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Abstrak

Pemasalahan sebenar dalam sistem kawalan adalah berkaitan dengan penyelesaian
persamaan matriks Sylvester teritlak sama ada menggunakan kaedah analitik atau
kaedah berangka. Walau bagaimanapun, dalam banyak aplikasi, persamaan matriks
Sylvester teritlak klasik tidak mampu untuk menangani ketidakpastian dalam masalah
sebenar seperti keperluan yang bercanggah semasa pemprosesan sistem, gangguan bagi
sebarang unsur dan hingar. Oleh itu, nombor rapuh dalam persamaan matriks ini
digantikan dengan nombor kabur dan dipanggil persamaan matriks Sylvester kabur
penuh teritlak yang mana semua parameter adalah dalam bentuk kabur. Kaedah analitik
kabur sedia ada mempunyai empat kelemahan iaitu pengelakan penggunaan nombor
kabur hampir sifar, kekurangan dalam mendapatkan penyelesaian yang tepat, had saiz
sistem, dan pembatasan tanda positif pada pekali matriks kabur dan penyelesaian kabur.
Sementara itu, penumpuan, ketersauran, kewujudan dan kebitaraan penyelesaian kabur
tidak diteliti dalam banyak kaedah berangka kabur. Tambahan lagi, kebanyakan kajian
dihadkan kepada sistem kabur positif disebabkan oleh batasan operasi aritmetik kabur,
terutamanya dalam pendaraban antara nombor kabur trapezoid. Oleh itu, kajian ini
bertujuan untuk membina kaedah analitik dan kaedah berangka baharu, iaitu
pengvektoran matriks kabur, nilai mutlak kabur, Bartle’s Stewart kabur, lelaran
kecerunan kabur dan lelaran kuasa dua terkecil kabur untuk menyelesaikan persamaan
matriks Sylvester teritlak arbitrari bagi kes khas dan gandingan persamaan matriks
Sylvester. Dalam membina kaedah ini, operator pendaraban aritmetik kabur baharu
bagi nombor kabur trapezoid dibangunkan. Kaedah yang dibina dapat menangani
pembatasan positif dengan membenarkan nombor kabur negatif atau hampir sifar
sebagai pekali dan penyelesaian kabur. Syarat perlu dan cukup bagi kewujudan,
kebitaraan, dan penumpuan penyelesaian kabur dibincangkan, dan analisis lengkap
bagi penyelesaian kabur diperuntukkan. Beberapa contoh berangka dan pengesahan
penyelesaian dibentangkan untuk menentusahkan kaedah yang dibina. Hasilnya,
kaedah yang dibina berjaya menunjukkan penyelesaian bagi persamaan matriks
Sylvester teritlak arbitrari sama ada untuk kes khas atau umum berdasarkan operasi
aritmetik kabur baharu, dengan kekompleksan operasi kabur yang minimum. Kaedah
yang dibina boleh digunakan sama ada untuk matriks pekali segi empat sama atau
bukan segi empat sama sehingga 100x100 saiz matriks. Kesimpulannya, kaedah yang
dibangunkan mempunyai sumbangan bererti kepada aplikasi teori sistem kawalan tanpa
sebarang pembatasan ke atas sistem.

Kata kunci: Sistem kabur arbitrari, Persamaan matriks Sylvester teritlak, Nombor kabur
hampir sifar, Nombor kabur trapezoid, Pendaraban kabur trapezoid.



Abstract

Many real problems in control systems are related to the solvability of the generalized
Sylvester matrix equation either using analytical or numerical methods. However, in
many applications, the classical generalized Sylvester matrix equation are not well
equipped to handle uncertainty in real-life problems such as conflicting requirements
during the system process, the distraction of any elements and noise. Thus, crisp
number in this matrix equation is replaced by fuzzy numbers and called generalized
fully fuzzy Sylvester matrix equation when all parameters are in fuzzy form. The
existing fuzzy analytical methods have four main drawbacks, the avoidance of using
near-zero fuzzy numbers, the lack of accurate solutions, the limitation of the size of the
systems, and the positive sign restriction of the fuzzy matrix coefficients and fuzzy
solutions. Meanwhile, the convergence, feasibility, existence and uniqueness of the
fuzzy solution are not examined in many fuzzy numerical methods. In addition, many
studies are limited to positive fuzzy systems only due to the limitation of fuzzy
arithmetic operation, especially for multiplication between trapezoidal fuzzy
numbers. Therefore, this study aims to construct new analytical and numerical methods,
namely fuzzy matrix vectorization, fuzzy absolute value, fuzzy Bartle’s Stewart, fuzzy
gradient iterative and fuzzy least-squares iterative for solving arbitrary generalized
Sylvester matrix equation for special cases and couple Sylvester matrix equations. In
constructing these methods, new fuzzy arithmetic multiplication operators for
trapezoidal fuzzy numbers are developed. The constructed methods overcome the
positive restriction by allowing the negative, near-zero fuzzy numbers as the
coefficients and fuzzy solutions. The necessary and sufficient conditions for the
existence, uniqueness, and convergence of the fuzzy solutions are discussed, and a
complete analysis of the fuzzy solution is provided. Some numerical examples and the
verification of the solutions are presented to demonstrate the constructed methods. As
a result, the constructed methods have successfully demonstrated the solutions for the
arbitrary generalized Sylvester matrix equation for special and general cases based on
the new fuzzy arithmetic operations, with minimum complexity fuzzy operations. The
constructed methods are applicable to either square or non-square coefficient matrices
up to 100 x 100. In conclusion, the constructed methods have significant contribution
to the application of control system theory without any restriction on the system.

Keywords: Arbitrary fuzzy systems, Generalized Sylvester matrix equations, Near-zero fuzzy
numbers, Trapezoidal fuzzy numbers, Trapezoidal fuzzy multiplication.
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CHAPTER ONES
INTRODUCTION

1.1 Research Background

In applied mathematics, some fields consist of problems that can be represented by
linear matrix equations, such as in economics, finance, engineering, and physics. The
linear matrix equation in the form

AXB + CXD = E, (1.1)
is known as the Generalized Sylvester Matrix Equation (GSME)(Duan, 2015). GSME
plays an essential role in the design and analysis of linear control systems (Datta, 2004),
reduction of large-scale dynamical systems (Paige & Van Loan, 1981), restoration of
noisy images (Bouhamidi & Jbilou, 2007; Calvetti & Reichel, 1996), medical imaging
data acquisition, model reduction (Sorensen & Antoulas, 2002), stochastic control,
image processing and filtering (Bouhamidi & Jbilou, 2007). The GSME has various
generalizations of many well-known matrix equations. It is worth mentioning that
Eqg. (1.2) - Eq. (1.9) are discussed by Datta (2004). For instance, in the GSME, if B and
C are identity matrices and D = AT, where AT is the transpose of A4, then the GSME is
called the Continuous-Time Lyapunov Matrix Equation (CTLME),

AX + XAT = E, (1.2)
which is a special case of another classical matrix equation, known as the Sylvester
Matrix Equation (SME) which is possibly the most broadly employed linear matrix
equation, which can be written as,

AX + XD =E, (1.3)
CTLME and SME have massive applications in control theory (Qiu & Chen, 1999;
Wimmer, 1994; Wu et al., 2008), optimal control (Saberi & Sannuti, 2000), linear
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descriptor systems (Darouach, 2006), sensitivity analysis (Lesecq et al., 2001),
perturbation theory (Li, 1999), system design (Syrmos & Lewis, 1994), theory of orbits
(Teran & Dopico, 2011), design and analysis of linear control systems (Datta, 2004),
reduction of large-scale dynamical systems (Paige & Van Loan, 1981), restoration of
noisy images (Bouhamidi & Jbilou, 2007; Calvetti & Reichel, 1996), medical imaging
data acquisition, model reduction (Sorensen & Antoulas, 2002), and image processing
and filtering (Bouhamidi & Jbilou, 2007). In addition to the CTLME and SME, the
GSME has many other special cases. They are discussed as follows:
The discrete-time Lyapunov matrix equation, which can be written in the form
AXAT + X = E, (1.4)
which is a special case of the discrete-time Sylvester matrix equation
AXB+ X =E, (1.5)
and the Stein Matrix Equation (StME), which can be written as
X+ CXD =E, (1.6)
In addition, the Linear Matrix Equation (LME) in the form
AX = E, (1.7)
which can be expanded to the linear matrix equation (ELME) in the form
AXB =E. (1.7a)
Furthermore, many researchers in the literature considered a more general form of the

GSME. The system of linear matrix equations in the form

{AX—i—YB:E,
CX+YD=F,

(1.8)
is called Coupled Sylvester Matrix Equation (CSME), and the system of equations in
the form

{A1X1B1 + CIXZDI = El’ (1 9)

A2X1B2 + CzXzDz == Ez,
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is known as Coupled Generalized Sylvester Matrix Equation (CGSME). There are
many applications where CSME and CGSME are required to be solved simultaneously.
The CSME and CGSME are essential in making the computational process less
complicated, especially in analyzing the stability of control systems so that the control

system always performs well according to its specifications (Faizi et al., 2017).

Researchers for many years have proposed many analytical and numerical methods for
solving different forms of GSME and its special and general cases with crisp numbers.
Analytical approaches are usually based on Vec-operator and Kronecker product
(Sasaki & Chansangiam, 2020a), where the GSME and its special cases are converted
to a corresponding LME. Then, the solution was obtained using many analytical
methods, such as the matrix inversion method (Hernandez & Gass6,1989). Alternative
analytical approaches exist in which the coefficients of the GSME and its special cases
are transformed into forms for which solutions may be readily computed, such as the
Jordan canonical form (Heinen, 1971) and Hessenberg—Schur form (Golub et al., 1979).
Hu and Cheng (2006) proposed a different method for solving GSME when the solution
is unique; a closed-form solution is obtained and expressed as a polynomial of known
matrices. A recent study by Bekkar et al. (2020) discussed the sufficient and necessary
condition of the existence of the solution to the GSME with sub normality of bounded

operators infinite dimension complex separable Hilbert space.

Although analytical solutions are important, the computational efforts rapidly increase
with the dimensions of the matrices to be solved. For example, the conversion of m X n
GSME by Vec-operator and Kronecker product increases the dimension of the system
by mn X mn, which make the computational more complex and impracticable.
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Therefore, analytical methods are limited to GSME with small coefficients only.
However, many real-life problems are represented in large dimensional systems.
Therefore, for GSME with large dimensions, iterative algorithms to find an
approximated solution are more practical (Climent & Perea, 2003; Sasaki &
Chansangiam, 2020b). Many authors have developed numerical approaches for solving
the GSME and its special and general cases, such as Krylov subspace method,
generalized minimum residual method, global Arnoldi method, biconjugate residual
method, Gradient lIterative Method (GIM) and the Least-Square Iterative Method
(LSIM). Among these numerical methods, the gradient-based methods are very
effective in solving the GSME and its special and general cases. Since the sequence of
approximated solutions for the gradient-based approaches converges to the exact

solution for any initial value (Sasaki & Chansangiam, 2020b).

A relaxed gradient-based algorithm for solving CGSME was introduced by Sheng
(2018) in addition to the conjugate gradient least squares algorithm
(Hu & Ma, 2018) and gradient-based approach (Lv et al., 2018). Many authors studied
least-squares solutions of crisp GSME and CSME (Dehghan & Hajarian, 2010; Ding
& Chen, 2005, 2006; Feng & Yagoubi, 2017; Huang & Ma, 2018; Li, 2010; Ramadan
& ElDanaf, 2015; Steeleworthy & Dewan, 2013; Wang et al., 2016; Wang & He, 2014;
Zhang, 2011). Recently, (Sasaki & Chansangiam, 2020b) developed a modified
gradient algorithm for solving GSME by decomposing the coefficient matrices to be

the sum of its diagonal elements.

Furthermore, all the parameters in the matrix equations in Eq. (1.1) - Eq. (1.9) are only
in the form of crisp numbers. However, real situations are often not crisp and
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deterministic and cannot be precisely described (Zimmermann, 2011). In many
scenarios, the classical linear system is not well suited to handle the uncertainty in
actual-life problems. Some coefficient values may be vague and imprecise because of

incomplete information.

Furthermore, the parameters of linear equation systems are not always necessarily
defined and consistent in many applications. This imprecision may be due to the
distraction of elements and noise (Alkhaldi & Winkler, 2015), which are sometimes not
well equipped by the classical matrix equation. In addition to the unreliable knowledge,
continuous economic and environmental changes, and conflicting requirements during
the system process (Asari et al., 2016). Thus, fuzzy numbers should be the most
effective tool that can be used to model the equation in the form of fuzzy equations.
Fuzzy number arithmetic is commonly used and is useful in computing linear systems

whose parameters are in the form of fuzzy numbers.

Since its inception in 1965, fuzzy sets theory has proliferated. Nowadays, in most
scientific disciplines, applications of fuzzy sets are considered, such as decision-
making (Bashir et al., 2017; Faizi et al., 2017), probability (Chen & Huang, 2017),
control theory (Hou et al., 2016), medical sciences (Satabun & Piegat, 2017) and
characterization of complex systems (Bucolo et al., 2004), among others. The theory of
fuzzy numbers was developed and introduced by Zadeh (1965). Later, the theory was
expanded by introducing the fuzzy arithmetic operation for the left-right fuzzy numbers
(LR-FNS) by Dubois and Prade (1978) as well as for the particular fuzzy numbers form
by Kaufman and Gupta (1991). Since then, there has been increasingly rapid progress
in this field, leading to significant contribution in many fields such as Fuzzy Linear
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Systems (FLS) in the form AX = E, and Fully Fuzzy Linear System (FFLS) in the form
AX = E, in three different types of fuzzy numbers namely Parametric Fuzzy Numbers
(PFN), Triangular Fuzzy Numbers (TFN) and also Trapezoidal Fuzzy Numbers (TrFN)
(Malkawi et al., 2014c). The coefficent matrix 4 and the fuzzy solution X of the FFLS

are cosidered to be both positive, negative and near-zero.

The main intention of the FFLS is to broaden the scope of FLS in scientific applications
by removing the crispness assumption on the entries of the coefficient matrix A. In
solving FFLS, the most important property considered is the sign of the parameters,
either it is positive, negative, near-zero or arbitrary fuzzy numbers. This property is
very contrary with the FLS because in the FLS, the multiplication between the
coefficient matrix A and fuzzy solution vector X does not depend on the parameter’s
sign, while in the FFLS, the multiplication of fuzzy coefficient 4 and fuzzy vector X

depend on the signs of both (Babbar et al., 2013).

If the coefficients of FLS and FFLS are in the form of matrices, then the equation is
called Fuzzy Matrix Equation (FME) and Fully Fuzzy Matrix Equation (FFME),
respectively. FME can be written in the form

AX =E, (1.10)
where the coefficient matrix A is an m X n crisp matrix, the matrix £ is an m x [ fuzzy
matrix, and the fuzzy solution matrix X is an n x [ fuzzy matrix. The first study for
FME was by Guo and Gong (2010a; 2010b). Their study uses the PFN, where the FME
is converted to a crisp linear system by using the embedding method proposed by

Friedman, Ming, and Kandel (1998). Then, the system is solved numerically to obtain

the approximate solution. Gong and Guo (2011) improved their previous method, by
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solving inconsistent FME, which was previously unavailable in Guo and Gong (2010a;

2010D).

Additionally, Guo and Shang (2012a) and Otadi and Mosleh (2012) solved the FME by
adapting the numerical method proposed in Allahviranloo, Salahshour, and Khezerloo
(2011) to obtain a symmetric solution of the FME. Meanwhile, Guo and Shang (2012b)
used the LR-TFN where the FME is converted into two crisp matrix equations by
introducing a generalization of Dubois and Prade Multiplication Operations (DPMO)
(Dubois & Prade, 1978), which is a simpler approach than their previous studies (Guo

and Gong, 2010a; Guo and Gong, 2010b).

If the coefficient matrix A in the FME is a fuzzy matrix, then the FME is extended to
FFME in the form

AX =E, (1.11)
where A = (@;))mxp: X = &) pxn A E = (&) mxn ¥ 1 < i,j < n,m. Since all the
elements in all parameters are fuzzy numbers, the FFME can significantly contribute to
many real applications. The first study on FFME was conducted by Otadi and Mosleh
(2012b), in which the Linear Programming (LP) method was extended to find the non-
negative solution for arbitrary FFME, where all the entries of A, X and E were
represented by TFNs. Nevertheless, the method was unable to detect all the possible
fuzzy solutions, even though it has an infinitely many solutions. A subsequent study
has been conducted by Guo and Shang (2013b), which used direct multiplication
operations for solving the Extended Fully Fuzzy Matrix Equation (EFFME) in the form

AXB =E, (1.12)



where A, X and B are p X p, p X q and g X g non-negative LR-FNS matrices,
respectively. Apart from that, many researchers were also interested in exploring Fuzzy
Sylvester Matrix Equation (FSME), which can be written as,

AX +XD =E, (1.13)
where only E and the fuzzy solution X are in fuzzy forms, and A and D are in crisp
forms, respectively. Basically, in solving the FSME, the most important method used
is the Vec-operator and Kronecker product. This method converts the FSME in Eq.
(1.13) to the LME in Eq. (1.7), and then the solution can be obtained by many methods
such as matrix inversion or the Cramer rule. The first study of FSME was carried out
by Salkuyeh (2011), in which the author applied the accelerated over relaxation method
in finding the fuzzy solutions using PFNs. In addition, Guo (2011) applied the
Vec-operator and Kronecker product to convert the FSME to FLS and then into a crisp
matrix equations. Then the solution was obtained by using the classical matrix inversion
method. However, the solution cannot be obtained if the coefficient matrix is singular.
In addition, Guo and Shang (2013a) converted the singular FSME into FLS with TFNs
and extended the FLS into two different systems of linear equations using the TFNs
arithmetic multiplication operations. Then the fuzzy solution is obtained by

pseudoinverse method.

In addition, there were also a few numerical methods proposed for solving FSME,
which was carried out by Araghi and Hossinzadeh (2012) and Guo and Shang (2012b).
These methods required fewer multiplication operations compared to the analytical
methods. However, these numerical methods required many iterations to reach the final
solutions and huge memory usage. Moreover, another study for FSME was carried out

by He et al. (2018), where the FSME is converted to two crisp Sylvester matrix
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equations and the solution is obtained by EXTALG algorithm. This method can solve
a much larger FSME than the method proposed in Salkuyeh (2011). However, getting

the solution is very long.

There were a few studies conducted in 2015, which aimed to solve the fully fuzzy
Sylvester matrix equation (FFSME) in the form,

AX+XD =E, (1.14)
where, A= (@)uxn, D= (di)mxm: E=(j)nxm and X = (&i)nxm
V1 <i,j <n,m. Triangular Fully Fuzzy Sylvester Matrix Equation (TFFSME) has
been studied only analytically by many researchers. Most analytical methods are based
on converting the FFSME to LME by applying the Vec-operator and Kronecker
products. The main advantage of this analytical method is that the exact fuzzy solution
to the FFSME is obtained, and the existence and uniqueness of the solution can be

examined. However, this method converts the m x n FFSME to a much larger LME

sized mn x mn. Therefore, this approach is usually applied to small-sized FFSME.

Shang et al. (2015) converted the m x n TFFSME into a system of three LME using
Vec-operator and Kronecker product. However, the method was restricted only for
TFFSME with positive fuzzy numbers only and required getting the inverse for
mn X mn matrices and therefore not applicable to large TFFSME with near-zero TFNSs.
Similarly, authors in Daud et al. (2018d) and Malkawi et al. (2015) converted the
m X n TFFSME into a system of three LME using Vec-operator and Kronecker product
and transferred the LME into an associated linear system where the solution is obtained

by matrix inversion method and reduced row echelon form, respectively. This method



is able to solve TFFSME up to 10 x 10. However, it required getting the inverse of

3mn X 3mn matrices and it is restricted to positive TFFSME only.

TFFSME with arbitrary coefficients has been studied by Daud et al. (2018a, 2018c,
2017) using fuzzy Vec-operator and Kronecker products. However, these methods need
further modifications as the Vec-operator and Kronecker product method is not
applicable for arbitrary fuzzy systems with near-zero fuzzy numbers. It is worth
mentioning that the properties of crisp numbers multiplication cannot be applied to
fuzzy number multiplication, especially for near-zero fuzzy numbers. Therefore, the
Vec-operator and Kronecker product approach is not applicable for arbitrary fuzzy

systems with near-zero fuzzy numbers, which is proved in the following examples.

Example 1.1: Consider the following FFSME AX + XD = E where

A" _ ((11 21 3r 4) (11 21 5; 7)) 5 _ ((3) 5; 7) 9) (2l 4) 6) 7))
(1,2,3,5) (4567))"° ~\(1,2,3,4) (3,5,67))

e ((1,4, 58) (1,3,5, 7)) and E = ( (6,38,85,167) (10,47,110,189))
~\(1,2,4,5) (4,5,7,8) ~\(12,38,88,152) (31,64,123,182)/)

By applying fuzzy arithmetic operation on the given FFSME, the left-hand side is

<o o~ ((6,38,85167) (10,47,110, 189)) . .
AX+ XD = ((12,38, 88,152) (31,64 123,182) which is equal to the right-hand
side (E).

Applying the Vec-operator and Kronecker product on the given FFSME gives,

AX +XD = E = [(IQA) + (DT ®I)|Vec(X) = Vec(E).

(4,7,10,13) (1,2,5,7) (1,2,3,4) (0,0,0,0) (1,4,5,8) (6,38,85,167)
(1,2,3,5) (7,10,13,16) (0,0,0,0)  (1,2,3,4) (1,2,4,5) | _ [ (12,38,88,152)
(2,4,6,7) (0,0,0,00 (4,7,9,11)  (1,2,5,7) (1,3,5,7) | ~ | (10,47,110,189) |’

(0,0,0,0) (2,4,6,7) (1,2,3,5) (7,10,12,14)/ \(4,5,7,8) (31,64,123,182)

The left-hand side of the given FFSME is
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(6,38,85,167)
(12,38,88,152)
(10,47,110,189) |
(31, 64,123,182)

[(I®4) + (DT ®I)|Vec(X) =

which is equal to the right-hand side Vec(E).
The following Example 1.2 shows that the VVec-operator and Kronecker product method
cannot be applied to fuzzy systems with near-zero fuzzy numbers.

Example 1.2: Consider the following FFSME AX + XD = E,

where

A‘ _ ( (_7; _4: 3; 4) (_6! _3; 11 4)) 5 _ ( (_3r _ZI 3; 4) (_31 _2r 3) 4)) .
~\(=5,-4,-3,1) (-4,-2,4,7))’"  \(-7,—-4,-3,5) (-2,—-1,4,5)/)’

- ((=2,-1,1,3) (-5,-2, 1,4))

X= ((—5, —4,1,5) (—4,-1,4,7)) ¢

5o ( (—88,—15,27,91)  (—104,—29, 19,95))
~ \(~119,—48,24,100) (—88,—28,48,129)/)

In the given FFSME, the left-hand side is,

(—88,—-15,27,91)  (—104,—29,19,95)

AX+ AP ((—119, —48,24,100) (—88,—28,48,129))’ Wl 1s equal to the
right-hand side (E).

Applying the Vec-operator and Kronecker product on the given FFSME gives,

(—-10,-6,6,8) (-6,-3,1,4) (-7,—4,-3,5) (0,0,0,0) (-2,-1,1,3)
(=5,-4,-3,-1) (-7,-4,7,11) (0,0,0,0) (=7,-4,-3,5) \[ (-5,—4,1,5)
(-3,-2,3,4) (0,0,0,0) (=9,-5,7,9) (—-6,-3,1,4) (=5,-2,1,4)
(0,0,0,0) (-3,-2,3,4) (-5,-4,-3,1) (-6,-3,8,12) (-4,-1,4,7)

(—88,—14,26,89)
(—119, —48,24,100)
(—=96,—29,17,85)
(—88,—28,48,129)

The left-hand side of the given FFSME is,

(—88,—14, 26, 89) (—88,—15,27,91)

I [ (~119,—48,24,100) (—119, —48, 24,100)
[(r®4) + (D" ®1)]Vec(x) = (=96,—-29,17,85) |7 | (~104,-29,19,95) |
(—88, —28,48,129) (—88, —28,48,129)
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Examples 1.1 and 1.2 show that the Vec-operator and Kronecker product method has
two main disadvantages:

1) It cannot be applied to fuzzy systems with near-zero fuzzy numbers.

i) It can be applied only to fuzzy systems with positive or negative fuzzy numbers.
Moreover, the Vec-operator and Kronecker product method for m X n positive or
negative fuzzy system required getting the inverse of mn x mn matrices, which is not

possible for large systems.

On the other hand, there was a study by Dookhitram et al. (2015) on the other form of
TFFSME,

AX—-XD =E, (1.15)
where the minimal and maximal-symmetric solutions of the FFSME with PFN was
obtained. This method enables solving the FFSME with fewer multiplications’ steps
compared to the previous studies by Shang, Guo and Bao (2015) and

Malkawi et al. (2015). However, this method is very complicated to be handle,

especially by researchers in other fields (S. Daud et al., 2016).

In addition to that, Daud et al. (2018b) obtained the positive solution of the TFFSME
in Eq. (1.15) with arbitrary triangular fuzzy coefficients using Vec-operator and
Kronecker product. The FFSME in Eq. (1.14) can be extended to the following general
form

AXB + CXD =E, (1.16)
where, A = (@;)qxp: B = (Bip)nxrs € = (E))gxpr D = (di)nxrs X = (Zi))pxn and
E= (&ij)gxr and it is called Generalized Fully Fuzzy Sylvester Matrix Equation

(GFFSME). If A, X, B, C,D,and E inthe GFFSME are trapezoidal fuzzy matrices, then
12



the GFFSME is called Generalized Trapezoidal Fully Fuzzy Matrix Equation
(GTrFFSME). It is worth mentioning that in the literature, most of the existing methods
are for GFFSME’s special cases, such as FFSME, FFME and FFLS, and no study in
the literature addressed the GFFSME. On the other side, authors in the literature
extended their studies to a Pair of Fuzzy Matrix Equations (PFME).
Sadeghi et al. (2011) proposed a method for solving a PFME in the form

{AX +XB =C, (1.17)

DXE =F.
In their method, the PFME is converted to a system of LME using Vec-operator and
Kronecker product, and the solution is obtained numerically by the least-square

iterative method. Meanwhile, Daud et al. (2018a; 2019) proposed analytical methods

for solving a Pair of Fully Fuzzy Matrix Equations (PFFME) in the form

{A{f i (1.18)
BXE = F,

A CSME are required to be solved simultaneously in many applications, such as
analyzing the stability of control systems (Faizi et al., 2017). The CSME can be
extended to form Coupled Fuzzy Sylvester Matrix Equation (CFSME). Bayoumi and
Ramadan (2020b) studied CFSME in the form

{A)”{ +¥B =E,

CX+YD=F,
where the numerical algorithms are constructed by applying the hierarchical
identification principle, where the fuzzy solution is obtained using the generalized

inverse of the coefficient matrix. When all parameters of the CSME are in the fuzzy

form, then it is called CFFSME, which can be written in the form

5
g 1.19
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where A = (@) mxn: X = Eijdnxps ¥ = Gijdmxrs B = Bi)drxps € = (Ej)mxns
D = (di))rxps E = (&) mxp, and F = (f;})mxp. Until now, there is no single study

found on solving the CFFSME with restricted or unrestricted coefficient.

1.2 Problem Statement

Based on the discussion on methods for solving a FLS, FFLS, FFME and FFSME, it is
apparent that these methods have the following drawbacks:

The existing methods for solving FFME and FFSME based on DPMO have sign
restrictions on its coefficients and fuzzy solutions, where either the coefficients or the
fuzzy solutions are strictly positive. It is also observed that most researchers in the
literature applied only analytical approaches for solving FFSME. However, these
analytical methods are limited to FFSME with small size only. In addition, the
numerical methods that can solve FFSME with large size are not developed in the

literature.

It is further observed that the theoretical development of the existence, uniqueness and
feasibility of the fuzzy solution is not investigated in many existing methods. In
addition, in most existing studies, researchers converted the fuzzy matrix equations into
a corresponding system of linear equations without checking the equivalency between
the fuzzy equation and the linear system. Furthermore, the accuracy and convergence

of numerical methods in the literature are not examined in many studies.

Moreover, while TFNs were widely used in earlier works, TrFNs have been overlooked

for a long time, especially for FFME and FFSME. In addition to that, most researchers
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considered only the square coefficient matrices. In the following subsections, these

limitations are discussed in detail.

1.2.1 Arithmetic Fuzzy Multiplication Operations

Existing methods in the literature for FFLS, FFME and FFSME can be classified based
on the arithmetic fuzzy multiplication operations used. The multiplication between
fuzzy numbers is not always a fuzzy number. Therefore, many researchers
approximated the multiplication between fuzzy numbers such as DPMO
(Dubois & Prade, 1978) and Kaufmann and Gupta Multiplication Operator (KGMO)

(Kaufmann et al., 1986).

DPMO is restricted to positive fuzzy numbers only. Having sign restrictions means all
parameters of the system are assumed as positive. Therefore, most researchers
implement DPMO to avoid the long fuzzy multiplication operations required for
solving arbitrary fuzzy systems. Some authors discussed the limitations of DPMO for
multiplication on TFNs. Babbar, Kumar and Bansal (2013) claimed that this
approximation is suitable only if the right and left spreads of the TFN are negligible
compared to the mean value of the TEN. Fortin, Dubois and Fargier (2008) mentioned
that DPMO is very suitable for a positive TFN only; it can give a closed-form result for
the basic arithmetic multiplication of positive numbers. However, in fuzzy equations,

the mean value m may be too remote of the left and right spreads « or £.

Furthermore, the sign is not required to be positive all time. Thus, Kaufmann and Gupta
(Kaufmann et al., 1986) introduced an approximation for multiplication of arbitrary

TFN. Even though researchers were able to solve FFLS with fully arbitrary fuzzy
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numbers using KGMO, the methods cannot be extended to solve FFSME with arbitrary

coefficients.

Furthermore, although KGMO can be applied directly to the fuzzy equations, however
the obtained non-linear min-max system of equations is very challenging to be solved.
Therefore many authors proposed modification to the KGMO in order to reduce the
non-linear ~ min-max  linear  system  of equations such as in
Babbar et al. (2013) and Malkaw et al. (2015). However, this modification is limited to
TFNs only and need to be extended to TrFNs. In addition, fuzzy arithmetic
multiplication operations for TrFNs are limited to positive TrFNs and cannot be applied
to fuzzy equations with near-zero TrFNs. Therefore, new arithmetic fuzzy

multiplication operations must be developed to overcome this shortcoming.

1.2.2 Type of The Methods Used

Researchers applied many analytical and numerical methods in the literature for solving
FLS, FFLS, FME, FFME and FFSME. The limitations of the existing methods are as

follows:

1) Analytical methods involve many arithmetic fuzzy operations and require many
multiplications processes and long computational times (Ahmad et al., 2016).
Therefore, analytical methods are limited only to small size systems.

) Existing methods for solving TFFSME and TrFFSME can only obtain positive
fuzzy solutions and cannot be extended to fuzzy equations with arbitrary fuzzy

solutions.
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1)  The existing analytical methods proposed for solving different arbitrary systems
are based on Vec-operator and Kronecker products. Vec-operator and
Kronecker product approach is applicable for fuzzy systems with positive or
negative fuzzy numbers only and cannot be applied to fuzzy systems with near-
zero fuzzy numbers. In addition, the Kronecker product method for m x n fuzzy
system requires getting the inverse of mn X mn matrix, which is not possible
for large systems (Sasaki & Chansangiam, 2020b).

IV)  Most of the researchers converted the fuzzy equations to an equivalent system
of linear equations. However, the equivalency between the solution to the fuzzy
systems and the corresponding linear system is not proved. In other words, by
applying some of the existing methods, we cannot guarantee to have a fuzzy

solution for solving randomly chosen examples.

In addition, the obtained fuzzy solution in some existing numerical methods is not
compatible with the fuzzy system. Malkawi et al. (2015a; 2015b; 2015) noted that the
obtained fuzzy solution in some existing methods is incompatible with the fuzzy
system. Some existing methods are incomplete and have many flaws. Since the
proposed solution is incorrect, this flaw can be easily identified by verifying the
obtained fuzzy solution using direct substitution, and this can be seen in solving the
given examples in the studies by Liu (2010), Allahviranloo et al. (2012; 2014) and

Abbasbandy and Hashemi (2012).

Some numerical methods such as in Otadi et al. (2011), required information about the
solution to choose suitable initial values before solving the system, which means the
method is insufficient to solve arbitrary systems when these initial values are not
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available. In addition, the methods by Fariborzi and Hosein (2012) and Guo and Bao
(2013) required many iterations to reach the final solutions and consequently, huge
memory storage. In addition, some of the numerical methods in the literature are
applied to a fuzzy equation with small fuzziness only, such as the method proposed by

Liu (2010).

1.2.3 Size of the Fuzzy Equations

Most of the existing studies restricted the size of the coefficient matrix for most of the
fuzzy systems. Many studies are limited only to the small size of matrices. Some
methods provide easy implementation, but the calculation was time-consuming,
especially when it involves large size of matrices with n > 3. When the size increases,
many steps are required to find the fuzzy solution. For instance, Babbar, Kumar and
Bansal (2013) proposed that the optimization problem may have 3n + 2n? constraints

to solve arbitrates n x n fuzzy system.

Meanwhile, before constructing the optimization problem, Allahviranloo et al. (2014)
must solve more than six different linear systems or nonlinear, which comprised two
fully interval linear systems, three 2n X 2n linear systems, a 4n X 4n nonlinear
equations, and n x n nonlinear equations. Therefore, in dealing with this shortcoming,
development of new efficient algorithms producing positive and negative solutions for

FFSME with TrFENs with large size matrices is necessary.

1.2.4 Type of Fuzzy Numbers

The fuzzy numbers applied in the literature were in the form of triangular or parametric

fuzzy numbers. In the literature of FLS, FFLS, FME, FFME and FFSME, researchers
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contributed significantly to systems with PFNs or TFNs. However, TrFNs have been
overlooked for a long time, especially for FFME and FFSME. TrFNs span all the TFNs
entirely, as it is an extension of the triangular case and will cover more real-life
applications (Grzegorzewski et al., 2020). Since TFN is a special case of TrFNs and
TrEN is considered a generalization of TFN (Ebadi et al., 2013), it is useful and more

practical to generalize FFLS, FFME and FFSME with TrFNs parameters.

In addition, TrFNs in the general form (a,b,c,d) have some of the following
advantages over other linear and non-linear membership functions. Firstly, trapezoidal
fuzzy numbers form the most generic class of fuzzy numbers with linear membership
functions. Thus, this class of fuzzy numbers spans entirely the widely discussed class
of triangular fuzzy numbers implying its more generic property and therefore has more
applicability in modelling linear uncertainty in scientific and applied engineering
problems, including fully fuzzy linear systems and fuzzy transportation problems
(Bansal, 2011; Purushothkumar & Ananathanarayanan, 2017). In addition, the TrFN
general form, (a, b, c,d) is simpler and more practical as compared to the LR-form
(m,n,a,B) due to the conceptual and computational simplicity type of the fuzzy

coefficient matrices.

Generally, in a FLS, FFLS, FFME and FFSME, the coefficient matrices can be
categorized into square and non-square forms (Kocken & Albayrak, 2015). However,
many researchers in the literature proposed methods to solve systems with square
coefficient matrices only while the non-square form is overlooked, especially for FFME

and FFSME representing linear equation systems. Even though non-square FFME
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models real-life problems in a more flexible way, it has received far less attention from

researchers.

1.2.5 Variety of Fuzzy Matrix Equations

Ina FLS, FFLS, FFME and FFSME, the coefficient matrices can be categorized into a
square and non-square forms (Kocken & Albayrak, 2015). However, many researchers
in the literature proposed methods to solve fuzzy systems with square coefficient
matrices only where the non-square form is overlooked, especially for FFME and
FFSME—representing linear equation systems, as non-square FFME models real-life
problems in a more flexible way. However, it has received far less attention from
researchers. In addition to that, the number of studies in solving various fully fuzzy
matrix equations and pair fully fuzzy matrix equations is still limited, particularly with
trapezoidal fuzzy numbers as the coefficients of the equations. Therefore, it is necessary
to study the solutions of GFFSME and its special and general cases while addressing

the issues of previous studies at the same time.

1.2.6 Fuzzy Solutions Analyses

The theoretical development of the existence and uniqueness of the fuzzy solution is
not investigated in many existing methods, such as the methods in
Bayoumi and Ramadan (2020), Daud et al. (2018a; 2018b; 2016; 2017) and
Vijayalakshmi et al. (2020). In other words, the necessary and sufficient conditions for
having a unique positive fuzzy solution is not studied. Some methods provided a
positive solution to fuzzy equations where the fuzzy equation has no solution, such as
the examples in Abbasbandy and Hashemi (2012). Therefore, by applying these

methods, we cannot examine the existence of the fuzzy solution before applying the
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method. Motivated by the limitation discussed above, the research objectives are stated

below.

1.3 Research Objectives

The main objective of this study is to solve arbitrary GTrFFSME and its special and
general cases using analytical and numerical approaches. In order to achieve this main
objective, the following sub-objectives are needed:

1) To construct analytical and numerical methods for solving GTrFFSME with
positive and arbitrary coefficients.

) To modify the constructed methods of GTrFFSME for different fuzzy
equations, numbers, and forms.

1)  To construct analytical and numerical methods for solving CTrFFSME with
positive and arbitrary coefficients by extending the constructed methods of
GTrFFSME.

IV)  To verify the constructed methods by analyzing the solutions in terms of
feasibility of the solution and graphical representation and checking the

numerical method’s performance in terms of accuracy and efficiency.

1.4 Scope of Study

This study develops new analytical and numerical methods for solving positive
GTrFFSME, TrFFSME, TrFFCTLME, TrFFStME, TrEFFME, TrFFME and
CTrFFSME. In addition, a new analytical method for solving arbitrary GTrFFSME,
TrFFSME, TrFFCTLME, TrFFStME, TrEFFME, TrFFME and CTrFFSME is also

developed. The software used is Mathematica 12.1 and Maple 2019.
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1.5 Significance of Findings

The newly developed methods have both theoretical and practical contributions as

follows:

1) New fuzzy arithmetic multiplication operations, which provide simpler fuzzy
operations compared to the existing ones.

) New constructed methods for solving fuzzy problems in different forms of
generalized Sylvester matrix equations that would be useful in the applications
of medical imaging and control system theory.

1)  Theoretical development on the existence of fuzzy solutions based on the newly

developed method.

1.6 Organization of the Thesis

This thesis has eight chapters. Chapter One contains the research introduction and
discusses the research background and a brief survey of fuzzy systems, the problem

statement, the research objectives, the study's scope, and the study's significance.

Chapter Two presents the selected reviews of matrix theory and fuzzy numbers,
definitions, basic concepts and established results of fuzzy systems. In addition to that,
it also provides some fundamental concepts for fuzzy theory and fuzzy Sylvester matrix

equation and method for solving fuzzy systems.

In Chapter Three, arithmetic fuzzy multiplication operations between TrFNs in the
general form are developed, reduced, and used to develop the methods for solving
positive GTrFFSME and its special cases. In addition, the analytical and numerical

positive fuzzy solutions to the positive GTrFFSME and its special cases which include
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TrFFSME, TrFFME, TrEFFME, TrFFCTLME and TrFFStME are obtained
analytically by developing the fuzzy matrix vectorization method and numerically by
fuzzy gradient and fuzzy least-square iterative methods. The necessary conditions to
have a unique positive solution are discussed in addition to the convergence of the
numerical methods. The developed methods are illustrated by solving some examples

up to size 100 x 100.

In Chapter Four, new analytical methods for solving arbitrary GTrFFSME and its
special cases are presented. The arbitrary GTrFFSME is converted to an equivalent
system of non-linear equations using the extended arithmetic fuzzy multiplication
operations for arbitrary TrFNs. Then, the reduced system is converted to a system of
absolute equations where the fuzzy solutions are obtained by solving that system. In
addition, the solutions to arbitrary TrFFSME and arbitrary TrFFME with TrFNs and

TFNs are obtained. The developed methods are illustrated by solving some examples.

Chapter Five demonstrate the construction of analytical and numerical methods for
solving a couple positive TrFFSME, where the coefficients are positive TrFNs. The
analytical fuzzy solutions are obtained by extending the fuzzy matrix vectorization
methods for solving positive TrFFSME. Meanwhile the numerical solutions are also
obtained by extending the fuzzy gradient and fuzzy least-square iterative methods for
solving positive TrFFSME. The necessary conditions for the coupled positive
TrFEFSME to have unique positive solution are discussed in addition to the convergence
of the numerical methods. The developed methods are illustrated by solving some

examples up to size 100 x 100.
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In Chapter Six, the analytical methods for solving arbitrary TrFFSME are extended for
a couple of arbitrary TrFFSME. The couple arbitrary TrFFSME is converted to an
equivalent system of non-linear equations using the reduced arithmetic fuzzy
multiplication operations for arbitrary TrFNs. Then, the reduced system is converted to
a system of absolute equations where the fuzzy solutions are obtained by solving that

system. The developed method is illustrated by solving some examples.

In Chapter Seven, the developed analytical methods in Chapter Three for solving
TrFFSME with TrFENs in general form are modified and applied to TrFFSME with
LR-TrFNs in the form AX + XB = C and AX — XB = C with positive and negative LR
fuzzy numbers. In addition to a new fuzzy coefficient method, the necessary conditions
for the TrFFSME to have unique solution are discussed. The developed methods are

illustrated by solving some examples.

Finally, Chapter Eight concludes the whole thesis with a summary of this study and

discusses some insights into the possibilities for future research in this area of study.
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CHAPTER TWO
LITERATURE REVIEW

2.1 Introduction

This chapter discusses the research background and a brief review of fuzzy systems,
fuzzy numbers, basic definitions and concepts of matrix, set theory, fuzzy set theory,
and classical methods for solving fuzzy systems. In addition, some of the existing

methods for solving the FFLS, FFME, FFSME and SME are also reviewed.

2.2 Fuzzy Set Theory

The concept of fuzzy numbers was introduced in Zadeh (1965) to describe the
vagueness and uncertainty numbers or variables. The definitions of fuzzy numbers are
explained as follows:
Definition 2.2.1. (Zadeh, 1965) If X is a collection of objects denoted generically by x,
then a fuzzy set A in X is a set of ordered pairs of two elements x and its membership
function:

A={(xuz(x))/ x € Xx}.
The membership function can be written as:

ni(x):X - [0,1].

Definition 2.2.2. (Zadeh, 1965) A fuzzy number is a convex normalized fuzzy set of
the real line R whose membership function is piecewise continuous.
The following Definitions 2.2.3, 2.2.4 and 2.2.5 are referred from (Dehghan et al.,
2009).
Definition 2.2.3. A matrix 4 = (&) is called a fuzzy matrix, if each element of 4 is

a fuzzy number.
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Definition 2.2.4. A fuzzy matrix A4 is:

) Positive (negative) and denoted by 4 > 0, (A < 0) if each element of 4 is a
positive (negative) fuzzy number. (2.1a)
I)  Non-negative (non-positive) and denoted by 4 > 0, (4 < 0) if each element
of A is a non-negative (non-positive) fuzzy number. (2.1b)
1) Arbitrary, if at least one element of 4 is near-zero fuzzy number. (2.1c)
Definition 2.2.5. A vector X = (%, %,, ..., %,)7 is called a fuzzy vector if all elements
of X are fuzzy numbers.

The types of fuzzy numbers are discussed in the following Section 2.3.

2.3 Types of Fuzzy Numbers

This section discusses three types of fuzzy numbers: PEN, TFEN, and TrFN (Kaufmann

& Gupta, 1991; Zadeh, 1965).

2.3.1 Parametric Form of Fuzzy Numbers

In this section, the PFN is discussed. PFN has been applied mostly in solving the FLS.
The definition of the PFN is given as follows:

Definition 2.3.1.1. A PFN A is represented by an ordered pair of functions
A= (a(),a(r)), for 0<r < 1 which will satisfy the following conditions:

) a(r)<a(r), for0<r<1.

) a(r) is a bounded right continuous non—increasing function on [0, 1].

1)  a(r) is a bounded left continuous non—decreasing function on [0, 1].

Among the several fuzzy numbers, the most common fuzzy number used in the

literature of FFLS, FFME and FFSME is the TEN.
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2.3.2 Triangular Fuzzy Numbers

A TEN in the form (m,a, ) is said to be in LR-form, and if it is represented as
(aq,a,,as), then it is in a general form. In the following Section 2.3.2.1, the LR-TFN

is discussed.

2.3.2.1 Triangular Fuzzy Numbers in LR-Form

In this section, the LR-TFN is discussed. The LR-TFN A = (m, @, 8) can be written
asaPFN A = (g(r), C_l(T')) wherea(r) =ra+m—aanda(r) =m+ g —rp.

In the following Definition 2.3.2.1, the membership function of the LR-TRN is
introduced.
Definition 2.3.2.1. A fuzzy number A = (m, a, ) is said to be an LR-TFN, if its

membership function is given by,

{ m-—Xx
1-— o m—a<x<m, a>0,
3 — X—m
na(x) =9 1 5 mSxsmEf,f>0
0, otherwise.

In this case, m is the mean value of 4, « is the right spread, and g is the left spread.

Definition 2.3.2.2. The sign of A = (m, a, B) is classified as follows:

) A is called positive (negative) iff m —a >0(8 +m < 0). (2.2a)
)  Aiscalled zero iff (im =0,a = 0and f = 0). (2.2b)
)  Aiscalled near-zero iff m —a <0 < + m. (2.2¢)

Remark 2.3.2.1. If the spreads « and g increase in A = (m, a, 8), A becomes fuzzier
and fuzzier (Dubois & Prade, 1978). Moreover, it is considered as non-fuzzy (crisp

number) when «, § = 0. Figure 2.1. displays the LR-form of the TFN.
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1z ()]

Figure 2.1. Representation of LR-TFN
Definition 2.3.2.3. Two TFNs A; = (my, a4, ;) and A, = (m,, a,, 5,) are equal,

iff my =m,, a; = a, and ; = B,.

2.3.2.2 Triangular Fuzzy Numbers in General Form

In this section, the TFN in general form is discussed. The general form of the TFN can
be derived from the LR-form if we let: a; = m — @, a, = m, a; = m + [, then

A = (a4, a,, a3) and the membership function for 4 is,

x - a1
a; <x < ay,
a, —a,
i(x) =< a3 — X
#a(x) _— a, <x < as,
ta3 —
0 otherwise

In the Figure 2.2. the general form of the TFN 4 is represented.

A

1z ()]
1

0 a1 az as

Figure 2.2. Representation of TFN in a general form.
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2.3.3 Trapezoidal Fuzzy Numbers

In this section, the TrFN is discussed. The LR-TrFNs is a generalization to the
LR-TFNs by extending the mean value m in LR-TFNSs to produce an interval [m, n].
LR-TrFN in the form (m,n, a,B) is said to be in LR-form (LR-TrFN), and if it is
represented as (aq,ay, as,a,), then it is in general form. In the following
Section 2.3.3.1, the graphical representation and arithmetic operations of LR-TrFNs are

reviewed.

2.3.3.1 Trapezoidal Fuzzy Numbers in LR-Form

In this section, the LR-TrFN are discussed. In the following Definition 2.3.3.1.1, the
membership function of the LR-TrFN is introduced.
Definition 2.3.3.1.1. A fuzzy number A = (m,n, a, ) is said to be a LR-TrFN, if its

membership function is given by:

m—x
(1— m—as<x<m, a>0,
a

1 m<x<n,
,ng(x) = X —n
- 5 n<x<n+pf,[>0,
k otherwise.
0
In the following Figure 2.3, the LR-TrFN is presented.
naCof
1
> x

0Olm—a m n n+p

Figure 2.3. Representation of LR-TrFN.
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Remark 2.3.2. Inthe LR-TrFN (m,n, a, ), a, 8 are called the left and right spread,
respectively, while m, n are the mean points.

Definition 2.3.3.1.2. A LR-TrFN 4 = (m,n, a, B) is called symmetric if & = S.
Definition 2.3.3.1.3. In the LR-TrFN A = (m,n, @, B) if a, B are negative or m > n
then it is not a LR-TrFN.

Definition 2.3.3.1.4. The sign of A = (m,n, a, B) is classified as follows:

) A is called positive (negative) iffm —a > 0,(8 +n <0). (2.3a)
I)  Aiscalledzeroiffm =0,n =0, = 0and § = 0. (2.3b)
)  Aiscalled near-zeroiffm—a <0< +n. (2.3c)

Definition 2.3.3.1.5. Two LR-TrFN 4 = (my,ny, @4, B1) and B = (m,, n,, ay, B)
are called equal, iff m; = m,, n; =n,, a; = @, and B, = B,. (2.4)
Definition 2.3.3.1.6. (Dubois & Prade, 1978; Kumar et al., 2011; Kumar & Neetu,
2010; Marni et al., 2018; Safitri & Mashadi, 2019) The arithmetic operations for two
LR-TrFN A = (my,ny, a1, 1) and B = (m,, n,, a,, B,) are represented as follows:
1) Addition:

A+ B= (my +my,n, +ny 0, +ay, B+ F2). (2.5q)
1) Opposite:

— A =—(my,ny,a.,By) = (—ny, —my, By, @1). (2.5b)

[1) Subtraction:

A—B = (my —ny,n, —my,ay + B, 1 + ay). (2.5¢0)
V) Scalar multiplication: Let A € R. Then,

(Am, An, Aa, AB), A=>0

A® (mn,ap) = {(An,ﬂm, —AB,—Aa), A <0

Multiplication:

Case I: If A > 0and B > 0 then:
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A X B = (mymy,niny, mia, + myay,ny By +nyf). (2.6a)
Casell: If A<0Oand B <0 then:
Ax B = (mymy,nyny, —(mya, + myay), —(n B, + 1)), (2.6b)
Case lll: A>0and B <0 then:
Ax B = (nymy, myny, nya, —myBy, my By — npaty). (2.6¢)
Case IV:A < 0and B >0 then:

A X B == (mlnz, nlmz, nzal - mlﬁz, mzﬁl - nlaz). (26d)

2.3.3.2 Trapezoidal Fuzzy Numbers in General Form

In this section, the graphical representation and arithmetic operations of TrEN in the
general form are discussed. In the LR-TrFN 4 = (m,n, o, B) if we let, a; = m — a,
a, = m,a; = nand a, = n + B, then we get the general form of the TrFN which can
be symbolically written as 4 = (a;, a,, as, a,).

Definition 2.3.3.2.1. A fuzzy number A is said to be an unrestricted (arbitrary) fuzzy
number if the domain of its membership function is a set of real numbers (R), i.e.,
ui(x): R — [0,1]. The set of unrestricted fuzzy numbers can be represented by F(R).
Definition 2.3.3.2.2. A fuzzy number 4 = (a,, a,, as, a,) is said to be a TrFN if its

membership function is given by,

X — a1
aq <x< a,,
a, —a;
1 a, <x<as
na) =9 g " x ’
P az < x < Ay,
4 0 3 otherwise.

where a; < a, < az < ay.
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The following Figure 2.4. represents the TrFN in general form

A

uz(x)
1

v

Figure 2.4. Representation of TrFN in a general form.

Remark 2.3.3.2.1. Inthe TrFN 4 = (a4, a,, as, a4), a; and a, are called left and right
endpoints respectively, while a, and a5 are called the mean points.

Definition 2.3.3.2.3. (Bansal, 2011) A TrFN 4 = (a,, a,, as, a,) is said to be non-
negative (non-positive) TrFN ie. A>0 (4 < 0) if and only if a; >0 (a; < 0).
A TrFN is said to be positive (negative) TrFN i.e. 4 > 0 (4 < 0) ifand only if a; > 0
(a, < 0). (2.7)
Definition 2.3.3.2.4. (Bansal, 2011) A TrFN 4 = (a,, a,, as, a,) is said to near-zero

TrEN if a; < 0 < a4, and can be classified as follows:

) Aiscalled N, — zero TrFN iffa; < a, < a3 <0 < a,. (2.8a)
I)  Aiscalled N, — zero TrFNiffa; < a, <0< a3 < ay. (2.8b)
)  Aiscalled N; — zero TrFNiffa; <0< a, < a3 < ay. (2.8¢)

Definition 2.3.3.2.5. (Bansal, 2011)
Two TrFNs numbers 4 = (a4, a,, as, a,) and B = (by, b,, b3, b,) are said to be equal,

if and 0n|y if a, = bl, a, = bz, as = b3 and a, = b4_. (29)
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Definition 2.3.3.2.6. (Bansal, 2011) The arithmetic operations for two non-negative
TrFN 4 = (a4, a,, as,a,) and B = (by, by, b3, b,) are represented as follows:
V) Addition:

A+ B= (a, +by,a, + by, a3 + bs,a, + by). (2.10a)

Vi) Opposite:

—A=—(ay,a, a3 a,) = (—a,, —as, —a,, —a,). (2.10b)
VII)  Subtraction:
A—B =(a; — by, a, — by, a3 — by,a, — by ). (2.10¢)
Multiplication:
A x B = (a;by,ayb,, ashs, a,b,). (2.10d)

2.4 Systems of Linear Equations

A system of linear equations or linear system is a collection of linear equations
involving the same set of equations that deals with all variables at once. A linear system
of equations is the simplest and the most helpful method to solve these equations. In

the following Section 2.4.1, the Crisp Linear System (CLS) is reviewed.

2.4.1 Crisp Linear System

In mathematics, a crisp system of linear equations is a set of one or more linear
equations involving the same set of variables (Anton & Rorres, 2013; Beauregard,
1973; Burden et al., 1981). A solution to a linear system is an assignment of values to
the wvariables such that all the -equations are simultaneously satisfied.

Computational algorithms for finding the solutions are an important part of numerical
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linear algebra and plays a prominent role in many fields such as
engineering, chemistry, computer science and economics.
Definition 2.4.1.1. (Andrilli & Hecker, 2003) A system of m linear equations in

n variables can be written as follows:

a11x1 + alzxz + e +a1nxn = bl'
az;1Xq + ay2X, + el +a2nxn = bz,
Am1X1 + QaXe + 0 oo A Xy = by

This system of linear equations is equivalent to the matrix equation AX = B

a1 Q12 0 Qip X1 b,

A1 G2 - QA X3 b
where A =[ . L x=("" |andB=| "2

Am1i Amz - Amn Xn b,,

In most real applications, this equation has played a prominent role in representing
models related to various sectors such as manufacturing, economics, engineering, and
other fields of science. Normally, when the linear equations system is used to solve any
real problem, the parameters used in the equation are only in the form of crisp numbers,
which are single-valued numbers. However, real situations are often not crisp and
deterministic and cannot be described precisely (Zimmermann, 2011). In many cases,
the classical linear system is not well equipped to handle uncertainties of information
in real-life problems because some values of the coefficients may be vague and

imprecise due to incomplete data.

In addition to that, the variables in the equation that contain crisp numbers are less
adequate to represent the uncertainty, vague and ambiguous information such as
unstable economics nature or insufficient data on quantity demand and supply

(Kocken & Albayrak, 2019). In this case, the variables of the equation should be
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replaced by fuzzy numbers. In practice, the data of the mathematical method are not

always exactly known.

Ramon (1979) declared that exact numerical data might be unrealistic, but vague data
can consider more features of a real-life problem. A natural way to describe vague data
is using fuzzy data. Thus, in this case, fuzzy numbers are a better usage than crisp
numbers for modelling uncertain problems. Fuzziness can be found in many areas of
daily life, such as in engineering (Blockley, 1980), in medicine (Vila & Delgado, 1983),
in meteorology (Cao & Chen, 1983) and in manufacturing (King & Mamdani, 1977).
However, it is particularly frequent in areas in which human judgment, evaluation, and
decisions are important. The fuzzy number theory was introduced by Zadeh (1965).
Later on, the theory was expanded by introducing the fuzzy arithmetic operation for the
LR-FNS (Dubois & Prade, 1978) and the particular form of fuzzy numbers
(Kaufmann & Gupta, 1991). Since then, increasingly rapid advances in this field have

contributed to various fields, including the FLS and FFLS.

2.4.2 Fuzzy Linear System

The FLS is a linear system that can be written as AX = B, where the coefficient matrix
A is a crisp matrix, B is a fuzzy vector and X is the fuzzy solution vector. The first and
most achievable approach of the FLS AX = B was obtained by Friedman, Ming and
Kandel (1998). They proposed a generic method for solving an n xn FLS by
employing an embedding approach. In this method, they used fuzzy numbers in a
particular form to construct the FLS. The n x n FLS was replaced by a 2n x 2n crisp
linear system and the solution was obtained by inverse matrix method. Though this

method contributed significantly in solving FLS, there were also various methods
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applied in  obtaining the solution such as LU  decomposition
(Abbasbandy et al., 2006) and the steepest descent method (Abbasbandy & Jafarian,
2006). However, they were still based on Friedman’s embedding method for converting

the coefficient of FLS to 2n X 2n crisp linear system.

However, in some applications, the obtained 2n x 2n crisp linear system became a
singular even though the original n x n FLS was non-singular. Mansouri and Asady
(2011) pointed out this issue as the weakness of Friedman’s method. Besides that,
Allahviranloo et al. (2011) also disclosed the failure of Friedman’s method in
classifying the weak or strong of the fuzzy solution, they have proved that the definition
of the weak fuzzy solution was not always correct, or in other words, it did not always

produce a fuzzy number vector.

In general, solving systems using constants is easier than using variables. For example,
Allahviranloo et al. (2013) and Salahshour et al. (2016) have attempted to extend FLS
to LR-FLS by replacing the entries of the vector B with LR-TFN. Additionally,
Nasseri et al. (2011) have attempted to extend FLS to a trapezoidal fuzzy linear system
by replacing the entries of the vector B with LR-TrFN. Moreover, Nasseri et al. (2014)
introduced a general model for solving the trapezoidal overdetermined FLS of

equations with n variables (m > n).

