑥̂(3), 𝑥̂(4)). 

It can also be written in matrix form as, 

𝑥̂ = (

(𝑥̂11
(1), 𝑥̂11

(2), 𝑥̂11
(3), 𝑥̂11

(4)) ⋯ (𝑥̂1𝑟
(1), 𝑥̂1𝑟

(2), 𝑥̂1𝑟
(3), 𝑥̂1𝑟

(4))

⋮ ⋱ ⋮

(𝑥̂𝑛1
(1), 𝑥̂𝑛1

(2), 𝑥̂𝑛1
(3), 𝑥̂𝑛1

(4)) … (𝑥̂𝑛𝑟
(1), 𝑥̂𝑛𝑟

(2), 𝑥̂𝑛𝑟
(3), 𝑥̂𝑛𝑟

(4))

).                       (3.101)   

 

In the following Theorem 3.5.1.3.1, it is proven that if the system of LME in Eq. (3.87) 

has a unique solution, then the approximated solution in Eq. (3.98) by the MFLSIM 

converges to the solution of the system of LME for any initial value. 

Theorem 3.5.1.3.1: If the system of LME in Eq. (3.87) has a unique positive solution 

𝑥(𝑙), then the numerical solution 𝑥̂(𝑙)(𝑘) in Eq. (3.98) converges to 𝑥(𝑙) for any initial 

values 𝑥̂(𝑙)(0) (i.e. if 𝑘 → ∞, then 𝑥(𝑙) = 𝑥̂(𝑙)(𝑘)). 

Proof: The prove of this theorem can be obtained similar to Theorem 3.3.3.1. 

□ 

Below is the Algorithm 3.6 for the FLSIM. This algorithm can be used by different 

software for solving the PTrFFME in Eq. (1.11). 
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Algorithm 3.6: Modified Fuzzy Least-Square Algorithm for PTrFFME. 

Input 𝐴̃ and 𝐸̃  # Split each matrix into four matrices (e.g., 𝑎(1), 𝑎(2), 𝑎(3), 𝑎(4)) 

for l = 1,2,3,4 

Choose 𝛼𝑙, 𝜀, 𝑥̂(𝑙)(𝑘) = 0   # 0 is the Zero matrix with the same dimension as 𝑥(𝑙)(𝑘) 

While 𝑘 = 0, 1, 2, … , 𝑛 do 

𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) + 𝛼𝑙 (((𝑎
(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

(𝑎(𝑙))
𝑇
(𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1))). 

          𝛿(𝑙)(𝑘) = ‖𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘)‖
2

. 

        If  𝛿(𝑙)(𝑘) < 𝜀 then  

             𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘)); 

             𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

       else               

              𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) + 𝛼𝑙 (((𝑎
(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

(𝑎(𝑙))
𝑇
(𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1))). 

             update k.  

                 𝑘 = 𝑘 + 1 

       end 

              𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘)), 

        𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

end  

 

To illustrate the constructed methods for solving the PTrFFME, the following  

Example 3.5.1.3.1 is solved using the MFMVM, MFGIM and MFLSIM in Sections 

3.5.1.1, 3.5.1.2 and 3.5.1.3, respectively.  

Example 3.5.1.3.1 Consider the following PTrFFME: 

(
(4, 6, 7, 9) (1, 3, 4, 5)
(2, 5, 6, 8) (3, 6, 8, 10)

) ∙ (
(𝑥11

(1), 𝑥11
(2), 𝑥11

(3), 𝑥11
(4)) (𝑥12

(1), 𝑥12
(2), 𝑥12

(3), 𝑥12
(4))

(𝑥21
(1), 𝑥21

(2), 𝑥21
(3), 𝑥21

(4)) (𝑥22
(1), 𝑥22

(2), 𝑥22
(3), 𝑥22

(4))
)

= (
(9, 24, 40, 65) (14, 42, 62, 93)
(7, 27, 48, 80) (12, 49, 76, 116)

). 
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Solution: The analytical positive fuzzy solution to the given PTrFFME by the 

MFMVM is: 

𝑋̃ = (
(2, 3, 4, 5) (3, 5, 6, 7)
(1, 2, 3, 4) (2, 4, 5, 6)

). 

To approximate this positive fuzzy solution, the MFGIM algorithm in Eq. (3.94) and 

the MFLSIM algorithm in Eq. (3.98) are applied using the following initial value: 

 For 1 ≤ 𝑙 ≤ 4, 𝑥̂(𝑙) = (
0 0
0 0

), the approximated solution of 𝑋̃ is shown in Table 3.9 

with the convergence rate (𝛼), error bound (𝜀), and the total number of iteration (𝑘).  
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Table 3.9  

Comparison Between MFMVM, MFGIM and MFLSIM for Example 3.5.1.3. 

 

 

 Method Analytical Solution-Approximated Solution 𝜶 𝜺 𝒌 

𝑥̂(1) 

MFMVM 

 
(
2 3
1 2

) NA 0 NA 

MFGIM (
1.9998765689836 3.00007628456337
1.0001997155797 1.99987656898364

) 0.00004 10−5 192 

MFLSIM (
1.9999999999998 2.99999999999997
0.9999999999999 1.99999999999998

) 0.9 10−5 6 

𝑥̂(2) 

MFMVM 

 
(
3 5
2 4

) NA 0 NA 

MFGIM (
2.9998562083948 4.99993741490405
2.0001697402988 4.00007387922874

) 0.00009 10−5 188 

MFLSIM (
2.9999999999997 4.9999999999995
1.9999999999998 3.9999999999996

) 0.9 10−5 6 

𝑥̂(3) 

MFMVM 

 
(
4 6
3 5

) NA 0 NA 

MFGIM (
3.9999217935255 5.9999276063567
3.0000808213565 5.0000748141697

) 0.00009 10−5 143 

MFLSIM (
3.9999999999996 5.9999999999994
2.9999999999997 4.9999999999995

) 0.9 10−4 6 

𝑥̂(4) 

MFMVM 

 
(
5 7
4 6

) NA 0 NA 

MFGIM (
4.9998938066520 6.99992028888905
4.0001150280924 6.00008634266855

) 0.00008 10−4 161 

MFLSIM (
4.9999999999995 6.9999999999993
3.9999999999996 5.9999999999994

) 0.9 10−4 7 
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Meanwhile, Table 3.10 shows the computational time and memory usage needed for 

MFGIM and MFLSIM. 

Table 3.10  

Comparison Between Computational Time, Memory Usage for MFGIM and MFLSIM for 

Example 3.5.1.3.1. 

 Method 𝒌 CPU 

time 

Real 

time 

Memory 

usage 

𝑥̂(1) MFGIM 192 2.28 ms 2.17 ms 371.85 KB 

MFLSIM 6 2.50 ms 4.17 ms 0.79 MB 

𝑥̂(2) MFGIM 188 2.16 ms 2.19 ms 371.84 KB 

MFLSIM 6 5.17 ms 3.83 ms 0.79 MB 

𝑥̂(3) MFGIM 143 2.40 ms 2.13 ms 371.84 KB 

MFLSIM 6 5.33 ms 4.00 ms 0.79 MB 

𝑥̂(4) MFGIM 161 2.14 ms 2.26 ms 371.84 KB 

MFLSIM 7 4.57 ms 4.00 ms 0.79 MB 

 

The following Figure 3.12 shows the change in the error 𝛿(𝑙)(𝑘) when 𝑘 increases up to 

𝑘 = 20.  
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(a) (b) 

(c) (d) 

Figure 3.12. Comparison between the error of MFGIM and MFLSIM for the first 20 

iterations for Example 3.4.4.1. 

Tables 3.9, 3.10 and Figure 3.10 show that the error 𝛿(𝑙)(𝑘) is reducing as 𝑘 increases.  
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Figure 3.10 shows that the error of the MFGIM and MFLSIM for approximating 𝑥̂(𝑙) is 

reducing significantly as 𝑘 is increasing, where the MFLSIM converges to the analytical 

solution for a fewer number of iterations with a bigger step size compared to the MFGIM. 

This indicates that the developed algorithms are effective and convergent for the given 

PTrFFME. However, in terms of accuracy, error, the number of iterations, MFLSIM 

provide extremely accurate approximations with very few iterations. In addition, the 

MFLSIM takes more computational timing and more memory compared to MFGIM. 

 

In the following Section 3.5.2, the solution to the trapezoidal extended fully fuzzy matrix 

equation (TrEFFME) in Eq. (1.12) is discussed. The TrEFFME is a special case of the 

GTrFFSME. Therefore, the solution to the TrEFFME can be obtained by modifying the 

FMVM, FGIM and FLSIM in Sections 3.3.1, 3.3.2 and 3.3.3, respectively. The methods 

are discussed in the following Sections. 

3.5.2 Solving the Positive Trapezoidal Extended Fully Fuzzy Matrix Equation  

This section discusses the positive fuzzy solution to the positive TrEFFME 𝐴̃𝑋̃𝐵̃ = 𝐸̃  in 

Eq. (1.12). In order to obtain the positive fuzzy solution, the positive TrEFFME needs to 

be converted to an equivalent system of ELME and then solved by modifying the FMVM, 

FGIM and FLSIM in Sections 3.3.1, 3.3.2 and 3.3.3, respectively. In the following 

Definition 3.5.2.1, the positive TrEFFME is introduced. 

 

Definition 3.5.2.1. A matrix equation TrEFFME 𝐴̃𝑋̃𝐵̃ = 𝐸̃, is called positive trapezoidal 

expended fully fuzzy Sylvester matrix equations (PTrEFFME) if 
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 𝐴̃ = (𝑎̃𝑖𝑗)𝑞×𝑝 = (𝑎𝑖𝑗
(1), 𝑎𝑖𝑗

(2), 𝑎𝑖𝑗
(3), 𝑎𝑖𝑗

(4)),  𝐵̃ = (𝑏̃𝑖𝑗)𝑛×𝑟 = (𝑏𝑖𝑗
(1), 𝑏𝑖𝑗

(2), 𝑏𝑖𝑗
(3), 𝑏𝑖𝑗

(4)), 

 𝑋̃ = (𝑥̃𝑖𝑗)𝑝×𝑛 = (𝑥𝑖𝑗
(1), 𝑥𝑖𝑗

(2), 𝑥𝑖𝑗
(3), 𝑥𝑖𝑗

(4)), ∀1 ≤  𝑖, 𝑗 ≤  𝑝, 𝑛,  and 

 𝐸̃ = (𝑒̃𝑖𝑗)𝑞×𝑟 = (𝑒𝑖𝑗
(1), 𝑒𝑖𝑗

(2), 𝑒𝑖𝑗
(3), 𝑒𝑖𝑗

(4)), ∀1 ≤  𝑖, 𝑗 ≤  𝑞, 𝑟 are positive trapezoidal fuzzy 

matrices, respectively. In the following Definition 3.5.2.2, the system of ELME is 

introduced. 

Definition 3.5.2.2. A system of matrix equations in the form 

{
 
 

 
 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1)𝑏𝑖𝑗

(1) = 𝑒𝑖𝑗
(1),

𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2)𝑏𝑖𝑗
(2) = 𝑒𝑖𝑗

(2),

𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)𝑏𝑖𝑗
(3) = 𝑒𝑖𝑗

(3),

𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(4)𝑏𝑖𝑗
(4) = 𝑒𝑖𝑗

(4).

  

is called a system of ELME 

In the following Theorem 3.5.2.1, the PTrEFFME in Eq. (1.12) is converted to an 

equivalent system of ELME. 

Theorem 3.5.2.1. Suppose that 𝐴̃, 𝐵̃, 𝐸̃ 𝑎𝑛𝑑 𝑋̃ are positive trapezoidal fuzzy matrices, then 

the PTrEFFME 𝐴̃𝑋̃𝐵̃ = 𝐸̃ is equivalent to the following system of ELME: 

{
 
 

 
 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1)𝑏𝑖𝑗

(1) = 𝑒𝑖𝑗
(1),

𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2)𝑏𝑖𝑗
(2) = 𝑒𝑖𝑗

(2),

𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)𝑏𝑖𝑗
(3) = 𝑒𝑖𝑗

(3),

𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(4)𝑏𝑖𝑗
(4) = 𝑒𝑖𝑗

(4).

                                                       (3.102) 

Proof: Let 𝐴̃, 𝐵̃, 𝐸̃ and 𝑋̃ in the PTrEFFME 𝐴̃𝑋̃𝐵̃ = 𝐸̃ in Eq. (1.12) be positive trapezoidal 

fully fuzzy matrices, then by EAMO in Eq. (3.19) the product 𝐴̃𝑋̃𝐵̃ is  

𝐴̃𝑋̃𝐵̃ =∑(𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1)𝑏𝑖𝑗
(1), 𝑎𝑖𝑗

(2)𝑥𝑖𝑗
(2)𝑏𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)𝑏𝑖𝑗
(3), 𝑎𝑖𝑗

(4)𝑥𝑖𝑗
(4)𝑏𝑖𝑗

(4))

𝑗

𝑖=1

. 



 

196 

 

∀1 ≤  𝑖 ≤  𝑞, 1 ≤  𝑗 ≤  𝑟. 

By Definition 2.3.3.2.5 the PTrEFFME 𝐴̃𝑋̃𝐵̃ = 𝐸̃ is equivalent to the following system 

of ELME: 

{
 
 

 
 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1)𝑏𝑖𝑗

(1) = 𝑒𝑖𝑗
(1),

𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2)𝑏𝑖𝑗
(2) = 𝑒𝑖𝑗

(2),

𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)𝑏𝑖𝑗
(3) = 𝑒𝑖𝑗

(3),

𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(4)𝑏𝑖𝑗
(4) = 𝑒𝑖𝑗

(4).

 

□ 

The system of ELME obtained in Eq. (3.102) can be written in more general form, which 

is discussed in the following Remark 3.5.2.1. 

Remark 3.5.2.1: Based on Eq. (3.102), the ELME can be written as follows: for  

1 ≤ 𝑙 ≤ 4 we have: 

𝑎𝑖𝑗
(𝑙)𝑥𝑖𝑗

(𝑙)𝑏𝑖𝑗
(𝑙) = 𝑒𝑖𝑗

(𝑙).                                                          (3.103)                                                                         

In the following Theorem 3.5.2.2, the uniqueness of the positive solution to the system of 

ELME in Eq. (3.102) is proved. 

Theorem 3.5.2.2 Uniqueness of Positive Solution to System of ELME 

The system of ELME in Eq. (3.102) has a unique positive solution if the following 

conditions are satisfied:  

I) 𝑑𝑒𝑡(𝑟1) ≠ 0, 𝑑𝑒𝑡(𝑟2) ≠ 0, 𝑑𝑒𝑡(𝑟3) ≠ 0 and𝑑𝑒𝑡(𝑟4) ≠ 0 i.e 𝑟1, 𝑟2, 𝑟3 and 𝑟4 are 

invertible matrices where,  

𝑟1 = (𝑏𝑖𝑗
(1))𝑇⨂𝑎𝑖𝑗

(1), 

𝑟2 = (𝑏𝑖𝑗
(2))𝑇⨂𝑎𝑖𝑗

(2), 

𝑟3 = (𝑏𝑖𝑗
(3))𝑇⨂𝑎𝑖𝑗

(3), 
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𝑟1 = (𝑏𝑖𝑗
(4))𝑇⨂𝑎𝑖𝑗

(4). 

II) 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 and 𝑟4

−1 > 0. 

 

Proof: The proof of this theorem is similar to the proof of Theorem 3.3.2. 

□ 

In the following Section 3.5.2.1, the analytical solution to the PTrEFFME is obtained by 

modifying the FMVM in Section 3.3.1. 

3.5.2.1 Modified Fuzzy Matrix Vectorization Method for PTrEFFME 

In this section, the analytical solution to the PTrEFFME 𝐴̃𝑋̃𝐵̃ = 𝐸̃ is obtained by 

modifying the FMVM in Section 3.3.1. The details of the MFMVM are as follows:  

Step1: Decomposing  𝐴̃, 𝐵̃, 𝐸̃ and 𝑋̃ into 𝑎𝑖𝑗
(𝑙)

, 𝑏𝑖𝑗
(𝑙)

, 𝑒𝑖𝑗
(𝑙)

 and 𝑥𝑖𝑗
(𝑙)

 where 𝑙 = 1,2,3,4 

respectively and convert the PTrEFFME to the system of ELME in Eq. (3.102) using 

Theorem 3.5.2.1. 

Step 2: Applying the Vec-operator and Kronecker product on Eq. (3.102) gives:                       

{
  
 

  
 ((𝑏𝑖𝑗

(1))𝑇⨂𝑎𝑖𝑗
(1))𝑣𝑒𝑐(𝑥𝑖𝑗

(1)) = 𝑣𝑒𝑐(𝑒𝑖𝑗
(1)),

((𝑏𝑖𝑗
(2))𝑇⨂𝑎𝑖𝑗

(2))𝑣𝑒𝑐(𝑥𝑖𝑗
(2)) = 𝑣𝑒𝑐(𝑒𝑖𝑗

(2)),

((𝑏𝑖𝑗
(3))𝑇⨂𝑎𝑖𝑗

(3))𝑣𝑒𝑐(𝑥𝑖𝑗
(3)) = 𝑣𝑒𝑐(𝑒𝑖𝑗

(3)),

((𝑏𝑖𝑗
(4))𝑇⨂𝑎𝑖𝑗

(4))𝑣𝑒𝑐(𝑥𝑖𝑗
(4)) = 𝑣𝑒𝑐(𝑒𝑖𝑗

(4)).

                                                (3.104) 

Step 3: Multiplying the system of linear matrix equation in Eq. (3.104) by matrix 

multiplicative inverse as follows: 
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{
  
 

  
 𝑣𝑒𝑐(𝑥𝑖𝑗

(1)) = ((𝑏𝑖𝑗
(1))𝑇⨂𝑎𝑖𝑗

(1))−1𝑣𝑒𝑐(𝑒𝑖𝑗
(1)),

𝑣𝑒𝑐(𝑥𝑖𝑗
(2)) = ((𝑏𝑖𝑗

(2))𝑇⨂𝑎𝑖𝑗
(2))−1𝑣𝑒𝑐(𝑒𝑖𝑗

(2)),

𝑣𝑒𝑐(𝑥𝑖𝑗
(3)
) = ((𝑏𝑖𝑗

(3)
)𝑇⨂𝑎𝑖𝑗

(3)
)−1𝑣𝑒𝑐(𝑒𝑖𝑗

(3)
),

𝑣𝑒𝑐(𝑥𝑖𝑗
(4)) = ((𝑏𝑖𝑗

(4))𝑇⨂𝑎𝑖𝑗
(4))−1𝑣𝑒𝑐(𝑒𝑖𝑗

(4)).

                                           (3.105) 

Step 4: Multiplying the system of linear matrix equation in Eq. (3.105) by 𝑣𝑒𝑐−1 as 

follows: 

{
  
 

  
 𝑥𝑖𝑗

(1) = 𝑣𝑒𝑐−1(((𝑏𝑖𝑗
(1))𝑇⨂𝑎𝑖𝑗

(1) + (𝑑𝑖𝑗
(1))𝑇⨂𝑐𝑖𝑗

(1))−1𝑣𝑒𝑐(𝑒𝑖𝑗
(1))),

𝑥𝑖𝑗
(2) = 𝑣𝑒𝑐−1(((𝑏𝑖𝑗

(2))𝑇⨂𝑎𝑖𝑗
(2) + (𝑑𝑖𝑗

(2))𝑇⨂𝑐𝑖𝑗
(2))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(2))),

𝑥𝑖𝑗
(3) = 𝑣𝑒𝑐−1(((𝑏𝑖𝑗

(3))𝑇⨂𝑎𝑖𝑗
(3) + (𝑑𝑖𝑗

(3))𝑇⨂𝑐𝑖𝑗
(3))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(3))),

𝑥𝑖𝑗
(4) = 𝑣𝑒𝑐−1(((𝑏𝑖𝑗

(4))𝑇⨂𝑎𝑖𝑗
(4) + (𝑑𝑖𝑗

(4))𝑇⨂𝑐𝑖𝑗
(4))−1𝑣𝑒𝑐(𝑒𝑖𝑗

(4))).

         (3.106) 

Step 5: Combining the positive fuzzy solutions obtained in Step 4 and write it as a 

trapezoidal fuzzy matrix as follows: 

𝑋̃ = (

(𝑥11
(1)
, 𝑥11
(2)
, 𝑥11
(3)
, 𝑥11
(4)
) ⋯ (𝑥1𝑛

(1)
, 𝑥1𝑛
(2)
, 𝑥1𝑛
(3)
, 𝑥1𝑛
(4)
)

⋮ ⋱ ⋮

(𝑥𝑝1
(1), 𝑥𝑝1

(2), 𝑥𝑝1
(3), 𝑥𝑝1

(4)) … (𝑥𝑝𝑛
(1), 𝑥𝑝𝑛

(2), 𝑥𝑝𝑛
(3), 𝑥𝑝𝑛

(4))

).                      (3.107) 

 

The obtained solution by the MFMVM in step 4 is written in general form in the following  

Remark 3.5.2.1.1. 

Remark 3.5.2.1.1: The positive fuzzy solution in Eq. (3.106) to the positive PTrEFFME 

can be written as follows: For 1 ≤ 𝑙 ≤ 4 we have: 

𝑥𝑖𝑗
(𝑙) = 𝑣𝑒𝑐−1(((𝑏𝑖𝑗

(𝑙))𝑇⨂𝑎𝑖𝑗
(𝑙))−1𝑣𝑒𝑐(𝑒𝑖𝑗

(𝑙))).                                                      (3.108) 

In the following Theorem 3.5.2.1.1, the solution to the system of ELME in Eq. (3.102) and 

the positive solution to the PTrEFFME in Eq. (1.12) is proved to be equivalent. 
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Theorem 3.5.2.1.1. The solution to the system of ELME and the positive fuzzy solution to 

the PTrEFFME are equivalent if the following conditions are satisfied: 

I) 𝑑𝑒𝑡(𝑟1) ≠ 0, 𝑑𝑒𝑡(𝑟2) ≠ 0, 𝑑𝑒𝑡(𝑟3) ≠ 0 and𝑑𝑒𝑡(𝑟4) ≠ 0 i.e 𝑟1, 𝑟2, 𝑟3 and 𝑟4 are 

invertible matrices, 

II) 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 𝑎𝑛𝑑 𝑟4

−1 > 0, 

III) 𝑟1
−1𝑡1 > 0, 𝑟2

−1𝑡2 > 0, 𝑟3
−1𝑡3 > 0 and 𝑟4

−1𝑡4 > 0, 

IV) 𝑟1
−1𝑡1 ≤ 𝑟2

−1𝑡2 ≤ 𝑟3
−1𝑡3 ≤ 𝑟4

−1𝑡4. 

Proof: The proof of this theorem can be obtained similar to the proof of Theorem 3.3.1.1. 

□ 

The following Corollary 3.5.2.1.1 discusses the uniqueness of the positive solution to the 

PTrEFFME. 

Corollary 3.5.2.1.1. The uniqueness of Fuzzy Solution to Positive PTrEFFME 

The PTrEFFME in Eq. (1.12) has a unique positive fuzzy solution if the corresponding 

system of ELME in Eq. (3.102) has a unique one. 

Proof: The proof of this corollary is similar to the proof of Corollary 3.3.1.1. 

□ 

In the following Corollary 3.5.2.1.2, the sufficient conditions for PTrEFFME to have a 

positive fuzzy solution are discussed. 

Corollary 3.5.2.1.2. Existence of Positive Fuzzy Solution to PTrEFFME 

The PTrEFFME has a positive fuzzy solution if: 

I) 𝑑𝑒𝑡(𝑟1) ≠ 0, 𝑑𝑒𝑡(𝑟2) ≠ 0, 𝑑𝑒𝑡(𝑟3) ≠ 0 and𝑑𝑒𝑡(𝑟4) ≠ 0 i.e., 𝑟1, 𝑟2, 𝑟3 and 𝑟4 are 

invertible matrices, 
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II) 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 and 𝑟4

−1 > 0, 

III) 𝑟1
−1𝑡1 > 0, 𝑟2

−1𝑡2 > 0, 𝑟3
−1𝑡3 > 0 and 𝑟4

−1𝑡4 > 0, 

VI) 𝑟1
−1𝑡1 ≤ 𝑟2

−1𝑡2 ≤ 𝑟3
−1𝑡3 ≤ 𝑟4

−1𝑡4. 

Proof: The proof of this corollary is similar to Corollary 3.3.1.2. 

□ 

The positive fuzzy solution in Eq. (3.107) to the PTrEFFME in Eq. (1.12) can be 

approximated numerically by modifying the method of FGIM in Section 3.3.2. The 

following Section 3.5.2.2 discusses the approximated solution by the MFGIM to the 

PTrEFFME. 

3.5.2.2 Modified Fuzzy Gradient-Iterative Method for PTrEFFME 

In this section, the positive fuzzy solution to the PTrEFFME 𝐴̃𝑋̃𝐵̃ = 𝐸̃ is approximated by 

modifying the FGIM method in Section 3.3.2. The algorithm for solving the PTrFFME can 

be obtained directly from the algorithm in Eq. (3.38) as follows: 

For 1 ≤ 𝑙 ≤ 4 we have: 

𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) + 𝛼𝑙 ∙ (𝑎
(𝑙))

𝑇
(𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑏(𝑙))(𝑏(𝑙))

𝑇
,                 (3.108) 

where the convergence rate (step size) is given by, 

0 < 𝛼𝑙 <
2

𝜆𝑚𝑎𝑥 [(𝑎
(𝑙))𝑇𝑎(𝑙)]𝜆𝑚𝑎𝑥[𝑏

(𝑙)(𝑏(𝑙))𝑇]
.                                   (3.109𝑎) 

It can also be obtained as follows,  

0 < 𝛼𝑙 <
2

‖𝑎(𝑙)‖2‖𝑏(𝑙)‖2
.                                                       (3.109𝑏) 

where, ‖𝑎(𝑙)‖
2
= 𝑇𝑟[𝑎(𝑙) ∙ (𝑎(𝑙))

𝑇
]. 
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At step 𝑘 − 𝑡ℎ of the iteration, the following error is considered: 

𝛿(𝑙)(𝑘) = ‖𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘)𝑏(𝑙)‖
2
.                                                 (3.110) 

The obtained numerical solution in Eq. (3.108) can be expressed as, 

𝑥̂ = (𝑥̂(1), 𝑥̂(2), 𝑥̂(3), 𝑥̂(4)). 

It can also be written in matrix form as, 

𝑥̂ = (

(𝑥̂11
(1), 𝑥̂11

(2), 𝑥̂11
(3), 𝑥̂11

(4)) ⋯ (𝑥̂1𝑛
(1), 𝑥̂1𝑛

(2), 𝑥̂1𝑛
(3), 𝑥̂1𝑛

(4))

⋮ ⋱ ⋮

(𝑥̂𝑝1
(1), 𝑥̂𝑝1

(2), 𝑥̂𝑝1
(3), 𝑥̂𝑝1

(4)) … (𝑥̂𝑝𝑛
(1), 𝑥̂𝑝𝑛

(2), 𝑥̂𝑝𝑛
(3), 𝑥̂𝑝𝑛

(4))

).                              (3.111)   

 

In the following Theorem 3.5.2.2.1, it is proven that if the system of ELME in Eq. (3.102) 

has a unique solution, then the approximated fuzzy solution in Eq. (3.108) converges to the 

analytical fuzzy solution for any initial value. 

Theorem 3.5.2.2.1. If the system of ELME in Eq. (3.102) has a unique positive solution 

𝑥(𝑙), then the numerical solution 𝑥̂(𝑙)(𝑘) in Eq. (3.108) converges to 𝑥(𝑙) for any initial 

values 𝑥̂(𝑙)(0) (i.e. if 𝑘 → ∞, then 𝑥(𝑙) = 𝑥̂(𝑙)(𝑘). 

Proof: The proof of this theorem can be obtained similar to Theorem 3.3.2.1. 

□ 

Below is the Algorithm 3.7 for the MFGIM. This algorithm can be used by different 

software for solving the PTrEFFME in Eq. (1.12). 
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Algorithm 3.7: Modified Fuzzy Gradient Iterative Algorithm for PTrEFFME. 

Input 𝐴̃, 𝐵̃ and 𝐸̃  # Split each matrix into four matrices (e.g., 𝑎(1), 𝑎(2), 𝑎(3), 𝑎(4)) 

for l = 1,2,3,4 

Choose 𝛼𝑙, 𝜀, 𝑥̂(𝑙)(𝑘) = 0   # 0 is the Zero matrix with the same dimension as 𝑥(𝑙)(𝑘) 

While 𝑘 = 0, 1, 2, … , 𝑛 do 

          𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) + 𝛼𝑙 ∙ (𝑎
(𝑙))

𝑇
(𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑏(𝑙))(𝑏(𝑙))

𝑇
. 

              𝛿(𝑙)(𝑘) = ‖𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘)𝑏(𝑙)‖
2

. 

        If  𝛿(𝑙)(𝑘) < 𝜀 then  

             𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘)); 

             𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

       else  

             𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) + 𝛼𝑙 ∙ (𝑎
(𝑙))

𝑇
(𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑏(𝑙))(𝑏(𝑙))

𝑇
, 

             update k.  

             𝑘 = 𝑘 + 1 

        end 

        𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘)), 

        𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

end  

 

The positive solution to the PTrEFFME can also be approximated numerically by 

modifying the FLSIM in Section 3.3.3, which is discussed in the following  

Section 3.5.2.3. 

3.5.2.3 Modified Fuzzy Least Square Iterative Method for PTrEFFME 

In this section, the positive fuzzy solution to the PTrEFFME 𝐴̃𝑋̃𝐵̃ = 𝐸̃ is approximated 

by modifying the FLSIM method in Section 3.3.3 and applying it to the system of 

ELME in Eq. (3.102). The algorithm for obtaining the fuzzy solution by the FLSIM in 

Eq. (3.45) can be modified as follows: for 1 ≤ 𝑙 ≤ 4 we have: 
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𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) + 𝛼𝑙 ∙ ((𝑎
(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

. (𝑎(𝑙))
𝑇
(𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 −

1)𝑏(𝑙))(𝑏(𝑙))
𝑇
∙ ((𝑏(𝑙)(𝑏(𝑙))

𝑇
)−1,                                                                                   (3.112)                                                                             

where the convergence rate (step size) is given by, 

0 < 𝛼𝑙 < 2.                                                 (3.113) 

As step 𝑘 − 𝑡ℎ of the iteration, the following error is considered: 

𝛿(𝑙)(𝑘) = ‖𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘)𝑏(𝑙)‖
2
. 

The obtained numerical solution in Eq. (3.112) can be expressed as, 

𝑥̂ = (𝑥̂(1), 𝑥̂(2), 𝑥̂(3), 𝑥̂(4)). 

It can also be written in matrix form as, 

𝑥̂ = (

(𝑥̂11
(1), 𝑥̂11

(2), 𝑥̂11
(3), 𝑥̂11

(4)) ⋯ (𝑥̂1𝑛
(1), 𝑥̂1𝑛

(2), 𝑥̂1𝑛
(3), 𝑥̂1𝑛

(4))

⋮ ⋱ ⋮

(𝑥̂𝑝1
(1)
, 𝑥̂𝑝1
(2)
, 𝑥̂𝑝1
(3)
, 𝑥̂𝑝1
(4)
) … (𝑥̂𝑝𝑛

(1)
, 𝑥̂𝑝𝑛
(2)
, 𝑥̂𝑝𝑛
(3)
, 𝑥̂𝑝𝑛
(4)
)

). 

In the following Theorem 3.5.2.3.1, it is proven that if the system of ELME in  

Eq. (3.102) has a unique solution, then the approximated fuzzy solution in Eq. (3.112) 

by the MFLSIM to the PTrEFFME in Eq. (1.12) converges to the analytical fuzzy 

solution for any initial value. 

Theorem 3.5.2.3.1: If the system of ELME in Eq. (3.102) has a unique positive solution 

𝑥(𝑙), then the numerical solution 𝑥̂(𝑙)(𝑘) in Eq. (3.112) converges to 𝑥(𝑙) for any initial 

values 𝑥̂(𝑙)(0) (i.e. if 𝑘 → ∞, then 𝑥(𝑙) = 𝑥̂(𝑙)(𝑘)). 

Proof: The prove of this theorem can be obtained similar to the proof of  

Theorem 3.3.3.1. 

□ 

Below is the Algorithm 3.8 for the MFLSIM. This algorithm can be used by different 

software for solving the PGTrFFSME in Eq. (1.16). 
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Algorithm 3.2: Fuzzy Least-Square Algorithm for PGTrFFSME. 

Input 𝐴̃, 𝐵̃, 𝐶̃, 𝐷̃ and 𝐸̃  # Split each matrix into four matrices (e.g., 𝑎(1), 𝑎(2), 𝑎(3),

𝑎(4)) 

for l = 1,2,3,4 

Choose 𝛼𝑙, 𝜀, 𝑥̂(𝑙)(𝑘) = 0   # 0 is the Zero matrix with the same dimension as 𝑥(𝑙)(𝑘) 

While 𝑘 = 0, 1, 2, … , 𝑛 do 

𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) + 𝛼𝑙 ∙ ((𝑎
(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

. (𝑎(𝑙))
𝑇
(𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 −

1)𝑏(𝑙))(𝑏(𝑙))
𝑇
∙ ((𝑏(𝑙)(𝑏(𝑙))

𝑇
)−1.  

 

          𝛿(𝑙)(𝑘) = ‖𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘)𝑏(𝑙)‖
2

. 

        If  𝛿(𝑙)(𝑘) < 𝜀 then  

             𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘)); 

             𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

       else        
        

         𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) + 𝛼𝑙 ∙ ((𝑎
(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

. (𝑎(𝑙))
𝑇
(𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 −

1)𝑏(𝑙))(𝑏(𝑙))
𝑇
∙ ((𝑏(𝑙)(𝑏(𝑙))

𝑇
)−1.  

 
 

             update k.  

             𝑘 = 𝑘 + 1 

       end 

              𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘)), 

        𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

end  
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To illustrate the constructed methods for solving the PTrEFFME, the following  

Example 3.5.2.3.1 is solved using the MFMVM, MFGIM and MFLSIM in  

Sections 3.5.2.1, 3.5.2.2 and 3.5.2.3, respectively.  

Example 3.5.2.3.1 Consider the following PTrEFFME: 

(
(3, 4, 6, 9) (1, 2, 4,7)
(2, 3, 5, 6) (3, 5, 7, 8)

) ∙ (
(𝑥11

(1), 𝑥11
(2), 𝑥11

(3), 𝑥11
(4)) (𝑥12

(1), 𝑥12
(2), 𝑥12

(3), 𝑥12
(4))

(𝑥21
(1), 𝑥21

(2), 𝑥21
(3), 𝑥21

(4)) (𝑥22
(1), 𝑥22

(2), 𝑥22
(3), 𝑥22

(4))
) 

∙ (
(2, 4,6, 9) (1, 3, 4, 7)
(1, 3, 5, 6) (3, 5, 7, 8)

) = (
(22, 172, 644, 1982) (36, 206, 664, 2014)
(38, 262, 797, 1798) (59, 312, 821, 1826)

). 

Solution: The positive fuzzy solution to the given PTrEFFME can be obtained 

analytically by the MFMVM in Section 3.5.2.1, similar to Example 3.3.1.1. Therefore, 

the analytical positive fuzzy solution is 

𝑋̃ = (
(1, 3, 5, 6) (2, 4, 6, 7)

(3, 5, 6, 8) (4, 6, 7, 9)
). 

This positive fuzzy solution is approximated using the MFGIM algorithm in Eq. (3.108) 

and the MFLSIM algorithm in Eq. (3.112) and the following initial value: 

 For 1 ≤ 𝑙 ≤ 4, 𝑥̂(𝑙) = (
0 0
0 0

), the approximated solution of 𝑋̃ is shown in Table 3.11 

with the convergence rate (𝛼), error bound (𝜀), and the total number of iteration (𝑘).  
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Table 3.11  

Comparison Between MFMVM, MFGIM and MFLSIM for Example 3.5.2.3.1. 

 Method 
Analytical Solution and 

Approximated Solution 
𝜶 𝜺 𝒌 

𝑥̂(1) 

MFMVM (
1 2
3 4

) NA 0 NA 

MFGIM (
1.0002316383 1.9998568396
2.9997265601 4.0001689951

) 0.005 10−5 305 

MFLSIM (
0.9999990463 1.9999980926
2.9999971389 3.9999961853

) 0.5 10−5 19 

𝑥̂(2) 

MFMVM (
3 4
5 6

) NA 0 NA 

MFGIM (
3.0013407098 3.998864248
4.9987708142 6.0010412765

) 0.0005 10−5 1030 

MFLSIM (
2.999997138 3.9999961853
4.999995231 5.9999942779

) 0.5 10−5 19 

𝑥̂(3) 

MFMVM (
5 6
6 7

) NA 0 NA 

MFGIM (
5.0026992267 5.9977645800
5.9973907220 7.0021609269

) 
0.0001

3 
10−5 1431 

MFLSIM (
4.9999976158 5.999997138
5.9999971389 6.9999966621

) 0.5 10−4 20 

𝑥̂(4) 

MFMVM (
6 7
8 9

) NA 0 NA 

MFGIM (
5.9452511631 7.0617894048
8.0564412547 8.9363017482

) 
0.0000

05 
10−4 1738 

MFLSIM (
5.9999971389 6.9999966621
7.9999961853 8.9999957084

) 0.5 10−4 20 
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The following Table 3.12 shows that the computational time and memory usage needed 

for MFGIM and MFLSIM. 

Table 3.12  

Comparison Between Computational Time, Memory Usage for MFGIM and MFLSIM 

for Example 3.5.2.3.1. 

 

 

 

 

 

 

 

 

 

 

 

The following Figure 3.13 Shows the change in the error 𝛿(𝑙)(𝑘) when 𝑘 increases up 

to 𝑘 = 20.  

 

 

Method 𝒌 

CPU 

time 

Real 

time 

Memory 

usage 

𝑥̂(1) MFGIM 305 3.89 ms 3.81 ms 0.73 MB 

MFLSIM 19 8.26 ms 7.89 ms 1.60 MB 

𝑥̂(2) MFGIM 1030 3.99 ms 3.95 ms 0.73 MB 

MFLSIM 19 7.84 ms 7.37 ms 1.60 MB 

𝑥̂(3) MFGIM 1431 3.94 ms 3.91 ms 0.73 MB 

MFLSIM 20 7.37 ms 7.80 ms 1.60 MB 

𝑥̂(4) MFGIM 1738 3.89 ms 3.84 ms 0.73 MB 

MFLSIM 20 14.05 ms 13.80 ms 1.60 MB 
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(a) (b) 

(c) (d) 

Figure 3.13. Comparison between the error of MFGIM and MFLSIM for the first 20 

iterations for Example 3.5.2.3.1. 

 

Tables 3.11, 3.12 and Figure 3.13 show that the error 𝛿(𝑙)(𝑘) is reducing as 𝑘 increases.  
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Figure 3.13 shows that the error of the MFGIM and MFLSIM for approximating 𝑥̂(𝑙) is 

reducing significantly as 𝑘 increasing, where the FLSIM converges to the analytical 

solution for a fewer number of iterations with a bigger step size compared to the 

MFGIM. 

This indicates that the developed algorithms are effective and convergent for the given 

positive PTrEFFME. In addition, the EFLSIM takes more computational timing and 

more memory compared to EFGIM. However, in terms of accuracy, error, the number 

of iterations, EFLSIM provide extremely accurate approximations with very few 

iterations. In the following Section 3.5.3, the methods for solving the positive 

TrFFStME are discussed. 

3.5.3 Solving Positive Trapezoidal Fully Fuzzy Stein Matrix Equation 

In this section, the positive fuzzy solution to the positive TrFFStME 𝑋̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ in  

Eq. (3.86) is discussed. To obtain the positive fuzzy solution, the TrFFStME needs to 

be converted first to an equivalent system of StME where the analytical solution is 

obtained by modifying the FMVM in Section 3.3.1, and the numerical solution is 

obtained by modifying the FGIM and FLSIM in Sections 3.3.2 and 3.3.3 respectively. 

In the following Definition 3.5.3.1, the positive TrFFStME is introduced. 

Definition 3.5.3.1. A matrix equation TrFFStME 𝑋̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃, is called positive 

trapezoidal fully fuzzy Stien matrix equations (PTrFFStME) if  

 𝐶̃ = (𝑐̃𝑖𝑗)𝑝×𝑝 = (𝑐𝑖𝑗
(1), 𝑐𝑖𝑗

(2), 𝑐𝑖𝑗
(3), 𝑐𝑖𝑗

(4)) > 0, ∀1 ≤  𝑖, 𝑗 ≤  𝑝 and, 

 𝐷̃ = (𝑑̃𝑖𝑗)𝑛×𝑛 = (𝑑𝑖𝑗
(1), 𝑑𝑖𝑗

(2), 𝑑𝑖𝑗
(3), 𝑑𝑖𝑗

(4)) > 0, ∀1 ≤  𝑖, 𝑗 ≤  𝑛  
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and 𝑋̃ = (𝑥̃𝑖𝑗)𝑝×𝑛 = (𝑥𝑖𝑗
(1), 𝑥𝑖𝑗

(2), 𝑥𝑖𝑗
(3), 𝑥𝑖𝑗

(4)) > 0, ∀1 ≤  𝑖, 𝑗 ≤  𝑝, 𝑛,  and 𝐸̃ = (𝑒̃𝑖𝑗)𝑝×𝑛 

= (𝑒𝑖𝑗
(1), 𝑒𝑖𝑗

(2), 𝑒𝑖𝑗
(3), 𝑒𝑖𝑗

(4)) > 0, ∀1 ≤  𝑖, 𝑗 ≤  𝑝, 𝑛 are positive trapezoidal fuzzy matrices, 

respectively.  

In the following Definition 3.5.3.2, the system of StME is introduced. 

Definition 3.5.3.2. A system of matrix equations in the form 

{
 
 

 
 𝑥𝑖𝑗

(1) + 𝑐𝑖𝑗
(1)𝑥𝑖𝑗

(1)𝑑𝑖𝑗
(1) = 𝑒𝑖𝑗

(1),

𝑥𝑖𝑗
(2) + 𝑐𝑖𝑗

(2)𝑥𝑖𝑗
(2)𝑑𝑖𝑗

(2) = 𝑒𝑖𝑗
(2),

𝑥𝑖𝑗
(3) + 𝑐𝑖𝑗

(3)𝑥𝑖𝑗
(3)𝑑𝑖𝑗

(3) = 𝑒𝑖𝑗
(3),

𝑥𝑖𝑗
(4) + 𝑐𝑖𝑗

(4)𝑥𝑖𝑗
(4)𝑑𝑖𝑗

(4) = 𝑒𝑖𝑗
(4),

  

is called a system of StME. 

In the following Theorem 3.5.3.1, the PTrFFStME in Eq. (3.86) is converted to an 

equivalent system of StME. 

Theorem 3.5.3.1. Fundamental Theorem of PTrFFStME. 

Suppose that 𝐶̃, 𝐷̃, 𝐸̃ 𝑎𝑛𝑑 𝑋̃ are positive trapezoidal fuzzy matrices, then the 

PTrFFStME 𝑋̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ is equivalent to the following system of StME: 

{
 
 

 
 𝑥𝑖𝑗

(1) + 𝑐𝑖𝑗
(1)𝑥𝑖𝑗

(1)𝑑𝑖𝑗
(1) = 𝑒𝑖𝑗

(1),

𝑥𝑖𝑗
(2) + 𝑐𝑖𝑗

(2)𝑥𝑖𝑗
(2)𝑑𝑖𝑗

(2) = 𝑒𝑖𝑗
(2),

𝑥𝑖𝑗
(3) + 𝑐𝑖𝑗

(3)𝑥𝑖𝑗
(3)𝑑𝑖𝑗

(3) = 𝑒𝑖𝑗
(3),

𝑥𝑖𝑗
(4) + 𝑐𝑖𝑗

(4)𝑥𝑖𝑗
(4)𝑑𝑖𝑗

(4) = 𝑒𝑖𝑗
(4).

                                       (3.113) 

Proof:  

Let 𝐶̃, 𝐷̃, 𝐸̃ and 𝑋̃ in the PTrFFStME 𝑋̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ be positive trapezoidal fuzzy 

matrices respectively, then by EAMO in Eq. (3.19), the product 𝐶̃𝑋̃𝐷̃ is obtained as 

follows:  

𝐶̃𝑋̃𝐷̃ =∑(𝑐𝑖𝑗
(1)𝑥𝑖𝑗

(1)𝑑𝑖𝑗
(1), 𝑐𝑖𝑗

(2)𝑥𝑖𝑗
(2)𝑑𝑖𝑗

(2), 𝑐𝑖𝑗
(3)𝑥𝑖𝑗

(3)𝑑𝑖𝑗
(3), 𝑐𝑖𝑗

(4)𝑥𝑖𝑗
(4)𝑑𝑖𝑗

(4)).

𝑗

𝑖=1
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∀1 ≤  𝑖 ≤  𝑝, 1 ≤  𝑗 ≤  𝑛. 

By Definition 2.3.3.2.6 and Eq. (2.10a) we get, 

𝑋̃ + 𝐶̃𝑋̃𝐷̃ =∑((𝑥𝑖𝑗
(1), 𝑥𝑖𝑗

(2), 𝑥𝑖𝑗
(3), 𝑥𝑖𝑗

(4)) + (𝑐𝑖𝑗
(1)𝑥𝑖𝑗

(1)𝑑𝑖𝑗
(1), 𝑐𝑖𝑗

(2)𝑥𝑖𝑗
(2)𝑑𝑖𝑗

(2), 𝑐𝑖𝑗
(3)𝑥𝑖𝑗

(3)𝑑𝑖𝑗
(3), 𝑐𝑖𝑗

(4)𝑥𝑖𝑗
(4)𝑑𝑖𝑗

(4))) .

𝑗

𝑖=1

 

∀1 ≤  𝑖 ≤  𝑝, 1 ≤  𝑗 ≤  𝑛. 

By Definition 2.3.3.2.5 and Eq. (2.9), the PTrFFStME 𝑋̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ is equivalent to 

the following system of StME: 

{
 
 

 
 𝑥𝑖𝑗

(1) + 𝑐𝑖𝑗
(1)𝑥𝑖𝑗

(1)𝑑𝑖𝑗
(1) = 𝑒𝑖𝑗

(1),

𝑥𝑖𝑗
(2) + 𝑐𝑖𝑗

(2)𝑥𝑖𝑗
(2)𝑑𝑖𝑗

(2) = 𝑒𝑖𝑗
(2),

𝑥𝑖𝑗
(3) + 𝑐𝑖𝑗

(3)𝑥𝑖𝑗
(3)𝑑𝑖𝑗

(3) = 𝑒𝑖𝑗
(3),

𝑥𝑖𝑗
(4) + 𝑐𝑖𝑗

(4)𝑥𝑖𝑗
(4)𝑑𝑖𝑗

(4) = 𝑒𝑖𝑗
(4).

 

□ 

The system of StME obtained in Eq. (3.113) is represented in general form in the 

following Remark 3.5.3.1. 

Remark 3.5.3.1: Based on Eq. (3.113), the PTrFFStME in Eq. (3.86) can be written as 

follows: for 1 ≤ 𝑙 ≤ 4 we have: 

𝑥𝑖𝑗
(𝑙) + 𝑐𝑖𝑗

(𝑙)𝑥𝑖𝑗
(𝑙)𝑑𝑖𝑗

(𝑙) = 𝑒𝑖𝑗
(𝑙).                                                     (3.114) 

In the following Theorem 3.5.2.2, the uniqueness of the positive solution to the system 

of StME in Eq. (3.113) is proved. 

Theorem 3.5.3.2 Uniqueness of Positive Solution to System of StME 

The system of StME in Eq. (3.113) has a unique positive solution if the following 

conditions are satisfied:  

I) 𝑑𝑒𝑡(𝑟1) ≠ 0, 𝑑𝑒𝑡(𝑟2) ≠ 0, 𝑑𝑒𝑡(𝑟3) ≠ 0 and𝑑𝑒𝑡(𝑟4) ≠ 0 i.e., 𝑟1, 𝑟2, 𝑟3 and 𝑟4 

are invertible matrices 

where,  

𝑟1 = 𝐼𝑖𝑗
(1) + (𝑑𝑖𝑗

(1))𝑇⨂𝑐𝑖𝑗
(1), 
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𝑟2 = 𝐼𝑖𝑗
(2) + (𝑑𝑖𝑗

(2))𝑇⨂𝑐𝑖𝑗
(2), 

𝑟3 = 𝐼𝑖𝑗
(3) + (𝑑𝑖𝑗

(3))𝑇⨂𝑐𝑖𝑗
(3), 

𝑟4 = 𝐼𝑖𝑗
(4) + (𝑑𝑖𝑗

(4))𝑇⨂𝑐𝑖𝑗
(4). 

II) 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 and 𝑟4

−1 > 0. 

Proof: The proof of this Theorem is similar to the proof of Theorem 3.3.2. 

□ 

The PTrFFStME in Eq. (3.86) is a special case of the PGTrFFSME in Eq. (1.16) and 

the system of StME in Eq. (3.113) is a special case of the system of GSME in Eq. (3.20). 

Thus, the FMVM, FGIM and FLSIM in Sections 3.3.1, 3.3.2 and 3.3.3, respectively, 

can be modified and applied to the PTrFFStME. The three methods are discussed in the 

following three Sections 3.5.3.1, 3.5.3.2 and 3.5.3.3. 

3.5.3.1 Modified Fuzzy Matrix Vectorization Method for PTrFFStME 

In this section, the analytical solution to the PTrFFStME 𝑋̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ in Eq. (3.86) 

is obtained by modifying the FMVM in Section 3.3.1 and applying it to the system of 

StME in Eq. (3.113). The detail of the MFMVM is presented in the following steps. 

Step1: Decomposing 𝐶̃, 𝐷̃, 𝐸̃ and 𝑋̃ into  𝑐𝑖𝑗
(𝑙)

, 𝑑𝑖𝑗
(𝑙)

, 𝑒𝑖𝑗
(𝑙)

 and 𝑥𝑖𝑗
(𝑙)

 respectively and 

convert the PTrFFStME to a system of StME using Theorem 3.5.3.1. 

Step 2: Applying the Vec-operator and Kronecker product on Eq. (3.113) gives:                       

{
  
 

  
 (𝐼𝑖𝑗

(1) + (𝑑𝑖𝑗
(1))𝑇⨂𝑐𝑖𝑗

(1))𝑣𝑒𝑐(𝑥𝑖𝑗
(1)) = 𝑣𝑒𝑐(𝑒𝑖𝑗

(1)),

(𝐼𝑖𝑗
(2)
+ (𝑑𝑖𝑗

(2)
)𝑇⨂𝑐𝑖𝑗

(2)
)𝑣𝑒𝑐(𝑥𝑖𝑗

(2)
) = 𝑣𝑒𝑐(𝑒𝑖𝑗

(2)
),

(𝐼𝑖𝑗
(3) + (𝑑𝑖𝑗

(3))𝑇⨂𝑐𝑖𝑗
(3))𝑣𝑒𝑐(𝑥𝑖𝑗

(3)) = 𝑣𝑒𝑐(𝑒𝑖𝑗
(3)),

(𝐼𝑖𝑗
(4) + (𝑑𝑖𝑗

(4))𝑇⨂𝑐𝑖𝑗
(4))𝑣𝑒𝑐(𝑥𝑖𝑗

(4)) = 𝑣𝑒𝑐(𝑒𝑖𝑗
(4)).

                       (3.115) 

Step 3: Multiplying the system of linear matrix equation in Eq. (3.115) by matrix 

multiplicative inverse as follows: 
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{
 
 
 

 
 
 𝑣𝑒𝑐(𝑥𝑖𝑗

(1)) = (𝐼𝑖𝑗
(1) + (𝑑𝑖𝑗

(1))𝑇⨂𝑐𝑖𝑗
(1))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(1)),

𝑣𝑒𝑐(𝑥𝑖𝑗
(2)) = (𝐼𝑖𝑗

(2) + (𝑑𝑖𝑗
(2))𝑇⨂𝑐𝑖𝑗

(2))
−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(2)),

𝑣𝑒𝑐(𝑥𝑖𝑗
(3)) = (𝐼𝑖𝑗

(3) + (𝑑𝑖𝑗
(3))𝑇⨂𝑐𝑖𝑗

(3))
−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(3)),

𝑣𝑒𝑐(𝑥𝑖𝑗
(4)) = (𝐼𝑖𝑗

(4) + (𝑑𝑖𝑗
(4))𝑇⨂𝑐𝑖𝑗

(4))
−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(4)).

                       (3.116) 

Step 4: Multiplying the system of linear matrix equations in Eq. (3.116) by 𝑣𝑒𝑐−1 as 

follows: 

{
 
 
 

 
 
 𝑥𝑖𝑗

(1) = 𝑣𝑒𝑐−1(𝐼𝑖𝑗
(1) + (𝑑𝑖𝑗

(1))𝑇⨂𝑐𝑖𝑗
(1))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(1))),

𝑥𝑖𝑗
(2) = 𝑣𝑒𝑐−1(𝐼𝑖𝑗

(2) + (𝑑𝑖𝑗
(2))𝑇⨂𝑐𝑖𝑗

(2))
−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(2))),

𝑥𝑖𝑗
(3) = 𝑣𝑒𝑐−1(𝐼𝑖𝑗

(3) + (𝑑𝑖𝑗
(3))𝑇⨂𝑐𝑖𝑗

(3))
−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(3))),

𝑥𝑖𝑗
(4) = 𝑣𝑒𝑐−1(𝐼𝑖𝑗

(4) + (𝑑𝑖𝑗
(4))𝑇⨂𝑐𝑖𝑗

(4))
−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(4))).

                      (3.117) 

Step 5: Combining the positive fuzzy solutions obtained in Step 4 and write it as a 

trapezoidal fuzzy matrix as follows: 

𝑋̃ = (

(𝑥11
(1), 𝑥11

(2), 𝑥11
(3), 𝑥11

(4)) ⋯ (𝑥1𝑛
(1), 𝑥1𝑛

(2), 𝑥1𝑛
(3), 𝑥1𝑛

(4))

⋮ ⋱ ⋮

(𝑥𝑚1
(1), 𝑥𝑚1

(2), 𝑥𝑚1
(3), 𝑥𝑚1

(4)) … (𝑥𝑚𝑛
(1) , 𝑥𝑚𝑛

(2) , 𝑥𝑚𝑛
(3) , 𝑥𝑚𝑛

(4))

).           (3.118) 

The obtained solution by the MFMVM in Eq. (3.117) to the system of StME is written 

in general form in the following Remark 3.5.2.1.1. 

Remark 3.5.3.1.1: The positive fuzzy solution in Eq. (3.117) to the PTrFFStME in  

Eq. (3.86) can be written as follows: for 1 ≤ 𝑙 ≤ 4 we have: 

𝑥𝑖𝑗
(𝑙) = 𝑣𝑒𝑐−1(𝐼𝑖𝑗

(𝑙) + (𝑑𝑖𝑗
(𝑙))𝑇⨂𝑐𝑖𝑗

(𝑙))
−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(𝑙))).                            (3.119) 

In the following Theorem 3.5.2.1.1, the solution to the system of StME in Eq. (3.113) 

and the positive fuzzy solution to the PTrFFStME are proved to be equivalent. 

Theorem 3.5.3.1.1. The solution to the system of StME in Eq. (3.113) and the positive 

fuzzy solution to the PTrFFStME are equivalent if the following conditions are 

satisfied: 
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I) 𝑑𝑒𝑡(𝑟1) ≠ 0, 𝑑𝑒𝑡(𝑟2) ≠ 0, 𝑑𝑒𝑡(𝑟3) ≠ 0 and𝑑𝑒𝑡(𝑟4) ≠ 0 i.e 𝑟1, 𝑟2, 𝑟3 and 𝑟4 are 

invertible matrices, 

II) 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 𝑎𝑛𝑑 𝑟4

−1 > 0, 

III) 𝑟1
−1𝑡1 > 0, 𝑟2

−1𝑡2 > 0, 𝑟3
−1𝑡3 > 0 and 𝑟4

−1𝑡4 > 0, 

IV) 𝑟1
−1𝑡1 ≤ 𝑟2

−1𝑡2 ≤ 𝑟3
−1𝑡3 ≤ 𝑟4

−1𝑡4. 

Proof: The proof of this theorem is similar to the proof of Theorem 3.3.1.1. 

□ 

The following Corollary 3.5.2.1.1 discusses the uniqueness of the positive solution to 

the PTrFFStME. 

Corollary 3.5.3.1.1. The uniqueness of Fuzzy Solution to PTrFFStME 

The PTrFFStME has a unique positive fuzzy solution if the corresponding system of 

StME in Eq. (3.113) has a unique solution.  

Proof: The proof of this corollary is similar to the proof of Corollary 3.3.1.1. 

□ 

In the following Corollary 3.5.3.1.2, the sufficient conditions for PTrFFStME to have 

a positive fuzzy solution are discussed. 

Corollary 3.5.3.1.2. Existence of Positive Fuzzy Solution to PTrEFFME 

The PTrFFStME has a positive fuzzy solution if: 

I) 𝑑𝑒𝑡(𝑟1) ≠ 0, 𝑑𝑒𝑡(𝑟2) ≠ 0, 𝑑𝑒𝑡(𝑟3) ≠ 0 and𝑑𝑒𝑡(𝑟4) ≠ 0 i.e., 𝑟1, 𝑟2, 𝑟3 and 𝑟4 

are invertible matrices. 

II) 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 𝑎𝑛𝑑 𝑟4

−1 > 0. 

III) 𝑟1
−1𝑡1 > 0, 𝑟2

−1𝑡2 > 0, 𝑟3
−1𝑡3 > 0 and 𝑟4

−1𝑡4 > 0. 

IV) 𝑟1
−1𝑡1 ≤ 𝑟2

−1𝑡2 ≤ 𝑟3
−1𝑡3 ≤ 𝑟4

−1𝑡4. 

Proof: The proof of this corollary is similar to the proof of Corollary 3.3.1.2. 
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□ 

The positive fuzzy solution in Eq. (3.119) to the PTrFFStME in Eq. (3.86) can be 

approximated numerically by modifying the method of FGIM in Section 3.3.2 as 

discussed in the following Section 3.5.1.2. 

3.5.3.2 Modified Fuzzy Gradient Iterative Method for PTrFFStME 

In this section, the solution to the PTrFFStME 𝑋̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ in Eq. (3.86) is 

approximated numerically by modifying the FGIM method in Section 3.3.2 and 

applying it to the system of StME in Eq. (3.113). The algorithm for solving the 

PTrFFStME can be obtained directly from the algorithm in Eq. (3.38) as follows: for 

1 ≤ 𝑙 ≤ 4 we have: 

𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) +
𝛼𝑙

2
((𝑒(𝑙) − 𝑥̂(𝑙)(𝑘 − 1) − 𝑐(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑑(𝑙)) +

(𝑐(𝑙))
𝑇
(𝑒(𝑙) − 𝑥̂(𝑙)(𝑘 − 1) − 𝑐(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑑(𝑙))(𝑑(𝑙))

𝑇
),                                   (3.120)                                                                                                                                                                                                                                                                                                                                                                                                                                                          

where the convergence rate (step size) is given by, 

0 < 𝛼𝑙 <
2

𝜆𝑚𝑎𝑥 [(𝐶
(𝑙))𝑇𝐶(𝑙)]𝜆𝑚𝑎𝑥 [𝐷

(𝑙)(𝐷(𝑙))𝑇]
.                                      (3.121) 

At step 𝑘 − 𝑡ℎ of the iteration, the following error is considered: 

𝛿(𝑙)(𝑘) = ‖𝑒(𝑙) − 𝑥̂(𝑙)(𝑘) − 𝑐(𝑙)𝑥̂(𝑙)(𝑘)𝑑(𝑙)‖
2
.                         (3.122)                                                               

The obtained numerical solution in Eq. (3.120) can be expressed as, 

𝑥̂ = (𝑥̂(1), 𝑥̂(2), 𝑥̂(3), 𝑥̂(4)). 

It can also be written in matrix form as, 

𝑋̂ = (

(𝑥̂11
(1), 𝑥̂11

(2), 𝑥̂11
(3), 𝑥̂11

(4)) ⋯ (𝑥̂1𝑛
(1), 𝑥̂1𝑛

(2), 𝑥̂1𝑛
(3), 𝑥̂1𝑛

(4))

⋮ ⋱ ⋮

(𝑥̂𝑛1
(1), 𝑥̂𝑛1

(2), 𝑥̂𝑛1
(3), 𝑥̂𝑛1

(4)) … (𝑥̂𝑛𝑛
(1), 𝑥̂𝑛𝑛

(2), 𝑥̂𝑛𝑛
(3), 𝑥̂𝑛𝑛

(4))

).                       (3.123)   
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In the following Theorem 3.5.2.2.1, it is proven that if the system of StME in  

Eq. (3.113) has a unique solution, then the approximated fuzzy solution to the 

PTrFFStME given by the MFGIM converges to the analytical fuzzy solution for any 

initial value. 

Theorem 3.5.3.2.1. If the system of StME in Eq. (3.113) has a unique positive solution 

𝑥(𝑙), then the numerical solution 𝑥̂(𝑙)(𝑘) in Eq. (3.120) converges to 𝑥(𝑙) for any initial 

values 𝑥̂(𝑙)(0) (i.e. if 𝑘 → ∞, then 𝑥(𝑙) = 𝑥̂(𝑙)(𝑘)). 

Proof: The proof of this theorem can be obtained similar to the proof of  

Theorem 3.3.2.1. 

□ 

Below is the Algorithm 3.9 for the MFGIM. This algorithm can be used by different 

software for solving the PTrFFStME in Eq. (3.86). 

Algorithm 3.9: Modified Fuzzy Gradient Iterative Algorithm for PTrFFStME. 

Input 𝐶̃, 𝐷̃ and 𝐸̃  # Split each matrix into four matrices (e.g., 𝑎(1), 𝑎(2), 𝑎(3), 𝑎(4)) 

for l = 1,2,3,4 

Choose 𝛼𝑙, 𝜀, 𝑥̂(𝑙)(𝑘) = 0   # 0 is the Zero matrix with the same dimension as 𝑥(𝑙)(𝑘) 

While 𝑘 = 0, 1, 2, … , 𝑛 do 

𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) +
𝛼𝑙

2
((𝑒(𝑙) − 𝑥̂(𝑙)(𝑘 − 1) − 𝑐(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑑(𝑙)) + (𝑐(𝑙))

𝑇
(𝑒(𝑙) −

𝑥̂(𝑙)(𝑘 − 1) − 𝑐(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑑(𝑙))(𝑑(𝑙))
𝑇
). 

               𝛿(𝑙)(𝑘) = ‖𝑒(𝑙) − 𝑥̂(𝑙)(𝑘) − 𝑐(𝑙)𝑥̂(𝑙)(𝑘)𝑑(𝑙)‖
2

. 

        If  𝛿(𝑙)(𝑘) < 𝜀 then  

             𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘)); 

             𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

       else  

     𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) +
𝛼𝑙

2
((𝑒(𝑙) − 𝑥̂(𝑙)(𝑘 − 1) − 𝑐(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑑(𝑙)) +

(𝑐(𝑙))
𝑇
(𝑒(𝑙) − 𝑥̂(𝑙)(𝑘 − 1) − 𝑐(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑑(𝑙))(𝑑(𝑙))

𝑇
). 

             update k.  

             𝑘 = 𝑘 + 1 

        end 

        𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘)), 

        𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

end  
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The positive solution to the PTrFFStME in Eq. (3.86) can also be approximated 

numerically by modifying the FLSIM in Section 3.3.3 as discussed in the following 

Section 3.5.3.3. 

3.5.3.3 Modified Fuzzy Least Square Iterative Method for PTrFFStME 

In this section, the solution to the PTrFFStME 𝑋̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ in Eq. (3.86) is 

approximated numerically by modifying the FLSIM method in Section 3.3.3 and 

applying it to the system of StME in Eq. (3.113). The algorithm for obtaining the fuzzy 

solution by the FLSIM in Eq. (3.45) can be modified as follows: for 1 ≤ 𝑙 ≤ 4 we have: 

𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) +
𝛼𝑙

2
((𝑒(𝑙) − 𝑥̂(𝑙)(𝑘 − 1) − 𝑐(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑑(𝑙)) +

((𝑐(𝑙))
𝑇
∙ 𝑐(𝑙))

−1

∙ (𝑐(𝑙))
𝑇
(𝑒(𝑙) − 𝑥̂(𝑙)(𝑘 − 1) − 𝑐(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑑(𝑙))(𝑑(𝑙))

𝑇
∙

((𝑑(𝑙)(𝑑(𝑙))
𝑇
)−1),                                                                                               (3.124)                                                                                                                                                                                                                            

where the convergence rate (step size) is given by, 

0 < 𝛼𝑙 < 2.                                                   (3.125) 

At step 𝑘 − 𝑡ℎ of the iteration, the following error is considered: 

𝛿(𝑙)(𝑘) = ‖𝑒(𝑙) − 𝑥̂(𝑙)(𝑘) − 𝑐(𝑙)𝑥̂(𝑙)(𝑘)𝑑(𝑙)‖
2
.                          (3.126) 

The obtained numerical solution in Eq. (3.124) can be expressed as, 

𝑥̂ = (𝑥̂(1), 𝑥̂(2), 𝑥̂(3), 𝑥̂(4)). 

It can also be written in matrix form as, 

𝑥̂ = (

(𝑥̂11
(1), 𝑥̂11

(2), 𝑥̂11
(3), 𝑥̂11

(4)) ⋯ (𝑥̂1𝑛
(1), 𝑥̂1𝑛

(2), 𝑥̂1𝑛
(3), 𝑥̂1𝑛

(4))

⋮ ⋱ ⋮

(𝑥̂𝑝1
(1), 𝑥̂𝑝1

(2), 𝑥̂𝑝1
(3), 𝑥̂𝑝1

(4)) … (𝑥̂𝑝𝑛
(1), 𝑥̂𝑝𝑛

(2), 𝑥̂𝑝𝑛
(3), 𝑥̂𝑝𝑛

(4))

).                       (3.127)   
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The following Theorem 3.5.3.3.1 proves that if the system of StME in Eq. (3.113) has 

a unique solution, then the approximated fuzzy solution in Eq. (3.124) by the MFLSIM 

to the TrFFStME in Eq. (3.86) converges to the analytical fuzzy solution for any initial 

value. 

Theorem 3.5.3.3.1: If the system of StME in Eq. (3.113) has a unique positive solution 

𝑥(𝑙), then the numerical solution 𝑥̂(𝑙)(𝑘) in Eq. (3.124) converges to 𝑥(𝑙) for any initial 

values 𝑥̂(𝑙)(0) (i.e. if 𝑘 → ∞, then 𝑥(𝑙) = 𝑥̂(𝑙)(𝑘)). 

Proof: The prove of this theorem can be obtained similar to the proof of Theorem 

3.3.3.1. 

□ 

Below is the Algorithm 3.10 for the FLSIM. This algorithm can be used by different 

software for solving the PTrFFStME in Eq. (3.86). 
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Algorithm 3.10: Modified Fuzzy Least-Square Algorithm for PTrFFStME. 

Input 𝐶̃, 𝐷̃ and 𝐸̃  # Split each matrix into four matrices (e.g., 𝑎(1), 𝑎(2), 𝑎(3), 𝑎(4)) 

for l = 1,2,3,4 

Choose 𝛼𝑙, 𝜀, 𝑥̂(𝑙)(𝑘) = 0   # 0 is the Zero matrix with the same dimension as 𝑥(𝑙)(𝑘) 

While 𝑘 = 0, 1, 2, … , 𝑛 do 

𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) +
𝛼𝑙

2
((𝑒(𝑙) − 𝑥̂(𝑙)(𝑘 − 1) − 𝑐(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑑(𝑙)) +

((𝑐(𝑙))
𝑇
∙ 𝑐(𝑙))

−1

∙ (𝑐(𝑙))
𝑇
(𝑒(𝑙) − 𝑥̂(𝑙)(𝑘 − 1) − 𝑐(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑑(𝑙))(𝑑(𝑙))

𝑇
∙

((𝑑(𝑙)(𝑑(𝑙))
𝑇
)−1). 

              𝛿(𝑙)(𝑘) = ‖𝑒(𝑙) − 𝑥̂(𝑙)(𝑘) − 𝑐(𝑙)𝑥̂(𝑙)(𝑘)𝑑(𝑙)‖
2

. 

        If  𝛿(𝑙)(𝑘) < 𝜀 then  

             𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘)); 

             𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

       else  

𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) +
𝛼𝑙

2
((𝑒(𝑙) − 𝑥̂(𝑙)(𝑘 − 1) − 𝑐(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑑(𝑙)) +

((𝑐(𝑙))
𝑇
∙ 𝑐(𝑙))

−1

∙ (𝑐(𝑙))
𝑇
(𝑒(𝑙) − 𝑥̂(𝑙)(𝑘 − 1) − 𝑐(𝑙)𝑥̂(𝑙)(𝑘 − 1)𝑑(𝑙))(𝑑(𝑙))

𝑇
∙

((𝑑(𝑙)(𝑑(𝑙))
𝑇
)−1). 

             update k.  

             𝑘 = 𝑘 + 1 

        end 

        𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘)), 

        𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

end  

 

To illustrate the constructed methods for solving the PTrFFStME, the following  

Example 3.5.3.3.1 is solved using the MFMVM, MFGIM and MFLSIM in Sections 

3.5.3.1, 3.5.3.2 and 3.5.3.3, respectively.  

 



 

220 

 

Example 3.5.3.3.1 Solve the following 2 × 2 PTrFFStME: 

𝑋̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ 

Given, 

𝐶̃ = (
(3, 5, 8, 9) (2, 3, 5, 8)
(1, 4, 6, 7) (4, 6, 7, 9)

), 𝐷̃ = (
(3, 6, 7, 9) (1, 3, 5, 7)
(1, 5,6, 8) (4, 7, 9, 10)

), 

𝐸̃ = (
(53, 293, 902, 2012) (51, 246, 937, 1977)
(71, 417, 956, 1972) (73, 354, 995, 1939)

). 

Solution: The positive fuzzy solution to the given PTrFFStME can be obtained 

analytically by the MFMVM in Section 3.5.2.1, similar to Example 3.3.1.1. Therefore, 

the positive fuzzy solution is 

𝑋̃ = (
(2, 3, 5, 6) (1, 2, 4, 5)
(4,5, 7, 9) (3, 4, 6, 8)

). 

This positive fuzzy solution is approximated using the MFGIM algorithm in Eq. (3.120) 

and the MFLSIM algorithm in Eq. (3.124) and the following initial value: 

for 1 ≤ 𝑙 ≤ 4, 𝑥̂(𝑙) = (
0 0
0 0

). 

 The approximated solution to 𝑋̃ is shown in Table 3.13 with the convergence rate (𝛼), 

error bound (𝜀), and the total number of iteration (𝑘). While Table 3.14 shows the 

computational time and memory usage needed for MFGIM and MFLSIM. 
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Table 3.13  

Comparison Between MFMVM, FGIM and MFLSIM for Example 3.5.3.3.1. 

 

 

 

 

 

 

 Method Analytical Solution and  

Approximated Solution 

𝜶 𝜺 𝒌 

𝑥̂(1) MFMVM (
2 1
4 3

) NA 0 NA 

MFGIM (
1.9994516485 1.0003533939
4.0003446414 2.9997779600

) 0.0004 10−4 267 

MFLSIM (
2.0000976180 0.99994540517
3.9999511837 3.00002730185

) 0.009 10−4 107 

𝑥̂(2) MFMVM (
3 2
5 4

) NA 0 NA 

MFGIM (
3.0017475640 1.9986655919
4.9983500240 4.0012607133

) 0.00009 10−4 1286 

MFLSIM (
2.9999346972 2.0000444729
5.0000653027 3.9999555270

) 0.009 10−4 93 

𝑥̂(3) MFMVM (
5 4
7 6

) NA 0 NA 

MFGIM (
5.0024990316 3.9980360885
6.9970839015 6.0022919184

) 0.00006 10−4 2172 

MFLSIM (
5.0000595967 3.9999546293
6.9999284839 6.0000544447

) 0.009 10−4 85 

𝑥̂(4) MFMVM (
6 5
9 8

) NA 0 NA 

MFGIM (
6.0134035109 4.9880642520
8.9872830892 8.0113237705

) 0.00002

5 

10−4 4030 

MFLSIM (
6.0001450322 4.9998730968
8.9998643347 8.0001187070

) 0.006 10−4 130 
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Table 3.14  

Comparison Between Computational Time, Memory Usage for MFGIM and MFLSIM for 

Example 3.5.3.3.1. 

 

 

 

 

 

 

 

 

 

 

 

The following Figure 3.14 shows the change in the error 𝛿(𝑙)(𝑘) when 𝑘 increases up to 

𝑘 = 20.  

 Method 𝒌 CPU 

time 

Real 

time 

Memory 

usage 

𝑥̂(1) MFGIM 267 6.03 ms 5.92 ms 1.09 MB 

MFLSIM 107 11.10 ms 10.91 ms 2.01 MB 

𝑥̂(2) MFGIM 1286 5.86 ms 5.84 ms 1.09 MB 

MFLSIM 93 10.93 ms 10.97 ms 2.01 MB 

𝑥̂(3) MFGIM 2172 5.91 ms 5.90 ms 1.09 MB 

MFLSIM 85 11.21 ms 11.09 ms 2.01 MB 

𝑥̂(4) MFGIM 4030 5.84 ms 5.84 ms 1.09 MB 

MFLSIM 130 10.82 ms 10.64 ms 2.01 MB 
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(a) (b) 

(c) (d) 

Figure 3.14. Comparison between the error of MFGIM and MFLSIM for the first 20 

iterations for Example 3.3.4.1. 

Tables 3.13, 3.14 and Figure 3.14 show that the error 𝛿(𝑙)(𝑘) is reducing as 𝑘 increases.  

Figure 3.14 shows that the error of the MFGIM and MFLSIM for approximating 𝑥̂(𝑙) is 

reducing significantly as 𝑘 increasing, where the MFLSIM converges to the analytical 

solution for a fewer number of iterations with a bigger step size compared to the MFGIM. 
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This indicates that the developed algorithms are effective and convergent for the given 

PTrFFStME. However, in terms of accuracy, error, the number of iterations, MFLSIM 

provide extremely accurate approximations with very few iterations. In addition, the 

MFLSIM takes more computational timing and more memory compared to MFGIM. 

 

In addition to the PTrFFSME, PTrFFME, PTrEFFME and PTrFFStME in Sections 3.4, 

3.5.1, 3.5.2 and 3.5.3 respectively, there is another special case for the GTrFFSME, which 

is the TrFFCTLME in Eq. (3.85).  

3.5.4 Solving Positive TrFFCTLME 

In this section, the positive fuzzy solution to the positive TrFFCTLME 𝐴̃𝑋̃ + 𝑋̃𝐴̃𝑇 = 𝐸̃ in 

Eq. (3.85) is obtained. In the following Definition 3.5.4.1, the positive TrFFCTLME is 

introduced. 

Definition 3.5.4.1. A matrix equation TrFFCTLME 𝐴̃𝑋̃ + 𝑋̃𝐴̃𝑇 = 𝐸̃, is called positive 

trapezoidal fully fuzzy continuous-time Lyapunov matrix equations (PTrFFCTLME) if 

𝐴̃ = (𝑎̃𝑖𝑗)𝑛×𝑛 > 0, 𝐴̃
𝑇 = (𝑎̃𝑖𝑗

𝑇 )
𝑛×𝑛

 and 𝑋̃ = (𝑥̃𝑖𝑗)𝑛×𝑛, ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛.  and  𝐸̃ = (𝑒̃𝑖𝑗)𝑛×𝑛 

∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑛, are positive trapezoidal fuzzy matrices. In the following Definition 

3.5.4.2, the system of CTLME is introduced. 

Definition 3.5.4.2. A system of matrix equations in the form 

 

{
 
 

 
 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1) + 𝑥𝑖𝑗

(1)(𝑎𝑖𝑗
(1))𝑇 = 𝑒𝑖𝑗

(1)
,

𝑎𝑖𝑗
(2)
𝑥𝑖𝑗
(2)
+ 𝑥𝑖𝑗

(2)
(𝑎𝑖𝑗

(2))𝑇 = 𝑒𝑖𝑗
(2)
,

𝑎𝑖𝑗
(3)
𝑥𝑖𝑗
(3)
+ 𝑥𝑖𝑗

(3)
(𝑎𝑖𝑗

(3))𝑇 = 𝑒𝑖𝑗
(3)
,

𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
+ 𝑥𝑖𝑗

(4)
(𝑎𝑖𝑗

(4)
)𝑇 = 𝑒𝑖𝑗

(4)
.
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is called a system of CTLME. 

In the following Theorem 3.5.4.1, the PTrFFCTLME is converted to an equivalent system 

of crisp CTLME. 

Theorem 3.5.4.1. Suppose that 𝐴̃, 𝐴̃𝑇 , 𝐸̃ and 𝑋̃ are positive trapezoidal fuzzy matrices, then 

the PTrFFCTLME 𝐴̃𝑋̃ + 𝑋̃𝐴̃𝑇 = 𝐸̃ is equivalent to the following system of CTLME: 

{
 
 

 
 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1) + 𝑥𝑖𝑗

(1)(𝑎𝑖𝑗
(1))𝑇 = 𝑒𝑖𝑗

(1)
,

𝑎𝑖𝑗
(2)
𝑥𝑖𝑗
(2)
+ 𝑥𝑖𝑗

(2)
(𝑎𝑖𝑗

(2))𝑇 = 𝑒𝑖𝑗
(2)
,

𝑎𝑖𝑗
(3)
𝑥𝑖𝑗
(3)
+ 𝑥𝑖𝑗

(3)
(𝑎𝑖𝑗

(3))𝑇 = 𝑒𝑖𝑗
(3)
,

𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
+ 𝑥𝑖𝑗

(4)
(𝑎𝑖𝑗

(4))𝑇 = 𝑒𝑖𝑗
(4)
.