In addition, Ahmed et al. (2015) solved the LR-FLS by converting the LR-FLS to a
corresponding linear system where no fuzzy operations are required to obtain the
solution. The method solved large FLS and required less multiplication process and,

therefore, less computational time. Despite that, the technique by
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Friedman et al (1998) is still relevant, and there are still many studies that are based on
this technique, such as in Otadi and Mosleh (2015), Salahshour et al. (2016) and Zhou
and Wei (2014) which took advantage of this technique in solving the FLS. In the
following Section 2.4.3, all the parameters’ entries of the FLS are replaced by fuzzy

numbers in order to construct the FFLS.

2.4.3 Fully Fuzzy Linear System

In addition to the FLS, another fuzzy linear system implements the fuzzy numbers in
all of its parameters’ entries. This fuzzy linear system is known as FFLS or written as
AX = B, where all entries in 4, X and B are fuzzy numbers. In solving the FFLS, the
most important property considered is the sign of the parameters, either it is positive,
negative or near-zero fuzzy numbers (Kocken & Albayrak, 2015). This property is very
contrary with the FLS because in the FLS, the multiplication between the coefficient A
and fuzzy solution vector X does not depend on the parameter’s sign, while in the FFLS
the multiplication of fuzzy coefficient A and fuzzy vector X depend on signs of both
(Babbar et al., 2013).

Theorem 2.4.3.1 (Malkawi et al., 2014b) Let the min-max system fori = 1, ..., n,
n
Z lp}(f1,l1)](x1' ---;xn); ---;flﬁj(xl) ---;xn) = ¢)j(x11 ---;xn)-
j=1

If the two functions fz;]f,- forj=1,..,nand k = 1,2,3,4 are positive, and two functions

are negative in the min-max system, then the system can be reduced for an absolute

linear system, where i; for i = 1, ..., n is minimum or maximum function.
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Definition 2.4.3.1 (Kumar et al., 2011) The solution X = (x,y,z) of the FFLS is
termed as (feasible) strong fuzzy solution if y — x > 0 and z — y > 0. Otherwise, the
solution would be termed as (infeasible) weak fuzzy solution.
Remark 2.4.3.1. Based on Definition 2.4.3.1, the solution to fuzzy equations can be
classified as follows:
I) Strong fuzzy solution (feasible) if the solution obtained is fuzzy and satisfies
the fuzzy equation.
I1) Weak fuzzy solution (infeasible) if the obtained solution does not satisfy the
fuzzy equation.
[11) The non-fuzzy solution if the obtained solution is not fuzzy but satisfies the
fuzzy equation.
Definition 2.4.3.2 (Malkawi et al., 2014b) An absolute system or a system of absolute
equations is a collection of equations such that one of them is at least an absolute

equation.

Definition 2.4.3.3 (Malkawi et al., 2014b) The solution set of a system is called a finite

solution, where the number of solutions is more than one and not infinite solutions.

The following Definition 2.4.3.4 gives the relation between the minimum and
maximum values of two unknowns and their absolute values.

Definition 2.4.3.4 (Malkawi et al., 2014b) For any integers x and y, min (x,y) and
max (x,y) denote the minimum and maximum of x and y, respectively as follows

(Malkawi et al., 2014b),

) a+b |a-—b] a+b |a— b
min(a, b) = > > ,  max(a,b) = > + > . (2.11)

In the following Section 2.4.3.1, the existing analytical methods for FFLS is discussed.
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2.4.3.1 Existing Analytical Methods for Solving FFLS

In this section, previous analytical methods for solving FFLS are reviewed. The
preliminary study of FFLS conducted by Dehgan, Hashemi and Ghatee (2006) has
shown that the representation of all the parameters A, B and X were based on the
LR-TFN. In their study, they obtained positive solution X when the parameters A and
B were also positive fuzzy numbers. They converted the FFLS to a linear system of
equations. The fuzzy solution was obtained using linear algebra methods, namely

Cramer’s rule, Gaussian elimination and LU decomposition.

The revolution in this area has been going so quickly from 2006 on. Many studies have
applied various methods in solving the FFLS, such as Gauss-Cholesky decomposition,
row-reduced echelon method, and block matrix method (Malkawi et al., 2014b, 2014c;
Malkawi et al., 2014, 2015). However, these studies are limited to some conditions
since the sign of the LR-FNS were only restricted to be positive for all entries of the

FFLS.

Due to that reason, some studies were conducted that have less restriction on the sign
of parameters. The earliest studies of the FFLS with less restriction on the parameters
were conducted in Kumar et al. (2010). In these studies, they considered the coefficient
matrix A was a near-zero fuzzy matrix, while X and B were positive fuzzy vectors. The
n X n FFLS was converted to a system of 4n x 4n equations by applying KGMO.
Subsequently, the fuzzy solution X was obtained analytically by the matrix inversion
method. This study, however, was quite limited to small fuzzy systems due to the long

multiplication process.
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Therefore, the author extended their works by applying the LP approach
(Babbar et al., 2013) which was a great approach to overcome the sign restriction of the
previous methods. In this work, they obtained for the first time an arbitrary fuzzy
solution to arbitrary FFLS. Unfortunately, this method also has its disadvantages, and
it fails to find all the fuzzy solutions of the arbitrary FFLS (Malkawi et al., 2014b).

Kumar et al. (2013) introduced two computational methods for solving FFLS when the
coefficient matrix is either negative or opposite. In these studies, they improved KGMO
so that both solutions could be obtained effectively. In contrast to their previous studies,
a proper way of determining the consistency and feasibility of the solutions was
demonstrated clearly in this study. Nevertheless, the examples are shown in this study
only involve the fuzzy matrix A of size 2 x 2, which described that this method is only

limited for a certain size of matrices.

Kocken et al. (2016) developed an algorithm for solving FFLS with TrFN where there
are no restrictions on the sign of the parameters nor the variables in the linear system.
The FFLS converted to a system of equations based on newly developed arithmetic
operations where the solution to this system is obtained using the matrix inversion
method. Muruganandam et al. (2019) studied the FFLS with LR-TFN, the solution
obtained using the Gauss-Jordan Elimination. At the same time, Abbasi & Jalali (2019)
proposed a new approach based on the relative-distance-measure fuzzy interval
arithmetic for solving FFLS and their duals. Khalid and Othman (2019) used
decomposition and extended decomposition methods to solve different FFLS problems.
While, Vijayalakshmi et al. (2020) proposed the python coding ST decomposition
method for solving the FFLS with LR-TFN and TrFN, where the solutions of the FFLS
both have positive and negative values.
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2.4.3.2 Numerical Methods for Solving FFLS

In this section, the existing numerical methods in the literature for solving FFLS are
reviewed. Most researchers converted the FFLS to a corresponding system of linear
equations where the solution to that system is obtained mainly by Gauss-Seidel and
Jacobi Adomian decomposition method such as the methods by Dehghan and Hashemi
(2006; 2006a). Similarly, authors in Abbasbandy and Hashemi (2012), Ezzati et al.
(2014), Jing and Qiang (2009), Kumar et al. (2012), Nasseri et al. (2008, 2013), Nasseri
and Zahmatkesh (2010) and Edalatpanah (2014) introduced new numerical methods for
solving positive FFLS similar to Dehghan’s method (2006). However, all these
methods are only restricted to FFLS with a positive solution. In addition, Otadi and
Mosleh (2012b) investigated the unique and infinitely many solutions of the FFLS. In
addition, another study by Liu (2010) found a positive solution for FFLS with
LR-TFNs by Homotopy Perturbation Method. However, the method could only solve
FFLS with LR-TFNs with small fuzziness «, § compared with the mean value m. In

addition, the obtained solution does not satisfy the given FFLS.

Araghi et al. (2017) approximated the positive fuzzy solution to the positive FFLS with
LR-TFN using the Gauss-Seidel, Jacobi, Richardson and SOR iterative methods. They
have obtained accurate results; however, the methods were only applied to small size
FFLS. Siahlooei and Fazeli (2018) developed a new method for solving the FFLS with
TrEN. They have used a decomposition technique to convert a FFLS into two types of
decomposition in the form of interval matrices. Then the solution of the FFLS is
obtained by using interval operations. Abidin et al. (2019) applied the Gauss—Jacobi
method to solve FFLS using the trapezoidal area to decompose the FFLS into two

equations with positive and negative fuzzy numbers. However, this method can be
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applied to small FFLS only. In the following Table 2.1, the advantage and
disadvantages of the existing method for FFLS are compared. In the following Section

2.5, the linear matrix equations are discussed.

2.5 Matrix Equations

Information in science and mathematics is often organized into rows and columns to
form rectangular arrays known as a matrix (Anton & Rorres, 2013). This section

provides explanations on matrix equation either with crisp or fuzzy numbers.
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Table 2.1
Comparison Between the Advantages and Disadvantages of Analytical and Numerical

Methods for Solving FFLS.

Method Analytical Methods Numerical Methods
Advantages « Simple and easy to » Able to avoid long fuzzy
understand. arithmetic operations.
» Many classical linear + Can solve large FFLS.

algebra methods can cope ~ + It does not require a long
with this method. multiplication process, and

» The existence and hence long computational
uniqueness of the FFLS can times.

be checked before getting

the solution.

Disadvantages <+ Required long » Fuzzy operations are
multiplication process, and calculated manually and
hence long computational require more computational
times. time.

« Direct methods involve a » Sign restriction, numerical
lot of arithmetic fuzzy methods only can solve
operations and are therefore positive FFLS.

limited only for small size » Some methods are only
FFLS. limited to small sizes of
matrices, which is does not

exceedn = 2orn = 3.
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2.5.1 Crisp Linear Matrix Equation

In this section, the crisp linear matrix equation is discussed. The equation in the form

AX = B is known as a linear matrix equation, where

a1 Qg b11 b1p
A= (aij)mxn = : ‘B = (bij)mXp = : : and

An1 - Amn bml . bmp

xll cen xlp

X = (Xij)nxp = < : : )such that a;;, b;; and x;; are all in the crisp numbers
Xn1 - Xnp

formforevery 1 <i,j <m.
Definition 2.5.1.1. (Mathai & Haubold, 2017) The linear matrix equations are

consistent if the matrix A is invertible (det (4A) # 0).

2.5.2 Fuzzy Matrix Equation

A fuzzy matrix equation (FME) is a matrix equation that only allows some of the
parameters in fuzzy numbers. It can be written as:
AX =B,

where A4 is anm X n crisp matrix, while the matrices X and B are n x [ and m X [ fuzzy
matrix, respectively. The first studies for FME were by Guo and Gong (2010a; 2010b).
In these studies, the FME is converted to a crisp linear system using the embedding
method proposed by Friedman et al. (1998). Then, the system is solved numerically to
obtain the approximate solution. A year later, Gong and Guo (2011) improved their

previous method, which solved the inconsistent FME, which was previously

unavailable in Guo and Gong (2010a; 2010b).
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Additionally, Guo and Shang (2012a) and Otadi and Mosleh (2012) solved the FME by
modifying the numerical method proposed by Allahviranloo et al. (2011) to obtain a
symmetric solution of the FME. Meanwhile, Guo and Shang (2012b) used the LR-TFN
where the FME is converted into two crisp matrix equations by introducing a
generalization of DPMO; the authors proposed a simpler approach than the previous

studies. In the following Section 2.5.3, the FFME is considered.

2.5.3 Fully Fuzzy Matrix Equation

In this section, the FFME AX = B is discussed. In the following Definition 2.5.3.1, the
FFME is introduced.

Definition 2.5.3.1. (Guo & Shang, 2013b) The matrix equation in the form AX = B is

_ aiq QAin
known as FFME, where A= (dij)mxn = : =~ i |vi<i<m,
Am1 - Omn
=2 By - by
Bt o By
) Xy v Fp
X=Fijnxp = | K
Rni o Xy

V1<i<mn1<i<p,suchthata;;, b;; and x;; are fuzzy numbers.

The number of studies conducted on the FFME also is very limited. There was a study
conducted by Otadi and Mosleh (2012b), in which the LP method was extended to find
the non-negative solution for arbitrary FFME, where all the entries of AX and X were
represented by LR-TFN. This study used a similar method inspired by Kumar and Singh

(2012). Nevertheless, the method is unable to find all the possible fuzzy solutions, even
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though it has infinitely many solutions. Guo and Shang (2013b) applied DPMO for
solving AXB = C where 4, B and C are square non-negative LR-TFN respectively. This
method provided the easiest implementation, however, the solution to the FFME
required solving three equations separately, consequently the calculation was time-

consuming especially when it applied to large matrices with n > 3.

In addition, the methods for solving FFME are inherited from the methods proposed
for solving FFLS; therefore, all the stated problems in the previous methods proposed
for solving FFLS are effective for solving FFME, such as methods in
Kargar et al. (2014) and Otadi and Mosleh (2012b). Moreover, there are two further
problems:

1) The fuzzy arithmetic multiplication is computed between fuzzy matrices to
produce FFLS, such as in Guo and Shang (2013a, 2013b) which required much more
computational time due to applying fuzzy multiplication operations.

i) Basic definitions and operations in crisp matrices such as identity and transpose
are not developed to fuzzy matrices, where these definitions are essential to establish
required theorems. For example, the Kronecker product cannot be applied between
fuzzy and crisp matrices. Because of that, in Guo and Jin (2011), the fuzzy matrix
equations are separated to solve each value of m, @ and 3, then collected again in one

system to obtain the fuzzy solution.

2.5.4 Fuzzy Sylvester Matrix Equation

In this section, the FSME is discussed. In addition to the FME and the FFME, many
researchers were also interested in exploring the FSME. This equation is represented

by AX + XB = C, where the parameter € and X as fuzzy, while A and B are crisp
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values. In solving FSME, the most important method used is Vec-operator and
Kronecker product, where the FSME is converted to a linear system, and many methods
can obtain the solution. In 2010, the first study of FSME was carried out by Salkuyeh
(2011), in which the author applied the Accelerated Over Relaxation (AOR) method in
order to get the fuzzy solution. Moreover, Guo (2011) applied an embedding method
suggested in Friedman et al. (1998) to transfer the obtained FLS to crisp linear matrix
equations. Then the fuzzy solution is obtained by the matrix inversion method.
However, the fuzzy solution cannot be obtained easily if the coefficients are singular
matrices. Thus, the author has taken the initiative by performing the Moore Penrose
method to obtain the solution for singular FSME. In addition, Guo and Shang (2013a)

solved the FSME by applying the LR-FNS to deal with the fuzzy parameters.

Similarly, in Guo and Shang (2012a), they found the negative solution for a parametric
form of LR-FNS. Other than that, some numerical methods are proposed to solve the
FSME, which was carried out by Fariborzi and Hosein (2012) and Guo and Bao (2013).
Despite having proposed a significant method with fewer multiplication operations,
these iterative methods required many iterations to reach the final solutions and,

therefore, huge memory storage.

2.5.5 Fully Fuzzy Sylvester Matrix Equation

In this section, the FFSME is considered. In the following Definition 2.5.5.1, the
FFSME is discussed.

Definition 2.5.5.1. A fully fuzzy matrix equation that can be written as

AX +XB = C,



where 4 = (@;))mxm: B = (bij)nxns C = (&) mxn AN X = (%;}) mxn is called fully

fuzzy Sylvester matrix equation (FFSME). Which can be represented as follows:

n

(k) O] O,k _ O
Z Ay Xy + Z Xik bk}' = Cij -

i,j=1 i,j=1
kl=1,..,4 kl=1,..,4

The FFSME with TFN is TFFSME. TFFSME has been studied analytically only.
Shang et al. (2015) converted the TFFSME to a system of crisp SME where the fuzzy
solution was obtained using the Vec-operator and Kronecker product. However, this
method is restricted only to positive TFNs and requires long multiplication processes

and, consequently, long computational timing.

There was an alternative method proposed by Malkawi et al. (2015) in solving the
TFFSME contrary to the method in (Shang et al., 2015), where the authors converted
the TFFSME to FFLS using Vec-operator and Kronecker product. They have applied
their suggested method for solving the associated linear system obtained
(Malkawi et al., 2014c), where the FFLS was converted into a system of linear
equations. The fuzzy solution was then obtained by using the inverse matrix method.

The method was able to solve the TFFSME with less computational time.

Indeed, this method required shorter computational timing than Shang’s method;
however, it is also restricted to positive TFFSME. In addition, both methods are limited
to non-singular TFFSME. To overcome the shortcoming in these methods,
Daud et al. (2018a) obtained a positive solution for singular TFFSME by applying an
associated linear matrix system approach where the solution is obtained by using the
pseudoinverse method. Moreover, Daud et al. (2018a, 2018c, 2017) proposed another

algorithm for solving TFFSME with arbitrary coefficients which utilized KGMO
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(Kaufmann et al., 1986). The authors obtained the fuzzy solution by applying Vec-
operator and Kronecker products. However, the proposed method was able to obtain a
positive fuzzy solution only. In addition, the Vec-operator and Kronecker product

method cannot be applied to TFFSME with arbitrary coefficients.

A study was conducted by Dookhitram et al. (2015) on the TFFSME in the form
AX — XB = C, which used the a-cuts expansion approach in the parameters. The
method proposed has an advantage in the sense that it provides maximal and minimal
symmetric solutions of the TFFSME; however, the method required long fuzzy
operations in obtaining the solution. Similarly, the authors in Daud et al. (2018a)
proposed an algorithm for obtaining the positive solution of TFFSME with arbitrary
coefficients. However, the method was restricted only to positive fuzzy solutions. The

summary of the previous studies for the TFFSME is illustrated in Table 2.2.

2.6 Matrix Theory

In this section, a review of some basic concepts of matrix theory is provided. These
concepts are used in the development of the methods for solving GFFSME in the

following chapters.

2.6.1 Fundamental Concepts of Matrix Theory

Matrix theory is a theory in mathematics used to solve the system of linear equations
and various types of matrix equations. The basic fundamental of matrix theory is
defined in the following definitions, which have been referred from
Ben-lsrael and Greville (2003), Datta (2004) and Zhang (2011). The following are basic

definitions in matrix theory that are normally used in solving fuzzy systems.
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Definition 2.6.1.1. A collection of mn elements arranged in a rectangular array of m

rows and n columns is called a matrix of order m X n. It has the form

Table 2.2

FFSME Studies

A=

A1n )
Amn

Authors Method applied Advantages Disadvantages
Guo and * Vec-operator and The method can Required long
Shang Kronecker product. solve singular and multiplication
(2013Db) » The solution nonsingular processes and

obtained by matrix FFSME. therefore long
inversion method computational
and pseudoinverse. time.
Limited to positive
FFSME.
Malkawi ¢ \ec-operator and It is simple Limited only to
et al. Kronecker product. compared to Shang non-singular
(2015c¢) * Matrix inversion to method. FFSME.
an associated Able to solve large Limited to positive
linear system. size FFSME up to FFSME.
n = 10.
Daudetal. < Vec-operator and Able to handle the Restricted only for
(2018d) Kronecker product. singularity positive FFSME.
* Pseudoinverse. problems. It required long
It is also simple, computational
compared to Shang time.
method.
Daudetal. < Vec-operator and No restriction on The method is
(2018c) Kronecker product. the coefficient based on Vec-

Definition of min-
max function.

matrices.

operator and
Kronecker product
which cannot be
applied to near-
zero fuzzy
numbers.
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It is denoted by A = (a;;)mxn OF simply by A = (a;;), where it is understood that
i=1,...mandj = 1,...,n.

Definition 2.6.1.2. A m X n matrix is called a square matrix if m = n.

Definition 2.6.1.3. The square matrix having 1's along the main diagonal and zeros
everywhere else is called the identity matrix and is denoted by I. Sometimes an X n
identity matrix is denoted by I,or by I, ..

Definition 2.6.1.4. An m X n square matrix A is called a non-singular (also known as
invertible) matrix, if there exists an m X n square matrix B such that AB = BA = I,,,
where I,, denotes the n x n identity matrix.

Definition 2.6.1.5. The sum of two matrices A = (a;;) and B = (b;;) is a matrix of
the same order as A and B and is givenby A + B = (al-j 4 bl-j).

Definition 2.6.1.6. If c is a scalar, then cA is a matrix given by cA = (ca;;).

Definition 2.6.1.7. The transpose of an m X n matrix A is the n X m matrix

(an a1m>

ap1 - Amn

Definition 2.6.1.8. A matrix A = (a;;)mxx IS called a non-negative matrix if and only
if all the elements of the matrix are equal to or greater than zero, such that a; ; = 0, Vi, j.
Meanwhile, a matrix A = (a;;)mxnis called a positive matrix when all the elements are
greater than zero, a; ; > 0, Vi, j.

Definition 2.6.1.9. (Mathai & Haubold, 2017) A diagonal matrix is a square matrix

with non zeros entries on the main diagonal and zeros entries elsewhere.
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Definition 2.6.1.10. (Mathai & Haubold, 2017) The inverse of a diagonal matrix A is
another diagonal matrix B whose diagonal elements are the reciprocals of the diagonal
elements of A.

Definition 2.6.1.11. (Eves, 1980) A matrix A = (aij) is called a block matrix, which
can be decomposed into sub-matrices by inserting horizontal and vertical rules between
the selected rows and columns.

Definition 2.6.1.12. (Eves, 1980) A block matrix is a block diagonal matrix if the
diagonal elements have square matrices of any size (possibly even 1 x 1), and the other

elements are zeroes.

Definition 2.6.1.13. (Mathai & Haubold, 2017) A block diagonal matrix is invertible if
and only if each of its main-diagonal blocks is invertible, and in this case, its inverse is

another block diagonal matrix given by

an B & A7 0 - 0
0 A, 0 _( 0 A1 0
o o0 - A, 0 0 - At

Definition 2.6.1.14. (Mathai & Haubold, 2017) The determinant of the block diagonal

A, 0 0
. 0 A, .
matrix A = | : , 15 det(A) = det(4,) X --- x det(4,).
0 0 - A,

The following Section 2.6.2 described the Vec-operator and Kronecker product.

2.6.2 Fundamental Concepts of Vec-Operator and Kronecker Products

Vec-operator and Kronecker products have wide applications in solving matrix
equations (Agoujil et al., 2014; Sadeghi, 2016), especially for reducing or transforming
the matrix equations into a simpler form of linear equations (Harville, 1997; Schacke,
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2004; Zhang & Ding, 2013). The definitions and theorems of the Vec-operator and
Kronecker product are provided as follows:

VIIl)  Definition 2.6.2.1. Let A = (a;j)mxn aNd B = (b;j)pxq- The Kronecker

product for A @ B is given as follows:

allB anB

A®B = ( ) = (2B,

amB - amnB

Let A, B and C be the matrices that have some appropriate sizes, ATand A" denote the
transpose and the Hermitian transpose of matrix A respectively, and I,,, is an identity
matrix with order m x m. The following properties of Kronecker product are given as
follow:

1. I,®A = diag[A, A4, ..., Al.

2. If A = [A;] is ablock matrix, then for any matrix B, AB = [A;;B].

3. (A+B)®C = (AQC) + (BQC).

4. AQ(BRC) = (A®B)®C = AQBRC.

Definition 2.6.2.2. The Vec-operator generates a column vector from a matrix A by

a1 A1n
stacking the column vectorsofA={ ¢ ™ ¢ ]as,
An1 *° Ann
a1
a
Vec(d) =| (2.12)
aTlTl
a1 a1
A1 0 Qi
. : a a i .
Additionally, if Vec(4) = | ;' | then 4 = Vec ! %' :< P )
An1 " Ann
ann aTlTl

Definition 2.6.2.3. (Henderson & Searle, 1981)
LetA = (aij)qxq, B = (b and X = (xij)qxp, then:
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1. Vec[AX] = [I, ® A]Vec(X), (2.133)
2.Vec[XB] = [BT ® I,|Vec(X), (2.13b)
3.Vec[AXB] = [BT ® AlVec(X). (2.13¢c)
The following equations show a few examples of how the Vec-operator and Kronecker
product applied to matrix equations:
1.AX = B = (I®A)Vec(X) =Vec(B). (2.14a)
2.AX+XB =C = [(IQA) + (BT @D]Vec(X) = Vec(C). (2.14b)

= [A®BT|Vec(X) = Vec(C).
3.AXB =C = (BT ®A)Vec(X) = Vec(C). (2.14c)
4. AX +YB =C = [(IQA)Vec(X) + (BT ®D]Vec(Y) = Vec(C). (2.14d)
5. XA+ BX =C = [(AT®I) + (I ®B)]Vec(X) = Vec(C).

= [B@®ATVec(X) = Vec(C).
Definition 2.6.2.4. (Broxson, 2006) The Kronecker sum of two matrices @ can be
considered as a matrix sum defined by

A®B = AQI, + 1,®B, (2.15)

where A is m X m, B isn X n, @ represents the Kronecker product and I, I, are

identity matrices order m X m and n X n respectively.

For example, the Kronecker sum of two 2 X 2 matrices a;; and b;; is as follows:

a1 + by by, ai; 0

(a11 alz) o (b11 b12) _ b, a1 + by, 0 aq;

az1 Q22 b1 by azq 0 azz + byq by,
0 az, b4 az; + by

Definition 2.6.2.5. The Kronecker difference & is the matrix difference defined by

AOB = AQI, — I,®B, (2.16)
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where A is m xm, B isn X n, @ represents the Kronecker product and I, I, are

identity matrices order m x m and n X n respectively.

For example, the Kronecker difference of two 2 X 2 matrices a;; and b;; is as follows:

ay; — byg —by, ) 0
(a11 a12) o <b11 b12) _ —by, ay1 — by, 0 ajz
az1 Az byy by a1 0 ay; — byq —by,
0 azy —byq Ay — by

2.7 Interval Arithmetic Operations

In this section, basic arithmetic operations on intervals and a — cut intervals are

discussed.

2.7.1 Arithmetic Operations of Intervals

In this section the interval arithmetic operations are discussed. Interval arithmetic was
first suggested by Dwyer (1951, 1964). Development of interval arithmetic as a formal
system and evidence of its value as a computational device was provided by
Moore (1979). After this motivation and inspiration, several authors, such as Alefeld
and Herzberger (2012), Dubois et al. (2000) and Kaufmann and Gupta (1985), have
studied interval arithmetic. The following arithmetic operations on interval numbers
are well known (Ganesan & Veeramani, 2005; Hickey et al., 2001).
Definition 2.7.1.1. Interval arithmetic operations.
If A =[ay,a,], B=[by,b,],thenV a,,a,, b;,b, € R, we have,
IX) Addition

A+ B = [a;, + by, a, + b,]. (2.17a)

X) Subtraction
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A—B =[a; — b;,a; — by].
X1) Multiplication

Case ) If A and B are arbitrary real numbers then:

A X B = [min(ayby, a;b,, a;by, ayb,) , max(a,by, ayb,, aby, azb,)].

Casell) If A > 0 and B > 0 then:

A X B = [a,by,a,b,].
Case lll) IfA < 0and B < 0 then:

A X B = [a,b,,a,b,].
Case IV) IfA > 0and B < 0 then:

A X B = [a,by,a,b,].
Case V) IfA < 0and B > 0 then:

A X B = [a,b,,a,b,].
XII)  Division

é [alJaZ]

(2.17b)

(2.18a)

(2.18b)

(2.18¢)

(2.18d)

(2.18e)

= ——= = [min(a, /by, a,/b,,a, /by, a,/b,) ,max (a,/by,a,/b,,a,/by,a,/b,)]

B [b1!b2]
where by, b, # 0.

XI)  Inverse interval

A7l =1ay,a,]7t = [min (1/ay,1/a,), max (1/a4,1/a,)], where a;, a, # 0.

X1V)  Equality
Two intervals A = [a4,a,] and B = [by, b,] are equal, if and only if

a1 == bl’ az == bz.

XV) Scalar multiplication: Let A € R then,

XVI) 24 = Alaq, a,] = [min (Aaq, 1a,), max (Aaq, 1a,)].
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2.7.2 Operations on a — cut Intervals

The a — cut intervals can be used to represent different types of fuzzy numbers
(Hassanzadeh et al., 2018). An a — cut interval is a standard way for performing
different fuzzy arithmetic operations such as addition, multiplication, division and
subtraction (Bojadziev & Bojadziev, 1995). In the following definitions, some
necessary backgrounds and notions of a-cut intervals are reviewed (Dutta et al., 2011).
Definition 2.7.2.1. The a — cut intervals of fuzzy numbers A = [a;,a,] and
B = [by, b,], as crisp set are A, = [a$, a¥%], B, = [b%, b¥] respectively, Va € [0,1],
ai, a,, by, by, af, as, by, by € R, where A,, B, are acrisp interval (Hassanzadeh et al.,
2018). As a result, the operations of interval reviewed in Definition 2.7.1.1 can be
applied to the a — cut interval A, and B,. Operations between A, and B, can be
represented as follow:
1) Addition

A, + B, = [af, a%] + [b], bY] = [af + bf,ad + bY]. (2.20a)
) Subtraction

Ag — By = [af,a7] — [bf,b7] = [af — b3, a3 — b{]. (2.20b)
1)  Multiplication

Ay - By = [aix'ag] : [bix'bg]
= [min (afb¥, afby, a5 by, ayby), max(afby, afby,asby, asby)]. (2.20c)

IV)  Equality: Two intervals A, = [a¥,a¥] and B, = [b{, b5 ] are equal, if and
only if

af = by and a§ = b¥. (2.20d)
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Definition 2.7.2.2. (Lee, 2005) Triangular fuzzy number’s a — cut interval
An a — cut interval fora TFN 4 = (a,, ay, a3) is:

A, =[a$,a%] = [(ay — a)a + a;, —(az — ay)a + az], Va € [0,1].

In the following Definition 2.7.2.3, « — cut intervals for TrFNs are found based on the
definition of membership function of TrFNs in Definition 2.3.3.2.2 and the definition

of @ — cut intervals for TFNs in Definition 2.7.2.2.

Definition 2.7.2.3. (Lee, 2005) Trapezoidal fuzzy number’s a — cut interval.
An a — cut interval for a TrFN 4 = (ay, a,, as, a,) can be written as:

A, = [af,af] = [(a;, — a))a + a;, —(a, — az)a + a,], Va € [0,1].

2.8 Existing Methods for Solving Crisp Sylvester Matrix Equation

In this section, analytical methods for SME AX + XD = E as stated in Eq. (1.3), are
discussed. Analytical solution to the SME can be obtained by either applying the
concept of Vec-operator and Kronecker product or decomposing the coefficient
matrices. In the following Section 2.8.1, the method of Vec-operator and Kronecker

product for solving SME is reviewed.

2.8.1 Vec-Operator and Kronecker Product Method for Solving SME.

The solution to the crisp SME can be obtained using the Vec-operator and Kronecker
product method. Usually Vec-operator and Kronecker product convert the m x n crisp
SME to a linear matrix equation of dimension mn X mn. The main advantage of this
method is that the solution to this linear matrix equation can be obtained by many
classical methods such as matrix inversion method, reduced row Echelon form,

Cramer’s rule, etc.
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Using the Kronecker product notation and the vectorization operator, the crisp SME
AX + XD = E can be written in the form
= [(I,®4) + (DT ®I,,)]Vec(X) = Vec(E) (2.21)
= [A®DT|Vec(X) = Vec(E),
where A is of dimension m x m, D is of dimension n X n, X of dimension m X n and

I, is the k X k identity matrix.

Apart from that, another existing method to solve the crisp SME is by transforming the
matrix coefficients into a Schur or Hessenberg form (Golub et al., 1979). In the
following Section 2.8.2, the method of Schur decomposition and Bartels-Stewart is

reviewed (Bartels & Stewart, 1972).

2.8.2 Schur Decomposition and Bartels-Stewart Method for Solving SME

In this section, the Bartels-Stewart method (BSM) for solving the SME AX + XD = E,
is discussed. The development of this method is based on the Schur decomposition of
the coefficient matrices A and D respectively.

Definition 2.8.2.1. (Paige & Van Loan, 1981) The Schur decomposition of a matrix A
is the factorization A = QTRQ, where R is an upper triangular matrix which is called
a Schur form of A, and Q is a unitary matrix (QQT = I).

Let A= UA'UTand D = VD'VT be the lower (the upper) Schur decomposition of A
(of B), where U and V are orthogonal matrices and A’ (B') be a lower (an upper)

triangular matrix such that,
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’11 0 0 D{1 Diz D{n
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rAL L e AL 0 0 - D.
Thus, the SME in Eq. (1.3) then becomes UA'UTX + XVD'VT = E, which corresponds
to the following equation,

AX' +X'D' =E, (2.21)
where X’ = UTXV and €’ = UTCV. To solve for X in Eq. (1.3), we solve for X’ in
Eq. (2.21), and then we get X = UX'VT.

In the following Section 2.9, the GIM and LSIM methods for solving the ELME are

reviewed.

2.9 Existing Numerical Methods for Solving Linear Matrix Equations

The numerical solution of the LME AX = B and the ELME AXB = E, can be
approximated numerically using the GIM and LSIM, respectively. The following

theorems discuss the numerical solution to the ELME by the GIM.

Theorem 2.9.1. (Ding et al., 2008) If the linear matrix equation AX = E has a unique

solution X, then the iterative solution X (k) given by
X(k) =X(k—1) +a-(A)T(E — AX(k — 1)) converges to X or lim Xk))=X
for any initial value X (0).

Theorem 2.9.2 (Ramadan et al., 2015) If the crisp linear matrix equation AXB = E has

a unique solution X, then the least-square iterative solution X (k) given by

X(k) =X(k—-1) +a-((A)T-A)Y(A)T(E - AX(k—1)) converges to X or

Lim (X(k)) = X for any initial value X (0).
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Theorem 2.9.3 (Ding et al., 2008) If the ELME AXB = E has a unique solution X, then
the gradient iterative solution X (k) given by
X(k) =X(k—-1) +a-(A)T(E -AX(k—1B)(B)T converges to X or

Lim (X(k)) = X for any initial value X(0).
Theorem 2.9.4 (Ding et al., 2008) If the ELME AXB = E has a unique solution X, then
the least-square iterative solution X (k) given by

X(k) =X(k—1) +a- (A" DTAE - AX(k - DBYB)(BB))™!

converges to X or lim (X(k)) = X for any initial value X (0).
2.10 Overview of The Literature Review

This section presents an overview of the literature review. In the following Figure 2.5,

the literature review is summarized.
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CHAPTER THREE
RESTRICTED GENERALIZED TRAPEZOIDAL FULLY FUZZY
SYLVESTER MATRIX EQUATION

In this chapter, arithmetic fuzzy multiplication operations on TrFNs in general form are
developed based on the arithmetic multiplication operations of « — cut intervals. These
operations are used to develop the four methods for solving positive GTrFFSME and
its special cases. In addition, the new developed arithmetic fuzzy multiplication
operations are modified and reduced to a simpler form based on signs of trapezoidal
fuzzy numbers: positive, negative, and near-zero. In illustrating the constructed
methods, analytical and numerical approaches are utilized to the positive GTrFFSME
and its special cases using the reduced multiplication operators. In the following

Section 3.1, arithmetic fuzzy multiplication operations on TrENs are discussed.

3.1 Arithmetic Multiplication Operations Between Trapezoidal Fuzzy Numbers

Most of the existing literatures approximated the TrFNs multiplication using many
methods as discussed in Section 2.3.3.1 and Section 2.3.3.2, respectively. The previous
multiplication operations are limited to positive or negative TrFNs only. However,
there are numerous scenarios for the multiplication between TrFNs, due to the existing
signs of TrFNs that can be positive, negative or near-zero, as discussed in

Section 2.3.3.2.

Therefore, in this section, new arithmetic multiplication operations on TrFNs in general
form are developed that are able to consider all the signs of TrFNs. The new arithmetic
multiplication operations are based on converting TrFNs to their equivalent @ — cut

intervals using Definition 2.7.2.3. Then, the arithmetic multiplication operation of
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a — cut intervals in Definition 2.7.2.1 is applied to obtain the product of TrFNs. The
new developed fuzzy arithmetic multiplication operations on TrFENs can be applied to
all different signs of TrFNSs. This construction provides a more direct computation than
previous operators in Definition 2.3.3.1.6 and Definition 2.3.3.2.6 due to the
complexity of the operations involved. In this thesis, the new arithmetic multiplication
operators are called as Ahmd Multiplication Operator (AMO). The construction and
reduction of the newly developed arithmetic multiplication operators are discussed in
the following sections. In Section 3.1.1, arithmetic fuzzy multiplication operations
between arbitrary TrFENs are developed and reduced in Section 3.1.2 and Section 3.1.3

for restricted and semi-restricted TrFNSs, respectively.

3.1.1 Ahmd Multiplication Operator for Arbitrary Trapezoidal Fuzzy Numbers

In this section, arithmetic fuzzy multiplication operations between arbitrary TrFNs are
developed based on the arithmetic multiplication operations of a — cut intervals in

Definition 2.7.2.1.

Theorem 3.1.1.1.
Suppose that A= (a1, a,,a3,a,) and B = (by, by, b3, by) are two arbitrary TrFNs

respectively, then:

oY
oo]}

= (a,h,m,d), (3.1)
where

a = min(a,by, aby, azby, ashb,),

h = min(a,b,, a,bs, asb,, azbhs),

m = max(a,b,, a,bs, azb,, asbs),

d = max(a,by, arby, ashy, ash,).
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Proof: Let A and B be two arbitrary TrFNs. Then by Definition 2.7.2.3, the a — cut

intervals for A = (a,, a,, as,a,) and B = (by, by, b3, b,) are,
Ay = [af,af] = [(a; — a)a + a5, —(as — az)a + a,],
B, = [b%,b%] = [(by — b)) a + by, —(by — b3)a + b,],
Va € [0,1] respectively.
By applying the multiplication operations of o — cut interval in Definition 2.7.2.1 in

Eq. (2.20c), which is based on the interval multiplication in Definition 2.7.1.1 in

Eq. (2.18a), the product of 4, and B, is:

Aq X By = [af, af] x [bf, b§].
= [min (a{by, af by, ai by, asbs), max(as by, aiby, asby,asby)].
= [ef, e5].
where,
ef = min (afbf,af’bg, agbf, aibs) = min(((a; — ap)a + a;) - (b, — by +
b,), ((az — a;)a + a;) - (—=(by — b3)a + by), (—(as — az)a + a,) - ((b, — by)a +
b)), (—(as — az)a + a,) - (—(by — b3)a + b,)),
ed = max(afbf, af'bg, agbf, a$bs) = max(((a; — a))a + a;) - (b, — by +
by), ((az — a;)a + a;) - (—=(by — b3)a + by), (—(as — az)a + a,) - ((b, — by)a +
b)), (—(as — az)a + a,) - (—(by — b3)a + b,)),

By Remark 2.3.3, the left and right endpoints of the TrFN AB can be found if « = 0.

Thus, at o = 0,

AO X BO = [ef, eg] = [min(albl, a1b4, a4b1, a4b4), max(albl, a1b4, a4_b1, a4_b4_)].
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The following Figure 3.1 represents the product 4, x B,.

a=0

e, )

Figure 3.1. Representation of the product 4, X B, at a = 0.

Meanwhile the mean points of the TrFN AB can be found if we let & = 1. Thus, at

a=1,

A, X By = [el,e}] = [min(ayb,, aybs, azh,, azhs), max(ayb,, aybs, asb,, asbs)].

The following Figure 3.2 represents the product A; x B;.

v

Figure 3.2. Representation of the product A; x B; at a = 1.

By combining the endpoints and mean points of AB using the definition of TrFNs in

Definition 2.3.3.2.2 and Remark 2.3.3.2.1, the product AB is

where

AB = (a,h,m,d).

a= min(albl, a1b4, a4b1, a4b4),
h = min(azbz, a2b3, agbz, a3b3),

m = max(a,b,, aybs, azb,, azbs)
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d = max(a,by, arby, asby, ashy).

The following Figure 3.3 represents the product AB.

A

Figure 3.3. Representation of the product AB.

Definition 3.1.1.1.

If A and B are two arbitrary TrFNs respectively, then the product AB = (a, h,m,d) is
called AMO for arbitrary TrFNs.

The implementation of AMO is illustrated in the following Example 3.1.1.1.
Example3.1.1.1: Let A = (—4,—2,1,3) and B = (-5, 2, 4, 7) be two arbitrary TrFNs
respectively, then

a=min(—4 x —=5,—4x7,3x —=5,3x7) =-28,
h=min(-2x2,-2%x4,1x2,1x4)=-8,
m=max(—2X2,-2%X4,1x2,1x4) =4,

d =max(—4 X =5,—4x7,3x-53%x7)=21.

Therefore, AB = (—28,-8,4,21).
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Remark 3.1.1.1. Based on Theorem 3.1.1.1, the TrFN A = (ay,a,,as, a,) can be

expressed as a combination of two intervals; the first is [a,, a,] and the second is

[aZf a3]'

As shown in Example 3.1.1.1, AMO can find the product of arbitrary TrFNs. However,
when applying AMO to solve arbitrary fuzzy equations, they are converted to a non-
linear system of equations, which is challenging to solve since it involves a min-max
of four terms. Moreover, this non-linear system of min-max cannot be solved by
classical known methods as discussed in Section 1.2.1. Therefore, reducing the non-
linear system of equations from min-max of four terms to two terms makes the solution

to the fuzzy equations much easier in terms of computational time and memory usage.

Thus, a further modification to AMO needs to be done to make it more practical in
solving arbitrary fuzzy equations. TrFNs can be expressed as a combination of two
separated intervals based on Remark 3.1.1.1; therefore, interval arithmetic
multiplication operators in Definition 2.7.1.1 are used to modify and reduce AMO in
Theorem 3.1.1.1 for restricted and semi-restricted TrFNs. Therefore, in Section 3.1.2,
AMO is reduced to so-called reduced Ahmd multiplication operators (RAMO) based

on the sign of the restricted TrFNs that are positive or negative.

3.1.2 Reduced Ahmd Multiplication Operators for Restricted Trapezoidal Fuzzy

Numbers

In this section, AMO for arbitrary TrENs in Section 3.1.1 is reduced based on the sign
of the restricted TrFNs in Definition 2.3.3.2.3, which are positive or negative. In the
following Corollary 3.1.2.1, AMO in Eqg. (3.1) is reduced for positive TrFNSs.
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Corollary 3.1.2.1. Reduced Ahmd Multiplication Operators for Positive TrFNs.

Suppose that A = (ay,a,,as,a,) and B = (by, by, bs, b,) are two positive TrENs
respectively then:
AB = (a by, a,b,,asbs, a,b,). (3.2)
Proof: Let A and B be two positive TrFNs. Then by Theorem 3.1.1.1 and
Remark 3.1.1.1, AMO in Eqg. (3.1) can be reduced using interval arithmetic
multiplication operations in Definition 2.7.1.1, since A and B are two positive TrFNs.
Then by Eq. (2.18b), the product AB is reduced as follows:
min(a, by, a;by, asby, ayb,) = a, by,
min(a,b,, a,bs, asb,, asbs) = a,b,,
max(a,b,, a,bs, asb,, azbs) = asbs,
max(a,by, ayby, azhy, asby) = auby.
Therefore, RAMO between the positive TrFNs A and B is:
AB = (ayby,ayb,,a3bs, asby).
O
Definition 3.1.2.1. If 4 and B are two positive TrFNs respectively, then the
multiplication AB = (a,b;, a,b,, ashs, a,b,) is called reduced Ahmd Multiplication
Operators (RAMO) for Positive TrFNs.
In the following Example 3.1.2.1, the RAMO in Eq. (3.2) for positive TrFNs is

illustrated.

Example 3.1.2.1: Let A =(1,3,4,6) and B = (5,6,7,8) be two positive TrFNs
respectively, then AB can be found either by using AMO in Eq. (3.1) or RAMO for

positive TrFNs in Eq. (3.2) as follows:
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I) AB by AMO in Eq. (3.1) is,
a=min(1x51%x8,6x56x8)=1x%x5=05,
h=min(3x6,3xX7,4%x6,4%x7)=3X%X6=18,
m=max(3X6,3xX7,4X6,4%x7)=4x7=28,
d=max(1x5,1%Xx8,6X56x8)=6x8=48.

Thus, AB = (5,18, 28,48).
1) AB by RAMO in Eq. (3.2) is,
AB = (1x5,3%x6,4x7,6x8)=(5,18,28,48).
Remark 3.1.2.1. It is evident from Example 3.1.2.1 that the RAMO in Eq. (3.2) is more
practical than AMO in Eq. (3.1) for positive TrFNs.
In the following Corollary 3.1.2.2, AMO in Eqg. (3.1) is reduced for negative TrFNSs.
Corollary 3.1.2.2. Reduced Ahmd Multiplication Operator for Negative TrFNs.
Suppose that 4 = (ay, a,,as,a,) and B = (by, by, bs, b,) are two negative TrFNs
respectively, then:
AB = (a4by, azbz, ayb,, a.b;). (3.3)
Proof: Let A and B be two negative TrFNs, respectively. Then by Eq. (2.18c), the
product AB by AMO in Eq. (3.1) is reduced as follows:
min(a,by, a1by, asby, agb,) = auby,
min(a,b,, a,bz, azb,, azbs) = azbs,
max(a,b,, a,bs, asb,, azbs) = a,b,,
max(a, by, a1by, ayby, ash,) = a,b;.
Therefore, RAMO between two negative TrENS is:

AE = (a4b4_, a3b3, azbz, albl).
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In the following Example 3.1.2.2, the RAMO in Eq. (3.3) for negative TrFNs is
illustrated.
Example 3.1.2.2: Let A= (-5,—-4,—-2,—1) and B = (-9,—6,—3,—2) be two
negative TrFNs respectively, then the product AB can be found using the RAMO in
Eq. (3.3) as follows,
AB = (—1x—2,-2x=3,—4 x —6,—5 x —9) = (2,6,24,45).
In the following Corollary 3.1.2.3, AMO in Eq. (3.1) is reduced for the product of
positive and negative TrFNSs, respectively.
Corollary 3.1.2.3. Reduced Ahmd Multiplication Operator for Positive and Negative
TrFNs.
Suppose that A = (a;, a,, as, a,) is positive TrFN and B = (by, by, bs, b,) is negative
TrENSs, then:
AB = (a4by, ash,, aybs,a.b,). (3.4)

Proof: Let Aand B be two positive and negative TrFNs, respectively. Then, by
Eqg. (2.18d), the AMO in Eq. (3.1) is reduced as follows:

min(a, by, a;by, ayby, ayby) = auby,

min(a,b,, a, bz, asb,, azbsz) = azb,,

max(a, by, a,bs, azb,, azbs) = a,bs,

max(a, by, a by, asby,asb,) = a,b,.
Therefore, RAMO of positive and negative TrFNS is:

AB = (asb,, azb,, azbs, a;b,).

In the following Example 3.1.2.3, the RAMO in Eq. (3.4) for TrFNs is illustrated.
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Example 3.1.2.3: Let A = (3,4,6,8) and B = (=5,—4,—3,—2) be positive and
negative TrFNs respectively, then the product AB can be found using the RAMO in
Eq. (3.4) as follows,

AB = (8x —5,6 X —4,4 X —3,3 X —2) = (—40,—24,—12,—6).

In the following Corollary 3.1.2.4, AMO in Eq. (3.1) is reduced for the product of
negative and positive TrFNs.
Corollary 3.1.2.4. Reduced Ahmd Multiplication Operators for Negative and Positive
TrFNs.
Suppose that A = (a4, a,, as, a,) is negative TrFN and B = (by, b,, bs, b,) is positive
TrENs then:
AB = (a;by, aybs, azb,, ash,). (3.5)

Proof: Let Aand B be negative and positive TrFNs, respectively. Then, by
Eqg. (2.18e), the AMO in Eq. (3.1) is reduced as follows:

min(a, by, a;by, asby, asby) = a, by,

min(a,b,, a, bz, asb,, a3bz) = a,bs,

max(a, by, a,bs, azb,, azbs) = asb,,

max(a, by, ayby, asby, asb,) = asb;.
Therefore, RAMO of negative and positive TrFNs is:

AB = (a, by, b3, azby, asby).

In the following Example 3.1.2.4, the RAMO in Eq. (3.5) for TrFNs is illustrated.
Example 3.1.2.4: Let A =(-7,—6,—3,-2) and B = (2,4,6,7) be negative and
positive TrFNs respectively, then the product AB can be found using the RAMO in
Eq. (3.5) as follows,

AB = (=7x7,—6%X6,-3%X4,-2x2)=(—49,—36,—12,—4).
72



In the following Section 3.1.3, the AMO in Section 3.1.1 is reduced for semi-restricted
TrENSs.
Remark 3.1.2.2. The term semi-restricted TrFNs means one TrFN is restricted to

positive or negative, and the other TrFN is arbitrary (positive, negative or near-zero).

3.1.3 Reduced Ahmd Multiplication Operators for Semi-Restricted TrFNs

In this section, the developed fuzzy multiplication operator (AMO) for arbitrary TrFNs
in Theorem 3.1.1.1 is reduced for semi-restricted TrENSs. In the following corollaries,
the multiplication between semi-restricted TrFNs is reduced from four terms into two
terms only. This reduction contributes significantly to the solution of a family of fuzzy
equations in Chapters Four and Six.
Corollary 3.1.3.1 Suppose that A = (a4, a,, as, a,) is positive TrFN and
B = (b4, by, b3, by) is arbitrary TrFN, then:
AB = (min (a;by, ash,), min (ayb,, asb,), max (a,bs, asbs), max(a; by, azh,)). (3.6)
Proof:
Let A be a positive TrFN and B be arbitrary TrFN. The sign of B could be positive,
negative or near-zero, respectively. Therefore, this corollary is proven in three parts as
follows:
1) If both A and B are positive TrFNs, then by Corollary 3.1.2.1, the following
product is obtained,

AB = (a;by, ayb,, azbs, a,b,).
) If 4 is positive TrFN and B is negative TrFN, then by Corollary 3.1.2.1, the
following product is obtained,

AB = (a4by, azby, azbs, a;by).
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1) If Ais positive TrEN and B is near-zero TrFN, then by Definition 2.3.3.2.4, the
product AB is classified as follows:
Case ) Let A be positive TrFN and B be N; — zero TrFN then,
0<a <agand b; <0 < b,.
Therefore,
asb; < a;b; <0and 0 < a;b, < azb,.
Consequently,
asb; < a1by <0< ayby, < ayby. (3.7a)
In addition, since 0 < a, < a3 and b, < b3 < 0, then,
aszb, < a,b, < a,b; < 0and azb, < azb; < a,b; < 0. (3.7b)
By Eg. (3.7a) and Eq. (3.7b), AMO in Eq. (3.1) is reduced as follows:
a = min(a,by, a1 by, ayby, asb,) = asb,,
h = min(a,b,, a,bs, azb,, azbs) = azb,,
m = max(a,b,, a,bs,asb,, asb;) = a,bs,
d = max(a,;by,a,;by, agby, a,b,) = a,b,.
Therefore, if A is positive TrFN and B is N; — zero then:
AB = (a4by, ash,, aybs, ashy). (3.7¢)
Case I1) Let A be positive TrFN and B be N; — zero TrFN then,
0<a <agand b; <0 < b,.
Therefore a,b, < a;b; < 0and 0 < a;b, < ayb, Consequently,
asb; <a1b; <0< a by, < aygb,. (3.8a)
In addition, since
0<a,<as, b, <0< b3, a3b, <a,b, <0and 0 < a,b; < azb;. Therefore,
azb, < a,b, <0< a,b; < azbs. (3.8b)

By Eq. (3.8b) and Eq. (3.8c), AMO in Eq. (3.1) is reduced as follows:
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a = min(a,by, a by, ayby, asb,) = ab;,
h = min(a,b,, a,bs, azb,, asbs) = asb,,
m = max(a,b,, a,bs, azb,, azbs) = asbs,
d = max(a,;by,a;by, asby, a,b,) = ab,.
Therefore, if A is positive TrFN and B is N, — zero then:
AB = (a,by, asb,, asbs, a,b,). (3.80)
Case I11) Let 4 be positive TrFN and B be N; — zero TrFN then,
0<a, <agandb; <0 < b,.
Therefore a,b, < a;b; < 0and 0 < a,b, < asb, Consequently
asb; < a;b; <0< a by, < agb,. (3.92)
In addition, since 0 < a, < az and 0 < b, < b3, then,
0 < ayb, < a,b; < azb;,and 0 < a,b, < azb, < azbs. (3.9b)
By Eq. (3.9b) and Eq. (3.9c), AMO in Eq. (3.1) is reduced as follows:
a = min(a,by, a,1by, ayby, ash,) = ab;,
h = min(a,b,, a,bs, azb,, azbz) = a,b,,
m = max(a,b,, a,bs,azb,, azbs) = asbs,
d = max(a,by,a,;by, agby, a,b,) = a,b,.
Therefore, if A is positive TrFN and B is N; — zero then:
AB = (asby, ayb,, asbs, ashy). (3.90)
By combining Eq. (3.2), Eq. (3.4), Eq. (3.7¢), Eq. (3.8¢) and Eq. (3.9¢), If A is positive
TrFN and B is arbitrary TrFN, then the product AB is:
AB = (min (a,by, azh,), min (ayb,, azh,), max (a, bz, azhs), max(a, by, ashy)).
O
Example 3.1.3.1: Let A = (1,2,4,5) be positive TrFNs and B = (—6,—4,6,7) be

N, — zero, then AB is found using the RAMO in Eq. (3.6) as follows,
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AB = (min(1 X —6,5 x —6), min (2 X —4,4 X —4),max(2 X 6,4 X 6), max (1 X 7,5 x 7)).
Therefore,
AB = (—30,—-16,24,35).
Corollary 3.1.3.2: Suppose that A = (ay,a, as a,) is negative TrFN and
B = (by, by, b3, by) is arbitrary TrFN, then:
AB = (min (a,bs, asb,), min (aybs, azhs), max (asb,, ayb,), max(asb,, a;by)).
(3.10)
Proof: Let A be negative TrFN and B be arbitrary TrFN. The sign of B could be
positive, negative or near-zero TrFN. Therefore, this proof is divided in three parts as
follows:
1) If both A and B are negative TrFNSs, then by Corollary 3.1.2.2, the following
product is obtained,
AB = (a4by, azbz, ayb,, a.by).
) If A is negative TrFN and B is positive TrFN, then by Corollary 3.1.2.4, the
following is obtained,
AB = (a by, aybs, ash,, a,b,).
1) If A is negative TrFN and B is near-zero TrFN, then by in Definition 2.3.3.2.4,
the product AB is classified as follows:
Case 1) Let A be negative TrFN and B be N; — zero TrFN then,
a; <a,<0andb; <0< b,.
Thus, 0 < a;b,, 0 < a,b,, a;b, < 0 and asb, < 0.
In addition, a,b; > a,b, > 0 and a,b, < a,b, < 0. Therefore,
a;b, < aub, <0< a;b; < aub;. (3.11a)
In addition, since a, < a;z < 0 and b, < b3 < 0, therefore,

0 < azb; < azb, < a,b, and 0 < azb; < a,b; < a,b,. (3.11b)
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By Eq. (3.11a) and Eq. (3.11b), AMO in Eq. (3.1) is reduced as follows:
a = min(a,by, a1by, agby, asb,) = a,b;,
h = min(a,b,, a, bz, azb,, asbs) = asbs,
m = max(a,b,, a,bs, azb,, azbs) = a,b,,
d = max(a, by, a;by, asby, asby) = aub;.
Therefore, if A is negative TrFN and B is N; — zero then:
AB = (a,b,, asbs, ayb,, a,by). (3.11¢)
Case I1) Let A be negative TrFN and B be N, — zero TrFN then,
a, <a, <0and by <0< b,. Therefore 0 < a,b; < a;b; and a;b, < asb, <O0.
Consequently,
a;b, < aub, <0<aub; < a,b;. (3.12a)
In addition, since a, < a; < 0and b, < 0 < b;. 0 < a3b, < a,b, and
a,b; < as;b; < 0, consequently,
a,b; < azb; <0< azb, < a,b,. (3.12b)
By Eqg. (3.12a) and Eq. (3.12b), AMO in Eq. (3.1) is reduced as follows:
a = min(a,by, a,1by, ayby,asb,) = a,b,,
h = min(a,b,, a,bs, a3b,, azb;) = a,bs,
m = max(a,b,, a,bs, azb,,azbs) = a,b,,
d = max(a,by,a,;by, asby, a,b,) = a,b;.
Therefore, if A is negative TrFN and B is N, — zero, then:
AB = (a,by, aybs, ayb,, arby). (3.120)
Case I11) Let 4 be positive TrFN and B be N; — zero TrFN then,
a; <a, <0and by <0< b, Therefore 0 < a,b; < a;b; and a;b, < azb, < 0.
Consequently,

a;b, < aub, <0<aub; < a,b;. (3.13a)
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In addition, since a, <a; <0 and 0 < b, < b, then a,b; < a,b, < azb, and
a,b; < a,b, < azbs. Inaddition, a;b; < aszb,. Consequently,
a,b; < a,b, < azbz < asb,. (3.13b)
By Eq. (3.13a) and Eq. (3.13b), AMO in Eq. (3.1) is reduced as follows:
a = min(a,by, aby, ayby,asb,) = a,b,,
h = min(a,b,, a, bz, azb,, azbz) = a,bs,
m = max(a,b,, a,bs,azb,, azbs) = asb,,
d = max(a,by, a by, asby, ash,) = a,b;.
Therefore, if A is negative TrFN and B is N, — zero then:
AB = (a,b,, aybs, asb,,a,b;). (3.13¢)
By combining Eq. (3.2), Eq. (3.4), Eq. (3.11c), Eqg. (3.12c) and Eqg. (3.13c), the
following is obtained.
AB = (min (a;by, a,b,), min (a,bs, azhs), max (asb,, a,b,), max(a,by, a;by)).
O
Example 3.1.3.2: If A = (—11,-7,—4,—2) and B = (—1,4,5,7) two TrFNs, then
AB is found using the RAMO in Eq. (3.10) as follows,
AB = (min(—=11x 7,-2 x 7),min (=7 X 5,—4 X 5), max(—4 X 4,—7 x
4),max (-2 x —1,—11 x —1).
Therefore,
AB = (-77,-35,-16,11).
Corollary 3.1.3.3 If 4 is near-zero TrFN and B is arbitrary TrFN and based on the
definition of near-zero TrFNs in Definition 2.3.3.2.4, the product AB can be classified
as follows:
Case I) If A is N; — zero TrFN and B arbitrary TrFN then:

AB = (min (aiby, agby), min (a,bs, azbz), max (azb,, a,b,), max(ayby, a;by)).
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(3.14a)
Case Il) If A is N, — zero TrFN and B arbitrary TrFN then:
AB = (min (a,by, asby), min (a, b3, azh,), max (ayb,, azhs), max(asb,, a;b,)).
(3.14b)
Case ) If A is N; — zero TrFN and B arbitrary TrFN then:
AB = (min (a,bs, asby), min (a, by, ash,), max (aybs, azhs), max(asb,, a;by)).
(3.14¢)
Proof: Straightforward similar to Corollaries 3.1.3.1 and 3.1.3.2.
O
Corollary 3.1.3.4 If A = (a,, a,, as, a,) is arbitrary TrFN and B is positive TrFN then:
AB = (min (a,by, a,b,), min (a, by, aybs), max (asb,, azhs), max(a,by, azh,)).
(3.15)
Proof: Straightforward similar to Corollaries 3.1.3.1 and 3.1.3.2.
O
Corollary 3.1.3.5If A = (ay, a,, as, a,) is arbitrary TrFN and B is negative TrFN then:
AB = (min (asb,, asb,), min (aszb,, azhs), max (aybs, ayb,), max(a by, a;by)).
(3.16)
Proof: Straightforward similar to Corollaries 3.1.3.1 and 3.1.3.2.
O
Corollary 3.1.3.6 If A4 is arbitrary TrFNs and B is near-zero TrFN and based on the
definition of near-zero TrFN in Definition 2.3.3.2.4, the product AB is classified as
follows:
Case ) If A is arbitrary TrFN and B is N; — zero TrFN then:
AB = (min (asb,, a,b,), min (azb,, azh3), max (aybs, a,b,), max(a by, ashy)).

(3.17a)
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Case I) If 4 is arbitrary TrFN and B is N, — zero TrFN then:
AB = (min (asby, a;by), min (aszb,, a,bs), max (a,b,, ashs), max(a,; by, ashy)).
(3.17b)

Case Il1) If A is arbitrary TrFN and B is N3 — zero TrFN then:
AB = (min (asb,, a,b,), min (a,b,, a,bs), max (asb,, azhs), max(a by, ahy)).
(3.17¢)

Proof: Straightforward similar to Corollaries 3.1.3.1 and 3.1.3.2.

The following Figure 3.4 summarizes AMO and RAMO for TrFNs.
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Figure 3.4. Summary of AMO and RAMO for Two TrFNs.
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Multiplication of three TrFNs whereby one of them is unknown requires that the
constructed AMO and RAMO to be extended. In the next Section 3.3 the solution of
the GTrFFSME AXB + CXD = E requires getting the product of three TrFNs.
Therefore, in the following Section 3.2, AMO and RAMO in Sections 3.1.1 and 3.1.2
are extended to three TrFNs. The newly obtained arithmetic multiplication operators

for three TrFNs are applied to solve the GTrFFSME in Chapters Three and Four.

3.2 Extended Ahmd Multiplication Operation for Three TrFNs

This section develops new arithmetic multiplication operations between three TrFNs,
namely extended Ahmd arithmetic multiplication operations (EAMO) based on AMO
and RAMO in Sections 3.1.1 and 3.1.2. The new extended arithmetic multiplication
operations are necessary for solving the GTrFFSME AXB + CXD = E. In solving the
GTrFFSME, the fuzzy solution matrix X is unknown and consequently the product

AXB and CXD are very challenging to be obtained using AMO or RAMO. In the

following Corollary 3.2.1, the EAMO are discussed.

Corollary 3.2.1. Extended Ahmed Multiplication Operators for Three Arbitrary
TrFNs
Suppose that A = (a;, a,, as,a,), B = (by, by, b3, by) and X = (x4, x,, x3, x,) are
three arbitrary TrFNs. Then:
AXB = (¥, ¥,,¥;,¥,) (3.18)

where,

¥, = Min[min(a,xy, a1X4, Q4X1, AsXy) - by, min(a;xq, ayx4, A4X1, A4Xy) - by,

max(a; X1, Q1 X4, A4X1, AgXy) * by, max(a;xq, Q1x4, A4X1, AyXy) - by).

¥, = Min[min(a,x,, a;Xx3, A3X,, A3X3) - by, min(a,x,, a;x3, asx,, azxs) - bs,
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max(a,x,, a; X3, A3X5, A3X3) * by, max(a,x,, AyXx3, A3X5, A3X3) * bs],
Y, = Max[min(a,x,, a,X3, AzX;, AzXx3) - by, min(ayx,, a;x3, A3X,, A3X3) - bs,
max(a,x,, a, X3, A3X,, A3X3) - by, max (a,x,, AyX3, A3X5, AzX3) * bs].
Y, = Max[min(a,x,, a1X4, QyX1, AsXs) * by, min(a,;x;, ayx4, A4X1, A4Xy) - by,
max(a, Xy, Ay Xy, AgX1, AgXy) - by, max(a xq, A1 Xy, AyXq, AsXy) - byl
Proof: Let AandX be two arbitrary TrFNs. Then, by AMO in
Theorem 3.1.1.1, the product AX = (a, h, m, d), where
a = min(a;xq, A1X4, QgXq, AgXy),
h = min(a,x,, a;x3, aszx,, azxz),
m = max(a,x,, a;X3, A3X,, A3X3),
d = max(a,x,,a;X,, QgX1, AyXy).
Since the product of two arbitrary TrENs is arbitrary TrENs. AMO in Eg. (3.1) is
applied to find the product of AX and B as follows:
AXB = (a,h,m,d) x (by, by, b3, b,)
AXB = (W1, ¥,,¥3,¥,)
where,
Y, = Min[min(a,xy, a1X4, Q4X1, AsXy) - by, min(a,xy, a4 x4, A4X1, A4X,) - by,
max(a; Xy, Q1 X4, A4X1, AgXy) * by, max(a;xq, A1X,, AyXy, AsXy) - by].
¥, = Min[min(a,x,, a;Xx3, A3X,, A3X3) - by, min(a,x,, a,x3, azx,, azxs) - bs,
max(a,x,, a; X3, A3X5, A3X3) * by, max(a,x,, ayXx3, Az3X,, A3X3) * bs],
¥, = Max[min(a,x;, a;X3, A3X4, A3X3) - by, min(a,x,, ay;X3, A3X,, A3X3) * b,
max(a,x,, Ay, X3, A3X,, A3X3) * by, max (a,Xx,, AyX3, A3X,, A3X3) * bs].
Y, = Max[min(a,xy, a1Xy, Q4X1, AsXs) - by, min(a,xq, ayx4, A4X1, A4X,) * by,

max(a; Xy, A X4, A4X1, A4X4) * by, max(a;xq, a1X4, A4X1, AsXys) - by).
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Example 3.2.1: Let A = (—=4,-2,1,3), X = (-5,2,4,7) and B = (—1, 1, 3, 5) be three arbitrary TrFNs respectively, then by EAMO
AXB = (Y1, Y2, V3, Ya)-

where,

¥1 = Min(min(—4 X —=5,—4 X 7,3 X —=5,3 X 7) X =1, min(—4 X —=5,—-4 x 7,3 X =5,3 X 7) X 5,max(—4 X —5,—4 X 7,3 X

—5,3%x7) x =1, max(—4 X =5,—4 x 7,3 X =5,3 X 7) X 5).

Y2 = Min(min(=2 X 2,-2x%X4,1x2,1x4) x1,min(—2x2,-2x4,1x2,1x4)x3,max(—2x%x2,-2%x4,1x2,1x4)x

1, max(—2x2,-2x4,1%x2,1x4)x3).

¥3 = Max(min(—4 X —5,—4 x 7,3 X —=5,3 X 7) X =1, min(—4 X —5,—4 x 7,3 X —=5,3 X 7) X 5,max(—4 X —=5,—4 X 7,3 X

—5,3x7)x -1, max(—4 X —=5,—-4 X 7,3 X =5,3 X 7) X 5).

Ve = Max(min(—2 x 2,—-2 X 4,1 x 2,1 x4) x 1,min(—=2x2,-2x4,1x2,1x4) x3,max(—2%x2,—-2X4,1x2,1x4)x
1, max(—2x2,-2x%x4,1%x2,1x4)x3).
Thus,

AXB = (—140,—24,12,105).
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Remark 3.2.1. Example 3.2.1 can be solved by getting the product of AX and multiply
it to B. However, in solving the GTrFFSME in Eq. (1.16), the product AX cannot be
completely calculated as X is unknown and therefore AX B needs to be found similar to
Example 3.2.1 using EAMO.

In the following Corollary 3.2.1, EAMO for three TrFNs in Eq. (3.18) is reduced for

three positive TrFNs using the RAMO in Corollary 3.1.2.1.

Corollary 3.2.1. Suppose that A = (a;,a, as,as), X = (x1,%3,%3,%,) and

B = (by, b,, b3, b,) are three positive TrFNs then:

AXB = (ayx,by, ayx,b,, a3x3bs, ayx,b,) (3.19)
Proof: Let A and X be two positive TrFNs, and based on RAMO in Corollary 3.1.2.1,
the product AX is
AX = (a,h,m,d),
where
a = min(a;x;, Q1X,, QuXq, QyXy) = A1Xq,
h = min(a,x;, a;x3, A3X,, AzX3) = AyX,
m = max(a,x,, A, X3, A3X,, A3X3) = A3X3
d = max(a,X;,a1X4, AgX1, A4Xs) = AyXy.
Thus, EAMO in Eq. (3.18) can be reduced as follows:
Y, = Min[ ayx1b1, a1X1by, ayx,bq, ayx,by],
Y, = Min[ a,x,b, ,a,x,b3, azx3b,, azx3bs],
¥, = Max[ ayx,b,, ay,Xx,b3, azx3by, azxsbs],
Y, = Max[ayx1b1,a1%X1by, ayx4bq, ayx,by].
Since B = (b, by, b3, b,) is a positive TrFN, by Definition 2.3.3.2.3, the following is

concluded:
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0<b, <b, < by <bh,.
Thus, the following can be obtained:
Y, = Min[ ayx1b1,a1X1by, ayx4bq, ayx,by] = ayx1 by,
Y, = Min[ ayx,b,,a,Xx,b3,a3x3b,, azx3bs] = a,x,b,,
¥, = Max[ a;x,by, a3x,b3, azx3by, azxsbs] = azxsbs,
¥, = Max[ ayx1b1,a1X1by, ayx4bq, ayx,by] = ayx,by.
Therefore, the EAMO in Eqg. (3.18) can be reduced as follows:

AXB = (a1x1by, ayx,b5, azx3bs, asxsby). O

So far, complete arithmetic multiplication operations between TrFNs have been
developed. In the following Section 3.3, the positive GTrFFSME in Eq. (1.16) is

converted to a system of GSME based on the EAMO in Eq. (3.19).

3.3 Solving Positive Generalized Fully Fuzzy Sylvester Matrix Equation

In this section, the solution to the positive GTrFFSME AXB + CXD = E is discussed.
In order to obtain the positive fuzzy solution to the positive GTrFFSME in Eq. (1.16),
EAMO in Eq. (3.19) is applied to convert the positive GTrFFSME to an equivalent
system of GSME where the solution to the system of GSME and GTrFFSME are
equivalent. The analytical solution to the system of GSME is obtained by constructing
the fuzzy matrix vectorization method (FMVM), and the numerical solution is obtained
by constructing the Fuzzy Gradient Iterative Method (FGIM) and Fuzzy Least-Squares
Iterative Method (FLSIM). The following Figure 3.5 displays the flow chart of the

constructed methods for solving positive GTrFFSME.
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4[ Positive Fuzzy Solution ]7

Figure 3.5. Flow chart of the constructed methods for solving positive GTrFFSME.
In the following Definition 3.3.1, the positive GTrFFSME is introduced.
Definition 3.3.1. A matrix equation GTrFFSME AXB + CXD = E is called Positive

Generalized Trapezoidal Fully Fuzzy Sylvester Matrix Equations (PGTrFFSME) if

i— o ,@ 6 ™ -
A_(l])qxp_(u' ;i 4, a; )V1Sl’]Sqrpr

= o @ .6 @ ..
C= ( U)qxp (Clj 'CU 'CU ’ U ) V1<ij<gqp

B ( l])nxr _ (b(l) b(z) b(3) b(4)) V] < l,_] < nr

TR T R 7
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D=(dy),  =d}d?Pd d?v1<ij<nr

2y gy

€3] (2) (3) (4) ,
_(U)pxn (7 x50 x50 %;°), V1 < i,j < pnand

1 2 3 4 ‘s .
E=(&),, = PelP el ey ¥1 < i,j < q,r, are positive trapezoidal

fuzzy matrices.
In the following Definition 3.3.2, the system of GSME is introduced.

Definition 3.3.2. A system of matrix equations in the form of

(a@xDpD 4 (DrDgD = oD

= e
(2) (2) (2) (2) (2) (2) (2)

< b + C d = eij )
(3) (3) (3) (3) (3) (3) (3)
b + Cij d e

ka(4) 2 b(4) N 6(4) (4)d(4) _ @

€ij -
is called a system of GSME.

In the following Theorem 3.3.1, the PGTrFFSME is converted to an equivalent system
of GSME.

Theorem 3.3.1. Fundamental Theorem of Generalized Trapezoidal Fully Fuzzy

Sylvester Matrix Equation

Then the PGTIFFSME AXB + CXD = E is equivalent to the following system of

GSME:
aPxPbP + PP aD = (O
x by + e dy = e
(z) (z) a (z) (z) o _ )
b +c di7 = e,
(3.20)

(3) (3)b(3)+ (3) (3)d(3) e

ij U U !
l (4) (4) b(4) + C(4) (4)d(4) (4)_

Proof: Let 4, B, C, D, E and X in the PGTrFFSME AXB + CXD = E be positive
trapezoidal fuzzy matrices. Then by EAMO in Eq. (3.19), the product AXB and CXD

are obtained as follows:
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(4) xi(]fl) b 1(14))

126 = 3 (4P 05D, @ P2, PP
%8 = Y (aPx b, aPxPb?, 0P xPb,a

and,

j
25 = N (D DD @ 2@ 3, B @ @0
CXD _Z( U U dl] ! U l] dl] Py U dl] ] l] d )

By Definition 2.3.3.2.6 and Eq. (2.10a), the sum AXB + CXD is obtained as follows:

j
AXB + CXD = Z (1) (1)bl(]1)’ () (Z)bl(]Z)’ (3) (B)bl(]g)’ ) (4)b(4)
i=1

1), W 4D 2,@ 4@ (3,346 &, @ @
tc U l] dU P U dl] rEij U dl] rrij U d )
Vi<i<ql<j<r

By Definition 2.3.3.2.5 and Eq. (2.9), the PGTrFFSME AXB + CXD = E is equivalent

to the following system of GSME:

aPx PP +cPxPadP = o)

ij

(2) (2) (2) (2) (2) (2) _ (2)
17 17 b" +C" 11 d" - ij )
(3) (3) (3) (3) (3) (3) (3)
b + Cij d e

(4) (4)b(4) + 6(4) (4)d(4) — @
l] )

O
In the following Definition 3.3.3, the trapezoidal positive fuzzy solution matrix X to

the PGTrFFSME is introduced.

D 2@ 28 2Dy where

Definition 3.3.3. The trapezoidal fuzzy matrix X = (xi; 7 x50 x5 x

x )2 x 2 xP = x{) > 0,v1<1i,j <n miscalled a positive fuzzy solution of

the PGTrFFSME.
To solve the PGTrFFSME in Eq. (1.16), the corresponding systems of crisp GSME in

Eq. (3.20) is considered. However, before constructing the methods for solving the
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system of GSME, sufficient conditions for the system of GSME to have a unique

positive solution are discussed.

Theorem 3.3.2 The Uniqueness of Positive Solution to The System of GSME

The system of GSME in Eqg. (3.20) has a unique positive solution if the following

conditions are satisfied:

I) det(r;) # 0,det(r,) # 0,det(r;) # 0O anddet(r,) #0i.er, rp, r3andr,

are invertible matrices where

r = (b(l))T®a(1) (d(l))T®C(1)
= 62 ®a® + (D) e

3 = (b(3))T®a(3) + (d(3))T®C(3)

y !

!

!

T, = (bl(4))T®a(4) + (d(4))T®C(4).

I 71, 1, rylandry t > 0.

Proof:

I) Consider the system of GSME in Eq. (3.20), and by applying the concept of

Vec-operator and Kronecker product in Definition 2.6.2.3, the following system

of linear matrix equations is obtained:

((b(z))T®a(2)

(b)) ®a) +

(((b(l))T®a(1) +

9
(b ®af? +

(d(l))T®c(1))vec(x ) = vec(e(l)
(d(z))T®c(2))vec(x(2)) = vec(e(z))
(d(3))T®c(3))vec(x(3)) = vec(e(3))
(d(4))T®c(4))vec(x(4)) = vec(e(4)

(3.21)

The system of linear matrix equations in Eq. (3.21) can be written as a linear matrix

equation in the form,

RS=T (3.22)
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Or in a matrix form as,

(bi(l))T®a(1) + (d(l))T®C(1) 0 0 0 vec(x.(.l)
0 B2 8a? + (AP ®c? 0 0 vec(x(?
K 0 0 bV ®aip + (@) ®c;) 0 ) vec(x;
)] ©)] ©)) (4 )]
0 0 0 (b;;)'®a;;” + (d;;) vec(xi]- )
vec(e(l))
vec(e(z))
vec(em)
vec(em)
where,
b)) ®af + (@) @)’ 0 0 0
. 0 (bi(z))T®a(2) e (d(z))T®C(2) 0 0
0 0 (bi(3))T®a(3) + (d(3))T®C(3) 0 !
0 0 0 (bi(4))T®a(4') (d(4))T®C(4)
vec(x(l)) vec(e(l))
vec(x ) vec(e )
S = (3) and T = (3)
vec(x ) vec(e )
vec(x(4)) U€C(3(4))
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Let, 7y = (b)) ®afy + (d) ®c;

(1)
l]’

— (bl(z))T®a(2) + (dl(z))T®C(2)

ry = (b(3))T®al(3) (d(3))T®Ci(j3) and T, = (b(4))T®al(4) (d(4))T®Cl(]4)

Then
n 0 0 O
[0 n 0 O
R=1o 0 r o
0 0 0
vec(x(l))
S1
vec(x(z) S,
If we let S = =
vec(x ) :
Sy
vec(x(4))

matrix equation in Eq. (3.22) can be written as

0

o o o

4
0
0

T3
0

0
0
0

L)

vec(e

vec(e

vec(e- -
(4))

vec(e

(2))

(1))

= , then, the linear

Nl \is

Matrix R is a block diagonal matrix, thus by Definition 2.6.1.14, det (R) is

det(R) = det

o o o

0

)
0
0

T3
0

o O O

L/

det (R) = det(r,) X det(r,) X det(r3) X det(ry).

Thus, linear matrix equations RS = T has a unique solution if det (R) # 0. Which

implies det(r,) # 0,det(r,) # 0,det(r;) # 0 and det(r,) #= 0 i.e., 1y, 1, 153 and 1,

are invertible matrices. The system of GSME in Eq. (3.20) and the linear matrix

equations RS =T in Eq. (3.22) are equivalents. Therefore, the system of GSME in

Eq. (3.20) has a unique solution if:
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det(r,) # 0,det(r,) # 0,det(r3) # 0 anddet(r,) # 0, i.e 1, rp, 13 and r, are
invertible matrices.

I1) For the system of GSME to have a positive solution, the following matrices

must be positive, r;t, 5Ly tand ;> 0.
Therefore, the system of GSME in Eqg. (3.20) has a unique positive solution, and the
proof is straightforward.
O

The system of GSME obtained in Eq. (3.20) consists of four crisp GSME. Therefore, it
can be represented in more general form as discussed in the following Remark 3.3.1.
The general form of the system of GSME in Remark 3.3.1 is used to construct the

numerical methods in Sections 3.3.2 and 3.3.3, respectively.

Remark 3.3.1: The system of GSME in Eq. (3.20) can be written as

aDx Vb + (PxPa® = D for1< 1< 4 (3.23)
Now, we proceed to the methods for solving the PGTrFFSME. In the following Section
3.3.1, the solution to the PGTrFFSME is obtained analytically by applying

Vec-operator and Kronecker product to the system of GSME in Eq. (3.20).

3.3.1 Fuzzy Matrix Vectorization Method for PGTrFFSME

In this section, the solution to the PGTrFFSME AXB + CXD = E is obtained
analytically using Vec-operator and Kronecker product in Definition 2.6.2.3. The detail
of the constructed Fuzzy Matrix Vectorization Method (FMVM) is presented in the

following steps.
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Step 1: Decomposing 4, B, C, D, E and X into a(l) b(l), l(]l) dl.(jl.) O and x(l) where

l=1,2,3,4 and converting the PGTrFFSME to the system of GSME in
Eqg. (3.20) using Theorem 3.3.1.

Step 2: Applying the Vec-operator and Kronecker product on the system of GSME in
Eq. (3.20) as discussed in Eq. (3.21).

Step 3: Multiplying the system of linear matrix equation in Step 2 by matrix

multiplicative inverse as follows:

fvec< (1)) _ ((b(l))T®a(1) (d(l))T®C(1)) 1pec el(Jl)

G
vec( )_ ((b(z))T®a(2)+(d(2))T®C(2)) 1vec(e(z)),
()

)

tj

vec( ) = ((b(3))T®a(3) + (d(3))T®c(3)) vec 31(13)

wec( (4)) = ((b(4))T®a(4) (d.(4))T®c(4)) vec(el(f))

Step 4: Multiplying the system of linear matrix equation in Step 3 by vec™! in

Definition 2.6.2.2, giving the following positive fuzzy solutions:

(1) e vec‘l(((b(l))T®a(1) + (d(l))T®C(1)) vec(e(l))),

xi(j)=vec‘1(((bi(2))T®a(2) (d-(z))T®c(2)) vec(e(z)))
(3.24)

£ = vec (65 @aff) + (@ @) " vecel ),
X ()— VeC_l(((b(4))T®a(4) (d-(4))T®c(4)) vec(e(4))).

Step 5: Combining the positive fuzzy solutions obtained in Step 4 and writing it as a

trapezoidal fuzzy matrix as follows:

@ @ .6 @ @ @ .6 @
(x11 X1 ,x11 1 X11 ) (xln'xln'xln'xln)
X = i
€Y (2) 3) @ ® @ 6B 4
( Xp1 1 Xp1 1 Xp1» X pl) ( Xpn» pn'xpnrxpn)

In the following Remark 3.3.1.1, the solution to the system of GSME in Step 4 is written
in a general form.
Remark 3.3.1.1: The positive fuzzy solution in Eq. (3.24) to the system of GSME in

EQ. (3.20) can be rewritten as
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x) = vec (b)) ®af? + (AT ®cP)vec(e)), for 1 < 1 < 4 (3.25)
In the following Theorem 3.3.1.1, the relation between the positive fuzzy solution
obtained in Eq. (3.24) to the system of GSME and the PGTrFFSME is discussed.
Theorem 3.3.1.1. The unique positive solution of the system of GSME in Eqg. (3.20)
and the positive fuzzy solution to the PGTrFFSME are equivalent if the following
conditions are satisfied:
I) det(r;) # 0,det(r,) # 0,det(r;) # 0 and det(r,) # 0i.er, 1y, 13 and r, are
invertible matrices.
) 71, r;Lr5tandrt > 0.
)7, ~tt, > 0,1,7t, > 0,37 t; > 0and r, ¢, > 0.
V)7, 1t <17ty < ity <1ty
Proof:
The proofs of parts | and Il are similar to the proof of Theorem 3.3.2.
[11) The PGTrFFSME is converted to an equivalent system of GSME in Eq. (3.20)
By Theorem 3.3.1. The system of GSME is consequently converted to an

equivalent linear matrix equation RS =T in Eq. (3.22) by Theorem 3.3.2.

Multiplying both sides of Eq. (3.22) by R~ gives:

S n 0 0 0\ '/t
52 _ 0 rz O 0 tz
ss]171o o r, 0 t; | (3.26)
Sy 0 0 0 n ts

Matrix R~! is a block diagonal matrix, that can be computed by

Definition 2.6.1.13 as follows:

s, nl0 0 0 t,
s\ | 0 nt 0 0 t,
ss| | 0 0 ™t 0 ts
Sa 0 0 0 1nr,1/) \la
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The right-hand side can be simplified to the following:

S1 Tt
S2 r, 1t

= . 3.27
S3 T3_1t3 ( )
54 \T'4_1t4

Therefore, the system of equation in Eq. (3.27) has a positive solution if
1 t, > 0,17, > 0,373 > 0and , " 1t, > 0.
IV) The linear matrix equation in Eq. (3.27) can be written as separated equations
as follows:
s, =17y, 5, =17y, 53 = r37 1ty and s, = 1,7 1t,. This can be
rewritten as
vec(x ]1)) = ((b(l))T®a(1) + (di(l))T®c(1)) 1vec(ei(j1)),

vec(x)) = (b)Y ®a + (dP) ®cfP)vec(ef?),
®

vec( ) = ((b(s))T®a(3) + (d(3))T®c(3)) vec(el3)),
vec( ) = ((bm)T@ag}) + (di(4) ®C(4)) vec(e(4)).

For the obtained solution in Eq. (3.27) to be a fuzzy solution, the following

condition must be met r;71t; < 7t < Tty < 1l

Therefore, the unique positive solution of the system of GSME in Eq. (3.20) and the

positive fuzzy solution to the PGTrFFSME are equivalent.

Corollary 3.3.1.1. The Uniqueness of The Fuzzy Solution to The PGTrFFSME

The PGTrFFSME has a unique positive fuzzy solution if the corresponding system of

GSME in Eq. (3.20) has a unique positive solution.

Proof: The positive fuzzy solution to the PGTrFFSME in Eqg. (1.16) is equivalent to

the positive solution to the system of GSME in Eq. (3.20) by Theorem 3.3.3. Therefore,
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the PGTrFFSME has a unique positive fuzzy solution if the corresponding system of
GSME has a unique positive solution. Therefore, by Theorem 3.3.2, the PGTrFFSME
in Eq. (1.16) has a unique positive fuzzy.

O

The sufficient conditions for PGTrFFSME to have a positive fuzzy solution are

discussed in Corollary 3.3.1.2, which is a direct conclusion of Theorem 3.3.1.1.

Corollary 3.3.1.2. Existence of Positive Fuzzy Solution to PGTrFFSME

The PGTrFFSME has a positive fuzzy solution if the following conditions are satisfied:

) r,r,, r;andr, are invertible matrices. (3.28)
I 71 r,Lrytandr, > 0. (3.28a)
Ir,~t; >0, r,71t, > 0,3 1tz > 0 and r,~1t, > 0. (3.28b)
IV)r, "t <7t S Tt < 1Tl (3.28c¢)

Proof: Part | and Il can be proved as follows:
By Corollary 3.3.1.1, the PGTrFFSME has a unique fuzzy solution only if ry, r,, 3 and
r, are invertibleand 7, ;v and ;1 > 0.

[11) By Theorem 3.3.1.1, the solution of the system GSME and the PGTrFFSME is
equivalent. Thus, from Eq. (3.27), the PGTrFFSME has a positive fuzzy
solution only if r;,71¢t; > 0, 7,7 1t, > 0, 371t > 0and ,71t, > 0.

IV)By the definition of positive fuzzy solution matrix in Definition 3.3.3, the
PGTrFFSME has a unique positive fuzzy solution if the following condition is
satisfied,

n it <, <l <l
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Now we proceed to the feasibility conditions of the positive fuzzy solution to the

PGTrFFSME.
Feasibility of The Positive Fuzzy Solution to The PGTrFFSME

The positive fuzzy solution to the PGTrFFSME is feasible if for 1 <[ < 4, the

following conditions are satisfied:

) xP>ov{1<ij<pn} (3.29a)

€)) 3) (2) (€Y)
) X le-j > X > Xii

V{l1<ij<pn} (3.29b)
The FMVM is illustrated in the following Example 3.3.1.1.
Example 3.3.1.1 Solve the following 2 x 2 PGTrFFSME:

AXB+CXD =E
Given,

~_((4,6,7,8) (1,3,4,5))§_<(4,6,7,9) (2,3,4,6))
(1,2,3,4) (3,56,7)) "  \(,3,45 (3,5,67)/)

~_ ((56,7,8) (1,3,4,5)\ ~ _ ((4,56,8) (1,2,3,4)
C_((2,4,5,6) (4,6,7,9))’D _<(1,3,4,5) (2,5,6,7))’

_ ((95, 474,952,1890) (66,390,828, 1680))
(76,504,980,1960) (76,430,867,1730)/)

Solution:

To solve the given PGTrFFSME, the sufficient conditions in Corollary 3.3.1.1. and
Corollary 3.3.1.2 for having a unique positive fuzzy solution must be examined first.
The Uniqueness of the Positive Fuzzy Solution:

By Corollary 3.3.1.1, the given PGTrFFSME has a unique positive fuzzy solution if:
det(r;) # 0,det(ry) # 0,det(r3) # 0 anddet(r,) # 0 i.e ry, 1, 3 and r, are
invertible matrices and ;%, ;1,73 and r,; ! > 0. The determinants of

11,712,153 and 1, can be calculated as follows:
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36 8 9
12 28 3
13 3 22
4 10 7

1 1 1 1
= (b)) ®a + (di)®c) =

aa N

[uy
~

det(r;) = 224694 + 0.

Y Y b 36 18 66 33
16 32 32 60

det(r,) = 3686400 # 0.

91 52 56 32
51 84 32 52
49 28 84 48[
27 45 48 78

3 3 3 3

66 33 36 18
TZ=(b(?))T®a(?)+(d(?))'r®ci(j2)= 32 60 18 33 .

det(r;) = 8708400 + 0.
136 85 80 50
@ ) 4) 4 _| 84 135 50 80
= () ®ay” + (di ) ®c; =\ g0 5 112 70
48 78 70 112

det(r,) = 29062800 # 0.

Sincery L, 1, r5t and ;7 t > 0; thus, if the solution to the given PGTrFFSME exists,
then it is a unique positive fuzzy solution. Therefore, the existence of the positive fuzzy
solution to the given PGTrFFSME needs to be checked.
Existence of the positive fuzzy solution of PGTrFFSME
By Corollary 3.3.1.2., the given PGTrFFSME has a positive fuzzy solution if:

I) 1, ry, r3 and r, are invertible matrices.

) 771, r; Y5 and ;T > 0. This condition is already checked.

I)r,~tt, > 0,r,7t, > 0, 3 t; > 0and r, ¢, > 0.

36 8 9 2\ '/95 2

. _ (12 28 3 7 76| _[1
nh=l13 3 22 s 66 1”9

4 10 7 17 76 3
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66 33 36 18\ ' /474 3
4. (32 60 18 33 504 | [ 4
2= 36 18 66 33 390 | =270
16 32 32 60 430 4
91 52 56 32\ ! /952 4
.. _[51 84 32 52 828 | (5
s 3=\ 49 28 84 48 9go | = (3]~
27 45 48 78 867 5
136 85 80 50\ * /1890 5
s, _[ 84 135 50 80 1960 | _ [ 6
W=\ gy 50 112 70 1680 5]~ 0
48 78 70 112 1730 6

IV)  n7lt <, <ty <ty

3 4
4 5
2 3| <
4 5

Wk =N
oy U1 O U1

Since the conditions for the existence of the positive fuzzy solutions are satisfied, the
positive fuzzy solution to the given PGTrFFSME exists.
Therefore, the developed FMVVM in Section 3.3.1 can now be applied to obtain this

solution. The details of the illustration of the FMVM are as follows:

Step1: Decomposing 4, X, B, ¢, D and £ into

@ = (§ é)'bé-”=(1‘ D’ =G =0 e’ =G 76)

o = )7 =0G &= )l =G 2’ =(Gos a0

o = (3 b= = )4l =( 0= (500 ser)
( (s (

)50 = 6. = (5 5).aP = (2 *).anaef?

1890 1680
- (1960 1730)'

Step 2: Applying the Vec-operator and Kronecker product on Eq. (3.20) gives:
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36 8 9 2
12 28 3 7
13 3 22 5

95

_[ 76
66 |’

/ 76
@)
11 474
x5y _<504
@ | \390 )
X12

36 18 66 33
16 32 32 60

(3.30)

91 52 56 32\ [l
51 84 32 52 || %
49 28 84 48]|.,®
27 45 48 78/ \ G

66 33 36 18
32 60 18 33

952
_ (828
980 |’

867

136 85 80 50
84 135 50 80
80 50 112 70
48 78 70 112

(4) 1680

X12
B 1730

X322

@
xa) 1890
%1 | _ [ 1960

.

\

Step 3: Multiply the system of linear matrix equation in Eg. (3.30) by matrix

~1 /95
76
66 |’
76

multiplicative inverse as follows:

o)
: xti) 36 8 9
X21 _ 12 28 3

D 13 3 22
12
: 4 10 7
ey
22

(€2 BN \S

Uy
~

32 60 18 33 504
36 18 66 33 390 |’

16 32 32 60

66 33 36 18 1<474
430

(3.31)

27 45 48 78 867

1680 |’
1730

80 50 112
48 78 70 112

136 85 80 50\ * /1890
84 135 50 80 1960
70

x5y -

((3% 91 52 56 32 952
Xy | _[51 84 32 52 828
\(3)/_ 49 28 84 48 980 |’
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Step 4: Using matrix multiplication on the system in Eq. (3.31), the positive fuzzy

solution to the given PGTrFFSME is as follows:

( (1)
X7
x5y
X7
X7
X7
X7
X357
X7
X7
x17
X7
X7
x5
x5

\ xg)

|
BN R W W R RN

Ul W Ul

I
o Ul oy Ul

By Definition 2.6.2.2, the obtained fuzzy solution can be written as:

(€Y) (€Y)
<x11 X12 ) _ (2 1)
(1) (1) )
X1 X2 13
@3] 2
<x11 X12 ) _ (3 2)
@) (2) )
X1 X322 4 4
3) 3)
<x11 X12 ) _ (4 3)
@k &) '
X1 X2 5 5
@ (4)
<x11 X12 ) _ (5 5)
@ @] '
X1 X2 6 6

Step 5: By combining the obtained positive fuzzy solution in Step 4, the positive fuzzy

solution to Example 3.3.1.1 is

s ((2, 3,4,5) (1,2,3, 5)). (3.32)

X=\(1,4,56) (3,4,5,6)
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In the following Section 3.3.1.1, analysis of the obtained positive fuzzy solution in
Eq. (3.32) for the PGTrFFSME in Example 3.3.1.1 is discussed. The analysis of the
obtained positive fuzzy solution in Eq. (3.32) for the given PGTrFFSME in
Example 3.3.1.1 includes verification of the solution, representation of the solution and
checking the feasibility conditions for the solution. Further details of the analysis are

given next.

3.3.1.1 Verification of Positive Fuzzy Solution to GTrFFSME
To verify the obtained positive fuzzy solution in Eq. (3.32) for the PGTrFFSME in

Example 3.3.1.1, we first multiply AXB as follows:

A’XE _ ((41 6; 71 8) (11 3: 4'; 5)) ((21 3! 4! 5) (1! Zr 3; 5)) ((4'; 6! 7r 9) (2: 3r 4'! 6))
- \(1,2,34) (3567/\(1,456) (3456)/\(1,345 3567/

- ((43,252,500,980) (39,210,438,910))

— \(30,228,450,868) (40,198,402,806)/)

and,
é}?ﬁ — ((5' 61 7; 8) (1r 3; 4; 5)) ((2, 3r 4; 5) (11 2; 31 5)) ((41 5; 6; 8) (1I 2; 3! 4))
\(2,456) (467,9/\(1,4,56) (34,56)/\(1,3,45) (2,56,7)/)
_ ( (52,222,452,910) (27, 180,390,770))
~ \(46,276,530,1092) (36,232,465,924))"
Therefore,
o= o~ ((95,474,952,1890) (66,390,828, 1680)) =
AXB +CXD = ((76,504,980, 1960) (76,430,867,1730)) ~ ©-

Therefore, the obtained positive fuzzy solution in Eq. (3.32) satisfies the PGTrFFSME
in Example 3.3.1.1. In the following Section 3.3.1.2, the graphical representation of the

obtained solution is presented.
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3.3.1.2 Representation of Positive Fuzzy Solution to PGTrFFSME
In the following graph, the positive fuzzy solution for Example 3.1.1.1 is represented

in Figure 3.6.

Positive fuzzy solution X
1.0} pemm- = = e 2
' R SNy !
, / ey i
; | s\ 1
08f ; At !
', I ’:’: " 1 \ :\-
I - \ _-‘
! I E ' i
] S ‘ z
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! S ! \ \ \_
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,' & I . '\-
- | I '\ i
5 ! | i = (3,4, 5,6
-8 g === §)=03.4,56
00LS / ! . \ 2
] 2 3 4 N 6

Figure 3.6. Positive fuzzy solution for Example 3.1.1.1.

Figure 3.6 shows that, x.” > x{” > x{?’ > x{” > 0, which means that the obtained
fuzzy solution in Eq. (3.32) is positive. Therefore, the FMVM can give the unique
positive fuzzy solution to the given PGTrFFSME.

In the following Section 3.3.1.3, the feasibility conditions of the obtained positive fuzzy

solution in Eq. (3.32) for the PGTrFFSME in Example 3.3.1.1 are discussed.
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3.3.1.3 Feasibility of Positive Fuzzy Solution to PGTrFFSME

Based on Eq. (3.29a) and Eq. (3.29b), the obtained positive fuzzy solution in Eq. (3.32)
for the PGTrFFSME in Example 3.3.1.1 is feasible if the following feasibility

conditions are satisfied:

1) (l)>0 v{l1<ij<pn}
x) = ( é) >0,
xP = (i i) >0,
x) = (g g) > 0,
x = (2 2) > 0.
1 xP x> 2P 2« vt <ij<pn}

AN 4 3 3 2 2 1
G d=Gia)=6_d=0 3)
The feasibility conditions are satisfied, and therefore, the obtained positive fuzzy

solution is feasible.
The verification, representation, and feasibility of the obtained positive solution

indicate that it satisfies the given PGTrFFSME and is a strong positive fuzzy solution.

In the following Example 3.3.1.2, the FMVM is applied to 5 X 5 PGTrFFSME.
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Example 3.3.1.2 Solve the following 5 x 5 PGTrFFSME:

Given

where,

(5,6,7,8)

( (3,4,5,6)
A=1(2345)
(4,5,6,7)

(3,4,5,6)

(6,7,8,9)
(3,4,5,6)
(1,2,3,5)
(2,3,4,5)
(1,2,3,4)

so]]
Il

AXB + CXD =E,

(1,3,4,6)
(5,6,8,9)
(3,5,6,7)
(2,3,4,6)
(1,5,6,7)

(2,3,5,6)
(5,6,7,8)
(4,5,6,7)
(1,3,4,6)
(4,5,6,7)

(7,8,9,10) (3,4,5,6)
(4,5,6,7) (5,7,89)
(1,2,3,5)

(2,3,46) (1,2,3,5)

i) k (4,5,7,8)

(2,5,6,7)

(6,7,8,9)

( (1,2,3,4)

D =] (56,78)
(2,3,4,5)

(2,4,5,6)

(1,2,3,4)

(3,4,6,7)
(5,7,8,9)
(1,2,3,4)
(1,3,4,6)
(1,2,3,7)

(4,5,6,7)
(2,4,5,6)
(5,7,8,9)
(4,6,7,8)
(1,2,3,4)

(4,5,6,7)
(1,2,3,4)
(5,7,8,10)
(2,4,5,6)
(2,3,4,5)

(2,4,6,7)
(4,5,6,7)
(6,7,8,9)
(4,5,6,8)
(2,3,4,6)

(2,3,4,5)
(3,4,5,7)
(6,8,9,10)
(1,2,3,4)
(2,4,5,8)
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(3,4,5,6)
(3,4,5,7)
(1,2,4,5)
(5,7,9,10)
(3,4,5,7)

(3,4,5,7)
(1,3,4,5)
(3,4,5,6)
(6,8,9,11)
(4,5,6,7)

(2,3,4,6)
(2,4,5,6)
(3,5,6,7)
(5,7,8,9)
(1,4,5,7)

(2,3,4,6)
(2,3,4,5)
(2,3,4,5)

(5,7,9,11)
(3,4,5,7)

(3,4,6,7)
(1,2,3,5)
(2,3,4,6)
(3,4,5,7)
(6,7,9,11)

(2,3,6,8)
(4,5,6,7) )

N~

(3,4,5,7)
(3,4,5,6)
(5,7,8,10)

(4,5,6,7)
(4,5,6,7)
(3,457 |,
(2,3,4,5) )
(5,6,7,10)
(1,2,3,4)
(4,5,6,7)\
(3.4,57) |,

(2,3,4,5)
(5,6,7,10)



a

(785,2476,6202,12395)
(829,2581,6138,12240)
(671,2300,5969,12068)
(726,2385,5969,12540)
(565,2087,5448,11839)

(797,2564,6399,13618)
(781,2583,6235,13407)
(671,2413,6100,13227)
(726,2590,6347,13923)
(565,2199,5722,13077)

(811,2670,6587,13679)
(854,2767,6470,13488)
(718,2512,6263,13313)
(748,2574,6329,13783)
(574,2230,5821,13033)

(867,2727,6794,14226)
(902,2788,6667,14066)
(759,2548,6471,13819)
(820,2684,6669,14535)
(678,2339,6095,13685)

(1000,2841,6936,14685)
(1009,2885,6777,14478)
(857,2654,6593,14233)
(941,2801,6836,15031)
(768,2431,6209,14094)

)

Solution: By decomposing the given PGTrFFSME and applying the FMVM, the positive fuzzy solution is

(1,2,4,5)
(2,3,4,5)
(1,2,4,6)
(2,3,5,6)
(1,2,3,5)

(2,3,4,6)
(1,2,3,4)
(1,3,4,5)
(3,4,5,7)
(2,3,4,5)

(2,3,5,7)
(3,4,5,7)
(2,3,5,7)
(1,2,3,4)
(1,2,5,6)

(1,2,3,5)
(2,3,4,6)
(1,2,4,5)
(1,2,4,6)
(2,3,5,6)

(2,3,4,6)
(3,4,5,7)
(2,3,5,6)
(2,3,5,7)
(3,4,6,7)

>

(3.320a)

Detailed solution for Example 3.3.1.2 is discussed in Appendix A.

Solving the 5 X 5 PGTrFFSME in Example 3.3.1.2 required getting the inverse of 25 x 25 matrices. It is worth mentioning that
solving the p X n PGTrFFSME in Eq. (1.16) by FMVM requires getting the inverse of pn X pn matrices, which is impractical
for large PGTrFFSME. Therefore, approximating the positive fuzzy solution to the large size PGTrFFSME is more practical
than getting the solution analytically, especially if the PGTrFFSME’s size is more than 10. In approximating the PGTrFFSME
numerically, the equivalent system of GSME in Eqg. (3.23) is considered. In the following Section 3.3.2, the GI method in

Theorem 2.9.3 is extended for solving the system of GSME.
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3.3.2 Fuzzy Gradient Iterative Method for PGTrFFSME

In this section, the numerical solution to the PGTrFFSME AXB + CXD = E is discussed.
To approximate the positive fuzzy solution to the PGTrFFSME, it has to be converted to
an equivalent system of GSME as discussed in Theorem 3.3.1. Then the solution to the
system of GSME is approximated numerically by developing the FGIM. The system of
GSME in Eq. (3.23) can be written as two subsystems, where the Gl method in
Theorem 2.9.3 for solving AXB = C is extended to approximate the solutions of the two
subsystems where the solution of the system of GSME is the average of the solutions of
the two subsystems. The details to constructed FGIM is discussed as follows:

The system of GSME in Eq. (3.23), can be written as two subsystems of equations as

follows: for1 <1 <4

O = e D8 a0 = ) D 659

The numerical solution to the system of GSME in Eq. (3.23) is the average of the numerical
solutions to the subsystems in Eqg. (3.33).

From Eq. (3.23) and Eq. (3.33), the following can be obtained: for1 <1 < 4

Z(z) (z) (1) b(l) (3.34a)
and

fl) (z) (l) d(l) (3.34b)

The numerical solution to the system of equations in Eq. (3.34a) and Eq. (3.34b) can be

obtained by Theorem 2.9.3 as follows:
T
N ()(k) = x(l)(k — 1) +a;- ( (l)) ( ) a(l)x(l)(k 1)bl(]l))(b1(]l)) ) (3353.)
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T T
2,000 =200k -1+ a- () (&7 - cP2O% = DdP)(d) . (3.35b)

Substitute Eqg. (3.33) into Eq. (3.35a) and Eqg. (3.35b) as follows:

T T
2000 =20% - D + @ (af) (ef - P20k - DA - aP 2Ok - 1bT) (b)) -

(3.36a)

T T
2,000 =200k - D +a- () (e - aP20 %k — Db - P2O®K - 1dP) (a?) .

(3.36h)
If we let

sOk -1 =e® —aqgWzOk —1)p® — OOk — 1)dW®.

Then, the average of the two numerical solutions in Eq. (3.36a) and Eq. (3.36b) is

2P k) + 2, k)

(@) —
(k) 3

(3.37)

Therefore, for 1 < [ < 4, the numerical solution to the system of GSME in Eq. (3.23) is
2O%) = 20% = 1) + 2 ((a®)" (sOtk = 1) (B®)" + (@) (sOk - ) (a®)"),
(3.38)

where the convergence rate (step size) is given by,

2
S S T (@D a0 Ay DO GOV + Ao (€Y €O gy [AD@D)T]
(3.39q)
It can also be obtained as follows,
0<a < 2 (3.39b)

la@2IbD|12 + [l @12l dD |2’
O|* = O . (@)
where [|a®||” = er[a® - (a®V)"].

If we let ag = [|a@|*|[b@||” + [|c@*]|d@||", then
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2
0<aog <—. (3.39¢)
%)

At step k — th of the iteration, the following error is considered:
6(1)(k) = ”e(l) — a(l),'g(l)(k)b(l) — C(l),?(l)(k)d(l)nz_ (3.40)
The obtained numerical solution in Eq. (3.38) can be expressed as,
% = (,2(1)' 2(2)' 3?(3)' f(‘%))_

It can also be written in matrix form as,

(1) £(2) 2(3) ~(4) (1) £(2) 2(3) ~(4)
(x11 X110 X110 X1q ) (xln »Xino Xan s X1n )
%= : : (3.41)
(1) £(2) 2(3) ~(4) s(1) 2(2) 23) ~((4)
(xpl VXp1 ) Xpy s Xy ) (xpn X Xpn ,xpn)

Remark 3.3.2.1 The convergence rate (step size) of the FGIM in Eq. (3.39a) is calculated
using the eigenvalues of the coefficient matrices. Therefore, the coefficients matrices must
be in square dimension only. Thus, the approximated positive fuzzy solution matrix
obtained in Eq. (3.41) must be square. Consequently, the FGIM can only be applied to

PGTrFFSME with square coefficients only.

In the following Theorem 3.3.2.1, it is proved that the numerical solution obtained by the
FGIM method converges to the positive solution of the PGTrFFSME for any initial value.
Theorem 3.3.2.1: If the system of GSME in Eq. (3.23) has a positive solution x®, then
the numerical solution (9 in Eq. (3.41) converges to x( for any initial values £ (0) (i.e.
if k = oo, then x®© = 2V (k)).
Proof: Let, ¥ (k) be the error ateach k, fork = 1,...,nandfor1 <[ < 4,

Pk) = x® —2O%). (3.42)

From Eq. (3.23), Eq. (3.38) and Eq. (3.42), the following is obtained:
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Y =Pk — 1) + 2 ((a®)" (—a®P(k — DbO — cOy(k - 1)d®)(b®)" +
(c®)" (=a®pk — DbO — Ok — 1)d®)(d®)"). (3.43)
Taking . |2 to both sides of Eq. (3.43) give:

N2 = |[wik — 1) +2((@®) (—~a®@pk - Db = Ok — DAY (b®)" +

2
(c®)" (=a®pk — DbO — cOy(k - 1)d®)(d®)" )| (3.44)
By applying the following formula to Eqg. (3.44),
IA+BlI? =tr((A+ B)"(A + B)) = llAll> + 2tr(ATB) + ||BII?,

the following is obtained,

U2 = lptk = DI + agtr 97 (k = 1) (@) (—a®pk — 1)b® -

cOpk = 1)d®)(bD)" + (c®) (=a®yp(k — Db — Oy (k — 1)d(1))(da>)T)] +
aTzz ” (a®)" (—a®ypk — 1)bD — cOy(k — DdD)(BD)" + (cO) (—a®yp(k —
1D)b® — cOy(k — 1)d<l>)(d(l>)T||2.

Applying norm properties gives:

[ UOI? < llpCk = DIZ + @ tr [T (k = 1)(a®) (b@)" + 9" (k —
1)(C(z))T(d(z))T)(_a(z)lp(k — 1)b® — Oy — 1)d(z))] + aT% ” (a(z))T(_a(z)¢(k _
DbO — cOyy(k — 1)d<z))(b(z))T n (C(z))T(_a(z)¢(k — Db — Ok —

1)d®)(d®)" ||, and since 4112 = er{C4)" 4] thn,
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NI < Ik — DIIZ — a;]|a®@p(k — DD + cOypk — 1)dO|*
+a712 ||(a(l))T(_a(l)l/J(k — 1)b(l) - C(l)l/J(k _ 1)d(l))(b(l))T n (C(l))T(—a(l)z/)(k B

1)b® — Oy (k — 1)d<l>)(d(l>)T||2.

Applying norm properties gives:

Iy (RNIZ < lpCk — DI — ayf|a®k — 1)bD + cOypk — 1) +

2 2 2 2 2 2
(POl + Je POl Ja®uec = D50 + Oy~ a0

2
oG 12 < Ik — D2 + (—al + - (la@I Ol + ||c<”||2||d(”||2)>

Jla®pk = 1)b® + Ok — 1)a?|".

By Eq. (3.39¢), the following can be obtained:

2
YOI < Ik — DII? + (—az + % X 0%) |a®yp(k — 1)bD + Ok — 1)dD||".

ar 2

Atk=1 IIpOIP < IOI? - @ (1= 7%) [la®p©@b® + cOyp(@)d®|*.

2

Atk=2  IIp@I2 < DI - a; (1 - L) [a®p0)b® + cOp(1)a®|”

2ag

2

Atk=3 WGP < @2 - a (1 22) [aOp@b® + cOp@)d®|"

Atk=n-1 [p-DI? <IPr-2I? - a (1 -2 [la®m - b +

cOyp(n —2)d®|”.
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Atk=n I < @ - DI? - (1-72) [la®pn - Db® +

cOy(n — 1)dO|”.
Therefore, the following is obtained,

a

9GO < WO = (1=520) ) (lawb? + Opd®|)

k=1

If the convergence rate « is chosen to Eq. (3.39¢) and k — oo, then

E(Ha(l)lp(k)b(l) + O dO|*) < o.
k=1
Therefore,
gmm®¢ww®+c®¢wm®)=a

Since a® > 0,6® > 0,c¢® > 0 and d© > 0 then,

- v (Nl

By Eq. (3.42), the following is obtained,

lim (x® - 2O (k) = 0.

Consequently, if k — oo, then x® = W (k) and therefore, if the system of GSME in

Eq. (3.23) has a unique positive solution x®, then the numerical solution (k) in

Eq. (3.41) converges to x® for any initial values £ (0) and for 1 < [ < 4.

Below is the Algorithm 3.1 for the FGIM. This algorithm can be used by different software

for solving the PGTrFFSME in Eq. (1.16).
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Algorithm 3.1: Fuzzy Gradient Iterative Algorithm for PGTrFFSME.

Input 4, B, C, D and E # Split each matrix into four matrices (e.g., a®”, a®, a®), a®)
forl=1,2,3,4
Choose a;, €, &V (k) = 0 # 0 is the Zero matrix with the same dimension as x® (k)
Whilek =0,1,2,...,ndo
2O = 20%k - 1) +2((a®)" (s — 1) (6®)" + (c®) (s©k — 1)) (@®)").

sOk -1 =e® —aqgWzOk —1)p®O — OOk — 1)dD,

® =le® — 45O O _,Wz® o
§WU) = [le® = a®2OU)D® — V2O (k)d V..

If §WO(k) < ethen

print (W (k));
print ("number of iterations =", k).
else
2O = 200k = 1) + 2 ((@®)" (s@k = 1) (6b®)" + ()" (s©k — 1)) (@®@)").
update k.
k=k+1
end

print (P (k)),

print ("number of iterations =", k).

end

The step size in the FGIM is small, and therefore the convergence rate of the FGIM
algorithm is slow. To improve the convergence speed, in the following Section 3.3.3, the

LSI method in Theorem 2.9.4 is extended for solving the PGTrFFSME in Eq. (1.16).
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3.3.3 Fuzzy Least Square Iterative Method for PGTrFFSME

In this section, the solution to the PGTrFFSME is approximated numerically by
developing the fuzzy least-square iterative method (FLSIM). The development of the
fuzzy least-squares iterative algorithm (FLSIM) is similar to the FGIM method.
However, to improve the convergence rate of the FGIM algorithm in Eqg. (3.38), the
least-square term of the coefficients in Eqg. (3.23) should be added to the FGIM
algorithm obtained in Eq. (3.38). Therefore, by Theorem 2.9.4 and Eq. (3.38), the

following is obtained: for 1 <[ < 4 we have:
2OU) = 2Ok — 1) + %(((a(z)f . a(z))_l - (a®)" (sm(k _ 1)) (b®)" (O (b®)"H)1) +

((c®) - c®) 7 () (sOk - D) (d@)T((d(”(d“))T)—l), (3.45)
where the convergence rate (Step size) is given by,
0<aq <4 (3.46)
At step k — th of the iteration, the following error is considered:
§Ok) = ||e® - a®WzO(k)p® — C(”f(”(k)d(’)ﬂz-
The obtained numerical solution in Eq. (3.38) can be expressed as,
%= (55(1)’ 2@ £3) 3?(4))_

It can also be written in matrix form as,

s(1) 2(2) 2(3) «(4) s(1) 2(2) 23) +(4)
(x11 1 X110 X115 X1 ) (xln X1 X1 X1 )
X = : : (3.47)
(1) £(2) 2(3) ~(4) (1) £(2) 2(3) ~(4)
(xpl VRp1 Xy, Xy ) (xpn X Xpm ,xpn)

In the following Theorem 3.3.3.1, the approximated solution by the FLSIM is proved

to be convergent to the positive solution of the PGTrFFSME for any initial value.
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Theorem 3.3.3.1: If the system of GSME in Eq. (3.23) has a positive solution x(®, then
the numerical solution (k) in Eq. (3.41) converges to x(® for any initial values
£D(0) (i.e. if k = oo, then x® = 2D (k).
Proof: Let, Y (k) be the error ateach k, fork =1, ...,nand for1 <[ < 4.

Pk) = x® —2O%). (3.48)
From Eq. (3.23), Eq. (3.45) and Eq. (3.48), the following is obtained:

a T -1 T

Yo = ik — 1)+ (((a(z)) -a®) " (@®)' (~a®y(k - Db — Oy (k -
1)d(z))(b(z>)T(ba)(b(o)T)—l n ((C(z))T : C(z))_l (C(l))T(—a(l)lp(k —1)p® —
O — DAO)(d®)' @O (a®)"y) (3.49)
Taking ||. ||? to both sides of Eq. (3.49) gives:

lw(®)II? = ”zp(k -1+ % (((a(l))T : a(z))_1 : (a(l))T(—a(l)lp(k —1)p® —

cOyk = DAD)(BO) BO(b®) )1 + ((c(z))T : C(z))_l (c®©) (—a®yk — 1O —

7 T 2
Oy — DAD)(d®) @ (d®) )—1) _ (3.50)

Apply the following formula to Eg. (3.50) we get,
IAX + ((A)T - A~V (B(B))™)BII?
= tr (((X + (AT -A)—ly(B(B)T)—l)B)T((X + (AT -A)-ly(B(B)T)-l)B)> :

= [[AXBII> + 2tr(XTY) + 1A - Y (BB))HBI1%

la®p b ®|” = [la®ytk — DEO| + e tr [Tk = 1) ((@®) (=D — )b — Oy -

(((a(n)T . a(z))‘1 .

1DA®)(BO) + () (~aOpk — Db — Oy (k — 1A®)(dV)" )] + L
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(a(l))Ta(l)(—a(l>¢(k —1)bD — Oy (k — 1)d(z))b(z)(b(z))T (b(z)(b(z))T)_l + ((C(z))T :

C(z))‘1 () e®(=a®p(k — DbO — Oy — 1)dD)d® (a®)" d(l)(d“)) )”
Applying norm properties, we get:

la®p)b®|* < [la®ypk - DBO|” + 2aptr [w7 k = 1) ((a©) (—a®pk — b —
Oy (ke — 1)d(z>)(b(o)T + (C(t))T(_a(z)¢(k —1)b® — Oy (ke — 1)d(z>)(d(z>)T)] +

':z (((am) ,,L(z))_1 . (a(z>)Ta(z)(_aa>¢(k — 1)bD — cOy(k —

1)d(z))b(z)(b(o)T(b(z)(b(z))T)—l + ((C(z))T : C(z))_1 (c(l>)Tc(”(—a(l>1p(k —1Dp® —

2
C(l)lp(k - 1)d(1))d(l)(d(l))T(d(l)(d(l))T)_1>

Which can be written as,
la®pb®|* < [la®ypk = DBOI" + 20, tr [T (k = 1)(@®)" (bO)" + 97 e -

D(c®)" (d®))(=a®ypk — Db® — Oyl — 1)d<z>)] n “Tzz (((aa))T . a(z))_l :

(a®)"a®(—a®y(k — 1)bO — Ok — 1DdD)bO(b®) B®(b®))1 + ((C(z))T :

C(z))_1 (c®) cO(—a®yp(k — 1)b® — cOyp(k — 1)d<z))da)(d(z))T(d(z)(d(z))T)—l) ’

Applying norm properties, we get:

la®pb@[ < [la®ypk = DEO|” + 20 tr [ @7 (k — D(@®) (@) +
YTk = 1) (c®) (@©))(—a®pk — DB — Oy — 1)d®)] +

ale |-2(a®yk — 1)b® + cOypk — 1)dD)||",

and since ||A]|? = tr[(A)T A] then,

la®pEbO| < [|a®ypk — DBO|? - 2a]|a®@ypk — 1DBD + cOp(k —
DO + L a®pk - DO + (e — DO,

which can be written as:

I UOII2 < Ik — DI = 2a,(1 — DB][a®pk — 6O + Oy — DAV,

Atk =1 DI < PO = 2a,(1 = 2 |la®@p(@)b® + cVp(0)a®||"
Atk =2 @17 < Ip I = 2a,(1 = BaOp(1)b® + cOp(1)d ||,
Atk =3 WG < @12 - 2a,(1 = H|la@p@b® + cOp2)a®|”,
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Atk =n—1
lp(n = DIZ < lp(n = D12 = 2a,(1 = Z)[[aPp(n = 2)bG + cOyp(n — 2)dO||".
Atk=n
@I < lp(n - DI2 = 20, (1 = L) [la®p(n — DO + cOyp(n - 1A’

Consequently,

NgE

I GOI? < I - 20, (1-5) D (la®wob® + cOpi0d®|*),

&
1l
Jy

M:

@I < IO = 20, (1==1) > (la®@pi)b® + cOpi)a®]|*).