                                              (3.128) 

Proof: 

Let 𝐴̃, 𝐴̃𝑇, 𝐸̃ and 𝑋̃ in the PTrFFCTLME 𝐴̃𝑋̃ + 𝑋̃𝐴̃𝑇 = 𝐸̃ be positive trapezoidal fuzzy 

matrices, then by RAMO in Eq. (3.2), the product 𝐴̃𝑋̃ and 𝑋̃𝐴̃𝑇 are obtained as follows: 

𝐴̃𝑋̃ = (𝑎𝑖𝑗
(1)
𝑥𝑖𝑗
(1)
, 𝑎𝑖𝑗
(2)
𝑥𝑖𝑗
(2)
, 𝑎𝑖𝑗
(3)
𝑥𝑖𝑗
(3)
, 𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
).  

and 

𝑋̃𝐴̃𝑇  = (𝑥𝑖𝑗
(1)(𝑎𝑖𝑗

(1))𝑇 , 𝑥𝑖𝑗
(2)
(𝑎𝑖𝑗

(2))𝑇, 𝑥𝑖𝑗
(3)
(𝑎𝑖𝑗

(3))𝑇 , 𝑥𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
(𝑎𝑖𝑗

(4))𝑇). 

By Definition 2.3.3.2.6 and Eq. (2.10a), the sum of 𝐴̃𝑋̃ and 𝑋̃𝐴̃𝑇 is found as follows: 

     𝐴̃𝑋̃ + 𝑋̃𝐴̃𝑇 = (𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(2)
𝑥𝑖𝑗
(2)
, 𝑎𝑖𝑗
(3)
𝑥𝑖𝑗
(3)
, 𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
) + (𝑥𝑖𝑗

(1)(𝑎𝑖𝑗
(1))𝑇 , 𝑥𝑖𝑗

(2)
(𝑎𝑖𝑗

(2))𝑇 , 𝑥𝑖𝑗
(3)
(𝑎𝑖𝑗

(3))𝑇 , 𝑥𝑖𝑗
(4)
(𝑎𝑖𝑗

(4))𝑇) . 

= (𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1) + 𝑥𝑖𝑗
(1)(𝑎𝑖𝑗

(1))𝑇, 𝑎𝑖𝑗
(2)
𝑥𝑖𝑗
(2)
+ 𝑥𝑖𝑗

(2)
(𝑎𝑖𝑗

(2))𝑇, 𝑎𝑖𝑗
(3)
𝑥𝑖𝑗
(3)
+ 𝑥𝑖𝑗

(3)
(𝑎𝑖𝑗

(3))𝑇, 𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
+ 𝑥𝑖𝑗

(4)
(𝑎𝑖𝑗

(4))𝑇). 

By Definition 2.3.3.2.5 and Eq. (2.9), the PTrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐴̃𝑇 = 𝐸̃ is equivalent to the 

following system of CTLME: 
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{
 
 

 
 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1) + 𝑥𝑖𝑗

(1)(𝑎𝑖𝑗
(1))𝑇 = 𝑒𝑖𝑗

(1)
,

𝑎𝑖𝑗
(2)
𝑥𝑖𝑗
(2)
+ 𝑥𝑖𝑗

(2)
(𝑎𝑖𝑗

(2))𝑇 = 𝑒𝑖𝑗
(2)
,

𝑎𝑖𝑗
(3)
𝑥𝑖𝑗
(3)
+ 𝑥𝑖𝑗

(3)
(𝑎𝑖𝑗

(3))𝑇 = 𝑒𝑖𝑗
(3)
,

𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
+ 𝑥𝑖𝑗

(4)
(𝑎𝑖𝑗

(4))𝑇 = 𝑒𝑖𝑗
(4)
.

 

□ 

In the following Remark 3.5.4.1, the system of CTLME in Eq. (3.128) is represented in 

general form. 

Remark 3.5.4.1: Based on Eq. (3.128), the system of CTLME can be written as follows: 

for 1 ≤ 𝑙 ≤ 4 we have: 

𝑎𝑖𝑗
(𝑙)𝑥𝑖𝑗

(𝑙) + 𝑥𝑖𝑗
(𝑙)(𝑎𝑖𝑗

(𝑙))𝑇 = 𝑒𝑖𝑗
(𝑙).                                                     (3.129)         

In the following Theorem 3.5.4.2, the uniqueness of the positive solution to the system of 

CTLME in Eq. (3.128) is proved. 

Theorem 3.5.4.2 Uniqueness of Positive Solution to System of CTLME 

The system of CTLME in Eq. (3.128) has a unique positive solution if the following 

conditions are satisfied: 

I) 𝑑𝑒𝑡(𝑟1) ≠ 0, 𝑑𝑒𝑡(𝑟2) ≠ 0, 𝑑𝑒𝑡(𝑟3) ≠ 0 and𝑑𝑒𝑡(𝑟4) ≠ 0 i.e., 𝑟1, 𝑟2, 𝑟3 and 𝑟4 are 

invertible matrices where  

𝑟1 = 𝐼𝑖𝑗
(1)⨂𝑎𝑖𝑗

(1) + ((𝑎𝑖𝑗
(1))𝑇)𝑇⨂𝐼𝑖𝑗

(1), 

𝑟2 = 𝐼𝑖𝑗
(2)⨂𝑎𝑖𝑗

(2) + ((𝑎𝑖𝑗
(2))𝑇)𝑇⨂𝐼𝑖𝑗

(2), 

𝑟3 = 𝐼𝑖𝑗
(3)⨂𝑎𝑖𝑗

(3) + ((𝑎𝑖𝑗
(3))𝑇)𝑇⨂𝐼𝑖𝑗

(3), 

𝑟4 = 𝐼𝑖𝑗
(4)⨂𝑎𝑖𝑗

(4) + ((𝑎𝑖𝑗
(4))𝑇)𝑇⨂𝐼𝑖𝑗

(4). 

II) 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 𝑎𝑛𝑑 𝑟4

−1 > 0. 

Proof: the proof of this Theorem is similar to the proof of Theorem 3.3.2. 
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□ 

It is worth mentioning that the structure of the PTrFFCTLME 𝐴̃𝑋̃ + 𝑋̃𝐴̃𝑇 = 𝐸̃ and the 

PTrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ is almost the same. Therefore, if the fuzzy matrix 𝐷̃ in the 

TrFFSME is equal to 𝐴̃𝑇, then the developed methods for the PTrFFSME in Sections 3.4.1, 

3.4.2 and 3.4.3 can be applied directly to the PTrFFCTLME. Therefore, in the following 

Section 3.5.4.1, the PTrFFCTLME is solved by MFMVM for the PTrFFSME in  

Section 3.4.1. 

3.5.4.1 Modified Fuzzy Matrix Vectorization Method for PTrFFCTLME 

In this section, the analytical solution to the PTrFFCTLME 𝐴̃𝑋̃ + 𝑋̃𝐴̃𝑇 = 𝐸̃ is obtained by 

modifying the FMVM in Section 3.4.1 and apply it to the system of CTLME in Eq. (3.128). 

The following steps summarizes the methods. 

Step1: Decomposing the matrices 𝐴̃, 𝑋̃, 𝐴̃𝑇 and 𝐸̃ into 𝑎𝑖𝑗
(𝑙)

, (𝑎𝑖𝑗
(𝑙))𝑇, 𝑒𝑖𝑗

(𝑙)
 and 𝑥𝑖𝑗

(𝑙)
 for  

𝑙 = 1, 2, 3, 4  respectively and convert the PTrFFCTLME in Eq. (3.85) to a system of 

CTLME using Theorem 3.5.4.1. 

Step 2: Applying the Vec-operator and Kronecker product on Eq. (3.128) gives:                       

{
  
 

  
 (𝐼𝑖𝑗

(1)⨂𝑎𝑖𝑗
(1) + ((𝑎𝑖𝑗

(1))𝑇)𝑇⨂𝐼𝑖𝑗
(1))𝑣𝑒𝑐(𝑥𝑖𝑗

(1)) = 𝑣𝑒𝑐(𝑒𝑖𝑗
(1)),

(𝐼𝑖𝑗
(2)⨂𝑎𝑖𝑗

(2) + ((𝑎𝑖𝑗
(2))𝑇)𝑇⨂𝐼𝑖𝑗

(2))𝑣𝑒𝑐(𝑥𝑖𝑗
(2)) = 𝑣𝑒𝑐(𝑒𝑖𝑗

(2)),

(𝐼𝑖𝑗
(3)⨂𝑎𝑖𝑗

(3) + ((𝑎𝑖𝑗
(3))𝑇)𝑇⨂𝐼𝑖𝑗

(3))𝑣𝑒𝑐(𝑥𝑖𝑗
(3)) = 𝑣𝑒𝑐(𝑒𝑖𝑗

(3)),

(𝐼𝑖𝑗
(4)⨂𝑎𝑖𝑗

(4) + ((𝑎𝑖𝑗
(4))𝑇)𝑇⨂𝐼𝑖𝑗

(4))𝑣𝑒𝑐(𝑥𝑖𝑗
(4)) = 𝑣𝑒𝑐(𝑒𝑖𝑗

(4)),

             

 which can be written as  
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{
  
 

  
 (𝐼𝑖𝑗

(1)⨂𝑎𝑖𝑗
(1) + 𝑎𝑖𝑗

(1)⨂𝐼𝑖𝑗
(1))𝑣𝑒𝑐(𝑥𝑖𝑗

(1)) = 𝑣𝑒𝑐(𝑒𝑖𝑗
(1)),

(𝐼𝑖𝑗
(2)⨂𝑎𝑖𝑗

(2) + 𝑎𝑖𝑗
(2)⨂𝐼𝑖𝑗

(2))𝑣𝑒𝑐(𝑥𝑖𝑗
(2)) = 𝑣𝑒𝑐(𝑒𝑖𝑗

(2)),

(𝐼𝑖𝑗
(3)
⨂𝑎𝑖𝑗

(3)
+ 𝑎𝑖𝑗

(3)
⨂𝐼𝑖𝑗

(3)
)𝑣𝑒𝑐(𝑥𝑖𝑗

(3)
) = 𝑣𝑒𝑐(𝑒𝑖𝑗

(3)
),

(𝐼𝑖𝑗
(4)⨂𝑎𝑖𝑗

(4) + 𝑎𝑖𝑗
(4)⨂𝐼𝑖𝑗

(4))𝑣𝑒𝑐(𝑥𝑖𝑗
(4)) = 𝑣𝑒𝑐(𝑒𝑖𝑗

(4)).

                               (3.130) 

Step 3: Multiplying the system of linear matrix equation in Eq. (3.130) by matrix 

multiplicative inverse as follows: 

{
 
 
 

 
 
 𝑣𝑒𝑐(𝑥𝑖𝑗

(1)) = (𝐼𝑖𝑗
(1)⨂𝑎𝑖𝑗

(1) + 𝑎𝑖𝑗
(1)⨂𝐼𝑖𝑗

(1))
−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(1)),

𝑣𝑒𝑐(𝑥𝑖𝑗
(2)) = (𝐼𝑖𝑗

(2)⨂𝑎𝑖𝑗
(2) + 𝑎𝑖𝑗

(2)⨂𝐼𝑖𝑗
(2))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(2)),

𝑣𝑒𝑐(𝑥𝑖𝑗
(3)) = (𝐼𝑖𝑗

(3)⨂𝑎𝑖𝑗
(3) + 𝑎𝑖𝑗

(3)⨂𝐼𝑖𝑗
(3))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(3)),

𝑣𝑒𝑐(𝑥𝑖𝑗
(4)) = (𝐼𝑖𝑗

(4)⨂𝑎𝑖𝑗
(4) + 𝑎𝑖𝑗

(4)⨂𝐼𝑖𝑗
(4))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(4)).

                         (3.131) 

Step 4: Multiplying the system of linear matrix equation in Eq. (3.131) by 𝑣𝑒𝑐−1 as 

follows: 

{
 
 
 

 
 
 𝑥𝑖𝑗

(1) = 𝑣𝑒𝑐−1(𝐼𝑖𝑗
(1)⨂𝑎𝑖𝑗

(1) + 𝑎𝑖𝑗
(1)⨂𝐼𝑖𝑗

(1))
−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(1))),

𝑥𝑖𝑗
(2) = 𝑣𝑒𝑐−1(𝐼𝑖𝑗

(2)⨂𝑎𝑖𝑗
(2) + 𝑎𝑖𝑗

(2)⨂𝐼𝑖𝑗
(2))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(2))),

𝑥𝑖𝑗
(3) = 𝑣𝑒𝑐−1(𝐼𝑖𝑗

(3)⨂𝑎𝑖𝑗
(3) + 𝑎𝑖𝑗

(3)⨂𝐼𝑖𝑗
(3))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(3))),

𝑥𝑖𝑗
(4) = 𝑣𝑒𝑐−1(𝐼𝑖𝑗

(4)⨂𝑎𝑖𝑗
(4) + 𝑎𝑖𝑗

(4)⨂𝐼𝑖𝑗
(4))

−1
𝑣𝑒𝑐(𝑒𝑖𝑗

(4))).

                       (3.132) 

Step 5: Combining the solutions obtained by the previous Step 4 and write it as a 

trapezoidal fuzzy matrix as follows: 

𝑋̃ = (

(𝑥11
(1), 𝑥11

(2), 𝑥11
(3), 𝑥11

(4)) ⋯ (𝑥1𝑛
(1), 𝑥1𝑛

(2), 𝑥1𝑛
(3), 𝑥1𝑛

(4))

⋮ ⋱ ⋮

(𝑥𝑚1
(1), 𝑥𝑚1

(2), 𝑥𝑚1
(3), 𝑥𝑚1

(4)) … (𝑥𝑚𝑛
(1) , 𝑥𝑚𝑛

(2) , 𝑥𝑚𝑛
(3) , 𝑥𝑚𝑛

(4))

).                    (3.133) 

The obtained solution by the MFMVM in step 4 to the system of CTLME is written in 

general form in the following Remark 3.5.4.1.1. 
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Remark 3.5.4.1.1: The positive fuzzy solution in Eq. (3.132) to the PTrFFCTLME in Eq. 

(3.85) can be written as follows: For 1 ≤ 𝑙 ≤ 4 we have: 

𝑥𝑖𝑗
(𝑙) = 𝑣𝑒𝑐−1(((𝑏𝑖𝑗

(𝑙))𝑇⨂𝑎𝑖𝑗
(𝑙))−1𝑣𝑒𝑐(𝑒𝑖𝑗

(𝑙))).                                             (3.134) 

In the following Theorem 3.5.4.1.1, the solution to a system of CTLME in Eq. (3.128) and 

the positive solution to the PTrFFCTLME in Eq. (3.85) is proved to be equivalent. 

Theorem 3.5.4.1.1. The solution to the system of CTLME in Eq. (3.128) and the positive 

fuzzy solution to the PTrFFCTLME in Eq. (3.85) are equivalent if the following conditions 

are satisfied. 

I) 𝑑𝑒𝑡(𝑟1) ≠ 0, 𝑑𝑒𝑡(𝑟2) ≠ 0, 𝑑𝑒𝑡(𝑟3) ≠ 0 and𝑑𝑒𝑡(𝑟4) ≠ 0 i.e., 𝑟1, 𝑟2, 𝑟3 and 𝑟4 are 

invertible matrices, 

II) 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 𝑎𝑛𝑑 𝑟4

−1 > 0, 

III)  𝑟1
−1𝑡1 > 0, 𝑟2

−1𝑡2 > 0, 𝑟3
−1𝑡3 > 0 and 𝑟4

−1𝑡4 > 0, 

IV)  𝑟1
−1𝑡1 ≤ 𝑟2

−1𝑡2 ≤ 𝑟3
−1𝑡3 ≤ 𝑟4

−1𝑡4. 

Proof: The proof of this theorem can be obtained similar to the proof of Theorem 3.4.1.1. 

□ 

The following Corollary 3.5.4.1.1 discusses the uniqueness of the positive solution to the 

positive TrFFCTLME. 

Corollary 3.5.4.1.1. The uniqueness of Fuzzy Solution to Positive TrFFCTLME 

The positive TrFFCTLME in Eq. (3.85) has a unique positive fuzzy solution if the 

corresponding system of CTLME in Eq. (3.128) has a unique solution.  

Proof: The proof of this corollary is similar to the proof of Corollary 3.4.1.1. 

□ 
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In the following Corollary 3.5.4.1.2, the sufficient conditions for PTrFFCTLME to have 

positive fuzzy solution are discussed. 

Corollary 3.5.4.1.2. Existence of Positive Fuzzy Solution to PTrFFCTLME 

The PTrFFCTLME has a positive fuzzy solution if the following conditions are satisfied: 

I) 𝑑𝑒𝑡(𝑟1) ≠ 0, 𝑑𝑒𝑡(𝑟2) ≠ 0, 𝑑𝑒𝑡(𝑟3) ≠ 0 and𝑑𝑒𝑡(𝑟4) ≠ 0 i.e., 𝑟1, 𝑟2, 𝑟3 and 𝑟4 are 

invertible matrices. 

II) 𝑟1
−1, 𝑟2

−1, 𝑟3
−1 and 𝑟4

−1 > 0. 

III) 𝑟1
−1𝑡1 > 0, 𝑟2

−1𝑡2 > 0, 𝑟3
−1𝑡3 > 0 and 𝑟4

−1𝑡4 > 0.  

IV) 𝑟1
−1𝑡1 ≤ 𝑟2

−1𝑡2 ≤ 𝑟3
−1𝑡3 ≤ 𝑟4

−1𝑡4. 

Proof: The proof of this corollary is similar to the proof of Corollary 3.4.1.2.                

□ 

The positive fuzzy solution in Eq. (3.132) to the PTrFFCTLME can be approximated by 

the MFGIM in Section 3.4.2 as discussed in the following Section 3.5.4.2. 

3.5.4.2 Modified Fuzzy Gradient Iterative Method for PTrFFCTLME 

In this section, the solution to the PTrFFCTLME 𝐴̃𝑋̃ + 𝑋̃𝐴̃𝑇 = 𝐸̃ is approximated 

numerically by applying the MFGIM method in Section 3.4.2 to the system of CTLME in 

Eq. (3.128). The algorithm for solving the PTrFFCTLME can be obtained directly from 

the algorithm in Eq. (3.71) is as follows: 

For 1 ≤ 𝑙 ≤ 4 we have: 

𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) +
𝛼𝑙

2
((𝑎(𝑙))

𝑇
(𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1) − 𝑥̂(𝑙)(𝑘 − 1)(𝑎(𝑙))

𝑇
) +

(𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1) − 𝑥̂(𝑙)(𝑘 − 1)(𝑎(𝑙))
𝑇
) 𝑎(𝑙)),                 (3.135)                                                                                                                                                                                                                                       

where the convergence rate (step size) is given by, 
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0 < 𝛼𝑙 <
1

𝜆𝑚𝑎𝑥 [(𝐴
(𝑚))𝑇𝐴(𝑚)]

.                                               (3.136𝑎) 

It can also be obtained as follows,  

0 < 𝛼𝑙 <
1

‖𝑎(𝑙)‖2
.                                                                       (3.136𝑏) 

where, ‖𝑎(𝑙)‖
2
= 𝑇𝑟[𝑎(𝑙) ∙ (𝑎(𝑙))

𝑇
]. 

At step 𝑘 − 𝑡ℎ of the iteration, the following error is considered: 

𝛿(𝑙)(𝑘) = ‖𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘) − 𝑥̂(𝑙)(𝑘)(𝑎(𝑙))𝑇‖
2
.                                                   (3.137)                                                          

The obtained numerical solution in Eq. (3.135) can be expressed as, 

𝑥̂ = (𝑥̂(1), 𝑥̂(2), 𝑥̂(3), 𝑥̂(4)). 

It can also be written in matrix form as, 

𝑋̂ = (

(𝑥̂11
(1), 𝑥̂11

(2), 𝑥̂11
(3), 𝑥̂11

(4)) ⋯ (𝑥̂1𝑛
(1), 𝑥̂1𝑛

(2), 𝑥̂1𝑛
(3), 𝑥̂1𝑛

(4))

⋮ ⋱ ⋮

(𝑥̂𝑛1
(1), 𝑥̂𝑛1

(2), 𝑥̂𝑛1
(3), 𝑥̂𝑛1

(4)) … (𝑥̂𝑛𝑛
(1), 𝑥̂𝑛𝑛

(2), 𝑥̂𝑛𝑛
(3), 𝑥̂𝑛𝑛

(4))

).                        (3.138)   

The following Theorem 3.5.4.2.1 proves that if the system of CTLME in Eq. (3.128) has a 

unique solution, then the approximated fuzzy solution in Eq. (3.135) to the positive 

TrFFCTLME in Eq. (3.85) given by the modified fuzzy gradient iterative method 

converges to the analytical fuzzy solution for any initial value. 

Theorem 3.5.4.2.1. If the system of CTLME in Eq. (3.128) has a unique positive solution 

𝑥(𝑙), then the numerical solution 𝑥̂(𝑙)(𝑘) in Eq. (3.135) converges to 𝑥(𝑙) for any initial 

values 𝑥̂(𝑙)(0) (i.e. if 𝑘 → ∞, then 𝑥(𝑙) = 𝑥̂(𝑙)(𝑘)). 

Proof: the proof of this theorem can be obtained similar to the proof of Theorem 3.4.3.1. 

□ 

Below is the Algorithm 3.11 for the MFGIM. This algorithm can be used by different 

software for solving the PTrFFCTLME in Eq. (3.85). 
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Algorithm 3.11: Modified Fuzzy Gradient Iterative Algorithm for 

PTrFFCTLME. 

Input 𝐴̃ and 𝐸̃  # Split each matrix into four matrices (e.g., 𝑎(1), 𝑎(2), 𝑎(3), 𝑎(4)) 

for l = 1,2,3,4 

Choose 𝛼𝑙, 𝜀, 𝑥̂(𝑙)(𝑘) = 0   # 0 is the Zero matrix with the same dimension as 𝑥(𝑙)(𝑘) 

While 𝑘 = 0, 1, 2, … , 𝑛 do 

𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) +
𝛼𝑙
2
((𝑎(𝑙))

𝑇
(𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1) − 𝑥̂(𝑙)(𝑘 − 1)(𝑎(𝑙))𝑇)

+ (𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1) − 𝑥̂(𝑙)(𝑘 − 1)(𝑎(𝑙))𝑇)𝑎(𝑙)). 

            

              𝛿(𝑙)(𝑘) = ‖𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘) − 𝑥̂(𝑙)(𝑘)(𝑎(𝑙))
𝑇
‖
2

. 

        If  𝛿(𝑙)(𝑘) < 𝜀 then  

             𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘)); 

             𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

       else  

𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) +
𝛼𝑙

2
((𝑎(𝑙))

𝑇
(𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1) − 𝑥̂(𝑙)(𝑘 − 1)(𝑎(𝑙))𝑇) +

(𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1) − 𝑥̂(𝑙)(𝑘 − 1)(𝑎(𝑙))𝑇)𝑎(𝑙)), 

             update k.  

             𝑘 = 𝑘 + 1 

        end 

        𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘)), 

        𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

end  

 

The positive solution to the PTrFFCTLME in Eq. (3.85) can also be approximated 

numerically by the MFLSIM in Section 3.4.4. as discussed in the following 

Section 3.5.4.3. 

3.5.4.3 Modified Fuzzy Least Square Iterative Method for PTrFFCTLME 

In this section, the solution to the PTrFFCTLME 𝐴̃𝑋̃ + 𝑋̃𝐴̃𝑇 = 𝐸̃ is approximated 

numerically by applying the MFLSIM in Section 3.4.4 to the system of CTLME in  
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Eq. (3.128). The algorithm for obtaining the positive fuzzy solution by the MFLSIM in  

Eq. (3.78) can be modified as follows: for 1 ≤ 𝑙 ≤ 4 we have: 

𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) +
𝛼𝑙

2
(((𝑎(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

(𝑎(𝑙))
𝑇
(𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1) −

𝑥̂(𝑙)(𝑘 − 1)(𝑎(𝑙))
𝑇
) + (𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1) − 𝑥̂(𝑙)(𝑘 −

1)(𝑎(𝑙))
𝑇
) (𝑎(𝑙))

𝑇
(𝑎(𝑙)(𝑎(𝑙))

𝑇
)
−1

),                                                                        (3.139)                                                                                                                                                                                                                                           

where the convergence rate (step size) is given by, 

0 < 𝛼𝑙 < 2.                                                (3.140) 

At step 𝑘 − 𝑡ℎ of the iteration, the following error is considered: 

𝛿(𝑙)(𝑘) = ‖𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘) − 𝑥̂(𝑙)(𝑘)(𝑎(𝑙))
𝑇
‖
2
.              (3.141)                                                             

The obtained numerical solution in Eq. (3.139) can be expressed as, 

𝑥̂ = (𝑥̂(1), 𝑥̂(2), 𝑥̂(3), 𝑥̂(4)). 

It can also be written in matrix form as, 

𝑋̂ = (

(𝑥̂11
(1), 𝑥̂11

(2), 𝑥̂11
(3), 𝑥̂11

(4)) ⋯ (𝑥̂1𝑛
(1), 𝑥̂1𝑛

(2), 𝑥̂1𝑛
(3), 𝑥̂1𝑛

(4))

⋮ ⋱ ⋮

(𝑥̂𝑝1
(1), 𝑥̂𝑝1

(2), 𝑥̂𝑝1
(3), 𝑥̂𝑝1

(4)) … (𝑥̂𝑝𝑛
(1), 𝑥̂𝑝𝑛

(2), 𝑥̂𝑝𝑛
(3), 𝑥̂𝑝𝑛

(4))

).                       (3.142)   

The following Theorem 3.5.4.3.1 proves that if the system of CTLME in  

Eq. (3.128) has a unique solution, then the approximated fuzzy solution in Eq. (3.139) 

by the MFLSIM to the TrFFCTLME in Eq. (3.85) converges to the analytical fuzzy 

solution for any initial value. 

Theorem 3.5.4.3.1 If the system of CTLME in Eq. (3.128) has a unique positive 

solution 𝑥(𝑙), then the numerical solution 𝑥̂(𝑙)(𝑘) in Eq. (3.139) converges to 𝑥(𝑙) for 

any initial values 𝑥̂(𝑙)(0) (i.e. if 𝑘 → ∞, then 𝑥(𝑙) = 𝑥̂(𝑙)(𝑘)). 

Proof: The prove of this theorem can be obtained similar to the proof of  

Theorem 3.4.4.1. 

□ 
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Below is the Algorithm 3.12 for the MFLSIM. This algorithm can be used by different 

software for solving the PTrFFCTLME in Eq. (3.85). 

Algorithm 3.12: Modified Fuzzy Least-Square Iterative Algorithm for 

PTrFFCTLME. 

Input 𝐴̃ and 𝐸̃  # Split each matrix into four matrices (e.g., 𝑎(1), 𝑎(2), 𝑎(3), 𝑎(4)) 

for l = 1,2,3,4 

Choose 𝛼𝑙, 𝜀, 𝑥̂(𝑙)(𝑘) = 0   # 0 is the Zero matrix with the same dimension as 𝑥(𝑙)(𝑘) 

While 𝑘 = 0, 1, 2, … , 𝑛 do 

𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) +
𝛼𝑙

2
(((𝑎(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

(𝑎(𝑙))
𝑇
(𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1) − 𝑥̂(𝑙)(𝑘 −

1)(𝑎(𝑙))
𝑇
) + (𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1) − 𝑥̂(𝑙)(𝑘 − 1)(𝑎(𝑙))

𝑇
) (𝑎(𝑙))

𝑇
(𝑎(𝑙)(𝑎(𝑙))

𝑇
)
−1

).  

              𝛿(𝑙)(𝑘) = ‖𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘) − 𝑥̂(𝑙)(𝑘)(𝑎(𝑙))
𝑇
‖
2
. 

        If  𝛿(𝑙)(𝑘) < 𝜀 then  

             𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘)); 

             𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

       else  

𝑥̂(𝑙)(𝑘) = 𝑥̂(𝑙)(𝑘 − 1) +
𝛼𝑙

2
(((𝑎(𝑙))

𝑇
∙ 𝑎(𝑙))

−1

(𝑎(𝑙))
𝑇
(𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1) − 𝑥̂(𝑙)(𝑘 −

1)(𝑎(𝑙))
𝑇
) + (𝑒(𝑙) − 𝑎(𝑙)𝑥̂(𝑙)(𝑘 − 1) − 𝑥̂(𝑙)(𝑘 − 1)(𝑎(𝑙))

𝑇
) (𝑎(𝑙))

𝑇
(𝑎(𝑙)(𝑎(𝑙))

𝑇
)
−1

).     

             update k.  

             𝑘 = 𝑘 + 1 

        end 

        𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘)), 

        𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

end  

 

 

To demonstrate the efficiency and accuracy of the MFMVM, MFGIM and MFLSIM in 

Sections 3.5.4.1, 3.5.4.2 and 3.5.4.3 respectively, the following numerical  

Example 5.5.4.3.1 is considered.  
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Example 3.5.4.3.1 Consider the following PTrFFCTLME: 

(
(3, 4, 5,8) (2, 3, 4, 5)

(1, 3, 5, 7) (4, 6, 7, 9)
) ∙ (

(𝑥11
(1), 𝑥11

(2), 𝑥11
(3), 𝑥11

(4)) (𝑥12
(1), 𝑥12

(2), 𝑥12
(3), 𝑥12

(4))

(𝑥21
(1), 𝑥21

(2), 𝑥21
(3), 𝑥21

(4)) (𝑥22
(1), 𝑥22

(2), 𝑥22
(3), 𝑥22

(4))
) 

+(
(𝑥11

(1)
, 𝑥11
(2)
, 𝑥11
(3)
, 𝑥11
(4)
) (𝑥12

(1)
, 𝑥12
(2)
, 𝑥12
(3)
, 𝑥12
(4)
)

(𝑥21
(1)
, 𝑥21
(2)
, 𝑥21
(3)
, 𝑥21
(4)
) (𝑥22

(1)
, 𝑥22
(2)
, 𝑥22
(3)
, 𝑥22
(4)
)
) ∙ (

(3, 4, 5,8) (1, 3, 5, 7)
(2, 3, 4, 5) (4, 6, 7, 9)

) =

(
(24, 55, 100, 177) (16, 47, 122, 215)
(23, 57, 98, 164) (27, 63, 120, 199)

). 

Solution: The analytical positive fuzzy solution to the given PTrFFCTLME obtained 

by the MFMVM is: 

𝑋̃ = (
(3, 5, 6, 7) (1, 2, 6, 8)
(2, 3, 4, 5) (3, 4, 5, 6)

). 

This positive fuzzy solution is approximated using the MFGIM algorithm in Eq. (3.135) 

and the modified MFLSI algorithm in Eq. (3.139) as follows: To obtain the fuzzy 

positive solution, following initial value: 

 For 1 ≤ 𝑙 ≤ 4, 𝑥̂(𝑙) = (
0 0
0 0

). The approximated solution of 𝑋̃ is shown in Table 3.15 

with the convergence rate (𝛼), error bound (𝜀), and total number of iteration (𝑘).  
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Table 3.15  

Comparison Between MFMVM, MFGIM and MFLSIM for Example 3.5.4.3.1. 

 Method Analytical Solution and 

Approximated Solution 

𝜶 𝜺 𝒌 

𝑥̂(1) MFMVM (
3 1
2 3

) NA 0 NA 

MFGIM (
2.9999187034 1.0000527228
2.00005272 2.9999649573

) 0.005 10−5 121 

MFLSIM (
2.9999912516 0.9999960406
1.9999959933 2.9999935988

) 0.09 10−5 28 

𝑥̂(2) MFMVM (
5 2
3 4

) NA 0 NA 

MFGIM (
4.999909684 2.0000650960
3.0000650960 3.9999530814

) 0.005 10−5 138 

MFLSIM (
4.9999909008 1.9999949714
2.9999949714 3.9999875484

) 0.09 10−5 28 

𝑥̂(3) MFMVM (
6 6
4 5

) NA 0 NA 

MFGIM (
5.9998266863 6.0001487175
4.0001487175 4.9998720251

) 0.004 10−5 237 

MFLSIM (
5.9999937240 5.9999930672
3.9999930672 4.9999886887

) 0.09 10−4 29 

𝑥̂(4) MFMVM (
7 8
5 6

) NA 0 NA 

MFGIM (
6.9997915965 8.0002092091
5.0002092091 5.9997885339

) 0.0009 10−4 163 

MFLSIM (
6.999994908 7.9999938021
4.999993802 5.9999916319

) 0.09 10−4 30 
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The following Table 3.16 shows the computational time and memory usage needed for 

MFGIM and MFLSIM. 

Table 3.16  

Comparison Between Computational Time, Memory Usage for MFGIM and MFLSIM 

for Example 3.5.4.3.1. 

 Method 𝒌 CPU 

time 

Real 

time 

Memory 

usage 

𝑥̂(1) MFGIM 221 6.29 ms 6.25 ms 1.09 MB 

MFLSIM 28 12.82 ms 12.79 ms 2.01 MB 

𝑥̂(2) MFGIM 138 6.12 ms 6.31 ms 1.09 MB 

MFLSIM 28 13.96 ms 12.89 ms 2.01 MB 

𝑥̂(3) MFGIM 237 6.27 ms 6.14 ms 1.09 MB 

MFLSIM 29 9.69 ms 9.97 ms 2.01 MB 

𝑥̂(4) MFGIM 163 6.52 ms 6.48 ms 1.09 MB 

MFLSIM 30 11.97 ms 12.80 ms 2.01 MB 

 

The following Figure 3.15 shows the change in the error 𝛿(𝑙)(𝑘) when 𝑘 increases up 

to 𝑘 = 20.  
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(a) (b) 

(c) (d) 

Figure 3.15. Comparison between error of MFGIM and MFLSIM for the first 20 

iterations for Example 3.4.4.1. 

Tables 3.15, 3.16 and Figure 3.15 show that the error 𝛿(𝑙)(𝑘) is reducing as 𝑘 increases.  

Figure 3.15 shows that the error of the MFGIM and MFLSIM for approximating 𝑥̂(𝑙) is 

reducing significantly as 𝑘 increasing, where the MFLSIM converges to the analytical 

solution for fewer number of iterations with bigger step size comparing to the MFGIM. 

This indicates that the developed algorithms are effective and convergent for the given 



 

239 

 

PTrFFCTLME. In addition, the MFLSIM takes more computational timing and more 

memory comparing to MFGIM. However, in terms of accuracy, error, number of 

iterations MFLSIM provide extremely accurate approximations with very few 

iterations. 

3.6 Conclusion and Contribution  

In this chapter, two new approaches to solve PGTrFFSME and its special cases are 

presented; the analytical methods aim to find positive fuzzy solutions, and the 

numerical methods aim to approximate the positive fuzzy solution for large 

PGTrFFSME up to 100 × 100. 

Furthermore, the developed algorithms are verified by some numerical examples, and 

the obtained positive fuzzy solution analyses are provided. The major difference of our 

strategies from other methods is that for the first time a unified analytical and numerical 

methods are developed for solving a family of large fully fuzzy matrix equations with 

TrFNs, based on new reduced arithmetic fuzzy multiplication operations. The 

following contributions summarize the findings in this chapter: 

1. New fuzzy arithmetic multiplication operators for arbitrary TrFNs are developed and 

known as AMO. 

2. New reduced fuzzy arithmetic multiplication operators for restricted and semi-

restricted TrFNs are known as RAMO. 

3. The operations of RAMO provide simpler and more direct computations compared 

to AMO and more convenient to be applied for restricted and semi-restricted fuzzy 

systems by non-fuzzy researchers. 
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4. New FMVM and FBSM have been introduced, which gives the analytical solution 

for solving PGTrFFSME, TrFFSME, TrFFME, TrFFCTLME and TrFFStME, 

regardless of the size of the matrices. 

5. New FGIM and FLSIM methods have been introduced, which are more 

understandable and compatible for solving the GTrFFSME, TrFFSME, TrFFME, 

TrFFCTLME and TrFFStME, regardless of the size of the matrices. 

6. Provide  the necessary conditions for the feasibility of the GTrFFSME, TrFFSME, 

TrFFME, TrFFCTLME and TrFFStME, to have a strong positive fuzzy solution. 

7. Analyzing the obtained positive fuzzy solution by checking the feasibility, graphical 

representation and verifying the fuzzy matrix equations. 

8. The necessary and sufficient conditions for the GTrFFSME to have a unique positive  

fuzzy solutions are verified before applying the developed methods. 
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CHAPTER FOUR 

SOLVING ARBITRARY GENERALIZED TRAPEZOIDAL FULLY 

FUZZY SYLVESTER MATRIX EQUATION 

This chapter constructs an analytical method for solving arbitrary GTrFFSME 

 𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ and its special cases, which include the TrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ 

and the TrFFME 𝐴̃𝑋̃ = 𝐸̃. The constructed methods allow the coefficients and solutions 

to be fully arbitrary, either in positive, negative or near-zero TrFNs. These methods are 

based on the RAMO and EAMO developed in Chapter Three. In the following  

Section 4.1, the arbitrary GTrFFSME is converted to an equivalent system of non-linear 

equations.  

4.1 Fundamental Theorem of Arbitrary GTrFFSME. 

In this section, the arbitrary GTrFFSME 𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ is converted to an 

equivalent system of non-linear equations based on the RAMO and EAMO in  

Sections 3.1.2, 3.1.3 and 3.2, respectively.  

Definition 4.1.1. A matrix equation GTrFFSME 𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃, is called Arbitrary 

Generalized Trapezoidal Fully Fuzzy Sylvester Matrix Equations (AGTrFFSME) if 

𝐴̃ = (𝑎̃𝑖𝑗)𝑚×𝑛 = (𝑎𝑖𝑗
(1), 𝑎𝑖𝑗

(2), 𝑎𝑖𝑗
(3), 𝑎𝑖𝑗

(4)), ∀ 1 ≤  𝑖 ≤  𝑚, 1 ≤  𝑗 ≤  𝑛, 

 𝐶̃ = (𝑐̃𝑖𝑗)𝑚×𝑛 = (𝑐𝑖𝑗
(1), 𝑐𝑖𝑗

(2), 𝑐𝑖𝑗
(3), 𝑐𝑖𝑗

(4)), ∀ 1 ≤  𝑖 ≤  𝑚, 1 ≤  𝑗 ≤  𝑛, 

 𝐵̃ = (𝑏̃𝑖𝑗)𝑝×𝑞 = (𝑏𝑖𝑗
(1), 𝑏𝑖𝑗

(2), 𝑏𝑖𝑗
(3), 𝑏𝑖𝑗

(4)), ∀ 1 ≤  𝑖 ≤  𝑝, 1 ≤  𝑗 ≤  𝑞, 

 𝐷̃ = (𝑑̃𝑖𝑗)𝑝×𝑞 = (𝑑𝑖𝑗
(1), 𝑑𝑖𝑗

(2), 𝑑𝑖𝑗
(3), 𝑑𝑖𝑗

(4)), ∀ 1 ≤  𝑖 ≤  𝑝, 1 ≤  𝑗 ≤  𝑞, 

 𝑋̃ = (𝑥̃𝑖𝑗)𝑛×𝑝 = (𝑥𝑖𝑗
(1), 𝑥𝑖𝑗

(2), 𝑥𝑖𝑗
(3), 𝑥𝑖𝑗

(4)), ∀ 1 ≤  𝑖 ≤  𝑛, 1 ≤  𝑗 ≤  𝑝  

and 𝐸̃ = (𝑒̃𝑖𝑗)𝑚×𝑞 = (𝑒𝑖𝑗
(1), 𝑒𝑖𝑗

(2), 𝑒𝑖𝑗
(3), 𝑒𝑖𝑗

(4)),  ∀ 1 ≤  𝑖 ≤  𝑚, 1 ≤  𝑗 ≤  𝑞 
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are arbitrary trapezoidal fuzzy matrices.  

In the following Definition 4.1.2, the system of non-linear equations is introduced. 

Definition 4.1.2.  The system of equations in the form,  

{
  
 

  
 𝑚𝑖𝑛 (𝑀𝑖𝑟𝑏𝑖𝑗

(1)
, 𝑀𝑖𝑟𝑏𝑖𝑗

(4)
, 𝑄𝑖𝑟𝑏𝑖𝑗

(1)
, 𝑄𝑖𝑟𝑏𝑖𝑗

(4)
) + 𝑚𝑖𝑛 (𝑅𝑖𝑟𝑑𝑖𝑗

(1)
, 𝑅𝑖𝑟𝑑𝑖𝑗

(4)
, 𝑉𝑖𝑟𝑑𝑖𝑗

(1)
, 𝑉𝑖𝑟𝑑𝑖𝑗

(4)
) = 𝑒𝑖𝑗

(1)

𝑚𝑖𝑛 (𝑁𝑖𝑟𝑏𝑖𝑗
(2)
, 𝑁𝑖𝑟𝑏𝑖𝑗

(3)
, 𝑃𝑖𝑟𝑏𝑖𝑗

(2)
, 𝑃𝑖𝑟𝑏𝑖𝑗

(3)
) + 𝑚𝑖𝑛 (𝑆𝑖𝑟𝑑𝑖𝑗

(2)
, 𝑆𝑖𝑟𝑑𝑖𝑗

(3)
, 𝑇𝑖𝑟𝑑𝑖𝑗

(2)
, 𝑇𝑖𝑟𝑑𝑖𝑗

(3)
) = 𝑒𝑖𝑗

(2)

𝑚𝑎𝑥 (𝑁𝑖𝑟𝑏𝑖𝑗
(2)
, 𝑁𝑖𝑟𝑏𝑖𝑗

(3)
, 𝑃𝑖𝑟𝑏𝑖𝑗

(2)
, 𝑃𝑖𝑟𝑏𝑖𝑗

(3)
) + 𝑚𝑎𝑥 (𝑆𝑖𝑟𝑑𝑖𝑗

(2)
, 𝑆𝑖𝑟𝑑𝑖𝑗

(3)
, 𝑇𝑖𝑟𝑑𝑖𝑗

(2)
, 𝑇𝑖𝑟𝑑𝑖𝑗

(3)
) = 𝑒𝑖𝑗

(3)

𝑚𝑎𝑥 (𝑀𝑖𝑟𝑏𝑖𝑗
(1)
, 𝑀𝑖𝑟𝑏𝑖𝑗

(4)
, 𝑄𝑖𝑟𝑏𝑖𝑗

(1)
, 𝑄𝑖𝑟𝑏𝑖𝑗

(4)
) + 𝑚𝑎𝑥 (𝑅𝑖𝑟𝑑𝑖𝑗

(1)
, 𝑅𝑖𝑟𝑑𝑖𝑗

(4)
, 𝑉𝑖𝑟𝑑𝑖𝑗

(1)
, 𝑉𝑖𝑟𝑑𝑖𝑗

(4)
) = 𝑒𝑖𝑗

(4)

 

where 

𝑀𝑖𝑟 = 𝑚𝑖𝑛 (𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(4)), 

𝑁𝑖𝑟 = 𝑚𝑖𝑛 (𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)), 

𝑃𝑖𝑟 = 𝑚𝑎𝑥(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)), 

𝑄𝑖𝑟 = 𝑚𝑎𝑥(𝑎𝑖𝑗
(1)
𝑥𝑖𝑗
(1)
, 𝑎𝑖𝑗
(1)
𝑥𝑖𝑗
(4)
, 𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(1)
, 𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
). 

𝑅𝑖𝑟 = 𝑚𝑖𝑛 (𝑐𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑐𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑐𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑐𝑖𝑗
(4)𝑥𝑖𝑗

(4)), 

𝑆𝑖𝑟 = 𝑚𝑖𝑛 (𝑐𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑐𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑐𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑐𝑖𝑗
(3)𝑥𝑖𝑗

(3)), 

𝑇𝑖𝑟 = 𝑚𝑎𝑥(𝑐𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑐𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑐𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑐𝑖𝑗
(3)𝑥𝑖𝑗

(3)), 

𝑉𝑖𝑟 = 𝑚𝑎𝑥(𝑐𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑐𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑐𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑐𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
). 

is called a system of non-linear equations.  

In the following Theorem 4.1.1, the AGTrFFSME is converted to an equivalent system 

of non-linear equations. 

Theorem 4.1.1 Fundamental Theorem of AGTrFFSME. 

Suppose that 𝐴̃, 𝑋̃, 𝐵̃, 𝐶̃, 𝐷̃ 𝑎𝑛𝑑 𝐸̃  are arbitrary trapezoidal fuzzy matrices. Then the 

AGTrFFSME 𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ is equivalent to the following system of non-linear 

equations: 
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{
  
 

  
 𝑚𝑖𝑛 (𝑀𝑖𝑟𝑏𝑖𝑗

(1)
, 𝑀𝑖𝑟𝑏𝑖𝑗

(4)
, 𝑄𝑖𝑟𝑏𝑖𝑗

(1)
, 𝑄𝑖𝑟𝑏𝑖𝑗

(4)
) + 𝑚𝑖𝑛 (𝑅𝑖𝑟𝑑𝑖𝑗

(1)
, 𝑅𝑖𝑟𝑑𝑖𝑗

(4)
, 𝑉𝑖𝑟𝑑𝑖𝑗

(1)
, 𝑉𝑖𝑟𝑑𝑖𝑗

(4)
) = 𝑒𝑖𝑗

(1)

𝑚𝑖𝑛 (𝑁𝑖𝑟𝑏𝑖𝑗
(2)
, 𝑁𝑖𝑟𝑏𝑖𝑗

(3)
, 𝑃𝑖𝑟𝑏𝑖𝑗

(2)
, 𝑃𝑖𝑟𝑏𝑖𝑗

(3)
) + 𝑚𝑖𝑛 (𝑆𝑖𝑟𝑑𝑖𝑗

(2)
, 𝑆𝑖𝑟𝑑𝑖𝑗

(3)
, 𝑇𝑖𝑟𝑑𝑖𝑗

(2)
, 𝑇𝑖𝑟𝑑𝑖𝑗

(3)
) = 𝑒𝑖𝑗

(2)

𝑚𝑎𝑥 (𝑁𝑖𝑟𝑏𝑖𝑗
(2)
, 𝑁𝑖𝑟𝑏𝑖𝑗

(3)
, 𝑃𝑖𝑟𝑏𝑖𝑗

(2)
, 𝑃𝑖𝑟𝑏𝑖𝑗

(3)
) + 𝑚𝑎𝑥 (𝑆𝑖𝑟𝑑𝑖𝑗

(2)
, 𝑆𝑖𝑟𝑑𝑖𝑗

(3)
, 𝑇𝑖𝑟𝑑𝑖𝑗

(2)
, 𝑇𝑖𝑟𝑑𝑖𝑗

(3)
) = 𝑒𝑖𝑗

(3)

𝑚𝑎𝑥 (𝑀𝑖𝑟𝑏𝑖𝑗
(1)
, 𝑀𝑖𝑟𝑏𝑖𝑗

(4)
, 𝑄𝑖𝑟𝑏𝑖𝑗

(1)
, 𝑄𝑖𝑟𝑏𝑖𝑗

(4)
) + 𝑚𝑎𝑥 (𝑅𝑖𝑟𝑑𝑖𝑗

(1)
, 𝑅𝑖𝑟𝑑𝑖𝑗

(4)
, 𝑉𝑖𝑟𝑑𝑖𝑗

(1)
, 𝑉𝑖𝑟𝑑𝑖𝑗

(4)
) = 𝑒𝑖𝑗

(4)

 (4.1) 

Proof: 

Let 𝐴̃, 𝐵̃, 𝐶̃, 𝐷̃, 𝐸̃ and 𝑋̃ in the AGTrFFSME 𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ be arbitrary trapezoidal 

fuzzy matrices, then the RAMO and EAMO in Sections 3.1.2, 3.1.3 and 3.2 can be  

applied to obtain 𝐴̃𝑋̃𝐵̃ and 𝐶̃𝑋̃𝐷̃ as follows:  

𝐴̃𝑋̃ = ∑ 𝑎̃𝑖𝑘

𝑛

𝑘=1

𝑥̃𝑘𝑟 = (𝑀𝑖𝑟 , 𝑁𝑖𝑟 , 𝑃𝑖𝑟, 𝑄𝑖𝑟)   1 < 𝑖 < 𝑚, 1 < 𝑟 < 𝑛. 

where, 

𝑀𝑖𝑟 = 𝑚𝑖𝑛 (𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(4)), 

𝑁𝑖𝑟 = 𝑚𝑖𝑛 (𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)), 

𝑃𝑖𝑟 = 𝑚𝑎𝑥(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)), 

𝑄𝑖𝑟 = 𝑚𝑎𝑥(𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
). 

Multiplying 𝐴̃𝑋̃ with 𝐵̃ yields 

𝐴̃𝑋̃𝐵̃ =∑(∑𝑎̃𝑖𝑘

𝑛

𝑘=1

𝑥̃𝑘𝑟) × 𝑏̃𝑟𝑗

𝑗

𝑟=1

= (𝑀𝑖𝑟 , 𝑁𝑖𝑟 , 𝑃𝑖𝑟 , 𝑄𝑖𝑟) × (𝑏𝑖𝑗
(1), 𝑏𝑖𝑗

(2), 𝑏𝑖𝑗
(3), 𝑏𝑖𝑗

(4)) 

                                                            = (𝐹𝑖𝑗 , 𝐿𝑖𝑗 , 𝐻𝑖𝑗 , 𝑅𝑖𝑗). 

∀ 1 ≤  𝑖 ≤  𝑚, 1 ≤  𝑗 ≤  𝑞. 

where, 

𝐹𝑖𝑗 = 𝑚𝑖𝑛(𝑀𝑖𝑟𝑏𝑖𝑗
(1), 𝑀𝑖𝑟𝑏𝑖𝑗

(4), 𝑄𝑖𝑟𝑏𝑖𝑗
(1), 𝑄𝑖𝑟𝑏𝑖𝑗

(4)), 

𝐿𝑖𝑗 = 𝑚𝑖𝑛(𝑁𝑖𝑟𝑏𝑖𝑗
(2), 𝑁𝑖𝑟𝑏𝑖𝑗

(3), 𝑃𝑖𝑟𝑏𝑖𝑗
(2), 𝑃𝑖𝑟𝑏𝑖𝑗

(3)), 

𝐻𝑖𝑗 = 𝑚𝑎𝑥(𝑁𝑖𝑟𝑏𝑖𝑗
(2)
, 𝑁𝑖𝑟𝑏𝑖𝑗

(3)
, 𝑃𝑖𝑟𝑏𝑖𝑗

(2)
, 𝑃𝑖𝑟𝑏𝑖𝑗

(3)
), 
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𝑅𝑖𝑗 = 𝑚𝑎𝑥(𝑀𝑖𝑟𝑏𝑖𝑗
(1)
, 𝑀𝑖𝑟𝑏𝑖𝑗

(4)
, 𝑄𝑖𝑟𝑏𝑖𝑗

(1)
, 𝑄𝑖𝑟𝑏𝑖𝑗

(4)
). 

Similarly,  

𝐶̃𝑋̃ = ∑ 𝑐̃𝑖𝑘

𝑛

𝑘=1

𝑥̃𝑘𝑟 = (𝑅𝑖𝑟 , 𝑆𝑖𝑟 , 𝑇𝑖𝑟 , 𝑉𝑖𝑟)     1 < 𝑖 < 𝑚, 1 < 𝑟 < 𝑛. 

where, 

𝑅𝑖𝑟 = 𝑚𝑖𝑛 (𝑐𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑐𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑐𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑐𝑖𝑗
(4)𝑥𝑖𝑗

(4)), 

𝑆𝑖𝑟 = 𝑚𝑖𝑛 (𝑐𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑐𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑐𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑐𝑖𝑗
(3)𝑥𝑖𝑗

(3)), 

𝑇𝑖𝑟 = 𝑚𝑎𝑥(𝑐𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑐𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑐𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑐𝑖𝑗
(3)𝑥𝑖𝑗

(3)), 

𝑉𝑖𝑟 = 𝑚𝑎𝑥(𝑐𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑐𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑐𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑐𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
). 

Multiplying 𝐶̃𝑋̃𝐷̃  

𝐶̃𝑋̃𝐷̃ =∑(∑𝑐̃𝑖𝑘

𝑛

𝑘=1

𝑥̃𝑘𝑟) × 𝑑̃𝑟𝑗

𝑗

𝑟=1

= (𝑅𝑖𝑟 , 𝑆𝑖𝑟 , 𝑇𝑖𝑟 , 𝑉𝑖𝑟) × (𝑑𝑖𝑗
(1), 𝑑𝑖𝑗

(2), 𝑑𝑖𝑗
(3), 𝑑𝑖𝑗

(4)) 

                                                             = (𝑈𝑖𝑗 ,𝑊𝑖𝑗 , 𝑌𝑖𝑗 , 𝑍𝑖𝑗). 

 ∀1 ≤  𝑖 ≤  𝑚, 1 ≤  𝑗 ≤  𝑞. 

where 

𝑈𝑖𝑗 = 𝑚𝑖𝑛(𝑅𝑖𝑟𝑑𝑖𝑗
(1), 𝑅𝑖𝑟𝑑𝑖𝑗

(4), 𝑉𝑖𝑟𝑑𝑖𝑗
(1), 𝑉𝑖𝑟𝑑𝑖𝑗

(4)), 

𝑊𝑖𝑗 = 𝑚𝑖𝑛(𝑆𝑖𝑟𝑑𝑖𝑗
(2), 𝑆𝑖𝑟𝑑𝑖𝑗

(3), 𝑇𝑖𝑟𝑑𝑖𝑗
(2), 𝑇𝑖𝑟𝑑𝑖𝑗

(3)), 

𝑌𝑖𝑗 = 𝑚𝑎𝑥(𝑆𝑖𝑟𝑑𝑖𝑗
(2)
, 𝑆𝑖𝑟𝑑𝑖𝑗

(3)
, 𝑇𝑖𝑟𝑑𝑖𝑗

(2)
, 𝑇𝑖𝑟𝑑𝑖𝑗

(3)
), 

𝑍𝑖𝑗 = 𝑚𝑎𝑥(𝑅𝑖𝑟𝑑𝑖𝑗
(1)
, 𝑅𝑖𝑟𝑑𝑖𝑗

(4)
, 𝑉𝑖𝑟𝑑𝑖𝑗

(1)
, 𝑉𝑖𝑟𝑑𝑖𝑗

(4)
). 

Combining 𝐴̃𝑋̃𝐵̃ and 𝐶̃𝑋̃𝐷̃ using Definition 2.3.3.2.6 and Eq. (2.10a) 

𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = (𝐹𝑖𝑗 , 𝐿𝑖𝑗 , 𝐻𝑖𝑗 , 𝑅𝑖𝑗) + (𝑈𝑖𝑗 ,𝑊𝑖𝑗 , 𝑌𝑖𝑗 , 𝑍𝑖𝑗). 

∀ 1 ≤  𝑖 ≤  𝑚, 1 ≤  𝑗 ≤  𝑞. By Definition 2.3.3.2.5, the AGTrFFSME is equivalent 

to the following non-linear system of equations: 
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{
  
 

  
 𝑚𝑖𝑛 (𝑀𝑖𝑟𝑏𝑖𝑗

(1)
, 𝑀𝑖𝑟𝑏𝑖𝑗

(4)
, 𝑄𝑖𝑟𝑏𝑖𝑗

(1)
, 𝑄𝑖𝑟𝑏𝑖𝑗

(4)
) + 𝑚𝑖𝑛 (𝑅𝑖𝑟𝑑𝑖𝑗

(1)
, 𝑅𝑖𝑟𝑑𝑖𝑗

(4)
, 𝑉𝑖𝑟𝑑𝑖𝑗

(1)
, 𝑉𝑖𝑟𝑑𝑖𝑗

(4)
) = 𝑒𝑖𝑗

(1)
,

𝑚𝑖𝑛 (𝑁𝑖𝑟𝑏𝑖𝑗
(2)
, 𝑁𝑖𝑟𝑏𝑖𝑗

(3)
, 𝑃𝑖𝑟𝑏𝑖𝑗

(2)
, 𝑃𝑖𝑟𝑏𝑖𝑗

(3)
) + 𝑚𝑖𝑛 (𝑆𝑖𝑟𝑑𝑖𝑗

(2)
, 𝑆𝑖𝑟𝑑𝑖𝑗

(3)
, 𝑇𝑖𝑟𝑑𝑖𝑗

(2)
, 𝑇𝑖𝑟𝑑𝑖𝑗

(3)
) = 𝑒𝑖𝑗

(2)
,

𝑚𝑎𝑥 (𝑁𝑖𝑟𝑏𝑖𝑗
(2)
, 𝑁𝑖𝑟𝑏𝑖𝑗

(3)
, 𝑃𝑖𝑟𝑏𝑖𝑗

(2)
, 𝑃𝑖𝑟𝑏𝑖𝑗

(3)
) + 𝑚𝑎𝑥 (𝑆𝑖𝑟𝑑𝑖𝑗

(2)
, 𝑆𝑖𝑟𝑑𝑖𝑗

(3)
, 𝑇𝑖𝑟𝑑𝑖𝑗

(2)
, 𝑇𝑖𝑟𝑑𝑖𝑗

(3)
) = 𝑒𝑖𝑗

(3)
,

𝑚𝑎𝑥 (𝑀𝑖𝑟𝑏𝑖𝑗
(1)
, 𝑀𝑖𝑟𝑏𝑖𝑗

(4)
, 𝑄𝑖𝑟𝑏𝑖𝑗

(1)
, 𝑄𝑖𝑟𝑏𝑖𝑗

(4)
) + 𝑚𝑎𝑥 (𝑅𝑖𝑟𝑑𝑖𝑗

(1)
, 𝑅𝑖𝑟𝑑𝑖𝑗

(4)
, 𝑉𝑖𝑟𝑑𝑖𝑗

(1)
, 𝑉𝑖𝑟𝑑𝑖𝑗

(4)
) = 𝑒𝑖𝑗

(4)
.

 

□ 

In the following Definition 4.1.3, arbitrary trapezoidal fuzzy solution to the 

AGTrFFSME is defined. 

Definition 4.1.3. Arbitrary Trapezoidal Fuzzy Solution in General Form. 

The trapezoidal fuzzy matrix 𝑋̃ = (𝑥̃𝑖𝑗)𝑛×𝑚 = (𝑥𝑖𝑗
(1)
, 𝑥𝑖𝑗
(2)
, 𝑥𝑖𝑗
(3)
, 𝑥𝑖𝑗
(4)
) is an arbitrary 

fuzzy solution to the AGTrFFSME if 𝑥𝑖𝑗
(4)
≥ 𝑥𝑖𝑗

(3)
≥ 𝑥𝑖𝑗

(2) ≥ 𝑥𝑖𝑗
(1)

, ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑝 and 

at least one element of 𝑋̃ is near-zero TrFN.  

 

In order to get the arbitrary fuzzy solution to the AGTrFFSME, the equivalent non-

linear system of equations in Eq. (4.1) is considered. In the following Section 4.2, the 

arbitrary solution to the AGTrFFSME is obtained by absolute system method (ABSM). 

4.2 Solving Arbitrary GTrFFSME 

In this section, the arbitrary fuzzy solution to the AGTrFFSME 𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ is 

discussed. In order to get the solution, the equivalent system of non-linear equations in 

Eq. (4.1) is reduced to a system of absolute equations based on Theorem 2.4.3.1. Then, 

the solution to the absolute system of equations is obtained using Mathematica 12.1 and 

Maple 2019. The steps to the constructed methods for obtaining the arbitrary solution 

to the AGTrFFSME are discussed in the following steps.   
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Step 1: Convert the AGTrFFSME 𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ to an equivalent non-linear system 

of equation using Theorem 4.1.1.  

Step 2: Reduce the non-linear system in Step 1 to an absolute system of equation using 

Theorem 2.4.3.1. and Definition 2.4.3.4. 

Step 3: Solve the absolute system of equations and check which solution(s) satisfy the 

following conditions.  

I) 𝑥𝑖𝑗
(1) ≤ 𝑥𝑖𝑗

(2) ≤ 𝑥𝑖𝑗
(3) ≤ 𝑥𝑖𝑗

(4)  ∀ 1 ≤  𝑖 ≤  𝑛, 1 ≤  𝑗 ≤  𝑝, 

II) At least one element of 𝑋̃ is near-zero TrFN. 

Step 4: By solving the system of absolute equations in Step 3 and by eliminating the 

non-fuzzy solutions, the following arbitrary fuzzy solution is obtained: 

𝑋̃ = (

(𝑥11
(1), 𝑥11

(2), 𝑥11
(3), 𝑥11

(4)) ⋯ (𝑥1𝑝
(1), 𝑥1𝑝

(2), 𝑥1𝑝
(3), 𝑥1𝑝

(4))

⋮ ⋱ ⋮

(𝑥𝑛1
(1), 𝑥𝑛1

(2), 𝑥𝑛1
(3), 𝑥𝑛1

(4)) … (𝑥𝑛𝑝
(1), 𝑥𝑛𝑝

(2), 𝑥𝑛𝑝
(3), 𝑥𝑛𝑝

(4))

). 

 

Now, we proceed to the feasibility condition of the arbitrary fuzzy solution to the 

AGTrFFSME. 

Feasibility of the AGTrFFSME: 

The arbitrary fuzzy solution to the AGTrFFSME is called feasible (strong arbitrary 

fuzzy solution) if the following condition is satisfied: 

𝑥𝑖𝑗
(4)
≥ 𝑥𝑖𝑗

(3)
≥ 𝑥𝑖𝑗

(2) ≥ 𝑥𝑖𝑗
(1)

, ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑝, 𝑛.    

ABSM for solving the AGTrFFSME is illustrated in the following  

Example 4.2.1. 
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Example 4.2.1 Consider the following AGTrFFSME, 

𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ 

where 

𝐴̃ = (
(3, 4, 6, 8) (2, 4, 9, 11)

(−8,−7,−5,−1) (−4,−3, 5, 6)
), 

𝐵̃ = (
(1, 3, 5, 6) (−1, 3, 4, 6)

(−3,−1, 6, 7) (1, 2, 5, 7)
), 

𝐶̃ = (
(1, 4, 5, 7) (3, 4, 5, 7)

(−5,−3,−2,−1) (−6,−3, 1, 2)
), 

𝐷̃ = (
(−5,−4, 1, 2) (3, 4, 5, 6)
(1, 3, 4, 5) (−3,−2, 1, 4)

) 

and 

 𝐸̃ = (
(−964,−276, 757, 1816)         (−793,−206, 655, 2019)
(−1331,−612, 288, 968)          (−1476,−509, 199, 843)

). 

Solution: By applying ABSM, the arbitrary solution to the given AGTrFFSME is 

obtained as follows: 

Step 1: Convert the given AGTrFFSME to a non-linear system of equations using  

Theorem 4.1.1. Find 𝐴̃𝑋̃𝐵̃ as follows: 
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𝐴̃𝑋̃𝐵̃ = (
(𝑚1, 𝑚2, 𝑚3, 𝑚4) (𝑛1, 𝑛2, 𝑛3, 𝑛4)

(𝑝1, 𝑝2, 𝑝3, 𝑝4) (𝑞1, 𝑞2, 𝑞3, 𝑞4)
). 

where 

𝑚1 = 𝑀𝑖𝑛{(𝑀𝑖𝑛[3𝑥11
(1), 8𝑥11

(1)] + 𝑀𝑖𝑛[2𝑥21
(1), 11𝑥21

(1)]), (6𝑀𝑖𝑛[3𝑥11
(1), 8𝑥11

(1)] + 6𝑀𝑖𝑛[2𝑥21
(1), 11𝑥21

(1)])} + 

𝑀𝑖𝑛{(7𝑀𝑖𝑛[3𝑥12
(1), 8𝑥12

(1)] + 7𝑀𝑖𝑛[2𝑥22
(1), 11𝑥22

(1)]), (−3𝑀𝑎𝑥[3𝑥12
(4), 8𝑥12

(4)] + −3𝑀𝑎𝑥[2𝑥22
(4), 11𝑥22

(4)])}. 

 

𝑚2 = 𝑀𝑖𝑛{(3𝑀𝑖𝑛[4𝑥11
(2), 6𝑥11

(2)] + 3𝑀𝑖𝑛[4𝑥21
(2), 9𝑥21

(2)]), (5𝑀𝑖𝑛[4𝑥11
(2), 6𝑥11

(2)] + 5𝑀𝑖𝑛[4𝑥21
(2), 9𝑥21

(2)])} + 

𝑀𝑖𝑛{(6𝑀𝑖𝑛[4𝑥12
(2), 6𝑥12

(2)] + 6𝑀𝑖𝑛[4𝑥22
(2), 9𝑥22

(2)]), (−𝑀𝑎𝑥[4𝑥12
(3), 6𝑥12

(3)] + −𝑀𝑎𝑥[4𝑥22
(3), 9𝑥22

(3)])}. 

 

𝑚3 = 𝑀𝑎𝑥{(3𝑀𝑎𝑥[4𝑥11
(3), 6𝑥11

(3)] + 3𝑀𝑎𝑥[4𝑥21
(3), 9𝑥21

(3)]), (5𝑀𝑎𝑥[4𝑥11
(3), 6𝑥11

(3)] + 5𝑀𝑎𝑥[4𝑥21
(3), 9𝑥21

(3)])} + 

𝑀𝑎𝑥{(−𝑀𝑖𝑛[4𝑥12
(2), 6𝑥12

(2)] + −𝑀𝑖𝑛[4𝑥22
(2), 9𝑥22

(2)]), (6𝑀𝑎𝑥[4𝑥12
(3), 6𝑥12

(3)] + 6𝑀𝑎𝑥[4𝑥22
(3), 9𝑥22

(3)])}. 

 

𝑚4 = 𝑀𝑎𝑥{(𝑀𝑎𝑥[3𝑥11
(4), 8𝑥11

(4)] + 𝑀𝑎𝑥[2𝑥21
(4), 11𝑥21

(4)]), (6𝑀𝑎𝑥[3𝑥11
(4), 8𝑥11

(4)] + 6𝑀𝑎𝑥[2𝑥21
(4), 11𝑥21

(4)])} + 

𝑀𝑎𝑥{(−3𝑀𝑖𝑛[3𝑥12
(1), 8𝑥12

(1)] + −3𝑀𝑖𝑛[2𝑥22
(1), 11𝑥22

(1)]), (7𝑀𝑎𝑥[3𝑥12
(4), 8𝑥12

(4)] + 7𝑀𝑎𝑥[2𝑥22
(4), 11𝑥22

(4)])}. 

 

𝑛1 = 𝑀𝑖𝑛{(6𝑀𝑖𝑛[3𝑥11
(1), 8𝑥11

(1)] + 6𝑀𝑖𝑛[2𝑥21
(1), 11𝑥21

(1)]), (−𝑀𝑎𝑥[3𝑥11
(4), 8𝑥11

(4)] + −𝑀𝑎𝑥[2𝑥21
(4), 11𝑥21

(4)])} + 
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𝑀𝑖𝑛{(𝑀𝑖𝑛[3𝑥12
(1), 8𝑥12

(1)] + 𝑀𝑖𝑛[2𝑥22
(1), 11𝑥22

(1)]), (7𝑀𝑖𝑛[3𝑥12
(1), 8𝑥12

(1)] + 7𝑀𝑖𝑛[2𝑥22
(1), 11𝑥22

(1)])}. 

 

𝑛2 = 𝑀𝑖𝑛{(3𝑀𝑖𝑛[4𝑥11
(2), 6𝑥11

(2)] + 3𝑀𝑖𝑛[4𝑥21
(2), 9𝑥21

(2)]), 4𝑀𝑖𝑛[4𝑥11
(2), 6𝑥11

(2)] + 4𝑀𝑖𝑛[4𝑥21
(2), 9𝑥21

(2)]} + 

𝑀𝑖𝑛{(2𝑀𝑖𝑛[4𝑥12
(2), 6𝑥12

(2)] + 2𝑀𝑖𝑛[4𝑥22
(2), 9𝑥22

(2)]), (5𝑀𝑖𝑛[4𝑥12
(2), 6𝑥12

(2)] + 5𝑀𝑖𝑛[4𝑥22
(2), 9𝑥22

(2)])}. 

 

𝑛3 = 𝑀𝑎𝑥{(3𝑀𝑎𝑥[4𝑥11
(3), 6𝑥11

(3)] + 3𝑀𝑎𝑥[4𝑥21
(3), 9𝑥21

(3)]), (4𝑀𝑎𝑥[4𝑥11
(3), 6𝑥11

(3)] + 4𝑀𝑎𝑥[4𝑥21
(3), 9𝑥21

(3)]} + 

𝑀𝑎𝑥{(2𝑀𝑎𝑥[4𝑥12
(3), 6𝑥12

(3)] + 2𝑀𝑎𝑥[4𝑥22
(3), 9𝑥22

(3)]), (5𝑀𝑎𝑥[4𝑥12
(3), 6𝑥12

(3)] + 5𝑀𝑎𝑥[4𝑥22
(3), 9𝑥22

(3)])}. 

 

𝑛4 = 𝑀𝑎𝑥{(−𝑀𝑖𝑛[3𝑥11
(1), 8𝑥11

(1)] + −𝑀𝑖𝑛[2𝑥21
(1), 11𝑥21

(1)]), (6𝑀𝑎𝑥[3𝑥11
(4), 8𝑥11

(4)] + 6𝑀𝑎𝑥[2𝑥21
(4), 11𝑥21

(4)]} + 

𝑀𝑎𝑥{(𝑀𝑎𝑥[3𝑥12
(4), 8𝑥12

(4)] + 𝑀𝑎𝑥[2𝑥22
(4), 11𝑥22

(4)]), (7𝑀𝑎𝑥[3𝑥12
(4), 8𝑥12

(4)] + 7𝑀𝑎𝑥[2𝑥22
(4), 11𝑥22

(4)])}. 

 

𝑝1 = 𝑀𝑖𝑛{(𝑀𝑖𝑛[−8𝑥11
(4), −𝑥11

(4)] + 𝑀𝑖𝑛[−4𝑥21
(4), 6𝑥21

(1)]), (6𝑀𝑖𝑛[−8𝑥11
(4), −𝑥11

(4)] + 6𝑀𝑖𝑛[−4𝑥21
(4), 6𝑥21

(1)])} + 

𝑀𝑖𝑛{(7𝑀𝑖𝑛[−8𝑥12
(4), −𝑥12

(4)] + 7𝑀𝑖𝑛[−4𝑥22
(4), 6𝑥22

(1)]), (−3𝑀𝑎𝑥[−𝑥12
(1), −8𝑥12

(1)] ± 3𝑀𝑎𝑥[6𝑥22
(4), −4𝑥22

(1)])}. 

 

𝑝2 = 𝑀𝑖𝑛{(3𝑀𝑖𝑛[−7𝑥11
(3), −5𝑥11

(3)] + 3𝑀𝑖𝑛[−3𝑥21
(3), 5𝑥21

(2)]), (5𝑀𝑖𝑛[−7𝑥11
(3), −5𝑥11

(3)] + 5𝑀𝑖𝑛[−3𝑥21
(3), 5𝑥21

(2)])} + 
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𝑀𝑖𝑛{(6𝑀𝑖𝑛[−7𝑥12
(3), −5𝑥12

(3)] + 6𝑀𝑖𝑛[−3𝑥22
(3), 5𝑥22

(2)]), (−𝑀𝑎𝑥[−5𝑥12
(2), −7𝑥12

(2)] − 𝑀𝑎𝑥[6𝑥22
(3), −4𝑥22

(2)])}. 

 

𝑝3 = 𝑀𝑎𝑥{(3𝑀𝑎𝑥[−5𝑥11
(2), −7𝑥11

(2)] + 3𝑀𝑎𝑥[5𝑥21
(3), −3𝑥21

(2)]), (5𝑀𝑎𝑥[−5𝑥11
(2), −7𝑥11

(2)] + 5𝑀𝑎𝑥[5𝑥21
(3), −3𝑥21

(2)])} + 

𝑀𝑎𝑥{(−𝑀𝑖𝑛[−7𝑥12
(3), −5𝑥12

(3)] + −𝑀𝑖𝑛[−3𝑥22
(3), 5𝑥22

(2)]), (6𝑀𝑎𝑥[−5𝑥12
(2), −7𝑥12

(2)] + 6𝑀𝑎𝑥[5𝑥22
(3), −3𝑥22

(2)])}. 

 

𝑝4 = 𝑀𝑎𝑥{(𝑀𝑎𝑥[−𝑥11
(1), −8𝑥11

(1)] + 𝑀𝑎𝑥[6𝑥21
(4), −4𝑥21

(1)]), (6𝑀𝑎𝑥[−𝑥11
(1), −8𝑥11

(1)] + 6𝑀𝑎𝑥[6𝑥21
(4), −4𝑥21

(1)])} + 

𝑀𝑎𝑥{(−3𝑀𝑖𝑛[−8𝑥12
(4), −𝑥12

(4)] + −3𝑀𝑖𝑛[−4𝑥22
(4), 6𝑥22

(1)]), (7𝑀𝑎𝑥[−𝑥12
(1), −8𝑥12

(1)] + 7𝑀𝑎𝑥[6𝑥22
(4), −4𝑥22

(1)])}. 

 

𝑞1 = 𝑀𝑖𝑛{(6𝑀𝑖𝑛[−8𝑥11
(4), −𝑥11

(4)] + 6𝑀𝑖𝑛[−4𝑥21
(4), 6𝑥21

(1)]), (−𝑀𝑎𝑥[−𝑥11
(1), −8𝑥11

(1)] + −𝑀𝑎𝑥[6𝑥21
(4), −4𝑥21

(1)])} + 

𝑀𝑖𝑛{(𝑀𝑖𝑛[−8𝑥12
(4), −𝑥12

(4)] + 𝑀𝑖𝑛[−4𝑥22
(4), 6𝑥22

(1)]), (7𝑀𝑖𝑛[−8𝑥12
(4), −𝑥12

(4)] + 7𝑀𝑖𝑛[−4𝑥22
(4), 6𝑥22

(1)])}. 

 

𝑞2 = 𝑀𝑖𝑛{(3𝑀𝑖𝑛[−7𝑥11
(3), −5𝑥11

(3)] + 3𝑀𝑖𝑛[−3𝑥21
(3), 5𝑥21

(2)]), (4𝑀𝑖𝑛[−7𝑥11
(3), −5𝑥11

(3)] + 4𝑀𝑖𝑛[−3𝑥21
(3), 5𝑥21

(2)])} + 

𝑀𝑖𝑛{(2𝑀𝑖𝑛[−7𝑥12
(3), −5𝑥12

(3)] + 2𝑀𝑖𝑛[−3𝑥22
(3), 5𝑥22

(2)]), (5𝑀𝑖𝑛[−8𝑥12
(3), −𝑥12

(3)] + 5𝑀𝑖𝑛[−4𝑥22
(3), 6𝑥22

(2)])}. 

 

𝑞3 = 𝑀𝑎𝑥{(3𝑀𝑎𝑥[−5𝑥11
(2), −7𝑥11

(2)] + 3𝑀𝑎𝑥[5𝑥21
(3), −3𝑥21

(2)]), (4𝑀𝑎𝑥[−5𝑥11
(2), −7𝑥11

(2)] + 4𝑀𝑎𝑥[5𝑥21
(3), −3𝑥21

(2)]} + 
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𝑀𝑎𝑥{(2𝑀𝑎𝑥[−5𝑥12
(2), −7𝑥12

(2)] + 2𝑀𝑎𝑥[5𝑥22
(3), −3𝑥22

(2)]), (5𝑀𝑎𝑥[−5𝑥12
(2), −7𝑥12

(2)] + 5𝑀𝑎𝑥[5𝑥22
(3), −3𝑥22

(2)])}. 

 

𝑞4 = 𝑀𝑎𝑥{(−𝑀𝑖𝑛[−8𝑥11
(4), −𝑥11

(4)] + −𝑀𝑖𝑛[−4𝑥21
(4), 6𝑥21

(1)]), (6𝑀𝑎𝑥[−𝑥11
(1), −8𝑥11

(1)] + 6𝑀𝑎𝑥[6𝑥21
(4), −4𝑥21

(1)]} + 

𝑀𝑎𝑥{(𝑀𝑎𝑥[−𝑥12
(1), −8𝑥12

(1)] + 𝑀𝑎𝑥[6𝑥22
(4), −4𝑥22

(1)]), (7𝑀𝑎𝑥[−𝑥12
(1), −8𝑥12

(1)] + 7𝑀𝑎𝑥[6𝑥22
(4), −4𝑥22

(1)])}. 

 

We also find 𝐶̃𝑋̃𝐷̃ as follows: 

𝐶̃𝑋̃𝐷̃ = (
(𝑚11, 𝑚22, 𝑚33, 𝑚44) (𝑛11, 𝑛22, 𝑛33, 𝑛44)

(𝑝11, 𝑝22, 𝑝33, 𝑝44) (𝑞11, 𝑞22, 𝑞33, 𝑞44)
). 

Appendix B shows the complete non-linear system for 𝐶̃𝑋̃𝐷̃. 

Construct the 16 non-linear equations as follows: 

𝑚1 +𝑚11 = −964. 

𝑀𝑖𝑛{(𝑀𝑖𝑛[3𝑥11
(1), 8𝑥11

(1)] + 𝑀𝑖𝑛[2𝑥21
(1), 11𝑥21

(1)]), (6𝑀𝑖𝑛[3𝑥11
(1), 8𝑥11

(1)] + 6𝑀𝑖𝑛[2𝑥21
(1), 11𝑥21

(1)])} + 

𝑀𝑖𝑛{(7𝑀𝑖𝑛[3𝑥12
(1), 8𝑥12

(1)] + 7𝑀𝑖𝑛[2𝑥22
(1), 11𝑥22

(1)]), (−3𝑀𝑎𝑥[3𝑥12
(4), 8𝑥12

(4)] − 3𝑀𝑎𝑥[2𝑥22
(4), 11𝑥22

(4)])} 

+𝑀𝑖𝑛{(2𝑀𝑖𝑛[𝑥11
(1), 7𝑥11

(1)] + 2𝑀𝑖𝑛[3𝑥21
(1), 7𝑥21

(1)]), (−5𝑀𝑎𝑥[1𝑥11
(4), 7𝑥11

(4)]  − 5𝑀𝑎𝑥[3𝑥21
(4), 7𝑥21

(4)])} + 

𝑀𝑖𝑛{(𝑀𝑖𝑛[𝑥12
(1), 7𝑥12

(1)] + 𝑀𝑖𝑛[3𝑥22
(1), 7𝑥22

(1)]), (5𝑀𝑖𝑛[𝑥12
(1), 7𝑥12

(1)] + 5𝑀𝑖𝑛[3𝑥22
(1), 7𝑥22

(1)])} = −964. 