&
[

If the convergence rate «; is chosen to satisfy
0< a; < 4‘,

and n - oo, then

Z(Ha“%p(k)lﬂ” + Oy dO|*) < co.
k=1,
Therefore,
Igm (@PyYk)b® + cOyY(k)d®) = 0,

and since a® > 0,p® > 0,c® > 0and d® > 0 then,

lim (k) = 0.

lim x® - 2O)) = 0.

Consequently, if n — oo, then x(® = 2O (k). Thus, the system of GSME in Eq. (3.23)

has a unique positive solution x®, then the numerical solution £® (k) in Eq. (3.47)

converges to x® for any initial values £ (0), (i.e., if k = oo, then x® = 2@ (k)) for

1<1<4.
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Below is the Algorithm 3.2 for the FLSIM. This algorithm can be used by different

software for solving the PGTrFFSME in Eq. (1.16).

Algorithm 3.2: Fuzzy Least-Square Algorithm for PGTrFFSME.

Input 4, B, €, D and E # Split each matrix into four matrices (e.g., a®®, a®, a®),
a™®)

for1=1,2,3,4

Choose a;, £, (k) = 0 #0 is the Zero matrix with the same dimension as x® (k)
Whilek =0,1,2,...,ndo

20 = 2Ok - 1)
N % ((( ®)"a®) " (@®)(s'k = D)D) (O (B®)) )

+ ((c(z))T : C(z))"1 (c(l))T(sl(k _ 1)) (d(z))T((da)(d(z))T)_l)_
sOk -1 =e® —aqgWgOk —1)p®O — OOk — 1)d®,

§Ok) = ”e(l) —aWzO)p® — C(l)jc‘(l)(k)d(l)” )
2

If 6®(k) < ethen

print (O (k));
print ("number of iterations =", k).
else
2O (k)
=20k -1)
+2((@)"+a®) ™ (@) (st = D)) @O )
+((€@)+ ) (@) (s10k - 1) (@) @O (@)1
update k.
end

print (O (k)),

print ("number of iterations =", k).

end
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3.3.4 Comparison Between the Methods for Solving the PGTrFFSME

To illustrate the accuracy and effectiveness of the methods for solving the PGTrFFSME
in Eqg. (1.16), various sizes of PGTrFFSME are considered, namely, small (2 x 2),
(5x5), and large (100 x 100). The solution to the PGTrFFSME is obtained
analytically by the FMVM in Section 3.3.1 and approximated numerically by FGIM
and FLSIM in Section 3.3.2 and 3.3.3. In addition, the performance of the FGIM and
FLSIM is compared by calculating the number of iterations (k), convergence rate (a),
error §O(k), error bound (g), convergence rate, CPU time, real-time and memory
usage. In addition to the graphical representation of the error §® (k) when k increases

is also compared.

In the following Example 3.3.4.1, the FMVM, FGIM and FLSIM in Sections 3.3.1,

3.3.2 and 3.3.3, respectively, are applied to a 2 x 2 PGTrFFSME.

Example 3.3.4.1. Solve the following 2 x 2 PGTrFFSME.:

AXB+ CXD =E
Given,

(4,6,7,8) (1,3,4,5)

A= ((1, 2,3,4) (3,5,6, 7))’ B = <(4' T19 e 6))’

(1I 31 4’ 5) (3) Sl 6’ 7)

(5I 6’ 7’ 8) (11 3’ 4’ 5)

C= ((2, 4,5,6) (4,6,7, 9)) D <(4’ R 4))'

D= (1,3,4,5) (2,5,6,7)

P ((95,513,1012, 1885) (66, 495,968,1742))
— \ (76,480,960,1875)  (76,463,918,1722))

Solution:
The positive fuzzy solution to the given PGTrFFSME is obtained by the three

developed methods as follows:
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Fuzzy Matrix Vectorization Method (FMVM): By decomposing the given
PGTrFFSME and applying FMVM in Section 3.3.1, the analytical positive fuzzy
solution is

o ((2,3,4,5) (1,4,5,6)
X= ((1, 3,4,5) (3,4,5, 6))'

This positive fuzzy solution is approximated using Algorithm 3.1 for FGIM and
Algorithm 3.2 FLSIM as follows:

Fuzzy gradient-iterative method (FGIM) and Fuzzy least-square iterative method
(FLSIM):

Algorithm 3.1 for FGIM and Algorithm 3.2 for FLSIM in Section 3.3.3 are applied to
compute the approximated positive fuzzy solution (k) for the given PGTrFFSME

0 0

0 O)' The analytical positive

using the following initial value, for 1 < [ < 4, ® = (

fuzzy solution X and the approximated positive fuzzy solution (k) are shown in
Table 3.1 with the convergence rate (a), error bound (¢), and the total number of

iteration (k).
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Table 3.1

Comparison Between FMVM, FGIM and FLSIM for Example 3.3.4.1.

Method  Analytical Solution-Approximated Solution a € k
£ EFMVM (2 1) NA 0 NA
1 3
FGIM (1.99949855017298 1.00098875551005) 0.0005 107 147
1.00079141255138 2.99843234122586
FLSIM (1.99985414539036 0.999963165192173) 0.2 107 7
1.00002909178272 2.99966344885767
2@ FMVM (3 4) NA 0 NA
3 4
FGIM (2.99974677876014 4.00031607313094) 0.0001 107* 244
3.00032352010653 3.99970338494345
FLSIM (2.99999955606239 3.99999959009359) 0.2 107* 8
2.99999667934673 3.99999527502009
23 FMVM (4 5) NA 0 NA
4 5
FGIM (3.98757299663079 5.01285881972725) 0.00002 107 144
4.01339431585115 4.98608683548303
FLSIM (3.99999941493081 4.999999571129046) 0.2 107* 8
3.99999570858620 4.999994185596878
@ FMVM (5 6) NA 0 NA
5 6
FGIM (5.00156518405719 5.99802708526725) 0.00001 10™* 133
5.00018074252759 5.99996176085665
FLSIM (4.99999460351041 5.99999962240993) 0.2 10™* 8
5.00018074252759 5.99999085571824
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Table 3.2 shows the computational time and memory usage needed for FGIM and
FLSIM.
Table 3.2

Comparison Between Computational Time and Memory Usage for FGIM and FLSIM

for Example 3.3.4.1.
Method k CPU Real Memory
time time usage
M FGIM 147 21.59ms 20.45ms 3.70 MB
FLSIM 7 1750 ms 19.38 ms 4.01 MB
£@ FGIM 244 1223 ms 11.93ms 2.17 MB
FLSIM 8 11.75ms 11.62ms 2.43 MB
£® FGIM 144 1226 ms 1240ms 2.17 MB
FLSIM 8 13.75ms 11.88ms 2.43 MB
£ FGIM 133 1210 ms 1224 ms 2.17 MB
FLSIM 8 17.62ms 19.62ms 2.43 MB

Figure 3.7 shows the change in the error §'(k) when k increases up to k = 20.
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Figure 3.7. Comparison between the error of FGIM and FLSIM for the First 20

Iterations for Example 3.3.4.1.

Tables 3.1, 3.2 and Figure 3.7 show that the error §® (k) is reducing as k increases.

Figure 3.7 (a) shows that the error of the FGIM and FLSIM for approximating £(% is

reducing significantly as k increasing, where the FLSIM converges to the analytical

solution for seven iterations with step size 0.2 and error bound 10~*. However, the
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FGIM needed 147 iterations to approximate the same solution with step size 0.0005
and error bound 10~

In Figure 37 (b), the error of the FGIM and FLSIM for approximating £ is reducing
significantly as k increasing especially for the FLSIM, where the FLSIM converges to
the analytical solution for eight iterations with step size 0.2 and error bound 107%.
However, the FGIM needed 244 iterations to approximate the same solution with step
size 0.0001 and error bound 10~*. Similarly, Figure 3.7 (c) shows that the error of the
FGIM and FLSIM for approximating £ is reducing significantly as k increasing,
where the FLSIM converges to the analytical solution for eight iterations with step size
0.2 and error bound 10~*. However, the FGIM needed 144 iterations to approximate
the same solution with step size 0.0002 and error bound 10~%.

Finally, Figure 3.7 (d) shows that the error of the FGIM and FLSIM for approximating
£® is reducing significantly as k increasing, where the FLSIM converges to the
analytical solution for eight iterations with step size 0.2 and error bound 10~%,
However, the FGIM needed 144 iterations to approximate the same solution with step
size 0.0002 and error bound 10~*. This indicates that the developed algorithms are
effective and convergent for the given PGTrFFSME. However, in terms of accuracy,
error, and number of iterations, FLSIM provides extremely accurate approximations
with very few iterations. In addition, the FLSIM takes more computational timing and
more memory compared to FGIM. In the following Example 3.3.4.3, FMVM, FGIM
and FLSIM methods are appliedto a 5 X 5 PGTrFFSME.

Example 3.3.4.2 Solve the following 5 x 5 PGTrFFSME:

AXB+CXD=E
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Given,

(567,8) (1,346) (4567) (3456) (3467)
(3456) (5689) (2456) (3457 (1,235)

A=\ (2345 (3567 (5789 (1,245 (2346) |,
(4,567 (2346) (4678) (579100 (34,57)
(3456) (1567) (1,234) (3457 (67911)
(6,789 (2356) (4567 (3457 (2368)

( (3,456) (5678 (1,234) (1,345) (4,5,6,7)\

B=| (1235 4567 (57810) (3456) (3457 |,
(2,34,5) (1,346) (2456) (68911) (3,45,6)
(1,234) (4567 (2345 (4567 (57,810)
(7,89,10) (3,456) (2467) (2346) (4567)
(4,567 (57,89 (4567 (2456) (456,7)

¢=| 4578 (1,235 (6789 (3567 (3457 |
(2,34,6) (1,235) (4568) (57,89 (234,5)
(2567 (1,234) (2346) (1457 (567,10)
6,789 (3467 (2345 (2346) (1,234)
(1,234) (5789 (3457 (2345 (4567)

D=]|(678 (1234 (68910) (2345 (3457 |
(2,345 (1,346) (1,234) (57911) (2,34,5)
(2,456) (1,237 (2458 (3457 (567,10)

(829,2581,6138,12240)
(671,2300,5969,12068)
(726,2385,5969,12540)
(565,2087,5448,11839)

(785,2476,6202,12395)
E= (

(797,2564,6399,13618)
(781,2583,6235,13407)
(671,2413,6100,13227)
(726,2590,6347,13923)
(565,2199,5722,13077)

(811,2670,6587,13679)
(854,2767,6470,13488)
(718,2512,6263,13313)
(748,2574,6329,13783)
(574,2230,5821,13033)
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(867,2727,6794,14226)
(902,2788,6667,14066)
(759,2548,6471,13819)
(820,2684,6669,14535)
(678,2339,6095,13685)

(1009,2885,6777,14478)
(857,2654,6593,14233)
(941,2801,6836,15031)
(768,2431,6209,14094)

(1000,2841,6936,14685)\’



Solution: The positive fuzzy solution for the given PGTrFFSME is obtained by
FMVM, FGIM and FLSIM methods in Sections 3.3.1, 3.3.2 and 3.3.3, respectively as
follows:

Fuzzy matrix vectorization method (FMVM): By decomposing the given
PGTrFFSME and applying the FMVM, the analytical positive fuzzy solution is

(1,245 (2346) (2357 (1,235 (234,6)
(2,345 (1,234) (3457) (2346) (3,457)
(1,24,6) (1,345 (2357) (1,245) (23,56)
(2,356) (3457 (1,234) (1,246) (23,57)
(1,235 (2345 (1,256) (2356) (3,467)

>
Il

This positive fuzzy solution is approximated using Algorithm 3.1 for FGIM and
Algorithm 3.2 for FLSIM as follows:

Fuzzy gradient-iterative method (FGIM) and Fuzzy least-square iterative method
(FLSIM)

Algorithm 3.1 for FGIM and Algorithm 3.2 for FLSIM are applied to compute the
approximated positive fuzzy solution X (k) for the given PGTrFFSME using the
following initial value for 1 < [ < 4,

£D(0) = . The analytical positive fuzzy solution X and the

SO O OO
SO O OO
SO O OO
SO O OO
(=N el elole]

approximated positive fuzzy solution £ (k) are shown in Table 3.3 with the
convergence rate (@), error bound (&), and the total number of iteration (k), while Table

3.4 shows the computational time and memory usage for FGIM and FLSIM.
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Table 3.3

Comparison Between FMVM, FGIM and FLSIM for Example 3.3.4.2.

Method | Analytical Solution-Approximated Solution a £ k
£@® | FMVM 1 2 2 1 2 NA NA
2 1 3 2 3
1 1 2 1 2
2 31 1 2
1 2 1 2 3
FGIM 1.05652071 1.90024265 1.97882875 0.905806087 2.14852826 1x10°° 107> | 21413
1.95505118 1.12033307 3.00233716  2.11027953  2.8249459 \
0.923598317 1.07595811 2.06031952 1.07394364 1.88634139
2.05200008 2.94183037 0.961233025 0.94719663 2.08189662
0.999899989 2.0004054 0.993946606 1.9972846  3.00334184
FLSIM 1.00000556  1.99999433 1.9999984 0.999995058 2.00000625 0.18 107> |51
1.99999696 1.00000411 2.99999837 2.00000253 2.99999731
0.999996245 1.00000176 2.00000606 1.00000364 1.99999435
2.00000296 2.99999859 0.99999525 0.999997123 2.00000444
0.99999582  2.00000423 1.00000124 2.00000371 2.99999529
2@ | FMVM 2 3 3 2 3 NA NA
(3 2 4 3 4\
2 3 3 2 3
3 4 2 2 3
2 3 2 3 4
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Table 3.3 Continued.

FGIM

2.98629894
197113291
3.02766903
1.93465775

{206922004

2.91052957
2.04306768
3.00990642
3.97919063
3.07679674

293131164
4.01294598
3.0267222
1.97736074
2.06145229

1.95470211

3.02621827

1.99638357
2.0004128
3.0333028

3.13502337
3.92826014
2.99875633
3.01262118
3.89569931

6x 1077

10~°

22825

FLSIM

2.00000326
3.00000007
1.9999992
2.99999784
1.99999983

2.99999667
1.99999991
3.00000081
4.00000219
3.00000017

2.99999887
3.99999998
3.00000027
2.00000074
2.00000005

1.99999842
2.99999996
2.00000038
2.00000103
3.00000008

3.00000265
4.00000006
2.99999935
2.99999825
3.99999986

0.25

1075

36

23 | FMVM

4
4
4

5
3

NA

NA

FGIM

3.88428735
/405273915
4.04820978
497134192
3.05703694

3.96592786
291744874
4.09131166
493824383
4.07995255

5.04057849
4.99855769
49600704
3.03022891
496611704

2.97436561
3.97639485
4.03591445
3.97657539
5.03604725

414134058
50510836\\
4.860649
5.08589048
5.85810901

5x 1077

1073

31960

FLSIM

3.99999427
4.0000051

4.00000258
4.9999983

3.00000221

4.00000086
2.99999114
4.00000578
4.99999624
4.00000359

5.00000403
5.00000033
4.99999518
3.00000314
4.99999653

2.99999948
3.99999709
4.00000281
3.99999817
5.00000184

4.00000295
5.00000611
4.999992
5.00000521
5.99999461

0.25

1075

39
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Table 3.3 Continued.

2@ | FMVM

:

5

5

N U1 O U1

7
7
7
4

Ul g U1 S O

6 6

NN ON O

NA

NA

FGIM

5.14322017
5.07660683
5.80351271
6.0748883
4.89283164

5.46686185
4.18233814
5.29891549
6.75024597
5.32761062

7.00311771
6.97306337
6.944539
411711073
5.96298148

4.89158325
6.02314021
5.04424804
5.99994831
6.04916625

6.42955133
6.77034175
5.93870238
7.03455845
6.80194905

9x 1078

1075

57632

FLSIM

5.00000188

5.99999323

6.00000431
4.9999929

{500000486

5.99999274
4.00000619
4.99999867
6.99999949
5.00000577

7.00000055
6.99999691
7.00000343
3.99999831
6.00000097

4.99999745
6.00000145
5.00000045
5.99999934
6.00000242

6.9999932
6.00000473
6.99999826
6.99999822

600000433w

0.2

10~°

33
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The following Table 3.4 compares the computational time and memory usage for FGIM
and FLSIM for Example 3.3.4.2.
Table 3.4

Computational Time, Memory Usage for FGIM and FLSIM for Example 3.3.4.2.

Method k CPU Real Memory

time time usage

£ FGIM 21413 29.83ms 28.19ms 5.19 MB
FLSIM 51 27.25ms 27.18ms 5.20 MB
£ FGIM 22825 1427 ms 13.56 ms 2.68 MB
FLSIM 36 1290ms 12.75ms 2.68 MB
£® FGIM 31960 1429 ms 13.58ms 2.67 MB
FLSIM 39 20.82ms 20.08 ms 2.67 MB
2@ FGIM 57632 1429 ms 13.62ms 2.69 MB

FLSIM 33 1279 ms 1270 ms 2.69 MB

The following Figure 3.8 shows the change in the error 6§ (k) when k increases up to

k = 20.
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Figure 3.8. Comparison between § O (k) of FGIM and FLSIM for the first 20 iterations
for Example 3.3.4.2.
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Table 3.3, Table 3.4 and Figure 3.8 show that the error 6§ (k) is reducing as k increases.
Figure 3.8 shows that the error of the FGIM and FLSIM for approximating % is reducing
significantly as k increases, where the FLSIM converges to the analytical solution for a
fewer number of iterations with a bigger step size compared to the FGIM. This indicates
that the developed algorithms are effective and convergent for the given PGTrFFSME. In
addition, the FLSIM takes more computational timing and more memory compared to
FGIM. However, in terms of accuracy, error, and number of iterations, FLSIM provides

extremely accurate approximations with very few iterations.

Remark 3.3.4.1. Analysis of the obtained positive fuzzy solutions in Examples 3.3.4.1and

3.3.4.2 can be obtained similar to Example 3.3.1.1 in Section 3.3.1.1.

In the following Example 3.3.4.3, FMVVM, FGIM and FLSIM methods in Sections 3.3.1,
3.3.2 and 3.3.3, respectively, are applied to a 100 x 100 PGTrFFSME.
Example 3.3.4.3. Solve the following 100 x 100 GTrFFSME:

AXB+ CXD =E
where,
AW = LinearAlgebra: —RandomMatrix(100,100, generator = 1..2),
BW = LinearAlgebra: —RandomMatrix(100,100, generator = 1..2),
CO = LinearAlgebra: —RandomMatrix (100,100, generator = 1..2),
DM = LinearAlgebra: —RandomMatrix (100,100, generator = 1..2),

E® = LinearAlgebra: —RandomMatrix(100, 100, generator

= 2x105.. 3% 10%).
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A®) = LinearAlgebra: —RandomMatrix(100,100, generator = 3..4),
B® = LinearAlgebra: —RandomMatrix(100,100, generator = 3..4),
C®@ = LinearAlgebra: —RandomMatrix(100,100, generator = 3..4),
D® = LinearAlgebra: —RandomMatrix (100,100, generator = 3..4,)
E® = LinearAlgebra: —RandomMatrix(100, 100, generator

= 3x10°.. 4 x10°).

A®) = LinearAlgebra: —RandomMatrix(100,100, generator = 5..6),
B® = LinearAlgebra: —RandomMatrix(100, 100, generator = 5..6),
C® = LinearAlgebra: —RandomMatrix(100,100, generator = 5..6),
D®) = LinearAlgebra: —RandomMatrix (100,100, generator = 5..6),
E® = LinearAlgebra: —RandomMatrix(100, 100, generator

= 1x10%.. 2x10%).

AW = LinearAlgebra: —RandomMatrix(100,100, generator = 7..8),
B™® = LinearAlgebra: —RandomMatrix(100,100, generator = 7..8),
CW = LinearAlgebra: —RandomMatrix (100,100, generator = 7..8),
D™ = LinearAlgebra: —RandomMatrix (100,100, generator = 7..8),
E® = LinearAlgebra: —RandomMatrix(100, 100, generator
= 3x10%.. 4 x109%).
Solution: The positive fuzzy solution for the given 100 x 100 PGTrFFSME is obtained

by the developed methods as follows:
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Fuzzy matrix vectorization method (FMVM):
To apply the FMVM, the inverse of the 10000 x 10000 matrix needed to be found, which
required long computational timing and huge memory. Thus, FMVM is not a practical
approach for such a large dimensional system. However, the FGIM and FLSIM can be used
to obtain an approximated fuzzy solution to the given PGTrFFSME as follows:
Fuzzy Gradient-Iterative Method (FGIM) and Fuzzy Least-Square Iterative Method
(FLSIM)
Algorithm 3.1 and Algorithm 3.2 for FGIM and FLSIM are applied to compute the
approximated solution X (k), using the following initial value for 1 < I < 4,

£®(0) = LinearAlgebra: —RandomMatrix (100,100, generator = 0)
FLSIM can get the solution in just four iterations with (a; = @, = a3 = a, = 0.25).
However, FGIM needs thousands of iterations to give the approximated solution using
(a; =102, 0, = 10713, a3 = 107, @, = 1071%). In the following Table 3.5, the step
size, computational time and memory usage for the first 20 iterations for FLSIM and FGIM

are compared.
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Table 3.5

Comparison Between FGIM and FLSIM for Example 3.3.4.3.

Method  Step Size Number CPUtime Realtime Memory

a of usage
Iteration
2 FGIM 10712 20 14.22 s 11.40s 257 GB
FLSIM 0.25 4 116.49 s 107.21s 15.80 GB
2@  FGIM 10713 20 15.99s 12.97 s 2.84 GB
FLSIM 0.25 3 119.12s 108.52 s 16.01 GB
£®  FGIM 107 20 16.82 s 13.61s 3.17GB
FLSIM 0.25 3 120.03 s 111.34 s 16.30 GB
2@ FGIM 10715 20 18.01s 16.35s 412 GB
FLSIM 0.25 3 121.18s 112.45s 16.52 GB

The following Figure 3.9 shows the change in the error § (k) when k increases up to

k = 20.
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Figure 3.9. Comparison between § (k) of FGIM and FLSIM for the first 20 iterations
for Example 3.3.4.3.
Table 3.5 and Figure 3.9 show that the error 5 (k) is reducing as k increases for the first

20 iterations. Figure 3.9 show that the error of the FGIM and FLSIM for approximating
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£® is reducing significantly as k increases, where the FLSIM converges to the analytical
solution for a fewer number of iterations with a bigger step size compared to the FGIM.
This indicates that the developed algorithms are effective and convergent for the given
PGTrFFSME. In addition, the FLSIM takes more computational timing and more memory
compared to FGIM. However, in terms of accuracy, error, and number of iterations, FLSIM
provides extremely accurate approximations with very few iterations.

Remark 3.3.4.2. The construction and solution to the PGTrFFSME in Examples 3.3.4.1,
3.3.4.2,3.3.4.4 and 3.3.4.4 are done by Maple 2019.0.

In the following Table 3.6, a complete comparison between the advantages and
disadvantages of FMVM, FGIM and FLSIM in Sections 3.3.1, 3.3.2 and 3.3.3,
respectively, is discussed.

The developed methods in Section 3.3.1, Section 3.3.2 and Section 3.3.3 for solving the
PGTrFFSME in Eq. (1.16) can be modified and applied to its special cases in Eq. (1.14),
Eq. (1.11) and Eq. (1.12). In the following Section 3.4, the positive TrFFSME in Eq. (1.14)

is discussed. In later sections, the rest of the special cases are discussed.
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Table 3.6

Comparison Between the Advantages and Disadvantages of FMVM, FGIM and FLSIM.

Method Advantages Disadvantages
FMVM » Analytical fuzzy solutions can Required getting the inverse
be found. of mn X mn matrices for a
» Does not require initial values. system of size m x n and
therefore limited to small
systems
FGIM » Gives an accurate fuzzy Limited to PGTrFFSME
approximation. with square coefficients.
« It can be applied to large The convergence rate is very
PGTrFFSME. small (& < 10~°) which
« Can take any initial value. means it takes many
iterations to give the desired
fuzzy solution.
FLSIM » It can be applied to large The convergence rate is big

PGTrFFSME.

Can take any initial value.
Gives an accurate fuzzy
approximation.

It can be applied to systems
with non-square coefficients.

(a > 1071) comparing to the
FGIM.

It requires getting the inverse
of the least square term,
which means it takes longer
computational time and
memory usage compared to
the FGIM

3.4 Solving Positive Trapezoidal Fully Fuzzy Sylvester Matrix Equation

In this section, the positive fuzzy solution to the positive TFFFSME AX + XD = E in

Eq. (1.14) is obtained. First, the positive TrFFSME is converted to a system of SME based

on RAMO in Corollary 3.1.2.1 for positive TrFNs. Secondly, the obtained system of SME

is solved analytically by modifying the FMVM in Section 3.3.1 and developing a new

method named the fuzzy Bartle Stewart method (FBSM). The obtained analytical solution

by the MFMVM and the FBSM is approximated numerically by modifying the FGIM and
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FLSIM in Section 3.3.2 and 3.3.3, respectively. In the following Definition 3.4.1, the
positive GTrFFSME is introduced.
Definition 3.4.1. A matrix equation FFSME AX + XD = E, is called positive trapezoidal

fully fuzzy Sylvester matrix equations (PTrFFSME) if

A ~ 1 2 3 4
Az(aij)nxnz(al(j)’ L(])'a'i(j)l ()) V1<lj<n

di?) v1<ij<m,

N —_ (5 _ @ 5@ ;03)
D= (dij)mxm - (dU ’dU ’dl] ’

5 . ) 2 .(3) _(4
X=(xl-j)nxmz(xl-(j),xi(j),xl.(j), ()) V1<i,j<nmand

E= (éij)qxr (e 1(11)’ sz), 1(13), (4)) V1<i,j<nm, are positive trapezoidal fuzzy

matrices, respectively.

In the following Definition 3.3.2, the system of SME is introduced.

Definition 3.4.2. A system of matrix equations in the form

J0,@ L @0 _ @

l] l] ij ij ij’
1@,® L@@ _ @
oy
u X txgdy = e
alfaf) + 27 = e

is called a system of SME.

In the following Theorem 3.4.1, the PTrFFSME in Eq. (1.14) is converted to an equivalent
system of crisp SME.

Theorem 3.4.1. Suppose A,D,E and X are positive trapezoidal fuzzy matrices,
respectively, then the PTrFFSME AX + XD = E is equivalent to the following system of

SME:
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aPx D+ xPd® = oD

Aij Xij €ij
ax® + x (Z)d(Z) = e, .
HOME +x(3)d(3) NG (351
ij Xij ij
(4) 4) (4) (4) 4
a;; X +x d =e;

Proof: Let 4, D, E and X in the PTrFFSME AX + XD = E be positive trapezoidal fuzzy
matrices respectively, then by RAMO in Eq. (3.2), the product AX and XD are obtained as

follows:

[D?z(a(l)x(l) @), ), (4) (4))

gy g l] l]' l] l]' and

5 = (xDgD D g® (B g® @ 4®
XD = (xPd xPa? xPdP, xPa).

By Definition 2.3.3.2.6 and Eq. (2.10a), the sum of AX and XD is found as follows:

A%+ %D = (a@x® ;@,@ 3, .B) ) (%) D0 @ ;@ 6);63) 1),;M
AX+XD—( i X QXA X Ay xij) ( dl], dU, le’ ij d;; )

ij i’ l] xij U i’ l] xi] 11 ij’ U xij

— ( (]1) (1) + x(l)d(l) (2) (2) (z)d(z) (3) (3) (3)d(3) (4)..(4) + xi(;*)di({l))_
By Definition 2.3.3.2.5 and Eq. (2.9), the PTrFFSME AX + XD = E is equivalent to the

following system of SME:

(aDx® 4 xDg® — (O

ij xi] l] ij - L] ’
aPx® 4 xPd® = 2,
o) P = .
Lai(?)xi(f) + xi(f)dl.(f) = el.(f).

O
The solution to the PTrFFSME can be found by solving the equivalent system of SME.
However, the sufficient conditions for the system of SME in Eq. (3.51) to have a unique

positive solution need to be checked before solving that system. Therefore, in the following
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Theorem 3.4.2, the sufficient conditions for the system of SME to have a unique positive
solution are discussed.

Theorem 3.4.2 Uniqueness of Positive Solution to The System of SME
The system of SME in Eq. (3.51) has a unique positive solution if the following

conditions are satisfied:
I) det(r;) # 0,det(r,) # 0,det(r;) # 0 and det(r,) # 0i.e., 1y, 15, 13 and r, are
invertible matrices where

r = (1(1))T®a(1) + (d(l))T®Il(]1),

T, = (1(2))T®a(2) + (dl(JZ))T®Il(]2)'

3 3 3 3
ry = (I)®ay + (A RIS,

1, = (Ii(4))T®a(4) + (d_(4))T®I(4)_

) 71, L rylandr;t > 0.

Proof:

I) Consider the system of SME in Eq. (3.51), and by applying the concept of
Vec-operator and Kronecker product in Definition 2.6.2.3, the following system of
linear matrix equation is obtained:

f(ll.(jl)@agl) + (d(l))T®I(1))vec(xi]1)) ( )
) (Il.(jz)@)al(z) + (d(z))T®I ))vec(xijz)) = vec(esz)),

(157 @3} + @y @1 Jvec(xi}) = vee(e;)
k([ﬁ”@af}}) (d.(4))T®I(4))vec( (4)) = vec(el(f)).

(3.52)

vec\ X:

The system of linear matrix equation in Eq. (3.52) can be written as a linear matrix equation
in the form of

RS

I
=~

(3.53)
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Or in a matrix form as,

IP®a? +

IP®afy + (d) eI 0 0
0 1P®a? + (d) eI 0
P E) ®) ®)
0 0 I9®af) + (d) RIS
0 0 0
vec(e(l))
vec(e )
vec(e(3)) '
\vec(e(4))
where,
11(11)®afl) + (d(l))T®Il(}1) 0 0
2) o ,(2) @) ()
R= 0 Ly ®aj” + (i) ®ly; Y
3 3 3 3
0 0 1P®a + (@) 1
0 0 0
{vec(x(l)) /vec(e(l))
| vec(x(z)) vec(e(z))
S = ) and T = @)
vec(x;;) vec(e;;”)
vec(xij ) Uec(eij )
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0
0

Weud +

[fey

) vec(x(3)
4 4 4
(di(j ))T®Ii(j ))vec(xi(j) vec(xl.j

0
0
0
(@Y Ry vec(x



Ifwe letry = (IS ®af) + (A )@, 1 = UF) ®a + (A7) ®c?,

!

ry = (1(3))T®a(3) + (d(3))T®C(3)and T = (1(4))T®a(4) + (d(4))T®C(4) Then

n 0 0 O
[0 n 0 O
R=1o 0 r o
0 0 0
vec(x ) vec(e )
S1
vec(x ) s vec(e )
IfweletS = (3) = 52 , T = (3)
vec(x;;’) 3 vec(e;;)
S
vec(x(4)) vec(e(4))
equation in Eqg. (3.53) can be written as
n 0 0 O S ty
0, 0 O)[s2)_|[¢t
0 0 r5 O [f\s3]| |t
O 0 0 T'4 S4 t4_

= . Then the linear matrix

(3.54)

Matrix R is a block diagonal matrix, by Definition 2.6.1.14 the det (R) is obtained as

follows:

0
det(R) = det

o oo

)
0
0

T3
0

0
0
0

L

det (R) = det(ry) X det(r,) X det(r3) X det(r,).

Thus, the linear matrix equation RS = T has a unique solution if det (R) # 0. That is if

det(r,) # 0,det(r,) # 0,det(r3) # 0 and det(r,) # 01i.e., 1y, 1, 13 and r, are invertible

matrices. Since the system of SME in Eq. (3.51) and the system of linear matrix equations

RS =T in Eq. (3.53) are equivalent, then the system of SME in Eq. (3.51) has a unique

solution if: det(r,) # 0,det(r,) # 0,det(r3) # 0 anddet(r,) # 0, i.e. 1y, 1y, 13 and 1,

are invertible matrices.
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) 1fr;, r;Y,rs and ;! > 0 then the system of SME in Eq. (3.51) has a positive
solution, and the proof is straightforward.
O
The system of SMEs obtained in Eq. (3.51) consists of four SMEs, and therefore, it can be
represented in more general form as given in the following Remark 3.4.1.
Remark 3.4.1: The system of SME in Eq. (3.51) can be written as follows: for 1 <[ < 4

we have:

al-(]l-)xl.(;) + xl.(;)dg-) = ei(;). (3.55)
The PTrFFSME in Eq. (1.14) is a special case of the PGTrFFSME in Eq. (1.16), and the
system of SME in Eq. (3.51) is also a special case of the system of GSME in Eq. (3.20).
Thus, the FMVM, FGIM and FLSIM in Sections 3.3.1, 3.3.2 and 3.3.3, respectively, can
be applied directly to the PTrFFSME in Eq. (1.14). However, to reduce the computational
time and the memory usage, the FMVM, FGIM and FLSIM are modified and applied to
the PTrFFSME. In addition, another analytical method will be developed in solving the

PTrFFSME, which is based on the Schur decomposition and Bartels Stewart in Section

2.10.2. The four methods are discussed in the following Sections.

3.4.1 Modified Fuzzy Matrix Vectorization Method for PTrFFSME

In this section, the analytical positive fuzzy solution to the PTrFFSME AX + XD = E in
Eq. (1.14) is obtained by modifying the FMVM in Section 3.3.1 and applying it to the
system of SME in Eq. (3.51). The detail of the modified FMVM (MFMVM) is presented

in the following steps.
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O p®, e® and x

, €5 ij Where

Stepl: Decomposing the matrices 4, B, E and X into a;;

l=1,2,3,4 respectively and convert the PTrFFSME to a system of SME using
Theorem 3.4.1.

Step 2: Applying the Vec-operator and Kronecker product on the system of SME in
Eq. (3.51) as discussed in Eq. (3.52).

Step 3: Multiplying the system of linear matrix equation in Step 2 by matrix

multiplicative inverse as follows:

1 1 1 1 1

) veele
vec( (2)) <1i(j2)®ai(2) +(d(2))T®1 )) 1vec(e(2)
) eeley

tJ

vec(x.(}.S)) = (Ii(j3)®ai(3) d(g))T®I(3)

vec( (]4)) (Ii(]f")®ai(;})+(dl-(4))T®I(4)) vec(ei

(3.56)

Step 4: Multiplying the system of linear matrix equation in Eq. (3.56) by vec™! as

follows:

-1
f (1) — vec 1( (1)®a(1) d(l))r®1(1)) 1]ec(e(l)

1
vec(e(z)

; . (3.57)

-1 (2)®a(2)+(d(2))T®1(2)

(2) (
x& = vec 1( 198a® + (@D QIP)  vec(e?)),

1
\xi(].) = vec_l(li(f)ébai(;) + (di(4))T®I(4)) vec(e(4))).
Step 5: Combining the positive fuzzy solutions obtained in Step 4 and write it as a

trapezoidal fuzzy matrix as follows:

o @ 6 @4 ® @ 6 @)
(x11 X110 X110 X ) (xln 1 Xin o X1n X1 )
7= : : : (3.58)
o @ .6 @ €Y (2) x3 @
(xmll Xm1r Xm1s xml) ( Xmn» Xmn» Xmn» X n)

146



In the following Remark 3.4.1.1, the solution in Eq. (3.57) to the system of SME is written
in a general form.
Remark 3.4.1.1: The solution to the system of SME in Eq. (3.57) can be written in general

form as follows: for 1 < [ < 4 we have:

xP = vec (15 ®af) + (dg.))T®1§}))_1vec(e§}))). (3.59)
In the following Theorem 3.4.1.1, the relation between the positive fuzzy solution to the
PTrFFSME and the positive solution to the system of SME is discussed.
Theorem 3.4.1.1. The positive solution to the system of SME and the positive fuzzy
solution to the PTrFFSME are equivalent if the following conditions are satisfied:

I) det(r;) # 0,det(r,) # 0,det(r;) #+ 0 anddet(r,) = 0 i.e 1y, r,, 3 and r, are

invertible matrices.

) 71, s Lrgtandr;t > 0.

Ir,"t; >0,,71t, > 0,33 > 0and ,~1t, > 0.

IV)r, "t <17t < 7ty < it
Proof:

The proof of parts I and 11 is similar to the proof of Theorem 3.4.2.

[1)By Theorem 3.4.1, the PTrFFSME is converted to a system of SME and
consequently to a linear matrix equation in Eq. (3.53) by Theorem 3.4.2.

Multiplying both sides of Eq. (3.53) by R~ gives:

-1

S1 4] 0 0 0 tl
S20 [0 rn 0O O ty
s3] 10 0 r5 O ts (3.60)
Sy 0 0 0 ny ty
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Since R~ is a block diagonal matrix, R~ can be evaluated by Definition 2.6.1.13

R~1 as follows:

) r1 0 0 0 t,
s21 | 0 n™t 0 0 ty
ss| | o 0 't 0 ts
S4 0 0 0 nr,1/ \k

The right-hand side can be simplified to the following:

51 n ot
= 3.61
Sy T.4—1t4

Therefore, the system of equation in Eq. (3.51) has a positive solution if r,~1t; > 0,
" t, > 0,137t > 0and r,~1t, > 0.
IV) The linear matrix equation in Eq. (3.53) can be written as separated equations as
follows:

51 == T'l_ltl, 52 = rz_ltz, 53 - T'3_1t3 and 54_ —_ T'4_1t4, WhICh can be

written as
sec(sP) = (78 + 1) veee?).
) - <() ) o),
vee(x?) = (19@a + @y 1) vec(el),
vee(x) = (1P @ay + @y @i)  vec(el?).

For the obtained solution in Eqg. (3.61) to be a fuzzy solution, the following

conditions must be met r; 71t; < 1,7, < Tty < 1Tl
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Therefore, the unique positive solution of the system of GSME in Eg. (3.51) and the

positive fuzzy solution to the PTrFFSME are equivalent.

Corollary 3.4.1.1. The Uniqueness of Fuzzy Solution to PTrFFSME
The PTrFFSME has a unique positive fuzzy solution if the corresponding system of SME

in Eg. (3.51) has a unique positive solution.

Proof: The solution to the PTrFFSME in Eq. (1.14) is equivalent to the solution system of
SME in Eq. (3.51) by Theorem 3.4.1.1. Therefore, the PTrFFSME in Eq. (1.14) has a
unique positive fuzzy solution if the corresponding system of SME in Eq. (3.53) has a
unique positive solution.

O

In the following Corollary 3.4.1.2, the sufficient conditions for the PTrFFSME to have a

positive fuzzy solution are discussed.

Corollary 3.4.1.2. Existence of Positive Fuzzy Solution to PTrFFSME

The PTrFFSME has a positive fuzzy solution if

I) r,nr, r3andr, are invertible matrices. (3.62)
i % r,4hrytandr, > 0. (3.62a)
Ir,~t;, > 0,7, > 0,137 t; > 0andr,~1t, > 0. (3.62b)
IV)r, 7t <17t < 7l <ty (3.62c)

Proof: Part | and 11 can be proved as follows:
By Corollary 3.4.1.1, the PTrFFSME has a unique fuzzy solution only if ry, r,, 13 and r,

are invertible and 1, 51,5 tand ;1 > 0.
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[11) By Theorem 3.4.1.1, the solution to the system SME and the PTrFFSME are
equivalent. Thus, from Eq. (3.61), the PTrFFSME has a positive fuzzy solution only
if

rtt; >0,
r, t, > 0,
r3 1ty > 0,
1,71ty > 0.

IV) By the definition of positive fuzzy solution matrix in Definition 3.3.3, the
PTrFFSME has a unique positive fuzzy solution if the following condition is
satisfied,

ntt, Sl S nTlty < Tl
O
The MFMVM for solving the PTrFFSME is illustrated by solving the following
Example 3.4.1.1.
Example 3.4.1.1 Consider the following PTrFFSME:

® @ 3 , @ ® @ 63 . @
((2,4,5,9) (1,2,4,5))_ (xll'xll'xll'xll) (xlzfxlzfxlz'xlz)

(13,56 (1678 \ (20,00, 20) (a82.2. 282,580

1 2 3 4 1 2 3 4
<(x1(1),x§1),x§1),x§1)) (xiz),xiz),xiz),xiz))> _ ((3, 6,7,9) (1,3,5,6) )

(x(l) 2 .3 (4)) (x(l) 2,03 (4)) (1,5,6,8) (4,7,9,10)

210 %21 %21 X321 220 X221 X221 X5

((10,50,108,183) (10,39,101,166))
(32,89,139,211) (29,73,130,198))"

Solution: The positive fuzzy solution to the given PTrFFSME can be obtained analytically
by the MFMVM in Section 3.4.1, similar to Example 3.3.1.1. Therefore, the positive fuzzy

solution is,
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(1,356 (1,2,4,5)
X= ((4, 5,6,7) (3,4,5, 7))'

Remark 3.4.1.3. Analysis of the obtained positive fuzzy solutions in Examples 3.4.1.1 can

be obtained similar to Example 3.3.1.1 in Section 3.3.1.1.

In the following Section 3.4.2, a new analytical method, namely the Fuzzy Bartle Stewart
method (FBSM), is developed to solve the PGTrFFSME. The FBSM is based on
decomposing the coefficient matrices to its Schur decomposition, which has been applied
previously in BSM in Section 2.10.2 for solving a single SME. The main advantage of this

method is that it avoids the long multiplication process of the MFMVM in Section 3.4.1.

3.4.2 Fuzzy Bartle Stewart Method for PTrFFSME

In this section, the positive fuzzy solution to the PTIFFSME AX + XD = E in Eq. (1.14)
is obtained analytically by FBSM, which decomposes the coefficient matrices to its Schur

decomposition. The detail of the constructed method is presented in the following steps.

Step 1: Suppose al(]), dl(]l), 1(12) d(z) S’) dl(f), 1(14) and d( are real and have real Schur

decompositions. Then by Definition 2.8.2.1 in Section 2.10.2, the following Schur

factorizations can be obtained:
1 2 2
al = URUT, AP = ViV, 0P = UpR,UT, dP = v,5,V], af) = UsR,UT,
di) =VoS3VT, af = URUT and dfy) = V,S,V.T where U and V are orthogonal and R

and S are upper quasi-triangular. Then the system of SME in Eqg. (3.51) is transformed to:
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(U7aPUy - UTx(PVy + U PV vl d Py, = Ul elPw,,
Ul a(z)u2 UIx PV, + USx PV, VI AV, = UL eP Vs,
vIa Uy - UTxVs + UTx Ve VI d v, = UTePvs,
(U a{ Uy - UTxPVy + ULV VI APV, = UTelPV,.

A

Consequently, it can be written as:

R,W, + W,S, =T,
R,W, + W,S, = T,,
RiW; + W,S, = Ts,
RW, +W,S, =T,.

(3.63)

where,

Ry = UTaUs, Ry, = UTa(P Uy, Ry = UTaUs, and R, = UL a UL,
Wy = UTx{Pvi, Wy = UTx vy, Wy = UTx Vs, and W, = UTx PV,
S; =VIdV,, S, = VIdVy, Sy = VEd Vs, and S, = VId{ PV,
Ty, = UTelPVy, Ty = U eV, Ty = UTe Vs and T, = Ufe V..

Applying Vec-operator and Kronecker product in Definition 2.6.2.3, Eq. (2.14b) on the

system of equations in Eq. (3.63) gives:

Piw; =t,
Pyw, =t,,
Pows = t, (3.64)
P4_W4_ = t4.

where,
P, = I®R, + ST®I, w; = vec(W;) and t; = vec(T;),
P, = IQR, + ST®I, w, = vec(W,) and t, = vec(T;),
P; = IQR; + ST®I, wy = vec(Ws) and t; = vec(Ts),

P, = IQR, + SI®I, w, = vec(W,) and t, = vec(T,).
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Step 2: Solving the system of linear matrix equation in Eq. (3.64) and by applying the
definition of vec™tin Eq. (2.12) on the obtained w,, w,, wsand w, respectively, gives W,

W,, W, and W,. Consequently, the values of x 2, x®, x& and x®

i Xij o X ij can be computed as

follows:
xi(jl) = U, W, VY,
x;) = U, WoVf,
x = UV,

ij -

xff) = U4_W4V4_T.

Step 3: The positive solution obtained in Step 2 can be written in matrix form as follows:

n @ ), @ n @ 3) @
(x11 X110 X110 Xq ) (xln’xln'xln' 1n)
X= : :
o @ 6 &) @ 2 B3 4
(xml' Xm1 Xm1s xml) (xmn' Xmn» Xmn xmn)

To check the accuracy of the FBSM, in the following Example 3.4.2.1, the FBSM is applied

for solving the PTrFFSME in Example 3.4.1.1.

Example 3.4.2.1 Consider the following PTrFFSME:

o @ 6 @ o @ 6 @
(x11 X110 X110 X1 ) (x12 1 X121 X127 Xq2 )

((2, 4,59) (1,24, 5)) _

(1,3,5,6) (4,6,7,8) 2 .03 (4 1 @ 3 @

(1)
(x21 X1 X210 X2 X221 X221 X221 %22

1 2 3 4 1 2 3 4
<(x1(1),x§1),x§1),x§1)) (xiz),xiz),xiz),xiz))> _ ((3, 6,7,9) (1,3,5,6) )

D 2@ O By (O @ @) @] \(1,56,8) (47,9,10)

210 %21 %21 X321 220 X221 X221 X5

((10,50,108,183) (10,39,101,166))
(32,89,139,211) (29,73,130,198))"
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Solution: The positive fuzzy solution to the given PTrFFSME is obtained by the FBSM
as follows:

Step 1: Decomposing the coefficient matrices 4, D, E and X as follows:

(1)_ 1 (2) 4 2 3 _ (5 4 @ _ (9 5
_< 4) aij _(3 6)’ aij _(5 7)’aif _(6 8>’
W _ 1 @2 _ (6 3 3 _ (7 5 @ _ (9 6
d;; _( 4) dj (5 7)'dij _(6 9)’ d;j _(8 10)’
e = (L 10 10y o) _ (50 39) o _ (108 101y ) _ (183 166)
32 29/ €ij 89 73/ 77U 139 130" U 211 198/
€)) @3] 2) 3) 3
(1) <x11 x12> (2):<x11 x12) x(3):<x11 x12>and
& ) L a9) Tl
(4) (4)
x@ _ X114 *12
T\ )

In addition, decompose the following matrices to their Schur decompositions by applying

Definition 2.8.2.1 in Section 2.10.2 is as follows:

1 2 3
a; = U,RUT  d = ViS,VT a? = U,R,UT  dfP = V,$,V]  afY = UsR;UT
d;Y = VsS3VT, aly = UR,UT and df = V, S,V

where

U =(—0.9238795325112866 —0.3826834323650898)
1 0.3826834323650898 —0.9238795325112866/"

yT = (—0.9238795325112866 0.3826834323650898 )and
1 —0.3826834323650898 —0.9238795325112866

P = (1.585786437626905 0. )
1 0. 4.414213562373095/

U :(—0.7721779012040573 —0.6354063966408405)
2 0.6354063966408405 —0.7721779012040573/"

uT = (—0.7721779012040573 0.6354063966408405 )and
2 —0.6354063966408405 —0.7721779012040573
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R = (2.3542486889354093 —1. )
2 0. 7.645751311064591/

U :(—0.7449054530602934 —0.6671700427934688)
3 0.6671700427934688 —0.7449054530602934/’

Ul = (—0.7449054530602934 0.6671700427934688 )and
3 —0.6671700427934688 —0.7449054530602934

R. = (1.4174243050441593 -1. )
3 0. 10.582575694955839/"

U =(0.7071067811865475 —0.7071067811865475)
* 0.7071067811865475 0.7071067811865475 /'

UT = ( 0.7071067811865475 0.7071067811865475) and
4 7 \-0.7071067811865475 0.7071067811865475
(14, —1.

R‘*_(o. 3. )

V. = (—0.8506508083520399 —0.5257311121191336)
1 0.5257311121191336 —0.8506508083520399/"

VT = (—0.8506508083520399 0.5257311121191336 ) il
! —0.5257311121191336 —0.8506508083520399

S = (2.381966011250105 0. )

! 0. 4.618033988749895/°

V. = (—0.6610612078952277 —0.7503319794704894)
2 0.7503319794704894 —0.6610612078952277/"

VT = (—0.6610612078952277 0.7503319794704894 )and
z —0.7503319794704894 —0.6610612078952277

S = (2.594875162046673 —2. )
z 0. 10.405124837953327/°

Vo = (—0.7382981984302008 —0.6744744399862159)
3 0.6744744399862159 —0.7382981984302008/"

VT = (—0.7382981984302008 0.6744744399862159 )and
3 —0.6744744399862159 —0.7382981984302008

S, = (2.4322356371699785 —1. )
3 0. 13.567764362830022/°

v, = (—0.6813178555401226 —0.7319876909635903)
* 0.7319876909635903 —0.6813178555401226/"
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vT = (—0.6813178555401226 0.7319876909635903 )and
* —0.7319876909635903 —0.6813178555401226

S = (2.553778005275098 —-2. )
4 0. 16.4462219947249/

Since
P, = IQR, + ST®I
P, = IQR, + SI®I
P; = IQR; + ST®I
P, =IQ®R, + SIQ®I
The definition of Kronecker sum in Definition 2.6.2.4, Eq. (2.15) is applied to obtain P;,

P,, P; and P, as follows:

3.96775244887 0. 0. 0.
p. = 0. 6.20382042637 0. 0.
1 0. 0. 6.79617957362 0. ’
0. 0. 0. 9.032247551122
4949123850982 0. —1. 0.
p. = 2. 12.759373526 0. —1.
2 0. 0. 10.24062647311 0. !
0. 0. —2. 18.05087614901
3.8496599422141 0. —1. 0.
p. = —-1. 14.985188667874 0. —1.
3 0. 0. 13.014811332125 0.
0. 0. —1. 24.15034005778
and
16.5537780052 0. —1. 0.
p = —2. 30.4462219947 0. —1.
4 0. 0. 5.553778005275 0.
0. 0. —2. 19.4462219947

To calculate wy, w, , w3 and wy, the values of T;, T,, T; and T, must be calculated first

as follows:
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T, = UlTei(jl)Vl =,

_ 1,@y, _ (0.3467563397901774
T =Uze; Vs ( 5.543468922165914

1 3, _ (—1.3171572069307107
Ts=Use; Vs = ( 18.878912076292565

_r @, _ (—1.411184014324249
Ta=Use; V= (3.0735853985288877

1.5806234959847192
12.306523514147834

—3.16229307660537)
43.60104369000036/"

—24.217948725153143)
129.04898555159454 /°

—16.77512379132618
239.67988442398234

—379.29409243972896)
—29.909080106180955/°

Therefore, by applying Definition 2.6.2.2, the following is obtained:

—1.5806234959847192
—3.16229307660537
12.306523514147834 [
43.60104369000036

t; = vec(Ty) =

0.3467563397901774

—24.217948725153143
5.543468922165914 |
129.04898555159454

t, = vec(T,) =

—1.3171572069307107
—16.77512379132618
18.878912076292565 [’
239.67988442398234

ts = vec(Ty) =

—1.411184014324249
—379.29409243972896

and ty = vec(Ta) =\ 5 0735853985288877

—29.909080106180955
(1 (1 (2)
" : _ (W11 Wi _ (W11
In addition, since W, = < ) (1)), w, = <W(2)
21 22 21
4 4)
W, = (Wn Wiz >
o 4) @)
Wi Wy
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(2)

3)
Wso

)
W12 >’ W3 —
Wso

3)
(Mﬁ1

3)

W1

3)
w.
12 ) and



W11
(€Y)
Then, w; = vec(W;) = 1(% w, = vec(W,) =
21
(€Y}
W22
4)
W11
4)
w
and, w, = vec(W,) = 1(1)
21
(4)
W22

Wi W11
(2) 3)
Wio _ _ | W12
@ [Ws = vec(W3) = @)
21 21
@ 3)
W2 Wso

Therefore, the values of w,, w,, w; and w, are obtained as follows:

wy

WZ = P2_1t2

W3 = P3_1t

W4_ = P4,_1

—0.3983674678172228
—0.5097331739584595

W1 =1 18108002269261616 |2~

4.827264027388111

0.03465607789157393

. — | —0-45083919167872943
3 1.450571321744156
9.984557367256953

€Y}
ij

@

Step 2: the values of x;;, x; "~

x D = UWy V=

XD = UW, V] =

XD = UsWsVf =

xP = U,Wvf =

158

and w, =

P, "My,

3

0.1794413791124418

—1.3049157455683198

0.5413212694283264 |
7.20915854810356

—0.05181666504141422
—12.509888689881453
0.5534224442549792
—1.4811224116172315

(3) and x(4) are computed as follows:

=( 3

o\ U1 |62 QOS]

(
(
(

N O



M %@ %3 and xP

Step 3: Combining x;;°, x;;”, x;; ij Which was obtained in Step 2. The positive

fuzzy solution to the given PTrFFSME is represented by:

- ((1,3,56) (1,24, 5))
*= <(4, 567 (3,4,57) (3.65)
Now, we analyze the obtained positives fuzzy solution in Eq. (3.65) to the PTrFFSME in

Example 3.4.2.1.

3.4.2.1 Verification of Positive Fuzzy Solution to TrFFSME
To verify the obtained positive fuzzy solution in Eq. (3.65) for the PTrFFSME in

Example 3.4.2.1, we first multiply AX as follows:
%= ((2,4, 59 (1,2,4, 5)) ((1, 3,56) (1,24, 5))
- \(1,3,5,6) (4,6,7,8)/\(4,56,7) (3,4,57)

( (6,22,49,89)  (5,16,40,80) )
(17,39,67,92) (13,30,55,86)/"

and,
Xﬁ _ ((1r 31 5; 6) (1! 21 47 5)) <(3I 6; 71 9) (11 3) 5; 6) )
~\(4,56,7) (3,4,57)/\(1,5,6,8) (4,7,9,10)
_ ( (4,28,59,94) (5,23,61,86) )
~\(15,50,72,119) (16,43,75,112)/)°
Therefore,

i% 4+ %5 = ((10°0,108,1 10,39,101,1 ~
Ax+XD:<( 0,50,108,183) (10,39,101, 66))_5

(32,89,139,211) (29,73,130,198) -
This means the obtained positive fuzzy solution in Eq. (3.65) satisfies the PTrFFSME in
Example 3.4.2.1. The following Section 3.4.2.2 gives a graphical representation of the

positive fuzzy solution obtained in Eq. (3.65).
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3.4.2.2 Representation of the Obtained Positive Fuzzy Solution by FBSM:

The positive fuzzy solution obtained in Eg. (3.65) for Example 3.4.2.1 is represented in

Figure 3.10.
Positive fuzzy solution X
IN—" AR 0 Ak
1.0 ~ ' P - -r- SN ¢ SIS . — _:‘""'""""""""'“"\“ -1
it 3
! / 1! i
1 i H \\ ‘1
08 | , / ! \ ) i
vt I\ i
! / U \ p
. ! ! Vg \ ]
0.6 1 / ! f ‘ \ a |
* o/ I W v | 1
L 4 ! .i!‘ \ \\ i ]
04L ! ! i Y]
! ' i v\ Y = = - %=0350
i \ 3
,‘ / I i “ \ i“ 4
' ! i \ PO IRETEIEIE o= (1,24.5)
I H i \
02 ./ I b
Lo i \ \ Vi O
Y ! - V| o= (4.56.7)
[ I i P \ ¥
1 A AR AR A SO I E IS S C Vi)
1 2 3 4 5 6 7

Figure 3.10. Positive fuzzy solution for Example 3.4.2.1.

Figure 3.10 shows that, xi(f) = xl.(j3) = xl-(jz) = xi(jl) > 0, which means that the obtained
fuzzy solution in Eq. (3.65) is positive. Therefore, the FBSM is able to give the positive
fuzzy solution to the given PTrFFSME. In the following Section 3.4.2.3, the feasibility
conditions of the obtained positive fuzzy solution in Eq. (3.65) for the PTrFFSME in

Example 3.4.2.1 are discussed.
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3.4.2.3 Feasibility of the Obtained Positive Fuzzy Solution

To check the feasibility of the obtained positive fuzzy solution, the feasibility conditions

in Eq. (3.29a) and Eq. (3.29) need to be satisfied. The feasibility conditions are checked as

follow:

1) X;

i) X

)

i >0, v{l<ij<pn}
xi(jl) - (zlL é) >0,
' =(5 >0
xS = (Z g) >0,
=5 5)>0
i(;}) > xi<j3> > xleZ) > xfj.l), v{l1<ij<pn}

G =G 926 D=0

)

The feasibility conditions are satisfied, and therefore, the obtained positive fuzzy solution

is feasibl

e.

The verification, representation, and feasibility of the obtained positive solution indicate

that it satisfies the given PTrFFSME and is a strong fuzzy positive solution.

Remark 3.4.2.3.1 The obtained fuzzy solution by FMVM and FBSM for the PTrFFSME

in Examples 3.4.1.1 and 3.4.2.1 are the same. Which prove the accuracy of the methods.