𝑚2 +𝑚22 = −276 
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𝑀𝑖𝑛{(3𝑀𝑖𝑛[4𝑥11
(2), 6𝑥11

(2)] + 3𝑀𝑖𝑛[4𝑥21
(2), 9𝑥21

(2)]), (5𝑀𝑖𝑛[4𝑥11
(2), 6𝑥11

(2)] + 5𝑀𝑖𝑛[4𝑥21
(2), 9𝑥21

(2)])} + 

𝑀𝑖𝑛{(6𝑀𝑖𝑛[4𝑥12
(2), 6𝑥12

(2)] + 6𝑀𝑖𝑛[4𝑥22
(2), 9𝑥22

(2)]), (−𝑀𝑎𝑥[4𝑥12
(3), 6𝑥12

(3)] − 𝑀𝑎𝑥[4𝑥22
(3), 9𝑥22

(3)])} + 

𝑀𝑖𝑛{(𝑀𝑖𝑛[4𝑥11
(2), 5𝑥11

(2)] + 𝑀𝑖𝑛[4𝑥21
(2), 5𝑥21

(2)]), (−4𝑀𝑎𝑥[4𝑥11
(3), 5𝑥11

(3)] + −4𝑀𝑎𝑥[4𝑥21
(3), 5𝑥21

(3)])} + 

𝑀𝑖𝑛{(3𝑀𝑖𝑛[4𝑥12
(2), 5𝑥12

(2)] + 3𝑀𝑖𝑛[4𝑥22
(2), 5𝑥22

(2)]) + (4𝑀𝑖𝑛[4𝑥12
(2), 5𝑥12

(2)] + 4𝑀𝑖𝑛[4𝑥22
(2), 5𝑥22

(2)])} = −276. 

𝑚3 +𝑚33 = 757. 

𝑀𝑎𝑥{(3𝑀𝑎𝑥[4𝑥11
(3), 6𝑥11

(3)] + 3𝑀𝑎𝑥[4𝑥21
(3), 9𝑥21

(3)]), (5𝑀𝑎𝑥[4𝑥11
(3), 6𝑥11

(3)] + 5𝑀𝑎𝑥[4𝑥21
(3), 9𝑥21

(3)])} + 

𝑀𝑎𝑥{(−𝑀𝑖𝑛[4𝑥12
(2), 6𝑥12

(2)] − 𝑀𝑖𝑛[4𝑥22
(2), 9𝑥22

(2)]), (6𝑀𝑎𝑥[4𝑥12
(3), 6𝑥12

(3)] + 6𝑀𝑎𝑥[4𝑥22
(3), 9𝑥22

(3)])} + 

𝑀𝑎𝑥{(−4𝑀𝑖𝑛[4𝑥11
(2), 5𝑥11

(2)] − 4𝑀𝑖𝑛[4𝑥21
(2), 5𝑥21

(2)]), (𝑀𝑎𝑥[4𝑥11
(3), 5𝑥11

(3)] + 𝑀𝑎𝑥[4𝑥21
(3), 5𝑥21

(3)])} + 

𝑀𝑎𝑥{(3𝑀𝑎𝑥[4𝑥12
(3), 5𝑥12

(3)] + 3𝑀𝑎𝑥[4𝑥22
(3), 5𝑥22

(3)]), (4𝑀𝑎𝑥[4𝑥12
(3), 5𝑥12

(3)] + 4𝑀𝑎𝑥[4𝑥22
(3), 5𝑥22

(3)])} = 757. 

𝑚4 +𝑚44 = 1816. 

𝑀𝑎𝑥{(𝑀𝑎𝑥[3𝑥11
(4), 8𝑥11

(4)] + 𝑀𝑎𝑥[2𝑥21
(4), 11𝑥21

(4)]), (6𝑀𝑎𝑥[3𝑥11
(4), 8𝑥11

(4)] + 6𝑀𝑎𝑥[2𝑥21
(4), 11𝑥21

(4)])} + 

𝑀𝑎𝑥{(−3𝑀𝑖𝑛[3𝑥12
(1), 8𝑥12

(1)] − 3𝑀𝑖𝑛[2𝑥22
(1), 11𝑥22

(1)]), (7𝑀𝑎𝑥[3𝑥12
(4), 8𝑥12

(4)] + 7𝑀𝑎𝑥[2𝑥22
(4), 11𝑥22

(4)])} + 

𝑀𝑎𝑥{(−5𝑀𝑖𝑛[𝑥11
(1), 7𝑥11

(1)] − 5𝑀𝑖𝑛[3𝑥21
(1), 7𝑥21

(1)]), (2𝑀𝑎𝑥[1𝑥11
(4), 7𝑥11

(4)] + 2𝑀𝑎𝑥[3𝑥21
(4), 7𝑥21

(4)])} + 

𝑀𝑎𝑥{(𝑀𝑎𝑥[𝑥12
(4), 7𝑥12

(4)] + 𝑀𝑎𝑥[3𝑥22
(4), 7𝑥22

(4)]), (7𝑀𝑎𝑥[𝑥12
(4), 7𝑥12

(4)] + 7𝑀𝑎𝑥[3𝑥22
(4), 7𝑥22

(4)])} = 1816. 

𝑛1 + 𝑛11 = −793. 
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𝑀𝑖𝑛{(6𝑀𝑖𝑛[3𝑥11
(1), 8𝑥11

(1)] + 6𝑀𝑖𝑛[2𝑥21
(1), 11𝑥21

(1)]), (−𝑀𝑎𝑥[3𝑥11
(4), 8𝑥11

(4)] − 𝑀𝑎𝑥[2𝑥21
(4), 11𝑥21

(4)])} + 

𝑀𝑖𝑛{(𝑀𝑖𝑛[3𝑥12
(1), 8𝑥12

(1)] + 𝑀𝑖𝑛[2𝑥22
(1), 11𝑥22

(1)]), (7𝑀𝑖𝑛[3𝑥12
(1), 8𝑥12

(1)] + 7𝑀𝑖𝑛[2𝑥22
(1), 11𝑥22

(1)])} + 

𝑀𝑖𝑛{(3𝑀𝑖𝑛[𝑥11
(1), 7𝑥11

(1)] + 3𝑀𝑖𝑛[3𝑥21
(1), 7𝑥21

(1)]), (6𝑀𝑖𝑛[𝑥11
(1), 7𝑥11

(1)] + 6𝑀𝑖𝑛[3𝑥21
(1), 7𝑥21

(1)])} + 

𝑀𝑖𝑛{(4𝑀𝑖𝑛[𝑥12
(1), 7𝑥12

(1)] + 4𝑀𝑖𝑛[3𝑥22
(1), 7𝑥22

(1)]), (−3𝑀𝑎𝑥[𝑥12
(4), 7𝑥12

(4)] − 3𝑀𝑎𝑥[3𝑥22
(4), 7𝑥22

(4)])} = −793. 

𝑛2 + 𝑛22 = −206. 

𝑀𝑖𝑛{(3𝑀𝑖𝑛[4𝑥11
(2), 6𝑥11

(2)] + 3𝑀𝑖𝑛[4𝑥21
(2), 9𝑥21

(2)]), 4𝑀𝑖𝑛[4𝑥11
(2), 6𝑥11

(2)] + 4𝑀𝑖𝑛[4𝑥21
(2), 9𝑥21

(2)]} + 

𝑀𝑖𝑛{(2𝑀𝑖𝑛[4𝑥12
(2), 6𝑥12

(2)] + 2𝑀𝑖𝑛[4𝑥22
(2), 9𝑥22

(2)]), (5𝑀𝑖𝑛[4𝑥12
(2), 6𝑥12

(2)] + 5𝑀𝑖𝑛[4𝑥22
(2), 9𝑥22

(2)])} + 

𝑀𝑖𝑛{(4𝑀𝑖𝑛[4𝑥11
(2), 5𝑥11

(2)] + 4𝑀𝑖𝑛[4𝑥21
(2), 5𝑥21

(2)]), (5𝑀𝑖𝑛[4𝑥11
(2), 5𝑥11

(2)] + 5𝑀𝑖𝑛[4𝑥21
(2), 5𝑥21

(2)])} + 

𝑀𝑖𝑛{(𝑀𝑖𝑛[4𝑥12
(2), 5𝑥12

(2)] + 𝑀𝑖𝑛[4𝑥22
(2), 5𝑥22

(2)]), (−2𝑀𝑎𝑥[4𝑥12
(3), 5𝑥12

(3)] − 2𝑀𝑎𝑥[4𝑥22
(3), 5𝑥22

(3)])} = −206. 

𝑛3 + 𝑛33 = 655. 

𝑀𝑎𝑥{(3𝑀𝑎𝑥[4𝑥11
(3), 6𝑥11

(3)] + 3𝑀𝑎𝑥[4𝑥21
(3), 9𝑥21

(3)]), (4𝑀𝑎𝑥[4𝑥11
(3), 6𝑥11

(3)] + 4𝑀𝑎𝑥[4𝑥21
(3), 9𝑥21

(3)]} + 

𝑀𝑎𝑥{(2𝑀𝑎𝑥[4𝑥12
(3), 6𝑥12

(3)] + 2𝑀𝑎𝑥[4𝑥22
(3), 9𝑥22

(3)]), (5𝑀𝑎𝑥[4𝑥12
(3), 6𝑥12

(3)] + 5𝑀𝑎𝑥[4𝑥22
(3), 9𝑥22

(3)])} + 

𝑀𝑎𝑥{(4𝑀𝑎𝑥[4𝑥11
(3), 5𝑥11

(3)] + 4𝑀𝑎𝑥[4𝑥21
(3), 5𝑥21

(3)]), (5𝑀𝑎𝑥[4𝑥11
(3), 5𝑥11

(3)] + 5𝑀𝑎𝑥[4𝑥21
(3), 5𝑥21

(3)]} + 

𝑀𝑎𝑥{(−2𝑀𝑖𝑛[4𝑥12
(2), 5𝑥12

(2)] + −2𝑀𝑖𝑛[4𝑥22
(2), 5𝑥22

(2)]), (𝑀𝑎𝑥[4𝑥12
(3), 5𝑥12

(3)] + 𝑀𝑎𝑥[4𝑥22
(3), 5𝑥22

(3)])} = 655. 

𝑛4 + 𝑛44 = 2019. 
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𝑀𝑎𝑥{(−𝑀𝑖𝑛[3𝑥11
(1), 8𝑥11

(1)] + −𝑀𝑖𝑛[2𝑥21
(1), 11𝑥21

(1)]), (6𝑀𝑎𝑥[3𝑥11
(4), 8𝑥11

(4)] + 6𝑀𝑎𝑥[2𝑥21
(4), 11𝑥21

(4)]} + 

𝑀𝑎𝑥{(𝑀𝑎𝑥[3𝑥12
(4), 8𝑥12

(4)] + 𝑀𝑎𝑥[2𝑥22
(4), 11𝑥22

(4)]), (7𝑀𝑎𝑥[3𝑥12
(4), 8𝑥12

(4)] + 7𝑀𝑎𝑥[2𝑥22
(4), 11𝑥22

(4)])} + 

𝑀𝑎𝑥{(3𝑀𝑎𝑥[1𝑥11
(4), 7𝑥11

(4)] + 3𝑀𝑎𝑥[3𝑥21
(4), 7𝑥21

(4)]), (6𝑀𝑎𝑥[1𝑥11
(4), 7𝑥11

(4)] + 6𝑀𝑎𝑥[3𝑥21
(4), 7𝑥21

(4)]} + 

𝑀𝑎𝑥{(−3𝑀𝑖𝑛[𝑥12
(1), 7𝑥12

(1)] + −3𝑀𝑖𝑛[3𝑥22
(1), 7𝑥22

(1)]), (4𝑀𝑎𝑥[𝑥12
(4), 7𝑥12

(4)] + 4𝑀𝑎𝑥[3𝑥22
(4), 7𝑥22

(4)])} = 2019. 

𝑝1 + 𝑝11 = −1331. 

𝑀𝑖𝑛{(𝑀𝑖𝑛[−8𝑥11
(4), −𝑥11

(4)] + 𝑀𝑖𝑛[−4𝑥21
(4), 6𝑥21

(1)]), (6𝑀𝑖𝑛[−8𝑥11
(4), −𝑥11

(4)] + 6𝑀𝑖𝑛[−4𝑥21
(4), 6𝑥21

(1)])} + 

𝑀𝑖𝑛{(7𝑀𝑖𝑛[−8𝑥12
(4), −𝑥12

(4)] + 7𝑀𝑖𝑛[−4𝑥22
(4), 6𝑥22

(1)]), (−3𝑀𝑎𝑥[−𝑥12
(1), −8𝑥12

(1)] ± 3𝑀𝑎𝑥[6𝑥22
(4), −4𝑥22

(1)])} + 

𝑀𝑖𝑛{(2𝑀𝑖𝑛[−5𝑥11
(4), −𝑥11

(4)] + 2𝑀𝑖𝑛[−6𝑥21
(4), 2𝑥21

(1)]), (−5𝑀𝑎𝑥[−𝑥11
(1), −5𝑥11

(1)] + −5𝑀𝑎𝑥[2𝑥21
(4), −6𝑥21

(1)])} + 

𝑀𝑖𝑛{(𝑀𝑖𝑛[−5𝑥12
(4), −𝑥12

(4)] + 𝑀𝑖𝑛[−6𝑥22
(4), 2𝑥22

(1)]), (5𝑀𝑖𝑛[−5𝑥12
(4), −𝑥12

(4)] + 5𝑀𝑖𝑛[−6𝑥22
(4), 2𝑥22

(1)])} = −1331. 

𝑝2 + 𝑝22 = −612. 

𝑀𝑖𝑛{(3𝑀𝑖𝑛[−7𝑥11
(3), −5𝑥11

(3)] + 3𝑀𝑖𝑛[−3𝑥21
(3), 5𝑥21

(2)]), (5𝑀𝑖𝑛[−7𝑥11
(3), −5𝑥11

(3)] + 5𝑀𝑖𝑛[−3𝑥21
(3), 5𝑥21

(2)])} + 

𝑀𝑖𝑛{(6𝑀𝑖𝑛[−7𝑥12
(3), −5𝑥12

(3)] + 6𝑀𝑖𝑛[−3𝑥22
(3), 5𝑥22

(2)]), (−𝑀𝑎𝑥[−5𝑥12
(2), −7𝑥12

(2)] − 𝑀𝑎𝑥[6𝑥22
(3), −4𝑥22

(2)])} + 

𝑀𝑖𝑛{(𝑀𝑖𝑛[−3𝑥11
(3), −2𝑥11

(3)] + 𝑀𝑖𝑛[−3𝑥21
(3), 𝑥21

(2)]), (−4𝑀𝑎𝑥[−2𝑥11
(2), −3𝑥11

(2)] + −4𝑀𝑎𝑥[𝑥21
(3), −𝑥21

(2)])} + 

𝑀𝑖𝑛{(3𝑀𝑖𝑛[−3𝑥12
(3), −2𝑥12

(3)] + 3𝑀𝑖𝑛[−3𝑥22
(3), 𝑥22

(2)]) + (4𝑀𝑖𝑛[−3𝑥12
(3), −2𝑥12

(3)] + 4𝑀𝑖𝑛[−3𝑥22
(3), 𝑥22

(2)])} = −612. 

𝑝3 + 𝑝33 = 288. 
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𝑀𝑎𝑥{(3𝑀𝑎𝑥[−5𝑥11
(2), −7𝑥11

(2)] + 3𝑀𝑎𝑥[5𝑥21
(3), −3𝑥21

(2)]), (5𝑀𝑎𝑥[−5𝑥11
(2), −7𝑥11

(2)] + 5𝑀𝑎𝑥[5𝑥21
(3), −3𝑥21

(2)])} + 

𝑀𝑎𝑥{(−𝑀𝑖𝑛[−7𝑥12
(3), −5𝑥12

(3)]  − 𝑀𝑖𝑛[−3𝑥22
(3), 5𝑥22

(2)]), (6𝑀𝑎𝑥[−5𝑥12
(2), −7𝑥12

(2)] + 6𝑀𝑎𝑥[5𝑥22
(3), −3𝑥22

(2)])} + 

𝑀𝑎𝑥{(−4𝑀𝑖𝑛[−3𝑥11
(3), −2𝑥11

(3)] − 4𝑀𝑖𝑛[−3𝑥21
(3), 𝑥21

(2)]), (𝑀𝑎𝑥[−2𝑥11
(2), −3𝑥11

(2)] + 𝑀𝑎𝑥[𝑥21
(3), −3𝑥21

(2)])} + 

𝑀𝑎𝑥{(3𝑀𝑎𝑥[−2𝑥12
(2), −3𝑥12

(2)] + 3𝑀𝑎𝑥[𝑥22
(3), −3𝑥22

(2)]), (4𝑀𝑎𝑥[−2𝑥12
(1), −3𝑥12

(2)] + 4𝑀𝑎𝑥[𝑥22
(3), −3𝑥22

(2)])} = 288. 

𝑝4 + 𝑝44 = 968. 

𝑐4 = 𝑀𝑎𝑥{(𝑀𝑎𝑥[−𝑥11
(1), −8𝑥11

(1)] + 𝑀𝑎𝑥[6𝑥21
(4), −4𝑥21

(1)]), (6𝑀𝑎𝑥[−𝑥11
(1), −8𝑥11

(1)] + 6𝑀𝑎𝑥[6𝑥21
(4), −4𝑥21

(1)])} + 

𝑀𝑎𝑥{(−3𝑀𝑖𝑛[−8𝑥12
(4), −𝑥12

(4)] + −3𝑀𝑖𝑛[−4𝑥22
(4), 6𝑥22

(1)]), (7𝑀𝑎𝑥[−𝑥12
(1), −8𝑥12

(1)] + 7𝑀𝑎𝑥[6𝑥22
(4), −4𝑥22

(1)])} + 

𝑀𝑎𝑥{(−5𝑀𝑖𝑛[−5𝑥11
(4), −𝑥11

(4)] + −5𝑀𝑖𝑛[−6𝑥21
(4), 2𝑥21

(1)]), (2𝑀𝑎𝑥[−𝑥11
(1), −5𝑥11

(1)] + 2𝑀𝑎𝑥[2𝑥21
(4), −6𝑥21

(1)])} + 

𝑀𝑎𝑥{(𝑀𝑎𝑥[−𝑥12
(1), −5𝑥12

(1)] + 𝑀𝑎𝑥[2𝑥22
(4), −6𝑥22

(1)]), (7𝑀𝑎𝑥[−𝑥12
(1), −5𝑥12

(1)] + 7𝑀𝑎𝑥[2𝑥22
(4), −6𝑥22

(1)])} = 968. 

𝑞1 + 𝑞11 = −1476. 

𝑀𝑖𝑛{(6𝑀𝑖𝑛[−8𝑥11
(4), −𝑥11

(4)] + 6𝑀𝑖𝑛[−4𝑥21
(4), 6𝑥21

(1)]), (−𝑀𝑎𝑥[−𝑥11
(1), −8𝑥11

(1)] + −𝑀𝑎𝑥[6𝑥21
(4), −4𝑥21

(1)])} + 

𝑀𝑖𝑛{(𝑀𝑖𝑛[−8𝑥12
(4), −𝑥12

(4)] + 𝑀𝑖𝑛[−4𝑥22
(4), 6𝑥22

(1)]), (7𝑀𝑖𝑛[−8𝑥12
(4), −𝑥12

(4)] + 7𝑀𝑖𝑛[−4𝑥22
(4), 6𝑥22

(1)])} + 

𝑀𝑖𝑛{(3𝑀𝑖𝑛[−5𝑥11
(4), −𝑥11

(4)] + 3𝑀𝑖𝑛[−6𝑥21
(4), 2𝑥21

(1)]), (6𝑀𝑖𝑛[−5𝑥11
(4), −𝑥11

(4)] + 6𝑀𝑖𝑛[−6𝑥21
(4), 2𝑥21

(1)])} + 

𝑀𝑖𝑛{(4𝑀𝑖𝑛[−5𝑥12
(4), −𝑥12

(4)] + 4𝑀𝑖𝑛[−6𝑥22
(4), 2𝑥22

(1)]), (−3𝑀𝑎𝑥[−𝑥12
(1), −5𝑥12

(1)] + −3𝑀𝑎𝑥[2𝑥22
(4), −6𝑥22

(1)])} = −1476. 

𝑞2 + 𝑞22 = −509. 
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𝑀𝑖𝑛{(3𝑀𝑖𝑛[−7𝑥11
(3), −5𝑥11

(3)] + 3𝑀𝑖𝑛[−3𝑥21
(3), 5𝑥21

(2)]), (4𝑀𝑖𝑛[−7𝑥11
(3), −5𝑥11

(3)] + 4𝑀𝑖𝑛[−3𝑥21
(3), 5𝑥21

(2)])} + 

𝑀𝑖𝑛{(2𝑀𝑖𝑛[−7𝑥12
(3), −5𝑥12

(3)] + 2𝑀𝑖𝑛[−3𝑥22
(3), 5𝑥22

(2)]), (5𝑀𝑖𝑛[−8𝑥12
(3), −𝑥12

(3)] + 5𝑀𝑖𝑛[−4𝑥22
(3), 6𝑥22

(2)])} + 

𝑀𝑖𝑛{(4𝑀𝑖𝑛[−3𝑥11
(3), −2𝑥11

(3)] + 4𝑀𝑖𝑛[−3𝑥21
(3), 𝑥21

(2)]), (5𝑀𝑖𝑛[−3𝑥11
(3), −2𝑥11

(3)] + 5𝑀𝑖𝑛[−3𝑥21
(3), 𝑥21

(2)])} + 

𝑀𝑖𝑛{(𝑀𝑖𝑛[−3𝑥12
(3), −2𝑥12

(3)] + 𝑀𝑖𝑛[−3𝑥22
(3), 𝑥22

(2)]), (−2𝑀𝑎𝑥[−2𝑥12
(2), −3𝑥12

(2)] + −2𝑀𝑎𝑥[𝑥22
(3), −3𝑥22

(2)])} = −509. 

𝑞3 + 𝑞33 = 199. 

𝑀𝑎𝑥{(3𝑀𝑎𝑥[−5𝑥11
(2), −7𝑥11

(2)] + 3𝑀𝑎𝑥[5𝑥21
(3), −3𝑥21

(2)]), (4𝑀𝑎𝑥[−5𝑥11
(2), −7𝑥11

(2)] + 4𝑀𝑎𝑥[5𝑥21
(3), −3𝑥21

(2)]} + 

𝑀𝑎𝑥{(2𝑀𝑎𝑥[−5𝑥12
(2), −7𝑥12

(2)] + 2𝑀𝑎𝑥[5𝑥22
(3), −3𝑥22

(2)]), (5𝑀𝑎𝑥[−5𝑥12
(2), −7𝑥12

(2)] + 5𝑀𝑎𝑥[5𝑥22
(3), −3𝑥22

(2)])} + 

𝑀𝑎𝑥{(4𝑀𝑎𝑥[−2𝑥11
(2), −3𝑥11

(2)] + 4𝑀𝑎𝑥[𝑥21
(3), −3𝑥21

(2)]), (5𝑀𝑎𝑥[−2𝑥11
(2), −3𝑥11

(2)] + 5𝑀𝑎𝑥[𝑥21
(3), −3𝑥21

(2)]} + 

𝑀𝑎𝑥{(−2𝑀𝑖𝑛[−3𝑥12
(3), −2𝑥12

(3)] + −2𝑀𝑖𝑛[−3𝑥22
(3), 𝑥22

(2)]), (𝑀𝑎𝑥[−2𝑥12
(2), −3𝑥12

(2)] + 𝑀𝑎𝑥[𝑥22
(3), −3𝑥22

(2)])} = 199. 

𝑞4 + 𝑞44 = 843. 

𝑀𝑎𝑥{(−𝑀𝑖𝑛[−8𝑥11
(4), −𝑥11

(4)] + −𝑀𝑖𝑛[−4𝑥21
(4), 6𝑥21

(1)]), (6𝑀𝑎𝑥[−𝑥11
(1), −8𝑥11

(1)] + 6𝑀𝑎𝑥[6𝑥21
(4), −4𝑥21

(1)]} + 

𝑀𝑎𝑥{(𝑀𝑎𝑥[−𝑥12
(1), −8𝑥12

(1)] + 𝑀𝑎𝑥[6𝑥22
(4), −4𝑥22

(1)]), (7𝑀𝑎𝑥[−𝑥12
(1), −8𝑥12

(1)] + 7𝑀𝑎𝑥[6𝑥22
(4), −4𝑥22

(1)])} + 

𝑀𝑎𝑥{(3𝑀𝑎𝑥[−𝑥11
(1), −5𝑥11

(1)] + 3𝑀𝑎𝑥[2𝑥21
(4), −6𝑥21

(1)]), (6𝑀𝑎𝑥[−𝑥11
(1), −5𝑥11

(1)] + 6𝑀𝑎𝑥[2𝑥21
(4), −6𝑥21

(1)]} + 

𝑀𝑎𝑥{(−3𝑀𝑖𝑛[−5𝑥12
(4), −𝑥12

(4)] + −3𝑀𝑖𝑛[−6𝑥22
(4), 2𝑥22

(1)]), (4𝑀𝑎𝑥[−𝑥12
(1), −5𝑥12

(1)] + 4𝑀𝑎𝑥[2𝑥22
(4), −6𝑥22

(1)])} = 843. 
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            Step 2: Convert the non-linear system obtained in Step 1 to a reduced system of absolute equations as follows: 

           The system of 16 absolute equations is discussed in Appendix B. 

Step 3: Getting the Arbitrary Fuzzy Solution 

By solving the system of absolute equations using Mathematica 12.1 and Maple 2019, the following arbitrary fuzzy solution is 

obtained. 

𝑋 = (
(−3,−2, 3, 5) (3, 4, 5, 6)
(1, 2, 3, 5) (−5,−4, 3, 5)

).                                                                                               (4.2) 

The analysis of the arbitrary fuzzy solution in Eq. (4.2) to the AGTrFFSME in Example 4.2.1 includes verification of the solution, 

representation of the solution and checking the feasibility condition, are discussed in the following Sections 4.2.1, 4.2.2 and 4.2.3 

respectively. 

4.2.1 Verification of the Arbitrary Fuzzy Solution to The AGTrFFSME 

To verify the arbitrary fuzzy solution in Eq. (4.2) to the given AGTrFFSME in Example 4.2.1, we first multiply 𝐴̃𝑋̃𝐵̃ as follows: 

𝐴̃𝑋̃𝐵̃ = (
(3, 4, 6, 8) (2, 4, 9, 11)

(−8,−7,−5,−1) (−4,−3, 5, 6)
) (
(−3,−2, 3, 5) (3, 4, 5, 6)
(1, 2, 3, 5) (−5,−4, 3, 5)

) (
(1, 3, 5, 6) (−1, 3, 4, 6)

(−3,−1, 6, 7) (1, 2, 5, 7)
)

= (
(−454,−140, 567, 1291)      (−454,−116, 465, 1291)
(−906,−480, 200, 558)       (−906,−395, 106, 513)

). 

We also multiply 𝐶̃𝑋̃𝐷̃ as follows: 
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𝐶̃𝑋̃𝐷̃  = (
(1, 4, 5, 7) (3, 4, 5, 7)

(−5,−3, −2,−1) (−6,−3, 1, 2)
) (
(−3,−2, 3, 5) (3, 4, 5, 6)
(1, 2, 3, 5) (−5,−4, 3, 5)

) (
(−5,−4, 1, 2) (3, 4, 5, 6)
(1, 3, 4, 5) (−3,−2, 1, 4)

)

= (
(−510,−136, 190, 525)     (−339,−90, 190, 728)
(−425,−132, 88, 410)       (−570,−114, 93, 330)

). 

Therefore, 

𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ = (
(−964,−276, 757, 1816)       (−793,−206, 655, 2019)
(−1331,−612, 288, 968)       (−1476,−509, 199, 843)

). 

The value of 𝐴̃𝑋̃𝐵̃ + 𝐶̃𝑋̃𝐷̃ is exactly equal to the constant fuzzy matrix 𝐸̃. Thus, the obtained arbitrary fuzzy solution satisfies the 

given AGTrFFSME in Example 4.2.1. 
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4.2.2 Representation of the Arbitrary Fuzzy Solution by ABSM 

In this section, the graphical representation to the arbitrary fuzzy solution to the 

AGTrFFSME in Example 4.2.1 is represented in Figure 4.1.  

 

 

 

 

 

 

 

Figure 4.1. Arbitrary fuzzy solution for Example 4.2.1. 

Figure 4.1 shows that, 𝑥̃11, 𝑥̃12, 𝑥̃21 and 𝑥̃22 are all TrFNs. In addition,  𝑥̃11 and 𝑥̃22 are 

near-zero TrFNs, and therefore the obtained solution in Eq. (4.2) is an arbitrary 

trapezoidal fuzzy solution based on Definition 4.1.1.  

In the following Section 4.2.3, the feasibility condition of the obtained arbitrary fuzzy 

solution in Eq. (4.2) to the given AGTrFFSME in Example 4.2.1 is discussed. 

4.2.3 Feasibility of The Arbitrary Fuzzy Solution to the AGTrFFSME 

To check the feasibility of the arbitrary fuzzy solution to the AGTrFFSME in  

Example 4.2.1, the following feasibility condition needs to be satisfied. 

𝑥𝑖𝑗
(4)
≥ 𝑥𝑖𝑗

(3)
≥ 𝑥𝑖𝑗

(2) ≥ 𝑥𝑖𝑗
(1)

, ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑝, 𝑛.    

(
5 6
5 5

) ≥ (
3 5
3 3

) ≥ (
−2 4
2 −4

) ≥ (
−3 3
1 −5

). 
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Therefore, the feasibility condition is satisfied and therefore, the obtained arbitrary 

fuzzy solution is feasibly.  

The verification, representation, and feasibility of the obtained arbitrary fuzzy solution 

in Eq. (4.2) show that it satisfies the given AGTrFFSME and is a strong fuzzy solution. 

In the following Section 4.3, the ABSM in Section 4.3 for solving the AGTrFFSME is 

modified and applied to the arbitrary TrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃.  

4.3 Solving Arbitrary TrFFSME 

In this section, the arbitrary solution to the arbitrary TrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ is 

obtained by modifying the ABSM in Section 4.2. In order to get the solution, the 

arbitrary TrFFSME is converted to an equivalent non-linear system of equations and 

consequently reduced to an absolute system of equations where the solution to the 

absolute system of equations gives the solutions to the arbitrary TrFFSME. In the 

following Definition 4.3.1, the arbitrary TrFFSME is introduced. 

Definition 4.3.1. A matrix equation TrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ is called arbitrary 

trapezoidal fully fuzzy Sylvester matrix equations (ATrFFSME) if 

𝐴̃ = (𝑎̃𝑖𝑗)𝑛×𝑛 = (𝑎𝑖𝑗
(1)
, 𝑎𝑖𝑗
(2)
, 𝑎𝑖𝑗
(3)
, 𝑎𝑖𝑗
(4)
), 

 𝐷̃ = (𝑑̃𝑖𝑗)𝑚×𝑚 = (𝑑𝑖𝑗
(1)
, 𝑑𝑖𝑗

(2)
, 𝑑𝑖𝑗

(3)
, 𝑑𝑖𝑗

(4)
), 

 𝑋̃ = (𝑥̃𝑖𝑗)𝑛×𝑚 = (𝑥𝑖𝑗
(1)
, 𝑥𝑖𝑗
(2)
, 𝑥𝑖𝑗
(3)
, 𝑥𝑖𝑗
(4)
)  

and  𝐸̃ = (𝑒̃𝑖𝑗)𝑛×𝑚 = (𝑒𝑖𝑗
(1)
, 𝑒𝑖𝑗
(2)
, 𝑒𝑖𝑗
(3)
, 𝑒𝑖𝑗
(4)
)  

are arbitrary trapezoidal fuzzy matrices.  

In the following Definition 4.3.2, the system of non-linear equations is introduced. 
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Definition 4.3.2.  The system of matrix equations in the form,  

{
 
 

 
 𝑚𝑖𝑛(𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1), 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(4), 𝑎𝑖𝑗

(4)𝑥𝑖𝑗
(1), 𝑎𝑖𝑗

(4)𝑥𝑖𝑗
(4)) + 𝑚𝑖𝑛(𝑥𝑖𝑗

(1)𝑑𝑖𝑗
(1), 𝑥𝑖𝑗

(1)𝑑𝑖𝑗
(4), 𝑥𝑖𝑗

(4)𝑑𝑖𝑗
(1), 𝑥𝑖𝑗

(4)𝑑𝑖𝑗
(4)) = 𝑒𝑖𝑗

(1),

𝑚𝑖𝑛(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)) + 𝑚𝑖𝑛(𝑥𝑖𝑗
(2)𝑑𝑖𝑗

(2), 𝑥𝑖𝑗
(2)𝑑𝑖𝑗

(3), 𝑥𝑖𝑗
(3)𝑑𝑖𝑗

(2), 𝑥𝑖𝑗
(3)𝑑𝑖𝑗

(3)) = 𝑒𝑖𝑗
(2),

𝑚𝑎𝑥(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)) + 𝑚𝑎𝑥(𝑥𝑖𝑗
(2)𝑑𝑖𝑗

(2), 𝑥𝑖𝑗
(2)𝑑𝑖𝑗

(3), 𝑥𝑖𝑗
(3)𝑑𝑖𝑗

(2), 𝑥𝑖𝑗
(3)𝑑𝑖𝑗

(3)) = 𝑒𝑖𝑗
(3),

𝑚𝑎𝑥(𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(4)) + 𝑚𝑎𝑥(𝑥𝑖𝑗
(1)𝑑𝑖𝑗

(1), 𝑥𝑖𝑗
(1)𝑑𝑖𝑗

(4), 𝑥𝑖𝑗
(4)𝑑𝑖𝑗

(1), 𝑥𝑖𝑗
(4)𝑑𝑖𝑗

(4)) = 𝑒𝑖𝑗
(4).

 

is called a non-linear system of equations.  

 In the following Theorem 4.3.1, the fundamental theorem of ATrFFSME is discussed. 

Theorem 4.3.1. Suppose that 𝐴̃, 𝐷̃, 𝐸̃ and 𝑋̃ are arbitrary trapezoidal fuzzy matrices, 

respectively, then the ATrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ is equivalent to the following non-

linear system: 

{
 
 

 
 𝑚𝑖𝑛(𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1), 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(4), 𝑎𝑖𝑗

(4)𝑥𝑖𝑗
(1), 𝑎𝑖𝑗

(4)𝑥𝑖𝑗
(4)) + 𝑚𝑖𝑛(𝑥𝑖𝑗

(1)𝑑𝑖𝑗
(1), 𝑥𝑖𝑗

(1)𝑑𝑖𝑗
(4), 𝑥𝑖𝑗

(4)𝑑𝑖𝑗
(1), 𝑥𝑖𝑗

(4)𝑑𝑖𝑗
(4)) = 𝑒𝑖𝑗

(1),

𝑚𝑖𝑛(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)) + 𝑚𝑖𝑛(𝑥𝑖𝑗
(2)𝑑𝑖𝑗

(2), 𝑥𝑖𝑗
(2)𝑑𝑖𝑗

(3), 𝑥𝑖𝑗
(3)𝑑𝑖𝑗

(2), 𝑥𝑖𝑗
(3)𝑑𝑖𝑗

(3)) = 𝑒𝑖𝑗
(2),

𝑚𝑎𝑥(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)) + 𝑚𝑎𝑥(𝑥𝑖𝑗
(2)𝑑𝑖𝑗

(2), 𝑥𝑖𝑗
(2)𝑑𝑖𝑗

(3), 𝑥𝑖𝑗
(3)𝑑𝑖𝑗

(2), 𝑥𝑖𝑗
(3)𝑑𝑖𝑗

(3)) = 𝑒𝑖𝑗
(3),

𝑚𝑎𝑥(𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(4)) + 𝑚𝑎𝑥(𝑥𝑖𝑗
(1)𝑑𝑖𝑗

(1), 𝑥𝑖𝑗
(1)𝑑𝑖𝑗

(4), 𝑥𝑖𝑗
(4)𝑑𝑖𝑗

(1), 𝑥𝑖𝑗
(4)𝑑𝑖𝑗

(4)) = 𝑒𝑖𝑗
(4).

   

(4.3) 

Proof: Let 𝐴̃, 𝐵̃, 𝐸̃ and 𝑋̃ in the ATrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ be arbitrary trapezoidal 

fuzzy matrices respectively, then, by AMO and RAMO in  

Sections 3.1.1, 3.1.2 and 3.1.3 we have,                             

                                           𝐴̃𝑋̃ = (𝑀,𝑁, 𝑃, 𝑄) 

where 

           𝑀 = 𝑚𝑖𝑛 (𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(4)), 

𝑁 = 𝑚𝑖𝑛 (𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)), 

𝑃 = 𝑚𝑎𝑥(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)), 

𝑄 = 𝑚𝑎𝑥(𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
). 

and, 

𝑋̃𝐷̃ = (𝐾, 𝐿, 𝐻, 𝑅) 
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where, 

𝐾 = 𝑚𝑖𝑛(𝑥𝑖𝑗
(1)𝑑𝑖𝑗

(1), 𝑥𝑖𝑗
(1)𝑑𝑖𝑗

(4), 𝑥𝑖𝑗
(4)𝑑𝑖𝑗

(1), 𝑥𝑖𝑗
(4)𝑑𝑖𝑗

(4)), 

𝐿 = 𝑚𝑖𝑛(𝑥𝑖𝑗
(2)𝑑𝑖𝑗

(2), 𝑥𝑖𝑗
(2)𝑑𝑖𝑗

(3), 𝑥𝑖𝑗
(3)𝑑𝑖𝑗

(2), 𝑥𝑖𝑗
(3)𝑑𝑖𝑗

(3)) 

𝐻 = 𝑚𝑎𝑥(𝑥𝑖𝑗
(2)
𝑑𝑖𝑗
(2)
, 𝑥𝑖𝑗
(2)
𝑑𝑖𝑗
(3)
, 𝑥𝑖𝑗
(3)
𝑑𝑖𝑗
(2)
, 𝑥𝑖𝑗
(3)
𝑑𝑖𝑗
(3)
), 

𝑅 = 𝑚𝑎𝑥(𝑥𝑖𝑗
(1)
𝑑𝑖𝑗
(1)
, 𝑥𝑖𝑗
(1)
𝑑𝑖𝑗
(4)
, 𝑥𝑖𝑗
(4)
𝑑𝑖𝑗
(1)
, 𝑥𝑖𝑗
(4)
𝑑𝑖𝑗
(4)
). 

Therefore, the ATrFFSME is equivalent to the following non-linear equations: 

{
 
 

 
 𝑚𝑖𝑛(𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1), 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(4), 𝑎𝑖𝑗

(4)𝑥𝑖𝑗
(1), 𝑎𝑖𝑗

(4)𝑥𝑖𝑗
(4)) + 𝑚𝑖𝑛(𝑥𝑖𝑗

(1)𝑑𝑖𝑗
(1), 𝑥𝑖𝑗

(1)𝑑𝑖𝑗
(4), 𝑥𝑖𝑗

(4)𝑑𝑖𝑗
(1), 𝑥𝑖𝑗

(4)𝑑𝑖𝑗
(4)) = 𝑒𝑖𝑗

(1),

𝑚𝑖𝑛(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)) + 𝑚𝑖𝑛(𝑥𝑖𝑗
(2)𝑑𝑖𝑗

(2), 𝑥𝑖𝑗
(2)𝑑𝑖𝑗

(3), 𝑥𝑖𝑗
(3)𝑑𝑖𝑗

(2), 𝑥𝑖𝑗
(3)𝑑𝑖𝑗

(3)) = 𝑒𝑖𝑗
(2),

𝑚𝑎𝑥(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)) + 𝑚𝑎𝑥(𝑥𝑖𝑗
(2)𝑑𝑖𝑗

(2), 𝑥𝑖𝑗
(2)𝑑𝑖𝑗

(3), 𝑥𝑖𝑗
(3)𝑑𝑖𝑗

(2), 𝑥𝑖𝑗
(3)𝑑𝑖𝑗

(3)) = 𝑒𝑖𝑗
(3),

𝑚𝑎𝑥(𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(4)) + 𝑚𝑎𝑥(𝑥𝑖𝑗
(1)𝑑𝑖𝑗

(1), 𝑥𝑖𝑗
(1)𝑑𝑖𝑗

(4), 𝑥𝑖𝑗
(4)𝑑𝑖𝑗

(1), 𝑥𝑖𝑗
(4)𝑑𝑖𝑗

(4)) = 𝑒𝑖𝑗
(4).

 

□ 

In order to get the arbitrary fuzzy solution to the ATrFFSME, the equivalent non-linear 

system of equations in Eq. (4.3) is considered and reduced to a system of absolute 

equations based on Theorem 2.4.3.1. Then, the solution to the absolute system of 

equations is obtained using Mathematica 12.1 and Maple 2019. The steps to the 

constructed methods for obtaining the arbitrary solution to the ATrFFSME are 

discussed as follows:  

Step 1: Convert the ATrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ to a non-linear system in Eq. (4.3) 

using Theorem 4.3.1. 

Step 2: Reduce the non-linear system in Step 1 to an absolute system of equation based 

on Theorem 2.4.3.1. and Definition 2.4.3.4. 

Step 3: Solve the system of absolute equations and check which solution(s) satisfy the 

following.  

I) 𝑥𝑖𝑗
(1) ≤ 𝑥𝑖𝑗

(2) ≤ 𝑥𝑖𝑗
(3) ≤ 𝑥𝑖𝑗

(4)  ∀ 1 ≤  𝑖 ≤  𝑛, 1 ≤  𝑗 ≤  𝑚. 

II) At least one element of 𝑋̃ is near-zero TrFN. 
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Step 4: By solving the system of absolute equations and eliminating the non-fuzzy 

solutions, the following arbitrary fuzzy solution is obtained: 

𝑋̃ = (

(𝑥11
(1), 𝑥11

(2), 𝑥11
(3), 𝑥11

(4)) ⋯ (𝑥1𝑚
(1), 𝑥1𝑚

(2), 𝑥1𝑚
(3), 𝑥1𝑚

(4))

⋮ ⋱ ⋮

(𝑥𝑛1
(1), 𝑥𝑛1

(2), 𝑥𝑛1
(3), 𝑥𝑛1

(4)) … (𝑥𝑛𝑚
(1) , 𝑥𝑛𝑚

(2) , 𝑥𝑛𝑚
(3) , 𝑥𝑛𝑚

(4))

). 

The solution to the ATrFFSME is illustrated in the following Example 4.3.1. 

Example 4.3.1. Consider the following ATrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ where 

 𝐴̃ = (𝑎̃𝑖𝑗)2×2, 𝐷̃ = (𝑑̃𝑖𝑗)2×2, 𝑋̃ = (𝑥̃𝑖𝑗)2×2 and  𝐸̃ = (𝑒̃𝑖𝑗)2×2 be any 2 × 2 arbitrary 

trapezoidal fuzzy matrices. Find 𝑋̃. 

Solution: The procedure to obtain the solution of the given ATrFFSME is as follows: 

Step 1: Convert the given ATrFFSME to a reduced non-linear system in using AMO 

and RAMO in Sections 3.1.1, 3.1.2 and 3.1.3 as follows: 

Multiplying 𝐴̃𝑋̃  

𝐴̃𝑋̃ = (
(𝑎11

(1)
, 𝑎11
(2)
, 𝑎11
(3)
, 𝑎11
(4)
) (𝑎12

(1)
, 𝑎12
(2)
, 𝑎12
(3)
, 𝑎12
(4)
)

(𝑎21
(1)
, 𝑎21
(2)
, 𝑎21
(3)
, 𝑎21
(4)
) (𝑎22

(1)
, 𝑎22
(2)
, 𝑎22
(3)
, 𝑎22
(4)
)
)(
(𝑥11

(1)
, 𝑥11
(2)
, 𝑥11
(3)
, 𝑥11
(4)
) (𝑥12

(1)
, 𝑥12
(2)
, 𝑥12
(3)
, 𝑥12
(4)
)

(𝑥21
(1)
, 𝑥21
(2)
, 𝑥21
(3)
, 𝑥21
(4)
) (𝑥22

(1)
, 𝑥22
(2)
, 𝑥22
(3)
, 𝑥22
(4)
)
). 

which can be written as, 

𝐴̃𝑋̃ = (
(𝑚1, 𝑛1, 𝛼1, 𝛽1) (𝑚2, 𝑛2, 𝛼2, 𝛽2)
(𝑚3, 𝑛3, 𝛼3, 𝛽3) (𝑚4, 𝑛4, 𝛼4, 𝛽4)

).                               (4.4) 

where,  

𝑚1 = 𝑚𝑖𝑛(𝑎11
(1)𝑥11

(1), 𝑎11
(1)𝑥11

(4), 𝑎11
(4)𝑥11

(1), 𝑎11
(4)𝑥11

(4)) + 𝑚𝑖𝑛(𝑎12
(1)𝑥21

(1), 𝑎12
(1)𝑥21

(4), 𝑎12
(4)𝑥21

(1), 𝑎12
(4)
𝑥21
(4)
), 

𝑛1 = 𝑚𝑖𝑛(𝑎11
(1)𝑥12

(1), 𝑎11
(1)𝑥12

(4), 𝑎11
(4)𝑥12

(1), 𝑎11
(4)𝑥12

(4)) + 𝑚𝑖𝑛(𝑎12
(1)𝑥22

(1), 𝑎12
(1)𝑥22

(4), 𝑎12
(4)𝑥22

(1), 𝑎12
(4)
𝑥22
(4)
), 

𝛼1 = 𝑚𝑖𝑛(𝑎21
(1)𝑥11

(1), 𝑎21
(1)𝑥11

(4), 𝑎21
(4)𝑥11

(1), 𝑎21
(4)𝑥11

(4)) + 𝑚𝑖𝑛(𝑎22
(1)𝑥21

(1), 𝑎22
(1)𝑥21

(4), 𝑎22
(4)𝑥21

(1), 𝑎22
(4)
𝑥21
(4)
), 

𝛽1 = 𝑚𝑖𝑛(𝑎21
(1)𝑥12

(1), 𝑎21
(1)𝑥12

(4), 𝑎21
(4)𝑥12

(1), 𝑎21
(4)𝑥12

(4)) + 𝑚𝑖𝑛(𝑎22
(1)𝑥22

(1), 𝑎22
(1)𝑥22

(4), 𝑎22
(4)𝑥22

(1), 𝑎22
(4)
𝑥22
(4)
), 

𝑚2 = 𝑚𝑖𝑛(𝑎11
(2)𝑥11

(2), 𝑎11
(2)𝑥11

(3), 𝑎11
(3)𝑥11

(2), 𝑎11
(3)𝑥11

(3)) + 𝑚𝑖𝑛(𝑎12
(2)𝑥21

(2), 𝑎12
(2)𝑥21

(3), 𝑎12
(3)𝑥21

(2), 𝑎12
(3)
𝑥21
(3)
), 

𝑛2 = 𝑚𝑖𝑛(𝑎11
(2)𝑥12

(2), 𝑎11
(2)𝑥12

(3), 𝑎11
(3)𝑥12

(2), 𝑎11
(3)𝑥12

(3)) + 𝑚𝑖𝑛(𝑎12
(2)𝑥22

(2), 𝑎12
(2)𝑥22

(3), 𝑎12
(3)𝑥22

(2), 𝑎12
(3)
𝑥22
(3)
), 

𝛼2 = 𝑚𝑖𝑛(𝑎21
(2)𝑥11

(2), 𝑎21
(2)𝑥11

(3), 𝑎21
(3)𝑥11

(1), 𝑎21
(3)𝑥11

(3)) + 𝑚𝑖𝑛(𝑎22
(2)𝑥21

(2), 𝑎22
(2)𝑥21

(3), 𝑎22
(3)𝑥21

(2), 𝑎22
(3)
𝑥21
(3)
), 
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𝛽2 = 𝑚𝑖𝑛(𝑎21
(2)𝑥12

(2), 𝑎21
(2)𝑥12

(3), 𝑎21
(3)𝑥12

(1), 𝑎21
(3)𝑥12

(3)) + 𝑚𝑖𝑛(𝑎22
(2)𝑥22

(2), 𝑎22
(2)𝑥22

(3), 𝑎22
(3)𝑥22

(2), 𝑎22
(3)
𝑥22
(3)
), 

𝑚3 = 𝑚𝑎𝑥(𝑎11
(2)𝑥11

(2), 𝑎11
(2)𝑥11

(3), 𝑎11
(3)𝑥11

(2), 𝑎11
(3)𝑥11

(3)) + 𝑚𝑎𝑥(𝑎12
(2)𝑥21

(2), 𝑎12
(2)𝑥21

(3), 𝑎12
(3)𝑥21

(2), 𝑎12
(3)
𝑥21
(3)
), 

𝑛3 = 𝑚𝑎𝑥(𝑎11
(2)𝑥12

(2), 𝑎11
(2)𝑥12

(3), 𝑎11
(3)𝑥12

(1), 𝑎11
(3)𝑥12

(3)) + 𝑚𝑎𝑥(𝑎12
(2)𝑥22

(2), 𝑎12
(2)𝑥22

(3), 𝑎12
(3)𝑥22

(2), 𝑎12
(3)
𝑥22
(3)
), 

𝛼3 = 𝑚𝑎𝑥(𝑎21
(2)𝑥11

(2), 𝑎21
(2)𝑥11

(3), 𝑎21
(3)𝑥11

(1), 𝑎21
(3)𝑥11

(3)) + 𝑚𝑎𝑥(𝑎22
(2)𝑥21

(2), 𝑎22
(2)𝑥21

(3), 𝑎22
(3)𝑥21

(2), 𝑎22
(3)
𝑥21
(3)
), 

𝛽3 = 𝑚𝑎𝑥(𝑎21
(2)𝑥12

(2), 𝑎21
(2)𝑥12

(3), 𝑎21
(3)𝑥12

(1), 𝑎21
(3)𝑥12

(3)) + 𝑚𝑎𝑥(𝑎22
(2)𝑥22

(2), 𝑎22
(2)𝑥22

(3), 𝑎22
(3)𝑥22

(2), 𝑎22
(3)
𝑥22
(3)
), 

𝑚4 = 𝑚𝑎𝑥(𝑎11
(1)𝑥11

(1), 𝑎11
(1)𝑥11

(4), 𝑎11
(4)𝑥11

(1), 𝑎11
(4)𝑥11

(4)) + 𝑚𝑎𝑥(𝑎12
(1)𝑥21

(1), 𝑎12
(1)𝑥21

(4), 𝑎12
(4)𝑥21

(1), 𝑎12
(4)
𝑥21
(4)
), 

𝑛4 = 𝑚𝑎𝑥(𝑎11
(1)𝑥12

(1), 𝑎11
(1)𝑥12

(4), 𝑎11
(4)𝑥12

(1), 𝑎11
(4)𝑥12

(4)) + 𝑚𝑎𝑥(𝑎12
(1)𝑥22

(1), 𝑎12
(1)𝑥22

(4), 𝑎12
(4)𝑥22

(1), 𝑎12
(4)
𝑥22
(4)
), 

𝛼4 = 𝑚𝑎𝑥(𝑎21
(1)𝑥11

(1), 𝑎21
(1)𝑥11

(4), 𝑎21
(4)𝑥11

(1), 𝑎21
(4)𝑥11

(4)) + 𝑚𝑎𝑥(𝑎22
(1)𝑥21

(1), 𝑎22
(1)𝑥21

(4), 𝑎22
(4)𝑥21

(1), 𝑎22
(4)
𝑥21
(4)
) 

𝛽4 = 𝑚𝑎𝑥(𝑎21
(1)𝑥12

(1), 𝑎21
(1)𝑥12

(4), 𝑎21
(4)𝑥12

(1), 𝑎21
(4)𝑥12

(4)) + 𝑚𝑎𝑥(𝑎22
(1)𝑥22

(1), 𝑎22
(1)𝑥22

(4), 𝑎22
(4)𝑥22

(1), 𝑎22
(4)
𝑥22
(4)
). 

Multiplying 𝑋̃𝐵̃  

𝑋̃𝐵̃ = (
(𝑥11

(1)
, 𝑥11
(2)
, 𝑥11
(3)
, 𝑥11
(4)
) (𝑥12

(1)
, 𝑥12
(2)
, 𝑥12
(3)
, 𝑥12
(4)
)

(𝑥21
(1)
, 𝑥21
(2)
, 𝑥21
(3)
, 𝑥21
(4)
) (𝑥22

(1)
, 𝑥22
(2)
, 𝑥22
(3)
, 𝑥22
(4)
)
)(
(𝑏11

(1)
, 𝑏11
(2)
, 𝑏11
(3)
, 𝑏11
(4)
) (𝑏12

(1)
, 𝑏12
(2)
, 𝑏12
(3)
, 𝑏12
(4)
)

(𝑏21
(1)
, 𝑏21
(2)
, 𝑏21
(3)
, 𝑏21
(4)
) (𝑏22

(1)
, 𝑏22
(2)
, 𝑏22
(3)
, 𝑏22
(4)
)
), 

which can be written as, 

𝑋̃𝐵̃ = (
(𝛾1, 𝛿1, 𝜇1, 𝜎1) (𝛾2, 𝛿2, 𝜇2, 𝜎2)
(𝛾3, 𝛿3, 𝜇3, 𝜎3) (𝛾4, 𝛿4, 𝜇4, 𝜎4)

).                               (4.5) 

where 

𝛾1 = 𝑚𝑖𝑛(𝑥11
(1)
𝑏11
(1)
, 𝑥11
(1)
𝑏11
(4)
, 𝑥11
(4)
𝑏11
(1)
, 𝑥11
(4)
𝑏11
(4)
) + 𝑚𝑖𝑛(𝑥12

(1)
𝑏21
(1)
, 𝑥12
(1)
𝑏21
(4)
, 𝑥12
(4)
𝑏21
(1)
, 𝑥12
(4)
𝑏21
(4)
), 

𝛿1 = 𝑚𝑖𝑛(𝑥11
(1)
𝑏12
(1)
, 𝑥11
(1)
𝑏12
(4)
, 𝑥11
(4)
𝑏12
(1)
, 𝑥11
(4)
𝑏12
(4)
) + 𝑚𝑖𝑛(𝑥12

(1)
𝑏22
(1)
, 𝑥12
(1)
𝑏22
(4)
, 𝑥12
(4)
𝑏22
(1)
, 𝑥12
(4)
𝑏22
(4)
), 

𝜇1 = 𝑚𝑖𝑛(𝑥21
(1)
𝑏11
(1)
, 𝑥21
(1)
𝑏11
(4)
, 𝑥21
(4)
𝑏11
(1)
, 𝑥21
(4)
𝑏11
(4)
) + 𝑚𝑖𝑛(𝑥22

(1)
𝑏21
(1)
, 𝑥22
(1)
𝑏21
(4)
, 𝑥22
(4)
𝑏21
(1)
, 𝑥22
(4)
𝑏21
(4)
), 

𝜎1 = 𝑚𝑖𝑛(𝑥21
(1)
𝑏12
(1)
, 𝑥21
(1)
𝑏12
(4)
, 𝑥21
(4)
𝑏12
(1)
, 𝑥21
(4)
𝑏12
(4)
) + 𝑚𝑖𝑛(𝑥22

(1)
𝑏22
(1)
, 𝑥22
(1)
𝑏22
(4)
, 𝑥22
(4)
𝑏22
(1)
, 𝑥22
(4)
𝑏22
(4)
), 

𝛾2 = 𝑚𝑖𝑛(𝑥11
(2)
𝑏11
(2)
, 𝑥11
(2)
𝑏11
(3)
, 𝑥11
(3)
𝑏11
(2)
, 𝑥11
(3)
𝑏11
(3)
) + 𝑚𝑖𝑛(𝑥12

(2)
𝑏21
(2)
, 𝑥12
(2)
𝑏21
(3)
, 𝑥12
(3)
𝑏21
(2)
, 𝑥12
(3)
𝑏21
(3)
), 

𝛿2 = 𝑚𝑖𝑛(𝑥11
(2)
𝑏12
(2)
, 𝑥11
(2)
𝑏12
(3)
, 𝑥11
(3)
𝑏12
(2)
, 𝑥11
(3)
𝑏12
(3)
) + 𝑚𝑖𝑛(𝑥12

(2)
𝑏22
(2)
, 𝑥12
(2)
𝑏22
(3)
, 𝑥12
(3)
𝑏22
(2)
, 𝑥12
(3)
𝑏22
(3)
), 

𝜇2 = 𝑚𝑖𝑛(𝑥21
(2)
𝑏11
(2)
, 𝑥21
(2)
𝑏11
(3)
, 𝑥21
(3)
𝑏11
(2)
, 𝑥21
(3)
𝑏11
(3)
) + 𝑚𝑖𝑛(𝑥22

(2)
𝑏21
(2)
, 𝑥22
(2)
𝑏21
(3)
, 𝑥22
(3)
𝑏21
(2)
, 𝑥22
(3)
𝑏21
(3)
), 

𝜎2 = 𝑚𝑖𝑛(𝑥21
(2)
𝑏12
(2)
, 𝑥21
(2)
𝑏12
(3)
, 𝑥21
(3)
𝑏12
(2)
, 𝑥21
(3)
𝑏12
(3)
) + 𝑚𝑖𝑛(𝑥22

(2)
𝑏22
(2)
, 𝑥22
(2)
𝑏22
(3)
, 𝑥22
(3)
𝑏22
(2)
, 𝑥22
(3)
𝑏22
(3)
), 

𝛾3 = 𝑚𝑎𝑥(𝑥11
(2)
𝑏11
(2)
, 𝑥11
(2)
𝑏11
(3)
, 𝑥11
(3)
𝑏11
(2)
, 𝑥11
(3)
𝑏11
(3)
) + 𝑚𝑎𝑥(𝑥12

(2)
𝑏21
(2)
, 𝑥12
(2)
𝑏21
(3)
, 𝑥12
(3)
𝑏21
(2)
, 𝑥12
(3)
𝑏21
(3)
), 

𝛿3 = 𝑚𝑎𝑥(𝑥11
(2)
𝑏12
(2)
, 𝑥11
(2)
𝑏12
(3)
, 𝑥11
(3)
𝑏12
(2)
, 𝑥11
(3)
𝑏12
(3)
) + 𝑚𝑎𝑥(𝑥12

(2)
𝑏22
(2)
, 𝑥12
(2)
𝑏22
(3)
, 𝑥12
(3)
𝑏22
(2)
, 𝑥12
(3)
𝑏22
(3)
), 

𝜇3 = 𝑚𝑎𝑥(𝑥21
(2)
𝑏11
(2)
, 𝑥21
(2)
𝑏11
(3)
, 𝑥21
(3)
𝑏11
(2)
, 𝑥21
(3)
𝑏11
(3)
) + 𝑚𝑎𝑥(𝑥22

(2)
𝑏21
(2)
, 𝑥22
(2)
𝑏21
(3)
, 𝑥22
(3)
𝑏21
(2)
, 𝑥22
(3)
𝑏21
(3)
), 
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𝜎3 = 𝑚𝑎𝑥(𝑥21
(2)
𝑏12
(2)
, 𝑥21
(2)
𝑏12
(3)
, 𝑥21
(3)
𝑏12
(2)
, 𝑥21
(3)
𝑏12
(3)
) + 𝑚𝑎𝑥(𝑥22

(2)
𝑏22
(2)
, 𝑥22
(2)
𝑏22
(3)
, 𝑥22
(3)
𝑏22
(2)
, 𝑥22
(3)
𝑏22
(3)
), 

𝛾4 = 𝑚𝑎𝑥(𝑥11
(1)
𝑏11
(1)
, 𝑥11
(1)
𝑏11
(4)
, 𝑥11
(4)
𝑏11
(1)
, 𝑥11
(4)
𝑏11
(4)
) + 𝑚𝑎𝑥(𝑥12

(1)
𝑏21
(1)
, 𝑥12
(1)
𝑏21
(4)
, 𝑥12
(4)
𝑏21
(1)
, 𝑥12
(4)
𝑏21
(4)
), 

𝛿4 = 𝑚𝑎𝑥(𝑥11
(1)
𝑏12
(1)
, 𝑥11
(1)
𝑏12
(4)
, 𝑥11
(4)
𝑏12
(1)
, 𝑥11
(4)
𝑏12
(4)
) + 𝑚𝑎𝑥(𝑥12

(1)
𝑏22
(1)
, 𝑥12
(1)
𝑏22
(4)
, 𝑥12
(4)
𝑏22
(1)
, 𝑥12
(4)
𝑏22
(4)
), 

𝜇4 = 𝑚𝑎𝑥(𝑥21
(1)
𝑏11
(1)
, 𝑥21
(1)
𝑏11
(4)
, 𝑥21
(4)
𝑏11
(1)
, 𝑥21
(4)
𝑏11
(4)
) + 𝑚𝑎𝑥(𝑥22

(1)
𝑏21
(1)
, 𝑥22
(1)
𝑏21
(4)
, 𝑥22
(4)
𝑏21
(1)
, 𝑥22
(4)
𝑏21
(4)
) 

𝜎4 = 𝑚𝑎𝑥(𝑥21
(1)
𝑏12
(1)
, 𝑥21
(1)
𝑏12
(4)
, 𝑥21
(4)
𝑏12
(1)
, 𝑥21
(4)
𝑏12
(4)
) + 𝑚𝑎𝑥(𝑥22

(1)
𝑏22
(1)
, 𝑥22
(1)
𝑏22
(4)
, 𝑥22
(4)
𝑏22
(1)
, 𝑥22
(4)
𝑏22
(4)
). 

Adding Eq. (4.4) and Eq. (4.5), we get the following: 

𝐴̃𝑋̃ + 𝑋̃𝐵̃ = (
(𝑚1, 𝑛1, 𝛼1, 𝛽1) (𝑚2, 𝑛2, 𝛼2, 𝛽2)
(𝑚3, 𝑛3, 𝛼3, 𝛽3) (𝑚4, 𝑛4, 𝛼4, 𝛽4)

) + (
(𝛾1, 𝛿1, 𝜇1, 𝜎1) (𝛾2, 𝛿2, 𝜇2, 𝜎2)
(𝛾3, 𝛿3, 𝜇3, 𝜎3) (𝛾4, 𝛿4, 𝜇4, 𝜎4)

) 

The following is obtained, 

(
(𝑚1, 𝑛1, 𝛼1, 𝛽1) (𝑚2, 𝑛2, 𝛼2, 𝛽2)

(𝑚3, 𝑛3, 𝛼3, 𝛽3) (𝑚4, 𝑛4, 𝛼4, 𝛽4)
) + (

(𝛾1, 𝛿1, 𝜇1, 𝜎1) (𝛾2, 𝛿2, 𝜇2, 𝜎2)

(𝛾3, 𝛿3, 𝜇3, 𝜎3) (𝛾4, 𝛿4, 𝜇4, 𝜎4)
) =

(
(𝑐11
(1)
, 𝑐11
(2)
, 𝑐11
(3)
, 𝑐11
(4)
) (𝑐12

(1)
, 𝑐12
(2)
, 𝑐12
(3)
, 𝑐12
(4)
)

(𝑐21
(1)
, 𝑐21
(2)
, 𝑐21
(3)
, 𝑐21
(4)
) (𝑐22

(1)
, 𝑐22
(2)
, 𝑐22
(3)
, 𝑐22
(4)
)
),                                                             (4.6)  

which can be converted into the following system of 16 equations. It is worth 

mentioning that the number of equations obtained from  𝑛 × 𝑚 arbitrary TrFFSME is 

equal to 2𝑛 × 2𝑚 equations. Since the developed method is applied for a  2 × 2 

TrFFSME, we will get a system of 16 crisp equations as follows: 
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{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 𝑚1 + 𝛾1 = 𝑐11

(1)

𝑛1 + 𝛿1 = 𝑐12
(1)

𝛼1 + 𝜇1 = 𝑐21
(1)

𝛽1 + 𝜎1 = 𝑐22
(1)

𝑚2 + 𝛾2 = 𝑐11
(2)

𝑛2 + 𝛿2 = 𝑐12
(2)

𝛼2 + 𝜇2 = 𝑐21
(2)

𝛽2 + 𝜎2 = 𝑐22
(2)

𝑚3 + 𝛾3 = 𝑐11
(3)

𝑛3 + 𝛿3 = 𝑐12
(3)

𝛼3 + 𝜇3 = 𝑐21
(3)

𝛽3 + 𝜎3 = 𝑐22
(3)

𝑚4 + 𝛾4 = 𝑐11
(4)

𝑛4 + 𝛿4 = 𝑐12
(4)

𝛼4 + 𝜇4 = 𝑐21
(4)

𝛽4 + 𝜎4 = 𝑐22
(4)

                                                      (4.7) 

Step 2: Convert the non-linear system to a reduced absolute system based on  

Theorem 2.4.3.1. and Definition 2.4.3.4. 

Step 3: Solve the system of absolute equations and check which solution(s) satisfy the 

following.  

I) 𝑥𝑖𝑗
(1) ≤ 𝑥𝑖𝑗

(2) ≤ 𝑥𝑖𝑗
(3) ≤ 𝑥𝑖𝑗

(4)  ∀ 1 ≤  𝑖 ≤  𝑛, 1 ≤  𝑗 ≤  𝑚, 

II) At least one element of 𝑋̃ is near-zero TrFN. 

Step 4: By solving the system of absolute equations and eliminating the non-fuzzy 

solutions, the following arbitrary fuzzy solution is obtained: 

𝑋̃ = (
(𝑥11

(1)
, 𝑥11
(2)
, 𝑥11
(3)
, 𝑥11
(4)
) (𝑥12

(1)
, 𝑥12
(2)
, 𝑥12
(3)
, 𝑥12
(4)
)

(𝑥21
(1)
, 𝑥21
(2)
, 𝑥21
(3)
, 𝑥21
(4)
) (𝑥22

(1)
, 𝑥22
(2)
, 𝑥22
(3)
, 𝑥22
(4)
)
).                                 (4.8) 
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Example 4.3.2 Consider the following ATrFFSME: 

(
(−12, 22, 35, 52) (−30, 20, 43, 66)
(−25,−10, 29, 33) (10, 44, 50, 100)

) (
(𝑥11

(1)
, 𝑥11
(2)
, 𝑥11
(3)
, 𝑥11
(4)
) (𝑥12

(1)
, 𝑥12
(2)
, 𝑥12
(3)
, 𝑥12
(4)
)

(𝑥21
(1)
, 𝑥21
(2)
, 𝑥21
(3)
, 𝑥21
(4)
) (𝑥22

(1)
, 𝑥22
(2)
, 𝑥22
(3)
, 𝑥22
(4)
)
)

+ (
(𝑥11

(1)
, 𝑥11
(2)
, 𝑥11
(3)
, 𝑥11
(4)
) (𝑥12

(1)
, 𝑥12
(2)
, 𝑥12
(3)
, 𝑥12
(4)
)

(𝑥21
(1)
, 𝑥21
(2)
, 𝑥21
(3)
, 𝑥21
(4)
) (𝑥22

(1)
, 𝑥22
(2)
, 𝑥22
(3)
, 𝑥22
(4)
)
) (

(−25, 0, 49, 53) (−2, 1, 39, 47)
(−30, 19, 32, 65) (−40,−30, 44, 66)

)

= (
(−3810,−1885, 202, 2555) (−8446,−5259,−1429, 3886)
(−7815,−3597, −348, 6045) (−16805,−9266, −554, 4016)

). 

Solution: 

The possible arbitrary fuzzy solutions found for the given ATrFFSME are 

𝑋̃1 = (
(−30,−25,−23,−23) (−3, 5, 6, 7)

(5, 6, 12, 15) (−100,−98,−94,−92)
), 

𝑋̃2 = (
(−30,−25,−23,−22) (−3, 5, 6, 7)

(5, 6, 12, 15) (−100,−98,−94,−92)
), 

𝑋̃3 = (
(−30,−25,−23,−21) (−3, 5, 6, 7)

(5, 6, 12, 15) (−100,−98,−94,−92)
), 

and 

𝑋̃4 = (
(−30,−25,−23,−20) (−3, 5, 6, 7)

(5, 6, 12, 15) (−100,−98,−94,−92)
). 

Figure 4.2 shows the arbitrary fuzzy solutions 𝑋̃1, 𝑋̃2, 𝑋̃3 and 𝑋̃4. 
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Figure 4.2. Arbitrary fuzzy solutions for Example 4.3.2. 

 

In the following Section 4.4, the solution to the arbitrary TrFFME in Eq. (1.11) is 

discussed. 

- - - - -

Arbitrary fuzzy solution X


- - - - -

Arbitrary fuzzy solution X


- - - - -

Arbitrary fuzzy solution X


- - - - -

Arbitrary fuzzy solution X

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4.4 Solving Arbitrary TrFFME 

In this section, the arbitrary solution to the arbitrary TrFFME 𝐴̃𝑋̃ = 𝐸̃ is discussed. In 

order to get the solution, the ABSM in Section 4.2 is modified and applied to the 

arbitrary TrFFME. Thus, the arbitrary TrFFME is converted to an equivalent non-linear 

system and consequently reduced to an absolute system of equations where the solution 

to the absolute system of equations gives the solutions to the arbitrary TrFFME. In the 

following Definition 4.4.1, the arbitrary TrFFME is introduced. 

Definition 4.4.1. A matrix equation TrFFME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃, is called arbitrary 

trapezoidal fully fuzzy Sylvester matrix equations (ATrFFME) if 𝐴̃ = (𝑎̃𝑖𝑗)𝑚×𝑛, 

∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑚, 𝑛 and 𝑋̃ = (𝑥̃𝑖𝑗)𝑛×𝑟, ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑟 and  𝐸̃ = (𝑒̃𝑖𝑗)𝑚×𝑟 are arbitrary 

trapezoidal fuzzy matrices. 

In the following Definition 4.4.2, the system of non-linear equations is introduced. 

Definition 4.4.2.  The system of matrix equations in the form,  

{
  
 

  
 𝑚𝑖𝑛(𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1), 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(4), 𝑎𝑖𝑗

(4)𝑥𝑖𝑗
(1), 𝑎𝑖𝑗

(4)𝑥𝑖𝑗
(4)) = 𝑒𝑖𝑗

(1),

𝑚𝑖𝑛(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)) = 𝑒𝑖𝑗
(2),

𝑚𝑎𝑥(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)) = 𝑒𝑖𝑗
(3),

𝑚𝑎𝑥(𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(4)) = 𝑒𝑖𝑗
(4).

 

is called a non-linear system of equations.  

In the following Theorem 4.4.1 the fundamental theorem of ATrFFSME is discussed. 

Theorem 4.4.1. Suppose that 𝐴̃, 𝐸̃ and 𝑋̃ are arbitrary trapezoidal fuzzy matrices. Then 

the ATrFFME 𝐴̃𝑋̃ = 𝐸̃ is equivalent to the following non-linear system: 

{
  
 

  
 𝑚𝑖𝑛(𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1), 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(4), 𝑎𝑖𝑗

(4)𝑥𝑖𝑗
(1), 𝑎𝑖𝑗

(4)𝑥𝑖𝑗
(4)) = 𝑒𝑖𝑗

(1),

𝑚𝑖𝑛(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)) = 𝑒𝑖𝑗
(2),

𝑚𝑎𝑥(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)) = 𝑒𝑖𝑗
(3),

𝑚𝑎𝑥(𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(4)) = 𝑒𝑖𝑗
(4).

                          (4.9) 
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Proof: Let 𝐴̃, 𝐸̃ and 𝑋̃ in the ATrFFME 𝐴̃𝑋̃ = 𝐸̃ be arbitrary trapezoidal fuzzy matrices 

respectively. Then, by AMO and RAMO in Sections 3.1.1, 3.1.2 and 3.1.3, we have,   

𝐴̃𝑋̃ = (𝑀,𝑁, 𝑃, 𝑄) 

where                                

𝑀 = 𝑚𝑖𝑛 (𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(4)), 

𝑁 = 𝑚𝑖𝑛 (𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)), 

𝑃 = 𝑚𝑎𝑥(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)), 

𝑄 = 𝑚𝑎𝑥(𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
). 

Therefore, the ATrFFME is equivalent to the following non-linear system of equations: 

{
  
 

  
 𝑚𝑖𝑛(𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1), 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(4), 𝑎𝑖𝑗

(4)𝑥𝑖𝑗
(1), 𝑎𝑖𝑗

(4)𝑥𝑖𝑗
(4)) = 𝑒𝑖𝑗

(1),

𝑚𝑖𝑛(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)) = 𝑒𝑖𝑗
(2),

𝑚𝑎𝑥(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)) = 𝑒𝑖𝑗
(3),

𝑚𝑎𝑥(𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(4)) = 𝑒𝑖𝑗
(4).

 

□ 

The arbitrary solution to the ATrFFME is as follows: 

Step 1: Convert the ATrFFME 𝐴̃𝑋̃ = 𝐸̃ to a non-linear system of equations in Eq. (4.9) 

using Theorem 4.4.1. 

Step 2: Reduced the non-linear system in Step 1 to an absolute system of equation 

based on Theorem 2.4.3.1. and Definition 2.4.3.4. 

Step 3: Solve the system of absolute equations and check which solution(s) satisfy the 

following conditions: 

I) 𝑥𝑖𝑗
(1) ≤ 𝑥𝑖𝑗

(2) ≤ 𝑥𝑖𝑗
(3) ≤ 𝑥𝑖𝑗

(4)  ∀ 1 ≤  𝑖 ≤  𝑛, 1 ≤  𝑗 ≤  𝑚. 

II) At least one element of 𝑋̃ is near-zero TrFN. 
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Step 4: By solving the system of absolute equations and eliminating the non-fuzzy 

solutions, the following arbitrary fuzzy solution(s) is obtained: 

𝑋̃ = (

(𝑥11
(1), 𝑥11

(2), 𝑥11
(3), 𝑥11

(4)) ⋯ (𝑥1𝑝
(1), 𝑥1𝑝

(2), 𝑥1𝑝
(3), 𝑥1𝑝

(4))

⋮ ⋱ ⋮

(𝑥𝑛1
(1), 𝑥𝑛1

(2), 𝑥𝑛1
(3), 𝑥𝑛1

(4)) … (𝑥𝑛𝑝
(1), 𝑥𝑛𝑝

(2), 𝑥𝑛𝑝
(3), 𝑥𝑛𝑝

(4))

). 

The following Example 4.4.1, was first solved by Kumar et al. (2011) and obtained 

only one fuzzy solution. However,  Malkawi et al. (2014d) considered the same 

example and obtained two fuzzy solutions. To support the developed ABSM in this 

section the same example is considered. 

Remark 4.4.1 The methods that are used in solving Example 4.4.1, by  

Kumar et al. (2011) and Malkawi et al. (2014d) can only applied to fuzzy equations 

with TFNs. Therefore, in the following Example 4.4.1, the TFNs are extended to TrFNs 

in ordered to apply the developed method in Section 4.4.  

Example 4.4.1 Consider the following ATrFFME: 

(
(−2, 3, 3, 4) (−2, 2, 2, 3)
(1, 2, 2, 2) (4, 4, 4, 5)

)(
(𝑥11

(1), 𝑥11
(2), 𝑥11

(3), 𝑥11
(4))

(𝑥21
(1), 𝑥21

(2), 𝑥21
(3), 𝑥21

(4))
) = (

(−13, 8, 8, 14)
(−14, 8, 8, 14)

). 

Solution: The fuzzy solution to the given ATrFFME is obtained by Kumar et al. (2011) 

is as follows: 

𝑋̃ = (
(1, 2, 2, 2)
(−3, 1, 1, 2)

). 

However, Malkawi et al. (2014d) was able to obtain two fuzzy solutions as follows: 

𝑋̃1 = (
(1, 2, 2, 2)
(−3, 1, 1, 2)

)  𝑎𝑛𝑑 𝑋̃2 = (
(−23 14⁄ , 2, 2, 2)
(−15 7⁄ , 1, 1, 2)

). 

The fuzzy solutions to the given ATrFFME are obtained as follows: 

Step 1: Convert the given ATrFFME to a non-linear system using AMO and RAMO 

in Sections 3.1.1, 3.1.2, and 3.1.3 as follows: 
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Min[−2𝑥11
(1), 4𝑥11

(1)] + Min[−2𝑥21
(1), 3𝑥21

(1)] = −13, 

Min[3𝑥11
(2), 3𝑥11

(3)] + Min[2𝑥21
(2), 2𝑥21

(3)] = 8, 

Max[3𝑥11
(2), 3𝑥11

(3)] + Max[2𝑥21
(2), 2𝑥21

(3)] = 8, 

Max[−2𝑥11
(1), 4𝑥11

(4)] + Max[−2𝑥21
(1), 3𝑥21

(4)] = 14, 

Min[𝑥11
(1), 2𝑥11

(1)] + Min[4𝑥21
(1), 5𝑥21

(1)] = −14, 

Min[2𝑥11
(2), 2𝑥11

(3)] + Min[4𝑥21
(2), 4𝑥21

(3)] = 8, 

Max[2𝑥11
(2), 2𝑥11

(3)] + Max[4𝑥21
(2), 4𝑥21

(3)] = 8, 

Max[𝑥11
(4), 2𝑥11

(4)] + Max[4𝑥21
(4), 5𝑥21

(4)] = 14. 

Step 2: Convert the non-linear system in Step 1 to an absolute system using Definition 

2.4.3.4. 

𝑥11
(1) +

𝑥21
(1)

2
− 3|𝑥11

(1)| −
5|𝑥21

(1)|

2
= −13, 

1

2
(3𝑥11

(2) + 3𝑥11
(3)) +

1

2
(2𝑥21

(2) + 2𝑥21
(3)) −

1

2
|3𝑥11

(2) − 3𝑥11
(3)| −

1

2
|2𝑥21

(2) − 2𝑥21
(3)| = 8, 

1

2
(3𝑥11

(2) + 3𝑥11
(3)) +

1

2
(2𝑥21

(2) + 2𝑥21
(3)) +

1

2
|3𝑥11

(2) − 3𝑥11
(3)| +

1

2
|2𝑥21

(2) − 2𝑥21
(3)| = 8, 

1

2
(−2𝑥11

(1) + 4𝑥11
(4)) +

1

2
(−2𝑥21

(1) + 3𝑥21
(4)) +

1

2
|−2𝑥11

(1) − 4𝑥11
(4)| +

1

2
|−2𝑥21

(1) −

3𝑥21
(4)| = 14, 

3𝑥11
(1)

2
+
9𝑥21

(1)

2
−
|𝑥11
(1)|

2
−
|𝑥21
(1)|

2
= −14, 

1

2
(2𝑥11

(2) + 2𝑥11
(3)) +

1

2
(4𝑥21

(2) + 4𝑥21
(3)) −

1

2
|2𝑥11

(2) − 2𝑥11
(3)| −

1

2
|4𝑥21

(2) − 4𝑥21
(3)| = 8, 

1

2
(2𝑥11

(2) + 2𝑥11
(3)) +

1

2
(4𝑥21

(2) + 4𝑥21
(3)) +

1

2
|2𝑥11

(2) − 2𝑥11
(3)| +

1

2
|4𝑥21

(2) − 4𝑥21
(3)| = 8, 
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3𝑥11
(4)

2
+
9𝑥21

(4)

2
+
|𝑥11
(4)
|

2
+
|𝑥21
(4)
|

2
= 14. 

Step 3: Solve the system of absolute equations and check which solution(s) satisfy the 

following.  

I) 𝑥𝑖𝑗
(1) ≤ 𝑥𝑖𝑗

(2) ≤ 𝑥𝑖𝑗
(3) ≤ 𝑥𝑖𝑗

(4)  ∀1 ≤  𝑖 ≤  𝑛, 1 ≤  𝑗 ≤  𝑚. 

II) At least one element of 𝑋̃ is near-zero TrFN. 

Step 4: By solving the system of absolute equations and eliminating the non-fuzzy 

solutions, the following arbitrary fuzzy solutions are obtained: 

𝑋̃1 = (
(1, 2, 2, 2)
(−3, 1, 1, 2)

).                                                   (4.10a) 

𝑋̃2 = (
(−23 14⁄ , 2, 2, 2)
(−15 7⁄ , 1, 1, 2)

).                                         (4.10b) 

𝑋̃3 = (
(1.769, 1.998, 1.998, 1.923)

(−3.153, 1.001, 1.001, 2.030)
).                     (4.10c) 

The analysis of the obtained arbitrary fuzzy solutions to the ATrFFME in Example 

4.4.1 includes verification of the solution, representation of the solution and checking 

the feasibility conditions are discussed in the following Sections 4.4.1, 4.4.2 and 4.4.3 

respectively. 

4.4.1 Verification of the Arbitrary Fuzzy Solution to the ATrFFME 

In this section, the verification of the obtained arbitrary fuzzy solutions in Eq. (4.10a), 

Eq. (4.10b) and Eq. (10c), are discussed. The first two solutions in 

Eq. (4.10a) and Eq. (4.10b) are verified by Malkawi et al. (2014d). Therefore, only the 

solution in Eq. (4.10c) is verified as follows: 

We multiply 𝐴̃𝑋̃ as follows: 

(
(−2, 3, 3, 4) (−2, 2, 2, 3)
(1, 2, 2, 2) (4, 4, 4, 5)

) (
(1.769, 1.998, 1.998, 1.923)
(−3.153, 1.001, 1.001, 2.030)

). 
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= (
(−13.081, 7.997 , 7.997, 14.001)
(−13.999, 8.001, 8.001, 14.001)

). 

The value of 𝐴̃𝑋̃ is exactly equal to the constant matrix 𝐸̃. The obtained arbitrary fuzzy 

solution in Eq. (4.10c) satisfies the given ATrFFME in Example 4.4.1. 

4.4.2 Representation of the Arbitrary Fuzzy Solution to The ATrFFME 

In this section, the graphical representation of the arbitrary fuzzy solution of the 

ATrFFME in Example 4.4.1 is represented in Figure 4.3.  

 

 

 

 

 

Figure 4.3. Arbitrary fuzzy solution for Example 4.4.1. 

Figure 4.3 shows that, 𝑥̃11 and 𝑥̃21 are all TrFNs. In addition, 𝑥̃21 is near-zero TrFNs, 

and therefore the obtained solution is an arbitrary trapezoidal fuzzy solution based on 

Definition 4.1.1.  

In the following Section 4.2.3, the feasibility condition of the obtained arbitrary 

trapezoidal fuzzy solution for the given ATrFFME in Example 4.4.1 is discussed. 
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4.4.3 Feasibility of the Arbitrary Fuzzy Solution to the ATrFFME 

To check the feasibility of the arbitrary fuzzy solution to the ATrFFME in  

Example 4.4.1, the following feasibility condition needs to be satisfied. 

𝑥𝑖𝑗
(4)
≥ 𝑥𝑖𝑗

(3)
≥ 𝑥𝑖𝑗

(2) ≥ 𝑥𝑖𝑗
(1)

, ∀ {1 ≤ 𝑖, 𝑗 ≤ 𝑛,𝑚}.    

(
4 3
2 5

) ≥ (
3 2
2 4

) ≥ (
−2 −2
1 4

). 

Therefore, the feasibility condition is satisfied and therefore, the obtained arbitrary 

fuzzy solution is feasibly.  

The verification, representation, and feasibility of the obtained arbitrary fuzzy solution 

show that, it satisfies the given ATrFFME, and it is strong fuzzy solution. 

4.5 Conclusion and Contribution  

In this chapter, a unified and restriction free methods for solving family of arbitrary 

fuzzy systems with different fuzzy numbers are developed. The constructed methods 

are able to solve many unrestricted fuzzy systems such as AGTrFFSME and its special 

cases namely Sylvester and the fully fuzzy linear system with triangular and trapezoidal 

fuzzy numbers. RAMO is applied to convert the AGTrFFSME into a reduced system 

of non- linear equations. Then, the reduced system is converted to a system of absolute 

equations where the fuzzy solution is obtained by solving that system. The following 

contributions summarize the findings in this chapter: 

1- Obtain arbitrary fuzzy solutions to AGTrFFSME without any restriction. 

2- Obtain arbitrary fuzzy solution to AGTrFFSME special cases of which includes    

     TrFFSME and FFME with trapezoidal and triangular fuzzy numbers. 

3- Apply the developed method on arbitrary fuzzy matrix equations with TFNs. 
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CHAPTER FIVE 

COUPLED TRAPEZOIDAL FULLY FUZZY SYLVESTER 

MATRIX EQUATION 

In this chapter, the positive solution to the positive CTrFFSME is discussed. The 

procedures employed in the construction of the analytical and numerical methods for 

solving the positive CTrFFSME are similar to those outlined previously in Section 3.4 

for single PTrFFSME. Thus, the developed methods in this chapter are based on 

extending the MFMVM, MFGIM and MFLSIM in Section 3.4.1, Section 3.4.3 and 

Section 3.4.4 respectively.  In the following Section 5.1 the solution to the positive 

CTrFFSME is discussed. 

5.1 Solving Positive CTrFFSME 

In this section, the positive fuzzy solution to the positive CTrFFSME 𝐴̃𝑋̃ + 𝑌̃𝐵̃ = 𝐸̃,  

𝐶̃𝑋̃ + 𝑌̃𝐷̃ = 𝐹̃ in Eq. (1.19) is obtained. First, the positive CTrFFSME is converted to 

a system of CSME based on AMO in Eq. (3.2). Then, the solution to the system of 

CSME is obtained analytically by extending the MFMVM in Section 3.4.1 and 

numerically by extending the MFGIM and MFLSIM in Section 3.4.3 and 3.4.4 

respectively.  

 

In the following Definition 5.1.1, the positive CTrFFSME is introduced. 

Definition 5.1.1. A CFFSME {𝐴̃𝑋̃ + 𝑌̃𝐵̃ = 𝐸̃
𝐶̃𝑋̃ + 𝑌̃𝐷̃ = 𝐹̃

, is called positive coupled trapezoidal 

fully fuzzy Sylvester matrix equation (PCTrFFSME) if  

 𝐴̃ = (𝑎̃𝑖𝑗)𝑚×𝑚 = (𝑎𝑖𝑗
(1), 𝑎𝑖𝑗

(2), 𝑎𝑖𝑗
(3), 𝑎𝑖𝑗

(4)) > 0, ∀ 1 ≤  𝑖, 𝑗 ≤  𝑚, 
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𝐶̃ = (𝑐̃𝑖𝑗)𝑚×𝑚 = (𝑐𝑖𝑗
(1), 𝑐𝑖𝑗

(2), 𝑐𝑖𝑗
(3), 𝑐𝑖𝑗

(4)) > 0, ∀ 1 ≤  𝑖, 𝑗 ≤  𝑚,  

𝐵̃ = (𝑏̃𝑖𝑗)𝑛×𝑛 = (𝑏𝑖𝑗
(1)
, 𝑏𝑖𝑗
(2)
, 𝑏𝑖𝑗
(3)
, 𝑏𝑖𝑗
(4)
) > 0, ∀ 1 ≤  𝑖, 𝑗 ≤  𝑛, 

 𝐷̃ = (𝑑̃𝑖𝑗)𝑛×𝑛 = (𝑑𝑖𝑗
(1), 𝑑𝑖𝑗

(2), 𝑑𝑖𝑗
(3), 𝑑𝑖𝑗

(4)) > 0, ∀ 1 ≤  𝑖, 𝑗 ≤  𝑛,  

 𝑋̃ = (𝑥̃𝑖𝑗)𝑚×𝑛 = (𝑥𝑖𝑗
(1), 𝑥𝑖𝑗

(2), 𝑥𝑖𝑗
(3), 𝑥𝑖𝑗

(4)) > 0, ∀ 1 ≤  𝑖 ≤  𝑚, 1 ≤  𝑗 ≤  𝑛 

𝑌̃ = (𝑦̃𝑖𝑗)𝑚×𝑛 = (𝑦𝑖𝑗
(1), 𝑦𝑖𝑗

(2), 𝑦𝑖𝑗
(3), 𝑦𝑖𝑗

(4)) > 0, ∀ 1 ≤  𝑖 ≤  𝑚, 1 ≤  𝑗 ≤  𝑛 

𝐸̃ = (𝑒̃𝑖𝑗)𝑚×𝑛 = (𝑒𝑖𝑗
(1), 𝑒𝑖𝑗

(2), 𝑒𝑖𝑗
(3), 𝑒𝑖𝑗

(4)) > 0, ∀ 1 ≤  𝑖 ≤  𝑚, 1 ≤  𝑗 ≤  𝑛 

𝐹̃ = (𝑓𝑖𝑗)𝑚×𝑛 = (𝑓𝑖𝑗
(1), 𝑓𝑖𝑗

(2), 𝑓𝑖𝑗
(3), 𝑓𝑖𝑗

(4)) > 0, ∀ 1 ≤  𝑖 ≤  𝑚, 1 ≤  𝑗 ≤  𝑛 are positive 

trapezoidal fuzzy matrices.  

In the following Definition 5.1.2 the system of CSME is introduced. 

Definition 5.1.2. A system of matrix equations in the form 

{
 
 
 
 
 
 

 
 
 
 
 
 {
𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1) + 𝑦𝑖𝑗
(1)𝑏𝑖𝑗

(1) = 𝑒𝑖𝑗
(1)
,

𝑐𝑖𝑗
(1)𝑥𝑖𝑗

(1) + 𝑦𝑖𝑗
(1)𝑑𝑖𝑗

(1) = 𝑓𝑖𝑗
(1)
,

{
𝑎𝑖𝑗
(2)
𝑥𝑖𝑗
(2)
+ 𝑦𝑖𝑗

(2)𝑏𝑖𝑗
(2) = 𝑒𝑖𝑗

(2)
,

𝑐𝑖𝑗
(2)𝑥𝑖𝑗

(2) + 𝑦𝑖𝑗
(2)𝑑𝑖𝑗

(2) = 𝑓𝑖𝑗
(2)
,

{
𝑎𝑖𝑗
(3)
𝑥𝑖𝑗
(3)
+ 𝑦𝑖𝑗

(3)𝑏𝑖𝑗
(3) = 𝑒𝑖𝑗

(3)
,

𝑐𝑖𝑗
(3)𝑥𝑖𝑗

(3) + 𝑦𝑖𝑗
(3)𝑑𝑖𝑗

(3) = 𝑓𝑖𝑗
(3)
,

{
𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
+ 𝑦𝑖𝑗

(4)𝑏𝑖𝑗
(4) = 𝑒𝑖𝑗

(4)
,

𝑐𝑖𝑗
(4)𝑥𝑖𝑗

(4) + 𝑦𝑖𝑗
(4)𝑑𝑖𝑗

(4) = 𝑓𝑖𝑗
(4)
.

  

is called a system of CSME. 

In the following Theorem 5.1.1, the equivalency between the PCTrFFSME and the 

system of CSME is proved. 
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Theorem 5.1.1. Suppose that 𝐴̃, 𝐵,̃ 𝐶̃, 𝐷̃, 𝐸̃, 𝐹̃, 𝑋̃ 𝑎𝑛𝑑 𝑌̃ are  positive trapezoidal fuzzy 

matrices then the PCTrFFSME {𝐴̃𝑋̃ + 𝑌̃𝐵̃ = 𝐸̃
𝐶̃𝑋̃ + 𝑌̃𝐷̃ = 𝐹̃

,  is equivalent to the following systems 

of CSME: 

{
 
 
 
 
 
 

 
 
 
 
 
 {
𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1) + 𝑦𝑖𝑗
(1)𝑏𝑖𝑗

(1) = 𝑒𝑖𝑗
(1)
,

𝑐𝑖𝑗
(1)𝑥𝑖𝑗

(1) + 𝑦𝑖𝑗
(1)𝑑𝑖𝑗

(1) = 𝑓𝑖𝑗
(1)
,

{
𝑎𝑖𝑗
(2)
𝑥𝑖𝑗
(2)
+ 𝑦𝑖𝑗

(2)𝑏𝑖𝑗
(2) = 𝑒𝑖𝑗

(2)
,

𝑐𝑖𝑗
(2)𝑥𝑖𝑗

(2) + 𝑦𝑖𝑗
(2)𝑑𝑖𝑗

(2) = 𝑓𝑖𝑗
(2)
,

{
𝑎𝑖𝑗
(3)
𝑥𝑖𝑗
(3)
+ 𝑦𝑖𝑗

(3)𝑏𝑖𝑗
(3) = 𝑒𝑖𝑗

(3)
,

𝑐𝑖𝑗
(3)𝑥𝑖𝑗

(3) + 𝑦𝑖𝑗
(3)𝑑𝑖𝑗

(3) = 𝑓𝑖𝑗
(3)
,

{
𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
+ 𝑦𝑖𝑗

(4)𝑏𝑖𝑗
(4) = 𝑒𝑖𝑗

(4)
,

𝑐𝑖𝑗
(4)𝑥𝑖𝑗

(4) + 𝑦𝑖𝑗
(4)𝑑𝑖𝑗

(4) = 𝑓𝑖𝑗
(4)
.

                                                 (5.1) 

Proof: Let 𝐴̃, 𝐵̃, 𝐶̃, 𝐷̃, 𝐸̃, 𝐹̃, 𝑋̃ and 𝑌̃ be positive trapezoidal fuzzy matrices. Then by 

RAMO in Eq. (3.2), the product 𝐴̃𝑋̃, 𝑌̃𝐵̃, 𝐶̃𝑋̃ and 𝑌̃𝐷̃ are obtained as follows: 

𝐴̃𝑋̃ = ∑ 𝑎̃𝑖𝑘

𝑛

𝑘=1

𝑥̃𝑘𝑗 = (𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(4)), 

𝑌̃𝐵̃ = ∑ 𝑦̃𝑖𝑘

𝑛

𝑘=1

𝑏̃𝑘𝑗 = (𝑦𝑖𝑗
(1)𝑏𝑖𝑗

(1), 𝑦𝑖𝑗
(2)𝑏𝑖𝑗

(2), 𝑦𝑖𝑗
(3)𝑏𝑖𝑗

(3), 𝑦𝑖𝑗
(4)𝑏𝑖𝑗

(4)), 

𝐶̃𝑋̃ = ∑ 𝑐̃𝑖𝑘

𝑛

𝑘=1

𝑥̃𝑘𝑗 = (𝑐𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑐𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑐𝑖𝑗
(3)𝑥𝑖𝑗

(3), 𝑐𝑖𝑗
(4)𝑥𝑖𝑗

(4)), 

𝑌̃𝐷̃ = ∑ 𝑦̃𝑖𝑘

𝑛

𝑘=1

𝑑̃𝑘𝑗 = (𝑦𝑖𝑗
(1)𝑑𝑖𝑗

(1), 𝑦𝑖𝑗
(2)𝑑𝑖𝑗

(2), 𝑦𝑖𝑗
(3)𝑑𝑖𝑗

(3), 𝑦𝑖𝑗
(4)𝑑𝑖𝑗

(4)). 

such that all , 𝑖 = 1,… ,𝑚  and 𝑗 = 1,… , 𝑛. Combining  𝐴̃𝑋̃ and 𝑌̃𝐵̃, 𝐶̃𝑋̃ and 𝑌̃𝐷̃ we 

get:  

{
 
 

 
 ∑ 𝑎̃𝑖𝑘

𝑛

𝑘=1

𝑥̃𝑘𝑗 +∑𝑦̃𝑖𝑘

𝑛

𝑘=1

𝑏̃𝑘𝑗 = 𝑒̃𝑖𝑗      ∀ 1 ≤  𝑖 ≤  𝑚, 1 ≤  𝑗 ≤  𝑛,

∑ 𝑐̃𝑖𝑘

𝑛

𝑘=1

𝑥̃𝑘𝑗 +∑𝑦̃𝑖𝑘

𝑛

𝑘=1

𝑑̃𝑘𝑗 = 𝑓𝑖𝑗      ∀ 1 ≤  𝑖 ≤  𝑚, 1 ≤  𝑗 ≤  𝑛.
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Therefore, the PCTrFFSME {𝐴̃𝑋̃ + 𝑌̃𝐵̃ = 𝐸̃
𝐶̃𝑋̃ + 𝑌̃𝐷̃ = 𝐹̃

,  is equivalent to the following systems of 

CSME: 

{
 
 
 
 
 
 

 
 
 
 
 
 {
𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1) + 𝑦𝑖𝑗
(1)𝑏𝑖𝑗

(1) = 𝑒𝑖𝑗
(1)
,

𝑐𝑖𝑗
(1)𝑥𝑖𝑗

(1) + 𝑦𝑖𝑗
(1)𝑑𝑖𝑗

(1) = 𝑓𝑖𝑗
(1)
,

{
𝑎𝑖𝑗
(2)
𝑥𝑖𝑗
(2)
+ 𝑦𝑖𝑗

(2)𝑏𝑖𝑗
(2) = 𝑒𝑖𝑗

(2)
,

𝑐𝑖𝑗
(2)𝑥𝑖𝑗

(2) + 𝑦𝑖𝑗
(2)𝑑𝑖𝑗

(2) = 𝑓𝑖𝑗
(2)
,

{
𝑎𝑖𝑗
(3)
𝑥𝑖𝑗
(3)
+ 𝑦𝑖𝑗

(3)𝑏𝑖𝑗
(3) = 𝑒𝑖𝑗

(3)
,

𝑐𝑖𝑗
(3)𝑥𝑖𝑗

(3) + 𝑦𝑖𝑗
(3)𝑑𝑖𝑗

(3) = 𝑓𝑖𝑗
(3)
,

{
𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
+ 𝑦𝑖𝑗

(4)𝑏𝑖𝑗
(4) = 𝑒𝑖𝑗

(4)
,

𝑐𝑖𝑗
(4)𝑥𝑖𝑗

(4) + 𝑦𝑖𝑗
(4)𝑑𝑖𝑗

(4) = 𝑓𝑖𝑗
(4)
.

    

□ 

In the following Definition 5.1.3, the positive trapezoidal fuzzy solution matrix to the 

PCTrFFSME in general form is presented. 

Definition 5.1.3. The trapezoidal fuzzy matrices 𝑋̃ = (𝑥̃𝑖𝑗)𝑚×𝑛
= (𝑥𝑖𝑗

(1)
, 𝑥𝑖𝑗
(2)
, 𝑥𝑖𝑗
(3)
, 𝑥𝑖𝑗
(4)
), 

𝑌̃ = (𝑦̃𝑖𝑗)𝑚×𝑛 = (𝑦𝑖𝑗
(1), 𝑦𝑖𝑗

(2), 𝑦𝑖𝑗
(3), 𝑦𝑖𝑗

(4)) where  𝑥𝑖𝑗
(4)
≥ 𝑥𝑖𝑗

(3)
≥ 𝑥𝑖𝑗

(2) ≥ 𝑥𝑖𝑗
(1) > 0,  

∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛,𝑚 and 𝑦𝑖𝑗
(4)
≥ 𝑦𝑖𝑗

(3)
≥ 𝑦𝑖𝑗

(2) ≥ 𝑦𝑖𝑗
(1) > 0, ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛,𝑚,  are called 

positive fuzzy solution of the PCTrFFSME. 

To solve the PCTrFFSME in Eq. (1.19), we consider the corresponding systems of 

CSME in Eq. (5.1). In the following Theorem 5.1.2, the sufficient conditions for the 

system of CSME to have a unique positive solution are discussed. 

Theorem 5.1.2 The Uniqueness of Positive Solution to The System of CSME 

The system of SME in Eq. (5.1) has a unique positive solution if the following 

conditions are satisfied:  
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I) 𝑑𝑒𝑡(𝑝1) ≠ 0, 𝑑𝑒𝑡(𝑝2) ≠ 0, 𝑑𝑒𝑡(𝑝3) ≠ 0 and𝑑𝑒𝑡(𝑝4) ≠ 0 i.e. 𝑝1, 𝑝2, 𝑝3 and 

𝑝4 are invertible matrices where  

𝑝1 = (
𝐼𝑛⊗𝑎𝑖𝑗

(1) (𝑏𝑖𝑗
(1))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(1) (𝑑𝑖𝑗

(1))𝑇⊗ 𝐼𝑚
), 

𝑝2 = (
𝐼𝑛⊗𝑎𝑖𝑗

(2) (𝑏𝑖𝑗
(2))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(2) (𝑑𝑖𝑗

(2))𝑇⊗ 𝐼𝑚
), 

𝑝3 = (
𝐼𝑛⊗𝑎𝑖𝑗

(3) (𝑏𝑖𝑗
(3))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(3) (𝑑𝑖𝑗

(3))𝑇⊗ 𝐼𝑚
), 

𝑝4 = (
𝐼𝑛⊗𝑎𝑖𝑗

(4) (𝑏𝑖𝑗
(4))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(4) (𝑑𝑖𝑗

(4))𝑇⊗ 𝐼𝑚
). 

II) 𝑝1
−1, 𝑝2

−1, 𝑝3
−1 and 𝑝4

−1 > 0. 

 

Proof:  

I) Consider the system of CSME in Eq. (5.1). By applying the concept of  

Vec-operator and Kronecker product in Definition 2.6.2.3, the following system 

of linear matrix equations is obtained:  

{
 
 
 
 
 
 

 
 
 
 
 
 
(
𝐼𝑛⊗𝑎𝑖𝑗

(1) (𝑏𝑖𝑗
(1))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(1) (𝑑𝑖𝑗

(1))𝑇⊗ 𝐼𝑚
)(

𝑣𝑒𝑐(𝑥𝑖𝑗
(1))

𝑣𝑒𝑐(𝑦𝑖𝑗
(1))

) = (
𝑣𝑒𝑐(𝑐𝑖𝑗

(1))

𝑣𝑒𝑐(𝑓𝑖𝑗
(1))

) ,

(
𝐼𝑛⊗𝑎𝑖𝑗

(2) (𝑏𝑖𝑗
(2))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(2) (𝑑𝑖𝑗

(2))𝑇⊗ 𝐼𝑚
)(

𝑣𝑒𝑐(𝑥𝑖𝑗
(2))

𝑣𝑒𝑐(𝑦𝑖𝑗
(2))

) = (
𝑣𝑒𝑐(𝑐𝑖𝑗

(2))

𝑣𝑒𝑐(𝑓𝑖𝑗
(2))

) ,

(
𝐼𝑛⊗𝑎𝑖𝑗

(3) (𝑏𝑖𝑗
(3))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(3) (𝑑𝑖𝑗

(3))𝑇⊗ 𝐼𝑚
)(

𝑣𝑒𝑐(𝑥𝑖𝑗
(3))

𝑣𝑒𝑐(𝑦𝑖𝑗
(3))

) = (
𝑣𝑒𝑐(𝑐𝑖𝑗

(3))

𝑣𝑒𝑐(𝑓𝑖𝑗
(3))

) ,

(
𝐼𝑛⊗𝑎𝑖𝑗

(4) (𝑏𝑖𝑗
(4))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(4) (𝑑𝑖𝑗

(4))𝑇⊗ 𝐼𝑚
)(

𝑣𝑒𝑐(𝑥𝑖𝑗
(4))

𝑣𝑒𝑐(𝑦𝑖𝑗
(4))

) = (
𝑣𝑒𝑐(𝑐𝑖𝑗

(4))

𝑣𝑒𝑐(𝑓𝑖𝑗
(4))

) .

                       (5.2) 

 

Then, this system of linear matrix equation in Eq. (5.2) can be written as                  
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𝑃𝑄 = 𝑈.                                                                                                                                  (5.3) 

Or in a matrix form as, 

(

 
 
 
 
 
 
 
 
 
(
𝐼𝑛⊗𝑎𝑖𝑗

(1) (𝑏𝑖𝑗
(1))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(1) (𝑑𝑖𝑗

(1))𝑇⊗ 𝐼𝑚
) 0 ⋯ 0

0 (
𝐼𝑛⊗𝑎𝑖𝑗

(2) (𝑏𝑖𝑗
(2))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(2) (𝑑𝑖𝑗

(2))𝑇⊗ 𝐼𝑚
) 0 ⋮

⋮ 0 (
𝐼𝑛⊗𝑎𝑖𝑗

(3) (𝑏𝑖𝑗
(3))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(3) (𝑑𝑖𝑗

(3))𝑇⊗ 𝐼𝑚
) 0

0 0 0 (
𝐼𝑛⊗𝑎𝑖𝑗

(4) (𝑏𝑖𝑗
(4))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(4) (𝑑𝑖𝑗

(4))𝑇⊗ 𝐼𝑚
)
)

 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
(
𝑣𝑒𝑐(𝑥𝑖𝑗

(1))

𝑣𝑒𝑐(𝑦𝑖𝑗
(1))

)

(
𝑣𝑒𝑐(𝑥𝑖𝑗

(2))

𝑣𝑒𝑐(𝑦𝑖𝑗
(2))

)

(
𝑣𝑒𝑐(𝑥𝑖𝑗

(3))

𝑣𝑒𝑐(𝑦𝑖𝑗
(3))

)

(
𝑣𝑒𝑐(𝑥𝑖𝑗

(4))

𝑣𝑒𝑐(𝑦𝑖𝑗
(4))

)
)

 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 
(
𝑣𝑒𝑐(𝑐𝑖𝑗

(1))

𝑣𝑒𝑐(𝑓𝑖𝑗
(1))

)

(
𝑣𝑒𝑐(𝑐𝑖𝑗

(2))

𝑣𝑒𝑐(𝑓𝑖𝑗
(2))

)

(
𝑣𝑒𝑐(𝑐𝑖𝑗

(3))

𝑣𝑒𝑐(𝑓𝑖𝑗
(3))

)

(
𝑣𝑒𝑐(𝑐𝑖𝑗

(4))

𝑣𝑒𝑐(𝑓𝑖𝑗
(4))

)
)

 
 
 
 
 
 
 
 
 

. 

where,  

𝑃 =

(

 
 
 
 
 
 
 
 
 
 
(
𝐼𝑛⊗𝑎𝑖𝑗

(1)
(𝑏𝑖𝑗
(1)
)𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(1)

(𝑑𝑖𝑗
(1)
)𝑇⊗ 𝐼𝑚

) 0 ⋯ 0

0 (
𝐼𝑛⊗𝑎𝑖𝑗

(2)
(𝑏𝑖𝑗
(2)
)𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(2)

(𝑑𝑖𝑗
(2)
)𝑇⊗ 𝐼𝑚

) 0 ⋮

⋮ 0 (
𝐼𝑛⊗𝑎𝑖𝑗

(3)
(𝑏𝑖𝑗
(3)
)𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(3)

(𝑑𝑖𝑗
(3)
)𝑇⊗ 𝐼𝑚

) 0

0 0 0 (
𝐼𝑛⊗𝑎𝑖𝑗

(4)
(𝑏𝑖𝑗
(4)
)𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(4)

(𝑑𝑖𝑗
(4)
)𝑇⊗ 𝐼𝑚

)
)

 
 
 
 
 
 
 
 
 
 

, 
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𝑄 =

(

 
 
 
 
 
 
 
 
 
 
 (

𝑣𝑒𝑐(𝑥𝑖𝑗
(1))

𝑣𝑒𝑐(𝑦𝑖𝑗
(1))

)

(
𝑣𝑒𝑐(𝑥𝑖𝑗

(2))

𝑣𝑒𝑐(𝑦𝑖𝑗
(2))

)

(
𝑣𝑒𝑐(𝑥𝑖𝑗

(3))

𝑣𝑒𝑐(𝑦𝑖𝑗
(3))

)

(
𝑣𝑒𝑐(𝑥𝑖𝑗

(4))

𝑣𝑒𝑐(𝑦𝑖𝑗
(4))

)

)

 
 
 
 
 
 
 
 
 
 
 

 and 𝑈 =

(

 
 
 
 
 
 
 
 
 
 
 (

𝑣𝑒𝑐(𝑐𝑖𝑗
(1))

𝑣𝑒𝑐(𝑓𝑖𝑗
(1))

)

(
𝑣𝑒𝑐(𝑐𝑖𝑗

(2))

𝑣𝑒𝑐(𝑓𝑖𝑗
(2))

)

(
𝑣𝑒𝑐(𝑐𝑖𝑗

(3))

𝑣𝑒𝑐(𝑓𝑖𝑗
(3))

)

(
𝑣𝑒𝑐(𝑐𝑖𝑗

(4))

𝑣𝑒𝑐(𝑓𝑖𝑗
(4))

)

)

 
 
 
 
 
 
 
 
 
 
 

. 

 

Suppose  

𝑝1 = (
𝐼𝑛⊗𝑎𝑖𝑗

(1) (𝑏𝑖𝑗
(1))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(1) (𝑑𝑖𝑗

(1))𝑇⊗ 𝐼𝑚
), 

𝑝2 = (
𝐼𝑛⊗𝑎𝑖𝑗

(2) (𝑏𝑖𝑗
(2))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(2) (𝑑𝑖𝑗

(2))𝑇⊗ 𝐼𝑚
), 

𝑝3 = (
𝐼𝑛⊗𝑎𝑖𝑗

(3) (𝑏𝑖𝑗
(3))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(3) (𝑑𝑖𝑗

(3))𝑇⊗ 𝐼𝑚
), 

𝑝4 = (
𝐼𝑛⊗𝑎𝑖𝑗

(4) (𝑏𝑖𝑗
(4))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(4) (𝑑𝑖𝑗

(4))𝑇⊗ 𝐼𝑚
). 

Then, 𝑃 = (

𝑝1 0 0 0
0 𝑝2 0 0
0 0 𝑝3 0
0 0 0 𝑝4

).  



 

283 

 

If we let, 𝑄 =

(

 
 
 
 
 
 
 
 
 
 
 (

𝑣𝑒𝑐(𝑥𝑖𝑗
(1))

𝑣𝑒𝑐(𝑦𝑖𝑗
(1))

)

(
𝑣𝑒𝑐(𝑥𝑖𝑗

(2))

𝑣𝑒𝑐(𝑦𝑖𝑗
(2))

)

(
𝑣𝑒𝑐(𝑥𝑖𝑗

(3))

𝑣𝑒𝑐(𝑦𝑖𝑗
(3))

)

(
𝑣𝑒𝑐(𝑥𝑖𝑗

(4))

𝑣𝑒𝑐(𝑦𝑖𝑗
(4))

)

)

 
 
 
 
 
 
 
 
 
 
 

= (

𝑞1
𝑞2
𝑞3
𝑞4

) and 𝑈 =

(

 
 
 
 
 
 
 
 
 
 
 (

𝑣𝑒𝑐(𝑐𝑖𝑗
(1))

𝑣𝑒𝑐(𝑓𝑖𝑗
(1))

)

(
𝑣𝑒𝑐(𝑐𝑖𝑗

(2))

𝑣𝑒𝑐(𝑓𝑖𝑗
(2))

)

(
𝑣𝑒𝑐(𝑐𝑖𝑗

(3))

𝑣𝑒𝑐(𝑓𝑖𝑗
(3))

)

(
𝑣𝑒𝑐(𝑐𝑖𝑗

(4))

𝑣𝑒𝑐(𝑓𝑖𝑗
(4))

)

)

 
 
 
 
 
 
 
 
 
 
 

= (

𝑢1
𝑢2
𝑢3
𝑢4

).  

Then the system of a linear matrix in Eq. (5.3) can be written as                  

(

𝑝1 0 0 0
0 𝑝2 0 0
0 0 𝑝3 0
0 0 0 𝑝4

)(

𝑞1
𝑞2
𝑞3
𝑞4

) = (

𝑢1
𝑢2
𝑢3
𝑢4

). 

Matrix 𝑃 is a block diagonal matrix, therefore by Definition 2.6.1.14, the 𝑑𝑒𝑡 (𝑃) is 

obtained as follows: 

𝑑𝑒𝑡(𝑃) = 𝑑𝑒𝑡 [(

𝑝1 0 0 0
0 𝑝2 0 0
0 0 𝑝3 0
0 0 0 𝑝4

)], 

𝑑𝑒𝑡 (𝑃) = 𝑑𝑒𝑡(𝑝1) × 𝑑𝑒𝑡(𝑝2) × 𝑑𝑒𝑡(𝑝3) × 𝑑𝑒𝑡(𝑝4). 

The system of linear matrix equations 𝑃𝑄 = 𝑈 has a unique solution if 𝑑𝑒𝑡 (𝑃) ≠ 0. 

which implies 𝑑𝑒𝑡(𝑝1) ≠ 0, 𝑑𝑒𝑡(𝑝2) ≠ 0, 𝑑𝑒𝑡(𝑝3) ≠ 0 and𝑑𝑒𝑡(𝑝4) ≠ 0 i.e., 𝑝1, 𝑝2, 

𝑝3 and 𝑝4 are invertible matrices. The system of CSME in Eq. (5.1) and the linear matrix 

equations 𝑃𝑄 = 𝑈 are equivalent. Therefore, the system of CSME in Eq. (5.1) has a 

unique solution if 𝑑𝑒𝑡(𝑝1) ≠ 0, 𝑑𝑒𝑡(𝑝2) ≠ 0, 𝑑𝑒𝑡(𝑝3) ≠ 0 and𝑑𝑒𝑡(𝑝4) ≠ 0 i.e. 𝑝1, 

𝑝2, 𝑝3 and 𝑝4 are invertible matrices. 

II) If 𝑝1
−1, 𝑝2

−1, 𝑝3
−1 and 𝑝4

−1 > 0. then the system of CSME in Eq. (5.1) has a 

positive solution, and the proof is straightforward. 

□ 
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The system of CSME obtained in Eq. (5.1) consists of four CSME; therefore, it can be 

represented in general form as discussed in the following Remark 5.1.1. 

Remark 5.1.1: The system of CSME obtained in Eq. (5.1) can be written as follows: 

For 1 ≤ 𝑙 ≤ 4 we have: 

{
𝑎𝑖𝑗
(𝑙)𝑥𝑖𝑗

(𝑙) + 𝑦𝑖𝑗
(𝑙)𝑏𝑖𝑗

(𝑙) = 𝑒𝑖𝑗
(𝑙)
,

𝑐𝑖𝑗
(𝑙)𝑥𝑖𝑗

(𝑙) + 𝑦𝑖𝑗
(𝑙)𝑑𝑖𝑗

(𝑙) = 𝑓𝑖𝑗
(𝑙)
.
                                                 (5.4) 

Remark 5.1.2. The system of CSME in Eq. (5.1) is an extension of the system of SME 

in Eq. (3.51). Therefore, the developed methods for solving the system of SME can be 

extended to the system of CSME. 

In order to solve the PCTrFFSME, the system of CSME in Eq. (5.1) is considered.  

Therefore, the positive fuzzy solution to the PCTrFFSME can be obtained analytically 

by extending the MFMVM (EMFMVM) in Section 3.4.1 and numerically by extending 

the MFGIM (EMFGIM) and the MFGIM (EFLSIM) in Sections 3.4.3 and 3.4.4, 

respectively. In the following Section 5.1.1, the analytical fuzzy solution for the 

PCTrFFSME in Eq. (1.19) is obtained by the EMFMVM. 

5.1.1 Extended Modified Fuzzy Matrix Vectorization Method for PCTrFFSME 

In this section, the PCTrFFSME {𝐴̃𝑋̃ + 𝑌̃𝐵̃ = 𝐸̃
𝐶̃𝑋̃ + 𝑌̃𝐷̃ = 𝐹̃

  in Eq. (1.19) is solved analytically by 

extending the MFMVM in Section 3.4.1 and applying it to the system of CSME in  

Eq. (5.1). The detail of the constructed method is discussed in the following steps. 

Step 1: Decompose  𝐴̃, 𝐵̃, 𝐶̃, 𝐷̃, 𝐸̃, 𝐹̃, 𝑋̃ and 𝑌̃ into 𝑎𝑖𝑗
(𝑙)

, 𝑏𝑖𝑗
(𝑙)

, 𝑐𝑖𝑗
(𝑙)

, 𝑑𝑖𝑗
(𝑙)

, 𝑒𝑖𝑗
(𝑙)

, 𝑓𝑖𝑗
(𝑙)

, 𝑥𝑖𝑗
(𝑙)

and 

𝑦𝑖𝑗
(𝑙)

 where 𝑙 = 1, 2, 3, 4 respectively and convert the PCTrFFSME to the system of 

CSME in Eq. (5.1) using Theorem 5.1.1. 
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Step 2: Apply Vec-operator and Kronecker product on the system of CSME in Eq. (5.1) 

as discussed in Eq. (5.2). 

Step 3: Multiply the system of equation in Step 2 by matrix multiplicative inverse 

gives: 

{
 
 
 
 
 
 

 
 
 
 
 
 
(
𝑣𝑒𝑐(𝑥𝑖𝑗

(1))

𝑣𝑒𝑐(𝑦𝑖𝑗
(1))

) = (
𝐼𝑛⊗𝑎𝑖𝑗

(1) (𝑏𝑖𝑗
(1))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(1) (𝑑𝑖𝑗

(1))𝑇⊗ 𝐼𝑚
)

−1

(
𝑣𝑒𝑐(𝑐𝑖𝑗

(1))

𝑣𝑒𝑐(𝑓𝑖𝑗
(1))

) ,

(
𝑣𝑒𝑐(𝑥𝑖𝑗

(2))

𝑣𝑒𝑐(𝑦𝑖𝑗
(2))

) = (
𝐼𝑛⊗𝑎𝑖𝑗

(2) (𝑏𝑖𝑗
(2))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(2) (𝑑𝑖𝑗

(2))𝑇⊗ 𝐼𝑚
)

−1

(
𝑣𝑒𝑐(𝑐𝑖𝑗

(2))

𝑣𝑒𝑐(𝑓𝑖𝑗
(2))

) ,

(
𝑣𝑒𝑐(𝑥𝑖𝑗

(3))

𝑣𝑒𝑐(𝑦𝑖𝑗
(3))

) = (
𝐼𝑛⊗𝑎𝑖𝑗

(3) (𝑏𝑖𝑗
(3))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(3) (𝑑𝑖𝑗

(3))𝑇⊗ 𝐼𝑚
)

−1

(
𝑣𝑒𝑐(𝑐𝑖𝑗

(3))

𝑣𝑒𝑐(𝑓𝑖𝑗
(3))

) ,

(
𝑣𝑒𝑐(𝑥𝑖𝑗

(4))

𝑣𝑒𝑐(𝑦𝑖𝑗
(4))

) = (
𝐼𝑛⊗𝑎𝑖𝑗

(4) (𝑏𝑖𝑗
(4))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(4) (𝑑𝑖𝑗

(4))𝑇⊗ 𝐼𝑚
)

−1

(
𝑣𝑒𝑐(𝑐𝑖𝑗

(4))

𝑣𝑒𝑐(𝑓𝑖𝑗
(4))

) .

       (5.5) 

Step 4: By Definition 2.6.2.2, multiplying the system of linear matrix equation in Eq. 

(5.5) by 𝑣𝑒𝑐−1 gives the following solutions: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
(
𝑣𝑒𝑐(𝑥𝑖𝑗

(1))

𝑣𝑒𝑐(𝑦𝑖𝑗
(1))

) = 𝑣𝑒𝑐−1((
𝐼𝑛⊗𝑎𝑖𝑗

(1) (𝑏𝑖𝑗
(1))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(1) (𝑑𝑖𝑗

(1))𝑇⊗ 𝐼𝑚
)

−1

(
𝑣𝑒𝑐(𝑐𝑖𝑗

(1))

𝑣𝑒𝑐(𝑓𝑖𝑗
(1))

)) ,

(
𝑣𝑒𝑐(𝑥𝑖𝑗

(2))

𝑣𝑒𝑐(𝑦𝑖𝑗
(2))

) = 𝑣𝑒𝑐−1((
𝐼𝑛⊗𝑎𝑖𝑗

(2) (𝑏𝑖𝑗
(2))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(2) (𝑑𝑖𝑗

(2))𝑇⊗ 𝐼𝑚
)

−1

(
𝑣𝑒𝑐(𝑐𝑖𝑗

(2))

𝑣𝑒𝑐(𝑓𝑖𝑗
(2))

)) ,

(
𝑣𝑒𝑐(𝑥𝑖𝑗

(3))

𝑣𝑒𝑐(𝑦𝑖𝑗
(3))

) = 𝑣𝑒𝑐−1((
𝐼𝑛⊗𝑎𝑖𝑗

(3) (𝑏𝑖𝑗
(3))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(3) (𝑑𝑖𝑗

(3))𝑇⊗ 𝐼𝑚
)

−1

(
𝑣𝑒𝑐(𝑐𝑖𝑗

(3))

𝑣𝑒𝑐(𝑓𝑖𝑗
(3))

)) ,

(
𝑣𝑒𝑐(𝑥𝑖𝑗

(4))

𝑣𝑒𝑐(𝑦𝑖𝑗
(4))

) = 𝑣𝑒𝑐−1((
𝐼𝑛⊗𝑎𝑖𝑗

(4) (𝑏𝑖𝑗
(4))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(4) (𝑑𝑖𝑗

(4))𝑇⊗ 𝐼𝑚
)

−1

(
𝑣𝑒𝑐(𝑐𝑖𝑗

(4))

𝑣𝑒𝑐(𝑓𝑖𝑗
(4))

)) .

   (5.6) 

Step 5: Combining the solutions obtained in Eq. (5.6) as follows: 



 

286 

 

{
 
 
 

 
 
 
𝑋̃ = (

(𝑥11
(1), 𝑥11

(2), 𝑥11
(3), 𝑥11

(4)) … (𝑥1𝑛
(1), 𝑥1𝑛

(2), 𝑥1𝑛
(3), 𝑥1𝑛

(4))

⋮ ⋱ ⋮

(𝑥𝑚1
(1), 𝑥𝑚1

(2), 𝑥𝑚1
(3), 𝑥𝑚1

(4)) … (𝑥𝑚𝑛
(1) , 𝑥𝑚𝑛

(2) , 𝑥𝑚𝑛
(3) , 𝑥𝑚𝑛

(4))

) ,

𝑌̃ = (

(𝑦11
(1), 𝑦11

(2), 𝑦11
(3), 𝑦11

(4)) … (𝑦1𝑛
(1), 𝑦1𝑛

(2), 𝑦1𝑛
(3), 𝑦1𝑛

(4))

⋮ ⋱ ⋮

(𝑦𝑚1
(1), 𝑦𝑚1

(2), 𝑦𝑚1
(3), 𝑦𝑚1

(4)) … (𝑦𝑚𝑛
(1), 𝑦𝑚𝑛

(2), 𝑦𝑚𝑛
(3), 𝑦𝑚𝑛

(4))

) .

             (5.7) 

In the following Remark 5.1.1.1, the solution in Eq. (5.6) to the system of CSME is 

written in general form. 

Remark 5.1.1.1. Based on Eq. (5.6), the solution to the system of CSME can be written 

as follows: for 1 ≤ 𝑙 ≤ 4 we have: 

(
𝑣𝑒𝑐(𝑥𝑖𝑗

(𝑙))

𝑣𝑒𝑐(𝑦𝑖𝑗
(𝑙))

) = (
𝐼𝑛⊗𝑎𝑖𝑗

(𝑙) (𝑏𝑖𝑗
(𝑙))𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(𝑙) (𝑑𝑖𝑗

(𝑙))𝑇⊗ 𝐼𝑚
)

−1

(
𝑣𝑒𝑐(𝑒𝑖𝑗

(𝑙))

𝑣𝑒𝑐(𝑓𝑖𝑗
(𝑙))

).                      (5.8) 

In the following Theorem 5.1.1.1, the relation between the positive fuzzy solution to 

the PCTrFFSME in Eq. (1.19) and the solution to the linear matrix equation in Eq. (5.6) 

is discussed. 

Theorem 5.1.1.1. The positive solution to the system of CSME and the positive fuzzy 

solution to the PCTrFFSME are equivalent if the following conditions are satisfied. 

I) 𝑑𝑒𝑡(𝑝1) ≠ 0, 𝑑𝑒𝑡(𝑝2) ≠ 0, 𝑑𝑒𝑡(𝑝3) ≠ 0 and𝑑𝑒𝑡(𝑝4) ≠ 0 i.e. 𝑝1, 𝑝2, 𝑝3 and 𝑝4 

are invertible matrices. 

II) 𝑝1
−1, 𝑝2

−1, 𝑝3
−1 and 𝑝4

−1 > 0, 

III)  𝑝1
−1𝑢1 > 0, 𝑝2

−1𝑢2 > 0, 𝑝3
−1𝑢3 > 0, 𝑝4

−1𝑢4 >, 

IV)  𝑝1
−1𝑢1 ≤ 𝑝2

−1𝑢2 ≤ 𝑝3
−1𝑢3 ≤ 𝑝4

−1𝑢4. 

Proof:  

The proof of parts I and II are similar to the proof of Theorem 5.1.2. 
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III) By Theorem 5.1.1, the PCTrFFSME is converted to a system of CSME and 

consequently to a system of linear matrix equations 𝑃𝑄 = 𝑈 in Eq. (5.3). 

Multiplying both sides of Eq. (5.3) by 𝑃−1 gives: 

(

𝑞1
𝑞2
𝑞3
𝑞4

) = (

𝑝1 0 0 0
0 𝑝2 0 0
0 0 𝑝3 0
0 0 0 𝑝4

)

−1

(

𝑢1
𝑢2
𝑢3
𝑢4

).                                    (5.9) 

Since 𝑃−1 is a block diagonal matrix, 𝑃−1 can be found by Definition 2.6.1.13 as 

follows: 

(

𝑞1
𝑞2
𝑞3
𝑞4

) =

(

 
 
𝑝1
−1 0 0 0

0 𝑝2
−1 0 0

0 0 𝑝3
−1 0

0 0 0 𝑝4
−1
)

 
 
(

𝑢1
𝑢2
𝑢3
𝑢4

).                     (5.10) 

The right-hand side in Eq. (5.10) can be simplified as follows: 

(

𝑞1
𝑞2
𝑞3
𝑞4

) =

(

 
 
𝑝1
−1𝑢1

𝑝2
−1𝑢2

𝑝3
−1𝑢3

𝑝4
−1𝑢4)

 
 
.                                                    (5.11) 

Therefore, the system of equations in Eq. (5.11) has a positive solution if 𝑝1
−1𝑢1 > 0,

𝑝2
−1𝑢2 > 0, 𝑝3

−1𝑢3 > 0, 𝑝4
−1𝑢4 > 0. 

IV)  The linear matrix equations in Eq. (5.11) can be written as follows: for  

1 ≤ 𝑙 ≤ 4, we have: 

𝑞𝑙 = 𝑝𝑙
−1𝑢𝑙, 

            where                    

𝑝𝑙 = (
𝐼𝑛⊗𝑎𝑖𝑗

(𝑙)
(𝑏𝑖𝑗

(𝑙)
)𝑇⊗ 𝐼𝑚

𝐼𝑛⊗ 𝑐𝑖𝑗
(𝑙) (𝑑𝑖𝑗

(𝑙))𝑇⊗ 𝐼𝑚
), 

𝑞𝑙 = (
𝑣𝑒𝑐(𝑥𝑖𝑗

(𝑙))

𝑣𝑒𝑐(𝑦𝑖𝑗
(𝑙))

), 
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            and 

𝑢𝑙 = 𝑣(
𝑣𝑒𝑐(𝑒𝑖𝑗

(𝑙))

𝑣𝑒𝑐(𝑓𝑖𝑗
(𝑙))

). 

           For the obtained solution in Eq. (5.11) to be a fuzzy solution, the following    

           condition must be met 𝑝1
−1𝑢1 ≤ 𝑝2

−1𝑢2 ≤ 𝑝3
−1𝑢3 ≤ 𝑝4

−1𝑢4. 

Therefore, the unique positive solution of the system of CSME and the positive fuzzy 

solution to the PCTrFFSME are equivalent. 

□ 

Corollary 5.1.1.1. The Uniqueness of The Fuzzy Solution to The PCTrFFSME 

The PCTrFFSME has a unique positive fuzzy solution if the corresponding system of 

CSME in Eq. (5.1) has a unique positive solution. 

Proof: The positive fuzzy solution to the PCTrFFSME in Eq. (1.19) is equivalent to 

the solution system of CSME in Eq. (5.1) by Theorem 5.1.1.1. Therefore, the 

PCTrFFSME has a unique positive fuzzy solution if the corresponding system of CSME 

in Eq. (5.1) has a unique solution. 

□ 

In the following Corollary 5.1.1.2, the sufficient conditions for the PCTrFFSME to have 

a positive fuzzy solution are discussed. 

Corollary 5.1.1.2. Existence of The Positive Fuzzy Solution to The PCTrFFSME 

The PCTrFFSME has a positive fuzzy solution if the following conditions are satisfied: 

I) 𝑝1, 𝑝2, 𝑝3 and 𝑝4 are invertible,                                                                            (3.12a) 

II) 𝑝1
−1, 𝑝2

−1, 𝑝3
−1 𝑎𝑛𝑑 𝑝4

−1 > 0,                                                                    (3.12b) 

III) 𝑝1
−1𝑢1 > 0, 𝑝2

−1𝑢2 > 0, 𝑝3
−1𝑢3 > 0 and 𝑝4

−1𝑢4 > 0,                         (3.12c) 

IV) 𝑝1
−1𝑢1 ≤ 𝑝2

−1𝑢2 ≤ 𝑝3
−1𝑢3 ≤ 𝑝4

−1𝑢4.                                                               (3.12d) 

Proof: Parts I and II can be proved as follows: 
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By Corollary 5.1.1.1, the PCTrFFSME has a unique fuzzy solution only if 𝑝1, 𝑝2, 𝑝3 

and 𝑝4 are invertible and 𝑝1
−1, 𝑝2

−1, 𝑝3
−1 and 𝑝4

−1 > 0. 

III) By Theorem 5.1.1.1, the solution for the system of CSME and the PCTrFFSME 

is equivalent. Thus, from Eq. (5.11), the PCTrFFSME has a positive fuzzy 

solution only if 

𝑝1
−1𝑢1 > 0, 

𝑝2
−1𝑢2 > 0, 

𝑝3
−1𝑢3 > 0, 

𝑝4
−1𝑢4 > 0. 

IV)  By the definition of positive fuzzy solution matrix in Definition 5.1.3, the 

PCTrFFSME has a unique positive fuzzy solution if the following condition is 

satisfied,  

𝑝1
−1𝑢1 ≤ 𝑝2

−1𝑢2 ≤ 𝑝3
−1𝑢3 ≤ 𝑝4

−1𝑢4. 

□ 

Now we proceed to the feasibility conditions of positive fuzzy solution to the 

PCTrFFSME.  

Feasibility of The Positive Fuzzy Solution to The PCTrFFSME  

The positive fuzzy solution to the PCTrFFSME is feasible if the following conditions 

are satisfied: for 1 ≤ 𝑙 ≤ 4, 

I) 𝑥𝑖𝑗
(𝑙) > 0, ∀ {1 ≤ 𝑖, 𝑗 ≤ 𝑚, 𝑛}, 

II) 𝑦𝑖𝑗
(𝑙) > 0, ∀ {1 ≤ 𝑖, 𝑗 ≤ 𝑚, 𝑛}, 

III)  𝑥𝑖𝑗
(4)
≥ 𝑥𝑖𝑗

(3)
≥ 𝑥𝑖𝑗

(2) ≥ 𝑥𝑖𝑗
(1)

, ∀ {1 ≤ 𝑖, 𝑗 ≤ 𝑚, 𝑛}, 

IV)  𝑦𝑖𝑗
(4)
≥ 𝑦𝑖𝑗

(3)
≥ 𝑦𝑖𝑗

(2) ≥ 𝑦𝑖𝑗
(1)

, ∀ {1 ≤ 𝑖, 𝑗 ≤ 𝑚, 𝑛}. 
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Remark 5.1.1.2: If the solution fails to satisfy the feasibility conditions, then it is 

infeasible (weak fuzzy solution). 

In the following Section 5.1.2, the EMFGIM is developed for approximating the 

positive fuzzy solution to the PCTrFFSME. 

5.1.2 Extended Fuzzy Gradient Iterative Method for PCTrFFSME 

In this section, the positive solution to the PCTrFFSME {𝐴̃𝑋̃ + 𝑌̃𝐵̃ = 𝐸̃
𝐶̃𝑋̃ + 𝑌̃𝐷̃ = 𝐹̃

 in Eq. (1.19) is 

approximated numerically by extending the MFGIM in Section 3.4.3 and applying it to 

the system of CSME in Eq. (5.1). The algorithm to the EMFGIM can be constructed as 

follows: the system of CSME in Eq. (5.1) is decomposed into two subsystems. For  

1 ≤ 𝑙 ≤ 4, 

𝜉1
(𝑙)
= (

𝑒𝑖𝑗
(𝑙)
− 𝑦𝑖𝑗

(𝑙)𝑏𝑖𝑗
(𝑙)

𝑓𝑖𝑗
(𝑙)
− 𝑦𝑖𝑗

(𝑙)𝑑𝑖𝑗
(𝑙)
) and 𝜉2

(𝑙)
= (𝑒𝑖𝑗

(𝑙)
− 𝑎𝑖𝑗

(𝑙)𝑥𝑖𝑗
(𝑙) 𝑓𝑖𝑗

(𝑙)
− 𝑐𝑖𝑗

(𝑙)𝑥𝑖𝑗
(𝑙)).          (5.13) 

where the numerical solution to the system of CSME in Eq. (5.4) is the average of the 

numerical solution for the subsystems. 

Let, 𝛾𝑙 = (
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
), 𝛽𝑙 = (𝑏𝑖𝑗

(𝑙) 𝑑𝑖𝑗
(𝑙)), and from Eq. (5.4) and Eq. (5.13), the following 

can be obtained. For 1 ≤ 𝑙 ≤ 4 

𝜉2
(𝑙)
= 𝛾𝑙𝑥𝑖𝑗

(𝑙)
                                                          (5.14a) 

and  

𝜉1
(𝑙)
= 𝑦𝑖𝑗

(𝑙)
 𝛽𝑙.                                                        (5.14b) 

The numerical solution to the system of equations in Eq. (5.14a) and Eq. (5.14b) can 

be obtained by the EMFGIM in Section 3.5.1.2 as follows: 
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{
𝑥̂𝑙(𝑘) = 𝑥̂𝑙(𝑘 − 1) + 𝛼𝑙 ∙ 𝛾𝑙

𝑇 (𝜉1
(𝑙) − 𝛾𝑙 𝑥̂𝑙(𝑘 − 1)) ,

𝑦̂𝑙(𝑘) = 𝑦̂𝑙(𝑘 − 1) + 𝛼𝑙 ∙ (𝜉2
(𝑙) − 𝑦̂𝑙(𝑘 − 1)𝛽𝑙)𝛽𝑙

𝑇 .
                                                                                       (5.15) 

Substitute Eq. (5.13) into Eq. (5.15) as follows: 

{
 
 

 
 
𝑥̂𝑙(𝑘) = 𝑥̂𝑙(𝑘 − 1) + 𝛼𝑙 ∙ (

𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)

𝑇

((
𝑒𝑖𝑗
(𝑙) − 𝑦𝑖𝑗

(𝑙)(𝑘 − 1)𝑏𝑖𝑗
(𝑙)

𝑓𝑖𝑗
(𝑙) − 𝑦𝑖𝑗

(𝑙)(𝑘 − 1)𝑑𝑖𝑗
(𝑙)
) − (

𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
) 𝑥̂(𝑙)(𝑘 − 1)) ,

𝑦̂𝑙(𝑘) = 𝑦̂𝑙(𝑘 − 1) + 𝛼𝑙 ∙ ((𝑒𝑖𝑗
(𝑙) − 𝑎𝑖𝑗

(𝑙)𝑥𝑖𝑗
(𝑙) 𝑓𝑖𝑗

(𝑙) − 𝑐𝑖𝑗
(𝑙)𝑥𝑖𝑗

(𝑙)) − 𝑦𝑖𝑗
(𝑙)(𝑘 − 1)(𝑏𝑖𝑗

(𝑙) 𝑑𝑖𝑗
(𝑙))) (𝑏𝑖𝑗

(𝑙) 𝑑𝑖𝑗
(𝑙))

𝑇
.

              (5.16) 

 

The obtained algorithm in Eq. (5.16) is obtained as follows. For 1 ≤ 𝑙 ≤ 4 we have: 

{
 
 

 
 

𝑥̂𝑙(𝑘) = 𝑥̂𝑙(𝑘 − 1) + 𝛼𝑙 ∙ (
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)

𝑇

(
𝑒𝑖𝑗
(𝑙) − 𝑎𝑖𝑗

(𝑙)𝑥̂𝑙(𝑘 − 1) − 𝑦̂𝑙(𝑘 − 1)𝑏𝑖𝑗
(𝑙)

𝑓𝑖𝑗
(𝑙) − 𝑐𝑖𝑗

(𝑙)𝑥̂𝑙(𝑘 − 1) − 𝑦̂𝑙(𝑘 − 1)𝑑𝑖𝑗
(𝑙)
) ,

𝑦̂𝑙(𝑘) = 𝑦̂𝑙(𝑘 − 1) + 𝛼𝑙 ∙ (𝑒𝑖𝑗
(𝑙) − 𝑎𝑖𝑗

(𝑙)𝑥̂𝑙(𝑘 − 1) − 𝑦̂𝑙(𝑘 − 1)𝑏𝑖𝑗
(𝑙) 𝑓𝑖𝑗

(𝑙) − 𝑐𝑖𝑗
(𝑙)𝑥̂𝑙(𝑘 − 1) − 𝑦̂𝑙(𝑘 − 1)𝑑𝑖𝑗

(𝑙))(𝑏𝑖𝑗
(𝑙) 𝑑𝑖𝑗

(𝑙))
𝑇
,

            (5.17) 

Let, 𝑟𝑙(𝑘 − 1) = 𝑒𝑖𝑗
(𝑙) − 𝑎𝑖𝑗

(𝑙)𝑥̂𝑙(𝑘 − 1) − 𝑦̂𝑙(𝑘 − 1)𝑏𝑖𝑗
(𝑙)

 and 𝑠𝑙(𝑘 − 1) = 𝑓𝑖𝑗
(𝑙) − 𝑐𝑖𝑗

(𝑙)𝑥̂𝑙(𝑘 − 1) − 𝑦̂𝑙(𝑘 − 1)𝑑𝑖𝑗
(𝑙)

, then for 1 ≤ 𝑙 ≤ 4, 
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The approximated solution in Eq. (5.17) can be written in reduced form as follows: 

{
𝑥̂𝑙(𝑘) = 𝑥̂𝑙(𝑘 − 1) + 𝛼𝑙 ∙ (𝛾𝑙)

𝑇 (
𝑟𝑙(𝑘 − 1)

𝑠𝑙(𝑘 − 1)
) ,

𝑦̂𝑙(𝑘) = 𝑦̂𝑙(𝑘 − 1) + 𝛼𝑙 ∙ (𝑟𝑙(𝑘 − 1) 𝑠𝑙(𝑘 − 1))(𝛽𝑙)
𝑇 ,

                                                                      (5.18) 

where the convergence rate (step size) is given by, 

0 < 𝛼𝑙 <
2

𝜆𝑚𝑎𝑥 [(𝑎𝑖𝑗
(𝑙))

𝑇
𝑎𝑖𝑗
(𝑙)] + 𝜆𝑚𝑎𝑥 [𝑏𝑖𝑗

(𝑙) (𝑏𝑖𝑗
(𝑙))

𝑇
] + 𝜆𝑚𝑎𝑥 [(𝑐𝑖𝑗

(𝑙))
𝑇
𝑐𝑖𝑗
(𝑙)]+𝜆𝑚𝑎𝑥 [𝑑𝑖𝑗

(𝑙) (𝑑𝑖𝑗
(𝑙))

𝑇
]
.                                             (5.19𝑎) 

It can also be obtained as follows,  

0 < 𝛼𝑙 <
2

‖𝑎𝑖𝑗
(𝑙)‖

2
+ ‖𝑏𝑖𝑗

(𝑙)‖
2
+ ‖𝑐𝑖𝑗

(𝑙)‖
2
+‖𝑑𝑖𝑗

(𝑙)‖
2 = 𝜑.                                                         (5.19𝑏) 

where, ‖𝑎(𝑙)‖
2
= 𝑡𝑟[𝑎(𝑙) ∙ (𝑎(𝑙))

𝑇
]. 
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At step 𝑘 − 𝑡ℎ of the iteration, the following relative error is considered: 

𝛿(𝑙)(𝑘) = √
‖𝑥̂𝑙(𝑘) − 𝑥̂𝑙(𝑘 − 1)‖

2 + ‖𝑦̂𝑙(𝑘) − 𝑦̂𝑙(𝑘 − 1)‖
2

‖𝑥̂𝑙(𝑘)‖
2 + ‖𝑦̂𝑙(𝑘)‖

2
.                   (5.20) 

The approximated fuzzy solutions obtained in Eq. (5.18) to the PCTrFFSME can be 

written as follows: 

{
𝑥̂ = (𝑥̂(1), 𝑥̂(2), 𝑥̂(3), 𝑥̂(4)),

𝑦̂ = (𝑦̂(1), 𝑦̂(2), 𝑦̂(3), 𝑦̂(4)).
                                                         (5.21) 

It can also be written in matrix form as, 

{
 
 
 

 
 
 
𝑥̂ = (

(𝑥̂11
(1), 𝑥̂11

(2), 𝑥̂11
(3), 𝑥̂11

(4)) ⋯ (𝑥̂1𝑛
(1), 𝑥̂1𝑛

(2), 𝑥̂1𝑛
(3), 𝑥̂1𝑛

(4))

⋮ ⋱ ⋮

(𝑥̂𝑚1
(1), 𝑥̂𝑚1

(2), 𝑥̂𝑚1
(3), 𝑥̂𝑚1

(4)) … (𝑥̂𝑚𝑛
(1) , 𝑥̂𝑚𝑛

(2) , 𝑥̂𝑚𝑛
(3) , 𝑥̂𝑚𝑛

(4))

) ,

𝑦̂ = (

(𝑦̂11
(1), 𝑦̂11

(2), 𝑦̂11
(3), 𝑦̂11

(4)) ⋯ (𝑦̂1𝑛
(1), 𝑦̂1𝑛

(2), 𝑦̂1𝑛
(3), 𝑦̂1𝑛

(4))

⋮ ⋱ ⋮

(𝑦̂𝑚1
(1)
, 𝑦̂𝑚1

(2)
, 𝑦̂𝑚1

(3)
, 𝑦̂𝑚1

(4)
) … (𝑦̂𝑚𝑛

(1)
, 𝑦̂𝑚𝑛

(2)
, 𝑦̂𝑚𝑛

(3)
, 𝑦̂𝑚𝑛

(4)
)

) .

 

 

In the following Theorem 5.1.2.1, we prove that the numerical solution obtained by the 

EMEFGIM method converges to the positive analytical solution of the PCTrFFSME 

for any initial value. 

 

Theorem 5.1.2.1 If the system of CSME in Eq. (5.1) has a unique positive solution 

(𝑥(𝑙), 𝑦(𝑙)), then the numerical solution (𝑥̂(𝑙)(𝑘), 𝑦̂(𝑙)(𝑘)) in Eq. (5.21) converges to 

(𝑥(𝑙), 𝑦(𝑙)) for any initial values 𝑥̂(𝑙)(0), 𝑦̂(𝑙)(0) for 1 ≤ 𝑙 ≤ 4. (i.e., if 𝑘 → ∞, then 

𝑥(𝑙) = 𝑥̂(𝑙)(𝑘) and 𝑦(𝑙) = 𝑦̂(𝑙)(𝑘)). 

Proof: Let 𝜓(𝑘) be the error at each 𝑘, for 𝑘 = 1,… , 𝑛 and for 1 ≤ 𝑙 ≤ 4. 

𝜓(𝑘) = 𝜓1(𝑘) + 𝜓2(𝑘).                                                                           (5.22) 

where 

𝜓1(𝑘) = 𝑥
(𝑙) − 𝑥̂(𝑙)(𝑘).                                                                          (5.22𝑎) 
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𝜓2(𝑘) = 𝑦
(𝑙) − 𝑦̂(𝑙)(𝑘).                                                                                                             (5.22𝑏) 

From Eq. (5.1), Eq. (5.17), Eq. (5.22a) and Eq. (5.22b), the following is obtained: 

{
 
 

 
 

𝜓1(𝑘) = 𝜓1(𝑘 − 1) + 𝛼𝑙 ∙ (
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)

𝑇

(
−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)

−𝑐𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙)
) ,

𝜓2(𝑘) = 𝜓2(𝑘 − 1) + 𝛼𝑙 ∙ (−𝑎𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙) −𝑐𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙))(𝑏𝑖𝑗
(𝑙) 𝑑𝑖𝑗

(𝑙))
𝑇
.

             (5.23) 

Taking ‖. ‖2 to both sides of Eq. (5.23) gives: 

{
 
 

 
 

‖𝜓1(𝑘)‖
2 = ‖𝜓1(𝑘 − 1) + 𝛼𝑙 ∙ (

𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)

𝑇

(
−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)

−𝑐𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙)
)‖

2

.

‖𝜓2(𝑘)‖
2 = ‖𝜓2(𝑘 − 1) + 𝛼𝑙 ∙ (−𝑎𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)
−𝑐𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙))(𝑏𝑖𝑗
(𝑙)

𝑑𝑖𝑗
(𝑙))

𝑇
‖
2

.

            (5.24)  

The following steps in the proof are long, therefore the system in Eq. (5.24) must split into two equations in the following steps of the 

proof. 

By apply the following formula to Eq. (5.24) the following is obtained, 

‖𝐴 + 𝐵‖2 = 𝑡𝑟((𝐴 + 𝐵)𝑇(𝐴 + 𝐵)) = ‖𝐴‖2 + 2𝑡𝑟(𝐴𝑇𝐵) + ‖𝐵‖2. 

‖𝜓1(𝑘)‖
2 = ‖𝜓1(𝑘 − 1)‖

2 + 2𝛼𝑙𝑡𝑟 [𝜓1
𝑇(𝑘 − 1)((

𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)

𝑇

(
−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)

−𝑐𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙)
))] + 𝛼𝑙

2 ‖(
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)

𝑇

(
−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)

−𝑐𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙)
)‖

2

.                                                                                                                                                         

                                                                                                                                                                                                                (5.25a) 
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‖𝜓2(𝑘)‖
2 = ‖𝜓2(𝑘 − 1)‖

2 + 2𝛼𝑙𝑡𝑟 [𝜓2
𝑇(𝑘 − 1) ((−𝑎𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)
−𝑐𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙)) (𝑏𝑖𝑗
(𝑙)

𝑑𝑖𝑗
(𝑙))

𝑇
)] +

𝛼𝑙
2 ‖(−𝑎𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)
−𝑐𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙)) (𝑏𝑖𝑗
(𝑙)

𝑑𝑖𝑗
(𝑙))

𝑇
‖
2

.                                                                      (5.25b) 

Applying matrix multiplication gives: 

‖𝜓1(𝑘)‖
2 = ‖𝜓1(𝑘 − 1)‖

2 + 2𝛼𝑙𝑡𝑟 [(𝑎𝑖𝑗
(𝑙)
𝜓1(𝑘 − 1))

𝑇

(−𝑎𝑖𝑗
(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)
) + (𝑐𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1))

𝑇

(−𝑐𝑖𝑗
(𝑙)
𝜓1(𝑘 − 1) −

𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙)
)] + 𝛼𝑙

2 ‖(
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)

𝑇

(
−𝑎𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)

−𝑐𝑖𝑗
(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙)
)‖

2

.                                                                                                     (5.26a) 

‖𝜓2(𝑘)‖
2 ≤ ‖𝜓2(𝑘 − 1)‖

2 + 2𝛼𝑙𝑡𝑟 [(𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙))

𝑇
(−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)) + (𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙))
𝑇
(−𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) −

𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙))] + 𝛼𝑙

2 ‖(−𝑎𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙) −𝑐𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙))(𝑏𝑖𝑗
(𝑙) 𝑑𝑖𝑗

(𝑙))
𝑇
‖
2

.                           (5.26b)      

 

Applying norm properties on Eq. (5.26a) and Eq. (5.26b) gives: 

‖𝜓1(𝑘)‖
2 ≤ ‖𝜓1(𝑘 − 1)‖

2 + 2𝛼𝑙𝑡𝑟 [(𝑎𝑖𝑗
(𝑙)𝜓1(𝑘 − 1))

𝑇
(−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)) + (𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1))
𝑇
(−𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) −

𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙))] + 𝛼𝑙

2 (‖𝑎𝑖𝑗
(𝑙)‖

2
+ ‖𝑐𝑖𝑗

(𝑙)‖
2
) [‖−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)‖

2
+ ‖−𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙)‖

2
].       (5.27a) 
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‖𝜓2(𝑘)‖
2 ≤ ‖𝜓2(𝑘 − 1)‖

2 + 2𝛼𝑙𝑡𝑟 [(𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙))

𝑇
(−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)) + (𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙))
𝑇
(−𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) −

𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙))] + 𝛼𝑙

2 (‖𝑏𝑖𝑗
(𝑙)‖

2
+ ‖𝑑𝑖𝑗

(𝑙)‖
2
) [‖−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)‖

2
+ ‖−𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙)‖

2
].      (5.27b)                                      

                    

By the definition of the error in Eq. (5.22) and by Eq. (5.27a) and Eq. (5.27b), the following is obtained: 

‖𝜓(𝑘)‖2 ≤ ‖𝜓1(𝑘 − 1)‖
2 + 2𝛼𝑙𝑡𝑟 [(𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1))
𝑇
(−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)) + (𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1))
𝑇
(−𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) −

𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙))] + 𝛼𝑙

2 (‖𝑎𝑖𝑗
(𝑙)‖

2
+ ‖𝑐𝑖𝑗

(𝑙)‖
2
) [‖−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)‖

2
+ ‖−𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙)‖

2
] +

‖𝜓2(𝑘 − 1)‖
2 + 2𝛼𝑙𝑡𝑟 [(𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙))
𝑇
(−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)) + (𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙))
𝑇
(−𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) −

𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙))] + 𝛼𝑙

2 (‖𝑏𝑖𝑗
(𝑙)‖

2
+ ‖𝑑𝑖𝑗

(𝑙)‖
2
) [‖−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)‖

2
+ ‖−𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙)‖

2
].        (5.28) 

 

 

‖𝜓(𝑘)‖2 ≤ ‖𝜓1(𝑘 − 1)‖
2 + ‖𝜓2(𝑘 − 1)‖

2 + 2𝛼𝑙𝑡𝑟 [(𝑎𝑖𝑗
(𝑙)
𝜓1(𝑘 − 1))

𝑇

(−𝑎𝑖𝑗
(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)
) + (𝑐𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1))

𝑇

(−𝑐𝑖𝑗
(𝑙)
𝜓1(𝑘 −

1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙)
)] + 2𝛼𝑙𝑡𝑟 [(𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)
)
𝑇
(−𝑎𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)
) + (𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙)
)
𝑇
(−𝑐𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙)
)]  
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+𝛼𝑙
2 (‖𝑎𝑖𝑗

(𝑙)
‖
2
+ ‖𝑐𝑖𝑗

(𝑙)
‖
2
) [‖−𝑎𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)
‖
2
+ ‖−𝑐𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙)
‖
2
] + 𝛼𝑙

2 (‖𝑏𝑖𝑗
(𝑙)
‖
2
+

‖𝑑𝑖𝑗
(𝑙)
‖
2
) [‖−𝑎𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)
‖
2
+ ‖−𝑐𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙)
‖
2
].                                                                            (5.29) 

 

‖𝜓(𝑘)‖2 ≤ ‖𝜓1(𝑘 − 1)‖
2 + ‖𝜓2(𝑘 − 1)‖

2 + 2𝛼𝑙𝑡𝑟 [(𝑎𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) + 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙))
𝑇
(−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)) +

(𝑐𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) + 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙))
𝑇
(−𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙))] + 𝛼𝑙

2 (‖𝑎𝑖𝑗
(𝑙)‖

2
+ ‖𝑐𝑖𝑗

(𝑙)‖
2
+ ‖𝑏𝑖𝑗

(𝑙)‖
2
+

‖𝑑𝑖𝑗
(𝑙)‖

2
) [‖−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)‖

2
+ ‖−𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙)‖

2
].                                                                 (5.30) 

 

 

‖𝜓(𝑘)‖2 ≤ ‖𝜓(𝑘 − 1)‖2 − 2𝛼𝑙𝑡𝑟 [(𝑎𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) + 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙))
𝑇
(𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) + 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)) + (𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) +

𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙))

𝑇
(𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) + 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙))] + 𝛼𝑙

2 (‖𝑎𝑖𝑗
(𝑙)‖

2
+ ‖𝑐𝑖𝑗

(𝑙)‖
2
+ ‖𝑏𝑖𝑗

(𝑙)‖
2
+ ‖𝑑𝑖𝑗

(𝑙)‖
2
) [‖𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) +

𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)‖

2
+ ‖𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) + 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙)‖

2
].                                                                                                                      (5.31) 
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‖𝜓(𝑘)‖2 ≤ ‖𝜓(𝑘 − 1)‖2 − 2𝛼𝑙 [‖𝑎𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) + 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)‖
2
+ ‖𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) + 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙)‖

2
] +

2𝛼𝑙
2

𝜑
[‖𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) + 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)‖

2
+ ‖𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) + 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙)‖

2
].                                                                                (5.32) 

By Eq. (5.19b), the following can be obtained: 

‖𝜓(𝑘)‖2 ≤ ‖𝜓(𝑘 − 1)‖2 − 2𝛼𝑙 (1 −
𝛼𝑙

𝜑
) [‖𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) + 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)‖

2
+ ‖𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) + 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙)‖

2
].                   (5.33) 

At 𝑘 = 1   ‖𝜓(1)‖2 ≤ ‖𝜓(0)‖2 − 2𝛼𝑙 (1 −
𝛼𝑙

𝜑
) [‖𝑎𝑖𝑗

(𝑙)𝜓1(0) + 𝜓2(0)𝑏𝑖𝑗
(𝑙)‖

2
+ ‖𝑐𝑖𝑗

(𝑙)𝜓1(0) + 𝜓2(0)𝑑𝑖𝑗
(𝑙)‖

2
].                             

At 𝑘 = 2   ‖𝜓(2)‖2 ≤ ‖𝜓(1)‖2 − 2𝛼𝑙 (1 −
𝛼𝑙

𝜑
) [‖𝑎𝑖𝑗

(𝑙)𝜓1(1) + 𝜓2(1)𝑏𝑖𝑗
(𝑙)‖

2
+ ‖𝑐𝑖𝑗

(𝑙)𝜓1(1) + 𝜓2(1)𝑑𝑖𝑗
(𝑙)‖

2
].                          

At 𝑘 = 3   ‖𝜓(3)‖2 ≤ ‖𝜓(2)‖2 − 2𝛼𝑙 (1 −
𝛼𝑙

𝜑
) [‖𝑎𝑖𝑗

(𝑙)𝜓1(2) + 𝜓2(2)𝑏𝑖𝑗
(𝑙)‖

2
+ ‖𝑐𝑖𝑗

(𝑙)𝜓1(2) + 𝜓2(2)𝑑𝑖𝑗
(𝑙)‖

2
].                      

At 𝑘 = 𝑛 − 1  

‖𝜓(𝑛 − 1)‖2 ≤ ‖𝜓(𝑛 − 2)‖2 − 2𝛼𝑙 (1 −
𝛼𝑙
𝜑
) [‖𝑎𝑖𝑗

(𝑙)𝜓1(𝑛 − 2) + 𝜓2(𝑛 − 2)𝑏𝑖𝑗
(𝑙)‖

2
+ ‖𝑐𝑖𝑗

(𝑙)𝜓1(𝑛 − 2) + 𝜓2(𝑛 − 2)𝑑𝑖𝑗
(𝑙)‖

2
]. 

At 𝑘 = 𝑛    

‖𝜓(𝑛)‖2 ≤ ‖𝜓(𝑛 − 1)‖2 − 2𝛼𝑙 (1 −
𝛼𝑙
𝜑
) [‖𝑎𝑖𝑗

(𝑙)𝜓1(𝑛 − 1) + 𝜓2(𝑛 − 1)𝑏𝑖𝑗
(𝑙)‖

2
+ ‖𝑐𝑖𝑗

(𝑙)𝜓1(𝑛 − 1) + 𝜓2(𝑛 − 1)𝑑𝑖𝑗
(𝑙)‖

2
]. 

Therefore, the following is obtained, 
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‖𝜓(𝑘)‖2 ≤ ‖𝜓(𝑘 − 1)‖2 − 2𝛼𝑙 (1 −
𝛼𝑙
𝜑
) [∑‖𝑎𝑖𝑗

(𝑙)𝜓1(𝑛 − 1) + 𝜓2(𝑛 − 1)𝑏𝑖𝑗
(𝑙)‖

2
+ ‖𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) + 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙)‖

2
∞

𝑘=1

]. 

If the convergence rate 𝛼 is chosen to satisfy Eq. (5.19b) and 𝑘 → ∞, then 

∑(‖𝑎𝑖𝑗
(𝑙)𝜓1(𝑘) + 𝜓2(𝑘)𝑏𝑖𝑗

(𝑙)‖
2
+ ‖𝑐𝑖𝑗

(𝑙)𝜓1(𝑘) + 𝜓2(𝑘)𝑑𝑖𝑗
(𝑙)‖

2
) < ∞.

∞

𝑘=1

 

Therefore, 

𝑙𝑖𝑚
𝑘→∞

(𝑎𝑖𝑗
(𝑙)𝜓1(𝑘) + 𝜓2(𝑘)𝑏𝑖𝑗

(𝑙)) = 0 and 𝑙𝑖𝑚
𝑘→∞

(𝑐𝑖𝑗
(𝑙)𝜓1(𝑘) + 𝜓2(𝑘)𝑑𝑖𝑗

(𝑙)) = 0. 

Since 𝑎(𝑙) > 0, 𝑏(𝑙) > 0, 𝑐(𝑙) > 0 𝑎𝑛𝑑 𝑑(𝑙) > 0 then, 

𝑙𝑖𝑚
𝑘→∞

𝜓1(𝑘) = 0 and 𝑙𝑖𝑚
𝑘→∞

𝜓2(𝑘) = 0. 