As discussed earlier, analytical approaches give analytical fuzzy solutions. However, it is

impractical for fuzzy equations with large sizes. Therefore, the positive fuzzy solution to

the PTrFFSME by the MFMVM and FBSM in Sections 3.4.1 and 3.4.2, respectively, can
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be approximated by modifying the FGIM and FLSIM. Modifying the FGIM and FLSIM
in Section 3.3.2 and Section 3.3.3 will reduce the computation time and memory usage.
Therefore, in Section 3.4.3, the FGIM in Section 3.3.2 is modified and applied to the

PTrFFSME in Eq. (1.14).

3.4.3 Modified Fuzzy Gradient Iterative Method for PTrFFSME

In this section, the positive fuzzy solution to the PTrFFSME AX + XD = E in Eq. (1.14)
is approximated numerically by modifying the FGIM in Section 3.3.2. In order to develop
the modified FGIM (MFGIM), the general form of the system of SME in Eq. (3.55) is
considered. The system of SME in Eq. (3.55) can be decomposed into two subsystems as

follows: for1 <1 <4

l l l l l l l l
D = o® _ g0y 0 ang g0 = o® _ 04O, (3.66)
where the numerical solution to the system of SME in Eq. (3.55) is the average of the

numerical solution for the subsystems. The two subsystems in Eg. (3.66) can be written as

follows:
for1<l1<4

2(1) _ al(]{)xi(]@) (3.67a)
and

1(z) _ xi(;)di(]l')' (3.67b)

The numerical solution to the systems of equations in Eq. (3.67a) and Eq. (3.67b) can be

obtained by modifying the algorithms in Eg. (3.35a) and Eqg. (3.35b) as follows:

T
2,000 =200k - D +a- (af) (& - aP20% - 1), (3.682)

162



T
2,000 =20k - 1) + o (&7 = 20k - D) (a) - (3.680)

Substitute Eqg. (3.66) into Eq. (3.68a) and Eqg. (3.68b) as follows:

T
2,000 =20 - D+ a(a?) (e — 20k - 1df - aP2O%k - 1)). (3.69)

2,00) =20k - 1) + al(ei(;) — a0k - 1) — 2Ok - 1)d§}))(d§}))T. (3.69b)
If we let

sOhk—1)=e® —aWz®Ok - 1) - 2Ok — 1)d®.
Then, the average of the two numerical solutions in Eq. (3.69a) and Eq. (3.69b) is

2,V + 2, P k)

U] =
xY (k) >

(3.70)

Therefore, for 1 < [ < 4 the numerical solution to the system of SME in Eqg. (3.55) is
2000 = 20k = D + 2 (@) (st = D) +(sVU - D) (@®)), @7

where the convergence rate (step size) is given by,

2
0<a< . 3.72a
'S T (@) O] + g [AO@O)T] G720)
It can also be obtained as follows,
0<a< : (3.72 b)
a , .
" a®)17 + 1d®))2
O = t7q® - (@O)F
where, ||a || =tr[a® - (a®) 1.
If we let ag = ||a®@||* + ||d©]|”, then
2
0<a<—. (3.72¢)
Qo
At step k — th of the iteration, the following error is considered:
§OU) = [le® = a®2O k) — 2P U)a W] (3.73)
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The obtained numerical solution in Eq. (3.71) can be expressed as,

% = (f(l)’ ,?(2)’ 2(3)’ 2(4))_

It can also be written in matrix form as,

(1) 2(2) £B) o4 (1) £(2) £B) o4
( X110 X110 %11 11) (xln'xln' in 1n)
X= : : : (3.74)
S 2@ 5(3) @) ROPROINE 7@
(pl' pllxpll pl) (pn' pn'xan )

The following Theorem 3.4.3.1 proved that the numerical solution obtained by the MFGIM
method converges to the positive solution of the PGTrFFSME for any initial value.
Theorem 3.4.3.1: If the system of SME in Eq. (3.55) has a unique positive solution x®,
then the numerical solution ¥ (k) in Eq. (3.71) by the MFGIM converges to x® for any
initial values £ (0) (i.e. if k — oo, then x® = 2V (k)).

Proof: Let, Y (k) be the error at each k, for k = 1,..,nandfor1 <[ < 4.

P(k) = x® = 2O %k). (3.75)
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From Eq. (3.51), Eq. (3.71) and Eq. (3.75), the following is obtained:

Y =Pk — 1) + 2 ((a®)" (—a®pk — 1) — Yk — DAP) + (—aDp(k — 1) = Pk — 1)d©)(d®)"). (3.76)
Taking ||. |2 to both sides of Eq. (3.76) give:
N2 = [tk = D +2((@®) (~aVpk = 1) =k = DAD) + (c®) (~aVpk — 1) =k —
1)d<l>)(d<l>)T)||2. 3.77)
Apply the following formula to Eq. (3.77)
IA+BI?> =tr((A+B)"(A + B)) = ||All> + 2tr(A"B) + ||BI|?,
the following is obtained,
lpONI? = llpk = DII?

+aytr [T (k= D (@) (—a®Oplk = 1) = Pk — DAV) + (—a®p(k — 1) = Yk — 1)dP)(d®)")]

2
Applying norm properties gives:

I UOIIZ < Ik = DI+ tr [T (k = 1)(a®)" + 97 (k = D(dD) ) (=aDypk - 1) = p(k — 1DdD)]

+ 92 (@) (~a k= 1) =l ~ D) + (~aOrpCe — 1) = e ~ D))
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And since ||A]|? = tr[(4)T A] then,

W% < Ik — DII? — ay||a®y ke — 1) + (k- 1)d(l)||2

Applying norm properties gives:
I UOIIZ < Iyl = DI = aif|a®phe — 1) +pk — DO +=F (||a<”|| F1d91?) etk - 1) + Pk - DAV
YU < llpk = DIIZ + (—al + “f(nawnz + ||d“>||2)> la®@y ke — 1) + ke — DAO|[".
By Eq. (3.72c), the following can be obtained:

(I < Iyl = DI + (—al + L 0%) la®w (e = 1) +pk — DO,

Atk =1 (DI < IO = e (1= 32) [[aPw(©0) +p(0)d®]".

Atk =2 @112 < [P = e (1= 32) aP (@) +p)d®]".
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Atk =3 I < @I - e (1 - 12) a©(@) +p@d®]".
Atk=n-1
lp(n = DI? < It = DI = e (1= 125) aPwin = 2) + p(n - 2)dO] ",
Atk =n
@I < @ = DIP = @ (1 = 55 [a®p(n — 1) + P = DO

Therefore, the following is obtained,

I < IO = (1= (la ko + v}

k=1

If the convergence rate « is chosen to Eq. (3.72¢) and k — oo, then
> (a®p0) + p(dO|*) < oo.
k=1

Therefore, Lim (@Py k) + p(k)d®) = 0.
Since a® > 0 and d© > 0 then, lim Y(k) = 0.
By Eq. (3.75), the following is obtained, ~ lim x® - z2Ok)) = 0.

Consequently, if k — oo, then x® = 2@ (k) and therefore, the system of SME in
Eq. (3.55) has a unique positive solution x®, then the numerical solution £ (k) in

Eq. (3.71) converges to x® for any initial values £ (0) and for 1 < I < 4.

Below is the Algorithm 3.3 for the FGIM. This algorithm can be used by different

software for solving the PTrFFSME in Eq. (1.14).
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Algorithm 3.3: Modified Fuzzy Gradient Iterative Algorithm for PTrFFSME.

Input A, D and E # Split each matrix into four matrices (e.g., al®, a®, a®), a®)
for =1,2,3,4
Choose a;, e, (k) = 0 #0 is the Zero matrix with the same dimension as x® (k)
Whilek =0,1,2,...,ndo
2O0%) =200 = 1D +2((a®) (sOk - D) + (sOk - 1)) (@©)").

sOUhk-1)=e® —a®zOk —1) — 2V (k — 1)d®,

6(”(k) = ”e(l) — a(l)ﬁ?(l)(k) — f(l)(k)d(l)llz_
If 6W(k) < ethen

print (2 (k));

print ("number of iterations =", k).

else
2O) =200k - D +2((a®)" (sOk - D) + (sOtk - 1) (@®)"),
update k.
k=k+1
end
print (£ (k)),

print ("number of iterations =", k).

end

As discussed earlier, the convergence rate of the FGIM algorithm is slow. To improve
the convergence speed, in the following Section 3.4.4, the FLSIM in Section 3.3.2 is

modified and applied to the PTrFFSME in Eq. (1.14).

3.4.4 Modified Fuzzy Least Square Iterative Method for PTrFFSME

In this section, the approximated fuzzy solution to the PTrFFSME AX + XD = E in

Eq. (1.14) is obtained by modifying the FLSIM in Section 3.3.3. The development of
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the modified FLSIM (MFLIM) is similar to the MFGIM method in Section 3.4.3.
However, in order to improve the convergence rate of the FGIM algorithm in Eq. (3.71),
the least-square term of the coefficients in Eq. (3.55) should be added to the MFGIM
algorithm obtained in Eq. (3.71). Therefore, by Theorem 2.9.4 and Eg. (3.38), the

following can be obtained: For 1 <[ < 4 we have:

2O%) =20k — 1) + 2 (((a(l))T : a(’))_l : (a<l>)T(sl(k D)+

(Sz(k _ 1))(d(z))T((d(z)(d<z))T)—1>_ (3.78)

The convergence rate (step size) is given by,
0<aq <2 (3.79)
As step k — th of the iteration, the following error is considered:
W (k) = lIs'(k — Dl
The obtained numerical solution in Eg. (3.38) can be expressed as,
%= (55(1)’ 55(2)’ 55(3), 3?(4))_

It can also be written in matrix form as,

(1) £(2) 2(3) ~(4) (1) £(2) 2(3) ~(4)
(x11'x11' 11 11) (xln'xln' in 1n)
%= : : (3.80)
s(1) 2(2) 23) ~(4) s(1) 2(2) 23) ~(4)
(xp1 VXp1 ) Xpy Xy ) (xpn ,xpn,xpn,xpn)

In the following Theorem 3.4.4.1, we prove that the numerical solution obtained by the
FLSIM method converges to the positive solution of the PTrFFSME for any initial
value.

Theorem 3.4.4.1: If the system of SME in Eg. (3.55) has a unique positive solution
x| then the numerical solution £ (k) in Eq. (3.78) by the MFLSIM converges to
x® for any initial values £ (0) (i.e. if k = oo, then x® = 2O (k).

Proof: Let, ¥ (k) be the error ateach k, fork = 1,...,nandfor1 <[ < 4.
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Pk) =x® —z2Ok) (3.81)

From Eq. (3.51), Eq. (3.78) and Eq. (3.81), the following is obtained:

- T
Y =y -1+ %(((a(z))T : a(z)) 1 (a®) (—a@y(k — 1) — Pk — 1)dD) +

(—aWy(k — 1) — Yk — DAD)(dD)" @O (d(’))T)‘1>. (3.82)
Taking ||. |2 to both sides of Eq. (3.82) give:

- T
(2 = Hl/)(k 1) +§<((aa>)T a®)” (@) (~aOpek - 1) -

2

Pk — 1)dD) + (—aOy(k — 1) — Pk — 1)d(l>)(dU))T(d(l)(d(l))T)-l)

(3.83)
Applying the following formula to Eq. (3.83), we get,
AKX + (DT - AT = tr(X + (DT - DT X + (D7 - A7),
= |AX]> + 2tr(XTY) + [[ACCA)" - A)~'Y ]2,
la®p||” = la®pk — DI + e tr [p7k = 1) ((@®) (—a®ple - 1) = Pk - 1)d®) +

(((a(z))T . a(z))_1 (a(z))Ta(z)(_a(z)w(k —1) -

2

(—a®p(k — 1) =k - 1)d®)(@®)")] + "‘TIZ

Pk — 1)d®) + (—aOp(k — 1) =k — 1)d<l>)d(l>(dU))T(d(U(d(l))T)—l)
Applying norm properties, we get:
la®p @] < [la®pk — DI + 2a,r [7 (k — 1) (@) (—a®@p(k — 1) = pk = 1)d®) +

(—a®yp(k — 1) —p(k - l)d“))(d(l))T)] + ale <((a(z))T : a(l))_l (a(z))Ta(z)(_a(z)¢(k —1)—

2

Wk — 1)d®) + (—aOp(k — 1) —pk — 1)d<l>)d(l>(dU))T(d(U(d(l))T)—l)

which can be written as,
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la®pol|” < la®pk — DI + 20, tr [T (k = 1D(@®)" + 7 (k = 1)(d®))(—a®yp(k -

1) — (ke ~ Dd®)] + 4 (((a“))T a®) ™ (a®) a®(—a®(k - 1) - plk - AO) +

2

(—a(l)ll)(k -1) - w(k _ 1)d(l))d(l)(d(l))T(d(l)(d(l))T)_l)

Applying norm properties, we get:

la®p @] < [la®@pk — DI+ tr [@7 (e — 1)(a®)" (6©)" + 97k -
1(d®)H)(—a®pk — 1) — Pk — 1Dd®)]| + "‘71 la®y(k — 1) + cOp(k — 1)d®|”.
And since ||A]|? = tr[(A)T A] then,

ey < [|a®pk — 1| - ar]]a®pk — 1) + pk — 1)dQ|” +

<D — 1) + Pk — DO

I < Itk = DIP — (1 = Dla®pk — 1) + 1k = D"

Atk =1 (DI < PO = (1 = 2 [|[a®p(0) +p(0)d®||"
Atk =2 @I < IpDI? = 0,1 = Dla®p(1) + p()d®|’.
Atk =3 WGP < Ip@I? - a,(1 - D|la®p(2) + p(2)d®|’
Atk=n-1 lp(n = DI? < llp(n = 211 = a1 = H]|aPyp(n - 2) +
p(n —2)dV||’

Atk =n @I < It — DI? - ey (1 = DlaOyp(n — 1) +
p(n —1dO||’

Consequently,  [[YUII? < IY(OII? — &y (1 = =) Ty ([|aPp (k) +

PR
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I GOI? < IO — (1 =) D (la®po) +p0d®|")
k=1

if the convergence rate a is chosen to satisfy 0 < a; <2 andn — oo, then
> (a®p ) + p0dO|*) < o
k=1

Then Lim (@O k) + Y (k)dD) =0
Since a® > 0 and d® > 0 then, lim (k) = 0 and therefore,
Lim x® - 2O)) = 0.

Consequently, if n — oo, then x® = £ (k). Thus, the system of SME in Eq. (3.55)
has a unique positive solution x(®, then the numerical solution £ (k) in Eq. (3.82)
by the MFLSIM converges to x(® for any initial values £ (0), (i.e., if k = oo, then

x®O =zOk)) for1 <1< 4.
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Below is the Algorithm 3.4 for the MFLSIM. This algorithm can be used by different

software for solving the PTrFFSME in Eq. (1.14).

Algorithm 3.4: Modified Fuzzy Least-Square Algorithm for PGTrFFSME.

Input 4, D and E # Split each matrix into four matrices (e.g., a®®, a®, a®, a®)
for1=1,2,3,4
Choose a;, £, &V (k) = 0 # 0 is the Zero matrix with the same dimension as x® (k)

Whilek =0,1,2,...,ndo

2OU) = 2Ok — 1) + %<((a<z))T : a(z))'l : (a(z))T(Sz(k _ 1))) n (Sz(k _

1>)(d<”)T<<d<°(d“))T)'l)'
sOk -1 =e® —qgWzOk —1)p®O — OOk — 1)dD,
§Ok) = ||e(l) —aWzO k) — J?(l)(k)d(l)uz_
If §WO(k) < then
print (8P (k));
print ("number of iterations =", k).

else

2O0) = 2Ok - 1) +2 <((a(z))T : a(z))‘l : (aa))T(sz(k _ 1))) n (Sz(k _

1>)(d<”)T<<d<”(d“)f)'l)'

update k.
k=k+1
end

print (29 (k)),

print ("number of iterations =", k).

end
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In the following Example 3.4.4.1, the analytical fuzzy solution to the given PTrFFSME in
Example 3.4.1.1 is approximated numerically by the MFGIM and the MFLSIM in Section
3.4.3 and Section 3.4.4, respectively.

Example 3.4.4.1 Consider the following PTrFFSME:

@ @ .6 @
X121 %12 X125 %12 )

@ @ 3 , @ (
(w52 52 53 53
)
)

((2, 4,59 (1,2,4, 5)) _ (xn y X110 X115 %11 )

(1,3,5,6) (4,6,7,8) (xg?,x;i),xg?, g))

o @ .06 @ @ .6 @)
(x11 X110 X110 X1q ) (xlz X120 X127 X2

o @ G 4 o @ 63 4

+
(x21 X210 X215 X2 ) (xzz 1 X221 X221 X322

((3679) (1356))
(1,5,6,8) (4,7,9,10)

_ ((10,50, 108,183) (10,39,101, 166))
(32,89,139,211) (29,73,130,198)/°
Solution:

The analytical positive fuzzy solution to the given PTrFFSME obtained by the MFMVM
and FBSM in Eq. (3.65) is:

((1, 3,5,6) (1,2,4, 5))
(4,5,6,7) (3,4,5,7))

X =
This positive fuzzy solution is approximated using the MFGIM algorithm in Eq. (3.71) and
the MFLSI algorithm in Eq. (3.78) as follows:

0 0

For1<1<4, Ieta?(l)z(o 0

). The approximated solution of X is shown in Table 3.7

with the convergence rate («), error bound (&), and the total number of iteration (k).
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Table 3.7

Comparison Between MFMVM, FBSM, MFGIM and MFLSIM for Example 3.4.4.1.

Method Analytical Solution and a £ k
Approximated Solution
£ MFMVM (1 1) NA 0 NA
FBSM 4 3

MFGIM (1.0012371986 0.99923606220) 0.00004 1075 875

3.9994874013 3.00031651628
MFLSIM (0.9999977991 0.99999620789) 0.09 105 28

3.9999936200 2.99999149093
£@ MEMVM (3 2) NA 0 NA
FBSM 5 4
MFGIM (2.9969862374 2.0023811684) 0.00009 1075 922
5.0019342637 3.9984994743
MFLSIM (2.9999953731 1.9999965941) 0.09 1075 28
4.9999926972 3.9999930211
£3) MEMVM (5 4) NA 0 NA
FBSM 6 5
MFGIM (4.9954821314 4.00357501) 0.00009 10~5 1428

6.0038532854 4.99695837
MFLSIM (4.9999953637 3.9999950151) 009  10-* 29

5.9999936406 4.9999929581
£® MFMVM (6 5) NA 0 NA
FBSM are
MFGIM (5.9979551954 5.0017600723) 0.00008 10~* 1730
7.0023468830 6.9979864717
MFLSIM (5.9999908311 4.9999921331) 0.09 107* 29
6.9999916765 6.9999914519

Meanwhile Table 3.8 shows the computational time and memory usage needed for MFGIM

and MFLSIM.
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Table 3.8

Comparison Between Computational Time, Memory Usage for MFGIM and MFLSIM for

Example 3.4.4.1.
Method k CPU Real Memory
time time usage
£ MFGIM 875 6.04ms 681ms 1.09 MB
MFLSIM 28 946ms 993ms 2.01MB
2@ MFGIM 922 6.05ms 5.88ms 1.09 MB
MFLSIM 28 1061ms 9.79ms 1.22 MB
23 MFGIM 1428 596ms 593ms 1.09 MB
MFLSIM 29 593ms 593ms 122 MB
£ MFGIM 1730 591ms 5.83ms 1.09 MB
MFLSIM 29 593ms 6.00ms 122 MB

The following Figure 3.11 shows the change in the error § (k) when k increases up to

k = 20.
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Figure 3.11. Comparison between the error of MFGIM and MFLSIM for the first 20

iterations for Example 3.4.4.1.
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Tables 3.7, 3.8 and Figure 3.11 show that the error §® (k) is reducing as k increases.
Figure 3.11 show that the error of the MFGIM and MFLSIM for approximating £ is
reducing significantly as k increasing, where the MFLSIM converges to the analytical
solution for a fewer number of iterations with a bigger step size compared to the MFGIM.
This indicates that the developed algorithms are effective and convergent for the given
PTrFFSME. In addition, the MFLSIM takes more computational timing and more memory
compared to the MFGIM. However, in terms of accuracy, error, the number of iterations,

MFLSIM provide extremely accurate approximations with very few iterations.

3.5 Solution of Other Positive Fuzzy Matrix Equations

In this section, the methods of FMVM, FGIM and FLSIM in Sections 3.3.1, 3.3.2 and 3.3.3,
respectively, for solving the PGTrFFSME in Eg. (1.16) are modified and applied to other
positive fuzzy equations, including the continuous-time Lyapunov fully fuzzy matrix

equation, Stein fully fuzzy matrix equation and fully fuzzy matrix equation.

In the following Definition 3.5.1, the continuous-time Lyapunov fully fuzzy matrix
equation is introduced.
Definition 3.5.1 If B and C are identity fuzzy matrices and D = AT. Then the GTrFFSME
in EQ. (1.16) can be written as

AX + XAT = E, (3.85)
where, A = (@) pxpr AT = (@1; ) pxpr X = Fij)pxp aNd E = (&) pxp is called fully

fuzzy continuous-time Lyapunov matrix equation (FFCTLME).
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Definition 3.5.2 If A and B are identity fuzzy matrices, then the GTrFFSME in Eq. (1.16)
can be written as
X+ CXD =E, (3.86)

where € = (¢;))pxp: D = (di)nxns X = Fij)pxn and E = (&;j)pxyn is called a Fully

Fuzzy Stein Matrix Equation (FFStME).

In the following Sections 3.5.1, 3.5.2, 3.5.3 and 3.5.4, the methods of FMVM, FGIM and
FLSIM in Sections 3.3.1, 3.3.2 and 3.3.3, respectively, are modified and applied to the

fuzzy equations in Eq. (1.11), Eq. (1.12), Eq. (3.85) and Eq. (3.86) respectively.

3.5.1 Solving the Positive Trapezoidal Fully Fuzzy Matrix Equation

In this section, the positive TFFFME AX = E in Eq. (1.11) is solved analytically by
modifying the FMVM in Section 3.3.1 and numerically by modifying the FGIM and

FLSIM in Sections 3.3.2 and 3.3.3, respectively.

In the following Definition 3.5.1.1, the positive TrFFME is introduced.
Definition 3.5.1.1. A matrix equation FFME AX = E | is called Positive Trapezoidal Fully

Fuzzy Matrix Equations (PTrFFME) if

A — = (aV 4@ 4@ @
A_(U)mxn (UJ l]’aij’ )V1<l]<mn

5 _ (= 1) (2 .3) 4
X = (xif)nxr = (xi(j),xi(j),xi(j), ()) V1<i,j<nrand

E=(&)), . = el e ey vi<ij<mr, are positive trapezoidal fuzzy

matrices, respectively.

In the following Definition 3.5.1.2, the system of LME is introduced.
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Definition 3.5.1.2. A system of matrix equations in the form

(D@D = ,®

Aij Xij~ = €ij
2 2 2
e =
a;; X = e
kai(?)xi(f) = ei(f).

is called a system of LME.
In the following Theorem 3.5.1.1, the PTrFFME AX = E in Eq. (1.11) is converted to an
equivalent system of LME.
Theorem 3.5.1.1. Suppose that 4, £ and X are positive trapezoidal fuzzy matrices, then

the PTrFFME AX = E is equivalent to the following system of LME:

(D@D = ;O

ij Xij ij
@@ _ @

J % i =Gy 3.87)
®.,.3 _ G 3.
a;; X = e
@ @ _ @

kaij xij = eij .

Proof: Let 4, E and X in the PTrFFME AX = E be positive trapezoidal fuzzy matrices,

then by RAMO in Eq. (3.2), the product AX is

), 1) ,@,@ () () &) @

AX:(“U ij Y X Qij X Gy ij)-

By Definition 2.3.3.2.5 and Eq. (2.9), the PTrFFME AX = E is equivalent to the following

system of LME:
@, @®_ @
(aij X =e;
2,2 _ (@
Jal.j Xiio = e,
3,6 _ 3
@, _ @
a;;’x;;” = e
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In the following Remark 3.5.1.1, the system of LME obtained in Eq. (3.87) is written in a
general form.
Remark 3.5.1.1: Based on Eq. (3.87), the system of LME can be written as follows:

for1 <1 < 4 we have:

al.(]l.)xi(;) = ei(;). (3.88)
Since the PTrFFME in Eq. (1.11) is a special case of the PGTrFFSME in Eq. (1.16), and
the system of LME in Eq. (3.87) is a special case of the system of GSME in Eq. (3.20).
Thus, the existence and uniqueness of the positive fuzzy solution to the PTrFFME can be
proved similar to PGTrFFSME in Section 3.3.1. In the following Theorem 3.5.1.1, the

uniqueness of the positive solution to the system of LME is proved.

Theorem 3.5.1.1 Uniqueness of Positive Solution to System of LME
The system of LME in Eq. (3.87) has a unique positive solution if the following conditions

are satisfied:
1) det(ry) # 0,det(r,) # 0,det(r3) # 0 and det(r,) # 0, i.e., 1y, 1y, 13 and r, are

invertible matrices where

1 1
n = (Ii(j ))T®ai(j),

2 2
r, = (Ii(j))T®ai(j).

3 3
= () ®a.

4 4
=) ®alP.

) 7 ;L rylandrs !t > 0.

Proof: The proof of this theorem is similar to the proof of Theorem 3.3.2.

181



Now, we will proceed to the solution of the PTrFFME by modifying the FMVM, FGIM
and FLSIM in Sections 3.3.1, 3.3.2 and 3.3.3, respectively. The methods are discussed in

the following Sections.

3.5.1.1 Modified Fuzzy Matrix Vectorization Method for PTrFFME

In this section, the FMVVM in Section 3.3.1 for the PGTrFFSME in Eq. (1.16) is modified
and applied to the PTrFFME AX = E in Eq. (1.11). The detail of the MFMVM is presented
in the following steps.

(l)

Stepl: Decomposing 4, X and E into a;; (” and e(4) respectively and convert the

PTrFFME in Eg. (1.11) to the system of linear matrix equations in Eq. (3.87) using
Theorem 3.5.1.1.

Step 2: Applying the Vec-operator and Kronecker product on Eq. (3.60) gives:
((I-(-l)®aq))vec( (1)) = vec(e(l)),

( (2)®a(2))vec( ) = vec(e(z)),
| (19®0Yvec(x2) = vee(e?), G
k( ff@a%}”)vec( 1(14)) = vec( (4)),

Step 3: Multiplying the system of LME in Eq. (3.89) by matrix multiplicative inverse as

follows:

rvec X(l))

(1) (1)
ij ®a

(15
)=
vec i(j3)) (

\vec( z(])): (4)®ag})) vec(e.(f")

/) veelel
D@a®)’ 1vec(e(2)
(3.90)
(3)®a(3)) (

(
vec(x
(

X

Step 4: Multiplying the system of matrix equations in Eq. (3.90) by vec™? as follows:
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-1
( (1) — vec 1( (1)®a(1)> vec(e(l)

-1

-1 a(z)) vec(e(z)
(3)>

= vec

(2)
1 (3.91)
(3) = vec vec(e(3)

( 9%
1( 1¥®a
= vec 1( (4)®a(4)) 117ec(e(4))).

Step 5: Combining the positive fuzzy solutions obtained in Step 4 and write it as a

trapezoidal fuzzy matrix as follows:

o @ 06 4 @ 6 (4
(x11 1 X11 'x11 1 X11 ) (xlr X1 'xlr X1 )
%= . (3.92)
o @ G @ 1) (2) 3 @
(xnl,xm,xm,xnl) ( Xy » Xy » X nr,xnr)

In the following Remark 3.5.1.1.1, the solution to the system of LME in step 4 is written
in a general form.
Remark 3.5.1.1.1: The positive fuzzy solution in Eg. (3.91) to the PTrFFME in Eq. (1.11)
can be written as follows: For 1 < I < 4 we have:
xP = vec (I ®@a) *vec(e)). (3.93)

The equivalency between the solution to the system of LME in Eq. (3.87) and the positive
fuzzy solution to the PTrFFME in Eq. (1.11) is discussed in the following Theorem
35.1.1.1.
Theorem 3.5.1.1.1. The positive solution to the system of LME and the positive fuzzy
solution to the PTrFFME are equivalent if the following conditions are satisfied:

I) det(r;) # 0,det(r,) # 0,det(r;) + 0 anddet(ry) # 0 i.e 1y, 15, 3 and r, are

invertible matrices.
I 1, s Lrstand ;7 > 0.

yr,~t, >0, 7,7, > 0,5 t; > 0and , "¢, > 0.
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IV)r, "t <17t S ity <1 M.
Proof: The proof of this theorem can be obtained similar to the proof of Theorem 3.3.1.1.
O
The following Corollary 3.5.1.1.1 discusses the uniqueness of the positive solution to the
PTrFFME.

Corollary 3.5.1.1.1. The Uniqueness of Fuzzy Solution to PTrFFME
The PTrFFME has a unique positive fuzzy solution if the corresponding system of LME in

Eq. (3.87) has a unique positive solution.

Proof: The proof of this corollary is similar to the proof of Corollary 3.3.1.1.

In the following Corollary 3.5.1.1.2, the sufficient conditions for the PTrFFME to have a

positive fuzzy solution are discussed.

Corollary 3.5.1.1.2. Existence of Positive Fuzzy Solution to PTrFFME
The PTrFFME has a positive fuzzy solution if:
I) det(r;) # 0,det(r,) # 0,det(r;) # 0 anddet(r,) # 0 i.e 1y, 15, 3 and r, are
invertible matrices,
I 1, s Lrstand ;7 >0,
r,~t; >0,r,71t, > 0,373 > 0and ,~1t, > 0,
V) 7t <17, <ty <1ty

Proof: The proof of this corollary is similar to Corollary 3.3.1.2.
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The positive fuzzy solution in Eg. (3.92) to the PTrFFME in Eg. (1.11) can be
approximated numerically by modifying the FGIM in Section 3.3.2 as discussed in the

following Section 3.5.1.2.

3.5.1.2 Modified Fuzzy Gradient-Iterative Method for PTrFFME

In this section, the positive fuzzy solution in Eq. (3.92) to the PTrFFME AX = E in
Eq. (1.11) is approximated numerically by modifying the FGIM method in Section 3.3.2
and applying it to the system of LME in Eq. (3.87). The algorithm for solving the PTrFFME
is obtained directly from the algorithm in Eq. (3.38) as follows: for 1 < [ < 4 we have:

£0U) = 20Uk — 1) + a, ((aU))T (e® — a®2O(k - 1))). (3.94)

where the convergence rate (step size) is given by,

0<a< P [(Az(l))TA(l)]. (3.95a)
It can also be obtained as follows,
0<a< PGl (3.95b)
where, [|a®||* = Tr[a® - (a®)"].
At step k — th of the iteration, the following error is considered:
5O k) = [le® — a®2O )| (3.96)

The obtained numerical solution in Eq. (3.94) can be expressed as,
%= (Q(l)' @ 23 ,?(4))_

It can also be written in matrix form as,
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(A(l) 5(2) £(3) A(4)) (3?(1) 5(2) £(3) A(4))

X110 %110 %110 X111 1 X1n r X¥1n » X1n

: - : (3.97)
+(1) (2 2B ~(4) +(1) ~(2) 53 ~(4)
(xpl A Ay ) (xpn R X xpn)

X =

p1’7*pl’~pl

In the following Theorem 3.5.1.2.1, it is proven that if the system of LME in Eq. (3.87) has

a unique solution, then the approximated fuzzy solution in Eq. (3.94) by the MFGIM

converges to the solution of the system of LME for any initial value.

Theorem 3.5.1.2.1. If the system of LME in Eq. (3.87) has a unique positive solution x®,

then the numerical solution 2 (k) in Eq. (3.94) converges to x® for any initial values

£D(0) (i.e. if k - oo, then x® = 2D (k).

Proof: The proof of this theorem can be obtained similar to the proof of Theorem 3.3.2.1.
O

Below is the Algorithm 3.5 for the MFGIM. This algorithm can be used by different

software for solving the PTrFFME in Eq. (1.11).
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Algorithm 3.5: Modified Fuzzy Gradient Iterative Algorithm for PTrFFME.

Input A and £ # Split each matrix into four matrices (e.g., a®®, a®, a®, a®)
for1=1,234
Choose a;, €, &V (k) = 0 # 0 is the Zero matrix with the same dimension as x® (k)
Whilek =0,1,2,...,ndo
20U =20k - 1) + ((a(l))T (e® - a®2O(k - 1))).
§Ok) = |le® - a(l>a?<0(k)||2.
If §O(k) < ethen
print (2 (k));
print ("number of iterations =", k).

else

20U) = 20k — 1) + a, ((a@)T (e® - a®2O (K — 1))),

update k.
k=k+1
end

print 20 (K)),

print ("number of iterations =", k).

end

The positive solution to the PTrFFME in Eqg. (1.11) can also be approximated
numerically by modifying the FLSIM in Section 3.3.3. In the following Section 3.5.1.3,

the FLSIM in Section 3.3.3 is modified and applied to the PTrFFME in Eq. (1.11).

3.5.1.3 Modified Fuzzy Least-Square Iterative Method for PTrFFME

In this section, the positive fuzzy solution in Eq. (3.91) to the PTrFFME AX = E in
Eg. (1.11) is approximated numerically by modifying the FLSIM method in

Section 3.3.3 and applying it to the system of LME in Eq. (3.87). To approximate
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positive fuzzy solution, the obtained fuzzy solution in Eg. (3.94) by the MFGIM can be

modified by adding the least-square term as follow: For 1 < [ < 4 we have:

2OU) =2V — 1) + <((a<z))T : a(z))'l (a(z))T (ea) —aWzO(f — 1))>,

(3.98)
where the convergence rate (step size) is given by,
0<a; <2. (3.99)
At step k — th of the iteration, the following error is considered:
§OUk) = [le® —a®@2O ), (3.100)
The obtained numerical solution in Eq. (3.98) can be expressed as,
%= (55(1)' @ £3) 55(4))_
It can also be written in matrix form as,
SIS R B (R 2 )
£ = : : (3.101)
(32,22,29,29) .. (2222,29,29)

In the following Theorem 3.5.1.3.1, it is proven that if the system of LME in Eq. (3.87)
has a unique solution, then the approximated solution in Eqg. (3.98) by the MFLSIM
converges to the solution of the system of LME for any initial value.
Theorem 3.5.1.3.1: If the system of LME in Eqg. (3.87) has a unique positive solution
x®, then the numerical solution £ (k) in Eq. (3.98) converges to x® for any initial
values £V (0) (i.e. if k = oo, then x® = £V (k)).
Proof: The prove of this theorem can be obtained similar to Theorem 3.3.3.1.

O
Below is the Algorithm 3.6 for the FLSIM. This algorithm can be used by different

software for solving the PTrFFME in Eq. (1.11).
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Algorithm 3.6: Modified Fuzzy Least-Square Algorithm for PTrFFME.

Input A and E # Split each matrix into four matrices (e.g., a®, a®, a®, a®)
for1=1,2,3,4
Choose a;, £, £ (k) = 0 #0 is the Zero matrix with the same dimension as x® (k)

Whilek =0,1,2,...,ndo

2O%) = 2Ok — 1) +a <((a(l))T : a(l))_1 (a®)" (e(z) —aWzOk — 1))>,
§O®K) = [le® - a®2O W)

If sO(k) < ¢ then

print (RO (k));

print ("number of iterations =", k).

else
2O%) = 2Ok — 1) +a, <((a(l))T : a(z))_l (a®)" (e(z) —aWzOk — 1))>_

update k.

k=k+1

end
print (f(l)(k)),

print ("number of iterations =", k).

end

To illustrate the constructed methods for solving the PTrFFME, the following
Example 3.5.1.3.1 is solved using the MFMVM, MFGIM and MFLSIM in Sections
3.5.1.1,3.5.1.2 and 3.5.1.3, respectively.

Example 3.5.1.3.1 Consider the following PTrFFME:

@ @ 63 , @ @ @ 3 , @
(x11 X110 %11 X1 ) (xlz X120 X120 X12 )

® @2 3 4 @ (2 3B 4
(x21 1 X210 X210 X2 ) (xzz 1 X220 X221 X2 )

((4, 6,7,9) (1,3,4,5) ) )
(2,5,6,8) (3,6,8,10)

B ((9, 24,40,65) (14,42,62,93) )
~\(7,27,48,80) (12,49,76,116)/)
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Solution: The analytical positive fuzzy solution to the given PTrFFME by the

MFMVM is:

s ((2,3,4,5) (3,56,7)
X ((1,2,3,4) (2,4,5,6)>'

To approximate this positive fuzzy solution, the MFGIM algorithm in Eq. (3.94) and
the MFLSIM algorithm in Eq. (3.98) are applied using the following initial value:

0 0

ForlSlSéL,a?(l):(O 0

), the approximated solution of X is shown in Table 3.9

with the convergence rate («), error bound (&), and the total number of iteration (k).
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Table 3.9

Comparison Between MFMVM, MFGIM and MFLSIM for Example 3.5.1.3.

Method  Analytical Solution-Approximated Solution a £ k
MFMVM % 2) NA 0 NA
€O wrsm (MM SO0 oo 10 10
prLSIH (0999999999999 199999900999008) 09 107 6

& i) NA 0 NA

€ WG (RN 490NN om0 1o
MFLSIM  (Tocoosagaosess 3099990900999¢) 09 107 6
N (g g) NA 0 NA
) WroIM  (JOO0SEITISISS SOMTIANISeT)  asoom 10 14
HELSIM (29999999999997 s.9999999009005) 09 107 6

(i ) NA 0 NA

€O wpoi (1T SR oo 10+ o1
LS (199999000 0000 se w7
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Meanwhile, Table 3.10 shows the computational time and memory usage needed for
MFGIM and MFLSIM.

Table 3.10

Comparison Between Computational Time, Memory Usage for MFGIM and MFLSIM for

Example 3.5.1.3.1.

Method k CPU Real Memory
time time usage
£ MFGIM 192 228ms 2.17ms 371.85KB
MFLSIM 6 250ms 4.17ms 0.79 MB
2@ MFGIM 188 216ms 2.19ms 371.84 KB
MFLSIM 6 5.17ms 3.83ms 0.79 MB
£® MFGIM 143 240ms 2.13ms 371.84 KB
MFLSIM 6 533ms 4.00ms 0.79 MB
£ MFGIM 161 214ms 226ms 371.84 KB
MFLSIM 7 457ms 400ms 0.79 MB

The following Figure 3.12 shows the change in the error § (k) when k increases up to

k = 20.
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Figure 3.12. Comparison between the error of MFGIM and MFLSIM for the first 20

iterations for Example 3.4.4.1.

Tables 3.9, 3.10 and Figure 3.10 show that the error 6§ (k) is reducing as k increases.
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Figure 3.10 shows that the error of the MFGIM and MFLSIM for approximating £® is
reducing significantly as k is increasing, where the MFLSIM converges to the analytical
solution for a fewer number of iterations with a bigger step size compared to the MFGIM.
This indicates that the developed algorithms are effective and convergent for the given
PTrFFME. However, in terms of accuracy, error, the number of iterations, MFLSIM
provide extremely accurate approximations with very few iterations. In addition, the

MFLSIM takes more computational timing and more memory compared to MFGIM.

In the following Section 3.5.2, the solution to the trapezoidal extended fully fuzzy matrix
equation (TrEFFME) in Eq. (1.12) is discussed. The TrEFFME is a special case of the
GTrFFSME. Therefore, the solution to the TrEFFME can be obtained by modifying the
FMVM, FGIM and FLSIM in Sections 3.3.1, 3.3.2 and 3.3.3, respectively. The methods

are discussed in the following Sections.

3.5.2 Solving the Positive Trapezoidal Extended Fully Fuzzy Matrix Equation

This section discusses the positive fuzzy solution to the positive TFTEFFME AXB = E in
Eqg. (1.12). In order to obtain the positive fuzzy solution, the positive TrEFFME needs to
be converted to an equivalent system of ELME and then solved by modifying the FMVM,
FGIM and FLSIM in Sections 3.3.1, 3.3.2 and 3.3.3, respectively. In the following

Definition 3.5.2.1, the positive TrEFFME is introduced.

Definition 3.5.2.1. A matrix equation TTEFFME AXB = E, is called positive trapezoidal
expended fully fuzzy Sylvester matrix equations (PTrEFFME) if
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= 6@ p@ p®

(4)
ij *Yij ' Vij 'b ),

A= (@), = @.aP.aP,aP). B= (5y)

nxr

® @ 6 (4) -
_(xlj)pxn_( l] » X l] X U , X ) V]- S l,] < p,n, and

E=(e (eP e® 3 oWy v1 < ij < g,r are positive trapezoidal fuzzy

if)qxr ij »€ij rCij Gy
matrices, respectively. In the following Definition 3.5.2.2, the system of ELME is
introduced.

Definition 3.5.2.2. A system of matrix equations in the form

(1) (l)b(l) =W

ij ?

(z) (z) @ _ @
b =e;
(3) @@ _ @
i Xij bij” = e

\a@’) @p@ _ @

=e;
is called a system of ELME

In the following Theorem 3.5.2.1, the PTrEFFME in Eqg. (1.12) is converted to an
equivalent system of ELME.

Theorem 3.5.2.1. Suppose that 4, B, E and X are positive trapezoidal fuzzy matrices, then

the PTrEFFME AXB = E is equivalent to the following system of ELME:

aPx VD = o

€ij
(z) (z)b(z>_ 2)

€ij - (3.102)
(3) (3)b<3>_ ®) :

l] ’
l @, (4) b(4> e,

Proof: Let 4, B, E and X in the PTrEFFME AXB = E in Eq. (1.12) be positive trapezoidal

fully fuzzy matrices, then by EAMO in Eq. (3.19) the product AXB is

~.

A}?E:Z(ai@) (1)b(1) (2) (Z)b(Z) (3) (3)b(3)

(4) (4), (4)
ij o a ij @ ij Qi X b;; )

i=1
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Vi<i<qgl<j<r.

By Definition 2.3.3.2.5 the PTrEFFME AXB = E is equivalent to the following system

of ELME:
(1) (1) 1) _ (1)
l] b - l] ’
(2) (Z)b(Z) — e(Z)

ij
(3
el] ,
(4) (4) b(4) (4)
] .

(3) (3) b(s) _
O

The system of ELME obtained in Eq. (3.102) can be written in more general form, which

is discussed in the following Remark 3.5.2.1.

Remark 3.5.2.1: Based on Eg. (3.102), the ELME can be written as follows: for

1 <1< 4 we have:

(l) (z)b(l)_ L(]l) (3.103)

In the following Theorem 3.5.2.2, the uniqueness of the positive solution to the system of

ELME in Eq. (3.102) is proved.

Theorem 3.5.2.2 Uniqueness of Positive Solution to System of ELME
The system of ELME in Eqg. (3.102) has a unique positive solution if the following

conditions are satisfied:
I) det(r;) # 0,det(r,) # 0,det(r;) + 0 and det(r,) # 0i.ery, 1y, 13 and r, are

invertible matrices where,

1 1
7"1 — (b( ))T®a1(])'

— (@ (2)
= b)) ' ®a?,

= (b)) ®af,
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= (b(4))T®a(4)

) 71 1, rytandry t > 0.

Proof: The proof of this theorem is similar to the proof of Theorem 3.3.2.
O
In the following Section 3.5.2.1, the analytical solution to the PTrEFFME is obtained by

modifying the FMVM in Section 3.3.1.

3.5.2.1 Modified Fuzzy Matrix Vectorization Method for PTrEFFME

In this section, the analytical solution to the PTrEFFME AXB = F is obtained by

modifying the FMVM in Section 3.3.1. The details of the MFMVM are as follows:

Stepl: Decomposing A4, B, E and X into a(” b(l), l(]l) and x(]l) where | = 1,2,3,4

respectively and convert the PTrEFFME to the system of ELME in Eq. (3.102) using
Theorem 3.5.2.1.

Step 2: Applying the Vec-operator and Kronecker product on Eq. (3.102) gives:
(((b.(l))T(X)a(l))vec( (1)) = vec( (1)),

((b.(z) ®a(2))vec(x(2)) = vec( (2)>,

((bl-(S) ®a(3))vec( (3)) = vec( (3)),
k((bi(;}))T®a(4))vec(x( )) = vec( (]))

(3.104)

Step 3: Multiplying the system of linear matrix equation in Eg. (3.104) by matrix

multiplicative inverse as follows:
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(vec xl(})) ((b(l))T®a(1)) lvec el(Jl)

(i)
X(Z)) ((b(z))T®a(2)) vec(el(jz)),
x®) = ((bi(S))T®a(3)) vec(el(f))
kvec( (4)) = ((bi(4))T®a(4)) vec( (4)).

l]

(3.105)

)

Step 4: Multiplying the system of linear matrix equation in Eq. (3.105) by vec™?! as

follows:

D = vec (BT ®aP + (dP) @cP) tvec(e™)),

1
xf,-z)=vec (@ @aP + @) ®cP) vec(e)),
(3.106)

-(79') = vec_l(((b-(s))T@)am (d-(-3))T®c-(-3)) vec(e.(.3))),
Lx ( ) _ — vec—l(((b(4))T®a(4) + (d(4))T®C(4)) vec(e(4))).

Step 5: Combining the positive fuzzy solutions obtained in Step 4 and write it as a

trapezoidal fuzzy matrix as follows:

® @ 6 @) @ 2 .63 @)
(x11 1 X115 X11 0 Xqq ) (xln 1 Xino Xinr X1 )
XA : : . (3.107)
@ @ 6 @ 1) (2) 3 @
(xpl,xpl,xpl,xpl) ( Xpr» Xp» pn,xpn)

The obtained solution by the MFMVM in step 4 is written in general form in the following
Remark 3.5.2.1.1.
Remark 3.5.2.1.1: The positive fuzzy solution in Eq. (3.106) to the positive PTrEFFME
can be written as follows: For 1 < [ < 4 we have:

x = vec (b)) ®a?) vec(e)). (3.108)

In the following Theorem 3.5.2.1.1, the solution to the system of ELME in Eq. (3.102) and

the positive solution to the PTrEFFME in Eqg. (1.12) is proved to be equivalent.
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Theorem 3.5.2.1.1. The solution to the system of ELME and the positive fuzzy solution to
the PTrEFFME are equivalent if the following conditions are satisfied:

I) det(r;) # 0,det(r,) # 0,det(r;) # 0 anddet(ry) # 0 i.e 1y, 1, 13 and r, are

invertible matrices,

I 7L, mhrytand ;! >0,

Ir,~t; >0, 1,71, > 0,33 > 0and r,~1t, > 0,

V)1, 7t <17t S ity <1 M.
Proof: The proof of this theorem can be obtained similar to the proof of Theorem 3.3.1.1.

O

The following Corollary 3.5.2.1.1 discusses the uniqueness of the positive solution to the
PTrEFFME.
Corollary 3.5.2.1.1. The uniqueness of Fuzzy Solution to Positive PTrEFFME
The PTrEFFME in Eqg. (1.12) has a unique positive fuzzy solution if the corresponding
system of ELME in Eq. (3.102) has a unique one.

Proof: The proof of this corollary is similar to the proof of Corollary 3.3.1.1.

In the following Corollary 3.5.2.1.2, the sufficient conditions for PTrEFFME to have a

positive fuzzy solution are discussed.

Corollary 3.5.2.1.2. Existence of Positive Fuzzy Solution to PTrEFFME
The PTrEFFME has a positive fuzzy solution if:
I) det(r;) # 0,det(r,) # 0,det(r3) # 0 and det(r,) # 0 i.e., ry, 15, 13 and r, are

invertible matrices,
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I 1 rp,hrytandr, >0,

Ir,~t;, >0,r,71t, > 0,373 > 0and r,~1t, > 0,

VI it <17, < Tl <1ty
Proof: The proof of this corollary is similar to Corollary 3.3.1.2.

O

The positive fuzzy solution in Eq. (3.107) to the PTrEFFME in Eq. (1.12) can be
approximated numerically by modifying the method of FGIM in Section 3.3.2. The
following Section 3.5.2.2 discusses the approximated solution by the MFGIM to the

PTrEFFME.

3.5.2.2 Modified Fuzzy Gradient-Iterative Method for PTrEFFME

In this section, the positive fuzzy solution to the PTrEFFME AXB = E is approximated by
modifying the FGIM method in Section 3.3.2. The algorithm for solving the PTrFFME can
be obtained directly from the algorithm in Eq. (3.38) as follows:

For1 <1 < 4 we have:

2OK) = 20k —1) + a; - (a®) (e® — a®2O(k — 1)bD)(bV)', (3.108)

where the convergence rate (Step size) is given by,

2
0< < . 3.109
U S e (@O GO Zyr O (O] (3.109a)
It can also be obtained as follows,
2
0<a < (3.109h)

la® 2 lIp® >

where, [|a®||* = Tr[a® - (a®)"].
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At step k — th of the iteration, the following error is considered:
5D k) = [[e® — a®2O )bV (3.110)

The obtained numerical solution in Eq. (3.108) can be expressed as,

£ = (55(1)' 55(2)' ,?(3)' ,?(4))_

It can also be written in matrix form as,

<1 2(2) 2B3) ~(4) s(1) 2(2) 23 ~(4)
( 11,x11, 11 11) (xln'xln' in 1n)
= : (3.111)
~(1) A(Z) ~(3) &(4) ~(1) A(Z) £3) 2@
(pl' Xp1rXp1r X pl) (pn' Xpn» Xpn» Xp )

In the following Theorem 3.5.2.2.1, it is proven that if the system of ELME in Eq. (3.102)
has a unique solution, then the approximated fuzzy solution in Eq. (3.108) converges to the
analytical fuzzy solution for any initial value.

Theorem 3.5.2.2.1. If the system of ELME in Eq. (3.102) has a unique positive solution
x®, then the numerical solution £ (k) in Eq. (3.108) converges to x(® for any initial
values £ (0) (i.e. if k — oo, then x® = 2O (k).

Proof: The proof of this theorem can be obtained similar to Theorem 3.3.2.1.

Below is the Algorithm 3.7 for the MFGIM. This algorithm can be used by different

software for solving the PTrEFFME in Eq. (1.12).
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Algorithm 3.7: Modified Fuzzy Gradient Iterative Algorithm for PTrEFFME.

Input 4, B and E # Split each matrix into four matrices (e.g., a®?, a®, a®, a®)
for1=1,2,3,4

Choose a;, €, &V (k) = 0 # 0 is the Zero matrix with the same dimension as x® (k)
While k =0,1,2,...,ndo

2OU) =20k —1) + ;- (a(z))T(e(z) —aWzO ) — 1);,(1))(;,(1))?

5OK) = [|e® — a®2O (k)b

If 6W(k) < ethen
print (Y (k));
print ("number of iterations =", k).

else
2OU) =20k —1) +a; - (a(z))T(e(l) — a0 () — 1)b(z))(b(z))T1
update k.
k=k+1

end

print (2® (k)),

print ("number of iterations =", k).

end

The positive solution to the PTrEFFME can also be approximated numerically by
modifying the FLSIM in Section 3.3.3, which is discussed in the following

Section 3.5.2.3.

3.5.2.3 Modified Fuzzy Least Square Iterative Method for PTrEFFME

In this section, the positive fuzzy solution to the PTrEFFME AXB = E is approximated
by modifying the FLSIM method in Section 3.3.3 and applying it to the system of
ELME in Eq. (3.102). The algorithm for obtaining the fuzzy solution by the FLSIM in

Eq. (3.45) can be modified as follows: for 1 < I < 4 we have:
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2O = 20U —1) + a - ((a(z))T : a(z))_1 _ (a(z))T(e(z) — a0k —

DHO)(B®)" - (O (b®) ), (3.112)
where the convergence rate (step size) is given by,
0<a <2. (3.113)
As step k — th of the iteration, the following error is considered:
5OK) = [|e® - a®2O ()|
The obtained numerical solution in Eq. (3.112) can be expressed as,
z = (55(1)' 55(2), 55(3), 55(4))_

It can also be written in matrix form as,

~(1) 2(2) ~(3) ~(4) ~(1) 2(2) 23) (1)
(x11 X110 %11 X1 ) (xln 1 X1n o X1n 'xln)
A= s ;
~(1) ~(2) ~(3) ~(4) ~(1) ~(2) ~(3) ~(4)
(xp1 yRp1r Xp1 o Xpy ) (xpn ! xpn,xpn,xpn)

In the following Theorem 3.5.2.3.1, it is proven that if the system of ELME in
Eq. (3.102) has a unique solution, then the approximated fuzzy solution in Eq. (3.112)
by the MFLSIM to the PTrEFFME in Eq. (1.12) converges to the analytical fuzzy
solution for any initial value.
Theorem 3.5.2.3.1: If the system of ELME in Eq. (3.102) has a unique positive solution
x®, then the numerical solution £ (k) in Eq. (3.112) converges to x® for any initial
values £ (0) (i.e. if k = oo, then x® = 2O (k)).
Proof: The prove of this theorem can be obtained similar to the proof of
Theorem 3.3.3.1.

O
Below is the Algorithm 3.8 for the MFLSIM. This algorithm can be used by different

software for solving the PGTrFFSME in Eq. (1.16).
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Algorithm 3.2: Fuzzy Least-Square Algorithm for PGTrFFSME.

Input 4, B, €, D and E # Split each matrix into four matrices (e.g., a™®, a®, a®),

a™®)

for1=1,2,3,4

Choose a;, £, (k) = 0 #0 is the Zero matrix with the same dimension as x® (k)

Whilek =0,1,2,...,ndo

2O = 2O —1) + a - ((a(l))T : a(z))"1 _ (a(z))T(e(z) — a0k —
1)b(z))(b<z))T - ((p® (b(z))T)—l_

§Ok) = ||e(l) — a(”f(”(k)b(”llz-

If §WO(k) < ethen

print (8O (k));

print ("number of iterations =", k).

else

20U =20 —1) + o - ((a(z))T : a(z))_l _ (a(z))T(ecz) — a®O () —
1)b<z))(b(1))T ((b® (b(w)T)—l_

update k.

k=k+1

end
print (O (k)),

print ("number of iterations =", k).

end
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To illustrate the constructed methods for solving the PTrEFFME, the following
Example 3.5.2.3.1 is solved using the MFMVM, MFGIM and MFLSIM in
Sections 3.5.2.1, 3.5.2.2 and 3.5.2.3, respectively.

Example 3.5.2.3.1 Consider the following PTrEFFME:

@ @ .6 @ @ @ .6 @
(x11 X110 X110 X1 ) (x12 X120 X125 X12 )

((3, 4,6,9) (1, 2,4,7)) _

(2,3,5,6) (3,5,7,8) @ 3 @ W @ 6 @

(1)
(x21 1 X210 X1 X2 X221 X221 X221 X2

_ ((2,4,6,9) (1,3,4,7))_<(22,172,644,1982) (36,206,664,2014))
(1,3,5,6) (3,5,7,8)) _ \(38,262,797,1798) (59,312,821,1826))"

Solution: The positive fuzzy solution to the given PTrEFFME can be obtained
analytically by the MFMVM in Section 3.5.2.1, similar to Example 3.3.1.1. Therefore,

the analytical positive fuzzy solution is

= ((1,3,56) (2,46,7)
4 ((3, 56,8 (46,7, 9))'

This positive fuzzy solution is approximated using the MFGIM algorithm in Eq. (3.108)
and the MFLSIM algorithm in Eq. (3.112) and the following initial value:

0 0

For1<l1<4,z0= (0 0)’ the approximated solution of X is shown in Table 3.11

with the convergence rate («), error bound (&), and the total number of iteration (k).
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Table 3.11

Comparison Between MFMVM, MFGIM and MFLSIM for Example 3.5.2.3.1.

Analytical Solution and

Method Approximated Solution « € k
MFMVM (; i) NA 0 NA
1.0002316383 1.9998568396 _
2(1) 5
) MFGIM (2.9997265601 4.0001689951) 0.005 107> 305
09999990463 1.9999980926 .
MFLSIM (2.9999971389 3.9999961853) 0.5 107 19
MFMVM (g ‘é) NA 0 NA
3.0013407098 3.998864248 _
£(2) 5
% MFGIM (4.9987708142 6.0010412765) 0.0005 107> 1030
2.999997138 3.9999961853 .
MFLSIM (4.999995231 5.9999942779) 0.5 107 19
5 6
MEMVM (6 7) NA 0 NA
50026992267 5.9977645800\ 0.0001 _
£(3) 5
= MFGIM (5.9973907220 7.0021609269) 3 107> 1431
4.9999976158  5.999997138 »
ML (5.9999971389 6.9999966621) R 1077 20
6 7
MEMVM (8 9) NA 0 NA
59452511631 7.0617894048y 0.0000 _
£(4) 4
2= MEGR! (8.0564412547 8.9363017482) 05 107" 1738
59999971389 6.9999966621 »
MFLS(W (7.9999961853 8.9999957084) 0.5 107% 20
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The following Table 3.12 shows that the computational time and memory usage needed
for MFGIM and MFLSIM.

Table 3.12

Comparison Between Computational Time, Memory Usage for MFGIM and MFLSIM

for Example 3.5.2.3.1.

CPU Real Memory
Method k _ _
time time usage
£®  MFGIM 305 389ms 3.81lms 0.73MB
MFLSIM 19 826ms 7.89ms 1.60MB
£@  MFGIM 1030 399ms 3.95ms 0.73MB
MFLSIM 19 784ms 7.37ms 1.60 MB
£®  MFGIM 1431 394ms 391ms 0.73MB
MFLSIM 20 737ms 7.80ms 1.60 MB
£®  MFGIM 1738 389ms 384ms 0.73MB
MFLSIM 20 14.05ms 13.80ms 1.60 MB

The following Figure 3.13 Shows the change in the error § (k) when k increases up

to k = 20.
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Figure 3.13. Comparison between the error of MFGIM and MFLSIM for the first 20

iterations for Example 3.5.2.3.1.

Tables 3.11, 3.12 and Figure 3.13 show that the error §© (k) is reducing as k increases.
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Figure 3.13 shows that the error of the MFGIM and MFLSIM for approximating £ is
reducing significantly as k increasing, where the FLSIM converges to the analytical
solution for a fewer number of iterations with a bigger step size compared to the
MFGIM.