By Eq. (5.22a) and Eq. (5.22b), the following is obtained, 
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𝑙𝑖𝑚
𝑘→∞

(𝑥(𝑙) − 𝑥̂(𝑙)(𝑘)) = 0 and 𝑙𝑖𝑚
𝑘→∞

(𝑦(𝑙) − 𝑦̂(𝑙)(𝑘)) = 0. 

Consequently, if 𝑘 → ∞, then 𝑥(𝑙) = 𝑥̂(𝑙)(𝑘) and 𝑦(𝑙) = 𝑦̂(𝑙)(𝑘). 

Therefore, if the system of CSME in Eq. (5.1) has a unique positive solution (𝑥(𝑙), 𝑦(𝑙)), 

then the numerical solution (𝑥̂(𝑙)(𝑘), 𝑦̂(𝑙)(𝑘)) in Eq. (5.21) converges to (𝑥(𝑙), 𝑦(𝑙)) for 

any initial values 𝑥̂(𝑙)(0), 𝑦̂(𝑙)(0) for 1 ≤ 𝑙 ≤ 4. (i.e., if 𝑘 → ∞, then 𝑥(𝑙) = 𝑥̂(𝑙)(𝑘) and 

𝑦(𝑙) = 𝑦̂(𝑙)(𝑘)). 

□ 

Below is the Algorithm 5.1 for the EMFGIM. This algorithm can be used by different 

software for solving the PCTrFFSME in Eq. (1.19). 
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Algorithm 5.1: EMFGIM Algorithm for PCTrFFSME. 

Input 𝐴̃, 𝐵,̃ 𝐶̃, 𝐷̃, 𝐸̃, 𝐹̃  # Split each matrix into 4 matrices (e.g., 𝑎(1), 𝑎(2), 𝑎(3), 𝑎(4)) 

for l = 1,2,3,4 

Choose 𝛼𝑙, 𝜀, 𝑥̂(𝑙)(𝑘) = 0, 𝑦̂(𝑙)(𝑘) = 0      # 0 is the Zero matrix with the same 

dimension as 𝑥(𝑙)(𝑘) 𝑎𝑛𝑑 𝑦(𝑙)(𝑘).    

While 𝑘 = 0, 1, 2, … , 𝑛 do 

       {
𝑥̂𝑙(𝑘) = 𝑥̂𝑙(𝑘 − 1) + 𝛼𝑙 ∙ (𝛾𝑙)

𝑇 (
𝑟𝑙(𝑘 − 1)

𝑠𝑙(𝑘 − 1)
) ,

𝑦̂𝑙(𝑘) = 𝑦̂𝑙(𝑘 − 1) + 𝛼𝑙 ∙ (𝑟𝑙(𝑘 − 1) 𝑠𝑙(𝑘 − 1))(𝛽𝑙)
𝑇 .

         

        𝑟𝑙(𝑘 − 1) = 𝑒𝑖𝑗
(𝑙) − 𝑎𝑖𝑗

(𝑙)𝑥̂𝑙(𝑘 − 1) − 𝑦̂𝑙(𝑘 − 1)𝑏𝑖𝑗
(𝑙). 

        𝑠𝑙(𝑘 − 1) = 𝑓𝑖𝑗
(𝑙)
− 𝑐𝑖𝑗

(𝑙)
𝑥̂𝑙(𝑘 − 1) − 𝑦̂𝑙(𝑘 − 1)𝑑𝑖𝑗

(𝑙)
. 

         𝛾𝑙 = (
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
), 𝛽𝑙 = (𝑏𝑖𝑗

(𝑙) 𝑑𝑖𝑗
(𝑙)). 

            𝛿(𝑙)(𝑘) = √
‖𝑥̂𝑙(𝑘)−𝑥̂𝑙(𝑘−1)‖

2+‖𝑦̂𝑙(𝑘)−𝑦̂𝑙(𝑘−1)‖
2

‖𝑥̂𝑙(𝑘)‖
2+‖𝑦̂𝑙(𝑘)‖

2  .  

        If  𝛿(𝑙)(𝑘) < 𝜀 then  

             𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘), 𝑦̂(𝑙)(𝑘)); 

             𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

       else  

             {
𝑥̂𝑙(𝑘) = 𝑥̂𝑙(𝑘 − 1) + 𝛼𝑙 ∙ (𝛾𝑙)

𝑇 (
𝑟𝑙(𝑘 − 1)

𝑠𝑙(𝑘 − 1)
) ,

𝑦̂𝑙(𝑘) = 𝑦̂𝑙(𝑘 − 1) + 𝛼𝑙 ∙ (𝑟𝑙(𝑘 − 1) 𝑠𝑙(𝑘 − 1))(𝛽𝑙)
𝑇 .

 

             update k.  

             𝑘 = 𝑘 + 1. 

        end 

        𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘), 𝑦̂(𝑙)(𝑘)), 

        𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

end  
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In the following Section 5.1.3, the MFLSIM in Section 3.4.4 is extended and applied to the PCTrFFSME in Eq. (1.19).  

5.1.3 The Extended Modified Fuzzy Least Square Iterative Method for PCTrFFSME 

In this section, the positive fuzzy solution to the PCTrFFSME {𝐴̃𝑋̃ + 𝑌̃𝐵̃ = 𝐸̃
𝐶̃𝑋̃ + 𝑌̃𝐷̃ = 𝐹̃

 in Eq. (1.19) is approximated numerically by extending the 

MFLSIM in Section 3.3.3 and applying it to the system of CSME in Eq. (5.1). The development of the MFLSIM is similar to the EMFGIM 

in Section 5.1.2. However, to improve the convergence of the EFGIM, the least-square term has to be added to the algorithm in Eq. (5.17) 

as follows: for 1 ≤ l ≤ 4, we have: 

{
  
 

  
 

𝑥̂𝑙(𝑘) = 𝑥̂𝑙(𝑘 − 1) + 𝛼𝑙 ((
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)

𝑇

(
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
))

−1

(
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)

𝑇

(
𝑒𝑖𝑗
(𝑙) − 𝑎𝑖𝑗

(𝑙)𝑥̂𝑙(𝑘 − 1) − 𝑦̂𝑙(𝑘 − 1)𝑏𝑖𝑗
(𝑙)

𝑓𝑖𝑗
(𝑙) − 𝑐𝑖𝑗

(𝑙)𝑥̂𝑙(𝑘 − 1) − 𝑦̂𝑙(𝑘 − 1)𝑑𝑖𝑗
(𝑙)
) ,

𝑦̂𝑙(𝑘) = 𝑦̂𝑙(𝑘 − 1) + 𝛼𝑙 ∙ (𝑒𝑖𝑗
(𝑙) − 𝑎𝑖𝑗

(𝑙)𝑥̂𝑙(𝑘 − 1) − 𝑦̂𝑙(𝑘 − 1)𝑏𝑖𝑗
(𝑙) 𝑓𝑖𝑗

(𝑙) − 𝑐𝑖𝑗
(𝑙)𝑥̂𝑙(𝑘 − 1) − 𝑦̂𝑙(𝑘 − 1)𝑑𝑖𝑗

(𝑙))(𝑏𝑖𝑗
(𝑙) 𝑑𝑖𝑗

(𝑙))
𝑇
((𝑏𝑖𝑗

(𝑙) 𝑑𝑖𝑗
(𝑙))(𝑏𝑖𝑗

(𝑙) 𝑑𝑖𝑗
(𝑙))

𝑇
)

−1

.

(5.34) 
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Let 𝛾𝑙 = (
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
), 𝛽𝑙 = (𝑏𝑖𝑗

(𝑙) 𝑑𝑖𝑗
(𝑙)), 𝑟𝑙(𝑘 − 1) = 𝑒𝑖𝑗

(𝑙) − 𝑎𝑖𝑗
(𝑙)𝑥̂𝑙(𝑘 − 1) − 𝑦̂𝑙(𝑘 − 1)𝑏𝑖𝑗

(𝑙)
 

and 𝑠𝑙(𝑘 − 1) = 𝑓𝑖𝑗
(𝑙) − 𝑐𝑖𝑗

(𝑙)𝑥̂𝑙(𝑘 − 1) − 𝑦̂𝑙(𝑘 − 1)𝑑𝑖𝑗
(𝑙)

.  

For 1 ≤ 𝑙 ≤ 4, the approximated fuzzy solution in Eq. (5.34) can be written as follows: 

{
𝑥̂𝑙(𝑘) = 𝑥̂𝑙(𝑘 − 1) + 𝛼𝑙((𝛾𝑙)

𝑇𝛾𝑙)
−1(𝛾𝑙)

𝑇 (
𝑟𝑙(𝑘 − 1)

𝑠𝑙(𝑘 − 1)
) ,

𝑦̂𝑙(𝑘) = 𝑦̂𝑙(𝑘 − 1) + 𝛼𝑙 ∙ (𝑟𝑙(𝑘 − 1) 𝑠𝑙(𝑘 − 1))(𝛽𝑙)
𝑇((𝛽𝑙)

𝑇𝛽𝑙)
−1,

            (5.35) 

where the convergence rate (step size) is given by, 

0 < 𝛼𝑙 <
2

𝜆𝑚𝑎𝑥 [𝛼𝑙((𝛼𝑙)
𝑇𝛼𝑙)

−1(𝛼𝑙)
𝑇] + 𝜆𝑚𝑎𝑥 [(𝛽𝑙)

𝑇((𝛽𝑙)
𝑇𝛽𝑙)

−1𝛽𝑙]
=

2

𝜑1 + 𝜑2
 . 

(5.36) 

At step 𝑘 − 𝑡ℎ of the iteration, the following relative error is considered: 

𝛿(𝑙)(𝑘) = √
‖𝑥̂𝑙(𝑘) − 𝑥̂𝑙(𝑘 − 1)‖

2 + ‖𝑦̂𝑙(𝑘) − 𝑦̂𝑙(𝑘 − 1)‖
2

‖𝑥̂𝑙(𝑘)‖
2 + ‖𝑦̂𝑙(𝑘)‖

2
.                               (5.37) 

The approximated fuzzy solutions in Eq. (5.34) to the PCTrFFSME in Eq. (1.19) can 

be written as follows: 

{
𝑥̂ = (𝑥̂(1), 𝑥(2), 𝑥̂(3), 𝑥̂(4)),

𝑦̂ = (𝑦̂(1), 𝑦̂(2), 𝑦̂(3), 𝑦̂(4)).
 

It can also be written in matrix form as, 

{
 
 
 

 
 
 
𝑥̂ = (

(𝑥̂11
(1), 𝑥̂11

(2), 𝑥̂11
(3), 𝑥̂11

(4)) ⋯ (𝑥̂1𝑛
(1), 𝑥̂1𝑛

(2), 𝑥̂1𝑛
(3), 𝑥̂1𝑛

(4))

⋮ ⋱ ⋮

(𝑥̂𝑚1
(1), 𝑥̂𝑚1

(2), 𝑥̂𝑚1
(3), 𝑥̂𝑚1

(4)) … (𝑥̂𝑚𝑛
(1) , 𝑥̂𝑚𝑛

(2) , 𝑥̂𝑚𝑛
(3) , 𝑥̂𝑚𝑛

(4))

) ,

𝑦̂ = (

(𝑦̂11
(1), 𝑦̂11

(2), 𝑦̂11
(3), 𝑦̂11

(4)) ⋯ (𝑦̂1𝑛
(1), 𝑦̂1𝑛

(2), 𝑦̂1𝑛
(3), 𝑦̂1𝑛

(4))

⋮ ⋱ ⋮

(𝑦̂𝑚1
(1), 𝑦̂𝑚1

(2), 𝑦̂𝑚1
(3), 𝑦̂𝑚1

(4)) … (𝑦̂𝑚𝑛
(1), 𝑦̂𝑚𝑛

(2), 𝑦̂𝑚𝑛
(3), 𝑦̂𝑚𝑛

(4))

) .
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In the following theorem we prove that the numerical solution obtained by the 

MEFGIM method converges to the positive solution of the PCTrFFSME for any initial 

value. 

Theorem 5.1.3.1: If the system of CSME in Eq. (5.4) has a unique positive solution 

(𝑥(𝑙), 𝑦(𝑙)), then the numerical solution (𝑥̂(𝑙)(𝑘), 𝑦̂(𝑙)(𝑘)) in Eq. (5.34) converges to 

(𝑥(𝑙), 𝑦(𝑙)) for any initial values 𝑥̂(𝑙)(0), 𝑦̂(𝑙)(0) for 1 ≤ 𝑙 ≤ 4. (i.e., if 𝑘 → ∞, then  

𝑥(𝑙) = 𝑥̂(𝑙)(𝑘) and 𝑦(𝑙) = 𝑦̂(𝑙)(𝑘)). 

 

Proof: Let, 𝜓(𝑘) be the error at each 𝑘, for 𝑘 = 1,… , 𝑛 and for 1 ≤ 𝑙 ≤ 4. 

𝜓(𝑘) = (
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)𝜓1(𝑘) + 𝜓2(𝑘)(𝑏𝑖𝑗

(𝑙) 𝑑𝑖𝑗
(𝑙)).                                  (5.38) 

where 

𝜓1(𝑘) = 𝑥
(𝑙) − 𝑥̂(𝑙)(𝑘).                                                               (5.38𝑎) 

𝜓2(𝑘) = 𝑦
(𝑙) − 𝑦̂(𝑙)(𝑘).                                                               (5.38𝑏) 

From Eq. (5.1), Eq. (5.34), Eq. (5.38a) and Eq. (5.38b), the following is obtained: 
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{
  
 

  
 

𝜓1(𝑘) = 𝜓1(𝑘 − 1) + 𝛼𝑙 ∙ ((
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)

𝑇

(
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
))

−1

(
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)

𝑇

(
−𝑎𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)

−𝑐𝑖𝑗
(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙)
) ,

𝜓2(𝑘) = 𝜓2(𝑘 − 1) + 𝛼𝑙 ∙ (−𝑎𝑖𝑗
(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)
−𝑐𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙)) (𝑏𝑖𝑗
(𝑙)

𝑑𝑖𝑗
(𝑙))

𝑇
((𝑏𝑖𝑗

(𝑙)
𝑑𝑖𝑗
(𝑙)) (𝑏𝑖𝑗

(𝑙)
𝑑𝑖𝑗
(𝑙))

𝑇
)

−1

 

(5.39) 

Taking ‖. ‖2 to both sides of Eq. (5.39) give: 

{
 
 
 

 
 
 

‖𝜓1(𝑘)‖
2 = ‖‖𝜓1(𝑘 − 1) + 𝛼𝑙 ∙ ((

𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)

𝑇

(
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
))

−1

(
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)

𝑇

(
−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)

−𝑐𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙)
)‖‖

2

‖𝜓2(𝑘)‖
2 = ‖𝜓2(𝑘 − 1) + 𝛼𝑙 ∙ (−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙) −𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙))(𝑏𝑖𝑗

(𝑙) 𝑑𝑖𝑗
(𝑙))

𝑇
((𝑏𝑖𝑗

(𝑙) 𝑑𝑖𝑗
(𝑙))(𝑏𝑖𝑗

(𝑙) 𝑑𝑖𝑗
(𝑙))

𝑇
)

−1

‖

2

 (5.40)  

The following steps in the proof are long. Therefore, the system in Eq. (5.40) has to be into two equations in the following steps of the 

proof. Applying the following formula to Eq. (5.40) we get, 

‖𝐴(𝑋 + ((𝐴)𝑇 ∙ 𝐴)−1𝑌)‖2 = 𝑡𝑟((𝐴(𝑋 + ((𝐴)𝑇 ∙ 𝐴)−1𝑌))𝑇(𝐴(𝑋 + ((𝐴)𝑇 ∙ 𝐴)−1𝑌))) = ‖𝐴𝑋‖2 + 2𝑡𝑟(𝑋𝑇𝑌) + ‖𝐴((𝐴)𝑇 ∙ 𝐴)−1𝑌‖2. 

‖(
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)𝜓1(𝑘)‖

2

= ‖(
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)𝜓1(𝑘 − 1)‖

2

+ 2𝛼𝑙𝑡𝑟 [𝜓1
𝑇(𝑘 − 1)((

𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)

𝑇

(
−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)

−𝑐𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙)
))] +

𝛼𝑙
2 ‖‖(

𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)((

𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)

𝑇

(
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
))

−1

(
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)

𝑇

(
−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)

−𝑐𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙)
)‖‖

2

.                                                                                                             (5.41a) 
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‖𝜓2(𝑘) (𝑏𝑖𝑗
(𝑙)

𝑑𝑖𝑗
(𝑙))‖

2
= ‖𝜓2(𝑘 − 1) (𝑏𝑖𝑗

(𝑙)
𝑑𝑖𝑗
(𝑙))‖

2
+ 

2𝛼𝑙𝑡𝑟 [𝜓2
𝑇(𝑘 − 1) ((−𝑎𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)
−𝑐𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙)) (𝑏𝑖𝑗
(𝑙)

𝑑𝑖𝑗
(𝑙))

𝑇
)] +

𝛼𝑙
2 ‖(−𝑎𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)
−𝑐𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙)) (𝑏𝑖𝑗
(𝑙)

𝑑𝑖𝑗
(𝑙))

𝑇
((𝑏𝑖𝑗

(𝑙)
𝑑𝑖𝑗
(𝑙)) (𝑏𝑖𝑗

(𝑙)
𝑑𝑖𝑗
(𝑙))

𝑇
)

−1

(𝑏𝑖𝑗
(𝑙)

𝑑𝑖𝑗
(𝑙))‖

2

.                       

(5.41b)                                              

Applying matrix multiplication gives: 

‖(
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)𝜓1(𝑘)‖

2

= ‖(
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)𝜓1(𝑘 − 1)‖

2

+ 2𝛼𝑙𝑡𝑟 [(𝑎𝑖𝑗
(𝑙)
𝜓1(𝑘 − 1))

𝑇
(−𝑎𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)
) + (𝑐𝑖𝑗

(𝑙)
𝜓1(𝑘 −

1))
𝑇
(−𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙))] + 𝛼𝑙

2 ‖‖(
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)((

𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)

𝑇

(
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
))

−1

(
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)

𝑇

(
−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)

−𝑐𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙)
)‖‖

2

.               

                                                                                                                                                                                                            (5.42a) 
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‖𝜓2(𝑘)(𝑏𝑖𝑗
(𝑙) 𝑑𝑖𝑗

(𝑙))‖
2
= ‖𝜓2(𝑘 − 1)(𝑏𝑖𝑗

(𝑙) 𝑑𝑖𝑗
(𝑙))‖

2
+ 2𝛼𝑙𝑡𝑟 [(𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙))
𝑇
(−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)) +

(𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙))

𝑇
(−𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙))] +

𝛼𝑙
2 ‖(−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙) −𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙))(𝑏𝑖𝑗

(𝑙) 𝑑𝑖𝑗
(𝑙))

𝑇
((𝑏𝑖𝑗

(𝑙) 𝑑𝑖𝑗
(𝑙))(𝑏𝑖𝑗

(𝑙) 𝑑𝑖𝑗
(𝑙))

𝑇
)

−1

(𝑏𝑖𝑗
(𝑙) 𝑑𝑖𝑗

(𝑙))‖

2

.           

                                                                                                                                                                                                                 (5.42b)            

Applying norm properties on Eq. (5.42a) and Eq. (5.42b) gives: 

‖(
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)𝜓1(𝑘)‖

2

≤ ‖(
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)𝜓1(𝑘 − 1)‖

2

+ 2𝛼𝑙𝑡𝑟 [(𝑎𝑖𝑗
(𝑙)𝜓1(𝑘 − 1))

𝑇
(−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)) + (𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 −

1))
𝑇
(−𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙))] + 𝛼𝑙

2(𝜑1) [‖−𝑎𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)‖
2
+ ‖−𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙)‖

2
].                       

                                                                                                                                                                                                                 (5.43a) 

‖𝜓2(𝑘) (𝑏𝑖𝑗
(𝑙)

𝑑𝑖𝑗
(𝑙))‖

2
≤ ‖𝜓2(𝑘 − 1) (𝑏𝑖𝑗

(𝑙)
𝑑𝑖𝑗
(𝑙))‖

2
+  2𝛼𝑙𝑡𝑟 [(𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)
)
𝑇
(−𝑎𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)
) +

(𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙)
)
𝑇
(−𝑐𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙)
)] + 𝛼𝑙

2(𝜑2) [‖−𝑎𝑖𝑗
(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)
‖
2
+ ‖−𝑐𝑖𝑗

(𝑙)
𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙)
‖
2
].                                                                                                                                                                                   

                                                                                                                                                                                                                 (5.43b)                                                                                                                                                                                                                                          
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 By the definition of the error in Eq. (5.38)  

‖𝜓(𝑘)‖2 ≤ ‖(
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)𝜓1(𝑘)‖

2

+ ‖𝜓2(𝑘)(𝑏𝑖𝑗
(𝑙) 𝑑𝑖𝑗

(𝑙))‖
2
.                                                                                              (5.44) 

From Eq. (5.44) and by Eq. (5.43a) and Eq. (5.43b), the following is obtained: 

‖𝜓(𝑘)‖2 ≤ ‖(
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
)𝜓1(𝑘 − 1)‖

2

+ 2𝛼𝑙𝑡𝑟 [(𝑎𝑖𝑗
(𝑙)𝜓1(𝑘 − 1))

𝑇
(−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)) + (𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1))
𝑇
(−𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 −

1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙))] + 𝛼𝑙

2(𝜑1) [‖−𝑎𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)‖
2
+ ‖−𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙)‖

2
] +

‖𝜓2(𝑘 − 1)(𝑏𝑖𝑗
(𝑙) 𝑑𝑖𝑗

(𝑙))‖
2
+ 2𝛼𝑙𝑡𝑟 [(𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙))
𝑇
(−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)) + (𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙))
𝑇
(−𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) −

𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙))] + 𝛼𝑙

2(𝜑2) [‖−𝑎𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)‖
2
+ ‖−𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙)‖

2
]                                    (5.45) 
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‖𝜓(𝑘)‖2 ≤ ‖𝜓(𝑘 − 1)‖2 + 2𝛼𝑙𝑡𝑟 [(𝑎𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) + 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙))
𝑇
(−𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)) + (𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) +

𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙))

𝑇
(−𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙))] + 𝛼𝑙

2(𝜑1 + 𝜑2) [‖−𝑎𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)‖
2
+

‖−𝑐𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) − 𝜓2(𝑘 − 1)𝑑𝑖𝑗

(𝑙)‖
2
].                                                                                                                                                   (5.46) 

‖𝜓(𝑘)‖2 ≤ ‖𝜓(𝑘 − 1)‖2 − 2𝛼𝑙𝑡𝑟 [(𝑎𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) + 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙))
𝑇
(𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) + 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)) + (𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) +

𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙))

𝑇
(𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) + 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙))] + 𝛼𝑙

2(𝜑1 + 𝜑2) [‖𝑎𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) + 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)‖
2
+ ‖𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) +

𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙)‖

2
].                                                                                                                                                                                    (5.47) 

‖𝜓(𝑘)‖2 ≤ ‖𝜓(𝑘 − 1)‖2 − 2𝛼𝑙 [‖𝑎𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) + 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)‖
2
+ ‖𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) + 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙)‖

2
] +

𝛼𝑙
2(𝜑1 + 𝜑2) [‖𝑎𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) + 𝜓2(𝑘 − 1)𝑏𝑖𝑗
(𝑙)‖

2
+ ‖𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) + 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙)‖

2
].                                                                (5.48) 

By Eq. (5.36), the following can be obtained: 

‖𝜓(𝑘)‖2 ≤ ‖𝜓(𝑘 − 1)‖2 − 𝛼𝑙(2 − 𝛼𝑙(𝜑1 + 𝜑2)) [‖𝑎𝑖𝑗
(𝑙)𝜓1(𝑘 − 1) + 𝜓2(𝑘 − 1)𝑏𝑖𝑗

(𝑙)‖
2
+ ‖𝑐𝑖𝑗

(𝑙)𝜓1(𝑘 − 1) + 𝜓2(𝑘 − 1)𝑑𝑖𝑗
(𝑙)‖

2
].        

                                                                                                                                                                                                                (5.49) 

At 𝑘 = 1,      ‖𝜓(1)‖2 ≤ ‖𝜓(0)‖2 − 𝛼𝑙(2 − 𝛼𝑙(𝜑1 + 𝜑2)) [‖𝑎𝑖𝑗
(𝑙)𝜓1(0) + 𝜓2(0)𝑏𝑖𝑗

(𝑙)‖
2
+ ‖𝑐𝑖𝑗

(𝑙)𝜓1(0) + 𝜓2(0)𝑑𝑖𝑗
(𝑙)‖

2
]. 
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At 𝑘 = 2,         ‖𝜓(2)‖2 ≤ ‖𝜓(1)‖2 − 𝛼𝑙(2 − 𝛼𝑙(𝜑1 + 𝜑2)) [‖𝑎𝑖𝑗
(𝑙)𝜓1(1) +

𝜓2(1)𝑏𝑖𝑗
(𝑙)
‖
2
+ ‖𝑐𝑖𝑗

(𝑙)
𝜓1(1) + 𝜓2(1)𝑑𝑖𝑗

(𝑙)
‖
2
].  

At 𝑘 = 3,         ‖𝜓(3)‖2 ≤ ‖𝜓(2)‖2 − 𝛼𝑙(2 − 𝛼𝑙(𝜑1 + 𝜑2)) [‖𝑎𝑖𝑗
(𝑙)𝜓1(2) +

𝜓2(2)𝑏𝑖𝑗
(𝑙)‖

2
+ ‖𝑐𝑖𝑗

(𝑙)𝜓1(2) + 𝜓2(2)𝑑𝑖𝑗
(𝑙)‖

2
].  

At 𝑘 = 𝑛 − 1,   

‖𝜓(𝑛 − 1)‖2 ≤ ‖𝜓(𝑛 − 2)‖2 − 𝛼𝑙(2 − 𝛼𝑙(𝜑1 + 𝜑2)) [‖𝑎𝑖𝑗
(𝑙)𝜓1(𝑛 − 2) +

𝜓2(𝑛 − 2)𝑏𝑖𝑗
(𝑙)‖

2
+ ‖𝑐𝑖𝑗

(𝑙)𝜓1(𝑛 − 2) + 𝜓2(𝑛 − 2)𝑑𝑖𝑗
(𝑙)‖

2
]. 

At 𝑘 = 𝑛,    

‖𝜓(𝑛)‖2 ≤ ‖𝜓(𝑛 − 1)‖2𝛼𝑙(2 − 𝛼𝑙(𝜑1 + 𝜑2)) [‖𝑎𝑖𝑗
(𝑙)𝜓1(𝑛 − 1) + 𝜓2(𝑛 −

1)𝑏𝑖𝑗
(𝑙)‖

2
+ ‖𝑐𝑖𝑗

(𝑙)𝜓1(𝑛 − 1) + 𝜓2(𝑛 − 1)𝑑𝑖𝑗
(𝑙)‖

2
].  

Therefore, the following is obtained, 

‖𝜓(𝑘)‖2 ≤ ‖𝜓(𝑘 − 1)‖2 − 𝛼𝑙(2 − 𝛼𝑙(𝜑1 + 𝜑2))     

[∑(‖𝑎𝑖𝑗
(𝑙)𝜓1(𝑘) + 𝜓2(𝑘)𝑏𝑖𝑗

(𝑙)‖
2
+ ‖𝑐𝑖𝑗

(𝑙)𝜓1(𝑘) + 𝜓2(𝑘)𝑑𝑖𝑗
(𝑙)‖

2
)

∞

𝑘=1

]. 

If the convergence rate 𝛼 is chosen to satisfy Eq. (5.19b) and 𝑘 → ∞, then 

∑(‖𝑎𝑖𝑗
(𝑙)𝜓1(𝑘) + 𝜓2(𝑘)𝑏𝑖𝑗

(𝑙)‖
2
+ ‖𝑐𝑖𝑗

(𝑙)𝜓1(𝑘) + 𝜓2(𝑘)𝑑𝑖𝑗
(𝑙)‖

2
) < ∞,

∞

𝑘=1

 

Therefore, 

𝑙𝑖𝑚
𝑘→∞

(𝑎𝑖𝑗
(𝑙)𝜓1(𝑘) + 𝜓2(𝑘)𝑏𝑖𝑗

(𝑙)) = 0 and 𝑙𝑖𝑚
𝑘→∞

(𝑐𝑖𝑗
(𝑙)𝜓1(𝑘) + 𝜓2(𝑘)𝑑𝑖𝑗

(𝑙)) = 0. 

Since 𝑎(𝑙) > 0, 𝑏(𝑙) > 0, 𝑐(𝑙) > 0 and 𝑑(𝑙) > 0 then, 

𝑙𝑖𝑚
𝑘→∞

𝜓1(𝑘) = 0 and 𝑙𝑖𝑚
𝑘→∞

𝜓2(𝑘) = 0. 
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By Eq. (5.22a) and Eq. (5.22b), the following is obtained, 

𝑙𝑖𝑚
𝑘→∞

(𝑥(𝑙) − 𝑥̂(𝑙)(𝑘)) = 0 and 𝑙𝑖𝑚
𝑘→∞

(𝑦(𝑙) − 𝑦̂(𝑙)(𝑘)) = 0. 

Consequently, if 𝑘 → ∞, then 𝑥(𝑙) = 𝑥̂(𝑙)(𝑘) and y(l) = ŷ(l)(k). 

Therefore, if the system of CSME in Eq. (5.1) has a unique positive solution (𝑥(𝑙), 𝑦(𝑙)), 

then the numerical solution (𝑥̂(𝑙)(𝑘), 𝑦̂(𝑙)(𝑘)) in Eq. (5.34) converges to (𝑥(𝑙), 𝑦(𝑙)) for 

any initial values 𝑥̂(𝑙)(0), 𝑦̂(𝑙)(0) for 1 ≤ 𝑙 ≤ 4. (i.e., if 𝑘 → ∞, then 𝑥(𝑙) = 𝑥̂(𝑙)(𝑘) and 

𝑦(𝑙) = 𝑦̂(𝑙)(𝑘)). 
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Below is the Algorithm 5.2 for the EMFLSIM. This algorithm can be used by 

different software for solving the PCTrFFSME in Eq. (1.19). 

Algorithm 5.2: EMFLSIM Algorithm for PCTrFFSME. 

Input 𝐴̃, 𝐵,̃ 𝐶̃, 𝐷̃, 𝐸̃, 𝐹̃  # Split each matrix into 4 matrices (e.g., 𝑎(1), 𝑎(2), 𝑎(3), 𝑎(4)) 

for l = 1,2,3,4 

Choose 𝛼𝑙, 𝜀, 𝑥̂(𝑙)(𝑘) = 0, 𝑦̂(𝑙)(𝑘) = 0      # 0 is the Zero matrix with the same 

dimension as 𝑥(𝑙)(𝑘) 𝑎𝑛𝑑 𝑦(𝑙)(𝑘) = 0.    

While 𝑘 = 0, 1, 2, … , 𝑛 do 

       {
𝑥̂𝑙(𝑘) = 𝑥̂𝑙(𝑘 − 1) + 𝛼𝑙((𝛾𝑙)

𝑇𝛾𝑙)
−1(𝛾𝑙)

𝑇 (
𝑟𝑙(𝑘 − 1)

𝑠𝑙(𝑘 − 1)
) ,

𝑦̂𝑙(𝑘) = 𝑦̂𝑙(𝑘 − 1) + 𝛼𝑙 ∙ (𝑟𝑙(𝑘 − 1) 𝑠𝑙(𝑘 − 1))(𝛽𝑙)
𝑇((𝛽𝑙)

𝑇𝛽𝑙)
−1.

          

        𝑟𝑙(𝑘 − 1) = 𝑒𝑖𝑗
(𝑙) − 𝑎𝑖𝑗

(𝑙)𝑥̂𝑙(𝑘 − 1) − 𝑦̂𝑙(𝑘 − 1)𝑏𝑖𝑗
(𝑙). 

        𝑠𝑙(𝑘 − 1) = 𝑓𝑖𝑗
(𝑙) − 𝑐𝑖𝑗

(𝑙)𝑥̂𝑙(𝑘 − 1) − 𝑦̂𝑙(𝑘 − 1)𝑑𝑖𝑗
(𝑙). 

         𝛾𝑙 = (
𝑎𝑖𝑗
(𝑙)

𝑐𝑖𝑗
(𝑙)
), 𝛽𝑙 = (𝑏𝑖𝑗

(𝑙) 𝑑𝑖𝑗
(𝑙)). 

            𝛿(𝑙)(𝑘) = √
‖𝑥̂𝑙(𝑘)−𝑥̂𝑙(𝑘−1)‖

2+‖𝑦̂𝑙(𝑘)−𝑦̂𝑙(𝑘−1)‖
2

‖𝑥̂𝑙(𝑘)‖
2+‖𝑦̂𝑙(𝑘)‖

2  .  

        If 𝛿(𝑙)(𝑘) < 𝜀 then  

             𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘), 𝑦̂(𝑙)(𝑘)); 

             𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

       else  

             {
𝑥̂𝑙(𝑘) = 𝑥̂𝑙(𝑘 − 1) + 𝛼𝑙((𝛾𝑙)

𝑇𝛾𝑙)
−1(𝛾𝑙)

𝑇 (
𝑟𝑙(𝑘 − 1)

𝑠𝑙(𝑘 − 1)
) ,

𝑦̂𝑙(𝑘) = 𝑦̂𝑙(𝑘 − 1) + 𝛼𝑙 ∙ (𝑟𝑙(𝑘 − 1) 𝑠𝑙(𝑘 − 1))(𝛽𝑙)
𝑇((𝛽𝑙)

𝑇𝛽𝑙)
−1.

          

             update k.  

             𝑘 = 𝑘 + 1. 

        end 

        𝑝𝑟𝑖𝑛𝑡 (𝑥̂(𝑙)(𝑘), 𝑦̂(𝑙)(𝑘)), 

        𝑝𝑟𝑖𝑛𝑡 ("number of iterations =", 𝑘). 

end  
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To illustrate the effectiveness of the developed methods for solving the PCTrFFSME, 

various sizes of fuzzy systems, namely, small 2 × 2 and large 100 × 100, are 

considered. In addition, the performance of the developed methods is compared by 

calculating the number of iterations (𝑘), convergence rate (𝛼), relative error 𝛿(𝑙)(𝑘), 

error bound (𝜀), CPU time, real-time and memory usage. In addition to the graphical 

representation of the relative error 𝛿(𝑙)(𝑘) when 𝑘 increases are also given. 

5.1.4 Numerical Examples for PCTrFFSME  

To illustrate the accuracy and effectiveness of the developed methods for solving the 

PCTrFFSME in Eq. (1.19), various sizes of PCTrFFSME, namely, small (2 × 2) and 

large (100 × 100), are considered. Analytical positive fuzzy solutions are found by 

EMFMVM. The performance of EMFGIM and EMFLSIM for approximating that 

fuzzy solution are compared by calculating the number of iterations (𝑘), convergence 

rate (𝛼), error bound (𝜀), CPU time, real-time and memory usage. In addition to the 

graphical representation of the relative error 𝛿(𝑙)(𝑘) when k increases is also discussed, 

in the following Example 5.1.4.1, the developed methods are applied to small 

PCTrFFSME (2 × 2). 

Example 5.1.4.1 Solve the following 2 × 2 PCTrFFSME: 

{𝐴̃𝑋̃ + 𝑌̃𝐵̃ = 𝐸̃
𝐶̃𝑋̃ + 𝑌̃𝐷̃ = 𝐹̃

 

Given, 

𝐴̃ = (
(2, 3, 5, 7) (1, 2, 4, 6)
(1, 2, 3, 5) (2, 4, 6, 9)

), 𝐵̃ = (
(2, 4, 5, 8) (3, 6, 8, 10)
(3, 5, 7, 9) (1, 2, 4, 6)

), 

𝐸̃ = (
(17, 48, 110, 252) (17, 48, 114, 240)
(21, 63, 130, 293) (20, 66, 142, 289)

), 𝐶̃ = (
(2, 4, 5, 7) (5, 7, 9, 11)
(5, 6, 7, 8) (2, 3, 4, 6)

),  
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𝐷̃ = (
(1, 3, 4, 6) (3, 4, 6, 8)
(2, 3, 5, 7) (4, 5, 7, 9)

) and 𝐹̃ = (
(22, 59, 121, 267) (36, 85, 161, 305)
(32, 66, 128, 258) (41, 83, 159, 292)

). 

Solution: The positive fuzzy solution to the given PCTrFFSME is obtained by the 

developed methods as follows: 

Extended Modified Fuzzy Matrix Vectorization Method (EMFMVM):  

By decomposing the given PCTrFFSME and applying the EMFMVM, the analytical 

positive fuzzy solution is obtained as follows:  

Step 1: Convert the given PCTrFFSME to a system of CSME using Theorem 5.1.1. 

Step 2: Apply Vec-operator and Kronecker product on the system obtained in Step 1. 

Step 3: Convert the obtained system in Step 2 to the linear system 𝑃𝑄 = 𝑈 

where, 
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𝑃 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 1 0 0 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 0 0 0 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 1 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 2 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 5 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 2 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 5 3 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 5 2 0 3 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 3 2 0 0 4 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 4 0 0 0 4 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 3 2 6 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 4 0 6 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 4 7 0 0 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 6 3 0 0 0 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 4 7 4 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 6 3 0 4 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 4 0 0 5 0 7 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 6 0 0 0 5 0 7 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 4 8 0 4 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 6 0 8 0 4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 9 0 0 4 0 5 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 4 0 0 0 4 0 5 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 9 6 0 7 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 4 0 6 0 7 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 6 0 0 8 0 9 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 9 0 0 0 8 0 9
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 6 10 0 6 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 9 0 10 0 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 11 0 0 6 0 7 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 6 0 0 0 6 0 7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 11 8 0 9 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 6 0 8 0 9)
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𝑈 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

17
21
17
20
22
32
36
41
48
63
48
66
59
66
85
83
110
130
114
142
121
128
161
159
252
293
240
289
267
258
305
292)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 and 𝑄 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑥11
(1)

𝑥21
(1)

𝑥12
(1)

𝑥22
(1)

𝑦11
(1)

𝑦21
(1)

𝑦12
(1)

𝑦22
(1)

𝑥11
(2)

𝑥21
(2)

𝑥12
(2)

𝑥22
(2)

𝑦11
(2)

𝑦21
(2)

𝑦12
(2)

𝑦22
(2)

𝑥11
(3)

𝑥21
(3)

𝑥12
(3)

𝑥22
(3)

𝑦11
(3)

𝑦21
(3)

𝑦12
(3)

𝑦22
(3)

𝑥11
(4)

𝑥21
(4)

𝑥12
(4)

𝑥22
(4)

𝑦11
(4)

𝑦21
(4)

𝑦12
(4)

𝑦22
(4)
)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 
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Step 4: Multiply both sides of the linear matrix equation obtained in Step 3 by 𝑃−1 and 

solving for 𝑄 we get: 

𝑄 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4
2
3
4
2
2
1
3
5
3
4
6
3
4
3
5
7
5
6
8
4
6
5
7
10
9
8
11
7
9
8
10)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

Step 5: By Definitions 2.6.2.2 and 3.3.3, the obtained solution in Step 4 can be written 

as follows: 

{
𝑋̃ = (

(4, 5, 7, 10) (3, 4, 6, 8)
(2, 3, 5, 9) (4, 6, 8, 11)

) ,

𝑌̃ = (
(2, 3, 4, 7) (1, 3, 5, 8)
(2, 4, 6, 9) (3, 5, 7, 10)

) .
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This positive fuzzy solution is approximated using the EMFGIM and EMFLSIM as 

follows: 

Extended Modified Fuzzy Gradient-Iterative Method (EMFGIM) and Extended 

Modified Fuzzy Least-Square Iterative Method (EMFLSIM): 

EMFGIM and EMFLSIM are applied to approximate the positive fuzzy solution 

𝑥̂(𝑙)(𝑘) and 𝑦̂(𝑙)(𝑘) for the given PCTrFFSME using the following initial value for  

1 ≤ 𝑙 ≤ 4, 𝑥̂(𝑙) = (
0 0
0 0

)  𝑎𝑛𝑑 𝑦̂(𝑙) = (
0 0
0 0

). The approximated solutions 𝑥̂ 𝑎𝑛𝑑 𝑦̂ is 

shown in Table 5.1 with the convergence rate (𝛼), error bound (𝜀), and total number of 

iteration (𝑘), while Table 5.2 shows the computational time and memory usage for 

EMFGIM and EMFLSIM. 
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Table 5.1  

Comparison Between EMFMVM, EMFGIM and EMFLSIM for Example 5.1.4.1. 

 Method Analytical Solution-Approximated Solution 𝜶 𝜺 𝒌 

𝑥̂(1) EMFMVM (
4 3
2 4

) NA 0 NA 

EMFGIM (
4.0003146781142283762 3.0008763877876229244
1.9996620682548063892 3.9991059886583548709

) 0.01515 10−5 236 

EMFLSIM (
3.9994905651474607941 2.9991905860792312089
1.9994905651470906697 3.9991905860781175687

 ) 0.5 10−5 213 

𝑦̂(1) EMFMVM (
2 1
2 3

) NA 0 NA 

EMFGIM (
1.9988524913049122353 1.0013283860149024908
2.0010864923386014879 2.9987621291364226938

) 0.01515 10−5 236 

EMFLSIM (
2.0005343495876688624 1.0009007873088771599
2.0005343495884565574 3.0009007873076832875

) 0.5 10−5 213 

𝑥̂(2) EMFMVM (
5 4
3 6

) NA 0 NA 

EMFGIM (
4.999864079584862688 4.0030110768713679898
3.0003389970085296313 5.997280209950071278

) 0.006711 10−5 333 

EMFLSIM (
4.9988761522873104256 3.9985435355183413819
2.9990633422322140346 5.9990330988581697249

) 0.5 10−5 184 

𝑦̂(2) EMFMVM (
3 3
4 5

) NA 0 NA 

EMFGIM (
2.9983853131430880787 3.0019716289620118953
4.0023361161663756989 4.9968909026675074104

) 0.006711 10−5 333 

EMFLSIM (
3.0006934360840940105 3.0016140300903587928
4.0008105860628660745 5.001423238975299027

) 0.5 10−5 184 
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Table 5.1 continued. 

𝒙̂(𝟑) EMFMVM (
𝟕 𝟔
𝟓 𝟖

) NA 0 NA 

EMFGIM (
6.9966176458091605751 5.9986527914727380584
4.9980891197185313267 7.9959255849905723918

) 0.003436 10−5 269 

EMFLSIM (
6.9949554419054769516 5.9938085953915972691
4.9961576166547481863 7.9958332089102526017

) 0.5 10−5 367 

𝑦̂(3) EMFMVM (
4 5
6 7

) NA 0 NA 

EMFGIM (
3.9992591622654458963 5.006245036314479103
6.0032068410122893031 7.0014106935371849297

) 0.003436 10−5 269 

EMFLSIM (
4.0034261490303281354 5.0060523578143844872
6.0032467233815930657 7.0052034740382072243

) 0.5 10−5 367 

𝑥̂(4) EMFMVM (
10 8
9 11

) NA 0 NA 

EMFGIM (
9.9965893617203098369 8.0200665293211628219
8.99879605836685188 10.978609176105587048

) 0.001831 10−5 551 

EMFLSIM (
9.9826328737657879555 7.9801395018407377488
8.9911911526917516843 10.991796352652112364

) 0.5 10−5 502 

𝑦̂(4) EMFMVM (
7 8
9 10

) NA 0 NA 

EMFGIM (
6.9831466534571057456 8.0224337286592531978
9.0229413143636603062 9.9800757765377075115

) 0.001831 10−5 551 

EMFLSIM (
7.0083279806078923944 8.017488243908286638
9.0079819495371672092 10.015609497910344443

) 0.5 10−5 502 
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Table 5.2  

Computational Time, Memory Usage for EMFGIM and EMFLSIM for  

Example 5.1.4.1. 

 
Method 𝒌 

CPU 

time 

Real 

time 
Memory usage 

𝑥̂(1) EMFGIM 236 6.09 ms 6.15 ms 1.05 MB 

EMFLSIM 213 8.15 ms 9.89 ms 1.32 MB 

𝑦̂(1) EMFGIM 236 6.29 ms 6.15 ms 1.05 MB 

EMFLSIM 213 7.63 ms 7.73 ms 1.30 MB 

𝑥̂(2) EMFGIM 333 6.24 ms 6.17 ms 1.05 MB 

EMFLSIM 184 7.39 ms 7.38 ms 1.32 MB 

𝑦̂(2) EMFGIM 333 6.15 ms 6.19 ms 1.05 MB 

EMFLSIM 184 7.13 ms 7.30 ms 1.30 MB 

𝑥̂(3) EMFGIM 269 6.16 ms 6.09 ms 1.05 MB 

EMFLSIM 367 7.71 ms 7.76 ms 1.32 MB 

𝑦̂(3) EMFGIM 269 6.16 ms 6.06 ms 1.05 MB 

EMFLSIM 367 8.00 ms 7.99 ms 1.30 MB 

𝑥̂(4) EMFGIM 551 5.98 ms 5.99 ms 1.05 MB 

EMFLSIM 502 7.91 ms 7.86 ms 1.32 MB 

𝑦̂(4) EMFGIM 551 6.10 ms 5.99 ms 1.05 MB 

EMFLSIM 502 7.66 ms 7.71 ms 1.30 MB 
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The following Figure 5.1 shows the change in the relative error 𝛿(𝑙)(𝑘) when 𝑘 

increases up to 𝑘 = 20.  

 

(a) (b) 

(c) (d) 

Figure 5.1. Comparison between 𝛿(𝑙)(𝑘) of EMFGIM and EMFLSIM for the first 20 

iterations for Example 5.1.4.1. 
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From Tables 5.1, 5.2 and Figure 5.1 (𝑎 − 𝑑), the relative error 𝛿(𝑙)(𝑘) is becoming 

smaller as 𝑘 increases.  

Figure 5.1 (𝑎 − 𝑑) show that the error of the EMFGIM and EMFLSIM for 

approximating 𝑥̂(𝑙) is reducing significantly as 𝑘 increasing, where the EMFLSIM 

converges to the analytical solution for fewer number of iterations with bigger step size 

comparing to the EMFGIM. 

 

This indicates that the developed algorithms are effective and convergent for the given 

PCTrFFSME. In addition, the EMFLSIM takes more computational timing and more 

memory comparing to EFGIM. However, in terms of error, number of iterations 

EMFLSIM provide extremely accurate approximations with very few iterations. 

Verification of the solution: 

To verify the obtained fuzzy solution, we first multiply 𝐴̃𝑋̃ as follows: 

𝐴̃𝑋̃ = (
(2, 3, 5, 7) (1, 2, 4, 6)
(1, 2, 3, 5) (2, 4, 6, 9)

) (
(4, 5, 7, 10) (3, 4, 6, 8)
(2, 3, 5, 9) (4, 6, 8, 11)

) 

                           = (
(10, 21, 55, 124) (10, 24, 62, 122)
(8, 22, 51, 131) (11, 32, 66, 139)

), 

and,  

𝑌̃𝐵̃ = (
(2, 3, 4, 7) (1, 3, 5, 8)
(2, 4, 6, 9) (3, 5, 7, 10)

) (
(2, 4, 5, 8) (3, 6, 8, 10)
(3, 5, 7, 9) (1, 2, 4, 6)

) 

                           = (
(7, 27, 55, 128) (7, 24, 52, 118)
(13, 41, 79, 162) (9, 34, 76, 150)

). 

We also multiply 𝐶̃𝑋̃ as follows: 

𝐶̃𝑋̃  = (
(1, 3, 4, 6) (3, 4, 6, 8)
(2, 3, 5, 7) (4, 5, 7, 9)

) (
(4, 5, 7, 10) (3, 4, 6, 8)
(2, 3, 5, 9) (4, 6, 8, 11)

) 
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                          = (
(18, 41, 80, 169) (26, 58, 102, 177)
(24, 39, 69, 134) (23, 42, 74, 130)

), 

and,  

𝑌̃𝐷̃ = (
(2, 3, 4, 7) (1, 3, 5, 8)
(2, 4, 6, 9) (3, 5, 7, 10)

) (
(2, 4, 5, 7) (5, 7, 9, 11)
(5, 6, 7, 8) (2, 3, 4, 6)

) 

                           = (
(4, 18, 41, 98) (10, 27, 59, 128)
(8, 27, 59, 124) (18, 41, 85, 162)

). 

Therefore, 

𝐴̃𝑋̃ + 𝑌̃𝐵̃ = (
(17, 48, 110, 252) (17, 48, 114, 240)
(21, 63, 130, 293) (20, 66, 142, 289)

) = 𝐸̃. 

𝐶̃𝑋̃ + 𝑌̃𝐷̃ = (
(22, 59, 121, 267) (36, 85, 161, 305)
(32, 66, 128, 258) (41, 83, 159, 292)

) = 𝐹̃. 

Clearly, the obtained positive fuzzy solution satisfies the given PCTrFFSME, and it is 

feasible (strong fuzzy solution). 

 

In the following Example 5.1.4.2, the EMFMVM, EMFGIM and EMFLSIM are 

applied on PCTrFFSME sized 100 × 100.  The solution to this example is performed 

by Maple 2019. 

Example 5.1.4.2. Solve the following 100 × 100 PCTrFFSME: 

{𝐴̃𝑋̃ + 𝑌̃𝐵̃ = 𝐸̃
𝐶̃𝑋̃ + 𝑌̃𝐷̃ = 𝐹̃

 

Given, 

𝑎(1) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  1 . . 2), 

𝑏(1) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  1 . . 2), 

𝑐(1) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  1 . . 2), 

𝑑(1) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  1 . . 2), 
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𝑒(1) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 

=  7 × 102 . .  1.5 × 103), 

𝑓(1) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 

=  7 × 102 . .  1.5 × 103), 

𝑎(2) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  3 . . 4), 

𝑏(2) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  3 . . 4), 

𝑐(2) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  3 . . 4), 

𝑑(2) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  3 . . 4), 

𝑒(2) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 

=  4 × 103 . .  6 × 103), 

𝑓(2) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 

=  4 × 104 . .  6 × 104), 

𝑎(3) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  5 . . 6), 

𝑏(3) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  5 . . 6), 

𝑐(3) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  5 . . 6), 

𝑑(3) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  5 . . 6), 

𝑒(3) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 

=  1.1 × 104 . .  1.3 × 104), 

𝑓(3) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 

=  1.1 × 104 . .  1.3 × 104), 

𝑎(4) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  7 . . 8), 

𝑏(4) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  7 . . 8), 
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𝑐(4) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  7 . . 8), 

𝑑(4) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  7 . . 8), 

𝑒(4) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 

=  2.2 × 105 . .  3 × 105), 

𝑓(4) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 

=  2.2 × 105 . .  3 × 105), 

Solution: The solution for the given PCTrFFSME is obtained by the developed 

methods as follows: 

Extended Modified Fuzzy Matrix Vectorization Method (EMFMVM): 

To apply EMFMVM, we need to find the inverse of the 10000 × 10000 matrix, which 

requires long computational timing and huge memory. Thus, EMFMVM is not a 

practical approach for such a large dimensional system.  

 

Extended Modified Fuzzy Gradient-Iterative Method (EMFGIM) and Extended 

Modified Fuzzy Least-Square Iterative Method (EMFLSIM) 

EMFGIM and EMFLSIM are applied to compute the approximated fuzzy solution 

𝑥̂(𝑙)(𝑘) and 𝑦̂(𝑙)(𝑘) for the given PCTrFFSME with 𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 0.999 for 

EMFLSIM and 𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 2 × 10
−7 for EMFGIM using the following 

initial value, 

𝑥̂(𝑙)(0) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  0). 
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𝑦̂(𝑙)(0) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐴𝑙𝑔𝑒𝑏𝑟𝑎:−𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑎𝑡𝑟𝑖𝑥(100, 100, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  0). 

In the following Table 5.3, the computational time and memory usage for the first 10 

iterations for EMFLSIM and EMFGIM are compared. 

 

Table 5.3  

Comparison Between EMFGIM and EMFLSIM for Example 5.1.4.2. 

 

Method 𝒌 𝜶 

CPU 

time 

Real 

time 

Memory usage 

𝑥̂(1) EMFGIM 10 2 × 10−7 7.58 s 6.17 s 1.40 GB 

EMFLSIM 10 0.999 22.51 s 19.06 s 2.52 GB 

𝑦̂(1) EMFGIM 10 2 × 10−7 7.73 s 6.29 s 1.35 GB 

EMFLSIM 10 0.999 22.34 s 19.38 s 2.45 GB 

𝑥̂(2) FGIM 10 2 × 10−7 7.83 s 6.4 s 1.43 GB 

FLSIM 10 0.999 25.69 s 22.54 s 2.78 GB 

𝑦̂(2) FGIM 10 2 × 10−7 8.28 s 6.73 s 1.43 GB 

FLSIM 10 0.999 25.75 s 22.62 s 2.78 GB 

𝑥̂(3) FGIM 10 2 × 10−7 7.72 s 6.29 s 1.45 GB 

FLSIM 10 0.999 27.32 s 24.24 s 2.91 GB 

𝑦̂(3) FGIM 10 2 × 10−7 8.26 s 6.71 s 1.45 GB 

FLSIM 10 0.999 27.58 s 24.36 s 3.02 GB 

𝑥̂(4) FGIM 10 2 × 10−7 8.85 s 7.11 s 1.60 GB 

FLSIM 10 0.999 28.84 s 25.47 s 3.09 GB 

𝑦̂(4) FGIM 10 2 × 10−7 9.10 s 7.37 s 1.60 GB 

FLSIM 10 0.999 28.80 s 25.44 s 3.09 GB 
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The following Figure 5.2 shows the change in the relative error 𝛿(𝑙)(𝑘) when 𝑘 

increases up to 𝑘 = 10.  

(a) (b) 

(c) (d) 

Figure 5.2. Comparison between 𝛿(𝑙)(𝑘) of EMFGIM and EMFLSIM for the first 10 

iterations for Example 5.1.4.1. 
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Table 5.3 and Figure 5.2 (𝑎 − 𝑑) show that the error 𝛿(𝑙)(𝑘) is reducing as 𝑘 increases.  

Figure 5.2 (𝑎 − 𝑑) show that the error of the EMFGIM and EFLSIM for approximating 

𝑥̂(𝑙) is reducing significantly as 𝑘 increasing, where the EMFLSIM converges to the 

analytical solution for fewer number of iterations with bigger step size comparing to 

the EMFGIM. 

This indicates that the developed algorithms are effective and convergent for the given 

PCTrFFSME. In addition, the EMFLSIM takes more computational timing and more 

memory compared to FMGIM. However, in terms of accuracy, relative error, number 

of iterations, EMFLSIM provide extremely accurate approximations with very few 

iterations. 

5.2 Conclusion and Contribution 

This chapter demonstrated the construction of analytical and numerical methods for 

solving PCTrFFSME, where the coefficients are positive trapezoidal fuzzy numbers. 

The EMFMVM aims to find the analytical fuzzy solution for PCTrFFSME. However, 

it is limited for small sized systems while EMFGIM and EMFLSIM aim to find an 

approximated fuzzy solution for large PCTrFFSME. The numerical examples analysis 

and graphical representation of the relative error indicate that the approximated 

solutions obtained by EMFGIM and EMFLSIM methods converge to the analytical 

solution for any initial value and any sizes of matrix system (up to 100 × 100). In 

addition, the relative error is becoming smaller as the number of iterations increases. 

This indicates that the developed methods are effective and convergent for the given 
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PCTrFFSME regardless of any size of matrices. The following contributions 

summarize the findings in this chapter: 

1. The constructed methods demonstrate the transformation of PCTrFFSME to a system 

of CSME. 

2. Extending the EMFMVM which gives the analytical positive fuzzy solution for 

PCTrFFSME, with square and non-square coefficient matrices. 

3. Extending the EMFGIM and EMFLSIM, which gives the numerical positive fuzzy 

approximation solution for solving PCTrFFSME, regardless of the size of the 

PCTrFFSME. 

4. Provide  the necessary conditions for the feasibility of the PCTrFFSME, to have a 

strong positive fuzzy solution. 

5. Analyzing the obtained positive fuzzy solution by checking the feasibility, graphical 

representation and verifying the PCtrFFSME.   

6. The necessary and sufficient theorems for the PCTrFFSME to have a unique positive 

fuzzy solution are checked before applying the developed methods. 
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CHAPTER SIX 

SOLVING ARBITRARY COUPLED TRAPEZOIDAL FULLY 

FUZZY SYLVESTER MATRIX EQUATION 

In the previous Chapter Five, the positive fuzzy solution to the PCTrFFSME has been 

obtained using EMFMVM, EMFGIM and EMFLSIM. In this chapter, arbitrary fuzzy 

solutions of arbitrary CTrFFSME are obtained analytically by modifying the absolute 

system method for solving ATrFFSME in Section 4.4. Therefore, AMO and RAMO in 

Sections 3.1.1,3.1.2, 3.1.3 and 3.2 respectively are applied to convert the arbitrary 

CTrFFSME in Eq. (1.19) to a system of non-linear equations. Then the non-linear 

system is reduced to an equivalent system of absolute equations where the arbitrary 

fuzzy solutions are obtained by solving that system of absolute equations. In the 

following Section 6.1, the fundamental theorem of arbitrary CTrFFSME is discussed. 

6.1 Fundamental Theorem of Arbitrary CTrFFSME. 

In this section, the arbitrary CTrFFSME {𝐴̃𝑋̃ + 𝑌̃𝐵̃ = 𝐸̃
𝐶̃𝑋̃ + 𝑌̃𝐷̃ = 𝐹̃

 in Eq. (1.19) is converted to 

an equivalent system of non-linear equations based on AMO and RAMO in  

Sections 3.1.1, 3.1.2, 3.1.3.  

Definition 6.1.1. A matrix equation in the form {𝐴̃𝑋̃ + 𝑌̃𝐵̃ = 𝐸̃
𝐶̃𝑋̃ + 𝑌̃𝐷̃ = 𝐹̃

 is called arbitrary 

coupled trapezoidal fully fuzzy Sylvester matrix equations (ACTrFFSME) if 

𝐴̃ = (𝑎̃𝑖𝑗)𝑚×𝑚 = (𝑎𝑖𝑗
(1), 𝑎𝑖𝑗

(2), 𝑎𝑖𝑗
(3), 𝑎𝑖𝑗

(4)), 𝐶̃ = (𝑐̃𝑖𝑗)𝑚×𝑚 = (𝑐𝑖𝑗
(1), 𝑐𝑖𝑗

(2), 𝑐𝑖𝑗
(3), 𝑐𝑖𝑗

(4)), 

∀ 1 ≤  𝑖, 𝑗 ≤  𝑚, 𝐵̃ = (𝑏̃𝑖𝑗)𝑛×𝑛 = (𝑏𝑖𝑗
(1), 𝑏𝑖𝑗

(2), 𝑏𝑖𝑗
(3), 𝑏𝑖𝑗

(4)),  
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𝐷̃ = (𝑑̃𝑖𝑗)𝑛×𝑛 = (𝑑𝑖𝑗
(1), 𝑑𝑖𝑗

(2), 𝑑𝑖𝑗
(3), 𝑑𝑖𝑗

(4)), ∀1 ≤  𝑖, 𝑗 ≤  𝑛, 

  𝑋̃ = (𝑥̃𝑖𝑗)𝑚×𝑛 = (𝑥𝑖𝑗
(1), 𝑥𝑖𝑗

(2), 𝑥𝑖𝑗
(3), 𝑥𝑖𝑗

(4)), 𝑌̃ = (𝑦̃𝑖𝑗)𝑚×𝑛 = (𝑦𝑖𝑗
(1), 𝑦𝑖𝑗

(2), 𝑦𝑖𝑗
(3), 𝑦𝑖𝑗

(4)), 

 𝐸̃ = (𝑒̃𝑖𝑗)𝑚×𝑛 = (𝑒𝑖𝑗
(1), 𝑒𝑖𝑗

(2), 𝑒𝑖𝑗
(3), 𝑒𝑖𝑗

(4)), 𝐹̃ = (𝑓𝑖𝑗)𝑚×𝑛 = (𝑓𝑖𝑗
(1), 𝑓𝑖𝑗

(2), 𝑓𝑖𝑗
(3), 𝑓𝑖𝑗

(4)), 

∀ 1 ≤  𝑖 ≤  𝑚, 1 ≤  𝑗 ≤  𝑛 are arbitrary trapezoidal fuzzy matrices. 

In the following Definition 6.1.2, the system of non-linear equations is introduced. 

Definition 6.1.2.  The system of equations in the form,  

{
 
 
 
 
 

 
 
 
 
 𝑚𝑖𝑛 (𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1), 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(4), 𝑎𝑖𝑗

(4)𝑥𝑖𝑗
(1), 𝑎𝑖𝑗

(4)𝑥𝑖𝑗
(4)) + 𝑚𝑖𝑛 (𝑦𝑖𝑗

(1)𝑏𝑖𝑗
(1), 𝑦𝑖𝑗

(1)𝑏𝑖𝑗
(4), 𝑦𝑖𝑗

(4)𝑏𝑖𝑗
(1), 𝑦𝑖𝑗

(4)𝑏𝑖𝑗
(4)) = 𝑒𝑖𝑗

(1),

𝑚𝑖 𝑛(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)) + 𝑚𝑖 𝑛(𝑦𝑖𝑗
(2)𝑏𝑖𝑗

(2), 𝑦𝑖𝑗
(2)𝑏𝑖𝑗

(3), 𝑦𝑖𝑗
(3)𝑏𝑖𝑗

(2), 𝑦𝑖𝑗
(3)𝑏𝑖𝑗

(3)) = 𝑒𝑖𝑗
(2),

𝑚𝑎𝑥(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)) + 𝑚𝑎𝑥(𝑦𝑖𝑗
(2)𝑏𝑖𝑗

(2), 𝑦𝑖𝑗
(2)𝑏𝑖𝑗

(3), 𝑦𝑖𝑗
(3)𝑏𝑖𝑗

(2), 𝑦𝑖𝑗
(3)𝑏𝑖𝑗

(3)) = 𝑒𝑖𝑗
(3),

𝑚𝑎𝑥(𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(4)) + 𝑚𝑎𝑥(𝑦𝑖𝑗
(1)𝑏𝑖𝑗

(1), 𝑦𝑖𝑗
(1)𝑏𝑖𝑗

(4), 𝑦𝑖𝑗
(4)𝑏𝑖𝑗

(1), 𝑦𝑖𝑗
(4)𝑏𝑖𝑗

(4)) = 𝑒𝑖𝑗
(4),

𝑚𝑖𝑛 (𝑑𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑑𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑑𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑑𝑖𝑗
(4)𝑥𝑖𝑗

(4)) + 𝑚𝑖𝑛 (𝑦𝑖𝑗
(1)𝑒𝑖𝑗

(1), 𝑦𝑖𝑗
(1)𝑒𝑖𝑗

(4), 𝑦𝑖𝑗
(4)𝑒𝑖𝑗

(1), 𝑦𝑖𝑗
(4)𝑒𝑖𝑗

(4)) = 𝑓𝑖𝑗
(1),

𝑚𝑖 𝑛(𝑑𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑑𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑑𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑑𝑖𝑗
(3)𝑥𝑖𝑗

(3)) + 𝑚𝑖 𝑛(𝑦𝑖𝑗
(2)𝑒𝑖𝑗

(2), 𝑦𝑖𝑗
(2)𝑒𝑖𝑗

(3), 𝑦𝑖𝑗
(3)𝑒𝑖𝑗

(2), 𝑦𝑖𝑗
(3)𝑒𝑖𝑗

(3)) = 𝑓𝑖𝑗
(2),

𝑚𝑎𝑥(𝑑𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑑𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑑𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑑𝑖𝑗
(3)𝑥𝑖𝑗

(3)) + 𝑚𝑎𝑥(𝑦𝑖𝑗
(2)𝑒𝑖𝑗

(2), 𝑦𝑖𝑗
(2)𝑒𝑖𝑗

(3), 𝑦𝑖𝑗
(3)𝑒𝑖𝑗

(2), 𝑦𝑖𝑗
(3)𝑒𝑖𝑗

(3)) = 𝑓𝑖𝑗
(3),

𝑚𝑎𝑥(𝑑𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑑𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑑𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑑𝑖𝑗
(4)𝑥𝑖𝑗

(4)) + 𝑚𝑎𝑥(𝑦𝑖𝑗
(1)𝑒𝑖𝑗

(1), 𝑦𝑖𝑗
(1)𝑒𝑖𝑗

(4), 𝑦𝑖𝑗
(4)𝑒𝑖𝑗

(1), 𝑦𝑖𝑗
(4)𝑒𝑖𝑗

(4)) = 𝑓𝑖𝑗
(4).

     

is called a system of non-linear equations.  

In the following Theorem 6.1.1, the ACTrFFSME is converted to an equivalent system 

of non-linear equations. 

Theorem 6.1.1 Fundamental Theorem of ACTrFFSME 

Suppose that 𝐴̃, 𝐵̃, 𝐶̃, 𝐷̃, 𝑋̃, 𝑌̃, 𝐸̃ and 𝐹̃ are arbitrary trapezoidal fuzzy matrices, then the 

ACTrFFSME {𝐴̃𝑋̃ + 𝑌̃𝐵̃ = 𝐸̃
𝐶̃𝑋̃ + 𝑌̃𝐷̃ = 𝐹̃

 is equivalent to the following system of non-linear 

equations: 
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{
 
 
 
 
 

 
 
 
 
 𝑚𝑖𝑛 (𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1), 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(4), 𝑎𝑖𝑗

(4)𝑥𝑖𝑗
(1), 𝑎𝑖𝑗

(4)𝑥𝑖𝑗
(4)) + 𝑚𝑖𝑛 (𝑦𝑖𝑗

(1)𝑏𝑖𝑗
(1), 𝑦𝑖𝑗

(1)𝑏𝑖𝑗
(4), 𝑦𝑖𝑗

(4)𝑏𝑖𝑗
(1), 𝑦𝑖𝑗

(4)𝑏𝑖𝑗
(4)) = 𝑒𝑖𝑗

(1),

𝑚𝑖 𝑛(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)) + 𝑚𝑖 𝑛(𝑦𝑖𝑗
(2)𝑏𝑖𝑗

(2), 𝑦𝑖𝑗
(2)𝑏𝑖𝑗

(3), 𝑦𝑖𝑗
(3)𝑏𝑖𝑗

(2), 𝑦𝑖𝑗
(3)𝑏𝑖𝑗

(3)) = 𝑒𝑖𝑗
(2),

𝑚𝑎𝑥(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)) + 𝑚𝑎𝑥(𝑦𝑖𝑗
(2)𝑏𝑖𝑗

(2), 𝑦𝑖𝑗
(2)𝑏𝑖𝑗

(3), 𝑦𝑖𝑗
(3)𝑏𝑖𝑗

(2), 𝑦𝑖𝑗
(3)𝑏𝑖𝑗

(3)) = 𝑒𝑖𝑗
(3),

𝑚𝑎𝑥(𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(4)) + 𝑚𝑎𝑥(𝑦𝑖𝑗
(1)𝑏𝑖𝑗

(1), 𝑦𝑖𝑗
(1)𝑏𝑖𝑗

(4), 𝑦𝑖𝑗
(4)𝑏𝑖𝑗

(1), 𝑦𝑖𝑗
(4)𝑏𝑖𝑗

(4)) = 𝑒𝑖𝑗
(4),

𝑚𝑖𝑛 (𝑑𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑑𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑑𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑑𝑖𝑗
(4)𝑥𝑖𝑗

(4)) + 𝑚𝑖𝑛 (𝑦𝑖𝑗
(1)𝑒𝑖𝑗

(1), 𝑦𝑖𝑗
(1)𝑒𝑖𝑗

(4), 𝑦𝑖𝑗
(4)𝑒𝑖𝑗

(1), 𝑦𝑖𝑗
(4)𝑒𝑖𝑗

(4)) = 𝑓𝑖𝑗
(1),

𝑚𝑖 𝑛(𝑑𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑑𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑑𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑑𝑖𝑗
(3)𝑥𝑖𝑗

(3)) + 𝑚𝑖 𝑛(𝑦𝑖𝑗
(2)𝑒𝑖𝑗

(2), 𝑦𝑖𝑗
(2)𝑒𝑖𝑗

(3), 𝑦𝑖𝑗
(3)𝑒𝑖𝑗

(2), 𝑦𝑖𝑗
(3)𝑒𝑖𝑗

(3)) = 𝑓𝑖𝑗
(2),

𝑚𝑎𝑥(𝑑𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑑𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑑𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑑𝑖𝑗
(3)𝑥𝑖𝑗

(3)) + 𝑚𝑎𝑥(𝑦𝑖𝑗
(2)𝑒𝑖𝑗

(2), 𝑦𝑖𝑗
(2)𝑒𝑖𝑗

(3), 𝑦𝑖𝑗
(3)𝑒𝑖𝑗

(2), 𝑦𝑖𝑗
(3)𝑒𝑖𝑗

(3)) = 𝑓𝑖𝑗
(3),

𝑚𝑎𝑥(𝑑𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑑𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑑𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑑𝑖𝑗
(4)𝑥𝑖𝑗

(4)) + 𝑚𝑎𝑥(𝑦𝑖𝑗
(1)𝑒𝑖𝑗

(1), 𝑦𝑖𝑗
(1)𝑒𝑖𝑗

(4), 𝑦𝑖𝑗
(4)𝑒𝑖𝑗

(1), 𝑦𝑖𝑗
(4)𝑒𝑖𝑗

(4)) = 𝑓𝑖𝑗
(4).

    (6.1) 

 

Proof: 

Let 𝐴̃, 𝐵̃, 𝐶̃, 𝐷̃, 𝑋̃, 𝑌̃, 𝐸̃ and 𝐹̃ in the ACTrFFSME {𝐴̃𝑋̃ + 𝑌̃𝐵̃ = 𝐸̃
𝐶̃𝑋̃ + 𝑌̃𝐷̃ = 𝐹̃

 be arbitrary 

trapezoidal fuzzy matrices respectively, then the RAMO and EAMO in Sections 3.1.2, 

3.1.3 and 3.2 respectively can be  applied to obtain 𝑎̃𝑖𝑗𝑥̃𝑖𝑗 , 𝑦̃𝑖𝑗𝑏̃𝑖𝑗, 𝑐̃𝑖𝑗𝑥̃𝑖𝑗 and 𝑦̃𝑖𝑗𝑑̃𝑖𝑗 as 

follows:  

𝐴̃𝑋̃ = ∑ 𝑎̃𝑖𝑘

𝑛

𝑘=1

𝑥̃𝑘𝑗   ∀ 1 < 𝑖 < 𝑚, 1 < 𝑗 < 𝑛, 

which can be written as 𝐴̃𝑋̃ = (𝑀𝑖𝑗 , 𝑁𝑖𝑗 , 𝑃𝑖𝑗 , 𝑄𝑖𝑗) where 

𝑀𝑖𝑗 = 𝑚𝑖𝑛 (𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(4)), 

𝑁𝑖𝑗 = 𝑚𝑖𝑛 (𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)), 

𝑃𝑖𝑗 = 𝑚𝑎𝑥(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)), 

𝑄𝑖𝑗 = 𝑚𝑎𝑥(𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
), 

and, 

𝑌̃𝐵̃ = ∑ 𝑦̃𝑖𝑘

𝑛

𝑘=1

𝑏̃𝑘𝑗    1 < 𝑖 < 𝑚, 1 < 𝑗 < 𝑛, 
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which can be written as 𝑌̃𝐵̃ = (𝐹𝑖𝑗 , 𝐿𝑖𝑗 , 𝐻𝑖𝑗 , 𝑅𝑖𝑗) where 

𝐹𝑖𝑗 = 𝑚𝑖𝑛 (𝑦𝑖𝑗
(1)𝑏𝑖𝑗

(1), 𝑦𝑖𝑗
(1)𝑏𝑖𝑗

(4), 𝑦𝑖𝑗
(4)𝑏𝑖𝑗

(1), 𝑦𝑖𝑗
(4)𝑏𝑖𝑗

(4)), 

𝐿𝑖𝑗 = 𝑚𝑖𝑛 (𝑦𝑖𝑗
(2)𝑏𝑖𝑗

(2), 𝑦𝑖𝑗
(2)𝑏𝑖𝑗

(3), 𝑦𝑖𝑗
(3)𝑏𝑖𝑗

(2), 𝑦𝑖𝑗
(3)𝑏𝑖𝑗

(3)), 

𝐻𝑖𝑗 = 𝑚𝑎𝑥(𝑦𝑖𝑗
(2)𝑏𝑖𝑗

(2), 𝑦𝑖𝑗
(2)𝑏𝑖𝑗

(3), 𝑦𝑖𝑗
(3)𝑏𝑖𝑗

(2), 𝑦𝑖𝑗
(3)𝑏𝑖𝑗

(3)), 

𝑅𝑖𝑗 = 𝑚𝑎𝑥(𝑦𝑖𝑗
(1)𝑏𝑖𝑗

(1), 𝑦𝑖𝑗
(1)𝑏𝑖𝑗

(4), 𝑦𝑖𝑗
(4)𝑏𝑖𝑗

(1), 𝑦𝑖𝑗
(4)
𝑏𝑖𝑗
(4)
). 

Similarly,  

𝐶̃𝑋̃ = ∑ 𝑑̃𝑖𝑘

𝑛

𝑘=1

𝑥̃𝑘𝑗 =∑(𝑅𝑖𝑗 , 𝑆𝑖𝑗 , 𝑇𝑖𝑗 , 𝑉𝑖𝑗)

𝑛

𝑘=1

   1 < 𝑖 < 𝑚, 1 < 𝑗 < 𝑛. 

where, 

𝑅𝑖𝑗 = 𝑚𝑖𝑛 (𝑑𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑑𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑑𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑑𝑖𝑗
(4)𝑥𝑖𝑗

(4)), 

𝑆𝑖𝑗 = 𝑚𝑖𝑛 (𝑑𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑑𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑑𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑑𝑖𝑗
(3)𝑥𝑖𝑗

(3)), 

𝑇𝑖𝑗 = 𝑚𝑎𝑥(𝑑𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑑𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑑𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑑𝑖𝑗
(3)𝑥𝑖𝑗

(3)), 

𝑉𝑖𝑗 = 𝑚𝑎𝑥(𝑑𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑑𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑑𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑑𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
). 

and, 

𝑌̃𝐷̃ = ∑ 𝑦̃𝑖𝑘

𝑛

𝑘=1

𝑒̃𝑘𝑗 =∑(𝑈𝑖𝑗 ,𝑊𝑖𝑗 , 𝑌𝑖𝑗 , 𝑍𝑖𝑗)

𝑛

𝑘=1

    1 < 𝑖 < 𝑚, 1 < 𝑗 < 𝑛. 

where, 

𝑈𝑖𝑗 = 𝑚𝑖𝑛 (𝑦𝑖𝑗
(1)𝑒𝑖𝑗

(1), 𝑦𝑖𝑗
(1)𝑒𝑖𝑗

(4), 𝑦𝑖𝑗
(4)𝑒𝑖𝑗

(1), 𝑦𝑖𝑗
(4)𝑒𝑖𝑗

(4)), 

𝑊𝑖𝑗 = 𝑚𝑖𝑛 (𝑦𝑖𝑗
(2)𝑒𝑖𝑗

(2), 𝑦𝑖𝑗
(2)𝑒𝑖𝑗

(3), 𝑦𝑖𝑗
(3)𝑒𝑖𝑗

(2), 𝑦𝑖𝑗
(3)𝑒𝑖𝑗

(3)), 

𝑌𝑖𝑗 = 𝑚𝑎𝑥(𝑦𝑖𝑗
(2)𝑒𝑖𝑗

(2), 𝑦𝑖𝑗
(2)𝑒𝑖𝑗

(3), 𝑦𝑖𝑗
(3)𝑒𝑖𝑗

(2), 𝑦𝑖𝑗
(3)𝑒𝑖𝑗

(3)), 

𝑍𝑖𝑗 = 𝑚𝑎𝑥(𝑦𝑖𝑗
(1)𝑒𝑖𝑗

(1), 𝑦𝑖𝑗
(1)𝑒𝑖𝑗

(4), 𝑦𝑖𝑗
(4)𝑒𝑖𝑗

(1), 𝑦𝑖𝑗
(4)
𝑒𝑖𝑗
(4)
). 
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Combining  𝐴̃𝑋̃ and 𝑌̃𝐵̃, 𝐶̃𝑋̃ and 𝑌̃𝐷̃ we get:  

{
 
 

 
 ∑𝑎̃𝑖𝑘

𝑛

𝑘=1

𝑥̃𝑘𝑗 +∑𝑦̃𝑖𝑘

𝑛

𝑘=1

𝑏̃𝑘𝑗 = 𝑒̃𝑖𝑗      ∀1 ≤  𝑖 ≤  𝑚, 1 ≤  𝑗 ≤  𝑛,

∑ 𝑐̃𝑖𝑘

𝑛

𝑘=1

𝑥̃𝑘𝑗 +∑𝑦̃𝑖𝑘

𝑛

𝑘=1

𝑑̃𝑘𝑗 = 𝑓𝑖𝑗      ∀1 ≤  𝑖 ≤  𝑚, 1 ≤  𝑗 ≤  𝑛.

 

∀ 1 ≤  𝑖 ≤  𝑚, 1 ≤  𝑗 ≤  𝑛.  

 Therefore, the ACTrFFSME is equivalent to the following non-linear system of 

equations: 

{
 
 
 
 
 

 
 
 
 
 𝑚𝑖𝑛 (𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1), 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(4), 𝑎𝑖𝑗

(4)𝑥𝑖𝑗
(1), 𝑎𝑖𝑗

(4)𝑥𝑖𝑗
(4)) + 𝑚𝑖𝑛 (𝑦𝑖𝑗

(1)𝑏𝑖𝑗
(1), 𝑦𝑖𝑗

(1)𝑏𝑖𝑗
(4), 𝑦𝑖𝑗

(4)𝑏𝑖𝑗
(1), 𝑦𝑖𝑗

(4)𝑏𝑖𝑗
(4)) = 𝑒𝑖𝑗

(1),

𝑚𝑖 𝑛(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)) + 𝑚𝑖 𝑛(𝑦𝑖𝑗
(2)𝑏𝑖𝑗

(2), 𝑦𝑖𝑗
(2)𝑏𝑖𝑗

(3), 𝑦𝑖𝑗
(3)𝑏𝑖𝑗

(2), 𝑦𝑖𝑗
(3)𝑏𝑖𝑗

(3)) = 𝑒𝑖𝑗
(2),

𝑚𝑎𝑥(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)) + 𝑚𝑎𝑥(𝑦𝑖𝑗
(2)𝑏𝑖𝑗

(2), 𝑦𝑖𝑗
(2)𝑏𝑖𝑗

(3), 𝑦𝑖𝑗
(3)𝑏𝑖𝑗

(2), 𝑦𝑖𝑗
(3)𝑏𝑖𝑗

(3)) = 𝑒𝑖𝑗
(3),

𝑚𝑎𝑥(𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(4)) + 𝑚𝑎𝑥(𝑦𝑖𝑗
(1)𝑏𝑖𝑗

(1), 𝑦𝑖𝑗
(1)𝑏𝑖𝑗

(4), 𝑦𝑖𝑗
(4)𝑏𝑖𝑗

(1), 𝑦𝑖𝑗
(4)𝑏𝑖𝑗

(4)) = 𝑒𝑖𝑗
(4),

𝑚𝑖𝑛 (𝑑𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑑𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑑𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑑𝑖𝑗
(4)𝑥𝑖𝑗

(4)) + 𝑚𝑖𝑛 (𝑦𝑖𝑗
(1)𝑒𝑖𝑗

(1), 𝑦𝑖𝑗
(1)𝑒𝑖𝑗

(4), 𝑦𝑖𝑗
(4)𝑒𝑖𝑗

(1), 𝑦𝑖𝑗
(4)𝑒𝑖𝑗

(4)) = 𝑓𝑖𝑗
(1),

𝑚𝑖 𝑛(𝑑𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑑𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑑𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑑𝑖𝑗
(3)𝑥𝑖𝑗

(3)) + 𝑚𝑖 𝑛(𝑦𝑖𝑗
(2)𝑒𝑖𝑗

(2), 𝑦𝑖𝑗
(2)𝑒𝑖𝑗

(3), 𝑦𝑖𝑗
(3)𝑒𝑖𝑗

(2), 𝑦𝑖𝑗
(3)𝑒𝑖𝑗

(3)) = 𝑓𝑖𝑗
(2),

𝑚𝑎𝑥(𝑑𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑑𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑑𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑑𝑖𝑗
(3)𝑥𝑖𝑗

(3)) + 𝑚𝑎𝑥(𝑦𝑖𝑗
(2)𝑒𝑖𝑗

(2), 𝑦𝑖𝑗
(2)𝑒𝑖𝑗

(3), 𝑦𝑖𝑗
(3)𝑒𝑖𝑗

(2), 𝑦𝑖𝑗
(3)𝑒𝑖𝑗

(3)) = 𝑓𝑖𝑗
(3),

𝑚𝑎𝑥(𝑑𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑑𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑑𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑑𝑖𝑗
(4)𝑥𝑖𝑗

(4)) + 𝑚𝑎𝑥(𝑦𝑖𝑗
(1)𝑒𝑖𝑗

(1), 𝑦𝑖𝑗
(1)𝑒𝑖𝑗

(4), 𝑦𝑖𝑗
(4)𝑒𝑖𝑗

(1), 𝑦𝑖𝑗
(4)𝑒𝑖𝑗

(4)) = 𝑓𝑖𝑗
(4).

 

□ 

In the following Definition 6.1.3, the arbitrary trapezoidal fuzzy solution to the 

ACTrFFSME is presented. 

Definition 6.1.3. The trapezoidal fuzzy matrices 𝑋̃ = (𝑥̃𝑖𝑗)𝑚×𝑛
= (𝑥𝑖𝑗

(1)
, 𝑥𝑖𝑗
(2)
, 𝑥𝑖𝑗
(3)
, 𝑥𝑖𝑗
(4)
), 

𝑌̃ = (𝑦̃𝑖𝑗)𝑚×𝑛
= (𝑦𝑖𝑗

(1)
, 𝑦𝑖𝑗
(2)
, 𝑦𝑖𝑗
(3)
, 𝑦𝑖𝑗
(4)
) where  𝑥𝑖𝑗

(4)
≥ 𝑥𝑖𝑗

(3)
≥ 𝑥𝑖𝑗

(2) ≥ 𝑥𝑖𝑗
(1)

, 

  1 ≤ 𝑖, 𝑗 ≤ 𝑛,𝑚 and 𝑦𝑖𝑗
(4)
≥ 𝑦𝑖𝑗

(3)
≥ 𝑦𝑖𝑗

(2) ≥ 𝑦𝑖𝑗
(1)

, 1 ≤ 𝑖, 𝑗 ≤ 𝑛,𝑚,  are called arbitrary 

fuzzy solution of the ACTrFFSME. 
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To solve the ACTrFFSME in Eq. (1.19), the corresponding system of non-linear 

equations in Eq. (6.1) is considered. In the following Section 6.2 the arbitrary fuzzy 

solution to the ACTrFFSME is discussed. 

6.2 Absolute System Method for Solving ACTrFFSME 

In this section, the arbitrary fuzzy solution to the ACTrFFSME {𝐴̃𝑋̃ + 𝑌̃𝐵̃ = 𝐸̃
𝐶̃𝑋̃ + 𝑌̃𝐷̃ = 𝐹̃

 is 

considered. In order to solve the ACTrFFSME, the equivalent system of non-linear 

equations in Eq. (6.1) is reduced to an equivalent system of absolute system of 

equations based on Theorem 2.4.3.1. Then, the solution to the absolute system of 

equations is obtained using Mathematica 12.1 and Maple 2019. The steps to the 

constructed methods for obtaining the arbitrary solution to the ACTrFFSME are 

discussed in the following steps: 

Step 1: Convert the ACTrFFSME {𝐴̃𝑋̃ + 𝑌̃𝐵̃ = 𝐸̃
𝐶̃𝑋̃ + 𝑌̃𝐷̃ = 𝐹̃

 to an equivalent non-linear system 

in Eq. (6.1) using Theorem 6.1.1. 

Step 2: Reduce the non-linear system in Step 1 to an absolute system of equation using 

Theorem 2.4.3.1 and Definition 2.4.3.4. 

Step 3: Solve the system of absolute equations and check which solution(s) satisfy the 

following conditions: 

I. 𝑥𝑖𝑗
(1) ≤ 𝑥𝑖𝑗

(2) ≤ 𝑥𝑖𝑗
(3) ≤ 𝑥𝑖𝑗

(4)  1 ≤  𝑖 ≤  𝑚, 1 ≤  𝑗 ≤  𝑛. 

II. 𝑦𝑖𝑗
(1)
≤ 𝑦𝑖𝑗

(2)
≤ 𝑦𝑖𝑗

(3)
≤ 𝑦𝑖𝑗

(4)
  1 ≤  𝑖 ≤  𝑚, 1 ≤  𝑗 ≤  𝑛. 

III. At least one element of 𝑋̃ is near zero TrFN. 

IV. At least one element of 𝑌̃ is near zero TrFN. 
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Step 4: By solving the system of absolute equations in Step 3 and by eliminating the 

non-fuzzy solutions, the following arbitrary fuzzy solution is obtained: 

{
 
 
 

 
 
 
𝑋̃ = (

(𝑥11
(1), 𝑥11

(2), 𝑥11
(3), 𝑥11

(4)) ⋯ (𝑥1𝑛
(1), 𝑥1𝑛

(2), 𝑥1𝑛
(3), 𝑥1𝑛

(4))

⋮ ⋱ ⋮

(𝑥𝑚1
(1), 𝑥𝑚1

(2), 𝑥𝑚1
(3), 𝑥𝑚1

(4)) … (𝑥𝑚𝑛
(1) , 𝑥𝑚𝑛

(2) , 𝑥𝑚𝑛
(3) , 𝑥𝑚𝑛

(4))

) ,

𝑌̃ = (

(𝑦11
(1), 𝑦11

(2), 𝑦11
(3), 𝑦11

(4)) ⋯ (𝑦1𝑛
(1), 𝑦1𝑛

(2), 𝑦1𝑛
(3), 𝑦1𝑛

(4))

⋮ ⋱ ⋮

(𝑦𝑚1
(1), 𝑦𝑚1

(2), 𝑦𝑚1
(3), 𝑦𝑚1

(4)) … (𝑦𝑚𝑛
(1), 𝑦𝑚𝑛

(2), 𝑦𝑚𝑛
(3), 𝑦𝑚𝑛

(4))

) .

                         (6.3) 

Now, we proceed to the feasibility condition of the arbitrary fuzzy solution to the 

ACTrFFSME. 

Feasibility of the ACTrFFSME: 

The arbitrary fuzzy solution to the ACTrFFSME is called feasible (strong arbitrary 

fuzzy solution) if the following conditions are satisfied: 

𝑥𝑖𝑗
(4)
≥ 𝑥𝑖𝑗

(3)
≥ 𝑥𝑖𝑗

(2) ≥ 𝑥𝑖𝑗
(1)

, 1 ≤ 𝑖, 𝑗 ≤ 𝑛,𝑚 and 𝑦𝑖𝑗
(4)
≥ 𝑦𝑖𝑗

(3)
≥ 𝑦𝑖𝑗

(2) ≥ 𝑦𝑖𝑗
(1)

, 

 ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛,𝑚. In addition, at least one element of 𝑋̃ is near zero TrFN and at least 

one element of 𝑌̃ is near zero TrFN. 

In the following Section 6.3, the ABSM for solving the ACTrFFSME is illustrated. 

6.3 Numerical Example for ACTrFFSME 

In this section, the ABSM for solving the ACTrFFSME in Section 6.2 is illustrated by 

solving the following Example 6.3.1. 

Example 6.3.1 Consider the following ACTrFFSME and solve it by ABSM: 

{
𝐴̃𝑋̃ + 𝑌̃𝐵̃ = 𝐸̃,

𝐶̃𝑋̃ + 𝑌̃𝐷̃ = 𝐹̃,
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where,  

𝐴̃ = (
(5, 7, 9, 11) (2, 4, 7, 10)

(−11,−9,−5,−2) (−4,−3, 2, 4)
),  

𝐵̃ = (
(2, 4, 7, 9) (2, 3, 5, 7)

(−5,−4,−3,−2) (−4,−2, 4, 6)
),  

𝐶̃ = (
(5, 7, 10, 12) (2, 4, 5, 6)

(−10,−7,−4,−2) (−3,−2, 3, 4)
),  

 𝐷̃ = (
(1, 4, 5, 7) (3, 4, 5, 7)

(−5,−4,−3,−2) (−6,−3, 2, 4)
), 

 𝐸̃ = (
(−119,−51, 50, 126) (−87,−25, 89, 160)
(−125,−65, 24, 95) (−134,−76,−6, 65)

) 

and 𝐹̃ = (
(−106,−47, 43, 102) (−79,−22, 80, 142)
(−108,−50, 23, 86) (−138,−68,−10, 50)

). 

Solution  

The solution to the given ACTrFFSME can be converted to a system of non-linear 

equations where the solution to this system can be obtained as follows: 

Step 1: Converting the given 2 × 2 ACTrFFSME to a system of non-linear equations 

using RAMO in Sections 3.1.2, 3.1.3 and 3.2, respectively, as follows: 

Min[5𝑥11
(1), 11𝑥11

(1)] + Min[2𝑥21
(1), 10𝑥21

(1)] + Min[2𝑦11
(1), 9𝑦11

(1)] + Min[−5𝑦12
(4), −2𝑦12

(4)] = −119, 

Min[7𝑥11
(2), 9𝑥11

(2)] + Min[4𝑥21
(2), 7𝑥21

(2)] + Min[7𝑦11
(2), 4𝑦11

(2)] + Min[−4𝑦12
(3), −3𝑦12

(3)] = −51, 

Max[7𝑥11
(3), 9𝑥11

(3)] + Max[4𝑥21
(3), 7𝑥21

(3)] + Max[4𝑦11
(3), 7𝑦11

(3)] + Max[−4𝑦12
(2), −3𝑦12

(2)] = 50, 

Max[5𝑥11
(4), 11𝑥11

(4)] + Max[2𝑥21
(4), 10𝑥21

(4)] + Max[2𝑦11
(4), 9𝑦11

(4)] + Max[−5𝑦12
(1), −2𝑦12

(1)] = 126, 

Min[5𝑥12
(1), 11𝑥12

(1)] + Min[2𝑥22
(1), 10𝑥22

(1)] + Min[2𝑦11
(1), 7𝑦11

(1)] + Min[6𝑦12
(1), −4𝑦12

(4)] = −87, 

Min[7𝑥12
(2), 9𝑥12

(2)] + Min[4𝑥22
(2), 7𝑥22

(2)] + Min[5𝑦11
(2), 3𝑦11

(2)] + Min[4𝑦12
(2), −2𝑦12

(3)] = −25, 

Max[7𝑥12
(3), 9𝑥12

(3)] + Max[4𝑥22
(3), 7𝑥22

(3)] + Max[3𝑦11
(3), 5𝑦11

(3)] + Max[−2𝑦12
(2), 4𝑦12

(3)] = 89, 

Max[5𝑥12
(4), 11𝑥12

(4)] + Max[2𝑥22
(4), 10𝑥22

(4)] + Max[2𝑦11
(4), 7𝑦11

(4)] + Max[−4𝑦12
(1), 6𝑦12

(4)] = 160, 
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Min[−2𝑥11
(1), −11𝑥11

(4)] + Min[4𝑥21
(1), −4𝑥21

(4)] + Min[2𝑦21
(1), 9𝑦21

(1)] + Min[−5𝑦22
(4), −2𝑦22

(4)] = −125, 

Min[−5𝑥11
(3), −9𝑥11

(3)] + Min[2𝑥21
(2), −3𝑥21

(3)] + Min[4𝑦21
(2), 7𝑦21

(2)] + Min[−4𝑦22
(3), −3𝑦22

(3)] = −65, 

Max[−9𝑥11
(2), −5𝑥11

(2)] + Max[−3𝑥21
(2), 2𝑥21

(3)] + Max[4𝑦21
(3), 7𝑦21

(3)] + Max[−4𝑦22
(2), −3𝑦22

(2)] = 24, 

Max[−11𝑥11
(1), −2𝑥11

(1)] + Max[−4𝑥21
(1), 4𝑥21

(4)] + Max[2𝑦21
(4), 9𝑦21

(4)] + Max[−5𝑦22
(1), −2𝑦22

(1)] = 95, 

Min[−2𝑥12
(1), −11𝑥12

(4)] + Min[4𝑥22
(1), −4𝑥22

(4)] + Min[2𝑦21
(1), 7𝑦21

(1)] + Min[6𝑦22
(1), −4𝑦22

(4)] = −134, 

Min[−9𝑥12
(3), −5𝑥12

(3)] + Min[2𝑥22
(2), −3𝑥22

(3)] + Min[3𝑦21
(2), 5𝑦21

(2)] + Min[4𝑦22
(2), −2𝑦22

(3)] = −76, 

Max[−9𝑥12
(2), −5𝑥12

(2)] + Max[−3𝑥22
(2), 2𝑥22

(3)] + Max[3𝑦21
(3), 5𝑦21

(3)] + Max[−2𝑦22
(2), 4𝑦22

(3)] = −6, 

Max[−11𝑥12
(1)
, −2𝑥12

(1)
] + Max[−4𝑥22

(1)
, 4𝑥22

(4)
] + Max[2𝑦21

(4)
, 7𝑦21

(4)
] + Max[−4𝑦22

(1)
, 6𝑦22

(4)
] = 65, 

Min[5𝑥11
(1), 12𝑥11

(1)] + Min[2𝑥21
(1), 6𝑥21

(1)] + Min[𝑦11
(1), 7𝑦11

(1)] + Min[−5𝑦12
(4), −2𝑦12

(4)] = −106, 

Min[7𝑥11
(2), 10𝑥11

(2)] + Min[4𝑥21
(2), 5𝑥21

(2)] + Min[5𝑦11
(2), 4𝑦11

(2)] + Min[−4𝑦12
(3), −3𝑦12

(3)] = −47, 

Max[7𝑥11
(3), 10𝑥11

(3)] + Max[4𝑥21
(3), 5𝑥21

(3)] + Max[4𝑦11
(3), 5𝑦11

(3)] + Max[−4𝑦12
(2), −3𝑦12

(2)] = 43, 

Max[5𝑥11
(4), 12𝑥11

(4)] + Max[2𝑥21
(4), 6𝑥21

(4)] + Max[𝑦11
(4), 7𝑦11

(4)] + Max[−5𝑦12
(1), −2𝑦12

(1)] = 102, 

Min[5𝑥12
(1), 12𝑥12

(1)] + Min[2𝑥22
(1), 6𝑥22

(1)] + Min[3𝑦11
(1), 7𝑦11

(1)] + Min[4𝑦12
(1), −6𝑦12

(4)] = −79, 

Min[7𝑥12
(2), 10𝑥12

(2)] + Min[4𝑥22
(2), 5𝑥22

(2)] + Min[5𝑦11
(2), 4𝑦11

(2)] + Min[2𝑦12
(2), −3𝑦12

(3)] = −22 

Max[7𝑥12
(3), 10𝑥12

(3)] + Max[4𝑥22
(3), 5𝑥22

(3)] + Max[4𝑦11
(3), 5𝑦11

(3)] + Max[−3𝑦12
(2), 2𝑦12

(3)] = 80, 

Max[5𝑥12
(4), 12𝑥12

(4)] + Max[2𝑥22
(4), 6𝑥22

(4)] + Max[3𝑦11
(4), 7𝑦11

(4)] + Max[−6𝑦12
(1), 4𝑦12

(4)] = 142, 

Min[−2𝑥11
(1), −10𝑥11

(4)] + Min[4𝑥21
(1), −3𝑥21

(4)] + Min[𝑦21
(1), 7𝑦21

(1)] + Min[−5𝑦22
(4), −2𝑦22

(4)] = −108, 

Min[−4𝑥11
(3), −7𝑥11

(3)] + Min[3𝑥21
(2), −2𝑥21

(3)] + Min[4𝑦21
(2), 5𝑦21

(2)] + Min[−4𝑦22
(3), −3𝑦22

(3)] = −50, 

Max[−7𝑥11
(2), −4𝑥11

(2)] + Max[−2𝑥21
(2), 3𝑥21

(3)] + Max[4𝑦21
(3), 5𝑦21

(3)] + Max[−4𝑦22
(2), −3𝑦22

(2)] = 23, 

Max[−10𝑥11
(1), −2𝑥11

(1)] + Max[−3𝑥21
(1), 4𝑥21

(4)] + Max[𝑦21
(4), 7𝑦21

(4)] + Max[−5𝑦22
(1), −2𝑦22

(1)] = 86, 

Min[−2𝑥12
(1), −10𝑥12

(4)] + Min[4𝑥22
(1), −3𝑥22

(4)] + Min[3𝑦21
(1), 7𝑦21

(1)] + Min[4𝑦22
(1), −6𝑦22

(4)] = −138, 

Min[−7𝑥12
(3), −4𝑥12

(3)] + Min[3𝑥22
(2), −2𝑥22

(3)] + Min[4𝑦21
(2), 5𝑦21

(2)] + Min[2𝑦22
(2), −3𝑦22

(3)] = −68, 

Max[−7𝑥12
(2), −4𝑥12

(2)] + Max[−2𝑥22
(2), 3𝑥22

(3)] + Max[4𝑦21
(3), 5𝑦21

(3)] + Max[−3𝑦22
(2), 2𝑦22

(3)] = −10, 

Max[−10𝑥12
(1), −2𝑥12

(1)] + Max[−3𝑥22
(1), 4𝑥22

(4)] + Max[3𝑦21
(4), 7𝑦21

(4)] + Max[−6𝑦22
(1), 4𝑦22

(4)] = 50. 
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Step 2: Reduce the non-linear system in Step 1 to an absolute system of equation using 

Theorem 2.4.3.1 and Definition 2.4.3.4. 

8𝑥11
(1) + 6𝑥21

(1) +
11𝑦11

(1)

2
−
7𝑦12

(4)

2
− 3|𝑥11

(1)| − 4|𝑥21
(1)| −

7|𝑦11
(1)|

2
−
3|𝑦12

(4)|

2
= −119, 

8𝑥11
(2) +

11𝑥21
(2)

2
+
11𝑦11

(2)

2
−
7𝑦12

(3)

2
− |𝑥11

(2)| −
3|𝑥21

(2)|

2
−
3|𝑦11

(2)|

2
−
|𝑦12
(3)|

2
= −51, 

8𝑥11
(3) +

11𝑥21
(3)

2
+
11𝑦11

(3)

2
−
7𝑦12

(2)

2
+ |𝑥11

(3)| +
3|𝑥21

(3)|

2
+
3|𝑦11

(3)|

2
+
|𝑦12
(2)|

2
= 50, 

8𝑥11
(4) + 6𝑥21

(4) +
11𝑦11

(4)

2
−
7𝑦12

(1)

2
+ 3|𝑥11

(4)| + 4|𝑥21
(4)| +

7|𝑦11
(4)|

2
+
3|𝑦12

(1)|

2
= 126, 

8𝑥12
(1) + 6𝑥22

(1) +
9𝑦11

(1)

2
+
1

2
(6𝑦12

(1) − 4𝑦12
(4)) − 3|𝑥12

(1)| − 4|𝑥22
(1)| −

5|𝑦11
(1)|

2
−
1

2
|6𝑦12

(1) + 4𝑦12
(4)| = −87, 

8𝑥12
(2) +

11𝑥22
(2)

2
+ 4𝑦11

(2) +
1

2
(4𝑦12

(2) − 2𝑦12
(3)) − |𝑥12

(2)| −
3|𝑥22

(2)|

2
− |𝑦11

(2)| −
1

2
|4𝑦12

(2) + 2𝑦12
(3)| = −25, 

8𝑥12
(3) +

11𝑥22
(3)

2
+ 4𝑦11

(3) +
1

2
(−2𝑦12

(2) + 4𝑦12
(3)) + |𝑥12

(3)| +
3|𝑥22

(3)|

2
+ |𝑦11

(3)| +
1

2
|−2𝑦12

(2) − 4𝑦12
(3)| = 89, 

8𝑥12
(4) + 6𝑥22

(4) +
9𝑦11

(4)

2
+
1

2
(−4𝑦12

(1) + 6𝑦12
(4)) + 3|𝑥12

(4)| + 4|𝑥22
(4)| +

5|𝑦11
(4)|

2
+
1

2
|−4𝑦12

(1) − 6𝑦12
(4)|

= 160, 

1

2
(−2𝑥11

(1) − 11𝑥11
(4)) +

1

2
(4𝑥21

(1) − 4𝑥21
(4)) +

11𝑦21
(1)

2
−
7𝑦22

(4)

2
−
1

2
|−2𝑥11

(1) + 11𝑥11
(4)|

−
1

2
|4𝑥21

(1) + 4𝑥21
(4)| −

7|𝑦21
(1)|

2
−
3|𝑦22

(4)|

2
= −125, 

−7𝑥11
(3) +

1

2
(2𝑥21

(2) − 3𝑥21
(3)) +

11𝑦21
(2)

2
−
7𝑦22

(3)

2
− 2|𝑥11

(3)| −
1

2
|2𝑥21

(2) + 3𝑥21
(3)| −

3|𝑦21
(2)|

2
−
|𝑦22
(3)|

2
= −65, 

−7𝑥11
(2) +

1

2
(−3𝑥21

(2) + 2𝑥21
(3)) +

11𝑦21
(3)

2
−
7𝑦22

(2)

2
+ 2|𝑥11

(2)| +
1

2
|−3𝑥21

(2) − 2𝑥21
(3)| +

3|𝑦21
(3)|

2
+
|𝑦22
(2)|

2

= 24, 

−
13𝑥11

(1)

2
+
1

2
(−4𝑥21

(1) + 4𝑥21
(4)) +

11𝑦21
(4)

2
−
7𝑦22

(1)

2
+
9|𝑥11

(1)|

2
+
1

2
|−4𝑥21

(1) − 4𝑥21
(4)| +

7|𝑦21
(4)|

2
+
3|𝑦22

(1)|

2

= 95, 
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1

2
(−2𝑥12

(1) − 11𝑥12
(4)) +

1

2
(4𝑥22

(1) − 4𝑥22
(4)) +

9𝑦21
(1)

2
+
1

2
(6𝑦22

(1) − 4𝑦22
(4)) −

1

2
|−2𝑥12

(1) + 11𝑥12
(4)|

−
1

2
|4𝑥22

(1) + 4𝑥22
(4)| −

5|𝑦21
(1)|

2
−
1

2
|6𝑦22

(1) + 4𝑦22
(4)| = −134, 

 

−7𝑥12
(3) +

1

2
(2𝑥22

(2) − 3𝑥22
(3)) + 4𝑦21

(2) +
1

2
(4𝑦22

(2) − 2𝑦22
(3)) − 2|𝑥12

(3)| −
1

2
|2𝑥22

(2) + 3𝑥22
(3)| − |𝑦21

(2)|

−
1

2
|4𝑦22

(2) + 2𝑦22
(3)| = −76, 

−7𝑥12
(2) +

1

2
(−3𝑥22

(2) + 2𝑥22
(3)) + 4𝑦21

(3) +
1

2
(−2𝑦22

(2) + 4𝑦22
(3)) + 2|𝑥12

(2)| +
1

2
|−3𝑥22

(2) − 2𝑥22
(3)| + |𝑦21

(3)|

+
1

2
|−2𝑦22

(2) − 4𝑦22
(3)| = −6, 

−
13𝑥12

(1)

2
+
1

2
(−4𝑥22

(1) + 4𝑥22
(4)) +

9𝑦21
(4)

2
+
1

2
(−4𝑦22

(1) + 6𝑦22
(4)) +

9|𝑥12
(1)|

2
+
1

2
| − 4𝑥22

(1) − 4𝑥22
(4)|

+
5|𝑦21

(4)|

2
+
1

2
| − 4𝑦22

(1) − 6𝑦22
(4)| = 65, 

 

17𝑥11
(1)

2
+ 4𝑥21

(1) + 4𝑦11
(1) −

7𝑦12
(4)

2
−
7|𝑥11

(1)|

2
− 2|𝑥21

(1)| − 3|𝑦11
(1)| −

3|𝑦12
(4)|

2
= −106, 

17𝑥11
(2)

2
+
9𝑥21

(2)

2
+
9𝑦11

(2)

2
−
7𝑦12

(3)

2
−
3|𝑥11

(2)|

2
−
|𝑥21
(2)|

2
−
|𝑦11
(2)|

2
−
|𝑦12
(3)|

2
= −47, 

17𝑥11
(3)

2
+
9𝑥21

(3)

2
+
9𝑦11

(3)

2
−
7𝑦12

(2)

2
+
3|𝑥11

(3)|

2
+
|𝑥21
(3)|

2
+
|𝑦11
(3)|

2
+
|𝑦12
(2)|

2
= 43, 

17𝑥11
(4)

2
+ 4𝑥21

(4) + 4𝑦11
(4) −

7𝑦12
(1)

2
+
7|𝑥11

(4)|

2
+ 2|𝑥21

(4)| + 3|𝑦11
(4)| +

3|𝑦12
(1)|

2
= 102, 

17𝑥12
(1)

2
+ 4𝑥22

(1) + 5𝑦11
(1) +

1

2
(4𝑦12

(1) − 6𝑦12
(4)) −

7|𝑥12
(1)|

2
− 2|𝑥22

(1)| − 2|𝑦11
(1)| −

1

2
|4𝑦12

(1) + 6𝑦12
(4)| = −79, 

17𝑥12
(2)

2
+
9𝑥22

(2)

2
+
9𝑦11

(2)

2
+
1

2
(2𝑦12

(2) − 3𝑦12
(3)) −

3|𝑥12
(2)|

2
−
|𝑥22
(2)|

2
−
|𝑦11
(2)|

2
−
1

2
|2𝑦12

(2) + 3𝑦12
(3)| = −22, 

17𝑥12
(3)

2
+
9𝑥22

(3)

2
+
9𝑦11

(3)

2
+
1

2
(−3𝑦12

(2) + 2𝑦12
(3)) +

3|𝑥12
(3)|

2
+
|𝑥22
(3)|

2
+
|𝑦11
(3)|

2
+
1

2
|−3𝑦12

(2) − 2𝑦12
(3)| = 80, 
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17𝑥12
(4)

2
+ 4𝑥22

(4) + 5𝑦11
(4) +

1

2
(−6𝑦12

(1) + 4𝑦12
(4)) +

7|𝑥12
(4)|

2
+ 2|𝑥22

(4)| + 2|𝑦11
(4)| +

1

2
|−6𝑦12

(1) − 4𝑦12
(4)|

= 142, 

1

2
(−2𝑥11

(1) − 10𝑥11
(4)) +

1

2
(4𝑥21

(1) − 3𝑥21
(4)) + 4𝑦21

(1) −
7𝑦22

(4)

2
−
1

2
|−2𝑥11

(1) + 10𝑥11
(4)| −

1

2
|4𝑥21

(1) + 3𝑥21
(4)|

− 3|𝑦21
(1)| −

3|𝑦22
(4)|

2
= −108, 

−
11𝑥11

(3)

2
+
1

2
(3𝑥21

(2) − 2𝑥21
(3)) +

9𝑦21
(2)

2
−
7𝑦22

(3)

2
−
3|𝑥11

(3)|

2
−
1

2
|3𝑥21

(2) + 2𝑥21
(3)| −

|𝑦21
(2)|

2
−
|𝑦22
(3)|

2
= −50, 

−
11𝑥11

(2)

2
+
1

2
(−2𝑥21

(2) + 3𝑥21
(3)) +

9𝑦21
(3)

2
−
7𝑦22

(2)

2
+
3|𝑥11

(2)|

2
+
1

2
|−2𝑥21

(2) − 3𝑥21
(3)| +

|𝑦21
(3)|

2
+
|𝑦22
(2)|

2

= 23, 

−6𝑥11
(1) +

1

2
(−3𝑥21

(1) + 4𝑥21
(4)) + 4𝑦21

(4) −
7𝑦22

(1)

2
+ 4|𝑥11

(1)| +
1

2
|−3𝑥21

(1) − 4𝑥21
(4)| + 3|𝑦21

(4)| +
3|𝑦22

(1)|

2

= 86, 

1

2
(−2𝑥12

(1) − 10𝑥12
(4)) +

1

2
(4𝑥22

(1) − 3𝑥22
(4)) + 5𝑦21

(1) +
1

2
(4𝑦22

(1) − 6𝑦22
(4)) −

1

2
|−2𝑥12

(1) + 10𝑥12
(4)|

−
1

2
|4𝑥22

(1) + 3𝑥22
(4)| − 2|𝑦21

(1)| −
1

2
|4𝑦22

(1) + 6𝑦22
(4)| = −138, 

−
11𝑥12

(3)

2
+
1

2
(3𝑥22

(2) − 2𝑥22
(3)) +

9𝑦21
(2)

2
+
1

2
(2𝑦22

(2) − 3𝑦22
(3)) −

3|𝑥12
(3)|

2
−
1

2
|3𝑥22

(2) + 2𝑥22
(3)| −

|𝑦21
(2)|

2

−
1

2
|2𝑦22

(2) + 3𝑦22
(3)| = −68, 

−
11𝑥12

(2)

2
+
1

2
(−2𝑥22

(2) + 3𝑥22
(3)) +

9𝑦21
(3)

2
+
1

2
(−3𝑦22

(2) + 2𝑦22
(3)) +

3|𝑥12
(2)|

2
+
1

2
|−2𝑥22

(2) − 3𝑥22
(3)| +

|𝑦21
(3)|

2

+
1

2
|−3𝑦22

(2) − 2𝑦22
(3)| = 10, 

−6𝑥12
(1) +

1

2
(−3𝑥22

(1) + 4𝑥22
(4)) + 5𝑦21

(4) +
1

2
(−6𝑦22

(1) + 4𝑦22
(4)) + 4|𝑥12

(1)| +
1

2
| − 3𝑥22

(1) − 4𝑥22
(4)|

+ 2|𝑦21
(4)| +

1

2
| − 6𝑦22

(1) − 4𝑦22
(4)| = 50. 

Steps 3 and 4: Getting the solution 
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By solving the system of absolute equations in Step 2 and eliminating the non-fuzzy 

solutions, based on the conditions in Step 3, the following arbitrary fuzzy solution is 

obtained. 

{
𝑋̃ = (

(−3,−2, 3, 4) (3, 4, 5, 6)
(−2, 2, 3, 5) (−5,−4, 2, 3)

) ,

𝑌̃ = (
(−4,−3, 2, 4) (2, 4, 5, 6)
(−4,−3,−2, 3) (−3,−2, 2, 5)

) .
 

In the following Sections 6.3.1.1, 6.3.1.2 and 6.3.1.3 analysis of the obtained arbitrary 

fuzzy solution to the given ACTrFFSME is discussed. 

6.3.1.1 Verification of The Arbitrary Fuzzy Solution to The ACTrFFSME 

 To verify the obtained fuzzy solution, we first multiply 𝐴̃𝑋̃ as follows: 

𝐴̃𝑋̃ = (
(5, 7, 9, 11) (2, 4, 7, 10)

(−11,−9, −5,−2) (−4,−3, 2, 4)
) (
(−3,−2, 3, 4) (3, 4, 5, 6)
(−2, 2, 3, 5) (−5,−4, 2, 3)

) 

             = (
(−53,−10, 48, 94) (−35, 0, 59, 96)
(−64,−36, 24, 53) (−86,−53,−8, 14)

), 

  and,  

𝑌̃𝐵̃ = (
(−4,−3, 2, 4) (2, 4, 5, 6)

(−4,−3,−2, 3) (−3,−2, 2, 5)
) (

(2, 4, 7, 9) (2, 3, 5, 7)

(−5,−4,−3,−2) (−4,−2, 4, 6)
) 

            = (
(−66,−41, 2, 32) (−52,−25, 30, 64)
(−61,−29, 0, 42) (−48,−23, 2, 51)

). 

We also multiply 𝐶̃𝑋̃ as follows: 

𝐶̃𝑋̃  = (
(5, 7, 10, 12) (2, 4, 5, 6)

(−10,−7,−4,−2) (−3,−2, 3, 4)
) (
(−3,−2, 3, 4) (3, 4, 5, 6)
(−2, 2, 3, 5) (−5,−4, 2, 3)

) 

             = (
(−48,−12, 45, 78) (−15, 8, 60, 90)
(−55,−27, 23, 50) (−80,−47,−8, 9)

). 

and,  
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𝑌̃𝐷̃ = (
(−4,−3, 2, 4) (2, 4, 5, 6)
(−4,−3,−2, 3) (−3,−2, 2, 5)

) (
(1, 4, 5, 7) (3, 4, 5, 7)

(−5,−4,−3,−2) (−6,−3, 2, 4)
) 

             = (
(−58,−35,−2, 24) (−64,−30, 20, 52)
(−53,−23, 0, 36) (−58,−21,−2, 41)

). 

Therefore, 

𝐴̃𝑋̃ + 𝑌̃𝐵̃ = (
(−119,−51, 50, 126) (−87,−25, 89, 160)
(−125,−65, 24, 95) (−134,−76,−6, 65)

) = 𝐸̃, 

𝐶̃𝑋̃ + 𝑌̃𝐷̃ = (
(−106,−47, 43, 102) (−79,−22, 80, 142)
(−108,−50, 23, 86) (−138,−68,−10, 50)

) = 𝐹̃. 

Clearly, the obtained arbitrary fuzzy solution satisfies the given ACTrFFSME, and it is 

feasible. 

6.3.1.2 Representation of The Arbitrary Fuzzy Solution to The ACTrFFSME 

In this section, the arbitrary fuzzy solution to the given ACTrFFSME in Example 6.3.1 

is represented in Figure 6.1.  

 

 

 

 

 

 

 

 

 

Figure 6.1. Arbitrary fuzzy solution for Example 6.3.1. 
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Figure 6.1 shows that the obtained solution is an arbitrary trapezoidal fuzzy solution 

based on Definition 6.1.1. In the following Section 6.3.1.3, the feasibility conditions of 

the obtained arbitrary trapezoidal fuzzy solution for the given ACTrFFSME in  

Example 6.3.1 are discussed. 

6.3.1.3 Feasibility of The Obtained Arbitrary Fuzzy Solution to The 

ACTrFFSME 

To check the feasibility of the obtained arbitrary fuzzy solution, the feasibility condition 

needs to be satisfied. The feasibility conditions are checked as follow: 

I) 𝑥𝑖𝑗
(1) ≤ 𝑥𝑖𝑗

(2) ≤ 𝑥𝑖𝑗
(3) ≤ 𝑥𝑖𝑗

(4)  1 ≤  𝑖 ≤  𝑚, 1 ≤  𝑗 ≤  𝑛. 

(
−3 3
−2 −5

) ≤ (
−2 4
2 −4

) ≤ (
3 5
3 2

) ≤ (
4 6
5 3

), 

II) 𝑦𝑖𝑗
(1) ≤ 𝑦𝑖𝑗

(2) ≤ 𝑦𝑖𝑗
(3) ≤ 𝑦𝑖𝑗

(4) 1 ≤  𝑖 ≤  𝑚, 1 ≤  𝑗 ≤  𝑛, 

(
−4 2
−4 −3

) ≤ (
−3 4
−3 −2

) ≤ (
2 5
−2 2

) ≤ (
4 6
3 5

), 

III) At least one element of 𝑋̃ is near zero TrFN, 

IV) At least one element of 𝑌̃ is near zero TrFN. 

The feasibility condition is satisfied and therefore, the obtained arbitrary fuzzy solution 

is feasibly.  

Clearly from the verification, representation and feasibility of the obtained arbitrary 

fuzzy solution, it satisfies the given ACTrFFSME, and it is strong fuzzy solution. 
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6.4  Conclusion and Contribution  

In this chapter six, the ACTrFFSME is converted to an equivalent system of non-linear 

equations. Then the obtained non-linear system is reduced to a system of absolute 

equations where the arbitrary fuzzy solution to the ACTrFFSME is obtained by solving 

that system of absolute equations. The developed ABSM in this chapter is similar to 

the ABSM method developed in Chapters Four for solving ATrFFSME. The following 

contributions summarize the findings in this chapter: 

I) The constructed methods demonstrate the transformation of ACTrFFSME to a  

            reduced system of non- linear equations and then into a system of absolute  

            equations. 

II) Obtaining the unique and finitely many fuzzy solutions of ACTrFFSME. 

III) Provide  the necessary conditions for the feasibility of the ACTrFFSME to  

            have a strong positive fuzzy solution. 

IV) Analyzing the obtained arbitrary fuzzy solution.   
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CHAPTER SEVEN 

SOLVING TRAPEZOIDAL FULLY FUZZY SYLVESTER MATRIX 

EQUATION WITH LR TRAPEZOIDAL FUZZY NUMBERS 

In all previous Chapters Three and Four, the solutions of PTrFFSME are presented with 

TrFNs in a general form. In this chapter, the solutions of PTrFFSME with TrFNs in LR 

form are discussed. It is worth mentioning that the previously developed methods in 

Section 3.4 for solving PTrFFSME in a general form can be employed on the LR form 

as well. Therefore, in this chapter, both positive and negative solutions for PTrFFSME 

in  

Eq. (1.14) and Eq. (1.15) are obtained using MFMVM and FBSM in Sections 3.4.1 and 

3.4.2 respectively. 

7.1 Positive Fuzzy Solution of PTrFFSME with LR Trapezoidal Fuzzy Numbers 

In this section, the analytical positive fuzzy solution of the PTrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ 

with LR-TrFNs is considered. In order to get the solution, the PTrFFSME is converted 

to an equivalent system of SME using the DPMO in Eq. (2.6a) in Definition 2.3.3.1.6. 

In the following Theorem 7.1.1, the PTrFFSME in LR form is converted to an 

equivalent system of SME. 

Theorem 7.1.1. If 𝐴̃ = (𝑚𝑖𝑗 , 𝑛𝑖𝑗 , 𝛼𝑖𝑗 , 𝛽𝑖𝑗)𝐿𝑅 > 0, 𝐷̃ = (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝛾𝑖𝑗 , 𝛿𝑖𝑗)𝐿𝑅 > 0 and 

 𝑋̃ = (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑞𝑖𝑗)𝐿𝑅 > 0 and 𝐸̃ = (𝑐𝑖𝑗 , 𝑔𝑖𝑗 , ℎ𝑖𝑗 , 𝑓𝑖𝑗)𝐿𝑅, then the PTrFFSME 

 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ is equivalent to the following system of SME: 
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{
 
 

 
 
𝑚𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝑎𝑖𝑗 = 𝑐𝑖𝑗 ,

𝑛𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝑏𝑖𝑗 = 𝑔𝑖𝑗 ,

𝑚𝑖𝑗𝑧𝑖𝑗 + 𝛼𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝛾𝑖𝑗 + 𝑧𝑖𝑗𝑎𝑖𝑗 = ℎ𝑖𝑗 ,

𝑛𝑖𝑗𝑞𝑖𝑗 + 𝛽𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝛿𝑖𝑗 + 𝑞𝑖𝑗𝑏𝑖𝑗 = 𝑓𝑖𝑗 .

                              (7.1) 

Proof: Let 𝐴̃ = (𝑎̃𝑖𝑗)𝑛×𝑛 = (𝑚𝑖𝑗 , 𝑛𝑖𝑗 , 𝛼𝑖𝑗 , 𝛽𝑖𝑗)𝐿𝑅 > 0, 

 𝐷̃ = (𝑑̃𝑖𝑗)𝑚×𝑚 = (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝛾𝑖𝑗 , 𝛿𝑖𝑗)𝐿𝑅 > 0, 

 𝑋̃ = (𝑥̃𝑖𝑗)𝑛×𝑚 = (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑞𝑖𝑗)𝐿𝑅 > 0  

and 𝐸̃ = (𝑒̃𝑖𝑗)𝑛×𝑚 = (𝑐𝑖𝑗 , 𝑔𝑖𝑗 , ℎ𝑖𝑗 , 𝑓𝑖𝑗)𝐿𝑅.  

We have from Definition 2.3.3.1.6 and Eq. (2.6a), 

 𝐴̃𝑋̃ = (𝑎̃𝑖𝑗)(𝑥̃𝑖𝑗) = (𝑚𝑖𝑗 , 𝑛𝑖𝑗 , 𝛼𝑖𝑗 , 𝛽𝑖𝑗)(𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑞𝑖𝑗), 

      = (𝑚𝑖𝑗𝑥𝑖𝑗 , 𝑛𝑖𝑗𝑦𝑖𝑗 , 𝑚𝑖𝑗𝑧𝑖𝑗 + 𝛼𝑖𝑗𝑥𝑖𝑗 , 𝑛𝑖𝑗𝑞𝑖𝑗 + 𝛽𝑖𝑗𝑦𝑖𝑗), 

and 

𝑋̃𝐷̃ = (𝑥̃𝑖𝑗)(𝑑̃𝑖𝑗) = (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑞𝑖𝑗)(𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝛾𝑖𝑗 , 𝛿𝑖𝑗), 

                                = (𝑥𝑖𝑗𝑎𝑖𝑗 , 𝑦𝑖𝑗𝑏𝑖𝑗 , 𝑥𝑖𝑗𝛾𝑖𝑗 + 𝑧𝑖𝑗𝑎𝑖𝑗 , 𝑦𝑖𝑗𝛿𝑖𝑗 + 𝑞𝑖𝑗𝑏𝑖𝑗). 

The PTrFFSME in Eq. (1.14) can be written as:   

∑ 𝑎̃𝑖𝑗𝑥̃𝑖𝑗 + ∑ 𝑥̃𝑖𝑗𝑑̃𝑖𝑗 = 𝑒̃𝑖𝑗

𝑚

𝑖,𝑗=1

𝑛

𝑖,𝑗=1

. 

Therefore, the PTrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ is equivalent to the following system of 

SME: 
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{
 
 

 
 
𝑚𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝑎𝑖𝑗 = 𝑐𝑖𝑗 ,

𝑛𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝑏𝑖𝑗 = 𝑔𝑖𝑗 ,

𝑚𝑖𝑗𝑧𝑖𝑗 + 𝛼𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝛾𝑖𝑗 + 𝑧𝑖𝑗𝑎𝑖𝑗 = ℎ𝑖𝑗 ,

𝑛𝑖𝑗𝑞𝑖𝑗 + 𝛽𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝛿𝑖𝑗 + 𝑞𝑖𝑗𝑏𝑖𝑗 = 𝑓𝑖𝑗 .

 

□ 

To solve the PTrFFSME with LR-TrFN, the corresponding system of SME Eq. (7.1) is 

considered. The solution to the system of SME in Eq. (7.1) can be obtained by the 

MFMVM in Section 3.4.1. The MFMVM to obtain the solution is given in the following 

five steps: 

Step 1: Applying subtraction property of equality on the third and fourth equations in 

Eq. (7.1), we get: 

{
 
 

 
 
𝑚𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝑎𝑖𝑗 = 𝑐𝑖𝑗 ,

𝑛𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝑏𝑖𝑗 = 𝑔𝑖𝑗 ,

𝑚𝑖𝑗𝑧𝑖𝑗 + 𝑧𝑖𝑗𝑎𝑖𝑗 = ℎ𝑖𝑗 − (𝛼𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝛾𝑖𝑗),

𝑛𝑖𝑗𝑞𝑖𝑗 + 𝑞𝑖𝑗𝑏𝑖𝑗 = 𝑓𝑖𝑗 − (𝛽𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝛿𝑖𝑗).

                                                 (7.2) 

By applying Vec-operator in Definition 2.6.2.3 for both sides of Eq. (7.2), we have 

{
 
 

 
 
𝑉𝑒𝑐(𝑚𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝑎𝑖𝑗) = 𝑉𝑒𝑐(𝑐𝑖𝑗),

𝑉𝑒𝑐(𝑛𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝑏𝑖𝑗) = 𝑉𝑒𝑐(𝑔𝑖𝑗),

𝑉𝑒𝑐(𝑚𝑖𝑗𝑧𝑖𝑗 + 𝑧𝑖𝑗𝑎𝑖𝑗) = 𝑉𝑒𝑐(ℎ𝑖𝑗 − (𝛼𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝛾𝑖𝑗)),

𝑉𝑒𝑐(𝑛𝑖𝑗𝑞𝑖𝑗 + 𝑞𝑖𝑗𝑏𝑖𝑗) = 𝑉𝑒𝑐(𝑓𝑖𝑗 − (𝛽𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝛿𝑖𝑗)).

                          (7.3) 

Using Eq. (2.14a) in Definition 2.6.2.3, Eq. (7.3) can be written as follows: 

{
 
 

 
 
(𝑚𝑖𝑗⨁𝑎𝑖𝑗

𝑇 )𝑉𝑒𝑐(𝑥𝑖𝑗) = 𝑉𝑒𝑐(𝑐𝑖𝑗),

(𝑛𝑖𝑗⨁𝑏𝑖𝑗
𝑇 )𝑉𝑒𝑐(𝑦𝑖𝑗) = 𝑉𝑒𝑐(𝑔𝑖𝑗),

(𝑚𝑖𝑗⨁𝑎𝑖𝑗
𝑇 )𝑉𝑒𝑐(𝑧𝑖𝑗) = 𝑉𝑒𝑐(ℎ𝑖𝑗) − (𝛼𝑖𝑗⨁𝛾𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑥𝑖𝑗),

(𝑛𝑖𝑗⨁𝑏𝑖𝑗
𝑇 )𝑉𝑒𝑐(𝑞𝑖𝑗) = 𝑉𝑒𝑐(𝑓𝑖𝑗) − (𝛽𝑖𝑗⨁𝛿𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑦𝑖𝑗).

                     (7.4) 
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Step 2: Let 𝐾 = 𝑚𝑖𝑗⨁𝑎𝑖𝑗
𝑇  and 𝐿 = 𝑛𝑖𝑗⨁𝑏𝑖𝑗

𝑇  be non-singular matrices, and substitute in  

Eq. (7.4), the following system can be obtained: 

{
 
 

 
 
(𝐾)𝑉𝑒𝑐(𝑥𝑖𝑗) = 𝑉𝑒𝑐(𝑐𝑖𝑗),

(𝐿)𝑉𝑒𝑐(𝑦𝑖𝑗) = 𝑉𝑒𝑐(𝑔𝑖𝑗),

(𝐾)𝑉𝑒𝑐(𝑧𝑖𝑗) = 𝑉𝑒𝑐(ℎ𝑖𝑗) − (𝛼𝑖𝑗⨁𝛾𝑖𝑗
𝑇) ∙ 𝑉𝑒𝑐(𝑥𝑖𝑗),

(𝐿)𝑉𝑒𝑐(𝑞𝑖𝑗) = 𝑉𝑒𝑐(𝑓𝑖𝑗) − (𝛽𝑖𝑗⨁𝛿𝑖𝑗
𝑇) ∙ 𝑉𝑒𝑐(𝑦𝑖𝑗).

                                  (7.5) 

Step 3: Multiplying the first and the third equations by 𝐾−1 and the second and fourth 

equations by 𝐿−1 in Eq. (7.5) gives:  

{
 
 

 
 
𝑉𝑒𝑐(𝑥𝑖𝑗) = 𝐾

−1 ∙ 𝑉𝑒𝑐(𝑐𝑖𝑗),

𝑉𝑒𝑐(𝑦𝑖𝑗) = 𝐿
−1 ∙ 𝑉𝑒𝑐(𝑔𝑖𝑗),

𝑉𝑒𝑐(𝑧𝑖𝑗) = 𝐾
−1 ∙ (𝑉𝑒𝑐(ℎ𝑖𝑗) − (𝛼𝑖𝑗⨁𝛾𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑥𝑖𝑗)) ,

𝑉𝑒𝑐(𝑞𝑖𝑗) = 𝐿
−1 ∙ (𝑉𝑒𝑐(𝑓𝑖𝑗) − (𝛽𝑖𝑗⨁𝛿𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑦𝑖𝑗)) .

                    (7.6) 

Step 4: By multiplying both sides of the Eq. (7.6) by the multiplicative inverse of 

function 𝑉𝑒𝑐(∙), we obtain the following: 

{
 
 

 
 
𝑥𝑖𝑗 = 𝑉𝑒𝑐

−1(𝐾−1 ∙ 𝑉𝑒𝑐(𝑐𝑖𝑗)),

𝑦𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐿−1 ∙ 𝑉𝑒𝑐(𝑔𝑖𝑗)),

𝑧𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐾−1 ∙ (𝑉𝑒𝑐(ℎ𝑖𝑗) − (𝛼𝑖𝑗⨁𝛾𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑥𝑖𝑗))),

𝑞𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐿−1 ∙ (𝑉𝑒𝑐(𝑓𝑖𝑗) − (𝛽𝑖𝑗⨁𝛿𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑦𝑖𝑗))).

                  (7.7) 

Step 5: Computing the values of 𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗  and 𝑞𝑖𝑗, the solution of FFSME is 

represented by: 

 𝑋̃ = (𝑥̃𝑖𝑗)𝑛×𝑚 = (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑞𝑖𝑗)𝐿𝑅, or in matrix form as, 

𝑋̃ = (

(𝑥11, 𝑦11, 𝑧11, 𝑞11) (𝑥12, 𝑦12, 𝑧12, 𝑞12) ⋯ (𝑥1𝑚, 𝑦1𝑚, 𝑧1𝑚, 𝑞1𝑚)
(𝑥21, 𝑦21, 𝑧21, 𝑞21) (𝑥22, 𝑦22, 𝑧22, 𝑞22) ⋯ (𝑥2𝑚, 𝑦2𝑚, 𝑧2𝑚, 𝑞2𝑚)

⋮ ⋮ ⋱ ⋮
(𝑥𝑛1, 𝑦𝑛1, 𝑧𝑛1, 𝑞𝑛1) (𝑥𝑛2, 𝑦𝑛2, 𝑧𝑛2, 𝑞𝑛2) … (𝑥𝑛𝑚, 𝑦𝑛𝑚, 𝑧𝑛𝑚, 𝑞𝑛𝑚)

)

𝐿𝑅
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In the following Definition 7.1.1, the positive fuzzy solution to the PTrFFSME in LR 

form is defined. 

Definition 7.1.1 Positive Fuzzy Solution to PTrFFSME in LR Form 

A trapezoidal fuzzy solution matrix 𝑋̃ = (𝑥̃𝑖𝑗)𝑛×𝑚 = (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑞𝑖𝑗)𝐿𝑅 where 

 𝑥𝑖𝑗 > 0, 𝑦𝑖𝑗 > 0, 𝑧𝑖𝑗 > 0, 𝑞𝑖𝑗 > 0, 𝑥𝑖𝑗 ≤ 𝑦𝑖𝑗 and 𝑥𝑖𝑗 − 𝑧𝑖𝑗 > 0  is called a positive fuzzy 

solution of the PTrFFSME in LR form.  

 

The following Theorem 7.1.2 shows the equivalency between the positive solution of 

the system of SME in Eq. (7.1) and the positive fuzzy solution to the PTrFFSME. 

Theorem 7.1.2. Suppose that 𝐴̃ = (𝑚𝑖𝑗 , 𝑛𝑖𝑗 , 𝛼𝑖𝑗 , 𝛽𝑖𝑗)𝐿𝑅, 𝐷̃ = (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝛾𝑖𝑗 , 𝛿𝑖𝑗)𝐿𝑅 and 

𝐸̃ = (𝑐𝑖𝑗 , 𝑔𝑖𝑗 , ℎ𝑖𝑗 , 𝑓𝑖𝑗)𝐿𝑅 are three positive trapezoidal fuzzy matrices. Then the positive 

fuzzy solution to the PTrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ in LR form and the solution to the 

system of SME in Eq. (7.1) are equivalent if the following conditions are satisfied: 

𝐾−1 = (𝑚𝑖𝑗⨁𝑎𝑖𝑗
𝑇 )

−1
> 0, 𝐿−1 = (𝑛𝑖𝑗⨁𝑏𝑖𝑗

𝑇 )
−1
> 0, 𝐾−1 ≤ 𝐿−1,  

ℎ𝑖𝑗 > 𝛼𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝛾𝑖𝑗, 𝑓𝑖𝑗 > 𝛽𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝛿𝑖𝑗  and 𝑐𝑖𝑗 + (𝛼𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝛾𝑖𝑗) > ℎ𝑖𝑗.  

Proof: Let 𝐴̃, 𝐷̃, 𝐸̃, 𝐾 and 𝐿 are non-negative matrices, and 𝐾−1 and 𝐿−1 exists. The 

PTrFFSME can be written as a system of SME in Eq. (7.1) by Theorem 7.1.1. By 

applying the Vec-operator and Kronecker product to the system of SME, the following 

system is obtained 
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{
 
 

 
 
𝑥𝑖𝑗 = 𝑉𝑒𝑐

−1(𝐾−1 ∙ 𝑉𝑒𝑐(𝑐𝑖𝑗)),

𝑦𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐿−1 ∙ 𝑉𝑒𝑐(𝑔𝑖𝑗)),

𝑧𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐾−1 ∙ (𝑉𝑒𝑐(ℎ𝑖𝑗) − (𝛼𝑖𝑗⨁𝛾𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑥𝑖𝑗))),

𝑞𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐿−1 ∙ (𝑉𝑒𝑐(𝑓𝑖𝑗) − (𝛽𝑖𝑗⨁𝛿𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑦𝑖𝑗))).

  

Therefore, if 𝐾−1 = (𝑚𝑖𝑗⨁𝑎𝑖𝑗
𝑇 )

−1
> 0 then  

𝑥𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐾−1 ∙ 𝑉𝑒𝑐(𝑐𝑖𝑗)) > 0. 

If 𝐿−1 = (𝑛𝑖𝑗⨁𝑏𝑖𝑗
𝑇 )

−1
> 0 then 

𝑦𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐿−1 ∙ 𝑉𝑒𝑐(𝑔𝑖𝑗)) > 0. 

Since 𝐾−1 ≤ 𝐿−1 and 𝑉𝑒𝑐(𝑐𝑖𝑗) ≤ 𝑉𝑒𝑐(𝑔𝑖𝑗), then 𝑥𝑖𝑗 ≤ 𝑦𝑖𝑗. 

On the other hand, because ℎ𝑖𝑗 > 𝛼𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝛾𝑖𝑗 and 𝑓𝑖𝑗 > 𝛽𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝛿𝑖𝑗, so with 

𝑧𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐾−1 ∙ (𝑉𝑒𝑐(ℎ𝑖𝑗) − (𝛼𝑖𝑗⨁𝛾𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑥𝑖𝑗))) and 

 𝑞𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐿−1 ∙ (𝑉𝑒𝑐(𝑓𝑖𝑗) − (𝛽𝑖𝑗⨁𝛿𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑦𝑖𝑗))) we have 𝑧𝑖𝑗 > 0 and 𝑞𝑖𝑗 > 0.  

In addition, if  

𝑉𝑒𝑐(𝑥𝑖𝑗) = 𝐾
−1 ∙ 𝑉𝑒𝑐(𝑐𝑖𝑗) 

and 

𝑉𝑒𝑐(𝑧𝑖𝑗) = 𝐾
−1 ∙ (𝑉𝑒𝑐(ℎ𝑖𝑗) − (𝛼𝑖𝑗⨁𝛾𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑥𝑖𝑗)).  

then,  

𝑉𝑒𝑐(𝑥𝑖𝑗) − 𝑉𝑒𝑐(𝑧𝑖𝑗) = 𝐾
−1𝑉𝑒𝑐(𝑐𝑖𝑗 − (ℎ𝑖𝑗 − (𝛼𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝛾𝑖𝑗))). 

Since 𝑐𝑖𝑗 + (𝛼𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝛾𝑖𝑗) > ℎ𝑖𝑗,  then 𝑉𝑒𝑐(𝑥𝑖𝑗 − 𝑧𝑖𝑗) > 0. 

Therefore, 𝑥𝑖𝑗 − 𝑧𝑖𝑗 > 0. 

Thus, by Definition 7.1.1,  𝑋̃ = (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑞𝑖𝑗)𝐿𝑅 is a positive trapezoidal fuzzy 

matrix in LR form that satisfies the PTrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃.     
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□ 

Now, the feasibility of the positive solution to the PTrFFSME in LR form is discussed. 

Feasibility of the Positive Solution to The PTrFFSME in LR Form 

Let  𝐴̃ = (𝑚𝑖𝑗 , 𝑛𝑖𝑗 , 𝛼𝑖𝑗 , 𝛽𝑖𝑗)𝐿𝑅 > 0, 𝐷̃ = (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝛾𝑖𝑗 , 𝛿𝑖𝑗)𝐿𝑅 > 0 and 𝐾 = 𝑚𝑖𝑗⨁𝑎𝑖𝑗
𝑇  and 

𝐿 = 𝑛𝑖𝑗⨁𝑏𝑖𝑗
𝑇  be non-singular  matrices; then the PTrFFSME has a positive fuzzy 

solution if: 

I) 𝑥𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐾−1 ∙ 𝑉𝑒𝑐(𝑐𝑖𝑗)) > 0. 

II) 𝑦𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐿−1 ∙ 𝑉𝑒𝑐(𝑔𝑖𝑗)) > 0. 

III) 𝑧𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐾−1 ∙ (𝑉𝑒𝑐(𝑑𝑖𝑗) − (𝛼𝑖𝑗⨁𝛾𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑥𝑖𝑗))) > 0. 

IV) 𝑞𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐿−1 ∙ (𝑉𝑒𝑐(𝑒𝑖𝑗) − (𝛽𝑖𝑗⨁𝛿𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑦𝑖𝑗))) > 0. 

V) 𝑥𝑖𝑗 − 𝑧𝑖𝑗 > 0. 

VI) 𝑦𝑖𝑗 − 𝑥𝑖𝑗 ≥ 0. 

In the following Example 7.1.1, the MFMVM is illustrated. 

Example 7.1.1 Consider the following positive LR TrFFSME: 

(
(5, 8, 2, 1) (6, 10, 3, 6)
(5, 6, 2, 1) (3, 5, 2, 3)

) ∙ (
(𝑥11, 𝑦11, 𝑧11, 𝑞11) (𝑥12, 𝑦12, 𝑧12, 𝑞12)
(𝑥21, 𝑦21, 𝑧21, 𝑞11) (𝑥22, 𝑦22, 𝑧22, 𝑞22)

) 

+(
(𝑥11, 𝑦11, 𝑧11, 𝑞11) (𝑥12, 𝑦12, 𝑧12, 𝑞12)
(𝑥21, 𝑦21, 𝑧21, 𝑞11) (𝑥22, 𝑦22, 𝑧22, 𝑞22)

) ∙ (
(6, 7, 1, 2) (2, 8, 1, 2)
(5, 6, 3, 1) (3, 7, 1, 2)

) 

= (
(118, 230, 85, 350) (64, 229, 52, 420)
(123, 198, 102, 291) (60, 202, 54, 360)

). 

Solution  
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By Theorem 7.1.1, the given PTrFFSME can be converted to an equivalent system of 

SME where the positive fuzzy solution can be obtained as follows: 

Step 1: Given  𝐴̃ = (𝑚𝑖𝑗 , 𝑛𝑖𝑗 , 𝛼𝑖𝑗 , 𝛽𝑖𝑗) = (
(5, 8, 2, 1) (6, 10, 3, 6)
(5, 6, 2, 1) (3, 5, 2, 3)

). 

The matrices 𝑚𝑖𝑗, 𝑛𝑖𝑗, 𝛼𝑖𝑗 and  𝛽𝑖𝑗  are defined as follows: 

 𝑚𝑖𝑗 = (
𝑚11 𝑚12

𝑚21 𝑚22
) = (

5 6
5 3

), 𝑛𝑖𝑗 = (
𝑛11 𝑛12
𝑛21 𝑛22

) = (
8 10
6 5

),  

𝛼𝑖𝑗 = (
𝛼11 𝛼12
𝛼21 𝛼22

) = (
2 3
2 2

) and  𝛽𝑖𝑗 = (
𝛽11 𝛽12
𝛽21 𝛽22

) = (
1 6
1 3

). 

Also given,  𝐷̃ = (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝛾𝑖𝑗 , 𝛿𝑖𝑗) = (
(6, 7, 1, 2) (2, 8, 1, 2)
(5, 6, 3, 1) (3, 7, 1, 2)

), 

the matrices 𝑎𝑖𝑗, 𝑏𝑖𝑗, 𝛾𝑖𝑗 and 𝛿𝑖𝑗 are defined as follows: 

 𝑎𝑖𝑗 = (
𝑎11 𝑎12
𝑎21 𝑎22

) = (
6 2
5 3

), 𝑏𝑖𝑗 = (
𝑏11 𝑏12
𝑏21 𝑏22

) = (
7 8
6 7

),  

𝛾𝑖𝑗 = (
𝛾11 𝛾12
𝛾21 𝛾22

) = (
1 1
3 1

) and 𝛿𝑖𝑗 = (
𝛿11 𝛿12
𝛿21 𝛿22

) = (
2 2
1 2

). 

and, 

𝐸̃ = (𝑐𝑖𝑗 , 𝑔𝑖𝑗 , ℎ𝑖𝑗 , 𝑓𝑖𝑗) = (
(118, 230, 85, 350) (64, 229, 52, 420)
(123, 198, 102, 291) (60, 202, 54, 360)

). 

The matrices 𝑐𝑖𝑗, 𝑔𝑖𝑗, ℎ𝑖𝑗 and 𝑓𝑖𝑗 are defined as follows: 

𝑐𝑖𝑗 = (
𝑐11 𝑐12
𝑐21 𝑐22

) = (
118 64
123 60

), 𝑔𝑖𝑗 = (
𝑔11 𝑔12
𝑔21 𝑔22

) = (
230 229
198 202

), 

ℎ𝑖𝑗 = (
ℎ11 ℎ12
ℎ21 ℎ22

) = (
85 52
102 54

), and  𝑓𝑖𝑗 = (
𝑓11 𝑓12
𝑓21 𝑓22

) = (
350 420
291 360

). 

Step 2: We compute the following: 
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𝐾 = 𝑚𝑖𝑗⨁𝑎𝑖𝑗
𝑇 = (

5 6
5 3

)⨁(
6 2
5 3

)
𝑇

= (

11 5 6 0
2 8 0 6
5 0 9 5
0 5 2 6

), 

𝐿 = 𝑛𝑖𝑗⨁𝑏𝑖𝑗
𝑇 = (

8 10
6 5

)⨁(
7 8
6 7

)
𝑇

= (

15 6 10 0
8 15 0 10
6 0 12 6
0 6 8 12

), 

𝛼𝑖𝑗⨁𝛾𝑖𝑗
𝑇 = (

3 3 3 0
1 3 0 3
2 0 3 3
0 2 1 3

), 

and, 

𝛽𝑖𝑗⨁𝛿𝑖𝑗
𝑇 = (

3 1 6 0
2 3 0 6
1 0 5 1
0 1 2 5

). 

Step 3: Using the associated linear system Eq. (7.6), the value of 𝑉𝑒𝑐(𝑥𝑖𝑗), 𝑉𝑒𝑐(𝑦𝑖𝑗), 

𝑉𝑒𝑐(𝑧𝑖𝑗) and 𝑉𝑒𝑐(𝑞𝑖𝑗) can be obtained as follows: We first find, 

𝐾−1 =

(

 
 
 
 

−
41

339

185

339

28

113
−

85

113
74

339
−
152

339
−

34

113

79

113
70

339
−
425

678
−

23

113

90

113

−
85

339

395

678

36

113
−

77

113)

 
 
 
 

 and 𝐿−1 =

(

 
 
 

−
5

47

13

94

35

141
−

45

188
26

141
−

5

47
−
15

47

35

141
7

47
−

27

188
−
17

94

79

376

−
9

47

7

47

79

282
−
17

94)

 
 
 

. 

By applying Definition 2.6.2.2 on 𝑐𝑖𝑗 = (
118 64
123 60

), 𝑔𝑖𝑗 = (
230 229
198 202

),  

ℎ𝑖𝑗 = (
85 52
102 54

) and 𝑓𝑖𝑗 = (
350 420
291 360

), we have,  
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𝑉𝑒𝑐(𝑐𝑖𝑗) = (

118
64
123
60

), 𝑉𝑒𝑐(𝑔𝑖𝑗) = (

230
229
198
202

), 𝑉𝑒𝑐(ℎ𝑖𝑗) = (

85
52
102
54

) and 

 𝑉𝑒𝑐(𝑓𝑖𝑗) = (

350
420
291
360

).  

Therefore, 

𝑉𝑒𝑐(𝑥𝑖𝑗) = 𝐾
−1 ∙ 𝑉𝑒𝑐(𝑐𝑖𝑗) =

(

 
 
 
 

−
41

339

185

339

28

113
−

85

113
74

339
−
152

339
−

34

113

79

113
70

339
−
425

678
−

23

113

90

113

−
85

339

395

678

36

113
−

77

113)

 
 
 
 

∙ (

118
64
123
60

) = (

6
2
7
6

). 

𝑉𝑒𝑐(𝑦𝑖𝑗) = 𝐿
−1 ∙ 𝑉𝑒𝑐(𝑔𝑖𝑗) =

(

 
 
 

−
5

47

13

94

35

141
−

45

188
26

141
−

5

47
−
15

47

35

141
7

47
−

27

188
−
17

94

79

376

−
9

47

7

47

79

282
−
17

94)

 
 
 

∙ (

230
229
198
202

) = (

8
5
8
9

). 

The value of 𝑉𝑒𝑐(𝑥𝑖𝑗) and 𝑉𝑒𝑐(𝑦𝑖𝑗) is substituted in Eq. (7.6) to compute 𝑉𝑒𝑐(𝑧𝑖𝑗) and 

𝑉𝑒𝑐(𝑞𝑖𝑗) as follows: 

𝑉𝑒𝑐(𝑧𝑖𝑗) = 𝐾
−1 ∙ (𝑉𝑒𝑐(ℎ𝑖𝑗) − (𝛼𝑖𝑗⨁𝛾𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑥𝑖𝑗)).  

Thus, 

𝑉𝑒𝑐(𝑧𝑖𝑗) =

(

 
 
 
 

−
41

339

185

339

28

113
−

85

113
74

339
−
152

339
−

34

113

79

113
70

339
−
425

678
−

23

113

90

113

−
85

339

395

678

36

113
−

77

113)

 
 
 
 

∙

(

 
 
(

85
52
102
54

) − (

3 3 3 0
1 3 0 3
2 0 3 3
0 2 1 3

) . (

6
2
7
6

)

)

 
 
= (

1
1
4
2

). 

Similarly,  
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𝑉𝑒𝑐(𝑞𝑖𝑗) = 𝐿
−1 ∙ (𝑉𝑒𝑐(𝑓𝑖𝑗) − (𝛽𝑖𝑗⨁𝛿𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑦𝑖𝑗)). Thus,  

𝑉𝑒𝑐(𝑞𝑖𝑗) =

(

 
 
 
 

−
5

47

13

94

35

141
−

45

188
26

141
−

5

47
−
15

47

35

141
7

47
−

27

188
−
17

94

79

376

−
9

47

7

47

79

282
−
17

94)

 
 
 
 

∙

(

 
 
(

350
420
291
360

) − (

3 1 6 0
2 3 0 6
1 0 5 1
0 1 2 5

) . (

8
5
8
9

)

)

 
 
= (

5
13
12
10

). 

Step 4: The value of 𝑥𝑖𝑗, 𝑦𝑖𝑗, 𝑧𝑖𝑗 and 𝑞𝑖𝑗 is computed as follows: 

By using Definition 2.6.2.2, we get  

𝑥𝑖𝑗 = 𝑉𝑒𝑐
−1 (

6
2
7
6

) = (
6 2
7 6

), 𝑦𝑖𝑗 = 𝑉𝑒𝑐
−1 (

8
5
8
9

)  = (
8 5
8 9

),  

𝑧𝑖𝑗 = 𝑉𝑒𝑐
−1(

1
1
4
2

)  = (
1 1
4 2

) and 𝑞𝑖𝑗 = 𝑉𝑒𝑐
−1 (

5
13
12
10

)  = (
5 13
12 10

). 

Step 5: After computing the values of 𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗  and 𝑞𝑖𝑗. The positive fuzzy solution 

𝑋̃ of PTrFFSME is  

𝑋̃ = (
(6, 8, 1, 5) (2, 5, 1, 13)
(7, 8, 4, 12) (6, 9, 2, 10)

). 

Step 6: Feasibility of the solution  

From the obtained solution in step 5, the following can be obtained. 

I) 𝑥𝑖𝑗 = (
6 2
7 6

) > 0, 

II) 𝑦𝑖𝑗 = (
8 5
8 9

) > 0, 

III) 𝑧𝑖𝑗 = (
1 1
4 2

) > 0, 
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IV) 𝑞𝑖𝑗 = (
5 13
12 10

) >, 

V) 𝑥𝑖𝑗 − 𝑧𝑖𝑗 = (
5 1
3 4

) > 0, 

VI) 𝑦𝑖𝑗 − 𝑥𝑖𝑗 = (
2 3
1 3

) ≥ 0. 

The positive fuzzy solution 𝑋̃ = (
(6, 8, 1, 5) (2, 5, 1, 13)
(7, 8, 4, 12) (6, 9, 2, 10)

), is feasible and strong 

fuzzy solution.  

The following Figure 7.1 shows the positive fuzzy solution 𝑋̃. 

 

 

 

 

 

 

Figure 7.1. Positive fuzzy solution for Example 7.1.1. 

In the following Section 7.2, the MFMVM developed in Section 7.1 for solving 

PTrFFSME is modified and applied to negative TrFFSME (NTrFFSME). 

7.2 Negative Fuzzy Solution for Negative TrFFSME with LR-TrFNs. 

In this section, the analytical negative fuzzy solution to the NTrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ 

is considered. In order to get the solution, the NTrFFSME is converted to an equivalent 

Positive fuzzy solution

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system of SME using the DPMO in Eq. (2.6b) in Definition 2.3.3.1.6. In the following 

Theorem 7.2.1, the NTrFFSME in LR form is converted to an equivalent system of 

SME. 

Theorem 7.2.1 If 𝐴̃ = (𝑚𝑖𝑗 , 𝑛𝑖𝑗 , 𝛼𝑖𝑗 , 𝛽𝑖𝑗)𝐿𝑅 < 0, 𝐷̃ = (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝛾𝑖𝑗 , 𝛿𝑖𝑗)𝐿𝑅 < 0 and 

 𝑋̃ = (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑞𝑖𝑗)𝐿𝑅 < 0 and 𝐸̃ = (𝑐𝑖𝑗 , 𝑔𝑖𝑗 , ℎ𝑖𝑗 , 𝑓𝑖𝑗)𝐿𝑅. Then the NTrFFSME 

 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ is equivalent to the following system of SME: 

{
 
 

 
 
𝑚𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝑎𝑖𝑗 = 𝑐𝑖𝑗 ,

𝑛𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝑏𝑖𝑗 = 𝑔𝑖𝑗 ,

𝑚𝑖𝑗𝑧𝑖𝑗 + 𝛼𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝛾𝑖𝑗 + 𝑧𝑖𝑗𝑎𝑖𝑗 = −ℎ𝑖𝑗 ,

𝑛𝑖𝑗𝑞𝑖𝑗 + 𝛽𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝛿𝑖𝑗 + 𝑞𝑖𝑗𝑏𝑖𝑗 = −𝑓𝑖𝑗 .

                             (7.8) 

Proof: 

Let 𝐴̃ = (𝑎̃𝑖𝑗)𝑛×𝑛 = (𝑚𝑖𝑗 , 𝑛𝑖𝑗 , 𝛼𝑖𝑗 , 𝛽𝑖𝑗) < 0, 𝐵̃ = (𝑏̃𝑖𝑗)𝑚×𝑚 = (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝛾𝑖𝑗 , 𝛿𝑖𝑗) < 0, 

𝑋̃ = (𝑥̃𝑖𝑗)𝑛×𝑚 = (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑞𝑖𝑗) < 0 and 𝐶̃ = (𝑐̃𝑖𝑗)𝑛×𝑚 = (𝑐𝑖𝑗 , 𝑔𝑖𝑗 , ℎ𝑖𝑗 , 𝑓𝑖𝑗). 

We have from Eq. (2.6b) in Definition 2.3.3.1.6. 

𝐴̃𝑋̃ = (𝑎̃𝑖𝑗)(𝑥̃𝑖𝑗) = (𝑚𝑖𝑗 , 𝑛𝑖𝑗 , 𝛼𝑖𝑗 , 𝛽𝑖𝑗)(𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑞𝑖𝑗). 

                                = (𝑚𝑖𝑗𝑥𝑖𝑗 , 𝑛𝑖𝑗𝑦𝑖𝑗 , −𝑚𝑖𝑗𝑧𝑖𝑗 − 𝛼𝑖𝑗𝑥𝑖𝑗 , − 𝑛𝑖𝑗𝑞𝑖𝑗 − 𝛽𝑖𝑗𝑦𝑖𝑗). 

and           

𝑋̃𝐵̃ = (𝑥̃𝑖𝑗)(𝑏̃𝑖𝑗) = (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑞𝑖𝑗)(𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝛾𝑖𝑗 , 𝛿𝑖𝑗). 

                                 = (𝑥𝑖𝑗𝑎𝑖𝑗 , 𝑦𝑖𝑗𝑏𝑖𝑗 , −𝑥𝑖𝑗𝛾𝑖𝑗 − 𝑧𝑖𝑗𝑎𝑖𝑗 , −𝑦𝑖𝑗𝛿𝑖𝑗 − 𝑞𝑖𝑗𝑏𝑖𝑗). 

Since we can write 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ as: 
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∑ 𝑎̃𝑖𝑗𝑥̃𝑖𝑗 + ∑ 𝑥̃𝑖𝑗𝑑̃𝑖𝑗 = 𝑒̃𝑖𝑗

𝑚

𝑖,𝑗=1

𝑛

𝑖,𝑗=1

. 

Then, the NTrFFSME is equivalent to the following system of SME: 

{
 
 

 
 
𝑚𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝑎𝑖𝑗 = 𝑐𝑖𝑗 ,

𝑛𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝑏𝑖𝑗 = 𝑔𝑖𝑗 ,

−𝑚𝑖𝑗𝑧𝑖𝑗 − 𝛼𝑖𝑗𝑥𝑖𝑗 − 𝑥𝑖𝑗𝛾𝑖𝑗 − 𝑧𝑖𝑗𝑎𝑖𝑗 = ℎ𝑖𝑗 ,

−𝑛𝑖𝑗𝑞𝑖𝑗 − 𝛽𝑖𝑗𝑦𝑖𝑗 − 𝑦𝑖𝑗𝛿𝑖𝑗 − 𝑞𝑖𝑗𝑏𝑖𝑗 = 𝑓𝑖𝑗 .

                                (7.9) 

Using multiplication property of equality on the third and fourth equations in Eq. (7.9) 

gives: 

{
 
 

 
 
𝑚𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝑎𝑖𝑗 = 𝑐𝑖𝑗 ,

𝑛𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝑏𝑖𝑗 = 𝑔𝑖𝑗 ,

𝑚𝑖𝑗𝑧𝑖𝑗 + 𝛼𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝛾𝑖𝑗 + 𝑧𝑖𝑗𝑎𝑖𝑗 = −ℎ𝑖𝑗 ,

𝑛𝑖𝑗𝑞𝑖𝑗 + 𝛽𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝛿𝑖𝑗 + 𝑞𝑖𝑗𝑏𝑖𝑗 = −𝑓𝑖𝑗 .

    

□ 

To solve NTrFFSME, we consider the corresponding system of SME in Eq. (7.8) by 

utilizing Vec-operator and Kronecker product. The solution of the system of SME in 

Eq. (7.8) can be obtained by MFMVM in Section 3.4.1 is discussed in the following 

five steps. 

Step 1: Let   −ℎ𝑖𝑗 = 𝑑𝑖𝑗 and  −𝑓𝑖𝑗 = 𝑒𝑖𝑗. Then Eq. (7.8) can be written as: 

{
 
 

 
 
𝑚𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝑎𝑖𝑗 = 𝑐𝑖𝑗 ,

𝑛𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝑏𝑖𝑗 = 𝑔𝑖𝑗 ,

𝑚𝑖𝑗𝑧𝑖𝑗 + 𝛼𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝛾𝑖𝑗 + 𝑧𝑖𝑗𝑎𝑖𝑗 = 𝑑𝑖𝑗 ,

𝑛𝑖𝑗𝑞𝑖𝑗 + 𝛽𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝛿𝑖𝑗 + 𝑞𝑖𝑗𝑏𝑖𝑗 = 𝑒𝑖𝑗 .

                                  (7.10) 

Applying subtraction property of equality on the third and fourth equations in  

Eq. (7.10), we get: 
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{
 
 

 
 
𝑚𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝑎𝑖𝑗 = 𝑐𝑖𝑗 ,

𝑛𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝑏𝑖𝑗 = 𝑔𝑖𝑗 ,

𝑚𝑖𝑗𝑧𝑖𝑗 + 𝑧𝑖𝑗𝑎𝑖𝑗 = 𝑑𝑖𝑗 − (𝛼𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝛾𝑖𝑗),

𝑛𝑖𝑗𝑞𝑖𝑗 + 𝑞𝑖𝑗𝑏𝑖𝑗 = 𝑒𝑖𝑗 − (𝛽𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝛿𝑖𝑗).