This indicates that the developed algorithms are effective and convergent for the given
positive PTrEFFME. In addition, the EFLSIM takes more computational timing and
more memory compared to EFGIM. However, in terms of accuracy, error, the number
of iterations, EFLSIM provide extremely accurate approximations with very few
iterations. In the following Section 3.5.3, the methods for solving the positive

TrFFStME are discussed.

3.5.3 Solving Positive Trapezoidal Fully Fuzzy Stein Matrix Equation

In this section, the positive fuzzy solution to the positive TrFFStME X + CXD = E in
Eq. (3.86) is discussed. To obtain the positive fuzzy solution, the TrFFStME needs to
be converted first to an equivalent system of StME where the analytical solution is
obtained by modifying the FMVM in Section 3.3.1, and the numerical solution is
obtained by modifying the FGIM and FLSIM in Sections 3.3.2 and 3.3.3 respectively.
In the following Definition 3.5.3.1, the positive TrFFStME is introduced.

Definition 3.5.3.1. A matrix equation TrFFStME X + CXD = E, is called positive
trapezoidal fully fuzzy Stien matrix equations (PTrFFStME) if

¢ = ( D @ 3 (4)) >0Vl <

€ij) ey = (G132 11211 Lj < pand,

D=(dy), . =(@}d?d}d)>0v1<ij<n
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and X = (xl]) (1) x® x® (4)) >0,Vl1 <i,j <pmn andE = (eu)

pxn Xij o Xij o X0 X pXn

= (e 1(11), 1(12)»31(]'3)» (4)) >0,V1 < i,j < p,nare positive trapezoidal fuzzy matrices,

respectively.
In the following Definition 3.5.3.2, the system of StME is introduced.
Definition 3.5.3.2. A system of matrix equations in the form

(1) + C(l) (l)d(l) — el(Jl),

(2) + C(Z) (Z)d(Z) — el(JZ)’

(3) + C(3) (3)d(3) — 31(13),

\x@') Q)xi@) di(‘}) _ ei(]fl),
is called a system of StME.
In the following Theorem 3.5.3.1, the PTrFFStME in Eq. (3.86) is converted to an
equivalent system of StME.
Theorem 3.5.3.1. Fundamental Theorem of PTrFFStME.
Suppose that €, D, E and X are positive trapezoidal fuzzy matrices, then the

PTrFFStME X + CXD = E is equivalent to the following system of StME:

(6D + (DD aD = oV

l] ’
(z) + C(z) (z)d<z) = e, 119
9 .
(3) + C(s) (3)d<3) = e,

(4) (4) (4) (4) RN C)

Proof:

Let C, D, E and X in the PTrFFStME X + CXD = E be positive trapezoidal fuzzy
matrices respectively, then by EAMO in Eq. (3.19), the product CXD is obtained as

follows:

-

A (1) (1) €Y} (2) ) ;(2) (3) 3) 4,03) (4) (4) ;(4)
CX Z dl] ’ l] 1] dl] ' 1] dl] ' i l] d )
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Vi<i<pl<j<n

By Definition 2.3.3.2.6 and Eq. (2.10a) we get,

j

% AT 1 2 3 4 1 1 1 2 2 2 3 3 3 4) .. (4 4
24 C%D Z (0,22, x,2P) + (P PP, cPxPdP, (PxPDdD, D PaP)).

i=1

vi<i<pl<j<n
By Definition 2.3.3.2.5 and Eq. (2.9), the PTrFFStME X + CXD = E is equivalent to

the following system of StME:

[ (1) +C(1) (l)d(l) e

l] ’
@ + C(Z) (z) d(z) = e?,
(3) +C(3) (3)d(3) e,

(4) + C(4) (4)d(4) (}4)_

O
The system of StME obtained in Eq. (3.113) is represented in general form in the
following Remark 3.5.3.1.
Remark 3.5.3.1: Based on Eq. (3.113), the PTrFFStME in Eq. (3.86) can be written as

follows: for 1 < I < 4 we have:
(l) (l) om0 _ O
+xdy = e (3.114)
In the following Theorem 3.5.2.2, the uniqueness of the positive solution to the system

of StME in Eq. (3.113) is proved.

Theorem 3.5.3.2 Uniqueness of Positive Solution to System of StME
The system of StME in Eq. (3.113) has a unique positive solution if the following

conditions are satisfied:
1) det(r;) # 0,det(r,) # 0,det(r3) # 0 anddet(ry) # 01i.e., 1y, 1y, 13 and 1
are invertible matrices

where,

r = 1(1) + (d(l))T®Cl(]1),
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r =17+ @) ®c?,

3 3 3
=13 + (@) ®c,

=10 + (A ®ct?.
) 71 1, rytandry,t > 0.

Proof: The proof of this Theorem is similar to the proof of Theorem 3.3.2.

O
The PTrFFStME in Eq. (3.86) is a special case of the PGTrFFSME in Eq. (1.16) and
the system of StME in Eq. (3.113) is a special case of the system of GSME in Eq. (3.20).
Thus, the FMVM, FGIM and FLSIM in Sections 3.3.1, 3.3.2 and 3.3.3, respectively,
can be modified and applied to the PTrFFStME. The three methods are discussed in the

following three Sections 3.5.3.1, 3.5.3.2 and 3.5.3.3.

3.5.3.1 Modified Fuzzy Matrix Vectorization Method for PTrFFStME

In this section, the analytical solution to the PTrFFStME X + CXD = E in Eq. (3.86)
is obtained by modifying the FMVVM in Section 3.3.1 and applying it to the system of

StME in Eq. (3.113). The detail of the MFMVM is presented in the following steps.

@ 4® O and x(l)

Step1: Decomposing C, D, £ and X into iy dif e ij

respectively and

convert the PTrFFStME to a system of StME using Theorem 3.5.3.1.

Step 2: Applying the Vec-operator and Kronecker product on Eq. (3.113) gives:

f( I+ (d(l))T®c(1))vec( (1)) = vec( ),
( 1?4 (d(z))T®c(2))vec(x(2)) = vec( ),
( 1@ + (d(3))T®C(3))UeC( (3)) (e )
L( 1@ 4 (d(4))T®c(4))vec( (4)) — vec( (4))_

e;

('D

(0
@
o (3.115)

Step 3: Multiplying the system of linear matrix equation in Eq. (3.115) by matrix

multiplicative inverse as follows:
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-1

19+ @y @c?)  vec(el?

G ()

= (12 + @y ec?) 1176‘—‘(31(12))' 3.116

( ) ( ) (3.116)
)

3)
ij

(vec xl.(f)) = ( I+ (d(4))T®c(4)) 1vec( 1(14) :

19+ @@y ec?

)

Step 4: Multiplying the system of linear matrix equations in Eq. (3.116) by vec™?! as

follows:

1
= vec -1 (1)+(d(1))T®C(1) vec(e(l)

= s )
x? = vee (12 + @2 @) 1vec(e(2) ),
o (i 5 (3.117)

1 O

= vec (1 +(d(3) ®c(3) vec(e;;)),

(]4') _ UGC_1< (4') + (d(4))T®C(4)) UGC(€(4))).

Step 5: Combining the positive fuzzy solutions obtained in Step 4 and write it as a

trapezoidal fuzzy matrix as follows:

o @ .6 4 @ @ .6 @
(x11 X1 ,x11 T ) (xln »Xino Xan s X1n )
£ = : . (3.118)
1) (2) (3) ,.(4) (1) (2) PRORSAC)
(xml' xml’ xml’ ml) " ( mTl' mn’ mn' n)

The obtained solution by the MFMVM in Eq. (3.117) to the system of StME is written
in general form in the following Remark 3.5.2.1.1.
Remark 3.5.3.1.1: The positive fuzzy solution in Eq. (3.117) to the PTrFFStME in

Eqg. (3.86) can be written as follows: for 1 < [ < 4 we have:

x® = vec 1 (19 + @Dy @cP)  vee(e). (3.119)
In the following Theorem 3.5.2.1.1, the solution to the system of StME in Eq. (3.113)
and the positive fuzzy solution to the PTrFFStME are proved to be equivalent.
Theorem 3.5.3.1.1. The solution to the system of StME in Eq. (3.113) and the positive

fuzzy solution to the PTrFFStME are equivalent if the following conditions are

satisfied:
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I) det(r;) # 0,det(r,) # 0,det(r3) # 0 and det(r,) # 0i.ery, 1y, 13 and r, are
invertible matrices,

I L, mhrytand ;1 >0,

Ir,~t; >0, 1,71, > 0,31t > 0and r,~1t, > 0,

V)1, "t <17t S ity <1 M.
Proof: The proof of this theorem is similar to the proof of Theorem 3.3.1.1.

O

The following Corollary 3.5.2.1.1 discusses the uniqueness of the positive solution to
the PTrFFStME.

Corollary 3.5.3.1.1. The uniqueness of Fuzzy Solution to PTrFFStME

The PTrFFStME has a unique positive fuzzy solution if the corresponding system of
StME in Eq. (3.113) has a unique solution.

Proof: The proof of this corollary is similar to the proof of Corollary 3.3.1.1.

In the following Corollary 3.5.3.1.2, the sufficient conditions for PTrFFStME to have

a positive fuzzy solution are discussed.

Corollary 3.5.3.1.2. Existence of Positive Fuzzy Solution to PTrEFFME
The PTrFFStME has a positive fuzzy solution if:
1) det(r;) # 0,det(r,) # 0,det(r;) + 0 and det(ry) # 0 i.e., 1y, 15, 153 and 7,
are invertible matrices.
I 1, s Lrstand ;> 0.
Ir,~t; >0,r,71t, > 0,373 > 0and ,~1t, > 0.
V)17t <17t S il <1l

Proof: The proof of this corollary is similar to the proof of Corollary 3.3.1.2.
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m|
The positive fuzzy solution in Eq. (3.119) to the PTrFFStME in Eq. (3.86) can be
approximated numerically by modifying the method of FGIM in Section 3.3.2 as

discussed in the following Section 3.5.1.2.

3.5.3.2 Modified Fuzzy Gradient Iterative Method for PTrFFStME

In this section, the solution to the PTrFFStME X + CXD = E in Eq. (3.86) is
approximated numerically by modifying the FGIM method in Section 3.3.2 and
applying it to the system of StME in Eg. (3.113). The algorithm for solving the
PTrFFStME can be obtained directly from the algorithm in Eq. (3.38) as follows: for

1 <1 < 4 we have:

20 (k) = 20 (k — 1) + % ((e(” — 20k = 1) — cO2O(k — 1)d®) +

(@) (e® = 2Ok — 1) — VRO — 1)d(z))(d(z))T), (3.120)

where the convergence rate (step size) is given by,

2
Amax [(CD)T CO] gy [DO(DO)T]

0<aq < (3.121)

At step k — th of the iteration, the following error is considered:
§OU) = ||le® = 2P (k) — 2O K)dD|.. (3.122)
The obtained numerical solution in Eq. (3.120) can be expressed as,
%= (55(1)' 55(2), ,?(3), 9?(4))_
It can also be written in matrix form as,

21 2(2) 23) (4 21 2(2) 23) (4
<x11 X110 X110 X1 ) (xln 1 X1n 1 X1n 'xln)

(1) 5(2) 5(3) ~(4) (1) £(2) 5(3) ~(4)
(xnl,xnl,xnl,xnl) (xnn,xnn,xnn,xnn)

X= (3.123)
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In the following Theorem 3.5.2.2.1, it is proven that if the system of StME in
Eqg. (3.113) has a unique solution, then the approximated fuzzy solution to the
PTrFFStME given by the MFGIM converges to the analytical fuzzy solution for any
initial value.

Theorem 3.5.3.2.1. If the system of StME in Eq. (3.113) has a unique positive solution
x| then the numerical solution £ (k) in Eq. (3.120) converges to x® for any initial
values £ (0) (i.e. if k = oo, then x® = £V (k).

Proof: The proof of this theorem can be obtained similar to the proof of

Theorem 3.3.2.1.

Below is the Algorithm 3.9 for the MFGIM. This algorithm can be used by different

software for solving the PTrFFStME in Eq. (3.86).

Algorithm 3.9: Modified Fuzzy Gradient Iterative Algorithm for PTrFFStME.
Input €, D and £ ?Spﬁi-t each matrix ir@ourariceqe.g., a® @ B a®)
for1=1,2,3,4

Choose a;, &, £ (k) = 0 #0 is the Zero matrix with the same dimension as x® (k)
Whilek =0,1,2,...,ndo

2OK®) =2O%k —1) + %((e(l) -0k —1) —cWOk — 1)d(l)) + (C(l))T(e(l) —
2O — 1) — OO — 1)d(l>)(d<0)T).

sOk) = ||e(l) - 2Ok — c(l)a?(l)(k)d(l)”z.
If 5V (k) < e then

print (R (k));
print ("number of iterations =", k).
else
2O =2O%k - 1) + %((e@ — 20U —1) = cO2O%k — 1)d®) +
(C(Z))T(e(z) 2Ok = 1) = cOOk — 1)d(1))(d(z))T)_
update k.
k=k+1
end

print (O (k)),
print ("number of iterations =", k).

end
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The positive solution to the PTrFFStME in Eq. (3.86) can also be approximated
numerically by modifying the FLSIM in Section 3.3.3 as discussed in the following

Section 3.5.3.3.

3.5.3.3 Modified Fuzzy Least Square Iterative Method for PTrFFStME

In this section, the solution to the PTrFFStME X + CXD = E in Eq. (3.86) is
approximated numerically by modifying the FLSIM method in Section 3.3.3 and
applying it to the system of StME in Eq. (3.113). The algorithm for obtaining the fuzzy

solution by the FLSIM in Eq. (3.45) can be modified as follows: for 1 < [ < 4 we have:

2Ok =20k —1) + % <(e<l) — 20Uk —1) — OO — 1)dO) +
((C(z))T : C(z))"l : (C(z))T(e(z) — 2Ok —1) — c WO — 1)d<l))(d(z))T :

((d® (d“))T)‘l), (3.124)

where the convergence rate (step size) is given by,
0<aq <2 (3.125)
At step k — th of the iteration, the following error is considered:
§OU) = ||le® = 2P (k) — 2O (k)dD|.. (3.126)
The obtained numerical solution in Eq. (3.124) can be expressed as,
% = (55(1), 55(2)’ 55(3)’ ,?(4))_

It can also be written in matrix form as,

2(1) 2(2) 2(3) ~(4) ~(1) £(2) 2(3) ~(4)
(x11 X110 %11 X1 ) (xln 1 X1n o X1n 'xln)
= : ; (3.127)
(1) 2(2) 2(3) ~(4) 21 2(2) 23) (4
(xpl VRp1 o Xpy Xy ) (xpn,xpn,xpn,xpn)
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The following Theorem 3.5.3.3.1 proves that if the system of StME in Eqg. (3.113) has
a unique solution, then the approximated fuzzy solution in Eq. (3.124) by the MFLSIM
to the TrFFStME in Eq. (3.86) converges to the analytical fuzzy solution for any initial
value.
Theorem 3.5.3.3.1: If the system of StME in Eq. (3.113) has a unique positive solution
x| then the numerical solution 29 (k) in Eq. (3.124) converges to x(® for any initial
values £ (0) (i.e. if k = oo, then x® = £V (k).
Proof: The prove of this theorem can be obtained similar to the proof of Theorem
3.3.3.1.

O
Below is the Algorithm 3.10 for the FLSIM. This algorithm can be used by different

software for solving the PTrFFStME in Eq. (3.86).

218



Algorithm 3.10: Modified Fuzzy Least-Square Algorithm for PTrFFStME.

Input €, D and E # Split each matrix into four matrices (e.g., a®, a®, a®, a®)
for1=1,234
Choose a;, €, &V (k) = 0 # 0 is the Zero matrix with the same dimension as x® (k)

Whilek =10,1,2,..,ndo

£Ok) =20%k -1) + %((e@ — 2Ok —1) —cO2Ok —1)dV) +
((c®)"- C(z))'l (D) (e® = 2Ok — 1) — V2O (k — 1)dD)(d®)" -

((d(l)(d(l))T)—1>_

5O = [le® = 2O (k) — cO2OU)AD]..

If 60(k) < ethen
print (O (k));

print ("number of iterations =", k).

else
2OU) =2V -1) + %((eﬂ) — 20 —1) —cO2O% — 1)dDV) +
((ca))T : C(z))’l : (Ca))T(e(z) — 2O — 1) — OOk — 1)d(z))(d(z))T :
((d(l)(d(l))T)—1>_
update k.
k=k+1
end

print (20 (k)),

print ("number of iterations =", k).

end

To illustrate the constructed methods for solving the PTrFFStME, the following

Example 3.5.3.3.1 is solved using the MFMVM, MFGIM and MFLSIM in Sections

3.5.3.1, 3.5.3.2 and 3.5.3.3, respectively.
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Example 3.5.3.3.1 Solve the following 2 x 2 PTrFFStME:

X+CXD=E
Given,

(3,589 (2,3,5,8)

C= ((1, 4,6,7) (4,6,7, 9))’ D = <(3' Ce8) 47010 )’

(1,56,8) (4,7,9,10)

5 ((53,293,902,2012) (51,246,937,1977))
~ \(71,417,956,1972) (73,354,995,1939)/

Solution: The positive fuzzy solution to the given PTrFFStME can be obtained
analytically by the MFMVM in Section 3.5.2.1, similar to Example 3.3.1.1. Therefore,
the positive fuzzy solution is

- ((2,3,56) (1,2,4,5)
X= ((4,5, 7,9) (3,4,6, 8))'

This positive fuzzy solution is approximated using the MFGIM algorithm in Eq. (3.120)

and the MFLSIM algorithm in Eq. (3.124) and the following initial value:

for1 <1< 4,20 = (8 8)

The approximated solution to X is shown in Table 3.13 with the convergence rate (),
error bound (¢), and the total number of iteration (k). While Table 3.14 shows the

computational time and memory usage needed for MFGIM and MFLSIM.
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Table 3.13

Comparison Between MFMVM, FGIM and MFLSIM for Example 3.5.3.3.1.

Method  Analytical Solution and a £ k
Approximated Solution
£ MFMVM (2 1) NA 0 NA
4 3
MFGIM (1.9994516485 1.0003533939) 0.0004 107* 267
4.0003446414 2.9997779600
MFLSIM (2.0000976180 0.99994540517) 0.009 10~* 107
3.9999511837 3.00002730185
@ MFMVM (3 2) NA 0 NA
5 4
MFGIM (3.0017475640 1.9986655919) 0.00009 10™* 1286
4.9983500240 4.0012607133
MFLSIM (2.9999346972 2.0000444729) 0.009 10~* 93
5.0000653027 3.9999555270
23 MFMVM (5 4) NA 0 NA
7 6
MFGIM (5.0024990316 3.9980360885) 0.00006  10~* 2172
6.9970839015 6.0022919184
MFLSIM (5.0000595967 3.9999546293) 0.009 107* 85
6.9999284839 6.0000544447
£® MFMVM (6 5) NA 0 NA
9 8
MFGIM (6.0134035109 4.9880642520) 0.00002 10™* 4030
8.9872830892 8.0113237705 5
MFLSIM (6.0001450322 4.9998730968) 0.006 107 130
8.9998643347 8.0001187070
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Table 3.14
Comparison Between Computational Time, Memory Usage for MFGIM and MFLSIM for

Example 3.5.3.3.1.

Method k CPU Real Memory
time time usage
£ MFGIM 267 6.03ms 5.92ms 1.09 MB
MFLSIM 107 11.10ms 10.91ms 2.01 MB
£@  MFGIM 1286 5.86ms 5.84ms 1.09 MB
MFLSIM 93 10.93ms 10.97ms 2.01 MB
£  MFGIM 2172 591ms 5.90ms 1.09 MB
MFLSIM 85 11.21ms 11.09ms 2.01 MB
£®  MFGIM 4030 584ms 5.84ms 1.09MB
MFLSIM 130 10.82ms 10.64ms 2.01 MB

The following Figure 3.14 shows the change in the error § (k) when k increases up to

k = 20.
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Figure 3.14. Comparison between the error of MFGIM and MFLSIM for the first 20

iterations for Example 3.3.4.1.

Tables 3.13, 3.14 and Figure 3.14 show that the error §® (k) is reducing as k increases.

Figure 3.14 shows that the error of the MFGIM and MFLSIM for approximating £® is

reducing significantly as k increasing, where the MFLSIM converges to the analytical

solution for a fewer number of iterations with a bigger step size compared to the MFGIM.
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This indicates that the developed algorithms are effective and convergent for the given
PTrFFStME. However, in terms of accuracy, error, the number of iterations, MFLSIM
provide extremely accurate approximations with very few iterations. In addition, the

MFLSIM takes more computational timing and more memory compared to MFGIM.

In addition to the PTrFFSME, PTrFFME, PTrEFFME and PTrFFStME in Sections 3.4,
3.5.1, 3.5.2 and 3.5.3 respectively, there is another special case for the GTrFFSME, which

is the TrTFFCTLME in Eq. (3.85).

3.5.4 Solving Positive TrFFCTLME

In this section, the positive fuzzy solution to the positive TIFFCTLME AX + XAT = E in
Eq. (3.85) is obtained. In the following Definition 3.5.4.1, the positive TrFFCTLME is
introduced.

Definition 3.5.4.1. A matrix equation TrFFCTLME AX + XAT = E| is called positive
trapezoidal fully fuzzy continuous-time Lyapunov matrix equations (PTrFFCTLME) if
A= (@nsn > 0,AT = (@) andX = (Tnxn, V1<ij<n. and E = (&)nxn
V1<i,j<n,n, are positive trapezoidal fuzzy matrices. In the following Definition
3.5.4.2, the system of CTLME is introduced.

Definition 3.5.4.2. A system of matrix equations in the form

DD 4 D@Dy = P,
@2 4 2D (@) = o,
G20 4 2@y = e,
D20 4 2D (@) = P,

(a

a

a

\4;

224



is called a system of CTLME.

In the following Theorem 3.5.4.1, the PTrFFCTLME is converted to an equivalent system
of crisp CTLME.

Theorem 3.5.4.1. Suppose that 4, AT, E and X are positive trapezoidal fuzzy matrices, then

the PTrFFCTLME AX + XAT = E is equivalent to the following system of CTLME:

(Px D + xP @) = e

l] l] iy’
e S
a; %y + a0 (a)" = 1(13),
kag})xi(]‘l) (4) (a(4))T _ ei(]fl)_

Proof:
Let A, AT, E and X in the PTrFFCTLME AX + XAT = E be positive trapezoidal fuzzy
matrices, then by RAMO in Eq. (3.2), the product AX and XA are obtained as follows:

iv_ (W @O @ 2 3. 0B 4. @
AX = (a] Xii Oy X5 Qg Xy, X )

and
XA” ( (1)(a(1))T (2)(a(2))T (3)(a(3))T x(4) (4)(a(4))T)_

By Definition 2.3.3.2.6 and Eq. (2.10a), the sum of AX and XAT is found as follows:
A%+ XA = (afPx, aPxP, 0%, aPxiP) + (xP @) xP @) P @7 P @iHT).

= (@PxD + xP @7, aPx? + 22 @), aPx + 1P @P),aPxP + 1P (@),

By Definition 2.3.3.2.5 and Eq. (2.9), the PTrFFSME AX + XA = E is equivalent to the

following system of CTLME:
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a®® 4 (1) (a(l) T €Y

Qi Xij =€
a@x@ + (2)(a(2) r=o®,
0%+ xP @@ = &,
ai(;})xi(]‘}) (4) (a(4))T — 61(14).

O
In the following Remark 3.5.4.1, the system of CTLME in Eq. (3.128) is represented in
general form.
Remark 3.5.4.1: Based on Eq. (3.128), the system of CTLME can be written as follows:
for 1 <1 < 4 we have:

l l l l l

In the following Theorem 3.5.4.2, the uniqueness of the positive solution to the system of
CTLME in Eq. (3.128) is proved.

Theorem 3.5.4.2 Uniqueness of Positive Solution to System of CTLME
The system of CTLME in Eg. (3.128) has a unique positive solution if the following

conditions are satisfied:
I) det(r;) # 0,det(r,) # 0,det(r;) # 0 and det(r,) # 0 i.e., ry, 1, 13 and r, are
invertible matrices where

1 1 1 1
n =1"®a’ + (a1,

r=178a? + (afH 17,

3 3 3 3
s =178a + (a1,

n=17®a + (i) 1.

i 1t rslandr, > 0.

Proof: the proof of this Theorem is similar to the proof of Theorem 3.3.2.
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O
It is worth mentioning that the structure of the PTrFFCTLME AX + XAT = E and the
PTIrFFSME AX + XD = E is almost the same. Therefore, if the fuzzy matrix D in the
TrFFSME is equal to A7, then the developed methods for the PTrFFSME in Sections 3.4.1,
3.4.2 and 3.4.3 can be applied directly to the PTrFFCTLME. Therefore, in the following
Section 3.5.4.1, the PTrFFCTLME is solved by MFMVM for the PTrFFSME in

Section 3.4.1.

3.5.4.1 Modified Fuzzy Matrix Vectorization Method for PTrFFCTLME

In this section, the analytical solution to the PTrFFCTLME AX + XAT = E is obtained by
modifying the FMVM in Section 3.4.1 and apply it to the system of CTLME in Eq. (3.128).

The following steps summarizes the methods.

Stepl: Decomposing the matrices 4, X, A™ and £ into a?, (a{)", e and x{ for

l=1,2,3,4 respectively and convert the PTrFFCTLME in Eq. (3.85) to a system of
CTLME using Theorem 3.5.4.1.

Step 2: Applying the Vec-operator and Kronecker product on Eq. (3.128) gives:

( (1)®a(1) + ((a(l))r)r®1(1)) C(X(l)) — vec( (1))’
(19®a + (@1 Jvec(x) = vec(e),
(Ii(]$)®al§3) n ((a(3))T)T®I(3))vec(xu3)) vec(ei(f)),
(198 + @@y @1 Yvec(x?) = vec(e),

which can be written as
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f( (1)®a(1) + a(1)®1(1))vec(x(1)) vec
( (2)®a(2) + a(2)®1(2))vec(x(2)) vec
< ( (3)®a(3) + a(3)®1(3))vec(x(3)) vec
( (4)®a(4) + a(4)®1(4))vec( (4)) = vec

Step 3: Multiplying the system of linear matrix equation

multiplicative inverse as follows:
®

UBC( l]

vec( (2)) ( (2)®a(2) +a(2)®1(2)
( ) ( (3)®a(3) n a(3)®1(3)
() = (1 ®alP + ag;”®1§;*>)

1

1

vec

)1
)

(3)
4)

\vec\ x

Step 4: Multiplying the system of linear matrix equation

follows:

-1
= vec (10@a + oV @I

( 1
(
(5

(1)
(z) & (z)®a<z) + a(2>® ,(z)
(3) -1

= vec (19@a® + ¢ V&I

)
)
)

Y = vec™ (Ii(;)@ag) + af?@[ff))

) = (1994 + aL@1P) vec(e,

€3]

L

)
),

3))
(")

in Eq. (3.130) by matrix

2

J
J

™

(
i
(

L

(3.130)
e

)

]

4)
€ij

(3.131)

in Eq. (3.131) by vec™? as

vec(e(l)

vec(e(z)
(3.132)

vec(e(g)

1vec(eij ).

Step 5: Combining the solutions obtained by the previous Step 4 and write it as a

trapezoidal fuzzy matrix as follows:

o @ 63 .4 ® @)
(x11 X110 x11 1 X11 ) (xm 1 Xin»
X =
1) (2) 3) @) ()
(xml' Xm1r Xm1s ml) ( Xmn» Xmns

The obtained solution by the MFMVM in step 4 to the

general form in the following Remark 3.5.4.1.1.
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xln 4 xln

)
)

system of CTLME is written in

(3.133)
x(s)

mn’

@
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Remark 3.5.4.1.1: The positive fuzzy solution in Eq. (3.132) to the PTrFFCTLME in Eq.

(3.85) can be written as follows: For 1 < [ < 4 we have:

xl(]l) = vec‘l(((bi(;))T®ai(]l-))‘1vec(ei(;))). (3.134)
In the following Theorem 3.5.4.1.1, the solution to a system of CTLME in Eq. (3.128) and
the positive solution to the PTrFFCTLME in Eq. (3.85) is proved to be equivalent.
Theorem 3.5.4.1.1. The solution to the system of CTLME in Eq. (3.128) and the positive
fuzzy solution to the PTrFFCTLME in Eq. (3.85) are equivalent if the following conditions
are satisfied.

I) det(r;) # 0,det(r,) # 0,det(r;) #+ 0 and det(ry) # 0 i.e., ry, 1, 13 and r, are

invertible matrices,

) 7, s hrstand ;! >0,

) r,=%;, > 0,1, >0, 37ty > 0and r,71t, > 0,

IV) r, 71t <17ty <17l < .
Proof: The proof of this theorem can be obtained similar to the proof of Theorem 3.4.1.1.

O

The following Corollary 3.5.4.1.1 discusses the uniqueness of the positive solution to the
positive TFTFFCTLME.

Corollary 3.5.4.1.1. The uniqueness of Fuzzy Solution to Positive TrTFFCTLME
The positive TrFFCTLME in Eg. (3.85) has a unique positive fuzzy solution if the

corresponding system of CTLME in Eqg. (3.128) has a unique solution.

Proof: The proof of this corollary is similar to the proof of Corollary 3.4.1.1.
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In the following Corollary 3.5.4.1.2, the sufficient conditions for PTrFFCTLME to have

positive fuzzy solution are discussed.

Corollary 3.5.4.1.2. Existence of Positive Fuzzy Solution to PTrFFCTLME
The PTrFFCTLME has a positive fuzzy solution if the following conditions are satisfied:
I) det(r;) # 0,det(r,) # 0,det(r;) # 0 and det(ry) # 0 i.e., 1y, 1, 13 and r, are
invertible matrices.
) r7, r;Lrgtandr,t > 0.
Ir,~t; >0, 1,71, > 0,31t > 0and r,~1t, > 0.
V)1, 7t <17t S ity <1 M.
Proof: The proof of this corollary is similar to the proof of Corollary 3.4.1.2.

m|
The positive fuzzy solution in Eq. (3.132) to the PTrFFCTLME can be approximated by

the MFGIM in Section 3.4.2 as discussed in the following Section 3.5.4.2.

3.5.4.2 Modified Fuzzy Gradient Iterative Method for PTrFFCTLME

In this section, the solution to the PTrFFCTLME AX + XAT = E is approximated
numerically by applying the MFGIM method in Section 3.4.2 to the system of CTLME in
Eq. (3.128). The algorithm for solving the PTrFFCTLME can be obtained directly from
the algorithm in Eq. (3.71) is as follows:

For 1 <1 < 4 we have:
2O%) =200 = D +2((a®)" (e - a®2O(k — 1) - 2Ok — 1)(a®)" ) +
(e® = a®2®(k — 1) = 2Ok — 1)(a®)" ) a®), (3.135)

where the convergence rate (step size) is given by,
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1

0<ag < 1 (AT AGD] (3.136a)
It can also be obtained as follows,
0<a < — (3.136b)
a —_. .
L O]
o|? = OO
where, [|a®||” = Tr[a® - (a®)].
At step k — th of the iteration, the following error is considered:
§OU) = [le® = a®2O k) = 2 U) (@) (3.137)
The obtained numerical solution in Eq. (3.135) can be expressed as,
%= (2(1)' 2@ 23 9?(4))_
It can also be written in matrix form as,
(1) ~(2) 5(3) ~(4) (1) ~(2) 2(3) ~(4)
(x11 X115 X115 %11 ) (xln Xin 1n'x1n)
EE= : : (3.138)

(202220, 59) . (2922,25,2)
The following Theorem 3.5.4.2.1 proves that if the system of CTLME in Eq. (3.128) has a
unique solution, then the approximated fuzzy solution in Eg. (3.135) to the positive
TrFFCTLME in Eq. (3.85) given by the modified fuzzy gradient iterative method
converges to the analytical fuzzy solution for any initial value.

Theorem 3.5.4.2.1. If the system of CTLME in Eq. (3.128) has a unique positive solution
x®D, then the numerical solution £ (k) in Eq. (3.135) converges to x® for any initial
values 20 (0) (i.e. if k = oo, then x® = 2D (k)).

Proof: the proof of this theorem can be obtained similar to the proof of Theorem 3.4.3.1.

O
Below is the Algorithm 3.11 for the MFGIM. This algorithm can be used by different

software for solving the PTrFFCTLME in Eq. (3.85).
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Algorithm 3.11: Modified Fuzzy Gradient Iterative Algorithm for
PTrFFCTLME.
Input A and E # Split each matrix into four matrices (e.g., a®®, a®, a®, a®)
for1=1,2,3,4
Choose a;, &, £ (k) = 0 #0 is the Zero matrix with the same dimension as x® (k)
Whilek =0,1,2,..,ndo

2Ok = 2Ok - 1) + % (@®) (e® — a®2®O (k — 1) — 2O (k — 1)(a®)7)

+(eW —aW2®(k — 1) = 2Ok — 1) (@®D)")a®).

s (k) = ”e(l) —a®zO ) — f(l)(k)(a(l))T”Z.

If (k) < e then
print (8O (K));
print ("number of iterations =", k).
else
2O =20k —1) + % ((a(l))T(e(l) —a®zWOk —1) = 2Ok — 1)(@®D)T) +
(e(l) —aWzO(k -1)-z2O0% - 1) (a(l))T)a(l)),
update k.
k=k+1
end
print (0 (k)),

print ("number of iterations =", k).

end

The positive solution to the PTrFFCTLME in Eq. (3.85) can also be approximated
numerically by the MFLSIM in Section 3.4.4. as discussed in the following

Section 3.5.4.3.

3.5.4.3 Modified Fuzzy Least Square Iterative Method for PTrFFCTLME

In this section, the solution to the PTrFFCTLME AX + XAT = E is approximated

numerically by applying the MFLSIM in Section 3.4.4 to the system of CTLME in
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Eq. (3.128). The algorithm for obtaining the positive fuzzy solution by the MFLSIM in
Eq. (3.78) can be modified as follows: for 1 < [ < 4 we have:
-1
2OU) = 2Ok — 1) + % (((a(z))T : a(z)) (a(l))T (e(z) —a®RO(k — 1) -
2Ok — 1)(a<z))T) 4 (e(z) —a®RO(k = 1) — 2O (k —
1)(a®)") (a®)" (a(z)(aa))T)"l), (3.139)
where the convergence rate (Step size) is given by,
0<a; <2. (3.140)

At step k — th of the iteration, the following error is considered:

5000 = e - a®20) - 20w @) . 314
The obtained numerical solution in Eq. (3.139) can be expressed as,

£ = (f(l)’ f(Z)’ 2(3)’ J?(4))_

It can also be written in matrix form as,

s(1) 22 2B) (@) (1) 2(2) 2(3) ~(4)
(xu X110 %11 0% ) (xln »Xn o Xin s Xin )
X= : : (3.142)
(1) £(2) 5(3) ~(4) (1) 2(2) 2(3) ~(4)
(xpl VXp1 o Xy ,xpl) (xpn,xpn,xpn,xpn)

The following Theorem 3.5.4.3.1 proves that if the system of CTLME in
Eq. (3.128) has a unique solution, then the approximated fuzzy solution in Eq. (3.139)
by the MFLSIM to the TrFFCTLME in Eq. (3.85) converges to the analytical fuzzy
solution for any initial value.

Theorem 3.5.4.3.1 If the system of CTLME in Eq. (3.128) has a unique positive
solution x®, then the numerical solution £® (k) in Eq. (3.139) converges to x® for
any initial values £ (0) (i.e. if k — oo, then x® = 2 (k)).

Proof: The prove of this theorem can be obtained similar to the proof of

Theorem 3.4.4.1.
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Below is the Algorithm 3.12 for the MFLSIM. This algorithm can be used by different

software for solving the PTrFFCTLME in Eq. (3.85).

Algorithm 3.12: Modified Fuzzy Least-Square Iterative Algorithm for
PTrFFCTLME.
Input A and E # Split each matrix into four matrices (e.g., a®, a®, a®, a®)
forl=1,2,3,4
Choose a;, £, £V (k) = 0 # 0 is the Zero matrix with the same dimension as x® (k)

Whilek =0,1,2,..,ndo

2OU) = 2Ok = 1) + %(((a(z))T : a(z))_l (a(z))T (e(z) — a0k = 1) — 2Ok —

1)(a(l))T) + (e(l) _ a(l)f(l)(k -1 - f(l)(k - 1)(a(l))T) (a(l))T (a(l)(a(l))T)_l).
O (k) = ”e(z) —aWzO ) - p?(z)(k)(a(l))T”z.

If sO(k) < ¢ then
print (X k));
print ("number of iterations =", k).

else

2O®k) = 2Ok — 1) + %(((a(z))T . a(z))_1 (a®)" (e® - a®2O(k - 1) - 2O (k -

1)(a(z))T) n (e(z) — a0 = 1) — 2Ok — 1)(a(z))T) (a(z))T (a(z)(a(z))T)*).

update k.
k=k+1
end

print RV (k)),

print ("number of iterations =", k).

end

To demonstrate the efficiency and accuracy of the MFMVM, MFGIM and MFLSIM in
Sections 3.5.4.1, 3.54.2 and 3.5.4.3 respectively, the following numerical

Example 5.5.4.3.1 is considered.
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Example 3.5.4.3.1 Consider the following PTrFFCTLME:

o @ .03 @ o @ .03 @
((3, 4,58) (2,3,4, 5)) (x11 » X110 X110 %11 ) (x12 » X125 X129 X12 )

(1,3,5,7) (4,6,7,9) (<n @ @3 @0 ((D @ (3 MO

X211 %21, X215 X321 X2 1X22 )X )X

1) (2 .3 @4 1) (2 .3 @
<(x£1), x§1)' x§1)' x§1)) (x§2), xiz)' x£2), xfz))> _ <(3, 4,58) (1,35, 7))

D, 22,23 2By (D, %P, 2D, 2] \(2,3,4,5) (4,6,7,9)

210 %21 %21, X1

((24,55,100,177) (16,47,122,215))
(23,57,98,164) (27,63,120,199))

Solution: The analytical positive fuzzy solution to the given PTrFFCTLME obtained
by the MFMVM is:

- ((3,56,7) (1,2,6,8)
X= ((2, 3,4,5) (3,4,5, 6))'

This positive fuzzy solution is approximated using the MFGIM algorithm in Eq. (3.135)
and the modified MFLSI algorithm in Eq. (3.139) as follows: To obtain the fuzzy

positive solution, following initial value:
For1<I<4,z0= (8 8) The approximated solution of X is shown in Table 3.15

with the convergence rate («), error bound (&), and total number of iteration (k).
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Table 3.15

Comparison Between MFMVM, MFGIM and MFLSIM for Example 3.5.4.3.1.

Method  Analytical Solution and a £ k
Approximated Solution
£ MFMVM (3 1) NA 0 NA
2 3

MFGIM (2.9999187034 1.0000527228) 0.005 107> 121
2.00005272  2.9999649573

MFLSIM (2.9999912516 0.9999960406) 0.09 105 28
1.9999959933 2.9999935988

22 MFMVM (5 2) NA 0 NA
3 4

MFGIM (4999909684 2.0000650960) 0.005 1075 138
3.0000650960 3.9999530814

MFLSIM (4.9999909008 1.9999949714) 0.09 10-5 28
2.9999949714 3.9999875484

£3 MFMVM (6 6) NA 0 NA
4 5

MFGIM (5.9998266863 6.0001487175) 0.004 107> 237
4.0001487175 4.9998720251

MFLSIM (5.9999937240 5.9999930672) 0.09 107* 29
3.9999930672 4.9999886887

£ MFMVM (7 8) NA 0 NA
5 6

MFGIM (6.9997915965 8.0002092091) 0.0009 10™* 163
5.0002092091 5.9997885339

MFLSIM (6.999994908 7.9999938021) 0.09 10% 30
4999993802 5.9999916319
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The following Table 3.16 shows the computational time and memory usage needed for
MFGIM and MFLSIM.

Table 3.16

Comparison Between Computational Time, Memory Usage for MFGIM and MFLSIM

for Example 3.5.4.3.1.

Method k CPU Real Memory
time time usage
M MFGIM 221 6.29ms 6.25ms 1.09 MB
MFLSIM 28 12.82ms 12.79ms 2.01 MB
£@ MFGIM 138 6.12ms 6.31ms 1.09 MB
MFLSIM 28 13.96 ms 12.89ms 2.01 MB
£® MFGIM 237 6.27ms 6.14ms 1.09 MB
MFLSIM 29 9.69ms 997ms 2.01MB
£ MFGIM 163 6.52ms 6.48ms 1.09 MB
MFLSIM 30 11.97ms 12.80ms 2.01 MB

The following Figure 3.15 shows the change in the error §®® (k) when k increases up

to k = 20.
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Figure 3.15. Comparison between error of MFGIM and MFLSIM for the first 20
iterations for Example 3.4.4.1.

Tables 3.15, 3.16 and Figure 3.15 show that the error § (k) is reducing as k increases.
Figure 3.15 shows that the error of the MFGIM and MFLSIM for approximating £ is
reducing significantly as k increasing, where the MFLSIM converges to the analytical
solution for fewer number of iterations with bigger step size comparing to the MFGIM.

This indicates that the developed algorithms are effective and convergent for the given
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PTrFFCTLME. In addition, the MFLSIM takes more computational timing and more
memory comparing to MFGIM. However, in terms of accuracy, error, number of
iterations MFLSIM provide extremely accurate approximations with very few

iterations.

3.6 Conclusion and Contribution

In this chapter, two new approaches to solve PGTrFFSME and its special cases are
presented; the analytical methods aim to find positive fuzzy solutions, and the
numerical methods aim to approximate the positive fuzzy solution for large
PGTrFFSME up to 100 x 100.

Furthermore, the developed algorithms are verified by some numerical examples, and
the obtained positive fuzzy solution analyses are provided. The major difference of our
strategies from other methods is that for the first time a unified analytical and numerical
methods are developed for solving a family of large fully fuzzy matrix equations with
TrENs, based on new reduced arithmetic fuzzy multiplication operations. The
following contributions summarize the findings in this chapter:

1. New fuzzy arithmetic multiplication operators for arbitrary TrFNs are developed and
known as AMO.

2. New reduced fuzzy arithmetic multiplication operators for restricted and semi-
restricted TrFNs are known as RAMO.

3. The operations of RAMO provide simpler and more direct computations compared
to AMO and more convenient to be applied for restricted and semi-restricted fuzzy

systems by non-fuzzy researchers.
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4. New FMVM and FBSM have been introduced, which gives the analytical solution
for solving PGTrFFSME, TrFFSME, TrFFME, TrFFCTLME and TrFFStME,
regardless of the size of the matrices.

5.New FGIM and FLSIM methods have been introduced, which are more
understandable and compatible for solving the GTrFFSME, TrFFSME, TrFFME,
TrFFCTLME and TrFFStME, regardless of the size of the matrices.

6. Provide the necessary conditions for the feasibility of the GTrFFSME, TrFFSME,
TrFFME, TrFFCTLME and TrFFStME, to have a strong positive fuzzy solution.

7. Analyzing the obtained positive fuzzy solution by checking the feasibility, graphical
representation and verifying the fuzzy matrix equations.

8. The necessary and sufficient conditions for the GTrFFSME to have a unique positive

fuzzy solutions are verified before applying the developed methods.
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CHAPTER FOUR
SOLVING ARBITRARY GENERALIZED TRAPEZOIDAL FULLY
FUZZY SYLVESTER MATRIX EQUATION

This chapter constructs an analytical method for solving arbitrary GTrFFSME
AXB + CXD = E and its special cases, which include the TrFFSME AX + XD = E
and the TTFFME AX = E. The constructed methods allow the coefficients and solutions
to be fully arbitrary, either in positive, negative or near-zero TrFNs. These methods are
based on the RAMO and EAMO developed in Chapter Three. In the following

Section 4.1, the arbitrary GTrFFSME is converted to an equivalent system of non-linear

equations.

4.1 Fundamental Theorem of Arbitrary GTrFFSME.

In this section, the arbitrary GTrFFSME AXB + CXD = E is converted to an
equivalent system of non-linear equations based on the RAMO and EAMO in

Sections 3.1.2, 3.1.3 and 3.2, respectively.

~ o~~~

Definition 4.1.1. A matrix equation GTrFFSME AXB + CXD = E, is called Arbitrary

Generalized Trapezoidal Fully Fuzzy Sylvester Matrix Equations (AGTrFFSME) if

— (& o ,@ 6 W ; ;
A_(aij)an_(L]’ljﬂaijl )V1<1Sm,1S]Sn,

~ x ) 2 () .4 . .
C:(Cij)an:(C(])’CL(])’CL(])’ L(])) vi<i<ml<j<n,

B ( U)pxq — (b(l) b(Z) b(3) b(‘l-)) vi<ic< p,l S] < q,

yy’-oy Py

D =(dy),,, = d,dP dP,d)v1i<i<pl<j<aq

_ o @ .3 (4) .
X_(U)nXp Co XX %)Vl <i<snl<j<p

and £ = (&)  =(ePe? e e vi<i<mi<j<gq

mxq . \Cij 2 €ij 1 €ij Cij
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are arbitrary trapezoidal fuzzy matrices.
In the following Definition 4.1.2, the system of non-linear equations is introduced.

Definition 4.1.2. The system of equations in the form,

(min (Myb, Myeb(, Qb Qb)) + min (Ryd P, Riyd(P Vi d P, Vipd(P) = €
< min (Nyb, N, PybD, Pyb ) + min (S d, 5, Ty d P, Td D) = e

max (N, Nig b, Py b, Pob ) + max (5, dD, Syrdy T d D, Tyd) ) = €
(max (Myb, My:b(, Qi b, Qi bY) + max (Rypd(), Ripd(? Viyd(P, Vind() = e

where

@, 1 M, @ @4),.a1) (4) (4))

er—mln(a Xij o Qi Xij o Qi Xij o

2.2 2.3 3.2 3.3
N, = min (a() l(])'al_(j)xi(j),ai(j)xi(j), L(]) ())

@,@ @6 )2 (3) (3)
Plr—max(a Xpi g X A X, a )s

W, @ W4 @, 1) (4) (4))

Qir = max(a;; x;;", a;;°%;;", 4 X5, @

(1) A0 (o) (@ (1) Fe) (4))

R = min (¢ %57 €57 %55 € X5 €

@3, (D@ (DD, (DD

SlT—mln(C l] gl KV el iy W5 W l]

@, 2,6 (), () (3))

Tiy —max(c Xij o Cij Xij o Cij  Xij 0 Cj

1,1 O,® @, 1) (&), (4)
Xij ' Cij Xij o Cij Xij s Cij Xy )

Vir = max(cj;
is called a system of non-linear equations.

In the following Theorem 4.1.1, the AGTrFFSME is converted to an equivalent system

of non-linear equations.

Theorem 4.1.1 Fundamental Theorem of AGTrFFSME.

Suppose that 4,X,B,C,D and E are arbitrary trapezoidal fuzzy matrices. Then the

AGTIFFSME AXB + CXD = E is equivalent to the following system of non-linear

equations:

242



fmin( 5D M, bP 0, b Qirb.(‘.”) + min (R d®P R, d®,v,.d®,v, d(4)) = e’

(4.1)

ij »Mirbyj”, ij ij i ij
min (Nyb, Niwb$, Pib?, Py b ) + min (S, d, $d S, Ty d P, Tnd ) = e
| max (Nlrbsz),N b, Pyb, Py b(3))+max (S P, 8, d T, d,T, d(3)) =ey
max (M b, Myrb, Qirb, Qb ) + max (R, df}),R P,V df}),v dP) = el
Proof:
LetA, B, C, D, E and X in the AGTrFFSME AXB + CXD = E be arbitrary trapezoidal

fuzzy matrices, then the RAMO and EAMO in Sections 3.1.2, 3.1.3 and 3.2 can be

applied to obtain AXB and CXD as follows:
n
AX = z Aix Xper = My, Nip, P, Q) 1<i<m,1<r<n.

where,

M, 1 @, @ 4),.1) (4) (4))

er—mln(a Xij o Qi Xij o Qi Xy

a.." X a. x

232 Dy ® (D32 o3 ®
l] Py Ty Ty Ty =

Ny = min (a;;

@32, 422D (@@ (PP,

Vi 7 Nl By K G Kigm sy Xy 0

W, 1 @O @ 4.1 (4) (4))

Qir —max(a Xij o Quj X Ay Xy

Multiplying AX with B yields

J n
‘ZD?E = z (Z aik fkr) X Erj = (Mir' Nir:Pir; Qir) X (bl(Jl)' bL(JZ); bL(JB); b(4))
r=1 =
(FL]lLl]'HleRl])'

where,

1 4 1 4
F —mm(M bl(j)'M bl(])lQlTbL(])'Qini(j))'

Lij = min(Ngb, Ny b, Py b, Py bS),

H.

_ @ N p® p p@ p p®
y = max(Ny b, Nib$, Pib P, Py b)),

ij N ij ’ ij
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1 4 1 4
Rij = max( bl(])' bl(])’QlTbl(] )’ Q"Tb"(f))'

Similarly,

n
CX =) Guelir = Rips Sy Ty Vi) 1<i<mi<r<n
k=1

where,

W, O @), % C(4)x(1) (4) (4))

Rip = min (i ;57 €ij %35 €3y %57 €

C: C..° X

@, (2,06 .3, .6 (3))
l]'l] l]'l] l]'l]

Siy = min (c

@D (DB (@, B,y

Tiy = max (e X" €5 X" i X5 €

®, 0 W,@ @, 0 4 (4))

Vi —max(c Xii 0 Cij X 2 Cij Xij o Chy Xy

Multiplying CXD

J n
CXD = Z (Z Cik fkr) X dyj = (Rip) Sir, Tirs Vir) X (dl(]l), dl(]Z), dl(]g), dm)

r=1 \k=1
= (UU,VI/U,K],ZU)
vVi<i<ml<j<gqg
where
(€] (4) (1) (4)
Uy = min(Rypd}, Rpdp, Vipd (P, Vind(?),

= min(S;yd>, Sy d), Tyrd?, Tird (Y

(s )
max(S;d?, Spdy, Tyd ), Tyrd ),

_ W p 4@ D)y @)
Z;; _max(R d, Ryd(P, Vipd P Vipd D).

Combining AXB and CXD using Definition 2.3.3.2.6 and Eq. (2.10a)
AXB + CXD = (F;j, Lij, Hj, Rij) + (Uij, Wi, Yij, Z35).
V1 <i<m1l<j< q.ByDefinition 2.3.3.2.5, the AGTrFFSME is equivalent

to the following non-linear system of equations:
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( min (M b®P M, P, 0, 5P erb(‘”) + min (R d®P R, d®,v,.d®,v, d(‘”) =W

ij ’ ij ij ij ij ij ij

| min (Nyb$, Niwb$, Pib?, Py b ) + min (S dP, $1d S, Ty d P, Tyrd D) = €,
max (N, Nig b, Py b, Prb ) + max (5, dD, Syrd(y Ty d D, Typd)) = €,
max (erbfjl),M bff),Qir l.(jl),er 1(14))+max( ir fjl),R dl(f),V dfjl),V d(4)) = e(f).

m|
In the following Definition 4.1.3, arbitrary trapezoidal fuzzy solution to the

AGTrFFSME is defined.

Definition 4.1.3. Arbitrary Trapezoidal Fuzzy Solution in General Form.

The trapezoidal fuzzy matrix X = Xij)nxm = (xi(].l),xi(].z),xi(]?), (4)) is an arbitrary

fuzzy solution to the AGTrFFSME if x(4) > x(3) > x(z) > 5P

T, ,V1<i,j<n,pand

at least one element of X is near-zero TrFN.

In order to get the arbitrary fuzzy solution to the AGTrFFSME, the equivalent non-
linear system of equations in Eq. (4.1) is considered. In the following Section 4.2, the

arbitrary solution to the AGTrFFSME is obtained by absolute system method (ABSM).

4.2 Solving Arbitrary GTrFFSME

In this section, the arbitrary fuzzy solution to the AGTIFFSME AXB + CXD = E is
discussed. In order to get the solution, the equivalent system of non-linear equations in
Eq. (4.1) is reduced to a system of absolute equations based on Theorem 2.4.3.1. Then,
the solution to the absolute system of equations is obtained using Mathematica 12.1 and
Maple 2019. The steps to the constructed methods for obtaining the arbitrary solution

to the AGTrFFSME are discussed in the following steps.
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Step 1: Convert the AGTrFFSME AXB + CXD = E to an equivalent non-linear system
of equation using Theorem 4.1.1.

Step 2: Reduce the non-linear system in Step 1 to an absolute system of equation using
Theorem 2.4.3.1. and Definition 2.4.3.4.

Step 3: Solve the absolute system of equations and check which solution(s) satisfy the

following conditions.

) xP <P <xP<xPvi<i<snis<js<yp
I At least one element of X is near-zero TrFN.

Step 4: By solving the system of absolute equations in Step 3 and by eliminating the

non-fuzzy solutions, the following arbitrary fuzzy solution is obtained:

o @ .03 @ o @ .3 @
(x11 X1 'x11 X1 ) (xlp X1p xlp X1p )
X =
( €)) (2) x® (4)) ( €)) (2) x® (4))
nl' nl’ nl’ np' np' np'

Now, we proceed to the feasibility condition of the arbitrary fuzzy solution to the
AGTrFFSME.

Feasibility of the AGTrFFSME:

The arbitrary fuzzy solution to the AGTrFFSME is called feasible (strong arbitrary

fuzzy solution) if the following condition is satisfied:

1(14) > xl(f) > x(z) > xl(Jl), V1<ij<pn
ABSM for solving the AGTrFFSME is illustrated in the following

Example 4.2.1.
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Example 4.2.1 Consider the following AGTrFFSME,

AXB+CXD =E

where
A—( (3,4,6,8) (2,4,9,11))
~ \(-8,-7,-5,-1) (—4,-3,5,6)/)
E—( (1,3,5,6) (—1,3,4,6)>
~\(-3,-1,6,7) (1,2,57) /)
5_( (1,4,5,7) (3,4,5,7)>
~\(-5,-3,-2,-1) (-6,-3,1,2))
5_((—5,—4,1,2) (3,4,5,6) )
“\ (1,3,45) (-3,-2,1,4)
and

5 ((—964,—276, 757,1816) (—793,—206,655,2019))
— \(-1331,-612,288,968)  (—1476,—509, 199,843)/"

Solution: By applying ABSM, the arbitrary solution to the given AGTrFFSME is

obtained as follows:

Step 1: Convert the given AGTrFFSME to a non-linear system of equations using

Theorem 4.1.1. Find AX B as follows:
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AXB = ((ml’mz’m3'm4) (nlrann3;n4))

(P1, P2, P3, Da) (91,92, 93, 94)

where
my = Min{(Min[3x1;©, 8x1; D] + Min[2x; D, 115, @]), (6Min[3x1©, 8311 D] + 6Min[2x,; @, 11205, V])} +

Min{(7Min[3x1, D, 8x,, V] + 7Min[2x,, D, 112, V)]), (—3Max[3x1, @, 8x,,®] + —3Max[2x,,®, 11x,,P])}.

my = Min{(3Min[4x,;; @, 6x,; @] + 3Min[4x,,?, 9%, P]), (5Min[4x,, @, 6x,,P] + 5Min[4x,, @, 9x,,P])} +

Min{(6Min[4x,,@, 6x1, @] + 6Min[4x,,@, 9x,,P]), (~Max[4x,,®, 6x1,P] + —Max[4x,,®, 9x,,P])}.

ms = Max{(3Max[4x11(3), 6X11(3)] + 3Max[4x21(3), 9x21(3)]), (5Max[4x11(3), 6x11(3)] + 5Max[4x21(3), 9x21(3)])} n

Max{(_Min[llxlz(Z),6X12(2)] + —Min[4x22(2),9x22(2)]), (6Max[4x12(3),6x12(3)] + 6Max[4x22(3),9x22(3)])},

my = Max{(Max[3x;,®, 8%, @] + Max[2x,;®, 11x,,®P]), (6Max[3x,, @, 8x,,P] + 6Max[2x,, @, 11x,,¥])} +

Max{(—3Min[3x1,®, 821, O] + —3Min[2x,, @, 112, D)), (7Max[3x1,®, 8x1,@] + TMax[2x,,®, 112, @)}

" Min{(6Min[3x11(1)' 8x11(1)] + 6Min[2x21(1)’ 11x21(1)]), (—Max[3x11(4), 8x11(4)] + —Max[2x21(4), 11x21(4)])} +
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Min{(Min[3x;,@®, 8x,, D] + Min[2x,,®, 11x,,P]), (7TMin[3x,, D, 8x,, O] + 7Min[2x,, D, 11x,, V))}.

n, = Min{(3Min[4x,;®, 6x,, @] + 3Min[4x,,?, 9x,,@]), 4Min[4x,, @, 6x,, @] + 4Min[4x,, P, 9x,, @]} +

Min{(2Min[4x,,®, 6x,, @] + 2Min[4x,,@, 9x,,P]), (5Min[4x,,P, 631, @] + 5Min[4x,, @, 9x,,P))}.

n; = Max{(3Max[4x,,®, 6x1, @] + 3Max[4x,,®, 9x,,®]), (4Max[4x,®, 621, D] + 4Max[4x,,®, 9x,, O} +

Max{(2Max[4x,,®, 6x,,P] + 2Max[4x,,®, 9x22(3)]), (5Max[4x1,®, 62, P] + 5Max[4x,,®, 9x22(3)])}.

ny = Max{(—Min[3x,;, @, 8x,; D] + —Min[2x,; D, 11x,,V]), (6Max[3x;,®, 8x,, @] + 6Max[2x,, @, 11x,, @]} +

Max{(Max[3x;,®, 8x;, ] + Max[2x,,¥, 11x22(4)]), (7Max[3x1,™, 8x1, W] + 7TMax|2x,,@, 11x22(4)])}.

pl = Mln{(Mln[_lel(4), —x11(4)] + Min[—4x21(4), 6x21(1)]), (6Mln[—8x11(4), _X11(4)] + 6Min[—4x21(4), 6x21(1)])} +

Mln{(7Mln[—8x12(4), _x12(4)] + 7Min[—4x22(4), 6x22(1)]), (—3Max[—x12(1), _8x12(1)] i SMQX[6.X22(4), _4x22(1)])}

Dy = Min{(SMin[—7x11(3), —5x11(3)] + 3Min[—3x21(3), 5x21(2)]), (5Min[—7x11(3), —5x11(3)] + 5Min[—3x21(3), 5x21(2)])} +
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Min{(6Min[—7x12(3), —5x12(3)] + 6Min[—3x22(3), SxZZ(Z)]), (—Max[—lez(Z), —7x12(2)] — Max[6x22(3), —4x22(2)])}.

ps = Max{(3Max[—5x;,®, —=7x,; @] + 3Max[5x,,®, —3x,,@]), (5Max[—5x1, @, —7x;,P] + 5Max[5x,,®, —3x,,?])} +

MaX{(_Min[_7X12(3), —5x12(3)] + _Min[_3x22(3), SXZZ(Z)]), (6MCLX[_SX12(2), _7X12(2)] + 6MaX[5xZ2(3), _3XZ2(2)])}

p4 = MCIX{(Max[_xll(l), _8x11(1)] + MQX[6.X21(4), —4x21(1)]), (6MaX[_x11(1), _8x11(1)] + 6Max[6x21(4), _4‘XZ1(1)])} +

Max{(—3Min[—8x12(4), _X12(4)] + —3Min[—4x22(4), 6x22(1)]), (7Max[_x12(1), _8x12(1)] + 7Max[6x22(4), —4x22(1)])}.

ql = Mln{(6Min[_8x11(4), _x11(4)] + 6Min[_4x21(4), 6x21(1)]), (_Max[_xll(l), _8x11(1)] + _Max[6x21(4), _4x21(1)])} +

Min{(Min[—8x12(4), —x;, W] + Min[—4x22(4), 6x22(1)]), (7Min[—8x12(4), —x;, W] + 7Min[—4x22(4), 6x22(1)])}.