                                   (7.11) 

By taking Vec-operator for both sides of Eq. (7.11), we have 

{
 
 

 
 
𝑉𝑒𝑐(𝑚𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝑎𝑖𝑗) = 𝑉𝑒𝑐(𝑐𝑖𝑗),

𝑉𝑒𝑐(𝑛𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝑏𝑖𝑗) = 𝑉𝑒𝑐(𝑔𝑖𝑗),

𝑉𝑒𝑐(𝑚𝑖𝑗𝑧𝑖𝑗 + 𝑧𝑖𝑗𝑎𝑖𝑗) = 𝑉𝑒𝑐(𝑑𝑖𝑗 − (𝛼𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝛾𝑖𝑗)),

𝑉𝑒𝑐(𝑛𝑖𝑗𝑞𝑖𝑗 + 𝑞𝑖𝑗𝑏𝑖𝑗) = 𝑉𝑒𝑐(𝑒𝑖𝑗 − (𝛽𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝛿𝑖𝑗)).

              (7.12) 

Using Eq. (2.14b) in Definition 2.6.2.3, Eq. (7.12) can be written as follows: 

{
 
 

 
 
(𝑚𝑖𝑗⨁𝑎𝑖𝑗

𝑇 )𝑉𝑒𝑐(𝑥𝑖𝑗) = 𝑉𝑒𝑐(𝑐𝑖𝑗),

(𝑛𝑖𝑗⨁𝑏𝑖𝑗
𝑇 )𝑉𝑒𝑐(𝑦𝑖𝑗) = 𝑉𝑒𝑐(𝑔𝑖𝑗),

(𝑚𝑖𝑗⨁𝑎𝑖𝑗
𝑇 )𝑉𝑒𝑐(𝑧𝑖𝑗) = 𝑉𝑒𝑐(𝑑𝑖𝑗) − (𝛼𝑖𝑗⨁𝛾𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑥𝑖𝑗),

(𝑛𝑖𝑗⨁𝑏𝑖𝑗
𝑇 )𝑉𝑒𝑐(𝑞𝑖𝑗) = 𝑉𝑒𝑐(𝑒𝑖𝑗) − (𝛽𝑖𝑗⨁𝛿𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑦𝑖𝑗).

       (7.13) 

Step 2: Assuming 𝐾 = 𝑚𝑖𝑗⨁𝑎𝑖𝑗
𝑇  and 𝐿 = 𝑛𝑖𝑗⨁𝑏𝑖𝑗

𝑇  to be non-singular matrices, and 

substitute in Eq. (7.13), we obtain the following system: 

{
 
 

 
 
(𝐾)𝑉𝑒𝑐(𝑥𝑖𝑗) = 𝑉𝑒𝑐(𝑐𝑖𝑗),

(𝐿)𝑉𝑒𝑐(𝑦𝑖𝑗) = 𝑉𝑒𝑐(𝑔𝑖𝑗),

(𝐾)𝑉𝑒𝑐(𝑧𝑖𝑗) = 𝑉𝑒𝑐(𝑑𝑖𝑗) − (𝛼𝑖𝑗⨁𝛾𝑖𝑗
𝑇) ∙ 𝑉𝑒𝑐(𝑥𝑖𝑗),

(𝐿)𝑉𝑒𝑐(𝑞𝑖𝑗) = 𝑉𝑒𝑐(𝑒𝑖𝑗) − (𝛽𝑖𝑗⨁𝛿𝑖𝑗
𝑇) ∙ 𝑉𝑒𝑐(𝑦𝑖𝑗).

                      (7.14) 

Step 3: Multiplying the first and the third equations by 𝐾−1 and the second and fourth 

equations by 𝐿−1 in Eq. (7.14) gives:  

{
 
 

 
 
𝑉𝑒𝑐(𝑥𝑖𝑗) = 𝐾

−1 ∙ 𝑉𝑒𝑐(𝑐𝑖𝑗),

𝑉𝑒𝑐(𝑦𝑖𝑗) = 𝐿
−1 ∙ 𝑉𝑒𝑐(𝑔𝑖𝑗),

𝑉𝑒𝑐(𝑧𝑖𝑗) = 𝐾
−1 ∙ (𝑉𝑒𝑐(𝑑𝑖𝑗) − (𝛼𝑖𝑗⨁𝛾𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑥𝑖𝑗)) ,

𝑉𝑒𝑐(𝑞𝑖𝑗) = 𝐿
−1 ∙ (𝑉𝑒𝑐(𝑒𝑖𝑗) − (𝛽𝑖𝑗⨁𝛿𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑦𝑖𝑗)) .

            (7.15) 



 

362 

 

Step 4: By multiplying both sides of the Eq. (7.15) by the multiplicative inverse of 

function 𝑉𝑒𝑐(∙), we obtain the following: 

{
 
 

 
 
𝑥𝑖𝑗 = 𝑉𝑒𝑐

−1(𝐾−1 ∙ 𝑉𝑒𝑐(𝑐𝑖𝑗)),

𝑦𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐿−1 ∙ 𝑉𝑒𝑐(𝑔𝑖𝑗)),

𝑧𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐾−1 ∙ (𝑉𝑒𝑐(𝑑𝑖𝑗) − (𝛼𝑖𝑗⨁𝛾𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑥𝑖𝑗))),

𝑞𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐿−1 ∙ (𝑉𝑒𝑐(𝑒𝑖𝑗) − (𝛽𝑖𝑗⨁𝛿𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑦𝑖𝑗))).

                  (7.16) 

Step 5: Compute the values of 𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗  𝑎𝑛𝑑 𝑞𝑖𝑗. The solution of FFSME is 

represented by: 

 𝑋̃ = (𝑥̃𝑖𝑗)𝑛×𝑚 = (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑞𝑖𝑗)𝐿𝑅, or in matrix form as, 

𝑋̃ = (

(𝑥11, 𝑦11, 𝑧11, 𝑞11) (𝑥12, 𝑦12, 𝑧12, 𝑞12) ⋯ (𝑥1𝑚, 𝑦1𝑚, 𝑧1𝑚, 𝑞1𝑚)
(𝑥21, 𝑦21, 𝑧21, 𝑞21) (𝑥22, 𝑦22, 𝑧22, 𝑞22) ⋯ (𝑥2𝑚, 𝑦2𝑚, 𝑧2𝑚, 𝑞2𝑚)

⋮ ⋮ ⋱ ⋮
(𝑥𝑛1, 𝑦𝑛1, 𝑧𝑛1, 𝑞𝑛1) (𝑥𝑛2, 𝑦𝑛2, 𝑧𝑛2, 𝑞𝑛2) … (𝑥𝑛𝑚, 𝑦𝑛𝑚, 𝑧𝑛𝑚, 𝑞𝑛𝑚)

)

𝐿𝑅

. 

In the following definition the negative fuzzy solution to the NTrFFSME in LR form is 

defined. 

Definition 7.2.1 A trapezoidal fuzzy matrix solution 𝑋̃ = (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑞𝑖𝑗)𝐿𝑅 where 

𝑥𝑖𝑗 < 0, 𝑦𝑖𝑗 < 0, 𝑧𝑖𝑗 > 0, 𝑞𝑖𝑗 > 0, 𝑥𝑖𝑗 ≤ 𝑦𝑖𝑗 and 𝑦𝑖𝑗 + 𝑞𝑖𝑗 < 0, is called a negative 

solution of the NTrFFSME in LR form. 

 

The following Theorem 7.2.2 proves the equivalency between the negative fuzzy 

solution obtained from the system of SME in Eq. (7.8) and the negative fuzzy solution 

to the NTrFFSME. 



 

363 

 

Theorem 7.2.2. A negative fuzzy solution to the NTrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ in LR 

form and the solution to the system of SME in Eq. (7.8) are equivalent if the following 

conditions are satisfied: 

𝐾−1 = (𝑚𝑖𝑗⨁𝑎𝑖𝑗
𝑇 )

−1
< 0, 𝐿−1 = (𝑛𝑖𝑗⨁𝑏𝑖𝑗

𝑇 )
−1
< 0, 𝐾−1 ≤ 𝐿−1,  

−ℎ𝑖𝑗 < 𝛼𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝛾𝑖𝑗, −𝑓𝑖𝑗 < 𝛽𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝛿𝑖𝑗 and 𝑔𝑖𝑗 − (𝛽𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝛿𝑖𝑗) > 𝑓𝑖𝑗 .  

Proof: The proof of this theorem can be obtained similar to the proof of Theorem 7.1.2. 

□ 

Now, the feasibility of the negative solution to the NTRFFSME in LR form is 

discussed. 

Feasibility of the Negative solution to the NTrFFSME 

Let  𝐴̃ = (𝑚𝑖𝑗 , 𝑛𝑖𝑗 , 𝛼𝑖𝑗 , 𝛽𝑖𝑗)𝐿𝑅 < 0, 𝐷̃ = (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝛾𝑖𝑗 , 𝛿𝑖𝑗)𝐿𝑅 < 0 and 𝐾 = 𝑚𝑖𝑗⨁𝑎𝑖𝑗
𝑇  and 

𝐿 = 𝑛𝑖𝑗⨁𝑏𝑖𝑗
𝑇  be non-singular  matrices; then the NTrFFSME has a negative fuzzy 

solution if: 

I) 𝑥𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐾−1 ∙ 𝑉𝑒𝑐(𝑐𝑖𝑗)) < 0, 

II) 𝑦𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐿−1 ∙ 𝑉𝑒𝑐(𝑔𝑖𝑗)) < 0, 

III) 𝑧𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐾−1 ∙ (𝑉𝑒𝑐(𝑑𝑖𝑗) − (𝛼𝑖𝑗⨁𝛾𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑥𝑖𝑗))) > 0, 

IV) 𝑞𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐿−1 ∙ (𝑉𝑒𝑐(𝑒𝑖𝑗) − (𝛽𝑖𝑗⨁𝛿𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑦𝑖𝑗))) > 0, 

V) 𝑦𝑖𝑗 + 𝑞𝑖𝑗 < 0, 

VI) 𝑦𝑖𝑗 − 𝑥𝑖𝑗 ≥ 0. 

In the following Example 7.2.1, the MFMVM is illustrated. 
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Example 7.2.1 Consider the following negative TrFFSME: 

(
(−5,−4, 1, 1) (−6,−5, 1, 1)
(−6,−5, 1, 1) (−4,−3, 1, 1)

) ∙ (
(𝑥11, 𝑦11, 𝑧11, 𝑞11) (𝑥12, 𝑦12, 𝑧12, 𝑞12)
(𝑥21, 𝑦21, 𝑧21, 𝑞11) (𝑥22, 𝑦22, 𝑧22, 𝑞22)

) 

+(
(𝑥11, 𝑦11, 𝑧11, 𝑞11) (𝑥12, 𝑦12, 𝑧12, 𝑞12)
(𝑥21, 𝑦21, 𝑧21, 𝑞11) (𝑥22, 𝑦22, 𝑧22, 𝑞22)

) ∙ (
(−5,−4, 1, 1) (−4,−3, 1, 1)
(−5,−4, 1, 1) (−6,−5, 1, 1)

) 

= (
(111, 73, 42, 34) (123, 83, 44, 36)
(103, 66, 41, 33) (116, 77, 43, 35)

).  

Solution 

By Theorem 7.2.1, the given NTrFFSME is transformed to a system of SME where the 

fuzzy solution can be obtained as follows: 

Step 1: Given  𝐴̃ = (𝑚𝑖𝑗 , 𝑛𝑖𝑗 , 𝛼𝑖𝑗 , 𝛽𝑖𝑗) = (
(−5,−4, 1, 1) (−6,−5, 1, 1)
(−6,−5, 1, 1) (−4,−3, 1, 1)

). 

The matrices 𝑚𝑖𝑗, 𝑛𝑖𝑗, 𝛼𝑖𝑗 and  𝛽𝑖𝑗  are defined as follows: 

𝑚𝑖𝑗 = (
𝑚11 𝑚12

𝑚21 𝑚22
) = (

−5 −6
−6 −4

), 𝑛𝑖𝑗 = (
𝑛11 𝑛12
𝑛21 𝑛22

) = (
−4 −5
−5 −3

),  

𝛼𝑖𝑗 = (
𝛼11 𝛼12
𝛼21 𝛼22

) = (
1 1
1 1

) and  𝛽𝑖𝑗 = (
𝛽11 𝛽12
𝛽21 𝛽22

) = (
1 1
1 1

). 

Also given, 

 𝐷̃ = (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝛾𝑖𝑗 , 𝛿𝑖𝑗) = (
(−5,−4, 1, 1) (−4,−3, 1, 1)
(−5,−4, 1, 1) (−6,−5, 1, 1)

). 

The matrices 𝑎𝑖𝑗, 𝑏𝑖𝑗, 𝛾𝑖𝑗 and 𝛿𝑖𝑗  are defined as follows: 

𝑎𝑖𝑗 = (
𝑎11 𝑎12
𝑎21 𝑎22

) = (
−5 −4
−5 −6

), 𝑏𝑖𝑗 = (
𝑏11 𝑏12
𝑏21 𝑏22

) = (
−4 −3
−4 −5

), 

 𝛾𝑖𝑗 = (
𝛾11 𝛾12
𝛾21 𝛾22

) = (
1 1
1 1

) and 𝛿𝑖𝑗 = (
𝛿11 𝛿12
𝛿21 𝛿22

) = (
1 1
1 1

), 
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and, 

𝐸̃ = (𝑐𝑖𝑗 , 𝑔𝑖𝑗 , ℎ𝑖𝑗 , 𝑓𝑖𝑗) = (
(111, 73, 42, 34) (123, 83, 44, 36)
(103, 66, 41, 33) (116, 77, 43, 35)

). 

The matrices 𝑐𝑖𝑗, 𝑔𝑖𝑗, ℎ𝑖𝑗 and 𝑓𝑖𝑗 are defined as follows: 

𝑐𝑖𝑗 = (
𝑐11 𝑐12
𝑐21 𝑐22

) = (
111 123
103 116

), 𝑔𝑖𝑗 = (
𝑔11 𝑔12
𝑔21 𝑔22

) = (
73 83
66 77

),  

ℎ𝑖𝑗 = (
ℎ11 ℎ12
ℎ21 ℎ22

) = (
42 44
41 43

) and  𝑓𝑖𝑗 = (
𝑓11 𝑓12
𝑓21 𝑓22

) = (
34 36
33 35

). 

Step 2: We compute the following: 

𝐾 = 𝑚𝑖𝑗⨁𝑎𝑖𝑗
𝑇 = (

−5 −6
−6 −4

)⨁(
−5 −4
−5 −6

)
𝑇

= (

−10 −5 −6 0
−4 −11 0 −6
−6 0 −9 −5
0 −6 −4 −10

), 

𝐿 = 𝑛𝑖𝑗⨁𝑏𝑖𝑗
𝑇 = (

−4 −5
−5 −3

)⨁(
−4 −3
−4 −5

)
𝑇

= (

−8 −3 −5 0
−4 −9 0 −5
−5 0 −7 −3
0 −5 −4 −8

), 

𝛼𝑖𝑗⨁𝛾𝑖𝑗
𝑇 = (

2 1 1 0
1 2 0 1
1 0 1 1
0 1 1 1

), 

and, 

𝛽𝑖𝑗⨁𝛿𝑖𝑗
𝑇 = (

2 1 1 0
1 2 0 1
1 0 2 1
0 1 1 2

). 

We also compute 𝑑𝑖𝑗 and 𝑒𝑖𝑗 as follows: 

𝑑𝑖𝑗 = −ℎ𝑖𝑗 = (
−42 −44
−41 −43

) , 𝑒𝑖𝑗 = −𝑓𝑖𝑗 = (
−34 −36
−33 −35

). 
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Step 3: Using the associated linear system in Eq. (7.15), the value of 𝑉𝑒𝑐(𝑥𝑖𝑗), 

𝑉𝑒𝑐(𝑦𝑖𝑗), 𝑉𝑒𝑐(𝑧𝑖𝑗) and 𝑉𝑒𝑐(𝑞𝑖𝑗) can be obtained as follows: We first find, 

𝐾−1 =

(

 
 
 

223

522
−
265

522
−
47

87

50

87

−
106

261

85

261

40

87
−
37

87

−
47

87

50

87

15

29
−
35

58
40

87
−
37

87
−
14

29

23

58)

 
 
 

 and 𝐿−1 =

(

 
 
 

221

535
−
207

535
−

59

107

48

107

−
276

535

152

535

64

107
−

43

107

−
59

107

48

107

56

107
−

51

107
64

107
−

43

107
−

68

107

39

107)

 
 
 

. 

By applying Definition 2.6.2.2 on 𝑐𝑖𝑗 = (
111 123
103 116

), 𝑔𝑖𝑗 = (
73 83
66 77

),  

ℎ𝑖𝑗 = (
42 44
41 43

) and 𝑓𝑖𝑗 = (
34 36
33 35

) we have, 

𝑉𝑒𝑐(𝑐𝑖𝑗) = (

111
123
103
116

), 𝑉𝑒𝑐(𝑔𝑖𝑗) = (

73
83
66
77

), 𝑉𝑒𝑐(ℎ𝑖𝑗) = (

42
44
41
43

) and 𝑉𝑒𝑐(𝑓𝑖𝑗) = (

34
36
33
35

). 

Therefore, 

𝑉𝑒𝑐(𝑥𝑖𝑗) = 𝐾
−1 ∙ 𝑉𝑒𝑐(𝑐𝑖𝑗) =

(

 
 
 

223

522
−
265

522
−
47

87

50

87

−
106

261

85

261

40

87
−
37

87

−
47

87

50

87

15

29
−
35

58
40

87
−
37

87
−
14

29

23

58)

 
 
 

∙ (

111
123
103
116

) = (

−4
−7
−6
−5

), 

𝑉𝑒𝑐(𝑦𝑖𝑗) = 𝐿
−1 ∙ 𝑉𝑒𝑐(𝑔𝑖𝑗) =

(

 
 
 

221

535
−
207

535
−

59

107

48

107

−
276

535

152

535

64

107
−

43

107

−
59

107

48

107

56

107
−

51

107
64

107
−

43

107
−

68

107

39

107)

 
 
 

∙ (

73
83
66
77

) = (

−3
−6
−5
−4

). 

The value of 𝑉𝑒𝑐(𝑥𝑖𝑗) and 𝑉𝑒𝑐(𝑦𝑖𝑗) is substituted in Eq. (7.15) to compute 𝑉𝑒𝑐(𝑧𝑖𝑗) 

and 𝑉𝑒𝑐(𝑞𝑖𝑗) as follows: 
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𝑉𝑒𝑐(𝑧𝑖𝑗) = 𝐾
−1 ∙ (𝑉𝑒𝑐(𝑑𝑖𝑗) − (𝛼𝑖𝑗⨁𝛾𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑥𝑖𝑗)).  

Thus,  

𝑉𝑒𝑐(𝑧𝑖𝑗) =

(

 
 
 
 

223

522
−
265

522
−
47

87

50

87

−
106

261

85

261

40

87
−
37

87

−
47

87

50

87

15

29
−
35

58
40

87
−
37

87
−
14

29

23

58)

 
 
 
 

∙

(

 
 
(

−42
−44
−41
−43

) − (

2 1 1 0
1 2 0 1
1 0 1 1
0 1 1 1

) . (

−4
−7
−6
−5

)

)

 
 
= (

1
1
1
1

). 

Similarly, 𝑉𝑒𝑐(𝑞𝑖𝑗) = 𝐿
−1 ∙ (𝑉𝑒𝑐(𝑒𝑖𝑗) − (𝛽𝑖𝑗⨁𝛿𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑦𝑖𝑗)). 

 Thus, 

𝑉𝑒𝑐(𝑞𝑖𝑗) =

(

 
 
 

221

535
−
207

535
−

59

107

48

107

−
276

535

152

535

64

107
−

43

107

−
59

107

48

107

56

107
−

51

107
64

107
−

43

107
−

68

107

39

107)

 
 
 

∙

(

 
 
(

−34
−36
−33
−35

) − (

2 1 1 0
1 2 0 1
1 0 2 1
0 1 1 2

) . (

−3
−6
−5
−4

)

)

 
 
= (

1
1
1
1

). 

Step 4: The value of 𝑥𝑖𝑗, 𝑦𝑖𝑗, 𝑧𝑖𝑗 and 𝑞𝑖𝑗 is computed as follows: 

By using Definition 2.6.2.2, we get  

𝑥𝑖𝑗 = 𝑉𝑒𝑐
−1 (

−4
−7
−6
−5

) = (
−4 −7
−6 −5

), 𝑦𝑖𝑗 = 𝑉𝑒𝑐
−1(

−3
−6
−5
−4

)  = (
−3 −6
−5 −4

),  

𝑧𝑖𝑗 = 𝑉𝑒𝑐
−1(

1
1
1
1

)  = (
1 1
1 1

) and 𝑞𝑖𝑗 = 𝑉𝑒𝑐
−1 (

1
1
1
1

)  = (
1 1
1 1

). 

Step 5: After Computing the values of 𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗  and 𝑞𝑖𝑗. The negative fuzzy solution 

𝑋̃ is 

𝑋̃ = (
(−4,−3, 1, 1) (−7,−6, 1, 1)
(−6,−5, 1, 1) (−5,−4, 1, 1)

). 
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Step 6: Feasibility of the negative fuzzy solution. Since 

I) 𝑥𝑖𝑗 = (
−4 −7
−6 −5

) < 0, 

II) 𝑦𝑖𝑗 = (
−3 −6
−5 −4

) < 0, 

III) 𝑧𝑖𝑗 = (
1 1
1 1

) ≥ 0, 

IV) 𝑞𝑖𝑗 = (
1 1
1 1

) ≥ 0, 

V) 𝑦𝑖𝑗 + 𝑞𝑖𝑗 = (
−2 −5
−4 −3

) < 0, 

VI) 𝑦𝑖𝑗 − 𝑥𝑖𝑗 = (
1 1
1 1

) ≥ 0. 

the negative fuzzy solution 𝑋̃ = (
(−4,−3, 1, 1) (−7,−6, 1, 1)
(−6,−5, 1, 1) (−5,−4, 1, 1)

) is feasible.  

 

 

 

 

 

 

 

 

Figure 7.2. Positive fuzzy solution for Example 7.2.1. 

In the following Section 7.3, the positive fuzzy solution for other form of the TrFFSME  

𝐴̃𝑋̃ − 𝑋̃𝐷̃ = 𝐸̃ in Eq. (1.15) is discussed. In order to obtain this solution three different 

methods are applied.  

- - - - - - -

Negative fuzzy solution

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7.3 Positive Solution for Other Form of TrFFSME in LR Form  

In this section, the analytical positive fuzzy solution of the other forms of TrFFSME 

(PTrFFSME-O) 𝐴̃𝑋̃ − 𝑋̃𝐷̃ = 𝐸̃ with LR-TrFNs is considered. In order to get the 

solution, the PTrFFSME is converted to an equivalent system of SME using the DPMO 

in Eq. (2.6a) in Definition 2.3.3.1.6.  

However, in applying the existing fuzzy subtraction in Definition 2.3.3.1.6 in Eq. (2.5c) 

for solving the PTrFFSME-O, the obtained system of SME is very challenging to be 

solved. Therefore, in the following Definition 7.3.1, a new direct subtraction operation 

between LR-TrFNs is introduced based on the subtraction operation defined in Gani 

and Assarudeen (2012). 

Definition 7.3.1 Let 𝐴̃ = (𝑚1, 𝑛1, 𝛼1, 𝛽1) and  𝐵̃ = (𝑚2, 𝑛2, 𝛼2, 𝛽2) be two LR-TrFNs. 

If 𝑚1 > 𝑚2, 𝑛1 > 𝑛2, 𝛼1 > 𝛼2 and 𝛽1 > 𝛽2, then  

𝐴̃ − 𝐵̃ = (𝑚1, 𝑛1, 𝛼1, 𝛽1) − (𝑚2, 𝑛2, 𝛼2, 𝛽2) = (𝑚1 −𝑚2, 𝑛1 − 𝑛2, 𝛼1 − 𝛼2, 𝛽1 − 𝛽2). 

In the following Theorem 7.3.1, the PTrFFSME in LR form is converted to an 

equivalent system of SME. 

Theorem 7.3.1. If 𝐴̃ = (𝑚𝑖𝑗 , 𝑛𝑖𝑗 , 𝛼𝑖𝑗 , 𝛽𝑖𝑗)𝐿𝑅 > 0, 𝐷̃ = (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝛾𝑖𝑗 , 𝛿𝑖𝑗)𝐿𝑅 > 0 and 

 𝑋̃ = (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑞𝑖𝑗)𝐿𝑅 > 0 and 𝐸̃ = (𝑐𝑖𝑗 , 𝑔𝑖𝑗 , ℎ𝑖𝑗 , 𝑓𝑖𝑗)𝐿𝑅. Then the PTrFFSME-O 

 𝐴̃𝑋̃ − 𝑋̃𝐷̃ = 𝐸̃ is equivalent to the following system of SME: 

{
 

 
𝑚𝑖𝑗𝑥𝑖𝑗 − 𝑥𝑖𝑗𝑎𝑖𝑗 = 𝑐𝑖𝑗 ,                                        

𝑛𝑖𝑗𝑦𝑖𝑗 − 𝑦𝑖𝑗𝑏𝑖𝑗 = 𝑔𝑖𝑗 ,                                         

𝑚𝑖𝑗𝑧𝑖𝑗 + 𝛼𝑖𝑗𝑥𝑖𝑗 − 𝑥𝑖𝑗𝛾𝑖𝑗 − 𝑧𝑖𝑗𝑎𝑖𝑗 = ℎ𝑖𝑗 ,         

𝑛𝑖𝑗𝑞𝑖𝑗 + 𝛽𝑖𝑗𝑦𝑖𝑗 − 𝑦𝑖𝑗𝛿𝑖𝑗 − 𝑞𝑖𝑗𝑏𝑖𝑗 = 𝑓𝑖𝑗 .           

                                 (7.17) 
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Proof: 

Let 𝐴̃ = (𝑎̃𝑖𝑗)𝑛×𝑛 = (𝑚𝑖𝑗 , 𝑛𝑖𝑗 , 𝛼𝑖𝑗 , 𝛽𝑖𝑗)𝐿𝑅 > 0, 𝐷̃ = (𝑑̃𝑖𝑗)𝑚×𝑚 = (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝛾𝑖𝑗 , 𝛿𝑖𝑗)𝐿𝑅 >

0, 𝑋̃ = (𝑥̃𝑖𝑗)𝑛×𝑚 = (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑞𝑖𝑗)𝐿𝑅 > 0 and 𝐸̃ = (𝑒̃𝑖𝑗)𝑛×𝑚 = (𝑐𝑖𝑗 , 𝑔𝑖𝑗 , ℎ𝑖𝑗 , 𝑓𝑖𝑗)𝐿𝑅. 

We have from Definition 2.3.3.1.6 and Eq. (2.6a), 

𝐴̃𝑋̃ = (𝑎̃𝑖𝑗)(𝑥̃𝑖𝑗) = (𝑚𝑖𝑗 , 𝑛𝑖𝑗 , 𝛼𝑖𝑗 , 𝛽𝑖𝑗)(𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑞𝑖𝑗), 

      = (𝑚𝑖𝑗𝑥𝑖𝑗 , 𝑛𝑖𝑗𝑦𝑖𝑗 , 𝑚𝑖𝑗𝑧𝑖𝑗 + 𝛼𝑖𝑗𝑥𝑖𝑗 , 𝑛𝑖𝑗𝑞𝑖𝑗 + 𝛽𝑖𝑗𝑦𝑖𝑗), 

and 

𝑋̃𝐵̃ = (𝑥̃𝑖𝑗)(𝑏̃𝑖𝑗) = (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑞𝑖𝑗)(𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝛾𝑖𝑗 , 𝛿𝑖𝑗), 

                                 = (𝑥𝑖𝑗𝑎𝑖𝑗 , 𝑦𝑖𝑗𝑏𝑖𝑗 , 𝑥𝑖𝑗𝛾𝑖𝑗 + 𝑧𝑖𝑗𝑎𝑖𝑗 , 𝑦𝑖𝑗𝛿𝑖𝑗 + 𝑞𝑖𝑗𝑏𝑖𝑗). 

By applying LR-TrFN’s subtraction operation in Definition 7.3.1, the following is 

obtained, 

𝐴̃𝑋̃ − 𝑋̃𝐵̃ = (𝑚𝑖𝑗𝑥𝑖𝑗 , 𝑛𝑖𝑗𝑦𝑖𝑗 , 𝑚𝑖𝑗𝑧𝑖𝑗 + 𝛼𝑖𝑗𝑥𝑖𝑗 , 𝑛𝑖𝑗𝑞𝑖𝑗 + 𝛽𝑖𝑗𝑦𝑖𝑗) −

(𝑥𝑖𝑗𝑎𝑖𝑗 , 𝑦𝑖𝑗𝑏𝑖𝑗 , 𝑥𝑖𝑗𝛾𝑖𝑗 + 𝑧𝑖𝑗𝑎𝑖𝑗 , 𝑦𝑖𝑗𝛿𝑖𝑗 + 𝑞𝑖𝑗𝑏𝑖𝑗). 

Thus, 

𝐴̃𝑋̃ − 𝑋̃𝐵̃ = (𝑚𝑖𝑗𝑥𝑖𝑗 − 𝑥𝑖𝑗𝑎𝑖𝑗 , 𝑛𝑖𝑗𝑦𝑖𝑗 − 𝑦𝑖𝑗𝑏𝑖𝑗 , 𝑚𝑖𝑗𝑧𝑖𝑗 + 𝛼𝑖𝑗𝑥𝑖𝑗 − 𝑥𝑖𝑗𝛾𝑖𝑗 −

𝑧𝑖𝑗𝑎𝑖𝑗 , 𝑛𝑖𝑗𝑞𝑖𝑗 + 𝛽𝑖𝑗𝑦𝑖𝑗 − 𝑦𝑖𝑗𝛿𝑖𝑗 − 𝑞𝑖𝑗𝑏𝑖𝑗). 

Since 𝐴̃𝑋̃ − 𝑋̃𝐵̃ = 𝐶̃ can be written as:   

∑ 𝑎̃𝑖𝑗𝑥̃𝑖𝑗 − ∑ 𝑥̃𝑖𝑗𝑏̃𝑖𝑗 = 𝑐̃𝑖𝑗

𝑚

𝑖,𝑗=1

𝑛

𝑖,𝑗=1

, 
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therefore, the PTrFFSME 𝐴̃𝑋̃ − 𝑋̃𝐷̃ = 𝐸̃ is equivalent to the following system of SME: 

                             

{
 

 
𝑚𝑖𝑗𝑥𝑖𝑗 − 𝑥𝑖𝑗𝑎𝑖𝑗 = 𝑐𝑖𝑗 ,                                        

𝑛𝑖𝑗𝑦𝑖𝑗 − 𝑦𝑖𝑗𝑏𝑖𝑗 = 𝑔𝑖𝑗 ,                                         

𝑚𝑖𝑗𝑧𝑖𝑗 + 𝛼𝑖𝑗𝑥𝑖𝑗 − 𝑥𝑖𝑗𝛾𝑖𝑗 − 𝑧𝑖𝑗𝑎𝑖𝑗 = ℎ𝑖𝑗 ,         

𝑛𝑖𝑗𝑞𝑖𝑗 + 𝛽𝑖𝑗𝑦𝑖𝑗 − 𝑦𝑖𝑗𝛿𝑖𝑗 − 𝑞𝑖𝑗𝑏𝑖𝑗 = 𝑓𝑖𝑗 .           

 

□ 

The solution of the PTrFFSME-O 𝐴̃𝑋̃ − 𝑋̃𝐷̃ = 𝐸̃ in Eq. (1.15) can be obtained by 

converting the PTrFFSME-O to the corresponding system of SME in Eq. (7.17). Then 

the system of SME is solved by developing three different methods namely the 

Modified Fuzzy Bartels Stewart Method (MFBSM), Fuzzy Coefficients Matrix Method 

(FCMM) and the MFMVM. In the following Section 7.3.1, the FBSM in Section 3.4.2 

is modified and applied to the system of SME in Eq. (7.17).  

7.3.1 MFBSM for Solving PTrFFSME-O 

In this section, the positive fuzzy solution to the PTrFFSME-O 𝐴̃𝑋̃ − 𝑋̃𝐷̃ = 𝐸̃ is 

obtained by modifying the FBSM (MFBSM) in Section 3.4.2. The details of the 

constructed method are as follows:  

Step 1: Suppose 𝑚𝑖𝑗, 𝑎𝑖𝑗, 𝑛𝑖𝑗 and 𝑏𝑖𝑗 are real and have real Schur decompositions  

𝑚𝑖𝑗 = 𝑈1𝑅1𝑈1
𝑇, 𝑎𝑖𝑗 = 𝑉1𝑆1𝑉1

𝑇, 𝑛𝑖𝑗 = 𝑈2𝑅2𝑈2
𝑇 , 𝑏𝑖𝑗 = 𝑉2𝑆2𝑉2

𝑇 where 𝑈 and 𝑉 are 

orthogonal and 𝑅 and 𝑆 are upper quasi-triangular. Then the first two equations in  

Eq. (7.17) can be transformed to the following by Definition 2.8.2.1: 

𝑈1
𝑇𝑚𝑖𝑗𝑈1 ∙ 𝑈1

𝑇𝑥𝑖𝑗𝑉1 − 𝑈1
𝑇𝑥𝑖𝑗𝑉1. 𝑉1

𝑇𝑎𝑖𝑗𝑉1 = 𝑈1
𝑇𝑐𝑖𝑗𝑉1, 

𝑈2
𝑇𝑛𝑖𝑗𝑈2 ∙ 𝑈2

𝑇𝑦𝑖𝑗𝑉2 − 𝑈2
𝑇𝑦𝑖𝑗𝑉2. 𝑉2

𝑇𝑏𝑖𝑗𝑉2 = 𝑈2
𝑇𝑔𝑖𝑗𝑉2. 
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 Consequently, they can be written as: 

{
𝑅1𝑊1 −𝑊1𝑆1 = 𝐷1,
𝑅2𝑊2 −𝑊2𝑆2 = 𝐷2.

 

where, 

𝑅1 = 𝑈1
𝑇𝑚𝑖𝑗𝑈1, 𝑅2 = 𝑈2

𝑇𝑛𝑖𝑗𝑈2, 𝑊1 = 𝑈1
𝑇𝑥𝑖𝑗𝑉1, 𝑊2 = 𝑈2

𝑇𝑦𝑖𝑗𝑉2, 𝑆1 = 𝑉1
𝑇𝑎𝑖𝑗𝑉1,  

𝑆2 = 𝑉2
𝑇𝑏𝑖𝑗𝑉2, 𝐷1 = 𝑈1

𝑇𝑐𝑖𝑗𝑉1 and 𝐷2 = 𝑈2
𝑇𝑔𝑖𝑗𝑉2.  

Then, this system can be written as: 

𝑃1𝑤1 = 𝑑1, 

𝑃2𝑤2 = 𝑑2, 

where 

𝑃1 = 𝐼⨂𝑅1 − 𝑆1
𝑇⨂𝐼, 𝑤1 = 𝑣𝑒𝑐(𝑊1) and  𝑑1 = 𝑣𝑒𝑐(𝐷1), 

𝑃2 = 𝐼⨂𝑅2 − 𝑆2
𝑇⨂𝐼, 𝑤2 = 𝑣𝑒𝑐(𝑊2) and  𝑑2 = 𝑣𝑒𝑐(𝐷1). 

Gaussian elimination and backward substitution are applied to obtain 𝑤1and 𝑤2. 

Step 2: The values of 𝑥𝑖𝑗 and 𝑦𝑖𝑗 can be computed as follows: 

𝑥𝑖𝑗 = 𝑈1𝑊1𝑉1
𝑇 ,  

𝑦𝑖𝑗 = 𝑈2𝑊2𝑉2
𝑇 . 

Step 3: The third and fourth equations in Eq. (7.17) can be written as follows: 

{
𝑚𝑖𝑗𝑧𝑖𝑗 − 𝑧𝑖𝑗𝑎𝑖𝑗 = ℎ𝑖𝑗 − 𝛼𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝛾𝑖𝑗 ,

𝑛𝑖𝑗𝑞𝑖𝑗 − 𝑞𝑖𝑗𝑏𝑖𝑗 = 𝑓𝑖𝑗 − 𝛽𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝛿𝑖𝑗 .
                                (7.18) 

If we let 

ℎ1
𝛼 = ℎ𝑖𝑗 − 𝛼𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝛾𝑖𝑗 

and  
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𝑓1
𝛼 = 𝑓𝑖𝑗 − 𝛽𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝛿𝑖𝑗, 

then Eq. (7.18) can be written as: 

{
𝑚𝑖𝑗𝑧𝑖𝑗 − 𝑧𝑖𝑗𝑎𝑖𝑗 = ℎ1

𝛼 ,

𝑛𝑖𝑗𝑞𝑖𝑗 − 𝑞𝑖𝑗𝑏𝑖𝑗 = 𝑓1
𝛼 .
                                                             (7.19) 

Since Eq. (7.19) has the same structure as the first two equations in Eq. (7.17), it can 

be transformed to: 

𝑈3
𝑇𝑚𝑖𝑗𝑈3 ∙ 𝑈3

𝑇𝑧𝑖𝑗𝑉3 − 𝑈3
𝑇𝑧𝑖𝑗𝑉3. 𝑉3

𝑇𝑎𝑖𝑗𝑉3 = 𝑈3
𝑇ℎ1𝑖𝑗

𝛼𝑉3, 

𝑈4
𝑇𝑛𝑖𝑗𝑈4 ∙ 𝑈4

𝑇𝑞𝑖𝑗𝑉4 − 𝑈4
𝑇𝑞𝑖𝑗𝑉4. 𝑉4

𝑇𝑛𝑖𝑗𝑉4 = 𝑈4
𝑇𝑓1𝑖𝑗

𝛼𝑉4, 

 that is, 

{
𝑅3𝑊3 −𝑊3𝑆3 = 𝐷3,
𝑅4𝑊4 −𝑊4𝑆4 = 𝐷4.

 

 or equivalently  

𝑃3𝑤3 = 𝑑3, 

𝑃4𝑤4 = 𝑑4, 

where, 

𝑃3 = 𝐼⨂𝑅3 − 𝑆3
𝑇⨂𝐼, 𝑤3 = 𝑣𝑒𝑐(𝑊3) and  𝑑3 = 𝑣𝑒𝑐(𝐷3), 

𝑃4 = 𝐼⨂𝑅4 − 𝑆4
𝑇⨂𝐼, 𝑤4 = 𝑣𝑒𝑐(𝑊4) and  𝑑4 = 𝑣𝑒𝑐(𝐷4). 

Gaussian elimination and back substitution are applied to obtain 𝑤3and 𝑤4. 

Step 4: The values of 𝑧𝑖𝑗 and 𝑞𝑖𝑗 can be computed as follows: 

𝑧𝑖𝑗 = 𝑈3𝑊3𝑉3
𝑇,  

𝑞𝑖𝑗 = 𝑈4𝑊4𝑉4
𝑇 . 
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Step 5: Combining the values of 𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗and 𝑞𝑖𝑗 which are obtained in Steps 2 and 

4. The solution to the PTrFFSME is represented by: 

 𝑋̃ = (𝑥̃𝑖𝑗)𝑛×𝑚 = (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑞𝑖𝑗)𝐿𝑅, ∀ {1 ≤ 𝑖, 𝑗 ≤ 𝑛,𝑚}. 

In addition to the MFBSM in Section 7.3.1, the system of SME in Eq. (7.17) can be 

solved also by constructing the FCMM which is based on getting an associated linear 

system for the system of SME in Eq. (7.17), where the fuzzy solution is obtained by 

matrix inversion method. The details of the FCMM are discussed in the following 

Section 7.3.2. 

7.3.2 FCMM for Solving PTrFFSME-O. 

In this section, the positive fuzzy solution to the PTrFFSME-O 𝐴̃𝑋̃ − 𝑋̃𝐷̃ = 𝐸̃ is 

obtained by FCMM. In order to get the solution, the system of SME in Eq. (7.17) is 

converted to an associated linear system by using the concept of Vec-operator and 

Kronecker product. This method is inspired from the method by Malkawi et al. (2015c)  

for solving SME with LR-TFN. It is worth mentioning that the construction of the 

FCMM is similar to the MFMVM in Section 7.1. However, it is shorter compared to 

the MFMVM in terms of computational timing. The details to the FCMM are discuss 

as follows. 

Step 1: Decompose the matrices 𝐴̃, 𝐷̃, 𝑋̃ and 𝐸̃ in 𝐴̃𝑋̃ − 𝑋̃𝐷̃ = 𝐸̃ as follows: 

𝐴̃ = ( 𝑚𝑖𝑗 , 𝑛𝑖𝑗 , 𝛼𝑖𝑗 , 𝛽𝑖𝑗), ∀ {1 ≤ 𝑖, 𝑗 ≤ 𝑛}, 𝐷̃ = (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝛾𝑖𝑗 , 𝛿𝑖𝑗), ∀ {1 ≤ 𝑖, 𝑗 ≤ 𝑚}, 

𝑋̃ = ( 𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑞𝑖𝑗), ∀ {1 ≤ 𝑖, 𝑗 ≤ 𝑛,𝑚} and 𝐸̃ = ( 𝑐𝑖𝑗 , 𝑔𝑖𝑗 , ℎ𝑖𝑗 , 𝑓𝑖𝑗  ), ∀ {1 ≤ 𝑖, 𝑗 ≤

𝑛,𝑚}. 
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Step 2: By applying Vec-operator and Kronecker product on the first and second 

equations of the system of SME in Eq. (7.17), we get: 

 𝑅1 ∙ 𝑆1 = 𝑇1,                                                          (7.20)      

where,  

𝑅1 =

(

 
 
 
 
 
 
 
 
 
 

𝑚11 − 𝑎11 −𝑎21 𝑚12 0 ⋯ 0 0 0 0 0 0 0
−𝑎12 𝑚11 − 𝑎22 0 𝑚12 ⋯ 𝑚1𝑛 0 0 0 0 0 0
𝑚21 0 𝑚22 − 𝑎11 −𝑎21 ⋯ −𝑎2𝑚 0 0 0 0 0 0
0 𝑚21 −𝑎12 𝑚22 − 𝑎22 ⋱ ⋮ 0 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 0 0 0
0 𝑚𝑛1 0 𝑚𝑛2 ⋯ 𝑚𝑛𝑛 − 𝑎𝑚𝑚 0 0 0 0 0 0
0 0 0 0 0 0 𝑛11 − 𝑏11 −𝑏21 𝑛12 0 ⋯ 0
0 0 0 0 0 0 −𝑏12 𝑛11 − 𝑏22 0 𝑛12 ⋯ 𝑛1𝑛
0 0 0 0 0 0 𝑛21 0 𝑛22 − 𝑏11 −𝑏12 ⋯ −𝑏2𝑚
0 0 0 0 0 0 0 𝑛21 −𝑏12 𝑛22 − 𝑏22 ⋱ ⋮
0 0 0 0 0 0 ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 0 0 0 𝑛𝑛1 0 𝑛𝑛2 ⋯ 𝑛𝑛𝑛 − 𝑏𝑚𝑚)

 
 
 
 
 
 
 
 
 
 

 

 𝑆1 =

(

  
 

𝑥11
⋮

𝑥𝑛𝑚
𝑦11
⋮
𝑦𝑛𝑚)

  
 

 and 𝑇1 =

(

  
 

𝑐11
⋮
𝑐𝑛𝑚
𝑔11
⋮

𝑔𝑛𝑚)

  
 

. 

Multiplying Eq. (7.20) by 𝑅1
−1 gives: 

𝑆1 = 𝑅1
−1 ∙ 𝑇1.                                                              (7.21) 

Solve for 𝑆1 =

(

  
 

𝑥11
⋮

𝑥𝑛𝑚
𝑦11
⋮
𝑦𝑛𝑚)

  
 
.                          

Step 3: Rewrite the third and fourth equations in the system of SME in Eq. (7.17) as 

follows: 

{
𝑚𝑖𝑗𝑧𝑖𝑗 − 𝑧𝑖𝑗𝑎𝑖𝑗 = ℎ𝑖𝑗 − 𝛼𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝛾𝑖𝑗 ,

𝑛𝑖𝑗𝑞𝑖𝑗 − 𝑞𝑖𝑗𝑏𝑖𝑗 = 𝑓𝑖𝑗 − 𝛽𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝛿𝑖𝑗 .
                                  (7.22) 

If we let, 
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𝑇1
𝛼 = ℎ𝑖𝑗 − 𝛼𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝛾𝑖𝑗 

and 

𝑇2
𝛼 = 𝑓𝑖𝑗 − 𝛽𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝛿𝑖𝑗, 

then, the system of equations in Eq. (7.22) can be written as: 

𝑅1 ∙ 𝑆2 = 𝑇2,                                                                    (7.23)    

where,  

𝑆2 =

(

  
 

𝑧11
⋮
𝑧𝑛𝑚
𝑞11
⋮

𝑞𝑛𝑚)

  
 

 and  𝑇2 =

(

 
 
 
 

𝑇1
𝛼
11

⋮
𝑇1
𝛼
𝑛𝑚

𝑇2
𝛼
11

⋮
𝑇2
𝛼
𝑛𝑚)

 
 
 
 

. 

Multiplying Eq. (7.23) by 𝑅1
−1 gives: 

𝑆2 = 𝑅1
−1 ∙ 𝑇2.                                                                   (7.24) 

By solving Eq. (7.24) for 𝑆2 we can obtain the values of 𝑧𝑖𝑗and 𝑞𝑖𝑗 as follows, 

 𝑆2 =

(

  
 

𝑧11
⋮
𝑧𝑛𝑚
𝑞11
⋮

𝑞𝑛𝑚)

  
 

.                         

Step 4: Combining the values of 𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗and 𝑞𝑖𝑗, the solution of PTrFFSME-O is 

represented by: 

𝑋̃ = (𝑥̃𝑖𝑗)𝑛×𝑚 = (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑞𝑖𝑗)𝐿𝑅, ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛,𝑚. 
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In the following Section 7.3.3, the solution to the system of SME in Eq. (7.17) is 

obtained by applying the MFMVM. 

7.3.3 MFMVM for Solving PTrFFSME-O. 

In this section, the solution to the PTrFFSME-O 𝐴̃𝑋̃ − 𝑋̃𝐷̃ = 𝐸̃ in Eq. (1.15) is obtained 

as follows: 

Step 1: Applying subtraction property of equality on the third and fourth equations in 

the system of SME in Eq. (7.17), we get: 

{
 
 

 
 
𝑚𝑖𝑗𝑥𝑖𝑗 − 𝑥𝑖𝑗𝑎𝑖𝑗 = 𝑐𝑖𝑗 ,                                     

𝑛𝑖𝑗𝑦𝑖𝑗 − 𝑦𝑖𝑗𝑏𝑖𝑗 = 𝑔𝑖𝑗 ,                                      

𝑚𝑖𝑗𝑧𝑖𝑗 − 𝑧𝑖𝑗𝑎𝑖𝑗 = ℎ𝑖𝑗 − (𝛼𝑖𝑗𝑥𝑖𝑗 − 𝑥𝑖𝑗𝛾𝑖𝑗),

𝑛𝑖𝑗𝑞𝑖𝑗 − 𝑞𝑖𝑗𝑏𝑖𝑗 = 𝑓𝑖𝑗 − (𝛽𝑖𝑗𝑦𝑖𝑗 − 𝑦𝑖𝑗𝛿𝑖𝑗).  

                                          (7.25) 

By applying the Vec-operator and Kronecker product for both sides of Eq. (7.25), we 

have 

{
 
 

 
 
𝑉𝑒𝑐(𝑚𝑖𝑗𝑥𝑖𝑗 − 𝑥𝑖𝑗𝑎𝑖𝑗) = 𝑉𝑒𝑐(𝑐𝑖𝑗),                                    

𝑉𝑒𝑐(𝑛𝑖𝑗𝑦𝑖𝑗 − 𝑦𝑖𝑗𝑏𝑖𝑗) = 𝑉𝑒𝑐(𝑔𝑖𝑗),                                     

𝑉𝑒𝑐(𝑚𝑖𝑗𝑧𝑖𝑗 − 𝑧𝑖𝑗𝑎𝑖𝑗) = 𝑉𝑒𝑐(ℎ𝑖𝑗 − (𝛼𝑖𝑗𝑥𝑖𝑗 − 𝑥𝑖𝑗𝛾𝑖𝑗)),

𝑉𝑒𝑐(𝑛𝑖𝑗𝑞𝑖𝑗 + 𝑞𝑖𝑗𝑏𝑖𝑗) = 𝑉𝑒𝑐(𝑓𝑖𝑗 − (𝛽𝑖𝑗𝑦𝑖𝑗 − 𝑦𝑖𝑗𝛿𝑖𝑗)).  

                    (7.26) 

Using the Kronecker difference in Definition 2.6.2.3 on Eq. (7.26), we get 

{
 
 

 
 
(𝑚𝑖𝑗⊖𝑎𝑖𝑗

𝑇 )𝑉𝑒𝑐(𝑥𝑖𝑗) = 𝑉𝑒𝑐(𝑐𝑖𝑗),                                               

(𝑛𝑖𝑗⊖𝑏𝑖𝑗
𝑇 )𝑉𝑒𝑐(𝑦𝑖𝑗) = 𝑉𝑒𝑐(𝑔𝑖𝑗),                                                

(𝑚𝑖𝑗⊖𝑎𝑖𝑗
𝑇 )𝑉𝑒𝑐(𝑧𝑖𝑗) = 𝑉𝑒𝑐(ℎ𝑖𝑗) − (𝛼𝑖𝑗⊖𝛾𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑥𝑖𝑗),

(𝑛𝑖𝑗⊖𝑏𝑖𝑗
𝑇 )𝑉𝑒𝑐(𝑞𝑖𝑗) = 𝑉𝑒𝑐(𝑓𝑖𝑗) − (𝛽𝑖𝑗⊖𝛿𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑦𝑖𝑗).   

          (7.27) 

Step 2: If we let 𝐾 = 𝑚𝑖𝑗⊖𝑎𝑖𝑗
𝑇  and 𝐿 = 𝑛𝑖𝑗⊖𝑏𝑖𝑗

𝑇  be non-singular matrices, and 

substitute in Eq. (7.27), we obtain the following system: 
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{
 
 

 
 
(𝐾)𝑉𝑒𝑐(𝑥𝑖𝑗) = 𝑉𝑒𝑐(𝑐𝑖𝑗),                                              

(𝐿)𝑉𝑒𝑐(𝑦𝑖𝑗) = 𝑉𝑒𝑐(𝑔𝑖𝑗),                                              

(𝐾)𝑉𝑒𝑐(𝑧𝑖𝑗) = 𝑉𝑒𝑐(ℎ𝑖𝑗) − (𝛼𝑖𝑗⊖𝛾𝑖𝑗
𝑇) ∙ 𝑉𝑒𝑐(𝑥𝑖𝑗),

(𝐿)𝑉𝑒𝑐(𝑞𝑖𝑗) = 𝑉𝑒𝑐(𝑓𝑖𝑗) − (𝛽𝑖𝑗⊖𝛿𝑖𝑗
𝑇) ∙ 𝑉𝑒𝑐(𝑦𝑖𝑗).  

                            (7.28) 

Step 3: Multiplying the first and third equations by 𝐾−1 and the second and fourth 

equations by 𝐿−1 in Eq. (7.28) gives: 

{
 
 

 
 
𝑉𝑒𝑐(𝑥𝑖𝑗) = 𝐾

−1 ∙ 𝑉𝑒𝑐(𝑐𝑖𝑗),                                                 

𝑉𝑒𝑐(𝑦𝑖𝑗) = 𝐿
−1 ∙ 𝑉𝑒𝑐(𝑔𝑖𝑗),                                                  

𝑉𝑒𝑐(𝑧𝑖𝑗) = 𝐾
−1 ∙ (𝑉𝑒𝑐(ℎ𝑖𝑗) − (𝛼𝑖𝑗⊖𝛾𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑥𝑖𝑗)) ,

𝑉𝑒𝑐(𝑞𝑖𝑗) = 𝐿
−1 ∙ (𝑉𝑒𝑐(𝑓𝑖𝑗) − (𝛽𝑖𝑗⊖𝛿𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑦𝑖𝑗)).   

                  (7.29) 

Step 4: By the multiplicative inverse of function 𝑉𝑒𝑐(∙), we obtain the following: 

{
 
 

 
 
𝑥𝑖𝑗 = 𝑉𝑒𝑐

−1(𝐾−1 ∙ 𝑉𝑒𝑐(𝑐𝑖𝑗)),                                                  

𝑦𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐿−1 ∙ 𝑉𝑒𝑐(𝑔𝑖𝑗)),                                                    

𝑧𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐾−1 ∙ (𝑉𝑒𝑐(ℎ𝑖𝑗) − (𝛼𝑖𝑗⊖𝛾𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑥𝑖𝑗))),

𝑞𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐿−1 ∙ (𝑉𝑒𝑐(𝑓𝑖𝑗) − (𝛽𝑖𝑗⊖𝛿𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑦𝑖𝑗))).    

              (7.30) 

Step 5: The positive fuzzy solution of the PTrFFSME-O is represented by: 

𝑋̃ = (𝑥̃𝑖𝑗)𝑛×𝑚 = (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑞𝑖𝑗)𝐿𝑅, ∀ {1 ≤ 𝑖, 𝑗 ≤ 𝑛,𝑚}. 

Now, the feasibility of the positive solution to the positive LR PTrFFSME-O is 

discussed. 

Feasibility of the positive solution to the LR TrFFSME-O 

Let  𝐴̃ = (𝑚𝑖𝑗 , 𝑛𝑖𝑗 , 𝛼𝑖𝑗 , 𝛽𝑖𝑗) ≥ 0, 𝐵̃ = (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝛾𝑖𝑗 , 𝛿𝑖𝑗) ≥ 0 and 𝐾 = 𝑚𝑖𝑗⊖𝑎𝑖𝑗
𝑇  and 

𝐿 = 𝑛𝑖𝑗⊖𝑏𝑖𝑗
𝑇  be non-singular  matrices, then the PTrFFSME-O in LR form has a 

positive fuzzy solution if and only if: 
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I) 𝑥𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐾−1 ∙ 𝑉𝑒𝑐(𝑐𝑖𝑗)) > 0, 

II) 𝑦𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐿−1 ∙ 𝑉𝑒𝑐(𝑔𝑖𝑗)) > 0, 

III) 𝑧𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐾−1 ∙ (𝑉𝑒𝑐(ℎ𝑖𝑗) − (𝛼𝑖𝑗⊖𝛾𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑥𝑖𝑗))) > 0, 

IV) 𝑞𝑖𝑗 = 𝑉𝑒𝑐
−1(𝐿−1 ∙ (𝑉𝑒𝑐(𝑓𝑖𝑗) − (𝛽𝑖𝑗⊖𝛿𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑦𝑖𝑗))) > 0, 

V) 𝑦𝑖𝑗 − 𝑥𝑖𝑗 ≥ 0, 

VI) 𝑥𝑖𝑗 − 𝑧𝑖𝑗 > 0.  

In the following Example 7.3.1, the three developed methods in Sections 7.3.1, 7.3.2 

and 7.3.3 are illustrated. 

Example 7.3.1 Consider the 2 × 2 PTrFFSME-O: 

(
(8, 9, 7, 6) (7, 9, 4, 5)
(6, 8, 5, 2) (9, 10, 6, 7)

) ∙ (
𝑥̃11 𝑥̃12
𝑥̃21 𝑥̃22

) − (
𝑥̃11 𝑥̃12
𝑥̃21 𝑥̃22

) ∙ (
(4, 5, 2, 7) (2, 3, 1, 3)

(4, 6, 3, 3) (4, 6, 1, 7)
)

= (
(21, 26, 30, 16) (29, 36, 54, 9)
(27, 36, 37, 10) (33, 44, 56, 4)

). 

where, 

𝑋̃ = (
𝑥̃11 𝑥̃12
𝑥̃21 𝑥̃22

) and 𝑥̃𝑖𝑗 = (𝑤𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑞𝑖𝑗), ∀ {1 ≤ 𝑖, 𝑗 ≤ 2}. 

Solution: 

The three developed methods are applied to obtain the positive fuzzy solution 

 𝑋̃ = (
𝑥̃11 𝑥̃12
𝑥̃21 𝑥̃22

) as follows: 

MFBSM for solving PTrFFSME-O in LR form. 

Step 1: Given 𝐴̃ = (
(8, 9, 7, 6) (7, 9, 4, 5)
(6, 8, 5, 2) (9, 10, 6, 7)

), we can obtain the following: 

 𝑚𝑖𝑗 = (
𝑚11 𝑚12

𝑚21 𝑚22
) = (

8 7
6 9

), 𝑛𝑖𝑗 = (
𝑛11 𝑛12
𝑛21 𝑛22

) = (
9 9
8 10

),  
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𝛼𝑖𝑗 = (
𝛼11 𝛼12
𝛼21 𝛼22

) = (
7 4
5 6

) and  𝛽𝑖𝑗 = (
𝛽11 𝛽12
𝛽21 𝛽22

) = (
6 5
2 7

).  

Also given, 𝐷̃ = (
(4, 5, 2, 7) (2, 3, 1, 3)
(4, 6, 3, 3) (4, 6, 1, 7)

), we can obtain the following: 

 𝑎𝑖𝑗 = (
𝑎11 𝑎12
𝑎21 𝑎22

) = (
4 2
4 4

), 𝑏𝑖𝑗 = (
𝑏11 𝑏12
𝑏21 𝑏22

) = (
5 3
6 6

), 

 𝛾𝑖𝑗 = (
𝛾11 𝛾12
𝛾21 𝛾22

) = (
2 1
3 1

) and 𝛿𝑖𝑗 = (
𝛿11 𝛿12
𝛿21 𝛿22

) = (
7 3
3 7

), 

and, 

 𝐸̃ = (
(21, 26, 30, 16) (29, 36, 54, 9)
(27, 36, 37, 10) (33, 44, 56, 4)

), we can obtain the following: 

 𝑐𝑖𝑗 = (
𝑐11 𝑐12
𝑐21 𝑐22

) = (
21 29
27 33

), 𝑔𝑖𝑗 = (
𝑔11 𝑔12
𝑔21 𝑔22

) = (
26 36
36 44

), 

ℎ𝑖𝑗 = (
ℎ11 ℎ12
ℎ21 ℎ22

) = (
30 54
37 56

), and  𝑓𝑖𝑗 = (
𝑓11 𝑓12
𝑓21 𝑓22

) = (
16 9
10 4

). 

We decompose the following matrices by applying Definition 2.8.2.1 as follows: 

𝑚𝑖𝑗 = 𝑈1𝑅1𝑈1
𝑇, 𝑎𝑖𝑗 = 𝑉1𝑆1𝑉1

𝑇 , 𝑛𝑖𝑗 = 𝑈2𝑅2𝑈2
𝑇, 𝑏𝑖𝑗 = 𝑉2𝑆2𝑉2

𝑇. 

We get: 

𝑈1 = (
 −0.7593 −0.6508
0.6508  −0.7593

), 𝑈1
𝑇 = (

 −0.7593 0.6508
−0.6508  −0.7593

) and 𝑅1 = (
2 1
0 15

). 

𝑈2 = (
 −0.7474 −0.6644
0.6644  −0.7474

), 𝑈2
𝑇 = (

 −0.7474 0.6644
−0.6644  −0.7474

) and 𝑅2 = (
1 1
0 18

). 

𝑉1 = (
0.5774 −0.8165
0.8165 0.5774

),𝑉1
𝑇 = (

0.5774 0.8165
−0.8165 0.5774

) and 𝑆1 = (
6.8284 −2.
0. 1.1716

). 

𝑉2 = (
−0.622466 −0.782647
0.782647 −0.622466

), 𝑉2
𝑇 = (

−0.6225 0.7826
−0.7826 −0.6225

) and 

 𝑆2 = (
1.228 −3
0 9.772

). 
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This will be followed by obtaining 𝑃1and 𝑃2 by the definition of Kronecker difference 

in Definition 2.6.2.5 as follows:  

𝑃1 = 𝐼⨂𝑅1 − 𝑆1
𝑇⨂𝐼, 

𝑃1 = (

−4.8284 0 1 0
2 0.8284 0 1
0 0 8.1716 0
0 0 2 13.8284

), 

and, 

𝑃2 = 𝐼⨂𝑅2 − 𝑆2
𝑇⨂𝐼. 

𝑃2 = (

−0.228 0 1 0
3 −8.772 0 1
0 0 16.772 0
0 0 3 8.228

). 

Also, 𝐷1 and 𝐷2 can be computed as follows: 

𝐷1 = 𝑈1
𝑇𝑐𝑖𝑗𝑉1 = (

0.49534215036505636 −1.6415427908134843
−55.59562271245731 2.5349184669532754

), 

and 

𝐷2 = 𝑈2
𝑇𝑔𝑖𝑗𝑉2 = (

−0.9710063775999993 −4.959557317200002
−16.9564343352 69.9365292416

). 

Now, we can find 𝑑1 and 𝑑2 by applying Definition 2.6.2.2 on 𝐷1, 𝐷2, 𝑊1and 𝑊2 as 

follows: 

𝑑1 = 𝑣𝑒𝑐(𝐷1) and 𝑑2 = 𝑣𝑒𝑐(𝐷2). 

𝑑1 = 𝑣𝑒𝑐(𝐷1) = (

0.4953
−1.6415
−55.5956
2.5349

), 𝑑2 = 𝑣𝑒𝑐(𝐷2) = (

−0.971
−4.9595
−16.9564
69.9365

). 

Since 𝑊1 = (
𝑤11
(𝑎)

𝑤12
(𝑎)

𝑤21
(𝑎)

𝑤22
(𝑎)
) and 𝑊2 = (

𝑤11
(𝑏)

𝑤12
(𝑏)

𝑤21
(𝑏)

𝑤22
(𝑏)
), applying Definition 2.6.2.2 on 

𝑊1and 𝑊2 gives: 
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𝑤1 = 𝑣𝑒𝑐(𝑊1) =

(

  
 

𝑤11
(𝑎)

𝑤12
(𝑎)

𝑤21
(𝑎)

𝑤22
(𝑎)
)

  
 

 and 𝑤2 = 𝑣𝑒𝑐(𝑊2) =

(

  
 

𝑤11
(𝑏)

𝑤12
(𝑏)

𝑤21
(𝑏)

𝑤22
(𝑏)
)

  
 

. 

Now we can solve for 𝑤1 and 𝑤2 as follows: 

𝑃1𝑤1 = 𝑑1 and  𝑃2𝑤2 = 𝑑2, 

(

−4.8284 0 1 0
2 0.8284 0 1
0 0 8.1716 0
0 0 2 13.8284

)

(

  
 

𝑤11
(𝑎)

𝑤12
(𝑎)

𝑤21
(𝑎)

𝑤22
(𝑎)
)

  
 
= (

0.4953
−1.6415
−55.5956
2.5349

). 

(

−0.228 0 1 0
3 −8.772 0 1
0 0 16.772 0
0 0 3 8.228

)

(

  
 

𝑤11
(𝑏)

𝑤12
(𝑏)

𝑤21
(𝑏)

𝑤22
(𝑏)
)

  
 
= (

−0.9710
−4.9595
−16.9564
69.9365

). 

Gaussian elimination and back substitution are applied to obtain 𝑊1and 𝑊2. 

𝑊1 = (
−1.51165 0.25886
−6.80354 1.16731

). 

𝑊2 = (
−0.17539 1.51639
−1.0112 8.86844

). 

Step 2: We compute 𝑥𝑖𝑗 and 𝑦𝑖𝑗 as follows: 

𝑥𝑖𝑗 = 𝑈1𝑊1𝑉1
𝑇 =

(
 −0.7593 −0.6508
0.6508  −0.7593

) (
−1.51165 0.25886
−6.80354 1.16731

) (
0.5774 0.8165

−0.8165 0.5774
). 

Thus, 

𝑥𝑖𝑗 = (
4 4
3 3

). 
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𝑦𝑖𝑗 = 𝑈2𝑊2𝑉2
𝑇

= (
 −0.7474 −0.6644
0.6644  −0.7474

) (
−0.1753 1.51639
−1.0112 8.86844

) (
−0.6225 0.7826
−0.7826 −0.6225

). 

Thus, 

𝑦𝑖𝑗 = (
5 5
4 4

). 

Step 3: The values of 𝑥𝑖𝑗 and 𝑦𝑖𝑗 are used to compute ℎ1
𝛼 and 𝑓1

𝛼 as follows: 

ℎ1
𝛼 = ℎ𝑖𝑗 − 𝛼𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝛾𝑖𝑗, 

𝑓1
𝛼 = 𝑓𝑖𝑗 − 𝛽𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝛿𝑖𝑗, 

ℎ1
𝛼 = (

30 54
37 56

) − (
7 4
5 6

) (
4 4
3 3

) + (
4 4
3 3

) (
2 1
3 1

) = (
10 22
14 24

), 

𝑓1
𝛼 = (

16 9
10 4

) − (
6 5
2 7

) (
5 5
4 4

) + (
5 5
4 4

) (
7 3
3 7

) = (
16 9
12 6

). 

The values of ℎ1
𝛼 and 𝑓1

𝛼 are substituted in the following equations. 

𝑚𝑖𝑗𝑧𝑖𝑗 − 𝑧𝑖𝑗𝑎𝑖𝑗 = ℎ1
𝛼. 

𝑛𝑖𝑗𝑞𝑖𝑗 − 𝑞𝑖𝑗𝑏𝑖𝑗 = 𝑓1
𝛼. 

Step 4: Since the obtained equations have the same structure as the first two equations 

in Eq. (7.17), 𝑧𝑖𝑗 and 𝑞𝑖𝑗 can be computed similar to 𝑥𝑖𝑗 and 𝑦𝑖𝑗. Thus, 

𝑧𝑖𝑗 = (
2 3
2 2

), 

and 

𝑞𝑖𝑗 = (
1 1
2 1

). 

Step 5: The positive fuzzy solution 𝑋̃ of the given PTrFFSME-O is: 
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X̃ = (
(4, 5, 2, 1) (4, 5, 3,1)
(3, 4, 2, 2) (3, 4, 2, 1)

). 

The obtained positive fuzzy solution for the given PTrFFSME-O is found by FCMM 

as follows: 

FCMM for solving PTrFFSME-O 

Step 1: Since   𝐴̃ = ( 𝑚𝑖𝑗 , 𝑛𝑖𝑗 , 𝛼𝑖𝑗 , 𝛽𝑖𝑗), ∀ 1 ≤ 𝑖, 𝑗 ≤ 2, 𝐷̃ = (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝛾𝑖𝑗 , 𝛿𝑖𝑗), 

∀ 1 ≤ 𝑖, 𝑗 ≤ 2, 𝑋̃ = ( 𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑞𝑖𝑗), ∀ 1 ≤ 𝑖, 𝑗 ≤ 2 and 𝐸̃ = ( 𝑐𝑖𝑗 , 𝑔𝑖𝑗 , ℎ𝑖𝑗 , 𝑓𝑖𝑗  ), 

∀ 1 ≤ 𝑖, 𝑗 ≤ 2. 

We can obtain the following: 

 𝑚𝑖𝑗 = (
8 7
6 9

) , 𝑛𝑖𝑗 = (
9 9
8 10

) , 𝛼𝑖𝑗 = (
7 4
5 6

) , 𝛽𝑖𝑗 = (
6 5
2 7

), 

and 

𝑎𝑖𝑗 = (
4 2
4 4

) , 𝑏𝑖𝑗 = (
5 3
6 6

) , 𝛾𝑖𝑗 = (
2 1
3 1

) , 𝛿𝑖𝑗 = (
7 3
3 7

), 

and 

𝑐𝑖𝑗 = (
21 29
27 33

) , 𝑔𝑖𝑗 = (
26 36
36 44

) , ℎ𝑖𝑗 = (
30 54
37 56

) , 𝑓𝑖𝑗 = (
16 9
10 4

). 

By the first and second equations in Eq. (7.17), we obtain the following equations: 

(
8 7
6 9

) (
𝑥11 𝑥12
𝑥21 𝑥22

) − (
𝑥11 𝑥12
𝑥21 𝑥22

) (
4 2
4 4

) = (
21 29
27 33

).                       (7.31) 

 

(
9 9
8 10

) (
𝑦11 𝑦12
𝑦21 𝑦22

) − (
𝑦11 𝑦12
𝑦21 𝑦22

) (
5 3
6 6

) = (
26 36
36 44

).                        (7.32) 

Step 2: Applying the associated linear system in Eq. (7.20) on Eq. (7.31) and Eq. (7.32), 

we get the following: 
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𝑅1 =

(

 
 
 
 
 

4 −4 7 0 0 0 0 0
−2 4 0 7 0 0 0 0
6 0 5 −4 0 0 0 0
0 6 −2 5 0 0 0 0
0 0 0 0 4 −6 9 0
0 0 0 0 −3 3 0 9
0 0 0 0 8 0 5 −6
0 0 0 0 0 8 −3 4 )

 
 
 
 
 

, 𝑆1 =

(

 
 
 
 
 

𝑥11
𝑥12
𝑥21
𝑥22
𝑦11
𝑦12
𝑦21
𝑦22)

 
 
 
 
 

 and 𝑇1 =

(

 
 
 
 
 

21
29
27
33
26
36
36
44)

 
 
 
 
 

, 

which can be converted to the matrix equation 𝑅1 ∙ 𝑆1 = 𝑇1 as follows: 

(

 
 
 
 
 

4 −4 7 0 0 0 0 0
−2 4 0 7 0 0 0 0
6 0 5 −4 0 0 0 0
0 6 −2 5 0 0 0 0
0 0 0 0 4 −6 9 0
0 0 0 0 −3 3 0 9
0 0 0 0 8 0 5 −6
0 0 0 0 0 8 −3 4 )

 
 
 
 
 

(

 
 
 
 
 

𝑥11
𝑥12
𝑥21
𝑥22
𝑦11
𝑦12
𝑦21
𝑦22)

 
 
 
 
 

=

(

 
 
 
 
 

21
29
27
33
26
36
36
44)

 
 
 
 
 

.                        (7.33) 

Multiplying both sides of Eq. (7.33) by 𝑅1
−1 we get: 

𝑆1 =

(

 
 
 
 
 

𝑥11
𝑥12
𝑥21
𝑥22
𝑦11
𝑦12
𝑦21
𝑦22)

 
 
 
 
 

=

(

 
 
 
 
 

4
4
3
3
5
5
4
4)

 
 
 
 
 

. 

Thus, 

𝑥𝑖𝑗 = (
4 4
3 3

) and 𝑦𝑖𝑗 = (
5 5
4 4

). 

Step 3: We also compute, 

𝑇1
𝛼 = ℎ𝑖𝑗 − 𝛼𝑖𝑗𝑥𝑖𝑗 + 𝑥𝑖𝑗𝛾𝑖𝑗 and 𝑇2

𝛼 = 𝑓𝑖𝑗 − 𝛽𝑖𝑗𝑦𝑖𝑗 + 𝑦𝑖𝑗𝛿𝑖𝑗 

𝑇1
𝛼 = (

30 54
37 56

) − (
7 4
5 6

) (
4 4
3 3

) + (
4 4
3 3

) (
2 1
3 1

) = (
10 22
14 24

). 

𝑇2
𝛼 = (

16 9
10 4

) − (
6 5
2 7

) (
5 5
4 4

) + (
5 5
4 4

) (
7 3
3 7

) = (
16 9
12 6

). 
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Thus, 

𝑅1 ∙ 𝑆2 = 𝑇2 

(

 
 
 
 
 

4 −4 7 0 0 0 0 0
−2 4 0 7 0 0 0 0
6 0 5 −4 0 0 0 0
0 6 −2 5 0 0 0 0
0 0 0 0 4 −6 9 0
0 0 0 0 −3 3 0 9
0 0 0 0 8 0 5 −6
0 0 0 0 0 8 −3 4 )

 
 
 
 
 

(

 
 
 
 
 

𝑧11
𝑧12
𝑧21
𝑧22
𝑞11
𝑞12
𝑞21
𝑞22)

 
 
 
 
 

=

(

 
 
 
 
 

10
22
14
24
16
9
12
6 )

 
 
 
 
 

.                       (7.34) 

Multiplying both sides of Eq. (7.34) by 𝑅1
−1 we get: 

𝑆2 =

(

 
 
 
 
 

𝑧11
𝑧12
𝑧21
𝑧22
𝑞11
𝑞12
𝑞21
𝑞22)

 
 
 
 
 

=

(

 
 
 
 
 

2
3
2
2
1
1
2
1)

 
 
 
 
 

. 

Thus, 

𝑧𝑖𝑗 = (
2 3
2 2

) and 𝑞𝑖𝑗 = (
1 1
2 1

). 

Step 4: The solution 𝑋̃ of the given PTrFFSME-O is: 

𝑋̃ = (
(4, 5, 2, 1) (4, 5, 3, 1)
(3, 4, 2, 2) (3, 4, 2, 1)

). 

MFMVM for solving PTrFFSME-O 

Step 1: Given  𝐴̃ = (𝑚𝑖𝑗 , 𝑛𝑖𝑗 , 𝛼𝑖𝑗 , 𝛽𝑖𝑗) = (
(8, 9, 7, 6) (7, 9, 4, 5)
(6, 8, 5, 2) (9, 10, 6, 7)

). 

We defined the following matrices: 

 𝑚𝑖𝑗 = (
𝑚11 𝑚12

𝑚21 𝑚22
) = (

8 7
6 9

), 𝑛𝑖𝑗 = (
𝑛11 𝑛12
𝑛21 𝑛22

) = (
9 9
8 10

), 
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𝛼𝑖𝑗 = (
𝛼11 𝛼12
𝛼21 𝛼22

) = (
7 4
5 6

) and  𝛽𝑖𝑗 = (
𝛽11 𝛽12
𝛽21 𝛽22

) = (
6 5
2 7

). 

Also given,  𝐷̃ = (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝛾𝑖𝑗 , 𝛿𝑖𝑗) = (
(4, 5, 2, 7) (2, 3, 1, 3)
(4, 6, 3, 3) (4, 6, 1, 7)

). 

We defined the following matrices: 

 𝑎𝑖𝑗 = (
𝑎11 𝑎12
𝑎21 𝑎22

) = (
4 2
4 4

), 𝑏𝑖𝑗 = (
𝑏11 𝑏12
𝑏21 𝑏22

) = (
5 3
6 6

),  

𝛾𝑖𝑗 = (
𝛾11 𝛾12
𝛾21 𝛾22

) = (
2 1
3 1

) and 𝛿𝑖𝑗 = (
𝛿11 𝛿12
𝛿21 𝛿22

) = (
7 3
3 7

). 

and, 𝐸̃ = (𝑐𝑖𝑗 , 𝑔𝑖𝑗 , ℎ𝑖𝑗 , 𝑓𝑖𝑗) = (
(21, 26, 30, 16) (29, 36, 54, 9)
(27, 36, 37, 10) (33, 44, 56, 4)

). 

We defined the following matrices: 

𝑐𝑖𝑗 = (
𝑐11 𝑐12
𝑐21 𝑐22

) = (
21 29
27 33

), 𝑔𝑖𝑗 = (
𝑔11 𝑔12
𝑔21 𝑔22

) = (
26 36
36 44

), 

ℎ𝑖𝑗 = (
ℎ11 ℎ12
ℎ21 ℎ22

) = (
30 54
37 56

), and  𝑓𝑖𝑗 = (
𝑓11 𝑓12
𝑓21 𝑓22

) = (
16 9
10 4

). 

Step 2: We compute the following: 

𝐾 = 𝑚𝑖𝑗⊖𝑎𝑖𝑗
𝑇 = (

8 7
6 9

)⊖ (
4 2
4 4

)
𝑇

= (

   4 −4
−2     4

 7    0
 0    7

    6     0
    0      6

  5 −4
−2    5

 ), 

𝐿 = 𝑛𝑖𝑗⊖𝑏𝑖𝑗
𝑇 = (

9 9
8 10

)⊖ (
5 3
6 6

)
𝑇

= (

   4 −6    9    0
−3    3    0    9
   8    0    5 −6
   0    8 −3    4

 ), 

𝛼𝑖𝑗⊖𝛾𝑖𝑗
𝑇 = (

    5 −3    4    0
−1    6    0    4
    5    0    4 −3
    0    5 −1    5

 ), 
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and, 

𝛽𝑖𝑗⊖𝛿𝑖𝑗
𝑇 = (

−1 −3    5    0
−3 −1    0    5
   2    0    0 −3
   0    2 −3    0

 ). 

Step 3: We first find, 

𝐾−1 =

(

 
 
 
 

    
71

226
−

59

113
−

49

226
    

63

113

−
59

226
    

71

226
    

63

226
−

49

226

−
21

113
    

54

113
    

32

113
−

50

113

    
27

113
−

21

113
−

25

113
    

32

113

 

)

 
 
 
 

 and 𝐿−1 =

(

 
 
 

−
59

46
    
37

23
    
63

46
−
36

23

    
37

46
−
70

69
−
18

23
    
51

46

    
28

23
−
32

23
−
26

23
    
33

23

−
16

23
    
68

69
    
33

46
−
41

46

 

)

 
 
 

. 

By Definition 2.6.2.2, we get: 

𝑉𝑒𝑐(𝑐𝑖𝑗) = (

21
29
27
33

), 𝑉𝑒𝑐(𝑔𝑖𝑗) = (

26
36
36
44

), 𝑉𝑒𝑐(ℎ𝑖𝑗) = (

30
54
37
56

) and 𝑉𝑒𝑐(𝑓𝑖𝑗) = (

16
9
10
4

). 

Therefore, 

𝑉𝑒𝑐(𝑥𝑖𝑗) = 𝐾
−1 ∙ 𝑉𝑒𝑐(𝑐𝑖𝑗) =

(

 
 
 
 

    
71

226
−

59

113
−

49

226
    

63

113

−
59

226
    

71

226
    

63

226
−

49

226

−
21

113
    

54

113
    

32

113
−

50

113

    
27

113
−

21

113
−

25

113
    

32

113)

 
 
 
 

∙ (

21
29
27
33

) = (

4
4
3
3

), 

𝑉𝑒𝑐(𝑦𝑖𝑗) = 𝐿
−1 ∙ 𝑉𝑒𝑐(𝑔𝑖𝑗) =

(

 
 
 

−
59

46
    
37

23
    
63

46
−
36

23

    
37

46
−
70

69
−
18

23
    
51

46

    
28

23
−
32

23
−
26

23
    
33

23

−
16

23
    
68

69
    
33

46
−
41

46

 

)

 
 
 

∙ (

26
36
36
44

) = (

5
5
4
4

). 
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The values of 𝑉𝑒𝑐(𝑥𝑖𝑗) and 𝑉𝑒𝑐(𝑦𝑖𝑗) are substituted in Eq. (7.29) to compute 𝑉𝑒𝑐(𝑧𝑖𝑗) 

and 𝑉𝑒𝑐(𝑞𝑖𝑗) as follows: 

𝑉𝑒𝑐(𝑧𝑖𝑗) = 𝐾
−1 ∙ (𝑉𝑒𝑐(ℎ𝑖𝑗) − (𝛼𝑖𝑗⊖𝛾𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑥𝑖𝑗)). Thus, 

𝑉𝑒𝑐(𝑧𝑖𝑗) =

(

 
 
 

    
71

226
−

59

113
−

49

226
    

63

113

−
59

226
    

71

226
    

63

226
−

49

226

−
21

113
    

54

113
    

32

113
−

50

113

    
27

113
−

21

113
−

25

113
    

32

113

 

)

 
 
 

∙

(

 
 
(

30
54
37
56

) − (

   5 −3    4    0
−1    6    0    4
   5    0    4 −3
   0    5 −1    5

 ) . (

4
4
3
3

)

)

 
 
= (

2
3
2
2

). 