QZ = Mln{(3Mln[—7x11(3), —5x11(3)] + 3Min[—3x21(3), Sle(Z)]), (4Mln[—7x11(3), —5x11(3)] + 4Min[_3x21(3), Sle(Z)])} +

Mln{(ZMln[—7x12(3), —5x12(3)] + ZMin[_Ssz(s), SXZZ(Z)]), (SMln[_lez(3), _X12(3)] + 5Min[—4x22(3), 6x22(2)])}

qs = Max{(3Max[—5x,;®, —7x; @] + 3Max[5x,,®, —3x,,P]), (4Max[-5x,,®, =7x1; @] + 4Max[5x,,®, —=3x,, @[} +
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Max{(ZMax[—leZ(z), —7x1, @] + 2Max[5x,,®, —=3x,,P)), (5Max[—5x12(2), —7x1,@] + 5Max[5x,,®, —3x,, @]}

q4 = MQX{(_Min[_SX11(4), _X11(4)] + —Min[—4x21(4), 6x21(1)]), (6MaX[_X11(1), —8x11(1)] + 6MaX[6xZ1(4), —4x21(1)]} +

Max{(Max[—xlz(l), —8x12(1)] + Max[6x22(4), —4x22(1)]), (7Max[—x12(1), —8x12(1)] + 7Max[6x22(4), —4x22(1)])}.

We also find XD as follows:

CRD = <(m11,m22,m33,m44) (nll,nzz,n33,n44))

(P11, P22, P33, Paa) (911, 922, 933> Gaa)

Appendix B shows the complete non-linear system for CXD.
Construct the 16 non-linear equations as follows:
my +my, = —964.

Min{(Min[3x,, @, 8x,, D] + Min[2x,, @, 11x,, P]), (6Min[3x,, D, 8x,; D] + 6Min[2x,, D, 11x,, D))} +
Min{(7Min[3x1, D, 8x,, D] + 7Min[2x,, D, 11x,,P]), (—3Max[3x1, @, 8x,,®] — 3Max[2x,, @, 11x,,®])}
+Min{(2Min[x;; @, 7, D] + 2Min[3x,,D, 725, @]), (=5Max[1x,,®, 721, @] — 5Max[3x,,®, 7x,,@])} +
Min{(Min[x;, @, 7x1, D] + Min[3x,, D, 7x5,P]), (5Min[x, @, 7x,, @] + 5Min[3x,, @, 7x,,1])} = —964.

m, + my, = —276
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Min{(3Min[4x,, @, 6x,; @] + 3Min[4x,, @, 9x,,P]), (5Min[4x,, @, 6x,, @] + 5Min[4x,, P, 9x,, @]} +
Min{(6Min[4x,,@, 6x,, @] + 6Min[4x,,@, 9x,,P]), (~Max[4x,,®, 6x1,®] — Max[4x,,®, 9x,,])} +
Min{(Min[4x,,®, 5x,, @] + Min[4x,,@, 5x,,?]), (—4Max[4x,,®, 5x,, @] + —4Max[4x,,®, 5x,, @]} +
Min{(3Min[4x;,®, 5x,,@] + 3Min[4x,,@, 5x,,P]) + (4Min[4x,, @, 52,, @] + 4Min[4x,, @, 5x,,P])} = —276.
Mz + Mgz = 757.

Max{(3Max[4x1,®, 6x1,®] + 3Max[4x,,®, 9%, D)), (5Max[4x1,®, 631, D] + 5Max[4x,,®, 9x,, ®])} +
Max{(—Min[4x1,®, 6x1,P] — Min[4x,,®, 9x,,?]), (6Max[4x,,@, 6x,,®] + 6Max[4x,,®, 9x,,P])} +
Max{(—4Min[4x,, @, 5x,, D] - 4Min[4x,, @, 5x,,P]), (Max[4x,,®, 561, @] + Max[4xy; @, 5x,,P])} +
Max{(3Max[4x;,®, 5x,,®] + 3Max[4x,,®, 5x,, 1), (4Max[4x1,P, 5x1, D] + 4Max[4x,,®, 5x,,])} = 757.
m, +m,, = 1816.

Max{(Max[3x1, @, 8xy; @] + Max[2x,,®, 11x,,®]), (6Max[3x,, ¥, 8x,, P | + 6Max[2x,; @, 11x,,P])} +
Max{(=3Min[3x,, D, 8x,, ] — 3Min[2x5, D, 11x,, V), (TMax[3x,, @, 8x1, @] + 7TMax[2x,, @, 11x,,®])} +
Max{(=5Min[x;; @, 7x,; D] = 5Min[3x,, D, 735, V), (2Max |1, P, 7x1, @] + 2Max[3x,, @, 72, D))} +
Max{(Max[x;;®, 7x1,®] + Max[3x,,®, 7x5,®1), (TMax[x1, @, 7x,, ] + TMax[3x,, @, 7x,,])} = 1816.

nq + n1 = —793.
252



Min{(6Min[3x1, @, 8x;; D] + 6Min[2x,, D, 11x,,V]), (~Max[3x,,®, 8x,, P]| — Max[2x,, @, 11x,, @])} +
Min{(Min[3x;,@®, 8x,, D] + Min[2x,,@®, 11x,,P]), (7TMin[3x,, D, 8x,, O] + 7Min[2x,, D, 11x,, D))} +
Min{(3Min[x;, @, 7x,, D] + 3Min[3x,, D, 72, D)), (6Min[x;, D, 7x,, V] + 6Min[3x,, D, 72, D))} +
Min{(4Min[x;; @, 7x,, D] + 4Min[3x,, D, 722, P]), (=3Max[x;, @, 7x,,®] — 3Max[3x,,®, 7x,, %)} = —793.
n, + ny, = —206.

Min{(3Min[4x,, @, 6x,, @] + 3Min[4x,, @, 9%, P]), 4Min[4x,, @, 6x,, @] + 4Min[4xy; @, 9x,, @]} +
Min{(2Min[4x1,®, 6x1, @] + 2Min[4x,,@, 9x,,?]), (5Min[4x,;,®, 6x,,P] + 5Min[4x,,®, 9x,, P])} +
Min{(4Min[4x,; @, 5x,, @] + 4Min[4x,, @, 5x,,]), (5Min[4x,, @, 5x,,@] + 5Min[4x,, @, 5x,, P])} +
Min{(Min[4x,,®, 5x;,@] + Min[4x,,®, 5x,,]), (~2Max[4x,,®, 5x1,P] = 2Max[4x,,P, 5x,,1)} = —206.
ns + ngz = 655.

Max{(3Max[4xy,®, 6x1;®] + 3Max[4x,,®,9x,,®]), (4Max[4x,,®, 631, D] + 4Max[4x,,®, 9x,, @]} +
Max{(2Max[4x,;,®, 6x1,P] + 2Max[4x,,®, 9x,,]), (5Max[4x,,®, 631, @] + 5Max[4x,,®, 9x,,®])} +
Max{(4Max[4x1;®, 5x,,P] + 4Max[4x5,®, 521 ®]), (5Max[4x1,®, 521, @] + 5Max[4xy;, P, 55, @]} +
Max{(=2Min[4x,, @, 5x;, @] + —2Min[4x,,®, 5x,, @), (Max[4x,,®, 5x1, ] + Max[4x,,®, 5x,,])} = 655.

Ny + Nyyg = 20109.
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Max{(—Min[3x,, @, 8x,; V] + —Min[2x,; @, 11x,;P]), (6Max[3x,,®, 8x,, @] + 6Max[2x,,®, 11x,, @[} +
Max{(Max[3x1,®, 8x,®] + Max[2x,,®, 11x,,]), (TMax[3x1, @, 8x1, ®] + TMax[2x,, @, 11x,,®])} +
Max{(3Max[1xy;®, 7x1;P] + 3Max[3x,, W, 7x,,P]), (6Max[1x, W, 7x; @] + 6Max[3x,, W, 7x,, P]} +

Max{(—3Min[xy, D, 7x;, D] + —3Min[3x,, D, 752, V), @Max[x1, @, 721, ®] + 4Max[3x,, @, 72, Y]} = 2019.
p; +pi1 = —1331.

Min{(Min[—8x,,™, —x;; @] + Min[—4x5, @, 6x5, D)), (6Min[—8x, ™, —x1; @] + 6Min[—4x,, @, 6x,, P])} +
Min{(7Min[—8x,,™, —x1, @] + TMin[—4x,,®, 6x,,P]), (=3Max[—x1, @, —8x,,P] + 3Max[6x,,*, —4x,,P])} +
Min{(2Min[—5x,;, W, —x,, @] + 2Min[—6x5, @, 225, D)), (=5Max[—x1, @, —5x;, D] + —5Max[2x,, @, —6x,, D]} +
Min{(Min[—5x,,, —x,,®] + Min[—6x,,™, 2x,,V]), (5Min[~5x1,", —x,, @] + 5Min[—6x,,?, 2x,,P])} = —1331.
ps + Py ='—612.

Min{(3Min[-7x,,®, —5x,, @] + 3Min[—3x,, @, 5x,, @]), (5Min[~7x1,®, —5x,,®] + 5Min[—3x,,®, 5x,,P])} +
Min{(6Min[—7x;,®, —5x,,®] + 6Min[—3x,,?, 5x,,?]), (~Max[-5x1,?, = 7x1,P] — Max[6x,,®, —4x,,@])} +
Min{(Min[—3x,;®, —2x,, @] + Min[-3x,,®, x,, @]), (—4Max[-2x,, @, 3%, P| + —4Max[x,; @, —x,; @]} +
Min{(3Min[—3x,,®, —2x;,®] + 3Min[—3x,,®, x,,@]) + (4Min[-3x,,®, =25, D] + 4Min[—3x,,>, x,,P])} = —612.

Ps3 + P33 = 288.
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Max{(3Max[-5x;, P, —7x;; @] + 3Max[5x,,;®, =3x,,@]), (5Max[-5x1, @, —=7x1, @] + 5Max[5x,,®, =3x,, P])} +
Max{(—Min[=7x;,®, —5x,,®] — Min[-3x,,®, 5x,,@]), (6Max[~5x1,?, —7x1,P] + 6Max[5x,,®, —3x,,@])} +
Max{(=4Min[-3x1,®, —2x;,®] — 4Min[-3x,,®, x,, P]), (Max[-2x;;®, =3x1; @] + Max[x,,®, —3x,,@])} +
Max{(3Max[—2x;,?, —3x1,P] + 3Max[x,,®, —3x,,P]), (4Max[—2x,,™, —3x;,P] + 4Max[x,,®, —3x,,?])} = 288.
D4 + Dag = 968.
¢y = Max{(Max[—x;, Y, —8x1, V] + Max[6x,, @, —4x,; D)), (6Max[—x1, Y, —8x,, V] + 6Max[6x,, @, —4x,, D))} +
Max{(=3Min[—8x1,™, —x1, @] + —3Min[—4x,,™, 62, V]), (TMax[—x1,D, —8x1, V] + 7Max[6x,,®, —4x,, D))} +
Max{(~5Min[~5x1,®, —x,; @] + ~5Min[—6x,,®, 2265, 1), (2Max[~x1 D, =51, O] + 2Max[2x62, ®, —62,1 D)} +
Max{(Max[—x;, D, =5x,, D] + Max[2x,,Y, —6x,,V]), (TMax[—x,, Y, =5x1, V] + 7Max[2x,,@W, —6x,,])} = 968.
g+ gy = ~1476.

Min{(6Min[—8x;; ™, —x,; @] + 6Min[—4x,, @, 625, D)), (~Max[—x1, D, —8x1, V] + —Max[6x,,®, —4x,, D))} +
Min{(Min[—8x;,™, —x1, @] + Min[—4x,,*, 635, V]), (TMin[—8x1, ™, —=x1, ] + TMin[—4x,,®, 635, V])} +
Min{(3Min[-5x;,®, —x,, @] + 3Min[—6x,, @, 2x,, D)), (6Min[—5x,, Y, —x1, @] + 6Min[—6x,,®, 2x,, P])} +
Min{(4Min[-5x;,®, —x1,®] + 4Min[—6x,,, 2x,,V]), (-3Max[—x,, @, —5x,, D] + —3Max[2x,,®, —6x,,])} = —1476.

q> + qor = _509
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Min{(3Min[-7x,®, —5x,,®] + 3Min[—3x,, @, 5x,,@)), (4Min[-7x,®, —5x,, ]| + 4Min[—3x,, @, 5x,, @])} +
Min{(2Min[~7x,,®, —5x,,®] + 2Min[—3x,,®, 5x,,?]), (5Min[—8x;,®, —x1, @] + 5Min[—4x,,®, 6x,, @]} +
Min{(4Min[-3x1,®, —2x;,®]| + 4Min[-3x,,®, x5, @]), (5Min[—3x,,®, —2x,, @] + 5Min[-3x,, @, x,, @])} +
Min{(Min[—3x,,®, =2x1, @] + Min[-3x,,®, x,, ), (—=2Max[-2x,,@, 3%, P| + —2Max[x,,®, —3x,,P])} = —509.
qs + q33 = 199.

Max{(3Max[—5x,,®, =7x1, @] + 3Max[5x,,®, —3x,,@]), (4Max[—5x1, ¥, =721, P] + 4Max[5x,, ), —3x,, @]} +
Max{(2Max[—5x1,®, =7x1, @] + 2Max[5x,,®, —3x,@]), (5Max[5x1,®, —7x1, @] + 5Max[5x,,®, —3x,, @]} +
Max{(4Max[—2x,,D, =3x;, @] + 4Max[x,, ¥, —3x,,@]), (5Max[—2x1, P, 3%, @] + 5Max|x,,®, —3x,, @]} +
Max{(—2Min[—3x;,¥, —2x,®] + —2Min[-3x5,®, %5, @]), Max[—2x,,?, =3x1, @] + Max[x,,®, —3x,, @]} = 199.
Qs + Qs = 843.

Max{(—Min[—8x;;®, —x;; ] + —Min[—4x,; @, 6x,, D)), (6Max[—x;, D, —8x,; V] + 6Max[6x,, @, —4x,, D]} +
Max{(Max[—x;,V, —8x1, V] + Max[6x,,®, —4x,,P]), (TMax[—x;,®, —8x1, V] + TMax[6x,,, —4x,, P])} +
Max{(3Max[—x;,V, —5x1; D] + 3Max[2x,, W, —6x,,P]), (6Max[—x,, D, —5x1; D] + 6Max[2x,, W, —6x,, D]} +

Max{(—3Min[—5x12(4), —x1, @] + =3Min[—6x,,®, 200, V), AMax[—x1, D, —5x;, D] + 4Max[2x,,®, —6x,,V])} = 843.
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Step 2: Convert the non-linear system obtained in Step 1 to a reduced system of absolute equations as follows:

The system of 16 absolute equations is discussed in Appendix B.

Step 3: Getting the Arbitrary Fuzzy Solution

By solving the system of absolute equations using Mathematica 12.1 and Maple 2019, the following arbitrary fuzzy solution is
obtained.

X:((—3,—2,3,5) (3,4,5,6) ) 4.2)

(1,2,3,5) (-5,—-4,3,5)
The analysis of the arbitrary fuzzy solution in Eq. (4.2) to the AGTrFFSME in Example 4.2.1 includes verification of the solution,
representation of the solution and checking the feasibility condition, are discussed in the following Sections 4.2.1, 4.2.2 and 4.2.3

respectively.

4.2.1 Verification of the Arbitrary Fuzzy Solution to The AGTrFFSME

To verify the arbitrary fuzzy solution in Eq. (4.2) to the given AGTrFFSME in Example 4.2.1, we first multiply AXB as follows:

A%E = ( (3,4,6,8) (2,4,9,11) )((—3,—2, 3,5) (3,4,5,6) )( (1,3,5,6) (-1,3,4, 6))

(_8’ _71 _5’ _1) (_4’ _3’ 5’ 6) (1’ 2) 3) 5) (_5) _4) 3) 5) (_3’ _1l 6’ 7) (1’ 21 5’ 7)

B ((—454, ~140,567,1291) (—454,—116,465, 1291))
~— \ (-906,-480,200,558)  (—=906,—395,106,513) /'

We also multiply CXD as follows:
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FRD = < (1,4,5,7) (3,4,5,7) ) ((—3, -2,3,5) (3,4,5,6) ) ((—5, -4,1,2) (3,4,5,6) )
B (_5; _3; _21 _1) (_6’ _3; 11 2) (11 2; 3; 5) (_SI _4r 3; 5) (11 3; 4; 5) (_3, _2; 1) 4)
_ ((—510,—136, 190,525) (—339,—90,190,728))
~\(-425,-132,88,410) (-570,—114,93,330)/"
Therefore,

co= s~ ((—964,-276,757,1816) (—793,—206,655, 2019))
AXB +CXD = ((—1331, —612,288,968) (—1476,—509,199,843)/)

The value of AXB + CXD is exactly equal to the constant fuzzy matrix E. Thus, the obtained arbitrary fuzzy solution satisfies the

given AGTrFFSME in Example 4.2.1.
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4.2.2 Representation of the Arbitrary Fuzzy Solution by ABSM

In this section, the graphical representation to the arbitrary fuzzy solution to the

AGTrFFSME in Example 4.2.1 is represented in Figure 4.1.

Arbitrary trapezoidal fuzzy solution X

1.0+

0.8+

0.6

0.4}

0.0t

— = - m=(3-239)

-------- 2= (3.45.6)

v F21=(1,2,3.5)

S E= (5439

Figure 4.1. Arbitrary fuzzy solution for Example 4.2.1.

Figure 4.1 shows that, %,,, X;,, X,; and X,, are all TrFNs. In addition, ¥,; and %,, are

near-zero TrFNs, and therefore the obtained solution in Eq. (4.2) is an arbitrary

trapezoidal fuzzy solution based on Definition 4.1.1.

In the following Section 4.2.3, the feasibility condition of the obtained arbitrary fuzzy

solution in Eq. (4.2) to the given AGTrFFSME in Example 4.2.1 is discussed.

4.2.3 Feasibility of The Arbitrary Fuzzy Solution to the AGTrFFSME

To check the feasibility of the arbitrary fuzzy solution to the AGTrFFSME in

Example 4.2.1, the following feasibility condition needs to be satisfied.

(4) 3
Xij = X; Yy

(@) > x.(.l)

ij V1<i,j<pn

592G 320G Z)=(
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Therefore, the feasibility condition is satisfied and therefore, the obtained arbitrary
fuzzy solution is feasibly.

The verification, representation, and feasibility of the obtained arbitrary fuzzy solution
in Eq. (4.2) show that it satisfies the given AGTrFFSME and is a strong fuzzy solution.
In the following Section 4.3, the ABSM in Section 4.3 for solving the AGTrFFSME is

modified and applied to the arbitrary TFFFSME AX + XD = E.

4.3 Solving Arbitrary TrFFSME

In this section, the arbitrary solution to the arbitrary TrFFSME AX + XD = E is
obtained by modifying the ABSM in Section 4.2. In order to get the solution, the
arbitrary TrFFSME is converted to an equivalent non-linear system of equations and
consequently reduced to an absolute system of equations where the solution to the
absolute system of equations gives the solutions to the arbitrary TrFFSME. In the
following Definition 4.3.1, the arbitrary TrFFSME is introduced.

Definition 4.3.1. A matrix equation TrFFSME AX + XD = E is called arbitrary

trapezoidal fully fuzzy Sylvester matrix equations (ATrFFSME) if

@® a®,¢®, @,

A= (aij)nxn =4q;; a7, 4,44

D = (dipmxm = (di}, ), di}, 4,

ijrriy iy

1) (2 .(3) (4
(x() @ G ())

X = (xij)nxm = XX Xy X

D @ (@ @)

and E = (&;j)nxm = ij €ij 1 €ij €

are arbitrary trapezoidal fuzzy matrices.

In the following Definition 4.3.2, the system of non-linear equations is introduced.
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Definition 4.3.2. The system of matrix equations in the form,

(min(aPxP,aPx®,aPxD, aDx®) + min(xPdP, xPdP, xPdD, xDa®) = P

l] ’ l] l] ’ l] l] ,a ij ij X ij “ij X ij ij X ij el] ’
(2) (2 (2) 3) (3) ) (3) (3) @) 42 (2) 3) (3) () (3) (3) ()
mm(a X7 Qg XA X, g )+mm(x d” , d” , du VX5 dij =e;,

(2) @ 2,03 3.2 (3) (3) ) ;(2) (2) 3) (3) () (3) B _ (3)
max(a Xii QX a5 X A )+max(x du , d” , d” DXy d-- =e;,
(1) [€D)] (1) (4 (4) (€] (4) (4) 5 (1) (4) (4) (€Y)] (4) (4) (4)
max(a Xy Qi Xy A X0, Ay )+max(x du , d” , d” VX d e

is called a non-linear system of equations.

In the following Theorem 4.3.1, the fundamental theorem of ATrFFSME is discussed.
Theorem 4.3.1. Suppose that A4, D, E and X are arbitrary trapezoidal fuzzy matrices,
respectively, then the ATrFFSME AX + XD = E is equivalent to the following non-

linear system:

®,0 O.@w @ .1 @, (4) ® 4 (1) 4) (4) RO (¢)]
mm(a X7 Qi X g X, )+mm(x d” , d” , d” VXjj d” =e;,
@, @,6) ()2 (3) (3) () 4(2) (2) (3) (3) @ 353 @
mm(a LATNE S P S )+mm(x d” , d” , d” VXjj d” e
(2) () (2) 3) (3) ) (3) (3) ) 4(2) (2) 3) (3) ) (3) 3) 3)
max(a X5 Qi Xy g5 X5, g )+max(x dl] , dl] , dl] P Xjj dij =e;
(1) v O @ @ (1) (4) (4) (1) 41 (1) (4) (4) (€Y) (4) (4) (4)
max(a X7 Qi Xy Qi Xy, Ay )+max(x du , du , du VX dij =e; .
(4.3)

Proof: Let A, B, E and X in the ATrFFSME AX + XD = E be arbitrary trapezoidal
fuzzy  matrices  respectively, then, Dby AMO and RAMO in

Sections 3.1.1, 3.1.2 and 3.1.3 we have,

AX = (M,N,P,Q)

where
M = min (a(n 1(11)' 1(11) 1(14)' 1(14) 1(11)' ) (4))
N = min (a(z) 1(12)' alg]g)xi(Js), aﬁ)xi(jz)» (3 (3))
p= max(a(Z) l(jz),ag}g)xi(]$),al§]§3)xi(]?), (3) (3))
0= max(a(l) 1(11)’ 1(11) 1(14)' l(f)xfjl)' 4 (4))
and,

XD = (K,L,H,R)
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where,

xPdP, xDd®, x DD, D D),

K = min ij X ij X ij X

L =min(x

@)@ ) 46) (3@ 3
] dl] ! dl} ! dl] s d )

_ @@ @43 B @ ()
H =max(xd?,xPa,xPa>, 1P a;

R = max (1)d(1) (1)d(4) (4)d(1) (4)d(4)).

lj’ 1y’ l]’l]

Therefore, the ATrFFSME is equivalent to the following non-linear equations:

®,® W@ @, 1 (4) (4) 41 (1) ) (4) €)) (4) B} = o
mln(a X Qi Xy, A X0, A )+mm(x di;’ o x; dyxgdyt X dg e’
@, @, 06),.02 (3) (3) @) 4 (2) 3) (3) @ (3) (3) @
mln(a l.j ’ l.j l] ’ l.j l] ,a ij )+mln(x dl] ’ dl] ’ dl] [add7) d l] ’
@, @, 6,02 (3) (3) @) 42 (2) &) (3) @ 3 (3) e®
max(a l.j 4 l.j l] 4 l.j l] a )+max(x dl.] 4 dl] ’ dl] [addd) dij - l.j ’
®, 0 W@ @, 1 (4) (4) @4 (1) “) (4) GO P [CO W C)
kmax(a Xy Qg X, A X0, A )+max(x di;’ox;di,xg o dyt xgd) = e
O

In order to get the arbitrary fuzzy solution to the ATrFFSME, the equivalent non-linear
system of equations in Eq. (4.3) is considered and reduced to a system of absolute
equations based on Theorem 2.4.3.1. Then, the solution to the absolute system of
equations is obtained using Mathematica 12.1 and Maple 2019. The steps to the
constructed methods for obtaining the arbitrary solution to the ATrFFSME are
discussed as follows:

Step 1: Convert the ATrFFSME AX + XD = E to a non-linear system in Eq. (4.3)
using Theorem 4.3.1.

Step 2: Reduce the non-linear system in Step 1 to an absolute system of equation based
on Theorem 2.4.3.1. and Definition 2.4.3.4.

Step 3: Solve the system of absolute equations and check which solution(s) satisfy the

following.
1) 1(11) <xl(]2) <xl(]3) <x(4) Vi<is<nl<j<m

I At least one element of X is near-zero TrFN.
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Step 4: By solving the system of absolute equations and eliminating the non-fuzzy

solutions, the following arbitrary fuzzy solution is obtained:

o @ .6 @) o @ 6 @)
(x11 X110 X110 X ) (xlm'xlm'xlm'xlm)
X= : :
o @ 6 @ @ @ B 4
(xnl 1 Xn1sXn1, Xng ) (xnm' Xnmr Xnmo xnm)

The solution to the ATrFFSME is illustrated in the following Example 4.3.1.

Example 4.3.1. Consider the following ATrFFSME AX + XD =E where
A= (Gij)2x2 D= (dij)2><2a X = (Xij)2x2 and E= (€ij)2x2 be any 2 x 2 arbitrary

trapezoidal fuzzy matrices. Find X.

Solution: The procedure to obtain the solution of the given ATrFFSME is as follows:
Step 1: Convert the given ATrFFSME to a reduced non-linear system in using AMO
and RAMO in Sections 3.1.1, 3.1.2 and 3.1.3 as follows:

Multiplying AX

@ @ B 4 o @ G @ @ @ .06 .,% @O @ .06 .,®
A% = ((a11 ,847,047,841)  (ay;, 405,75, 4y, )) <(x11 XX X01) (g Xy X5 X, )>
N 2 () (4 1) @ () (4 1 w(2) I =@ OO ON &

(a() @) (3 ()) (a() @) (3 ()) (x() 2) ..3) ()) (x() 2 .3 ())

21 421,831, 0p4 22 22,037,033 21 X210 X217 X1 22 1X22 9 X221 X3

which can be written as,

AX =
(m3,n3,az,f3) (Mg, Ny, Ay, Bs)

o ((ml.nl, ay, 1) (myny, az'ﬁz))_ (4.4)

where,

= min(ag®D,D @O, ,.@ @, 0O @, % i (DD (D @) @) 1) 4 4
my = min(ayy Xy, ar Xy, Xy s Ay )+ min(agy Xy, 17 67, iy Xy Arg Xp1),

= min(ag®P,D O, ,.@®H @, 0O #,®D in (DD (D 4 ), 1) 4, 4
ny = min(ayy a0, a7y, G %y s Xy ) + min(ary 6y, 17 X, iy X7, iy X5,

i ., O, @ @ (1) 1) (4 : o, 0 1. @ @, 10 @ @D
a; = mln(a21 X119 Q10 X117 A1 X117, Az X171 ) + min(az, X1, Ayy Xa1 ) Ay X315 Apy Xp1),

i o, 0 @O, @ @, 1 @, @D : o, 0 @O @ @ (1 @ @D
pr = mm(azl X125 Qa1 X125 Qa1 X127, A1 X3 ) + min(ay; X5, Az Xp5 5 Az X555 Ggy X33 ),

i 2,2 2.3 3.2 ,3).03) : @), (2.3 3. 3.3
m, = mm(all X115 Q11 X115 Q11 X117, Q41 Xq1 ) + min(ay; X517, 13 X515 Q45 X517, Ay X1 ),

= min(q@,2 2,06 3),.02 3),03) (2,2 (2),.3) (3),(2) (3),03)
ny = min(ay; %7, a7 %07, Gy %17 1y Xay ) + min(ary xg7, G X575 A1 X33 A1 X33 )s

= min(q@,2 2,06 ), 0 3),03) in (22 (2) (3) (3) .(2) (3),.(3)
oy = min(ag; %17, Q57 %17, Gy X171 gy %17 ) + MIn(agy %57, G %57, Qg %57  Gzp X51)s
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i @, 2.3 @3).10 3).03 : @, 2.3 3.2 3.3
B2 = mm(azl X121 X12 » Ap1 X12", A1 X1 ) + min(a,; X35, Ay X35 5 Az Xp5 5 Ggy X33 ),

- 2,2 2,06 3,2 3),03) 2,2 2,06 3),.02) 3,03
ms = max(ayy X7, ayy Xy ary Xy ary Xy ) + max(any %57, G X510 A1 X515 A1 %51,

_ @, 2.3 3.1 3).03) 2,2 2.3 3. 3.3
nz = max(all X125 Q11 X125 Q11 X127, 11 X1 ) + max(ayy X35, Q15 Xy, Agy X35, Ayy X35,

— 2,2 2,06 3),.0 3),03) 2,2 2,06 3),.2) 3),03)
ay = max(az; x;7, a5y X171 Gpy iy Gpr Xny )+ MAX(Agy %57, Gy X57 s Agy X511 Gzp %51,

_ ., 2.3 6.1 3).3) 2., 2.3 3. 6.3
Bz = max(a21 X129 Qp1 X127 A1 X127, A1 X1 ) + max(ay; X35, Az X555 gy X33, Ay X35 ),

_ n,.n O,.@ 4.1 4) (4 o, .0 @O @ @ 1 @ @D
my = max(all X115 Q19 X115 Q19 X117, Q11 X3 ) + max(a;; X1, Q15 Xp1 5 Ayy Xp1 5 Gy Xa1'),

_ o, 0 @O, @ @ 1 @ @D o, 0 @O @ @ 1 @ @D
Ny = max(all X125 Q19 X127 Q19 X127, Q11" X1 ) + max(a;; X5, Q15 Xpp , Agp Xp3', Ayp X35,

— o, @O, @ @, 0 @, @D o, 0 @O, @ @, 0 @), @D
oy = max(ayy x;7, a5y X171 Gpy i1 Gpy Xay ) + MAX(Agy %57, Ay X517, Ay X57, g X51))

— @, 0 @O,%® @, 0 @, @D ®, 10 @), % @, 0 @), @D
Ba = max(azy %17, G50 %17 Gp1 %17 Qg1 X1y ) + Max Qg5 X33 g3 X331 o X3 O X3).

Multiplying XB

@ @ .06 @ @ @ .06 @ 1) 2 5,3 ;@ 1 @2 5,3 ;@
XB = ((xll XX X1 ) (g Xg5 Xe5 Xy )) ((bn ybyy byy,biy)  (byy, by, biy by, ))
GO @ @ @y (0@ @ @) @ 6 ey 0 e o o)

21 X217 %215 X2 22 /X221 X225 X33 21021021, D31 2210227502275 D33

which can be written as,

D ((yllsl' Ml'o-l) (YZ' 62) .uZ; 0—2)>. (45)

XB =
(¥3,03,3,03)  (Var 84, [hs, O4)
where

o 1,1 1)@ ,@,0 4,4 : W1 . 1D,® @0 4,@D
V1= mm(xn byy’ X1 byy s %11 by’ Xq1 by ) + mln(xIZ byi's X153 byt X153 byy's X5 byt ),

5y = min( 2. X2, K2, 1Y)+ mine D, 28 D, XD,
= min 0.2 D)+ min 22, 200,80, 080),
o0 = min(e 2, <02, <2, 58+ mine D, Y Y D),
1o =m0, 00,2, 2D+ mine 2D, 12, 12 x),
5o = min( 02,502, 12,22 + mine 2D, 12 X2, XD,

o )2 (2);,3) ,.3),2) ,.(3),(3) . (2)5,(2) .(2);,3) ,.3),2) .(3),(3)
Hz = mm(xZI byy %57 byy s xp1 byt Xy by ) + mm(xzz by1s Xy byys Xy byys X535 b3y )

o (2)5,(2) .(2);,3) ,.3),(2) .(3);,(3) . (2)5,(2) ,.(2)3,3) ,.3) (2 .(3);,(3)
02 = mln(x21 byy s %51 by Xp1 by x5 by ) + mm(x22 by, %55 byy's X5 by’ X35 by ),

_ (2)1,(2) ,.(2),,3) .35 (2) .(3),(3) ), (2 (2),3) ,.3)5(2) ..(3),(3)
ys =max(x;7’byy, %17 biyxyy by xyy biy ) + max(ay byt iy byy Xy byt Xy byt

— (2)p @) (2)p3) ,.(3)(2) ,.(3)(3) @)@ (2),3) (3 (2) ,.(3)(3)
83 = max(x;7 b1y, %17 by X1y biy » xyy iy ) + max(xy by i3 by Xiy byy s Xap by,

_ )2 . (2);,3) .32 (3,03 2),.(2) (2,3 .32 (303
Uz = max(x21 byy’s X31 byys X510 byt X1 by ) + max(x22 b1’ X35 byy s X5y byts X5 byy ),
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D@ @pE) L@ Gy @)

_ ( ), (2 (2);,3) ,.3),(2) ,.3);,3)
63—max(x21 127 X21 D125 X219 D175 X4 b b b by, ),

2 ) + max(x22 22 1X22 D227 X252 Do’y Xop

DM D) L Bp0) @)@

_ ( 1), 1 D)@ 4,1 (4, @
y4—max(x11 11 %11 P11 %11 P11 X112 b b b b,y),

1 ) + max(xlz 21 X12 D21 X12 D215 X12

— W1 (1)@ (H 1) (44 D) (W) p@) (4 1) (4)y(4)
8y = max(x;y’ b1y’ %1y by X1y biy X1y iy ) + max(xy by iy byy iy byy Xap b)),

- M) (D)) (4 1) .(4)7(4) D)) (1)p4) (41 .(4)y(4)
pa = max(x3, bry’, %30 biy’, X1 biy’, x50 biy’) + max(xg5 by %35 by s X35 by s X35 by

_ 1,1 (1,@ @D,0) (4,4 W,,10 O,@ D0 (4,1@
04 = max(x21 by’ X531 byy s X510 by’ X507 by, ) + max(x22 by’ X35 by s Xp byy's X35 byy ).

Adding Eq. (4.4) and Eq. (4.5), we get the following:

A v VD 1121 Pl 20182, Y2, P2 Y0~ Y1 2)Y2) 12, Y2
A%+ %8 = (oo anfy) - (Mma,n;, a3, ;) (Y1, 61, 11,01) (V2 82, 12, 02)
(mg,nz, a3, fz) (Mg, Ny, Ay, Pa) (V3,03 U3,03)  (Var 4 Uay O4)

The following is obtained,

((ml,nl,al,ﬁl) (mz'nz’az'ﬁz)>+(()/1,51,H1,0'1) (V2;52,M2;0'2))
(m3,n3,az,f3) (Mg, Ny, ay,fy) (¥3,63,13,03)  (Va, 64, s, O4)

o @ 3 @ o @ 3 @
<(C11 1 €110 Ci1 061 ) (€157, C15°, €157, €1y )> (4.6)

1) (2 (3) (4 1) (2 (3) (4
(Cgl)’cgl),cgl)’cgl)) (C( ) (2 3 ( ))

22162222 €23
which can be converted into the following system of 16 equations. It is worth
mentioning that the number of equations obtained from n X m arbitrary TrFFSME is

equal to 2n x 2m equations. Since the developed method is applied for a 2 x 2

TrFFSME, we will get a system of 16 crisp equations as follows:
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1
(m1 t+y1 = Cfl)

Tll + 51 - C:E;)
1
ay + Uy = Cz(l)

1
B+ o, = Céz)

2
m; +Yy, = Cfl)
n2 + 62 = Cfg)
2
Ay + Uy = 651)
@)

B, +0,=c
ms + Y3 = gy
Tl3 + 63 = C](_;)
3

az + Uz = Cyq

3
Bs + 05 = céz)

4
my + VY4 = C§1)

Tl4 + 64 = Cf;)
4
Ay + Uy = 651)

4

Kﬁ;]_ + 04 = Céz)

Step 2: Convert the non-linear system to a reduced absolute system based on
Theorem 2.4.3.1. and Definition 2.4.3.4.

Step 3: Solve the system of absolute equations and check which solution(s) satisfy the

following.
) P <xP<aP<xPvi<isni<js<m,

) At least one element of X is near-zero TrFN.
Step 4: By solving the system of absolute equations and eliminating the non-fuzzy

solutions, the following arbitrary fuzzy solution is obtained:

o . @ . .03 . @ o . .2 . .03 . @
o (G XXy x0) (Xyp Xy X5 Xgp0)
o @ .03 ¢ o @ .3 ¢ )

( )« ) 5
X211 X210 X211 X4 X221 X22 1 X291 X5

266



Example 4.3.2 Consider the following ATrFFSME:

( (~12,22,35,52) (—30,20,43,66)) <(x§1),xg),x1(?,xﬁ)) (xS),XE),xfi),xS)))

(=25,-10,29,33)  (10,44,50,100) )\ (D @ &),y 1) @) ©6) @),

@ @3 (¢4 o .2 3 ( (—30,19,32,65) (—40,—30,44,66)

1 2 3 4 1 2 3 4
(xfl),xfl),ﬁl),x;)) (xfz),xfz),xfz),x;)) ( (—25,0,49,53) (=2,1,39,47) )
(x(l) X507, %51, X )) (2557, %55, X557, X 4))
21721721721 2207220722 0722

((—3810,—1885,202,2555) (—8446,—5259,—1429,3886))
(—7815,—-3597,—-348,6045) (—16805,—-9266,—554,4016)/

Solution:

The possible arbitrary fuzzy solutions found for the given ATrFFSME are

% = ((—30,—25, —23,-23) (-3,5,6,7) )
1= (5,6,12,15) (—=100,—-98,—-94,—-92)/)’
7 = ((—30,—25,—23,—22) (-3,5,6,7) )
2= (5,6,12,15) (—100,—98,—-94,—-92)/)’
7. = ((—30,—25,—23,—21) (-3,5,6,7) )
“11 (5,6,12,15) (—=100,—98,—-94,—-92)/)’
and
7 = ((—30,—25,—23,—20) (-3,5,6,7) )
%up (5,6,12,15) (—100,—-98,—-94,—-92)/)°

Figure 4.2 shows the arbitrary fuzzy solutions X,, X,, X; and X,.
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Figure 4.2. Arbitrary fuzzy solutions for Example 4.3.2.

In the following Section 4.4, the solution to the arbitrary TrFFME in Eq. (1.11) is

discussed.
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4.4 Solving Arbitrary TrFFME

In this section, the arbitrary solution to the arbitrary TrTFFME AX = E is discussed. In
order to get the solution, the ABSM in Section 4.2 is modified and applied to the
arbitrary TrFFME. Thus, the arbitrary TrFFME is converted to an equivalent non-linear
system and consequently reduced to an absolute system of equations where the solution
to the absolute system of equations gives the solutions to the arbitrary TrFFME. In the

following Definition 4.4.1, the arbitrary TrFFME is introduced.

Definition 4.4.1. A matrix equation TrFFME AX + XD = E, is called arbitrary

trapezoidal fully fuzzy Sylvester matrix equations (ATrFFME) if 4 = (c’iij)

mxn’
Vi<ij<mmnandX = (%) nx, V1 <i,j <nrand E = (&;)mx, are arbitrary
trapezoidal fuzzy matrices.

In the following Definition 4.4.2, the system of non-linear equations is introduced.

Definition 4.4.2. The system of matrix equations in the form,

min(a P, a3 PP, a3 P) = €D
<mm( (]2) l(]z) L(jZ) 1(13)' L(js) 1(12) aff)x(?’)) 1(12)'
{0, 5D ) = )
m ax( a{? xfjl)' aDx®, aff) 1(11)’ al(;ﬂxu)) e,

is called a non-linear system of equations.

In the following Theorem 4.4.1 the fundamental theorem of ATrFFSME is discussed.
Theorem 4.4.1. Suppose that 4, £ and X are arbitrary trapezoidal fuzzy matrices. Then
the ATrFFME AX = E is equivalent to the following non-linear system:

W0 O,@ 4,1 @), @5

X = e

( ij » ij Xij o Qi ij’JxJ) i’
mm(a(Z) @ (2) 3 (3) @ (3 (3)) (2)

Q
><

X:.7, , y A X = ’

) 2 1(12) 1(12) 1(13) 1(13) 1(12) 1(13) 3) lg3) (4.9)
max(a Xii o QXA X, A X ) e
., @ (1) (4) (4) L 4 (4) (4)
(a Xij o Qi Xy Ay Xijon Qyj Xy ) '
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Proof: Let 4, E and X in the ATrFFME AX = E be arbitrary trapezoidal fuzzy matrices

respectively. Then, by AMO and RAMO in Sections 3.1.1, 3.1.2 and 3.1.3, we have,
AX =(M,N,P,Q)

where

®,0 O,.@ @0 (4) (4))
iy’

M = mm(a Xii Qi Xy Qg

@, 2,06 ), (3) (3))

N = mln(a X XA X, a

N O O I

P = max(a U et ) Bt § Bt § B § | ,a ij

Q= max(a X

W0 O,@ @),.aQ) @) (4))
Xij o Qij Xij o Qi Xij s Gy

Therefore, the ATrFFME is equivalent to the following non-linear system of equations:

o, @ @O,@ @, 1) () (4) €Y

mm(a] Xii Qi Xy, Ay X0, Ay X )— g

(2)2@) ,(@23) 56),.(2) 15(3) (3) o2

< mm(a Xii oy Qi Xy, A X Ay X Chngt
max(a;;"x; a;;’ x

lJ’U lJ’U lJ’U l]’

(1) (1) (1) (4) (4) 1 (4 (4) (4)
(a xl] ,a ij l] ’ l] l_] 'au x '

), @) @, ) .(2) 3 (3)) e

The arbitrary solution to the ATrFFME is as follows:

Step 1: Convert the ATTFFME AX = E to a non-linear system of equations in Eq. (4.9)
using Theorem 4.4.1.

Step 2: Reduced the non-linear system in Step 1 to an absolute system of equation
based on Theorem 2.4.3.1. and Definition 2.4.3.4.

Step 3: Solve the system of absolute equations and check which solution(s) satisfy the
following conditions:

) xP<axP <xP<xPvi<i<snis<js<

) At least one element of X is near-zero TrFN.
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Step 4: By solving the system of absolute equations and eliminating the non-fuzzy
solutions, the following arbitrary fuzzy solution(s) is obtained:

® @ 3 ,@ ® @ 3 @
(x11 X110 X117 X1 ) (xlp Xip o Xip o X1p )

X = : : :
(22 2D x) e (i xgxg iy )

The following Example 4.4.1, was first solved by Kumar et al. (2011) and obtained
only one fuzzy solution. However, Malkawi et al. (2014d) considered the same
example and obtained two fuzzy solutions. To support the developed ABSM in this
section the same example is considered.

Remark 4.4.1 The methods that are used in solving Example 4.4.1, by
Kumar et al. (2011) and Malkawi et al. (2014d) can only applied to fuzzy equations
with TENs. Therefore, in the following Example 4.4.1, the TFNSs are extended to TrFNs
in ordered to apply the developed method in Section 4.4.

Example 4.4.1 Consider the following ATrFFME:

™ @ B 4
((—2,3,3,4) (—2,2,2,3)) (xll’xll’xll’xll) _((-13,8,8,14)>

(1,2,2,2)  (4,4,4,5) (xg?' *@, 2D, xg)) (—14,8,8,14)

Solution: The fuzzy solution to the given ATrFFME is obtained by Kumar et al. (2011)

is as follows:

£=(&5A)

However, Malkawi et al. (2014d) was able to obtain two fuzzy solutions as follows:

. ((1,2,22) _ ((—23/14,2,2,2)
1= ((—3, 1,1, 2)) and X, = < (-15/7,1,1,2) )

The fuzzy solutions to the given ATrFFME are obtained as follows:
Step 1: Convert the given ATrFFME to a non-linear system using AMO and RAMO

in Sections 3.1.1, 3.1.2, and 3.1.3 as follows:
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Min[—2x{}, 42} | + Min|—2x{}, 32| = 13,
Min[3x?, 32| + Min[2x$?, 22| = 8,
Max|3x{?, 327 | + Max|2x(?, 2x{7| = 8,

Max|-2x{}, 42} ] + Max|-2x(P, 3x{7| = 14,
Min|x(?, 27| + Min[4x{, 5257 | = 14,
Min[2x?, 2xP| + Min[4x$?, 4xP] = 8,
Max|2x(?, 26| + Max|4x?, 42| = 8,

Max[xli), 2x(4)] + Max[4x§?, SxS)] = 14.
Step 2: Convert the non-linear system in Step 1 to an absolute system using Definition

2.4.34.

ol

—13
2 )

XD
(1)_|_ 3| (1)
;(3xﬁ) +3x7) + ;(ngi) +2x3)) - |3x(2) 32 |2x(2) 27| =8,
L+ )0 28) Lo o]
%( ZxE) +4x(4)) ( ZxS) +3x(4)) | Zxﬁ) 4x1‘;)| + - | 2x§? -
3x§4)| = 14,

3xzﬂ) 9x22(? ~ |"§)| _ |x§)| = _14,

;(Zxﬁ) +2x) + . = (4x5? + 4x)) - |2x(2) 2x3)| - |4x(2) 45| =8,

2

;(ng) + 2x(3)) ;(4x§21) + 4x(3)) |2x(2) 2x£3)| i |4x(2) 4x£3)| —8
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3y 9y byl ldl

2 2 2 2 14.

Step 3: Solve the system of absolute equations and check which solution(s) satisfy the

following.

N xP<xP<xP<xPvicisni<jism
) At least one element of X is near-zero TrFN.

Step 4: By solving the system of absolute equations and eliminating the non-fuzzy

solutions, the following arbitrary fuzzy solutions are obtained:

7 _ (1.2,2.2))

= ((—3, 1,1,2)) (4.10a)
v _ (—23/14,2,2,2))

X2 = ( (-15/7,1,1,2) )’ (4.10b)
_ _ ((1.769,1.998,1.998,1.923) )

X3 = ((—3.153, 1.001,1.001,2.030)/° (4.10c)

The analysis of the obtained arbitrary fuzzy solutions to the ATrFFME in Example
4.4.1 includes verification of the solution, representation of the solution and checking
the feasibility conditions are discussed in the following Sections 4.4.1, 4.4.2 and 4.4.3

respectively.

4.4.1 Verification of the Arbitrary Fuzzy Solution to the ATrFFME

In this section, the verification of the obtained arbitrary fuzzy solutions in Eq. (4.10a),
Eg. (4.10b) and Eq. (10c), are discussed. The first two solutions in
Eq. (4.10a) and Eq. (4.10b) are verified by Malkawi et al. (2014d). Therefore, only the
solution in EqQ. (4.10c) is verified as follows:

We multiply AX as follows:

((—2, 3,3,4) (=2,2,2, 3))( (1.769,1.998,1.998, 1.923) )
(1,2,2,2)  (44,4,5) )\(-3.153,1.001, 1.001, 2.030) /'
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_ ((—13.081, 7.997,7.997, 14.001))
(—13.999,8.001,8.001, 14.001) )°

The value of AX is exactly equal to the constant matrix . The obtained arbitrary fuzzy

solution in Eq. (4.10c) satisfies the given ATrFFME in Example 4.4.1.

4.4.2 Representation of the Arbitrary Fuzzy Solution to The ATrFFME

In this section, the graphical representation of the arbitrary fuzzy solution of the

ATrFFME in Example 4.4.1 is represented in Figure 4.3.

Arbitrary fuzzy solution X
1.0 . ‘
RO
SN 1}
0.8 o B I
. [ \ / |
/, vl |
0.6 ’’ \
LU
o I |
04 "‘, / "\
o o - I
0" v : - = =5=(1,222
/ .
e Ul e ¥1=(-3,1,1,2)
0.0k / '
-3 -2 -1 0 1 2

Figure 4.3. Arbitrary fuzzy solution for Example 4.4.1.

Figure 4.3 shows that, X;; and X,, are all TrFNs. In addition, X, is near-zero TrFNs,
and therefore the obtained solution is an arbitrary trapezoidal fuzzy solution based on
Definition 4.1.1.

In the following Section 4.2.3, the feasibility condition of the obtained arbitrary

trapezoidal fuzzy solution for the given ATrFFME in Example 4.4.1 is discussed.
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4.4.3 Feasibility of the Arbitrary Fuzzy Solution to the ATrFFME

To check the feasibility of the arbitrary fuzzy solution to the ATrFFME in

Example 4.4.1, the following feasibility condition needs to be satisfied.

x D zx > 1P > 1P vl <ij<nmb

4 3 3 2 -2 =2

G 9z2G D=0 )
Therefore, the feasibility condition is satisfied and therefore, the obtained arbitrary
fuzzy solution is feasibly.

The verification, representation, and feasibility of the obtained arbitrary fuzzy solution

show that, it satisfies the given ATrFFME, and it is strong fuzzy solution.

4.5 Conclusion and Contribution

In this chapter, a unified and restriction free methods for solving family of arbitrary
fuzzy systems with different fuzzy numbers are developed. The constructed methods
are able to solve many unrestricted fuzzy systems such as AGTrFFSME and its special
cases namely Sylvester and the fully fuzzy linear system with triangular and trapezoidal
fuzzy numbers. RAMO is applied to convert the AGTrFFSME into a reduced system
of non- linear equations. Then, the reduced system is converted to a system of absolute
equations where the fuzzy solution is obtained by solving that system. The following
contributions summarize the findings in this chapter:
1- Obtain arbitrary fuzzy solutions to AGTrFFSME without any restriction.
2- Obtain arbitrary fuzzy solution to AGTrFFSME special cases of which includes
TrFFSME and FFME with trapezoidal and triangular fuzzy numbers.

3- Apply the developed method on arbitrary fuzzy matrix equations with TFNSs.
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CHAPTER FIVE
COUPLED TRAPEZOIDAL FULLY FUZZY SYLVESTER
MATRIX EQUATION

In this chapter, the positive solution to the positive CTrFFSME is discussed. The
procedures employed in the construction of the analytical and numerical methods for
solving the positive CTrFFSME are similar to those outlined previously in Section 3.4
for single PTrFFSME. Thus, the developed methods in this chapter are based on
extending the MFMVM, MFGIM and MFLSIM in Section 3.4.1, Section 3.4.3 and
Section 3.4.4 respectively. In the following Section 5.1 the solution to the positive

CTrFFSME is discussed.

5.1 Solving Positive CTrFFSME

In this section, the positive fuzzy solution to the positive CTrFFSME AX + YB = E,
CX +YD = F in Eq. (1.19) is obtained. First, the positive CTrFFSME is converted to
a system of CSME based on AMO in Eg. (3.2). Then, the solution to the system of
CSME is obtained analytically by extending the MFMVM in Section 3.4.1 and
numerically by extending the MFGIM and MFLSIM in Section 3.4.3 and 3.4.4

respectively.

In the following Definition 5.1.1, the positive CTrFFSME is introduced.

Definition 5.1.1. A CFFSME {4}5 +YB5 = EZ is called positive coupled trapezoidal
CX+YD=F
fully fuzzy Sylvester matrix equation (PCTrFFSME) if

= ~ 1) (2 (3 (4 ..
A= (aij)mxm = (al.(j),afj),ai(j),ai(j)) >0,vV1 <i,j <m,
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C=(y), . =P cPer>0ovi<ij<m,
1) .2 .3) (4 .
B ( U)an = (bl(])lbl(]))bl(]);b( )) > 0, A4 1 S l,] S n,

D=(d = d,dP,dP dP)>0v1 < ij < n,

ij)nxn ij *%ij %ij o

v — = (x® @ B @ . )
X_(l])mxn (U’l]'xij’ )>0,v1I<i<ml<j<n

? = (yij)mxn - (yl(Jl);yl(JZ):yl(jg).yU )) > 0 V1 <i < m, 1 < ]

=~ ~ 1 2 3 4
E=(el-j)mxn=(ei(j),ei(j),ei(j), ())>O vVi<i<ml<j<

— (f;(l) f;(Z) f;§3)’f;(4)) >0,vV1<i<ml S] < n are pOSitiVe

F=(fy)

mxn
trapezoidal fuzzy matrices.

In the following Definition 5.1.2 the system of CSME is introduced.

Definition 5.1.2. A system of matrix equations in the form

(1) 1) WD _ D)
({ l] +yl b ol l] ’
(1,1 (€8] (1) ®
u Lj +y d f;] ’
{ PP 1y, (z)b(z) = e®,
2 2 2 2 2

) ()()_l_()d() sz)'
{ (3) (3) +y (3)b(3) e
3, (3) 3) (3) 3
l] +y1 d fl} ’
(4) (4 4 (4) (4
{ Xy by = e,
4 4 (4 4 4

\ C( )xl(]) +yl )d( ) _ff )

is called a system of CSME.
In the following Theorem 5.1.1, the equivalency between the PCTrFFSME and the

system of CSME is proved.
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~ o~ o~ A~ o~ o~ o~

matrices then the PCTrFFSME {AX +YB = Lf is equivalent to the following systems
CX+YD=F
of CSME:
® (1) (1) (1) _,M
€Y (1) (1) (1) ®
Cij xij d fl] ,
2 (2) (2) (2) _ ,@
)% Xyt Yy bij” = ey’
[lepep P =1 -
(3) (3) (3) (3) _ ,3 )
(aij X+ Vi b-- =e;
(3) (3) (3) (3) 3
Cij xl.j d fu ,
4) (4) (4) (4) @
aij xi] ylj b - l] ’
(4) (4) (4) (4) €]
ey xg” + oy dy = £

Proof: Let 4, B, C, D, E, F, X and Y be positive trapezoidal fuzzy matrices. Then by

RAMO in Eq. (3.2), the product AX, YB, CX and YD are obtained as follows:

n
iv ~ o (1) (€] (2) @) (3) 3 (4) (4)
AX = Z Qi Xkj = ( i Xij Qi Xy, Ay Xy 7, Ay~ Xy )’

n
75 = Zyikg = (5B, Y@,y b 3P,

n
A 5 (1) €] (2) ) (3) 3 (4) 4
CX = Zcik Xkj = ( l] l] ’ l] l] ’ l] l] ’ l] l] )'

n
7D = Z T dis = (yl] 4D,y PP,y P,y )d(‘*)).

such thatall,i = 1,..,m andj = 1,...,n. Combining AX and YB, CX and YD we

get:



l

Therefore, the PCTrFFSME {Cé gg i E is equivalent to the following systems of

-

CSME:

(aPx® + yDp® = oD,
(1) (1) (1)d(1) o,
(2) (z> (Z)b(z) = e®,
(z) (z) (z)d(z) £,

{ (3) (3) (3)b(3) e

A

= e,
®), (3) (3) ® _
a;) = £,

(4) (4) (4) b<4) — @
l] 4

@ (4) (4) d(4) .

Gy

In the following Definition 5.1.3, the positive trapezoidal fuzzy solution matrix to the

PCTrFFSME in general form is presented.

Definition 5.1.3. The trapezoidal fuzzy matrices X = (%) = (¢, xP, x5, %),
Y ~ A 2 3 4 3 2 1
= (yij)mxn = (yl(j ),yl(] ),yl(] ),yU )) where xl(]) > xl(]) > x(]) > x( ) > 0,

V1<ij<nmand 3’14) >y(3) > y(z) > yl(Jl) >0,V1<i,j<nm, arecalled

positive fuzzy solution of the PCTrFFSME.

To solve the PCTrFFSME in Eqg. (1.19), we consider the corresponding systems of
CSME in Eq. (5.1). In the following Theorem 5.1.2, the sufficient conditions for the

system of CSME to have a unique positive solution are discussed.

Theorem 5.1.2 The Uniqueness of Positive Solution to The System of CSME
The system of SME in Eq. (5.1) has a unique positive solution if the following

conditions are satisfied:
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1) det(p,) # 0,det(p,) # 0,det(ps) # 0 anddet(p,) # 0 i.e. py, p,, p3 and

p, are invertible matrices where

1) pr*, p3t, p3tandp;t

Proof:

|

=
=
ot

I, ® ai(}) b(l))T R I,
In ® Ci(jl) d(l))T R I

I ® Ci(jZ) (2))T ® I

I R ag) (3))T ®I
L ® Ci(]?) (3))T R I

L ® Ci(f) d(4))T ®I

> 0.