Similarly, 𝑉𝑒𝑐(𝑞𝑖𝑗) = 𝐿
−1 ∙ (𝑉𝑒𝑐(𝑓𝑖𝑗) − (𝛽𝑖𝑗⊖𝛿𝑖𝑗

𝑇) ∙ 𝑉𝑒𝑐(𝑦𝑖𝑗)). Thus,  

𝑉𝑒𝑐(𝑞𝑖𝑗) =

(

 
 
 

−
59

46
    
37

23
    
63

46
−
36

23

    
37

46
−
70

69
−
18

23
    
51

46

    
28

23
−
32

23
−
26

23
    
33

23

−
16

23
    
68

69
    
33

46
−
41

46

 

)

 
 
 

∙

(

 
 
(

16
9
10
4

) − (

−1 −3    5    0
−3 −1    0    5
   2    0    0 −3
   0    2 −3    0

 ) . (

5
5
4
4

)

)

 
 
= (

1
1
2
1

). 

Step 4: By Definition 2.6.2.2 and Eq. (7.30), we get: 

𝑥𝑖𝑗 = 𝑉𝑒𝑐
−1 (

4
4
3
3

) = (
4 4
3 3

), 𝑦𝑖𝑗 = 𝑉𝑒𝑐
−1 (

5
5
4
4

)  = (
5 5
4 4

),  

𝑧𝑖𝑗 = 𝑉𝑒𝑐
−1(

2
3
2
2

)  = (
2 3
2 2

) and 𝑞𝑖𝑗 = 𝑉𝑒𝑐
−1 (

1
1
2
1

)  = (
1 1
2 1

). 

Step 5: Combining 𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗  and 𝑞𝑖𝑗, the fuzzy solution 𝑋̃ is represented by: 

𝑋̃ = (
(4, 5, 2, 1) (4, 5, 3, 1)
(3, 4, 2, 2) (3, 4, 2, 1)

). 

Step 6: Feasibility of the solution  

Since 
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I) 𝑥𝑖𝑗 = (
4 4
3 3

) > 0, 

II) 𝑦𝑖𝑗 = (
5 5
4 4

) > 0, 

III) 𝑧𝑖𝑗 = (
2 3
2 2

) > 0, 

IV) 𝑞𝑖𝑗 = (
1 1
2 1

) > 0, 

V) 𝑦𝑖𝑗 − 𝑥𝑖𝑗 = (
1 1
1 1

) ≥ 0, 

VI) 𝑥𝑖𝑗 − 𝑧𝑖𝑗 = (
2 1
1 1

) > 0, 

therefore, the solution 𝑋̃ = (
(4, 5, 2, 1) (4, 5, 3, 1)
(3, 4, 2, 2) (3, 4, 2, 1)

) is feasible.  

Figure 7.3 shows the positive fuzzy solution 𝑋̃. 

 

 

 

 

 

 

 

Figure 7.3. Positive fuzzy solution for Example 7.3.1. 

Verification of the solution: 

To verify the obtained positive fuzzy solution, we first multiply 𝐴̃ and 𝑋̃ as follows: 
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𝐴̃𝑋̃ = (
(8, 9, 7, 6) (7, 9, 4, 5)
(6, 8, 5, 2) (9, 10, 6, 7)

) (
(4, 5, 2, 1) (4, 5, 3, 1)
(3, 4, 2, 2) (3, 4, 2, 1)

) 

                           = (
(53, 81, 70, 77) (53, 81, 78, 68)
(51, 80, 68, 66) (51, 80, 74, 56)

). 

We also multiply 𝑋̃ and  𝐷̃ as follows: 

𝑋̃𝐷̃ = (
(4, 5, 2, 1) (4, 5, 3, 1)
(3, 4, 2, 2) (3, 4, 2, 1)

) (
(4, 5, 2, 7) (2, 3, 1, 3)
(4, 6, 3, 3) (4, 6, 1, 7)

) 

                            = (
(32, 55, 40, 61) (24, 45, 24, 59)
(24, 44, 31, 56) (18, 36, 18, 52)

). 

Therefore, 

𝐴̃𝑋̃ − 𝑋̃𝐷̃ = (
(53, 81, 70, 77) (53, 81, 78, 68)
(51, 80, 68, 66) (51, 80, 74, 56)

)

− (
(32, 55, 40, 61) (24, 45, 24, 59)
(24, 44, 31, 56) (18, 36, 18, 52)

) . 

                     = (
(21, 26, 30, 16) (29, 36, 54, 9)
(27, 36, 37, 10) (33, 44, 56, 4)

). 

The value of 𝐴̃𝑋̃ − 𝑋̃𝐵̃ is exactly equal to the constant matrix 𝐸̃. 

7.4 Conclusion and Contributions 

In this chapter, different methods are developed for solving the TrFFSME in the form 

 𝐴̃𝑋̃ + 𝑋̃𝐵̃ = 𝐶̃ and the PTrFFSME-O in the form 𝐴̃𝑋̃ − 𝑋̃𝐵̃ = 𝐶̃ with LR fuzzy 

numbers. The positive and negative fuzzy solutions are obtained by three analytical 

methods, the MFBSM, FCMM and MFMVM. In terms of accuracy, all the three 

methods are able to obtain the same fuzzy solution. In addition, the methods can also be 

applied to TFFSME. Since the MFBSM and FCMM avoided using Kronecker operation 

which means they required short computational timing than the MFMVM it makes it 
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possible to find the fuzzy solution for large TrFFSME using Mathematica 12.1 and 

Maple 2019.  

The following contributions summarize the findings in this chapter: 

1. New MFMVM, FCMM and MFBSM have been developed, which gives the 

analytical solution for PTrFFSME  𝐴̃𝑋̃ + 𝑋̃𝐵̃ = 𝐶̃ in LR form.  

2. New MFMVM, FCMM and MFBSM have been developed, which gives the 

analytical solution for negative TrFFSME  𝐴̃𝑋̃ + 𝑋̃𝐵̃ = 𝐶̃ in LR form.  

3. New MFMVM, FCMM and MFBSM have been developed, which gives the 

analytical solution for PTrFFSME-O  𝐴̃𝑋̃ − 𝑋̃𝐵̃ = 𝐶̃ in LR form.  

4. Provide  the sufficient and necessary conditions for the feasibility of the      

    TrFFSME, to have a strong positive fuzzy solution. 

5. Analyzing the obtained positive fuzzy solution.   
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CHAPTER EIGHT 

CONCLUSION AND FUTURE STUDIES 

This chapter presents the conclusion of the whole study in addition to the main 

contributions and the suggestions of future works. To conclude, this thesis has 

successfully accomplished all the objectives. The contribution of this thesis is beneficial 

to researchers from diverse fields, such as linear algebra, fuzzy theory, and social 

sciences. Apart from that, the contributions are also applicable for real-life applications, 

particularly in control system engineering and noise reduction in medical imaging. In 

the following Section 8.1, the conclusion of this study is discussed. 

8.1 Conclusion of the Study 

The GFFSME with positive or arbitrary TrFNs is not investigated in the literature. 

Many studies considered its special cases only. Several researchers have proposed 

methods for solving fuzzy matrix equations. However, these studies have some 

limitations; for instance, the existing methods for solving FFME and FFSME based on 

DPMO have sign restrictions on its coefficients and fuzzy solutions, where either the 

coefficients or the fuzzy solutions are strictly positive. In addition, the existing 

analytical approaches for solving FFME and FFSME are limited to small size only, and 

the numerical methods that can solve FFME and FFSME with large size are not 

developed in the literature.  

 

Furthermore, the theoretical development of the fuzzy solution's existence, uniqueness, 

and feasibility are not investigated in many existing methods. In addition, in most 
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existing studies, researchers converted the fuzzy matrix equations into a corresponding 

system of linear equations without checking the equivalency between the fuzzy 

equation and the linear system. Furthermore, the accuracy and convergence of 

numerical methods in the literature are not examined in many studies. Therefore, in this 

thesis, new analytical and numerical methods for solving GFFSME and its special 

cases, which include FFSME, FFCTLME, FFStME, FFEME and FFME, in addition to 

a CFFSME which are capable of addressing the limitations in the previous literature. In 

addition, the developed methods are able to solve GFFSME and its special and general 

cases with TrFN, TFN, LR-TrFN and LR-TFN. The numerical examples considered in 

this thesis showed that the analytical methods are able to find the exact fuzzy solution 

to the GFFSME and its special and general cases, while the numerical methods 

approximated the exact fuzzy solution with few iterations. In the following Section 8.2, 

the main contributions of the developed methods are presented. 

8.2 Main Contributions 

This thesis mainly focused on the new methods for solving fully fuzzy matrix equations 

and a couple of fully fuzzy matrix equations. The following contributions are achieved 

in this study. 

I) Constructing methods for solving generalized trapezoidal fully fuzzy 

Sylvester matrix equation with restricted and unrestricted coefficients. 

 

In this thesis, two different approaches are constructed based on the sign of the 

GTrFFSME. The analytical approaches can solve the AGTrFFSME with positive, 



 

395 

 

negative and near-zero TrFNs. In contrast, the numerical approaches can solve the 

positive GTrFFSME with positive trapezoidal fuzzy numbers only. In order to develop 

the analytical and numerical approaches, new fuzzy arithmetic multiplication 

operations (AMO) between trapezoidal fuzzy numbers are introduced based on 𝛼 − 𝑐𝑢𝑡 

intervals. This AMO is required in this study since the available fuzzy arithmetic 

multiplication operations cannot be applied to all different cases of GTrFFSME. To 

reduce the computational time needed for solving the positive GTrFFSME, the AMO 

is reduced to RAMO. The RAMO is very effective in converting the PGTrFFSME to 

an equivalent system of SME.  This system of SME is solved by newly developed 

methods, namely FMVM, FGIM and FLSIM. With the available computer power, 

FGIM and FLSIM can solve PGTrFFSME up to 100 × 100. To solve the 

AGTrFFSME, AMO is extended to EAMO to handle the multiplication between three 

TrFNs. The arbitrary GTrFFSME is converted to an equivalent system of non-linear 

equations using the EAMO; then, the non-linear system is reduced to an absolute 

system of equations where the arbitrary fuzzy solutions are obtained by solving that 

system. 

 

II) Modifying the constructed analytical and numerical methods for 

generalized trapezoidal fully fuzzy Sylvester matrix equation and apply it to 

different fuzzy equations, numbers, and forms. 
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The constructed analytical and numerical methods for solving the AGTrFFSME and 

PGTrFFSME are modified and applied to its special cases with TrFNs and TFNs in a 

general form, which includes the following: 

• The TrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ with arbitrary and positive coefficients. 

• The TrFFCTLME 𝐴̃𝑋̃ + 𝑋̃𝐴̃𝑇 = 𝐸̃ with arbitrary and positive coefficients. 

• The TrFFStME 𝑋̃ + 𝐶̃𝑋̃𝐷̃ = 𝐸̃ with arbitrary and positive coefficients. 

• The TrEFFME 𝐴̃𝑋̃𝐵̃ = 𝐸̃ with arbitrary and positive coefficients. 

• The TrFFME 𝐴̃𝑋̃ = 𝐸̃ with arbitrary and positive coefficients. 

In addition, the constructed analytical and numerical methods for solving the 

AGTrFFSME and PGTrFFSME can be applied to its special cases with LR-TrFNs. In 

this thesis, we just modified two analytical methods and applied them to the following 

special cases: 

• The PTrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ with positive LR-TrFNs. 

• The NTrFFSME 𝐴̃𝑋̃ + 𝑋̃𝐷̃ = 𝐸̃ with negative LR-TrFNs. 

• The PTrFFSME 𝐴̃𝑋̃ − 𝑋̃𝐷̃ = 𝐸̃ with positive LR-TrFNs. 

 

III) Extending the constructed methods of GTrFFSME and applying them to a   

            couple of fuzzy matrix equations. 

 

The developed methods for solving the GTrFFSME can be extended to find all possible 

positive and arbitrary fuzzy solutions to the following fuzzy equations: 

• Couple generalized fully fuzzy Sylvester matrix equations with trapezoidal and 

triangular fuzzy numbers. 
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• Couple fully fuzzy Sylvester matrix equations with trapezoidal and triangular 

fuzzy numbers. 

• Couple fully fuzzy Lyapunov matrix equations with arbitrary trapezoidal and 

triangular fuzzy numbers and arbitrary fuzzy solutions. 

• Fully fuzzy matrix equation with arbitrary triangular and trapezoidal fuzzy 

numbers and arbitrary fuzzy solutions. 

 

IV) To verify the constructed methods by analyzing the solutions and  

             checking the numerical method's performance in terms of accuracy and    

             efficiency.  

• Providing  the sufficient and necessary conditions for the existence and 

uniqueness of the fuzzy solution. These conditions are used to examine fuzzy 

equation before getting the solution. 

• Provide  the necessary conditions for the feasibility of the fuzzy solution to the 

GTrFFSME, TrFFSME, TrFFME, TrFFCTLME and TrFFStME, to have a 

strong positive fuzzy solution. 

• Analyzing the obtained positive fuzzy solution graphically.   

8.3 Limitation of the Constructed Methods 

This study has successfully achieved its objectives. However, the constructed numerical 

methods cannot be extended to AGTrFFSME. This is because the non-linear system of 

equations equivalent to the AGTrFFSME cannot be solved numerically, and it must be 

solved analytically or using optimization techniques. In addition, in this thesis, we 
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obtain analytical and numerical fuzzy solutions whenever they exist. This is because 

the development of the numerical approaches is based on the fact that the solution to 

the fuzzy system exists, and it is unique. 

8.4 Suggestion for Future Studies 

Future research would be more significant if the developed methods in this thesis were 

extended to fuzzy matrix equations with other types of fuzzy numbers such as 

hexagonal fuzzy numbers, complex fuzzy numbers, and bipolar trapezoidal fuzzy 

numbers.  In addition, non-linear fully fuzzy matrix equations such as the Riccati matrix 

equation, couple of FFCTLME and couple Riccati matrix equation can be explored. 

 

In this thesis, analytical and numerical solutions are obtained whenever they exist; it is 

suggested to provide Moore–Penrose pseudo inverse for the case of no solution. Finally, 

it is strongly recommended to approximate the fuzzy solution to the AGTrFFSME using 

optimization methods such as universal global optimization and robust global 

optimization as global optimization methods provides functions that search for global 

solutions to problems that contain multiple maxima or minima.   
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Appendix A 

Solutions of Examples in Chapter 3 

Example 3.3.1.2. The solution for the given 5 × 5 GTrFFSME is obtained by FMVM as follows: 

Step1: Decompose  𝐴̃, 𝑋̃, 𝐵̃, 𝐶̃, 𝐷̃ and 𝐸̃ into  

𝑎𝑖𝑗
(1) =

(

 
 

5 1 4 3 3
3 5 2 3 1
2 3 5 1 2
4 2 4 5 3
3 1 1 3 6)

 
 
, 𝑏𝑖𝑗
(1) =

(

 
 

6 2 4 3 2
3 5 1 1 4
1 4 5 3 3
2 1 2 6 3
1 4 2 4 5)

 
 
, 𝑐𝑖𝑗
(1) =

(

 
 

7 3 2 2 4
4 5 4 2 4
4 1 6 3 3
2 1 4 5 2
2 1 2 1 5)

 
 
, 𝑑𝑖𝑗

(1) =

(

 
 

6 3 2 2 1
1 5 3 2 4
5 1 6 2 3
2 1 1 5 2
2 1 2 3 5)

 
 
, 

𝑒𝑖𝑗
(1) =

(

 
 

785 797 811 867 1000
829 781 854 902 1009
671 676 718 759 857
726 802 748 820 941
565 623 574 678 768 )

 
 
, 𝑎𝑖𝑗
(2) =

(

 
 

6 3 5 4 4
4 6 4 4 2
3 5 7 2 3
5 3 6 7 4
4 2 2 4 7)

 
 
, 𝑏𝑖𝑗
(2) =

(

 
 

7 3 5 4 3
4 6 2 3 5
2 5 7 4 4
3 3 4 8 4
2 5 3 5 7)

 
 
, 𝑐𝑖𝑗
(2) =

(

 
 

8 4 4 3 5
5 7 5 4 5
5 2 7 5 4
3 2 5 7 3
5 2 3 4 6)

 
 
, 

𝑑𝑖𝑗
(2) =

(

 
 

7 4 3 3 2
2 7 4 3 5
6 2 8 3 4
3 3 2 7 3
4 2 4 4 6)

 
 
, 𝑒𝑖𝑗
(2) =

(

 
 

2476 2564 2670 2727 2841
2581 2583 2767 2788 2885
2300 2413 2512 2548 2654
2385 2590 2574 2684 2801
2087 2199 2230 2339 2431)

 
 
, 𝑎𝑖𝑗
(3) =

(

 
 

7 4 6 5 6
5 8 5 5 3
4 6 8 4 4
6 4 7 9 5
5 4 3 5 9)

 
 
, 𝑏𝑖𝑗
(3) =

(

 
 

8 5 6 5 6
5 7 3 4 6
3 6 8 5 5
4 4 5 9 5
3 6 4 6 8)

 
 
, 

𝑐𝑖𝑗
(3) =

(

 
 

9 5 6 4 6
6 8 6 5 6
7 3 8 6 5
4 3 6 8 4
6 3 4 5 7)

 
 
, 𝑑𝑖𝑗

(3) =

(

 
 

8 6 4 4 3
3 8 5 4 6
7 3 9 4 5
4 4 3 9 4
5 3 5 5 7)

 
 
, 𝑒𝑖𝑗
(3) =

(

 
 

6202 6399 6587 6794 6936
6138 6235 6470 6667 6777
5909 6100 6263 6471 6593
5969 6347 6329 6669 6836
5448 5722 5821 6095 6209)

 
 
, 
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𝑎𝑖𝑗
(4) =

(

 
 

8 6 7 6 7
6 9 6 7 5
5 7 9 5 6
7 6 8 10 7
6 5 4 7 11)

 
 
, 

𝑏𝑖𝑗
(4) =

(

 
 

9 6 7 7 8
6 8 4 5 7
5 7 10 6 7
5 6 6 11 6
4 7 5 7 10)

 
 
, 𝑐𝑖𝑗
(4) =

(

 
 

10 6 7 6 7
7 9 7 6 7
8 5 9 7 7
6 5 8 9 5
7 4 6 7 10)

 
 
, 𝑑𝑖𝑗

(4) =

(

 
 

9 7 5 6 4
4 9 7 5 7
8 4 10 5 7
5 6 4 11 5
6 7 8 7 10)

 
 

 and  

𝑒𝑖𝑗
(4) =

(

 
 

12395 13618 13679 14226 14685
12240 13407 13488 14066 14478
12068 13227 13313 13819 14233
12540 13923 13783 14535 15031
11839 13077 13033 13685 14094)

 
 

. 

Step 2: Apply Vec-operator and Kronecker product. 

(𝑏𝑖𝑗
(1))𝑇⨂𝑎𝑖𝑗

(1) + (𝑑𝑖𝑗
(1))𝑇⨂𝑐𝑖𝑗

(1) = 



 

412 

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

72 24 36 30 42 22 6 14 11 13 40 16 14 13 23 24 8 12 10 14 19 7 8 7 11
42 60 36 30 30 13 20 10 11 7 23 30 22 13 21 14 20 12 10 10 11 15 10 7 9
36 24 66 24 30 10 10 21 6 9 22 8 35 16 17 12 8 22 8 10 10 5 17 7 8
36 18 48 60 30 14 7 16 20 11 14 7 24 30 13 12 6 16 20 10 8 4 12 15 7
30 12 18 24 66 11 4 5 10 23 13 6 11 8 31 10 4 6 8 22 7 3 5 5 16
31 11 14 12 18 60 20 30 25 35 27 7 18 14 16 12 4 6 5 7 27 7 18 14 16
18 25 16 12 14 35 50 30 25 25 16 25 12 14 8 7 10 6 5 5 16 25 12 14 8
16 9 28 11 13 30 20 55 20 25 12 13 26 7 11 6 4 11 4 5 12 13 26 7 11
14 7 20 25 12 30 15 40 50 25 18 9 20 25 14 6 3 8 10 5 18 9 20 25 14
12 5 8 9 27 25 10 15 20 55 14 5 6 13 29 5 2 3 4 11 14 5 6 13 29
34 10 20 16 20 26 10 10 9 15 67 23 32 27 39 17 5 10 8 10 24 8 12 10 14
20 30 16 16 12 15 20 14 9 13 39 55 34 27 29 10 15 8 8 6 14 20 12 10 10
16 14 32 10 14 14 6 23 10 11 34 21 61 23 28 8 7 16 5 7 12 8 22 8 10
20 10 24 30 16 10 5 16 20 9 32 16 44 55 27 10 5 12 15 8 12 6 16 20 10
16 6 8 14 34 9 4 7 6 21 27 11 17 21 60 8 3 4 7 17 10 4 6 8 22
29 9 16 13 17 19 7 8 7 11 29 9 16 13 17 65 21 34 28 38 41 13 22 18 24
17 25 14 13 11 11 15 10 7 9 17 25 14 13 11 38 55 32 28 26 24 35 20 18 16
14 11 27 9 12 10 5 17 7 8 14 11 27 9 12 32 23 60 21 27 20 15 38 13 17
16 8 20 25 13 8 4 12 15 7 16 8 20 25 13 34 17 44 55 28 22 11 28 35 18
13 5 7 11 28 7 3 5 5 16 13 5 7 11 28 28 11 16 23 61 18 7 10 15 39
17 5 10 8 10 48 16 24 20 28 36 12 18 15 21 29 9 16 13 17 60 20 30 25 35
10 15 8 8 6 28 40 24 20 20 21 30 18 15 15 17 25 14 13 11 35 50 30 25 25
8 7 16 5 7 24 16 44 16 20 18 12 33 12 15 14 11 27 9 12 30 20 55 20 25
10 5 12 15 8 24 12 32 40 20 18 9 24 30 15 16 8 20 25 13 30 15 40 50 25
8 3 4 7 17 20 8 12 16 44 15 6 9 12 33 13 5 7 11 28 25 10 15 20 55)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

              

 

(𝑏𝑖𝑗
(2))𝑇⨂𝑎𝑖𝑗

(2) + (𝑑𝑖𝑗
(2))𝑇⨂𝑐𝑖𝑗

(2) = 



 

413 

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

98 49 63 49 63 40 20 28 22 26 60 30 34 26 38 42 21 27 21 27 44 22 26 20 28
63 91 63 56 49 26 38 26 24 18 38 54 38 32 34 27 39 27 24 21 28 40 28 24 24
56 49 98 49 49 22 24 42 18 20 36 22 56 34 30 24 21 42 21 21 26 18 42 24 22
56 35 77 98 49 26 16 34 42 22 28 18 42 56 26 24 15 33 42 21 22 14 32 42 20
63 28 35 56 91 26 12 14 24 40 38 16 22 32 50 27 12 15 24 39 28 12 16 24 38
50 25 31 24 32 92 46 58 45 59 46 23 33 26 30 42 21 27 21 27 46 23 33 26 30
32 46 32 28 26 59 85 59 52 47 30 44 30 28 20 27 39 27 24 21 30 44 30 28 20
29 23 49 26 25 53 44 91 47 46 25 29 49 20 23 24 21 42 21 21 25 29 49 20 23
27 17 38 49 24 51 32 71 91 45 31 19 40 49 26 24 15 33 42 21 31 19 40 49 26
32 14 18 28 45 59 26 33 52 84 30 14 16 28 47 27 12 15 24 39 30 14 16 28 47
54 27 37 29 35 44 22 26 20 28 106 53 67 52 68 40 20 28 22 26 50 25 31 24 32
35 51 35 32 25 28 40 28 24 24 68 98 68 60 54 26 38 26 24 18 32 46 32 28 26
30 31 56 25 27 26 18 42 24 22 61 51 105 54 53 22 24 42 18 20 29 23 49 26 25
34 21 45 56 29 22 14 32 42 20 59 37 82 105 52 26 16 34 42 22 27 17 38 49 24
35 16 19 32 53 28 12 16 24 38 68 30 38 60 97 26 12 14 24 40 32 14 18 28 45
48 24 32 25 31 42 21 27 21 27 48 24 32 25 31 104 52 68 53 67 62 31 41 32 40
31 45 31 28 23 27 39 27 24 21 31 45 31 28 23 67 97 67 60 51 40 58 40 36 30
27 26 49 23 24 24 21 42 21 21 27 26 49 23 24 59 54 105 51 52 35 33 63 30 31
29 18 39 49 25 24 15 33 42 21 29 18 39 49 25 61 38 83 105 53 37 23 50 63 32
31 14 17 28 46 27 12 15 24 39 31 14 17 28 46 67 30 37 60 98 40 18 22 36 59
34 17 23 18 22 70 35 45 35 45 56 28 36 28 36 48 24 32 25 31 90 45 59 46 58
22 32 22 20 16 45 65 45 40 35 36 52 36 32 28 31 45 31 28 23 58 84 58 52 44
19 19 35 16 17 40 35 70 35 35 32 28 56 28 28 27 26 49 23 24 51 47 91 44 45
21 13 28 35 18 40 25 55 70 35 32 20 44 56 28 29 18 39 49 25 53 33 72 91 46
22 10 12 20 33 45 20 25 40 65 36 16 20 32 52 31 14 17 28 46 58 26 32 52 85)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

(𝑏𝑖𝑗
(3))𝑇⨂𝑎𝑖𝑗

(3) + (𝑑𝑖𝑗
(3))𝑇⨂𝑐𝑖𝑗

(3) = 
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

128 72 96 72 96 62 35 48 37 48 84 47 60 43 60 64 36 48 36 48 66 37 48 35 48
88 128 88 80 72 43 64 43 40 33 57 80 57 50 51 44 64 44 40 36 45 64 45 40 39
88 72 128 80 72 41 39 64 38 35 61 39 80 54 47 44 36 64 40 36 47 33 64 42 37
80 56 104 136 72 42 29 53 69 37 46 33 63 83 43 40 28 52 68 36 38 27 51 67 35
88 56 56 80 128 43 29 27 40 66 57 33 37 50 76 44 28 28 40 64 45 27 29 40 62
89 50 66 49 66 121 68 90 67 90 69 39 54 42 54 64 36 48 36 48 69 39 54 42 54
61 88 61 55 51 83 120 83 75 69 48 72 48 45 36 44 64 44 40 36 48 72 48 45 36
62 48 88 56 50 84 66 120 76 68 45 45 72 42 39 44 36 64 40 36 45 45 72 42 39
54 38 71 93 49 74 52 97 127 67 48 33 60 78 42 40 28 52 68 36 48 33 60 78 42
61 38 39 55 87 83 52 53 75 119 48 33 30 45 75 44 28 28 40 64 48 33 30 45 75
78 44 60 46 60 66 37 48 35 48 137 77 102 76 102 62 35 48 37 48 73 41 54 40 54
54 80 54 50 42 45 64 45 40 39 94 136 94 85 78 43 64 43 40 33 50 72 50 45 42
52 48 80 48 44 47 33 64 42 37 95 75 136 86 77 41 39 64 38 35 51 39 72 46 41
52 36 66 86 46 38 27 51 67 35 84 59 110 144 76 42 29 53 69 37 44 31 58 76 40
54 36 34 50 82 45 27 29 40 62 94 59 60 85 135 43 29 27 40 66 50 31 32 45 71
71 40 54 41 54 64 36 48 36 48 71 40 54 41 54 144 81 108 81 108 87 49 66 50 66
49 72 49 45 39 44 64 44 40 36 49 72 49 45 39 99 144 99 90 81 60 88 60 55 48
48 42 72 44 40 44 36 64 40 36 48 42 72 44 40 99 81 144 90 81 59 51 88 54 49
46 32 59 77 41 40 28 52 68 36 46 32 59 77 41 90 63 117 153 81 56 39 72 94 50
49 32 31 45 73 44 28 28 40 64 49 32 31 45 73 99 63 63 90 144 60 39 38 55 89
69 39 54 42 54 96 54 72 54 72 80 45 60 45 60 71 40 54 41 54 119 67 90 68 90
48 72 48 45 36 66 96 66 60 54 55 80 55 50 45 49 72 49 45 39 82 120 82 75 66
45 45 72 42 39 66 54 96 60 54 55 45 80 50 45 48 42 72 44 40 81 69 120 74 67
48 33 60 78 42 60 42 78 102 54 50 35 65 85 45 46 32 59 77 41 76 53 98 128 68
48 33 30 45 75 66 42 42 60 96 55 35 35 50 80 49 32 31 45 73 82 53 52 75 121)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(𝑏𝑖𝑗
(4))𝑇⨂𝑎𝑖𝑗

(4) + (𝑑𝑖𝑗
(4))𝑇⨂𝑐𝑖𝑗

(4) = 
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

162 108 126 108 126 88 60 70 60 70 120 78 91 78 91 90 60 70 60 70 92 60 70 60 70
117 162 117 117 108 64 90 64 66 58 86 117 86 83 81 65 90 65 65 60 66 90 66 64 62
117 108 162 108 117 62 62 90 58 64 89 75 117 81 86 65 60 90 60 65 68 58 90 62 66
117 99 144 171 108 66 56 80 96 62 83 70 104 122 75 65 55 80 95 60 64 54 80 94 58
117 81 90 126 189 64 46 48 70 106 86 57 68 91 135 65 45 50 70 105 66 44 52 70 104
118 78 91 78 91 154 102 119 102 119 96 66 77 66 77 108 72 84 72 84 126 84 98 84 98
85 117 85 84 79 111 153 111 110 103 70 99 70 73 63 78 108 78 78 72 91 126 91 91 84
86 77 117 79 85 112 101 153 103 111 67 69 99 63 70 78 72 108 72 78 91 84 126 84 91
84 71 104 123 77 110 93 136 161 101 73 62 88 106 69 78 66 96 114 72 91 77 112 133 84
85 58 66 91 136 111 76 86 119 178 70 51 52 77 117 78 54 60 84 126 91 63 70 98 147
106 72 84 72 84 102 66 77 66 77 180 120 140 120 140 88 60 70 60 70 120 78 91 78 91
77 108 77 79 70 73 99 73 70 69 130 180 130 130 120 64 90 64 66 58 86 117 86 83 81
75 74 108 70 77 76 63 99 69 73 130 120 180 120 130 62 62 90 58 64 89 75 117 81 86
79 67 96 115 74 70 59 88 103 63 130 110 160 190 120 66 56 80 96 62 83 70 104 122 75
77 55 58 84 127 73 48 58 77 114 130 90 100 140 210 64 46 48 70 106 86 57 68 91 135
116 78 91 78 91 90 60 70 60 70 98 66 77 66 77 198 132 154 132 154 126 84 98 84 98
84 117 84 85 77 65 90 65 65 60 71 99 71 72 65 143 198 143 143 132 91 126 91 91 84
83 79 117 77 84 65 60 90 60 65 70 67 99 65 71 143 132 198 132 143 91 84 126 84 91
85 72 104 124 79 65 55 80 95 60 72 61 88 105 67 143 121 176 209 132 91 77 112 133 84
84 59 64 91 137 65 45 50 70 105 71 50 54 77 116 143 99 110 154 231 91 63 70 98 147
104 72 84 72 84 126 84 98 84 98 126 84 98 84 98 98 66 77 66 77 180 120 140 120 140
76 108 76 80 68 91 126 91 91 84 91 126 91 91 84 71 99 71 72 65 130 180 130 130 120
72 76 108 68 76 91 84 126 84 91 91 84 126 84 91 70 67 99 65 71 130 120 180 120 130
80 68 96 116 76 91 77 112 133 84 91 77 112 133 84 72 61 88 105 67 130 110 160 190 120
76 56 56 84 128 91 63 70 98 147 91 63 70 98 147 71 50 54 77 116 130 90 100 140 210)
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𝑣𝑒𝑐(𝑒𝑖𝑗
(1)) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

785
829
671
726
565
797
781
676
802
623
811
854
718
748
574
867
902
759
820
678
1000
1009
857
941
768 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,  𝑣𝑒𝑐(𝑒𝑖𝑗
(2)) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2476
2581
2300
2385
2087
2564
2583
2413
2590
2199
2670
2767
2512
2574
2230
2727
2788
2548
2684
2339
2841
2885
2654
2801
2431)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝑣𝑒𝑐(𝑒𝑖𝑗
(3)) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6202
6138
5909
5969
5448
6399
6235
6100
6347
5722
6587
6470
6263
6329
5821
6794
6667
6471
6669
6095
6936
6777
6593
6836
6209)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 and 𝑣𝑒𝑐(𝑒𝑖𝑗
(4)) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

12395
12240
12068
12540
11839
13618
13407
13227
13923
13077
13679
13488
13313
13783
13033
14226
14066
13819
14535
13685
14685
14478
14233
15031
14094)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.
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Step 3 and Step 4 can be summarized as follows:  

𝑣𝑒𝑐(𝑥𝑖𝑗
(1)) = ((𝑏𝑖𝑗

(1))𝑇⨂𝑎𝑖𝑗
(1) + (𝑑𝑖𝑗

(1))𝑇⨂𝑐𝑖𝑗
(1))−1𝑣𝑒𝑐(𝑒𝑖𝑗

(1)) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1
2
1
2
1
2
1
1
3
2
2
3
2
1
1
1
2
1
1
2
2
3
2
2
3)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.   
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𝑣𝑒𝑐(𝑥𝑖𝑗
(2)) = ((𝑏𝑖𝑗

(2))𝑇⨂𝑎𝑖𝑗
(2) + (𝑑𝑖𝑗

(2))𝑇⨂𝑐𝑖𝑗
(2))−1𝑣𝑒𝑐(𝑒𝑖𝑗

(2)) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2
3
2
3
2
3
2
3
4
3
3
4
3
2
2
2
3
2
2
3
3
4
3
3
4)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.    
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𝑣𝑒𝑐(𝑥𝑖𝑗
(3)) = ((𝑏𝑖𝑗

(3))𝑇⨂𝑎𝑖𝑗
(3) + (𝑑𝑖𝑗

(3))𝑇⨂𝑐𝑖𝑗
(3))−1𝑣𝑒𝑐(𝑒𝑖𝑗

(3)) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4
4
4
5
3
4
3
4
5
4
5
5
5
3
5
3
4
4
4
5
4
5
5
5
6)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 
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   𝑣𝑒𝑐(𝑥𝑖𝑗
(4)) = ((𝑏𝑖𝑗

(4))𝑇⨂𝑎𝑖𝑗
(4) + (𝑑𝑖𝑗

(4))𝑇⨂𝑐𝑖𝑗
(4))−1𝑣𝑒𝑐(𝑒𝑖𝑗

(4)) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5
5
6
6
5
6
4
5
7
5
7
7
7
4
6
5
6
5
6
6
6
7
6
7
7)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 

Step 5: By combing the obtained solutions in Step 4, the positive fuzzy solution to Example 

3.3.1.2 is  

𝑋̃ =

(

 
 

(1,2,4,5) (2,3,4,6) (2,3,5,7) (1,2,3,5) (2,3,4,6)
(2,3,4,5) (1,2,3,4) (3,4,5,7) (2,3,4,6) (3,4,5,7)
(1,2,4,6) (1,3,4,5) (2,3,5,7) (1,2,4,5) (2,3,5,6)
(2,3,5,6) (3,4,5,7) (1,2,3,4) (1,2,4,6) (2,3,5,7)

(1,2,3,5) (2,3,4,5) (1,2,5,6) (2,3,5,6) (3,4,6,7))

 
 

. 
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Appendix B 

Solution of Example 4.2.1 

The reduced non-linear system for 𝑪̃𝑿̃𝑫̃ in Example 4.2.1 

𝑚11 = 𝑀𝑖𝑛{(2𝑀𝑖𝑛[𝑥11
(1), 7𝑥11

(1)] + 2𝑀𝑖𝑛[3𝑥21
(1), 7𝑥21

(1)]), (−5𝑀𝑎𝑥[1𝑥11
(4), 7𝑥11

(4)] + −5𝑀𝑎𝑥[3𝑥21
(4), 7𝑥21

(4)])} + 

𝑀𝑖𝑛{(𝑀𝑖𝑛[𝑥12
(1), 7𝑥12

(1)] + 𝑀𝑖𝑛[3𝑥22
(1), 7𝑥22

(1)]) + (5𝑀𝑖𝑛[𝑥12
(1), 7𝑥12

(1)] + 5𝑀𝑖𝑛[3𝑥22
(1), 7𝑥22

(1)])}. 

 

𝑚22 = 𝑀𝑖𝑛{(𝑀𝑖𝑛[4𝑥11
(2), 5𝑥11

(2)] + 𝑀𝑖𝑛[4𝑥21
(2), 5𝑥21

(2)]), (−4𝑀𝑎𝑥[4𝑥11
(3), 5𝑥11

(3)] + −4𝑀𝑎𝑥[4𝑥21
(3), 5𝑥21

(3)])} + 

𝑀𝑖𝑛{(3𝑀𝑖𝑛[4𝑥12
(2), 5𝑥12

(2)] + 3𝑀𝑖𝑛[4𝑥22
(2), 5𝑥22

(2)]) + (4𝑀𝑖𝑛[4𝑥12
(2), 5𝑥12

(2)] + 4𝑀𝑖𝑛[4𝑥22
(2), 5𝑥22

(2)])}. 

 

𝑚33 = 𝑀𝑎𝑥{(−4𝑀𝑖𝑛[4𝑥11
(2), 5𝑥11

(2)] + −4𝑀𝑖𝑛[4𝑥21
(2), 5𝑥21

(2)]), (𝑀𝑎𝑥[4𝑥11
(3), 5𝑥11

(3)] + 𝑀𝑎𝑥[4𝑥21
(3), 5𝑥21

(3)])} + 

𝑀𝑎𝑥{(3𝑀𝑎𝑥[4𝑥12
(3), 5𝑥12

(3)] + 3𝑀𝑎𝑥[4𝑥22
(3), 5𝑥22

(3)]), (4𝑀𝑎𝑥[4𝑥12
(3), 5𝑥12

(3)] + 4𝑀𝑎𝑥[4𝑥22
(3), 5𝑥22

(3)])}. 

 

𝑚44 = 𝑀𝑎𝑥{(−5𝑀𝑖𝑛[𝑥11
(1), 7𝑥11

(1)] + −5𝑀𝑖𝑛[3𝑥21
(1), 7𝑥21

(1)]), (2𝑀𝑎𝑥[1𝑥11
(4), 7𝑥11

(4)] + 2𝑀𝑎𝑥[3𝑥21
(4), 7𝑥21

(4)])} + 
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𝑀𝑎𝑥{(𝑀𝑎𝑥[𝑥12
(4), 7𝑥12

(4)] + 𝑀𝑎𝑥[3𝑥22
(4), 7𝑥22

(4)]), (5𝑀𝑎𝑥[𝑥12
(4), 7𝑥12

(4)] + 5𝑀𝑎𝑥[3𝑥22
(4), 7𝑥22

(4)])}. 

 

𝑛11 = 𝑀𝑖𝑛{(3𝑀𝑖𝑛[𝑥11
(1), 7𝑥11

(1)] + 3𝑀𝑖𝑛[3𝑥21
(1), 7𝑥21

(1)]), (6𝑀𝑖𝑛[𝑥11
(1), 7𝑥11

(1)] + 6𝑀𝑖𝑛[3𝑥21
(1), 7𝑥21

(1)])} + 

𝑀𝑖𝑛{(4𝑀𝑖𝑛[𝑥12
(1), 7𝑥12

(1)] + 4𝑀𝑖𝑛[3𝑥22
(1), 7𝑥22

(1)]), (−3𝑀𝑎𝑥[𝑥12
(4), 7𝑥12

(4)] + −3𝑀𝑎𝑥[3𝑥22
(4), 7𝑥22

(4)])}. 

 

𝑛22 = 𝑀𝑖𝑛{(4𝑀𝑖𝑛[4𝑥11
(2), 5𝑥11

(2)] + 4𝑀𝑖𝑛[4𝑥21
(2), 5𝑥21

(2)]), (5𝑀𝑖𝑛[4𝑥11
(2), 5𝑥11

(2)] + 5𝑀𝑖𝑛[4𝑥21
(2), 5𝑥21

(2)])} + 

𝑀𝑖𝑛{(𝑀𝑖𝑛[4𝑥12
(2), 5𝑥12

(2)] + 𝑀𝑖𝑛[4𝑥22
(2), 5𝑥22

(2)]), (−2𝑀𝑎𝑥[4𝑥12
(3), 5𝑥12

(3)] + −2𝑀𝑎𝑥[4𝑥22
(3), 5𝑥22

(3)])}. 

 

𝑛33 = 𝑀𝑎𝑥{(4𝑀𝑎𝑥[4𝑥11
(3), 5𝑥11

(3)] + 4𝑀𝑎𝑥[4𝑥21
(3), 5𝑥21

(3)]), (5𝑀𝑎𝑥[4𝑥11
(3), 5𝑥11

(3)] + 5𝑀𝑎𝑥[4𝑥21
(3), 5𝑥21

(3)]} + 

𝑀𝑎𝑥{(−2𝑀𝑖𝑛[4𝑥12
(2), 5𝑥12

(2)] + −2𝑀𝑖𝑛[4𝑥22
(2), 5𝑥22

(2)]), (𝑀𝑎𝑥[4𝑥12
(3), 5𝑥12

(3)] + 𝑀𝑎𝑥[4𝑥22
(3), 5𝑥22

(3)])}. 

 

𝑛44 = 𝑀𝑎𝑥{(3𝑀𝑎𝑥[1𝑥11
(4), 7𝑥11

(4)] + 3𝑀𝑎𝑥[3𝑥21
(4), 7𝑥21

(4)]), (6𝑀𝑎𝑥[1𝑥11
(4), 7𝑥11

(4)] + 6𝑀𝑎𝑥[3𝑥21
(4), 7𝑥21

(4)]} + 

𝑀𝑎𝑥{(−3𝑀𝑖𝑛[𝑥12
(1), 7𝑥12

(1)] + −3𝑀𝑖𝑛[3𝑥22
(1), 7𝑥22

(1)]), (4𝑀𝑎𝑥[𝑥12
(4), 7𝑥12

(4)] + 4𝑀𝑎𝑥[3𝑥22
(4), 7𝑥22

(4)])}. 
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𝑝11 = 𝑀𝑖𝑛{(2𝑀𝑖𝑛[−5𝑥11
(4), −𝑥11

(4)] + 2𝑀𝑖𝑛[−6𝑥21
(4), 2𝑥21

(1)]), (−5𝑀𝑎𝑥[−𝑥11
(1), −5𝑥11

(1)] + −5𝑀𝑎𝑥[2𝑥21
(4), −6𝑥21

(1)])} + 

𝑀𝑖𝑛{(𝑀𝑖𝑛[−5𝑥12
(4), −𝑥12

(4)] + 𝑀𝑖𝑛[−6𝑥22
(4), 2𝑥22

(1)]) + (5𝑀𝑖𝑛[−5𝑥12
(4), −𝑥12

(4)] + 5𝑀𝑖𝑛[−6𝑥22
(4), 2𝑥22

(1)])}. 

  

𝑝22 = 𝑀𝑖𝑛{(𝑀𝑖𝑛[−3𝑥11
(3), −2𝑥11

(3)] + 𝑀𝑖𝑛[−3𝑥21
(3), 𝑥21

(2)]), (−4𝑀𝑎𝑥[−2𝑥11
(2), −3𝑥11

(2)] + −4𝑀𝑎𝑥[𝑥21
(3), −𝑥21

(2)])} + 

𝑀𝑖𝑛{(3𝑀𝑖𝑛[−3𝑥12
(3), −2𝑥12

(3)] + 3𝑀𝑖𝑛[−3𝑥22
(3), 𝑥22

(2)]) + (4𝑀𝑖𝑛[−3𝑥12
(3), −2𝑥12

(3)] + 4𝑀𝑖𝑛[−3𝑥22
(3), 𝑥22

(2)])}. 

 

𝑝33 = 𝑀𝑎𝑥{(−4𝑀𝑖𝑛[−3𝑥11
(3), −2𝑥11

(3)] + −4𝑀𝑖𝑛[−3𝑥21
(3), 𝑥21

(2)]), (𝑀𝑎𝑥[−2𝑥11
(2), −3𝑥11

(2)] + 𝑀𝑎𝑥[𝑥21
(3), −3𝑥21

(2)])} + 

𝑀𝑎𝑥{(3𝑀𝑎𝑥[−2𝑥12
(2), −3𝑥12

(2)] + 3𝑀𝑎𝑥[𝑥22
(3), −3𝑥22

(2)]), (4𝑀𝑎𝑥[−2𝑥12
(1), −3𝑥12

(2)] + 4𝑀𝑎𝑥[𝑥22
(3), −3𝑥22

(2)])}. 

 

𝑝44 = 𝑀𝑎𝑥{(−5𝑀𝑖𝑛[−5𝑥11
(4), −𝑥11

(4)] + −5𝑀𝑖𝑛[−6𝑥21
(4), 2𝑥21

(1)]), (2𝑀𝑎𝑥[−𝑥11
(1), −5𝑥11

(1)] + 2𝑀𝑎𝑥[2𝑥21
(4), −6𝑥21

(1)])} + 

𝑀𝑎𝑥{(𝑀𝑎𝑥[−𝑥12
(1), −5𝑥12

(1)] + 𝑀𝑎𝑥[2𝑥22
(4), −6𝑥22

(1)]), (5𝑀𝑎𝑥[−𝑥12
(1), −5𝑥12

(1)] + 5𝑀𝑎𝑥[2𝑥22
(4), −6𝑥22

(1)])}. 
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𝑞11 = 𝑀𝑖𝑛{(3𝑀𝑖𝑛[−5𝑥11
(4), −𝑥11

(4)] + 3𝑀𝑖𝑛[−6𝑥21
(4), 2𝑥21

(1)]), (6𝑀𝑖𝑛[−5𝑥11
(4), −𝑥11

(4)] + 6𝑀𝑖𝑛[−6𝑥21
(4), 2𝑥21

(1)])} + 

𝑀𝑖𝑛{(4𝑀𝑖𝑛[−5𝑥12
(4), −𝑥12

(4)] + 4𝑀𝑖𝑛[−6𝑥22
(4), 2𝑥22

(1)]), (−3𝑀𝑎𝑥[−𝑥12
(1), −5𝑥12

(1)] + −3𝑀𝑎𝑥[2𝑥22
(4), −6𝑥22

(1)])}. 

 

𝑞22 = 𝑀𝑖𝑛{(4𝑀𝑖𝑛[−3𝑥11
(3), −2𝑥11

(3)] + 4𝑀𝑖𝑛[−3𝑥21
(3), 𝑥21

(2)]), (5𝑀𝑖𝑛[−3𝑥11
(3), −2𝑥11

(3)] + 5𝑀𝑖𝑛[−3𝑥21
(3), 𝑥21

(2)])} + 

𝑀𝑖𝑛{(𝑀𝑖𝑛[−3𝑥12
(3), −2𝑥12

(3)] + 𝑀𝑖𝑛[−3𝑥22
(3), 𝑥22

(2)]), (−2𝑀𝑎𝑥[−2𝑥12
(2), −3𝑥12

(2)] + −2𝑀𝑎𝑥[𝑥22
(3), −3𝑥22

(2)])}. 

 

𝑞33 = 𝑀𝑎𝑥{(4𝑀𝑎𝑥[−2𝑥11
(2), −3𝑥11

(2)] + 4𝑀𝑎𝑥[𝑥21
(3), −3𝑥21

(2)]), (5𝑀𝑎𝑥[−2𝑥11
(2), −3𝑥11

(2)] + 5𝑀𝑎𝑥[𝑥21
(3), −3𝑥21

(2)]} + 

𝑀𝑎𝑥{(−2𝑀𝑖𝑛[−3𝑥12
(3), −2𝑥12

(3)] + −2𝑀𝑖𝑛[−3𝑥22
(3), 𝑥22

(2)]), (𝑀𝑎𝑥[−2𝑥12
(2), −3𝑥12

(2)] + 𝑀𝑎𝑥[𝑥22
(3), −3𝑥22

(2)])}. 

 

𝑞44 = 𝑀𝑎𝑥{(3𝑀𝑎𝑥[−𝑥11
(1), −5𝑥11

(1)] + 3𝑀𝑎𝑥[2𝑥21
(4), −6𝑥21

(1)]), (6𝑀𝑎𝑥[−𝑥11
(1), −5𝑥11

(1)] + 6𝑀𝑎𝑥[2𝑥21
(4), −6𝑥21

(1)]} + 

𝑀𝑎𝑥{(−3𝑀𝑖𝑛[−5𝑥12
(4), −𝑥12

(4)] + −3𝑀𝑖𝑛[−6𝑥22
(4), 2𝑥22

(1)]), (4𝑀𝑎𝑥[−𝑥12
(1), −5𝑥12

(1)] + 4𝑀𝑎𝑥[2𝑥22
(4), −6𝑥22

(1)])}.
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The non-linear system obtained in Example 4.2.1 is converted to a system of 16 

absolute equations   

−
1

2
| −

5

2
|𝑥11
(1)| −

9

2
|𝑥21
(1)| +

11𝑥11
(1)

2
− 6(−

5

2
|𝑥11
(1)| +

11𝑥11
(1)

2
) +

13𝑥21
(1)

2
− 6(−

9

2
|𝑥21
(1)|

+
13𝑥21

(1)

2
)| −

1

2
|2(−3|𝑥11

(1)| + 4𝑥11
(1)) 

+5(3|𝑥11
(4)| + 4𝑥11

(4)) + 2 (−2|𝑥21
(1)| + 5𝑥21

(1)) + 5 (2|𝑥21
(4)| + 5𝑥21

(4)) |−
1

2
| − 3|𝑥12

(1)|

− 2|𝑥22
(1)| + 4𝑥12

(1) − 5(−3|𝑥12
(1)| + 4𝑥12

(1)) 

+5𝑥22
(1) − 5(−

5

2
|𝑥22
(1)| +

9𝑥22
(1)

2
)| −

1

2
|7(−

5

2
|𝑥12
(1)| +

11𝑥12
(1)

2
) + 3(

5

2
|𝑥12
(4)| +

11𝑥12
(4)

2
)

+ 7(−
9

2
|𝑥22
(1)| +

13𝑥22
(1)

2
) + 3(

9

2
|𝑥22
(4)| 

+
13𝑥22

(4)

2
)| +

1

2
(−
5

2
|𝑥11
(1)| −

9

2
|𝑥21
(1)| +

11𝑥11
(1)

2
+ 6(−

5

2
|𝑥11
(1)| +

11𝑥11
(1)

2
) +

13𝑥21
(1)

2

+ 6(−
9

2
|𝑥21
(1)
| +

13𝑥21
(1)

2
)) 

+
1

2
(2(−3|𝑥11

(1)| + 4𝑥11
(1)) − 5(3|𝑥11

(4)| + 4𝑥11
(4)) + 2(−2|𝑥21

(1)| + 5𝑥21
(1)) − 5(2|𝑥21

(4)|

+ 5𝑥21
(4))) +

1

2
(−3|𝑥12

(1)| − 2|𝑥22
(1)| 

+4𝑥12
(1) + 5(−3|𝑥12

(1)| + 4𝑥12
(1)) + 5𝑥22

(1) + 5(−
5

2
|𝑥22
(1)| +

9𝑥22
(1)

2
)) +

1

2
(7(−

5

2
|𝑥12
(1)|

+
11𝑥12

(1)

2
) − 3(

5

2
|𝑥12
(4)| +

11𝑥12
(4)

2
) 

+7(−
9

2
|𝑥22
(1)
| +

13𝑥22
(1)

2
) − 3(

9

2
|𝑥22
(4)
| +

13𝑥22
(4)

2
)) = −964 

 

 

1

2
(8(5𝑥11

(2)
− |𝑥11

(2)
|) + 8(

13𝑥21
(2)

2
−
5|𝑥21

(2)|

2
)) +

1

2
(
9𝑥11

(2)

2
+
9𝑥21

(2)

2
−
|𝑥11
(2)|

2
− 4(

9𝑥11
(3)

2

+
|𝑥11
(3)|

2
) −

|𝑥21
(2)|

2
− 4(

9𝑥21
(3)

2
+
|𝑥21
(3)|

2
)) +

1

2
(7(

9𝑥12
(2)

2
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−
|𝑥12
(2)|

2
) + 7(

9𝑥22
(2)

2
−
|𝑥22
(2)|

2
)) +

1

2
(−5𝑥12

(3) −
13𝑥22

(3)

2
+ 6(5𝑥12

(2) − |𝑥12
(2)|) − |𝑥12

(3)|

+ 6(
13𝑥22

(2)

2
−
5|𝑥22

(2)|

2
) −

5|𝑥22
(3)|

2
) −

1

2
| − 2(5𝑥11

(2)
 

−|𝑥11
(2)|) − 2(

13𝑥21
(2)

2
−
5|𝑥21

(2)|

2
)| −

1

2
|
9𝑥11

(2)

2
+
9𝑥21

(2)

2
−
|𝑥11
(2)|

2
+ 4(

9𝑥11
(3)

2
+
|𝑥11
(3)|

2
)

−
|𝑥21
(2)|

2
+ 4(

9𝑥21
(3)

2
+
|𝑥21
(3)|

2
)| −

1

2
| −

9𝑥12
(2)

2
−
9𝑥22

(2)

2
 

+
|𝑥12
(2)
|

2
+
|𝑥22
(2)
|

2
| −

1

2
|5𝑥12

(3)
+
13𝑥22

(3)

2
+ 6(5𝑥12

(2)
− |𝑥12

(2)
|) + |𝑥12

(3)
| + 6(

13𝑥22
(2)

2

−
5|𝑥22

(2)
|

2
) +

5|𝑥22
(3)
|

2
| = −276 

 

1

2
(
9𝑥11

(3)

2
+
9𝑥21

(3)

2
− 4(

9𝑥11
(2)

2
−
|𝑥11
(2)|

2
) +

|𝑥11
(3)|

2
− 4(

9𝑥21
(2)

2
−
|𝑥21
(2)|

2
) +

|𝑥21
(3)|

2
)

+
1

2
(8(5𝑥11

(3) + |𝑥11
(3)|) + 8(

13𝑥21
(3)

2
+
5|𝑥21

(3)|

2
)) +

1

2
(7(

9𝑥12
(3)

2
 

+
|𝑥12
(3)|

2
) + 7(

9𝑥22
(3)

2
+
|𝑥22
(3)|

2
)) +

1

2
(−5𝑥12

(2) −
13𝑥22

(2)

2
+ |𝑥12

(2)| + 6(5𝑥12
(3) + |𝑥12

(3)|)

+
5|𝑥22

(2)|

2
+ 6(

13𝑥22
(3)

2
+
5|𝑥22

(3)|

2
)) +

1

2
| −

9𝑥11
(3)

2
−
9𝑥21

(3)

2
 

−4(
9𝑥11

(2)

2
−
|𝑥11
(2)|

2
) −

|𝑥11
(3)|

2
− 4(

9𝑥21
(2)

2
−
|𝑥21
(2)|

2
) −

|𝑥21
(3)|

2
|+
1

2
|

− 2 (5𝑥11
(3) + |𝑥11

(3)|) − 2(
13𝑥21

(3)

2
+
5|𝑥21

(3)|

2
) |+

1

2
| −

9𝑥12
(3)

2
−
9𝑥22

(3)

2
 

−
|𝑥12
(3)|

2
−
|𝑥22
(3)|

2
| +

1

2
| − 5𝑥12

(2) −
13𝑥22

(2)

2
+ |𝑥12

(2)| − 6(5𝑥12
(3) + |𝑥12

(3)|) +
5|𝑥22

(2)|

2

− 6(
13𝑥22

(3)

2
+
5|𝑥22

(3)|

2
)|  = 757 
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1

2
| − 5(−3|𝑥11

(1)
| + 4𝑥11

(1)
) − 2(3|𝑥11

(4)
| + 4𝑥11

(4)
) − 5(−2|𝑥21

(1)
| + 5𝑥21

(1)
) − 2(2|𝑥21

(4)
|

+ 5𝑥21
(4))| +

1

2
|
5

2
|𝑥11
(4)| +

9

2
|𝑥21
(4)| +

11𝑥11
(4)

2
 

−6(
5

2
|𝑥11
(4)| +

11𝑥11
(4)

2
) +

13𝑥21
(4)

2
− 6(

9

2
|𝑥21
(4)| +

13𝑥21
(4)

2
)| +

1

2
|3|𝑥12

(4)| + 2|𝑥22
(4)|

+ 4𝑥12
(4) − 5(3|𝑥12

(4)| + 4𝑥12
(4)) + 5𝑥22

(4) − 5(2|𝑥22
(4)| 

+5𝑥22
(4))| +

1

2
| − 3(−

5

2
|𝑥12
(1)| +

11𝑥12
(1)

2
) − 7(

5

2
|𝑥12
(4)| +

11𝑥12
(4)

2
) − 3(−

9

2
|𝑥22
(1)|

+
13𝑥22

(1)

2
) − 7(

9

2
|𝑥22
(4)| +

13𝑥22
(4)

2
)| +

1

2
(−5(−3|𝑥11

(1)| 

+4𝑥11
(1)) + 2(3|𝑥11

(4)| + 4𝑥11
(4)) − 5(−2|𝑥21

(1)| + 5𝑥21
(1)) + 2(2|𝑥21

(4)| + 5𝑥21
(4)))

+
1

2
(
5

2
|𝑥11
(4)| +

9

2
|𝑥21
(4)| +

11𝑥11
(4)

2
+ 6(

5

2
|𝑥11
(4)| +

11𝑥11
(4)

2
) 

+
13𝑥21

(4)

2
+ 6(

9

2
|𝑥21
(4)| +

13𝑥21
(4)

2
)) +

1

2
(3|𝑥12

(4)| + 2|𝑥22
(4)| + 4𝑥12

(4) + 5(3|𝑥12
(4)|

+ 4𝑥12
(4)) + 5𝑥22

(4) + 5(2|𝑥22
(4)| + 5𝑥22

(4))) +
1

2
(−3(−

5

2
|𝑥12
(1)| 

+
11𝑥12

(1)

2
) + 7(

5

2
|𝑥12
(4)
| +

11𝑥12
(4)

2
) − 3(−

9

2
|𝑥22
(1)
| +

13𝑥22
(1)

2
) + 7(

9

2
|𝑥22
(4)
| +

13𝑥22
(4)

2
))

= 1816 

 

−
1

2
| − 3(−3|𝑥11

(1)| + 4𝑥11
(1)) − 3(−2|𝑥21

(1)| + 5𝑥21
(1))| −

1

2
|
5

2
|𝑥11
(4)| +

9

2
|𝑥21
(4)|

+ 6(−
5

2
|𝑥11
(1)| +

11𝑥11
(1)

2
) +

11𝑥11
(4)

2
+ 6(−

9

2
|𝑥21
(1)| 

+
13𝑥21

(1)

2
) +

13𝑥21
(4)

2
| −

1

2
| −

5

2
|𝑥12
(1)| −

9

2
|𝑥22
(1)| +

11𝑥12
(1)

2
− 7(−

5

2
|𝑥12
(1)| +

11𝑥12
(1)

2
)

+
13𝑥22

(1)

2
− 7(−

9

2
|𝑥22
(1)| +

13𝑥22
(1)

2
)| 
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−
1

2
|4(−3|𝑥12

(1)| + 4𝑥12
(1)) + 3(3|𝑥12

(4)| + 4𝑥12
(4)) + 4(−2|𝑥22

(1)| + 5𝑥22
(1)) + 3(2|𝑥22

(4)|

+ 5𝑥22
(4))| +

1

2
(9(−3|𝑥11

(1)| + 4𝑥11
(1)) 

+9(−2|𝑥21
(1)| + 5𝑥21

(1))) +
1

2
(−
5

2
|𝑥11
(4)| −

9

2
|𝑥21
(4)| + 6(−

5

2
|𝑥11
(1)| +

11𝑥11
(1)

2
) −

11𝑥11
(4)

2

+ 6(−
9

2
|𝑥21
(1)| +

13𝑥21
(1)

2
) −

13𝑥21
(4)

2
) 

+
1

2
(−
5

2
|𝑥12
(1)| −

9

2
|𝑥22
(1)| +

11𝑥12
(1)

2
+ 7(−

5

2
|𝑥12
(1)| +

11𝑥12
(1)

2
) +

13𝑥22
(1)

2
+ 7(−

9

2
|𝑥22
(1)|

+
13𝑥22

(1)

2
)) +

1

2
(4(−3|𝑥12

(1)| + 4𝑥12
(1)) 

−3(3|𝑥12
(4)
| + 4𝑥12

(4)
) + 4(−2|𝑥22

(1)
| + 5𝑥22

(1)
) − 3(2|𝑥22

(4)
| + 5𝑥22

(4)
)) = −793 

 

1

2
(7(5𝑥11

(2) − |𝑥11
(2)|) + 7(

13𝑥21
(2)

2
−
5|𝑥21

(2)|

2
)) +

1

2
(9(

9𝑥11
(2)

2
−
|𝑥11
(2)|

2
) + 9(

9𝑥21
(2)

2

−
|𝑥21
(2)|

2
)) +

1

2
(7(5𝑥12

(2) − |𝑥12
(2)|) 

+7(
13𝑥22

(2)

2
−
5|𝑥22

(2)|

2
)) +

1

2
(
9𝑥12

(2)

2
+
9𝑥22

(2)

2
−
|𝑥12
(2)|

2
− 2(

9𝑥12
(3)

2
+
|𝑥12
(3)|

2
) −

|𝑥22
(2)|

2

− 2(
9𝑥22

(3)

2
+
|𝑥22
(3)|

2
)) −

1

2
| −

9𝑥11
(2)

2
 

−
9𝑥21

(2)

2
+
|𝑥11
(2)|

2
+
|𝑥21
(2)|

2
| −

1

2
| − 5𝑥11

(2) −
13𝑥21

(2)

2
+ |𝑥11

(2)| +
5|𝑥21

(2)|

2
| −

1

2
| − 3(5𝑥12

(2)

− |𝑥12
(2)|) − 3(

13𝑥22
(2)

2
−
5|𝑥22

(2)|

2
)| 

−
1

2
|
9𝑥12

(2)

2
+
9𝑥22

(2)

2
−
|𝑥12
(2)
|

2
+ 2(

9𝑥12
(3)

2
+
|𝑥12
(3)
|

2
) −

|𝑥22
(2)
|

2
+ 2(

9𝑥22
(3)

2
+
|𝑥22
(3)
|

2
)|

= −206 
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1

2
(9(

9𝑥11
(3)

2
+
|𝑥11
(3)|

2
) + 9(

9𝑥21
(3)

2
+
|𝑥21
(3)|

2
)) +

1

2
(7(5𝑥11

(3) + |𝑥11
(3)|) + 7(

13𝑥21
(3)

2

+
5|𝑥21

(3)|

2
)) +

1

2
(
9𝑥12

(3)

2
+
9𝑥22

(3)

2
− 2(

9𝑥12
(2)

2
−
|𝑥12
(2)|

2
) 

+
|𝑥12
(3)|

2
− 2(

9𝑥22
(2)

2
−
|𝑥22
(2)|

2
) +

|𝑥22
(3)|

2
) +

1

2
(7(5𝑥12

(3) + |𝑥12
(3)|) + 7(

13𝑥22
(3)

2
+
5|𝑥22

(3)|

2
))

+
1

2
| − 5𝑥11

(3) −
13𝑥21

(3)

2
− |𝑥11

(3)| −
5|𝑥21

(3)|

2
| 

+
1

2
| −

9𝑥11
(3)

2
−
9𝑥21

(3)

2
−
|𝑥11
(3)|

2
−
|𝑥21
(3)|

2
| +

1

2
| −

9𝑥12
(3)

2
−
9𝑥22

(3)

2
− 2(

9𝑥12
(2)

2
−
|𝑥12
(2)|

2
)

−
|𝑥12
(3)|

2
− 2(

9𝑥22
(2)

2
−
|𝑥22
(2)|

2
) −

|𝑥22
(3)|

2
| +

1

2
| 

−3(5𝑥12
(3)
+ |𝑥12

(3)
|) − 3(

13𝑥22
(3)

2
+
5|𝑥22

(3)
|

2
)| = 655 

 

1

2
|−3 (3|𝑥11

(4)| + 4𝑥11
(4)) − 3 (2|𝑥21

(4)| + 5𝑥21
(4))|

+
1

2
|
5

2
| 𝑥11

(1) |+
9

2
| 𝑥21

(1)
|−
11𝑥11

(1)

2
− 6(

5

2
|𝑥11
(4)| +

11𝑥11
(4)

2
) −

13𝑥21
(1)

2

− 6(
9

2
|𝑥21
(4)| +

13𝑥21
(4)

2
)| 

+
1

2
| − 3(−3|𝑥12

(1)| + 4𝑥12
(1)) − 4(3|𝑥12

(4)| + 4𝑥12
(4)) − 3(−2|𝑥22

(1)| + 5𝑥22
(1))

− 4(2|𝑥22
(4)| + 5𝑥22

(4))| +
1

2
|
5

2
|𝑥12
(4)| +

9

2
|𝑥22
(4)| +

11𝑥12
(4)

2
 

−7(
5

2
|𝑥12
(4)| +

11𝑥12
(4)

2
) +

13𝑥22
(4)

2
− 7(

9

2
|𝑥22
(4)| +

13𝑥22
(4)

2
)| +

1

2
(9(3|𝑥11

(4)| + 4𝑥11
(4))

+ 9(2|𝑥21
(4)
| + 5𝑥21

(4)
)) +

1

2
(
5

2
|𝑥11
(1)
| +

9

2
|𝑥21
(1)
| −

11𝑥11
(1)

2
 

+6(
5

2
|𝑥11
(4)| +

11𝑥11
(4)

2
) −

13𝑥21
(1)

2
+ 6(

9

2
|𝑥21
(4)| +

13𝑥21
(4)

2
)) +

1

2
(−3(−3|𝑥12

(1)| + 4𝑥12
(1))

+ 4(3|𝑥12
(4)| + 4𝑥12

(4)) − 3(−2|𝑥22
(1)| + 5𝑥22

(1)) 
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+4(2|𝑥22
(4)
| + 5𝑥22

(4)
)) +

1

2
(
5

2
|𝑥12
(4)
| +

9

2
|𝑥22
(4)
| +

11𝑥12
(4)

2
+ 7(

5

2
|𝑥12
(4)
| +

11𝑥12
(4)

2
)

+
13𝑥22

(4)

2
+ 7(

9

2
|𝑥22
(4)
| +

13𝑥22
(4)

2
)) = 2019 

 

 

−
1

2
| −

7

2
|𝑥11
(4)| −

1

2
| − 6𝑥21

(1) − 4𝑥21
(4)| − 6(−

7

2
|𝑥11
(4)| −

9𝑥11
(4)

2
) −

9𝑥11
(4)

2
− 6(−

1

2
|

− 6𝑥21
(1) − 4𝑥21

(4)| +
1

2
(6𝑥21

(1) − 4𝑥21
(4))) +

1

2
(6𝑥21

(1)
 

−4𝑥21
(4))| −

1

2
|5(2|𝑥11

(1)| − 3𝑥11
(1)) + 2(−2|𝑥11

(4)| − 3𝑥11
(4)) + 2(−

1

2
| − 2𝑥21

(1) − 6𝑥21
(4)|

+
1

2
(2𝑥21

(1) − 6𝑥21
(4))) + 5(

1

2
|6𝑥21

(1) + 2𝑥21
(4)| 

+
1

2
(−6𝑥21

(1) + 2𝑥21
(4)))| −

1

2
| − 2|𝑥12

(4)| −
1

2
| − 2𝑥22

(1) − 6𝑥22
(4)| − 5(−2|𝑥12

(4)| − 3𝑥12
(4))

− 3𝑥12
(4) − 5(−

1

2
| − 2𝑥22

(1) − 6𝑥22
(4)| +

1

2
(2𝑥22

(1)
 

−6𝑥22
(4))) +

1

2
(2𝑥22

(1) − 6𝑥22
(4))| −

1

2
|3(
7

2
|𝑥12
(1)| −

9𝑥12
(1)

2
) + 7(−

7

2
|𝑥12
(4)| −

9𝑥12
(4)

2
)

+ 7(−
1

2
| − 6𝑥22

(1) − 4𝑥22
(4)| +

1

2
(6𝑥22

(1) − 4𝑥22
(4))) 

+3(
1

2
|4𝑥22

(1) + 6𝑥22
(4)| +

1

2
(−4𝑥22

(1) + 6𝑥22
(4)))| +

1

2
(−
7

2
|𝑥11
(4)| −

1

2
| − 6𝑥21

(1) − 4𝑥21
(4)|

+ 6(−
7

2
|𝑥11
(4)| −

9𝑥11
(4)

2
) −

9𝑥11
(4)

2
+ 6(−

1

2
| − 6𝑥21

(1)
 

−4𝑥21
(4)| +

1

2
(6𝑥21

(1) − 4𝑥21
(4))) +

1

2
(6𝑥21

(1) − 4𝑥21
(4))) +

1

2
(−5(2|𝑥11

(1)| − 3𝑥11
(1))

+ 2(−2|𝑥11
(4)| − 3𝑥11

(4)) + 2(−
1

2
| − 2𝑥21

(1) − 6𝑥21
(4)| 

+
1

2
(2𝑥21

(1) − 6𝑥21
(4))) − 5(

1

2
|6𝑥21

(1) + 2𝑥21
(4)| +

1

2
(−6𝑥21

(1) + 2𝑥21
(4)))) +

1

2
(−2|𝑥12

(4)|

−
1

2
| − 2𝑥22

(1) − 6𝑥22
(4)| + 5(−2|𝑥12

(4)| − 3𝑥12
(4)) − 3𝑥12

(4)
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+5(−
1

2
| − 2𝑥22

(1) − 6𝑥22
(4)| +

1

2
(2𝑥22

(1) − 6𝑥22
(4))) +

1

2
(2𝑥22

(1) − 6𝑥22
(4)))

+
1

2
(−3(

7

2
|𝑥12
(1)| −

9𝑥12
(1)

2
) + 7(−

7

2
|𝑥12
(4)| −

9𝑥12
(4)

2
) + 7(−

1

2
| 

−6𝑥22
(1)
− 4𝑥22

(4)
| +

1

2
(6𝑥22

(1)
− 4𝑥22

(4)
)) − 3(

1

2
|4𝑥22

(1)
+ 6𝑥22

(4)
| +

1

2
(−4𝑥22

(1)
+ 6𝑥22

(4)
)))

= −1331 

 

1

2
(8(−6𝑥11

(3) − |𝑥11
(3)|) + 8(

1

2
(5𝑥21

(2) − 3𝑥21
(3)) −

1

2
| − 5𝑥21

(2) − 3𝑥21
(3)|)) +

1

2
(−
5𝑥11

(3)

2

+
1

2
(𝑥21

(2) − 3𝑥21
(3)) − 4(−

5𝑥11
(2)

2
+
|𝑥11
(2)|

2
) 

−
|𝑥11
(3)|

2
−
1

2
| − 𝑥21

(2) − 3𝑥21
(3)| − 4(

1

2
(−𝑥21

(2) + 𝑥21
(3)) +

1

2
|𝑥21
(2) + 𝑥21

(3)|))

+
1

2
(7(−

5𝑥12
(3)

2
−
|𝑥12
(3)|

2
) + 7(

1

2
(𝑥22

(2) − 3𝑥22
(3)) 

−
1

2
| − 𝑥22

(2) − 3𝑥22
(3)|)) +

1

2
(6𝑥12

(2) +
1

2
(4𝑥22

(2) − 6𝑥22
(3)) − |𝑥12

(2)| + 6(−6𝑥12
(3) − |𝑥12

(3)|)

+ 6(
1

2
(5𝑥22

(2) − 3𝑥22
(3)) −

1

2
| − 5𝑥22

(2) − 3𝑥22
(3)|) 

−
1

2
|4𝑥22

(2) + 6𝑥22
(3)|) −

1

2
| − 2(−6𝑥11

(3) − |𝑥11
(3)|) − 2(

1

2
(5𝑥21

(2) − 3𝑥21
(3)) −

1

2
| − 5𝑥21

(2)

− 3𝑥21
(3)|)| −

1

2
| −

5𝑥11
(3)

2
+
1

2
(𝑥21

(2) − 3𝑥21
(3)) 

+4(−
5𝑥11

(2)

2
+
|𝑥11
(2)|

2
) −

|𝑥11
(3)|

2
−
1

2
|−𝑥21

(2) − 3𝑥21
(3)|

+ 4 (
1

2
(−𝑥21

(2) + 𝑥21
(3)) +

1

2
|𝑥21
(2) + 𝑥21

(3)|) |−
1

2
|
5𝑥12

(3)

2

+
1

2
(−𝑥22

(2) + 3𝑥22
(3)) 
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+
|𝑥12
(3)|

2
+
1

2
|−𝑥22

(2) − 3𝑥22
(3)| |−

1

2
| − 6𝑥12

(2) +
1

2
(−4𝑥22

(2) + 6𝑥22
(3)) + |𝑥12

(2)|

+ 6 (−6𝑥12
(3) − |𝑥12

(3)|) + 6 (
1

2
(5𝑥22

(2) − 3𝑥22
(3)) −

1

2
| 

−5𝑥22
(2)
− 3𝑥22

(3)
|) +

1

2
|4𝑥22

(2)
+ 6𝑥22

(3)
|| = −612 

 

 

1

2
(−

5𝑥11
(2)

2
+
1

2
(−3𝑥21

(2) + 𝑥21
(3)) +

|𝑥11
(2)|

2
− 4(−

5𝑥11
(3)

2
−
|𝑥11
(3)|

2
)

− 4 (
1

2
(𝑥21

(2) − 3𝑥21
(3)) −

1

2
|−𝑥21

(2) − 3𝑥21
(3)|) +

1

2
|3𝑥21

(2) + 𝑥21
(3)|) 

+
1

2
(8(−6𝑥11

(2) + |𝑥11
(2)|) + 8(

1

2
(−3𝑥21

(2) + 5𝑥21
(3)) +

1

2
|3𝑥21

(2) + 5𝑥21
(3)|))

+
1

2
(7(−

5𝑥12
(2)

2
+
|𝑥12
(2)|

2
) + 7(

1

2
(−3𝑥22

(2) + 𝑥22
(3)) +

1

2
|3𝑥22

(2)
 

+𝑥22
(3)|)) +

1

2
(6𝑥12

(3) +
1

2
(−5𝑥22

(2) + 3𝑥22
(3)) + 6(−6𝑥12

(2) + |𝑥12
(2)|) + |𝑥12

(3)| +
1

2
|

− 5𝑥22
(2) − 3𝑥22

(3)| + 6(
1

2
(−3𝑥22

(2) + 5𝑥22
(3)) +

1

2
|3𝑥22

(2)
 

+5𝑥22
(3)|)) +

1

2
|
5𝑥11

(2)

2
+
1

2
(3𝑥21

(2) − 𝑥21
(3)) −

|𝑥11
(2)|

2
− 4(−

5𝑥11
(3)

2
−
|𝑥11
(3)|

2
) − 4(

1

2
(𝑥21

(2)

− 3𝑥21
(3)) −

1

2
| − 𝑥21

(2) − 3𝑥21
(3)|) −

1

2
|3𝑥21

(2) + 𝑥21
(3)|| 

+
1

2
| − 2(−6𝑥11

(2)
+ |𝑥11

(2)
|) − 2(

1

2
(−3𝑥21

(2)
+ 5𝑥21

(3)
) +

1

2
|3𝑥21

(2)
+ 5𝑥21

(3)
|)| +

1

2
|
5𝑥12

(2)

2

+
1

2
(3𝑥22

(2)
− 𝑥22

(3)
) −

|𝑥12
(2)
|

2
−
1

2
|3𝑥22

(2)
+ 𝑥22

(3)
|| 

 

+
1

2
|6𝑥12

(3)
+
1

2
(−5𝑥22

(2)
+ 3𝑥22

(3)
) − 6(−6𝑥12

(2)
+ |𝑥12

(2)
|) + |𝑥12

(3)
| +

1

2
| − 5𝑥22

(2)

− 3𝑥22
(3)
| − 6(

1

2
(−3𝑥22

(2)
+ 5𝑥22

(3)
) +

1

2
|3𝑥22

(2)
+ 5𝑥22

(3)
|)| = 288 
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1

2
| − 2(2|𝑥11

(1)| − 3𝑥11
(1)) − 5(−2|𝑥11

(4)| − 3𝑥11
(4)) − 5(−

1

2
| − 2𝑥21

(1) − 6𝑥21
(4)|

+
1

2
(2𝑥21

(1) − 6𝑥21
(4))) − 2(

1

2
|6𝑥21

(1) + 2𝑥21
(4)| +

1

2
(−6𝑥21

(1)
 

+2𝑥21
(4)))| +

1

2
|
7

2
|𝑥11
(1)| +

1

2
|4𝑥21

(1) + 6𝑥21
(4)| − 6(

7

2
|𝑥11
(1)| −

9𝑥11
(1)

2
) −

9𝑥11
(1)

2

+
1

2
(−4𝑥21

(1) + 6𝑥21
(4)) − 6(

1

2
|4𝑥21

(1) + 6𝑥21
(4)| +

1

2
(−4𝑥21

(1)
 

+6𝑥21
(4)))| +

1

2
|2|𝑥12

(1)| +
1

2
|6𝑥22

(1) + 2𝑥22
(4)| − 5(2|𝑥12

(1)| − 3𝑥12
(1)) − 3𝑥12

(1) +
1

2
(−6𝑥22

(1)

+ 2𝑥22
(4)) − 5(

1

2
|6𝑥22

(1) + 2𝑥22
(4)| +

1

2
(−6𝑥22

(1)
 

+2𝑥22
(4)))| +

1

2
| − 7(

7

2
|𝑥12
(1)| −

9𝑥12
(1)

2
) − 3(−

7

2
|𝑥12
(4)| −

9𝑥12
(4)

2
) − 3(−

1
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