I) Consider the system of CSME in Eq. (5.1). By applying the concept of

Vec-operator and Kronecker product in Definition 2.6.2.3, the following system

of linear matrix equations is obtained:

(1, ® a”
I, ® Ci(jl)
I, ® al.(]?)
I, ® Ci(jz)
I, ® ai(?)
L, ® ci(j3)

I, ® ai(;-*)
I, ® ci(f)

BT ® L
A ® I,
(b(z))T ® ]m
(d(z))T ® Im

B ® I,
@) @ I

b @1

)

) @ Iy,

vec(xP)\ [ vec(c)
vec(yf?)) " \vec(r”) )
vec(xP)\  [vec(c?)
vec(y?))  \vec(r?)) -
vec(xi(jg)) vec(cl(f))
vec(s?)) " \vee(s?) )
vec(?)\ _ (vee(c?)
vec(s?)) ” \vee(s?)

Then, this system of linear matrix equation in Eq. (5.2) can be written as
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PQ

Or in a matrix form as,

[

<1n®a§;” (bf}”)f@lm)
L®c @) @l

0

L ®aj (b
L®c (d

L®a) (B @Iy .
I W (@1
n ®CU ( ij ) ® m
. L®ay B @Iy .
I @ @R
n ®Cl] ( ij ) ® m
L®aY b @y
0 3) (©N
In®cij (dij ) ®Im
0 0 0
where,
L®a) b @ Ly )
I (€] d(l) T I
n®cit (d) Qln
. L®a? b @Iy
L ®c? VT @1
b n® Cij ( ij ) &I,
0
0 0
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0

@
3]
3

9]

0

)" ® I
) ® Iy

)

(

vee(y?)

0

L®ay

4)

ij

) ® Im)

Lh®c @ ®hn
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Suppose

%

P4

and U =
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(1))T R I
(1))T ®I
b(z))T ® I
d(Z))T ® I
b(3))T ® I
d(3))T Rl

(4))T R I
(4))T RI

)
.
y
y



vec(xl.(jl)) vec(ci(jl))

vec(yi(jl)) vec(fig-l))

vec(xl.(j2 )) . vec(cg)) "
(2) (2)

If we let, Q = Uec(yijB)) = 32 and U = vec(fié)) = ZZ
vec(xl.j ) qz vec(cij ) ui
vec(yl.(j?’)) vec(fig-g))
vec(xi(f)) vec(ci(f))
vec(yl.(;”) vec( i;‘”)

Then the system of a linear matrix in Eq. (5.3) can be written as

pp 0 0 O q1 Uy
0 P2 0 0 q, _ U,
0 0 p3 O [\gs | |us
0 0 0 p, 44 Uy

Matrix P is a block diagonal matrix, therefore by Definition 2.6.1.14, the det (P) is

obtained as follows:

pp 0 0 O
v 0 p, 0 O

det(P) = det 0 0 p, 0]}
0 0 0 p,

det (P) = det(p,) X det(p,) X det(p;) X det(p,).
The system of linear matrix equations PQ = U has a unique solution if det (P) # 0.
which implies det(p;) # 0,det(p,) # 0,det(p3) # 0 anddet(p,) # 0 i.e., p;, P2,
ps and p, are invertible matrices. The system of CSME in Eq. (5.1) and the linear matrix
equations PQ = U are equivalent. Therefore, the system of CSME in Eq. (5.1) has a
unique solution if det(p;) # 0,det(p,) # 0,det(p3) # 0 anddet(p,) # 0 i.e. pq,
P2, p3 and p, are invertible matrices.
) If p7%, p31, p3tandp;! > 0. then the system of CSME in Eq. (5.1) has a
positive solution, and the proof is straightforward.

m]
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The system of CSME obtained in Eq. (5.1) consists of four CSME; therefore, it can be
represented in general form as discussed in the following Remark 5.1.1.
Remark 5.1.1: The system of CSME obtained in Eq. (5.1) can be written as follows:

For1 <1 < 4 we have:

aDx® 4 yOp® = o0

ij *ij ij’
5.4)
l l l l l (
Dx® ()do £,

Remark 5.1.2. The system of CSME in Eq. (5.1) is an extension of the system of SME
in Eq. (3.51). Therefore, the developed methods for solving the system of SME can be
extended to the system of CSME.

In order to solve the PCTrFFSME, the system of CSME in Eq. (5.1) is considered.
Therefore, the positive fuzzy solution to the PCTrFFSME can be obtained analytically
by extending the MFMVM (EMFMVM) in Section 3.4.1 and numerically by extending
the MFGIM (EMFGIM) and the MFGIM (EFLSIM) in Sections 3.4.3 and 3.4.4,
respectively. In the following Section 5.1.1, the analytical fuzzy solution for the

PCTrFFSME in Eq. (1.19) is obtained by the EMFMVM.

5.1.1 Extended Modified Fuzzy Matrix Vectorization Method for PCTrFFSME

In this section, the PCTrFFSME {‘g){g + gg Ib; in Eqg. (1.19) is solved analytically by

extending the MFMVM in Section 3.4.1 and applying it to the system of CSME in

Eq. (5.1). The detail of the constructed method is discussed in the following steps.
Step 1: Decompose 4, B,C, D, E, F, X and Y into al(]l),bfjl), l(]l) d(l) (l) flfl), (l)and
yl(]l) where | = 1,2, 3,4 respectively and convert the PCTrFFSME to the system of

CSME in Eq. (5.1) using Theorem 5.1.1.
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Step 2: Apply Vec-operator and Kronecker product on the system of CSME in Eq. (5.1)
as discussed in Eq. (5.2).

Step 3: Multiply the system of equation in Step 2 by matrix multiplicative inverse

gives:

( vec(xl.jl)) (® al-(jl) (bl-(jl))T R I, - vec(ci(].l))
) o ron) (i)
Uec(xi(jZ)) ([ ® az(]?) (2))T ® Iy - vec(ci].z))
vec(yi(jz)) N I ® Ci(jZ) (d(Z))T L, UEC(fiE-Z)) ’

Vol oo 6y ey (o)) &
vec(yi(];)) - I ® Ci(j3) d(3))r ® 1, vec(fig.?’)) )
vec(xl.(j‘.‘)) L& al-(f) (b(4))T R I, - vec(ci(f))

L vec(yi(j‘l-)) In X Cl(]4) (d(‘l-))T R Im vec( (4))
Step 4: By Definition 2.6.2.2, multiplying the system of linear matrix equation in Eq.

(5.5) by vec™?! gives the following solutions:

p

1 1
vec(xi(j)) ¥ <1n XK a§}) b(l))T & Iy ) vec(ci(j ))
= vec
1 (1) ® 1 ’
) o @rom) Lol
5 2
vec(xij)) ) <1n ® ag) (2))T ® I ) vec(cij ))
= vec
) (2) (2) T (2) ’
vec(yij ) I, & c;; i) L Uec(fij )
) (5.6)
3 3
vec(xi]-)) . (In Q ag) (3))T Q I ) veC(ci(j ))
= vec
3) (3) (3) T (3) ’
vec(yl-j ) I, @ c;; i) ®Ly Uec(fij )
@) ! )
vec(xij ) R (In ® al(]‘.‘) (bi(]‘.*))T ® Im) vec(Cij )
@ @ @7 @
\ vec(yi]- ) L ®c;” (d) @Iy vec(fij )

Step 5: Combining the solutions obtained in Eq. (5.6) as follows:
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( o @ .03 @ o @ .03 @
(x11 1 X11 'x11 1 X1q ) (xln ' Xin 'xln 1 Xin )
X =
(€Y) (2) (3) (4) (€Y) (2) 3 ,.@
(xm1' ml' ml' ) (xmn' mn' mnlx ) (5 7)
o @ B3 . @ o @ B3 . @ '
(3’11 Y11 '3’11 Y11 ) (Ym Vin 'J’1n Vin )
Y =
( €)) (2) 3) @ €Y) (2) 3) @
yml’yml'ymPle ymn'ymnfymnfymn

\
In the following Remark 5.1.1.1, the solution in Eq. (5.6) to the system of CSME is
written in general form.

Remark 5.1.1.1. Based on Eq. (5.6), the solution to the system of CSME can be written

as follows: for 1 < [ < 4 we have:

0] -1 )
vec(xl.j ) B (In R al(]l,) (bi(]o)T R 1m> vec( e;j )

vec(yl(]l)) L, ® ci(;) (dl-(]l-))T RL, vec(fig-l))

In the following Theorem 5.1.1.1, the relation between the positive fuzzy solution to

(5.8)

the PCTrFFSME in Eq. (1.19) and the solution to the linear matrix equation in Eg. (5.6)
is discussed.
Theorem 5.1.1.1. The positive solution to the system of CSME and the positive fuzzy
solution to the PCTrFFSME are equivalent if the following conditions are satisfied.

1) det(p,) # 0,det(p,) # 0,det(p3) # 0 anddet(p,) # 0i.e. p;, P2, Pz and p,

are invertible matrices.

1) prt, pztp3tandp;t >0,

) py~"uy >0, pa~"up >0, p3~'uz >0, py~luy >,

V) p1 My S po My S psMus S pa T
Proof:

The proof of parts I and 11 are similar to the proof of Theorem 5.1.2.
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[11) By Theorem 5.1.1, the PCTrFFSME is converted to a system of CSME and
consequently to a system of linear matrix equations PQ = U in Eq. (5.3).

Multiplying both sides of Eq. (5.3) by P! gives:

q1 pp 0 0 O - Uy
q» . 0 P2 0 0 U,
P Bl 0 p;s 0 Tk (5.9
qs 0 0 0 ps Uy

Since P~ is a block diagonal matrix, P~* can be found by Definition 2.6.1.13 as

follows:
1 2 0 0 Uy
q» 0 pz_l 0 0 U,
= 5.10
qs 0 0 pst 0 us (5.10)
4 0 0 0 p, /) \Ua
The right-hand side in Eq. (5.10) can be simplified as follows:
q1 Py
q lu
= gz_lui . (5.11)
s Pa Uy

Therefore, the system of equations in Eq. (5.11) has a positive solution if p; “1u; > 0,
p, tu, >0, p3~tuz >0, py~tu, > 0.
IV) The linear matrix equations in Eq. (5.11) can be written as follows: for
1 <1< 4,we have:
q =,
where

- <1n ®ay bR 1m>
[ ’
L®c) @ @Iy

.= vec(xi(;))
: vec(yfj.”) '
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and

vec(ei(;))

vece(f") )

For the obtained solution in Eq. (5.11) to be a fuzzy solution, the following

U =v

condition must be met p; "tu; < p, tu, < P37 tug < pytuy.
Therefore, the unique positive solution of the system of CSME and the positive fuzzy

solution to the PCTrFFSME are equivalent.

Corollary 5.1.1.1. The Unigueness of The Fuzzy Solution to The PCTrFFSME

The PCTrFFSME has a unique positive fuzzy solution if the corresponding system of
CSME in Eqg. (5.1) has a unique positive solution.

Proof: The positive fuzzy solution to the PCTrFFSME in Eq. (1.19) is equivalent to
the solution system of CSME in Eqg. (5.1) by Theorem 5.1.1.1. Therefore, the
PCTrFFSME has a unique positive fuzzy solution if the corresponding system of CSME

in Eq. (5.1) has a unique solution.

m]

In the following Corollary 5.1.1.2, the sufficient conditions for the PCTrFFSME to have

a positive fuzzy solution are discussed.

Corollary 5.1.1.2. Existence of The Positive Fuzzy Solution to The PCTrFFSME

The PCTrFFSME has a positive fuzzy solution if the following conditions are satisfied:

1) p1,p2, 3 and p, are invertible, (3.12a)
1) prt, pyLpstand p;t >0, (3.12b)
1 p; tu; >0, p,7u, >0, ps tuz > 0and p, tu, >0, (3.12c)
IV)p;, " uy < pptuy < p37lus < paluy. (3.12d)

Proof: Parts | and Il can be proved as follows:
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By Corollary 5.1.1.1, the PCTrFFSME has a unique fuzzy solution only if p;, p,, ps3
and p, are invertible and p;t, p;t,p3tand p;* > 0.

[11) By Theorem 5.1.1.1, the solution for the system of CSME and the PCTrFFSME
is equivalent. Thus, from Eq. (5.11), the PCTrFFSME has a positive fuzzy
solution only if

py " tu; >0,
P2 tuy > 0,
ps~'uz >0,
pa " tu, > 0.

IV) By the definition of positive fuzzy solution matrix in Definition 5.1.3, the
PCTrFFSME has a unique positive fuzzy solution if the following condition is
satisfied,

-1 1 -1 1
P1 U S Py Uy SP3 U3 S Py Uy

Now we proceed to the feasibility conditions of positive fuzzy solution to the

PCTrFFSME.
Feasibility of The Positive Fuzzy Solution to The PCTrFFSME

The positive fuzzy solution to the PCTrFFSME is feasible if the following conditions

are satisfied: for1 <[ < 4,

) x>0, v{1<ij<mn}

)y >0,v{1<ij<mn},

1y x> x® > x? > £

j i i i V{l<ij<mnj

V) v 2y = P 2y vt <ij <mn}
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Remark 5.1.1.2: If the solution fails to satisfy the feasibility conditions, then it is
infeasible (weak fuzzy solution).
In the following Section 5.1.2, the EMFGIM is developed for approximating the

positive fuzzy solution to the PCTrFFSME.

5.1.2 Extended Fuzzy Gradient Iterative Method for PCTrFFSME

In this section, the positive solution to the PCTrFFSME {A§ + }fg f Ib; in Eq. (1.19) is

approximated numerically by extending the MFGIM in Section 3.4.3 and applying it to
the system of CSME in Eq. (5.1). The algorithm to the EMFGIM can be constructed as
follows: the system of CSME in Eq. (5.1) is decomposed into two subsystems. For

1<1<4,

@ y(l) )
O _ "R M — (¢ _ 0,0 O _ 0,0
1|5 (f(l) (z)d(z)> and & ( i — A% fy TGy % ) (5.13)

where the numerical solution to the system of CSME in Eqg. (5.4) is the average of the

numerical solution for the subsystems.

O]

0)
a
Let, ¥, =( ) B = (b d), and from Eq. (5.4) and Eq. (5.13), the following

Cij

can be obtained. For1 <1 < 4
D=y (5.14a)
and
O=yDp,. (5.14b)
The numerical solution to the system of equations in Eq. (5.14a) and Eqg. (5.14b) can

be obtained by the EMFGIM in Section 3.5.1.2 as follows:
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20 =2k = D)+ n" (67 -y 2k - 1),

(5.15)
(k) = Pk — 1) + - (£ = 91k = DB

Substitute Eqg. (5.13) into Eq. (5.15) as follows:

a® e —y® @ ®
: i o (1) O (1) (1) ’

T
9100 = 9= 1) + @ - ((ef - “)xf,” fé” ;) (”) vy =D d)) (0 af).

The obtained algorithm in Eq. (5.16) is obtained as follows. For 1 < I < 4 we have:

(

(D) ( (l) (l)xl(k o he-=, B 1)b(1)>

(k) =%k—-1)+a- ( O f(z) (z)A (k= 1) = §,(k — 1)d? (5.17)

T
9k) =9l — 1D + oy (e — aP#,(k — 1) = 9,k — Db f(” P2k — 1) =9,k — AP (BT  dF)

Let, n(k — 1) = e — aP%,(k — 1) = 9,(k — Db and s,k — 1) = £V — P2,k — 1) — §,(k — D)d?, then for 1 < 1 < 4,
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The approximated solution in Eq. (5.17) can be written in reduced form as follows:

200 =2k =D+ a7 (16 7).

h() =9k —D+a- k-1 sk—-1D)B),

where the convergence rate (step size) is given by,

O<al<

It can also be obtained as follows,

where, ||a(l)||2 = tr[a® - (a(z))T]
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(5.18)
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(5.19b)



At step k — th of the iteration, the following relative error is considered:

50 (k) = Jnfl(k) = £l = DI + 19100) = ik = DI (5.20)

12, GO + 119 (FOI?
The approximated fuzzy solutions obtained in Eq. (5.18) to the PCTrFFSME can be
written as follows:

{,e = (30, 2®,2®) @),
(5.21)

y = (5;(1), @, 53, )7(4))_

It can also be written in matrix form as,

£(D 22 £B) o4 £(D 2@ 2B) o)
( (11' X110 %110 X 11) (xln' X1 Xin 1n>
X =

(BRADADED) - (e s D)

1) 52) 53) 54 1) 5@ 5B) 54)

( 1M1 '3’11 Y11 ) ( V1in 'yln V1in )

y =
5(1) 5(2) 53) 5(4) 51 5(2) 53) s5(4)
( m1:ym1:ym1:ym1) ( mnern'Ymn'Ymn)

In the following Theorem 5.1.2.1, we prove that the numerical solution obtained by the
EMEFGIM method converges to the positive analytical solution of the PCTrFFSME

for any initial value.

Theorem 5.1.2.1 If the system of CSME in Eq. (5.1) has a unique positive solution
(x®,y®), then the numerical solution (£® (k), P (k)) in Eq. (5.21) converges to
(x®,y®Y for any initial values £V (0), 9P (0) for 1 <1 < 4. (i.e., if k — oo, then
xD = f(l)(k) and y(l) = y(l)(k)).

Proof: Let ¥(k) be the error ateach k, fork = 1,...,nandfor 1 <[ < 4.

Y(k) = P1(k) + P, (k). (5.22)
where

Py (k) = x® — 2O (k). (5.22a)
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P (k) = y® — 9B (k). (5.22b)

From Eq. (5.1), Eq. (5.17), Eq. (5.22a) and Eqg. (5.22b), the following is obtained:

a® (l) )
: 1(k = 1) =, (k — Dby
1 (k) =¢1(k—1)+al-< ({)> ( v )

cij Py (k — 1) =, (k — 1D )’ (5.23)
Yo k) = Yok — D + @+ (=aPy (e = 1) = 9,0 = DBL =Py (ke = 1) =,k = DAY (L D).
Taking ||. ||? to both sides of Eq. (5.23) gives:
(l) (l) )
i1k = 1) =, (k — Dby;
Lailf H k=\1 :
“1,01( )” ¢1( ) + a; ( (l)) ( (Dll)l(k _ 1) B l/)z(k B 1)d(l)> (5.24)

20017 = |12 = 1)+ - (~a@a G — 1D =tk = DB =ePpalle = 1) = ok - DD GO )|
The following steps in the proof are long, therefore the system in Eq. (5.24) must split into two equations in the following steps of the
proof.
By apply the following formula to Eq. (5.24) the following is obtained,
lA+BlI?> =tr((A+B)T(A+B)) = llAllI> + 2tr(ATB) + ||BI|2.

a®\' (~a®y e = 1) — ok — BN
) \=cPpi (ke = 1) =,k — DAY

2

2® aOp, (k — - Db
Yk —1) — Pk 1)b +
k—1 o _ -
Y1 ( ) (( (l)> ( L(]l)l,lll k—1)—y,(k 1)d(l)>> ;
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oGO = I = DI + 2atr [w%a«—n <(—a§?¢1(k—1>—¢2(k—1)b§;) —ci ¥l = 1) =, (k = D)) (b d§,’-))T)]+

2

af |[(—aPws(k = 1) = oG = Db —cPps (k= 1) = o0k — 1)) (b dfjl.))T (5.25b)
Applying matrix multiplication gives:
l T l l l T l

1 G2 = Iy e — DIIZ + 2at,tr [(ag?wl(k - 1)) (—aPws(k = 1) =,k — DBY) + (cfj)uvl(k - 1)) (—cwate—1) -

N\ /_ ON [

O\ (=aBy (k= 1) — o (k — Db

k—1)d® ] 2|I( o) ("% |l 5.26

lpz( ) ij ) + a; (Ci(;) —Ci(;)ll}l(k -~ 1) _ ll)z(k . 1)d§]l-) ( a)

112001 < oG = DI + 2087 [ (k= DBP) (—aPips G = 1) = 0k = 1P + (o = D) (—ePips Gk = 1) -
2
W, (k — 1)d§}))] + a? || (aPpile = 1) =k - DBY  —cPy(k — D) — 9ok — 1)) (b d§}>)T|| . (5.26b)

Applying norm properties on Eq. (5.26a) and Eq. (5.26b) gives:

1462 GO < Tl G = DI + 2aer | (oPps Gk = 1) (=aPpaCe = 1) = 0 = DB ) + (Vs (e = ) (=ePpa e = 1) -

o= )| + o (@ |+ @) [ -awate = 1) = o = 0P| + | -cPwae - 0 = ol - 0P| | G272
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1420017 < Gk = DIP + 20087 [ (w20 = DBL) (~apsCe = 1 = ok = D6P) + (ke = DAP) (—eLpatk - 1) -

b2k - af)| + a? (||of I [l=awae = 1 = a0 = 0B+ | =cPwae = 0 = o0 = 0P| ] G.270)

By the definition of the error in Eq. (5.22) and by Eq. (5.27a) and Eq. (5.27b), the following is obtained:
T
U < llpy (k = DII2 + 2a,tr [(aEP%(k ~ 1) (~aPyitk - 1)~ 0k~ DBD) + (P (k = 1) (~cPapr k= 1) -

(”||>[|| aPy, (k — 1) = P, (k — 1)b(”|| + ||~ ePa e = 1) =, - 1)d(’)||]+

po(k = DdP)| + a7 (| o

20 = DIP + 2087 [ (20 = D6L) (~a sl — 1) =, 0k ~ Db) + (wz(k—1)d§?)T(—c§})¢1(k—1)—

watk = )|+ a2 ([ + ]| ) [[|-aPs e - - v Pyl D -wotk-nal| ] ©29)

T T
IO < s (k = DIIZ + ok — DI + 2aytr [(aﬁ’wi(k - 1)) (—aPpy (e = 1) — ok - DBY) + (af})wlac - 1)) (—cPwa (ke -
1) = 1, (k - 1)d§j-))] + 2aytr (a0 = DBP) (~aPpa G = 1) =k = DD + (ol = DY) (~ePpaCh = 1) = ok — Daf))|
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2] + af (”bl(]l) ’

OIN -0 = 1 = w2 = 06| + [|=ePwa Gk = 1 =i = P ] (5.29)

sa? ([l a@ )"+ | ) [[|-aws e = 1 = a0 = DB + ||~ Dups G = 1) = 0k ~ D

IO < s e = DIP + paCh = DI + 2aer | (s Gk = 1) + a0k = DBP) (~aPpy (e = 1) =,k = DEP) +

(cPsCe = 1) + 9,0 = DALY (=P Gk = 1) = e = D)+t (a2 + L] + 5] +
|22 -aws e = 1 = o e Dy k= 1) — 9,k (5.30)
IOOI? < IpCe = DI = 2087 [ (@l O = 1) + 9,0 = DB (P Gk = 1) + ke = D6P) + (e Gk — 1) +
0= ) (e 0+ vt~ )]t (e R+ 9 ) e+
Palk Pk = 1)+ — 0P| ] (5.31)
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SWﬂk—D+ka—D¢ﬂ|}k

Zwﬂk—n+¢xk—nwﬂ|+

I GOI < e = DI - 26 |

gt [” adp, (k — 1) + Y, (k — Db || o+ {|eSPws e = 1 + 9ot — DaP ||| (5.32)
By Eq. (5.19b), the following can be obtained:
ICOI? < IpCl = DI = 26, (1= 2) [Py Gk = 1) + 0k = DB |+ | Gk = 1) + o - || ] (5.33)

2

Atk =1 @I < PO = 2a, (1 - 2) |2 @) + 205D ||+ || 2 0) + 0

Atk =2 ||¢(2)||2$||¢(1)||2—2al(1—%): a1 (1) + 9, (bY || + |[cPv: (1) + ¥, (1))

Atk =3 @I < @I - 2a, (1 - 2) || aPa@ + 6o@bP |+ [|ePa@) + @
Atk=n-1

Pnn =2+ n - 2| ]

SWﬂn—@+¢An—Dwﬂ|+

W= DI < Ihpn = 21 ~ 26 (1-71) |
Atk =n

eI < Ip(n = DI = 2e (1 - —) [llas 02— 1+ 90— DL+ [| P = 1 + 0 - 0P|
Therefore, the following is obtained,
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|2 + [| Pk = 1) + e - 1)<zll.(j.)||2 .

a
WGP < Gk = DI 26, (1 -7) [Z o vrtn = D+, - VBT
k=1
If the convergence rate « is chosen to satisfy Eq. (5.19b) and k — oo, then

> (Jeff 0+ a8+ e s 0040 |) <

k=1

Therefore,
Lim (a7 () + 2 (k)b) = 0 and lim (%1 () + o ()d;;) = 0.
Since a® > 0,b® > 0,c® > 0 and d® > 0 then,
Lim (k) = 0 and lim ,(k) = 0.

By Eq. (5.22a) and Eq. (5.22b), the following is obtained,
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Lim (x® — 20 (k) = 0 and Lim o® -9V =o.
Consequently, if k — oo, then x® = 2O (k) and y® = $D (k).
Therefore, if the system of CSME in Eq. (5.1) has a unique positive solution (x®, y®),
then the numerical solution (© (k), 9 (k)) in Eq. (5.21) converges to (x®, y®) for
any initial values £V (0), 9 (0) for1 < 1 < 4. (i.e., if k - oo, then x® = £V (k) and
y® =90 (K)).
O

Below is the Algorithm 5.1 for the EMFGIM. This algorithm can be used by different

software for solving the PCTrFFSME in Eq. (1.19).
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Algorithm 5.1: EMFGIM Algorithm for PCTrFFSME.

for1=1,234
Choose a;, £, £V (k) =0, yP (k) =0 # 0 is the Zero matrix with the same

dimension as x® (k) and y® (k).

Whilek =0,1,2,...,ndo

700 =2k =D+ a7 (16 71,

k) =9k —D+a-(nk—-1) s,(k—1)B".

nlk—1) = e —alP2,(k = 1) - 9,k — DY,
®

sk —1) = fl-g-l) - Ci(;)fz(k -1 =9k —1d;;.

a) OB
lj l l
"o (c(z)) b= (bif dij :

ij

0 i [12; (k) =% (=12 +||91 (k) -y (k—1)|2
§7(&) \/ 1R (RN1Z+ 71RO NI

If §O(k) < ¢ then
print (RO (k), O (k));

print ("number of iterations =", k).

else

200 =2k =D+ a7 (15 7).

k) =9k -D+a- k-1 sk-1)B)".

update k.
k=k+1.
end

print (Y (), 7P (),

print ("number of iterations =", k).

end
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In the following Section 5.1.3, the MFLSIM in Section 3.4.4 is extended and applied to the PCTrFFSME in Eqg. (1.19).

5.1.3 The Extended Modified Fuzzy Least Square Iterative Method for PCTrFFSME

In this section, the positive fuzzy solution to the PCTrFFSME {g{f 1’ ;Cg, i g in Eq. (1.19) is approximated numerically by extending the
MFLSIM in Section 3.3.3 and applying it to the system of CSME in Eq. (5.1). The development of the MFLSIM is similar to the EMFGIM
in Section 5.1.2. However, to improve the convergence of the EFGIM, the least-square term has to be added to the algorithm in Eq. (5.17)

as follows: for 1 <1 < 4, we have:

—1
T T
| Fas: al-(]l-) as) ag.) ei(;) - ag.)a?l (k—1)—y,(k — 1)bi(;)
o) =xk-—D+a| | ) 0, O_ e - |’
Cij Cij oy fij - Cjj xl(k—l)—yl(k—l)dij (5.34)

-1
T T
WE =9k -1+ (ef —aP2Uk—1) -9,k —DbY £ = P2k — 1) =9k — DAT)(BS ((bf}) d)by  a > :
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®

a

Lety, = ( (l)> = (Y dD) nk-1) =€ —aP2k — 1) - 9,k — Db
9]

and s,(k — 1) = £V — ¢[P 2,k — 1) — 9,(k — 1)d?.

For 1 <[ < 4, the approximated fuzzy solution in Eq. (5.34) can be written as follows:

200 =20k =+ (@007 (T 7)),

si(k—1) (5.35)
Wk =9k =) +a - (k=1 stk =1)BI"(BY B,
where the convergence rate (step size) is given by,
0<a< 2 -
(04 = .
: Amax [al((al)Tal)_l(al)T] + Amax [(BL)T((ﬁl)Tﬁl)_lﬁl] P1 + )
(5.36)
At step k — th of the iteration, the following relative error is considered:
12, (k) — %,(k — DIIZ + [|9,(k) — 3, (k — DI|?
SO (k) = . 5.37
i J %GO + 13,01 (>:37)

The approximated fuzzy solutions in Eq. (5.34) to the PCTrFFSME in Eqg. (1.19) can

be written as follows:

%= (W, 2@, 23, z®),
{37 = (37(1),}7(2),)7(3),37(4))_

It can also be written in matrix form as,

(1) 2(2) 2(3) ~(4) (1) 2(2) 2(3) ~(4)
( ( 110 %11 'x11 1 X11 ) (xln »X1n 'xln 'xln)
X =
~(1) ,\(2) 23 ,\(4) 1) A(Z) ,\(3) ~(4)
< (ml' ml' ml’ ) ( mn' mn:x )
51 5(2) 5(3) 5(4) 1) 5@ 5B) 54)
( 1'3’11'3’11'3’11) ( yln'yln'yln)
5]‘ =
~(1) (2) 5B3) @ ~(1) (2) 5B3) ¢
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In the following theorem we prove that the numerical solution obtained by the
MEFGIM method converges to the positive solution of the PCTrFFSME for any initial
value.

Theorem 5.1.3.1: If the system of CSME in Eq. (5.4) has a unique positive solution
(x®,y®) then the numerical solution (£ (k), P (k)) in Eq. (5.34) converges to
(x®,y®) for any initial values £ (0),9®(0) for 1 <1 < 4. (i.e., if k = oo, then

x® =20 (k) and y® = 5O (k)).

Proof: Let, ¥ (k) be the error ateach k, fork = 1,...,nandfor1 <[ < 4.

®
Yk) = C;g) P () + . () (b  df). (5.38)
ij
where
Py (k) = x® — 2O (k). (5.38a)
P, (k) = y® =90 (k). (5.38b)

From Eq. (5.1), Eq. (5.34), Eq. (5.38a) and Eq. (5.38b), the following is obtained:
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-1

a®\" /q® a®\" /—aDp, (k — 1) — 1,k — 1)bP
k) = k—1 . 9] 9] tj 7] t ,
=l D (c‘”) (c(”> (c“)) (—cf})wl(k—l)—%(k—l)d}?)

{ ij ij ij
-1
T T
V200 = ok =1 + @ (=alpi (k= 1) = ok = Db Py (k =D =Gk = DA ) (b d)) ((bf}) d?) (Y a?) )
(5.39)
Taking ||. ||? to both sides of Eq. (5.39) give:
( NT /@ i D\T 1 1 i
s Gl = |[a e = 1) + - (ai(j)> (C#) (aé-)) (-al‘ﬁwk =D =Y,k - l)bi(j)>
¢ 0) 0 0) 0)
< ) \e¢ cff ) \=cPwi(k — 1) — 9,k — Dd; (5.40)
12 GOI? = (|oCk = D + @ - (~aP4py (e = 1) =k — DD =Py (k = 1) — ok = DAP)(BY  a®)’ ((bEP )by d T)
The following steps in the proof are long. Therefore, the system in Eg. (5.40) has to be into two equations in the following steps of the
proof. Applying the following formula to Eq. (5.40) we get,
IAX + (D7 - AN = tr((AX + (AT - AT)TAX + (DT - A7) = 14X + 2tr(XTY) + |A(AT - A)7'Y %,
0) 2 ) 2 (O O) )
@ij _ aj _ Ti aij —ag; Yk —1) =k — 1)bij
[ o] <[ o] + o ”((ép) S i ]
-1 2
a\ [ (a®\" e\ (a®\" (—aPp,(k — 1) =, - DY
I\ o o o ® 3 ® ' N ’ B olll - (5.41a)
Cij Cij Cij Cij cij Y1k — 1) =,y (k — 1)d;;
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w0 (o @)= oot = (8 0]+

+

2altr[w§<k—1)<( ey (k= 1) =P, (k = Db —cPs(k = 1) =,k = D) (b dgp)T)

2

aZ

-1
T 0\’ I I
(~alfate= 0= gl = 0 et =1 =y =0a) (o) a) () D)) a)) (6 o)

(5.41b)

Applying matrix multiplication gives:

a®
‘ ( (l)>1/)1(k)
U
-

112
. O\ [ (a® [a? 0N Dy (k = 1) =, (k — )P
o Carme--sen-wala () () 5 (e

y tj tj t

() 2
H( (;>¢1(k_1) + 20,07 [ (P Gk — 1) (=aps G — 1) =, — 1DBP) + (e k-

(5.42a)
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200050 aD* = ol ~DBP aD) + 2000 [(walk = D6P) (~aPa Gk = 1) = a0k = 1DBP) +

(20 = DALY (=ePpy G = 1) = g,k = DaP)] +

2

aP ik = 1) =, = DbY  —cPpa k= 1) =, = D) (b ((b(” )by dg ) (b dif

(5.42b)

Applying norm properties on Eq. (5.42a) and Eq. (5.42b) gives:

1>)T (—cPwale = 1) — Wy (k — 1)d§j-))] + a? () [|| —aPp, (k= 1) =, (k = Db ||2 +|[=ePpite = 1) — o (k - Da ||2].

a® 2 a® A
( (z)> P < ( (l)>1p1(k — D +2atr [(aﬁ)lpl(k - 1))T (—aé’.)lpl(k —1) — (k- 1)bi(]l,>) + (cl.(;)lpl(k —

(5.43a)

w200 (6 aD)||" < [lwote =0 (62 D))"+ 2atr | (0 = DBP) (~aPup e = 1) =k = DBP) +

(20 = DALY (=P = 1) = 9,0k = D) + a2 ) | [|-aPps G = 1) = oG = DB + [|~ePpa Gk = 1) =k = DaP| ]

(5.43)
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By the definition of the error in Eq. (5.38)

af)
) lnbl (k)
Cij

From Eq. (5.44) and by Eq. (5.43a) and Eq. (5.43b), the following is obtained:

2

W2 < w06 a®)|. (5.44)

lp(OlI? <

® :
(Cc%) ik =D +2aer (k= D) (=afpate = D =36 = DY) + (Ppak = 1) (= tk -

ij

1) = a0k = DdP)| + a2 (00 [ -aPun e = D = = DB |+ [|-ePa G = D = o = D

2] +
ot = DG D" + 200t | (wak - 195D) (—aPy 0 — 1) =, (k = DBL) + (.0 — DD (=cPpy (e — 1) -

ol = DAD)] + a2 | =aPips G = 1) = 9,0 = DL ||+ [| =Py Gk = 1) = ok = D | ] (5.45)
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IO < Ik — DIIZ + 2a,tr [(ai(]l-)lpl(k — 1)+ (k — 1)b§j>)T(—a§}>¢1(k = 1) =9y = Db ) + (c sk — 1) +

Yol = DD (=Pl = 1) = o0 = 4P|+t (s + 0 [[|-aPa G = 1 = - Q|+

|[—cPwie = 1) = ok = D ||2] (5.46)
OO < 1k — DI = 2aer [ (a (e = 1) + ok = DBP) (aPpy G = 1)+l = DL + (c Py (e — 1) +

2
aPyy(k = 1) + ok = DL + [|cPpatle - 1) +

Yol = DAD) (P = 1) + otk = D) |+t (o1 + 9 |
W, (k — 1)d§j.)||2]. (5.47)
IO < IpCe = DI = 26 [[|ally (e = 0+ o0 = DBP||” + [[ePale = 1 + w0 = P ] +

g ||c§}>1p1(k — 1)+, (k — 1)d) ||2] (5.48)

atgs + 92) ||| aPwa e = 1 + (e = 1B
By Eq. (5.36), the following can be obtained:

2 2 0) | 0 |
IBGOI < e = DI = @12 = @@y + 92 | [P G = 1 + e = DBP ||+ [ePa e = 1 + w0 = D[ |

(5.49)

Atk =1, IWOI” < IO - a2 - @ + ) [P +p,@6L [+ [|cP: ) + wo@a? ||
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Atk=2, @I < IWIP - @@ - @ + 9 [[[afp: 0 +

Y, (1)b]] @)+, Wd? ]

Atk=3, WG < W@IP - @ - ale: +9)) |2 +
@ +w.@d?|’|

Atk=n-1,

b = DI” < e = DI = @2~ e (n-2)+

o (n - 2)b; (n—2) + P, (n — 2)d? ||2]

Atk = n,

I$EI? < 6 = DIFa@ - agr + ) || alpar = 1 + 60 -

o||?
(n— 1)+, (n—1a? ||
Therefore, the following is obtained,

YN < Ik — DII? — a1(2 — ay(@1 + 92))

Li (laws 0 + v 2)]

If the convergence rate « is chosen to satisfy Eq. (5.19b) and k — oo, then

> (e

k=1

(k) + ¢,

)+, (0 +,00dP | ) < e

Therefore,
lim n (a1 (k) + 2 ()b} = 0 and lim n (e Y1 (k) + 2 (K)A}) = .

Since a® > 0,b® > 0,¢® > 0and d® > 0 then,

lim 1 (k) = 0 and lim v, (k) = 0.
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By Eq. (5.22a) and Eq. (5.22b), the following is obtained,

Igirgo(x(’) —2®(k)) = 0 and Iéﬂgo(y(” - 9O &) = 0.
Consequently, if k — oo, then x(® = £ (k) and y® = D (k).
Therefore, if the system of CSME in Eq. (5.1) has a unique positive solution (x®, y®),
then the numerical solution (£© (k), ©© (k)) in Eq. (5.34) converges to (x®, y®) for
any initial values £V (0), 9 (0) for1 < 1 < 4. (i.e., if k - oo, then x® = £V (k) and

y® =3O (k).
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Below is the Algorithm 5.2 for the EMFLSIM. This algorithm can be used by

different software for solving the PCTrFFSME in Eq. (1.19).

Algorithm 5.2: EMFLSIM Algorithm for PCTrFFSME.

for =1,2,3,4

Choose a;, €, 2P (k) =0, P (k) =0 # 0 is the Zero matrix with the same
dimension as x® (k) and y® (k) = 0.

While k =0,1,2,...,ndo

700 = 2k = 1) + a0 00" (1 1),

9u0k) = 9u(k = 1)+ (k= 1) sk = DB (BB
nk—-1) = e(l) (l)fz(k 1) = 9,k — 1)b(l)

silk = 1) = fi = PRk = 1) = 9k — 1.

a(l) OO,
l l
V= ((l)> (b d;;).

tj

2100 =21 (k=11 +11910) - 91 (kDI
sO (k) = Jllxz(k) Rk—DI>+I31(
X 12219, 112

If 50 (k) < e then

print (29K, 5 (k));

print ("number of iterations =", k).
else

700 = 2k = 1+ a0 00" (1 - 1),

y) =9k —D+a- k-1 sk—=D)B) (BB

update k.
k=k+ 1.
end

print (8P (k), 7V (k)),

print ("number of iterations =", k).

end
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To illustrate the effectiveness of the developed methods for solving the PCTrFFSME,
various sizes of fuzzy systems, namely, small 2 x 2 and large 100 x 100, are
considered. In addition, the performance of the developed methods is compared by
calculating the number of iterations (k), convergence rate (a), relative error §® (k),
error bound (&), CPU time, real-time and memory usage. In addition to the graphical

representation of the relative error 6 (k) when k increases are also given.

5.1.4 Numerical Examples for PCTrFFSME

To illustrate the accuracy and effectiveness of the developed methods for solving the
PCTrFFSME in Eq. (1.19), various sizes of PCTrFFSME, namely, small (2 x 2) and
large (100 x 100), are considered. Analytical positive fuzzy solutions are found by
EMFMVM. The performance of EMFGIM and EMFLSIM for approximating that
fuzzy solution are compared by calculating the number of iterations (k), convergence
rate (a), error bound (&), CPU time, real-time and memory usage. In addition to the
graphical representation of the relative error 5§ (k) when k increases is also discussed,
in the following Example 5.1.4.1, the developed methods are applied to small

PCTIFFSME (2 X 2).

Example 5.1.4.1 Solve the following 2 x 2 PCTrFFSME:

> <
=~ =<t
(wifles]

—~—

(RN
Il

T T

_.|_
+
Given,

= -

((2, 3,5,7) (1,2,4, 6))’ 5

<(2, 4,5,8) (3,6,8, 10))
(1,2,3,5) (2,4,6,9) '

(3' 51 7’ 9) (1’ 2’ 41 6)

~_((17,48,110,252) (17,48,114,240)) i

((2’ 41 5) 7) (5’ 71 9) 11))
—\(21,63,130,293) (20, 66,142,289) !

(5,6,7,8) (2,3,4,6)
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5_((1,3,4,6) (3,4,6,8))andﬁ_((22,59,121,267) (36,85,161,305))
(2,3,57) (4,5,7,9) ~\(32,66,128,258) (41,83,159,292))°

Solution: The positive fuzzy solution to the given PCTrFFSME is obtained by the
developed methods as follows:

Extended Modified Fuzzy Matrix Vectorization Method (EMFMVM):

By decomposing the given PCTrFFSME and applying the EMFMVM, the analytical
positive fuzzy solution is obtained as follows:

Step 1: Convert the given PCTrFFSME to a system of CSME using Theorem 5.1.1.
Step 2: Apply Vec-operator and Kronecker product on the system obtained in Step 1.
Step 3: Convert the obtained system in Step 2 to the linear system PQ = U

where,
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17
21
17
20
22
32
36
41
48
63
48
66
59
66
85
83
110
130
114
142
121
128
161
159
252
293
240
289
267
258
305
292

and Q =

xy
x5y
x5
x5y
ny
Va1
Vig)
Vs7
7
x5y
x5
x5y
e
Vsy
iy
Vi3
xy
i)
)
x5y
"y
Vsy
iy
Vi3
xyy
x5y
Xy
x5y
"y
ysy
Vig)
Ysg
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Step 4: Multiply both sides of the linear matrix equation obtained in Step 3 by P~ and

solving for Q we get:

COENUIOREROUINUTWE WD WUIWR, NN WN S

—_
—_

0 O

—_
o

Step 5: By Definitions 2.6.2.2 and 3.3.3, the obtained solution in Step 4 can be written

as follows:

7 ((4, 57,10) (3,4,6,8) )
(2,3,59) (4,6,8,11))

7 ((2, 3,4,7) (1,3,5,8) )
(2,4,6,9) (3,5,7,10))
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This positive fuzzy solution is approximated using the EMFGIM and EMFLSIM as
follows:

Extended Modified Fuzzy Gradient-Iterative Method (EMFGIM) and Extended
Modified Fuzzy Least-Square Iterative Method (EMFLSIM):

EMFGIM and EMFLSIM are applied to approximate the positive fuzzy solution

2O (k) and $P (k) for the given PCTrFFSME using the following initial value for

0 0). The approximated solutions X and y is

1SIS4,9?(”=(8 8) and 9® = () 0

shown in Table 5.1 with the convergence rate («), error bound (&), and total number of
iteration (k), while Table 5.2 shows the computational time and memory usage for

EMFGIM and EMFLSIM.
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Table 5.1

Comparison Between EMFMVM, EMFGIM and EMFLSIM for Example 5.1.4.1.

Method Analytical Solution-Approximated Solution a £ k
£ EMFMVM (4 3) NA 0 NA
2 4
EMFGIM (4.0003146781142283762 3.0008763877876229244) 0.01515 107> 236
1.9996620682548063892 3.9991059886583548709
EMFLSIM (3.9994905651474607941 2.9991905860792312089 ) 0.5 107> 213
1.9994905651470906697 3.9991905860781175687
$@®  EMFMVM (2 1) NA 0 NA
2 3
EMFGIM (1.9988524913049122353 1.0013283860149024908) 0.01515 107> 236
2.0010864923386014879 2.9987621291364226938
EMFLSIM (2.0005343495876688624 1.0009007873088771599) 0.5 107> 213
2.0005343495884565574 3.0009007873076832875
2@ EMFMVM (5 4) NA 0 NA
3 6
EMFGIM ( 4.999864079584862688 4.0030110768713679898) 0.006711 10~> 333
3.0003389970085296313  5.997280209950071278
EMFLSIM (4.9988761522873104256 3.9985435355183413819) 0.5 107> 184
2.9990633422322140346 5.9990330988581697249
7@ EMFMVM (3 3) NA 0 NA
4 5
EMFGIM (2.9983853131430880787 3.0019716289620118953) 0.006711 10~> 333
4.0023361161663756989 4.9968909026675074104
EMFLSIM (3.0006934360840940105 3.0016140300903587928\ 0.5 107> 184

(

4.0008105860628660745

5.001423238975299027

)
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Table 5.1 continued.

%3

£

37(4)

EMFMVM (7 6) NA 0 NA
5 8
EMFGIM (6.9966176458091605751 5.9986527914727380584) 0.003436 107> 269
4,9980891197185313267 7.9959255849905723918
EMFLSIM (6.9949554419054769516 5.9938085953915972691) 0.5 1075 367
4.9961576166547481863 7.9958332089102526017
EMFMVM (4 5) NA 0 NA
6 7
EMFGIM (3.9992591622654458963 5.006245036314479103) 0.003436 107> 269
6.0032068410122893031 7.0014106935371849297
EMFLSIM (4.0034261490303281354 5.0060523578143844872) 0.5 1075 367
6.0032467233815930657 7.0052034740382072243
EMFMVM (10 8) NA 0 NA
9 11
EMFGIM (9.9965893617203098369 8.0200665293211628219) 0.001831 107> 551
8.99879605836685188  10.978609176105587048
EMFLSIM (9.9826328737657879555 7.9801395018407377488) 0.5 1075 502
8.9911911526917516843 10.991796352652112364
EMFMVM (7 8) NA 0 NA
9 10
EMFGIM (6.9831466534571057456 8.0224337286592531978) 0.001831 107> 551
9.0229413143636603062 9.9800757765377075115
EMFLSIM (7.0083279806078923944 8.017488243908286638) 0.5 1075 502
9.0079819495371672092 10.015609497910344443
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Table 5.2

Computational Time, Memory Usage for EMFGIM and EMFLSIM for

Example 5.1.4.1.
Method k C_PU F-zeal Memory usage
time time
M EMFGIM 236 6.09ms 6.15ms 1.05 MB
EMFLSIM 213 8.15ms  9.89ms 1.32 MB
y@® EMFGIM 236 6.29ms 6.15ms 1.05 MB
EMFLSIM 213 7.63ms 7.73ms 1.30 MB
@ EMFGIM 333 6.24ms  6.17ms 1.05 MB
EMFLSIM 184 7.39ms  7.38ms 1.32 MB
y@ EMFGIM 333 6.15ms 6.19ms 1.05 MB
EMFLSIM 184 7.13ms  7.30ms 1.30 MB
£® EMFGIM 269 6.16 ms  6.09 ms 1.05 MB
EMFLSIM 367 7.71ms  7.76 ms 1.32 MB
3 EMFGIM 269 6.16 ms  6.06 ms 1.05 MB
EMFLSIM 367 8.00ms 7.99 ms 1.30 MB
@ EMFGIM 551 598ms 5.99ms 1.05 MB
EMFLSIM 502 791ms 7.86 ms 1.32 MB
y EMFGIM 551 6.10ms  5.99 ms 1.05 MB
EMFLSIM 502 7.66ms 7.71ms 1.30 MB
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The following Figure 5.1 shows the change in the relative error §®®(k) when k
increases up to k = 20.

Errors Errors
(k=20) (1=20)
I
Il
2.
[ \\
Al
=70
E \\
A\
V
[ \H
.
10 15 20 0 5 10 15 20
Tteration number (k) Iteration number (k)
|—— Error 1-FLSI — - Error 1-FGI| [—— Error 2-FLSI — - Error 2-FGI|
(a) (b)
Errors
(1=20) &Z;E.S)
257 h 2.5 l
2 { l | \
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Figure 5.1. Comparison between § O (k) of EMFGIM and EMFLSIM for the first 20
iterations for Example 5.1.4.1.
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From Tables 5.1, 5.2 and Figure 5.1 (a — d), the relative error § (k) is becoming
smaller as k increases.

Figure 5.1 (a —d) show that the error of the EMFGIM and EMFLSIM for

approximating £ is reducing significantly as k increasing, where the EMFLSIM
converges to the analytical solution for fewer number of iterations with bigger step size

comparing to the EMFGIM.

This indicates that the developed algorithms are effective and convergent for the given
PCTrFFSME. In addition, the EMFLSIM takes more computational timing and more
memory comparing to EFGIM. However, in terms of error, number of iterations
EMFLSIM provide extremely accurate approximations with very few iterations.
Verification of the solution:

To verify the obtained fuzzy solution, we first multiply AX as follows:

(2,3,5,7) (1,2,4, 6)) ((4, 5,7,10) (3,4,6,8) )

AX:((1,2,3,5) 2469/ (2359 (46811

B ((10,21,55, 124) (10,24,62,122))
~\(8,22,51,131) (11,32,66,139)/)

and,

~Q

5o 2,3,4,7) (1,3,5,8) ((2,4,5,8) (3,6,8,10))
_((2,4,6,9) (3,5,7,10)) (3,5,7,9) (1,2,4,6)

B ( (7,27,55,128) (7,24,52,118))
~\(13,41,79,162) (9,34,76,150)/

We also multiply X as follows:

(1,3,4,6) (3,46, 8)) ((4, 5,7,10) (3,4,6,8) )

cx :<(2,3,5,7) 4,5,7,9/\ (2,3,59) (4,6,8,11)
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B ((18, 41,80,169) (26,58,102, 177))
- \(24,39,69,134) (23,42,74,130) )’

and,
YE _ ((21 3; 4; 7) (1l 3; 5r 8) ) ((2! 4; 51 7) (5I 7; 91 11))
~\(2,4,6,9) (3,57,10)/\(5,6,7,8) (2,3,4,6)
B ( (4,18,41,98) (10,27,59,128))
~\(8,27,59,124) (18,41,85,162)/
Therefore,
- o= ((17,48,110,252) (17, 48,114,240)) =
AX+YB = ((21,63,130,293) (20,66,142,289)) —
<5 on _ ((22,59,121,267) (36,85,161,305)) e
CX+YD = ((32,66,128,258) (41,83,159,292)) = F

Clearly, the obtained positive fuzzy solution satisfies the given PCTrFFSME, and it is

feasible (strong fuzzy solution).

In the following Example 5.1.4.2, the EMFMVM, EMFGIM and EMFLSIM are
applied on PCTrFFSME sized 100 x 100. The solution to this example is performed
by Maple 2019.

Example 5.1.4.2. Solve the following 100 x 100 PCTrFFSME:

Given,

a® = LinearAlgebra: —RandomMatrix(100,100, generator = 1..2),
b = LinearAlgebra: —RandomMatrix(100,100, generator = 1..2),
c® = LinearAlgebra: —RandomMatrix(100,100, generator = 1..2),

d® = LinearAlgebra: —RandomMatrix(100,100, generator = 1..2),
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e = LinearAlgebra: —RandomMatrix(100, 100, generator
— 7x10%.. 1.5 x 10%),

fW = LinearAlgebra: —RandomMatrix(100, 100, generator
— 7x10%.. 1.5 x 10%),

a® = LinearAlgebra: —RandomMatrix(100, 100, generator

@ = LinearAlgebra: —RandomMatrix (100, 100, generator

c®@) = LinearAlgebra: —RandomMatrix(100, 100, generator

d®? = LinearAlgebra: —RandomMatrix(100, 100, generator

e = LinearAlgebra: —RandomMatrix (100,100, generator
— 4% 103.. 6x10%),

f(z) = LinearAlgebra: —RandomMatrix(100, 100, generator
— 4% 10*.. 6 x 10%),

a® = LinearAlgebra: —RandomMatrix(100,100, generator

b® = LinearAlgebra: —RandomMatrix(100,100, generator

c® = LinearAlgebra: —RandomMatrix (100,100, generator

d® = LinearAlgebra: —RandomMatrix(100,100, generator

e® = LinearAlgebra: —RandomMatrix (100,100, generator
= 1.1 x10*.. 1.3 x 10%),

f® = LinearAlgebra: —RandomMatrix(100, 100, generator
= 1.1x 10%.. 1.3 x 10%),

a® = LinearAlgebra: —RandomMatrix(100, 100, generator

b™® = LinearAlgebra: —RandomMatrix(100,100, generator

325

= 3..4),
= 3..4),
= 3..4),

= 3..4),

= 5..6),

= 5..6),

= 7..8),

= 7..8),



c® = LinearAlgebra: —RandomMatrix(100,100, generator = 7..8),
d® = LinearAlgebra: —RandomMatrix(100,100, generator = 7..8),
e = LinearAlgebra: —RandomMatrix (100,100, generator
= 2.2x10°%.. 3x10%),
f® = LinearAlgebra: —RandomMatrix(100, 100, generator
= 2.2x10°%.. 3x10%),
Solution: The solution for the given PCTrFFSME is obtained by the developed
methods as follows:
Extended Modified Fuzzy Matrix Vectorization Method (EMFMVM):
To apply EMFMVM, we need to find the inverse of the 10000 x 10000 matrix, which
requires long computational timing and huge memory. Thus, EMFMVM is not a

practical approach for such a large dimensional system.

Extended Modified Fuzzy Gradient-Iterative Method (EMFGIM) and Extended
Modified Fuzzy Least-Square Iterative Method (EMFLSIM)

EMFGIM and EMFLSIM are applied to compute the approximated fuzzy solution
£ (k) and @ (k) for the given PCTrFFSME with a; = a, = a3 = a, = 0.999 for
EMFLSIM and a; = a, = a3 = a, = 2 X 1077 for EMFGIM using the following
initial value,

£D(0) = LinearAlgebra: —RandomMatrix(100,100, generator = 0).
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7@ (0) = LinearAlgebra: —RandomMatrix(100,100, generator = 0).
In the following Table 5.3, the computational time and memory usage for the first 10

iterations for EMFLSIM and EMFGIM are compared.

Table 5.3

Comparison Between EMFGIM and EMFLSIM for Example 5.1.4.2.

CPU Real
Method k a _ _ Memory usage

time time
£ EMFGIM 10 2x1077 7.58s 6.17 s 1.40 GB
EMFLSIM 10 0.999 2251s 19.06s 2.52 GB
y EMFGIM 10 2x1077 7.73s 6.29s 1.35GB
EMFLSIM 10 0.999 22.34s 19.38s 2.45GB
@ FGIM 10 2x1077 7.83s 6.4s 1.43 GB
FLSIM 10 0.999 25.69s 22545 2.78 GB
y@ FGIM 10 2x1077 8.28s 6.73 s 1.43GB
FLSIM 10 0.999 25.75s 22.62s 2.718 GB
£® FGIM 10 2x1077 7.72s 6.29s 1.45 GB
FLSIM 10 0.999 27.32s 24245 291 GB
y& FGIM 10 2x1077 8.26s 6.715s 1.45 GB
FLSIM 10 0.999 27.58s 24.36s 3.02GB
@ FGIM 10 2x1077 8.85s 7.11s 1.60 GB
FLSIM 10 0.999 28.84s 25.47s 3.09 GB
y FGIM 10 2x1077 9.10s 7.37s 1.60 GB
FLSIM 10 0.999 28.80s 25.44s 3.09 GB
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The following Figure 5.2 shows the change in the relative error §®®(k) when k

increases up to k = 10.
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Figure 5.2. Comparison between § O (k) of EMFGIM and EMFLSIM for the first 10

iterations for Example 5.1.4.1.
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Table 5.3 and Figure 5.2 (a — d) show that the error §® (k) is reducing as k increases.
Figure 5.2 (a — d) show that the error of the EMFGIM and EFLSIM for approximating
£ is reducing significantly as k increasing, where the EMFLSIM converges to the
analytical solution for fewer number of iterations with bigger step size comparing to
the EMFGIM.

This indicates that the developed algorithms are effective and convergent for the given
PCTrFFSME. In addition, the EMFLSIM takes more computational timing and more
memory compared to FMGIM. However, in terms of accuracy, relative error, number
of iterations, EMFLSIM provide extremely accurate approximations with very few

iterations.

5.2 Conclusion and Contribution

This chapter demonstrated the construction of analytical and numerical methods for
solving PCTrFFSME, where the coefficients are positive trapezoidal fuzzy numbers.
The EMFMVM aims to find the analytical fuzzy solution for PCTrFFSME. However,
it is limited for small sized systems while EMFGIM and EMFLSIM aim to find an
approximated fuzzy solution for large PCTrFFSME. The numerical examples analysis
and graphical representation of the relative error indicate that the approximated
solutions obtained by EMFGIM and EMFLSIM methods converge to the analytical
solution for any initial value and any sizes of matrix system (up to 100 x 100). In
addition, the relative error is becoming smaller as the number of iterations increases.

This indicates that the developed methods are effective and convergent for the given

329



PCTrFFSME regardless of any size of matrices. The following contributions
summarize the findings in this chapter:

1. The constructed methods demonstrate the transformation of PCTrFFSME to a system
of CSME.

2. Extending the EMFMVM which gives the analytical positive fuzzy solution for
PCTrFFSME, with square and non-square coefficient matrices.

3. Extending the EMFGIM and EMFLSIM, which gives the numerical positive fuzzy
approximation solution for solving PCTrFFSME, regardless of the size of the
PCTrFFSME.

4. Provide the necessary conditions for the feasibility of the PCTrFFSME, to have a
strong positive fuzzy solution.

5. Analyzing the obtained positive fuzzy solution by checking the feasibility, graphical
representation and verifying the PCtrFFSME.

6. The necessary and sufficient theorems for the PCTrFFSME to have a unique positive

fuzzy solution are checked before applying the developed methods.
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CHAPTER SIX
SOLVING ARBITRARY COUPLED TRAPEZOIDAL FULLY
FUZZY SYLVESTER MATRIX EQUATION

In the previous Chapter Five, the positive fuzzy solution to the PCTrFFSME has been
obtained using EMFMVM, EMFGIM and EMFLSIM. In this chapter, arbitrary fuzzy
solutions of arbitrary CTrFFSME are obtained analytically by modifying the absolute
system method for solving ATrFFSME in Section 4.4. Therefore, AMO and RAMO in
Sections 3.1.1,3.1.2, 3.1.3 and 3.2 respectively are applied to convert the arbitrary
CTrFFSME in Eg. (1.19) to a system of non-linear equations. Then the non-linear
system is reduced to an equivalent system of absolute equations where the arbitrary
fuzzy solutions are obtained by solving that system of absolute equations. In the

following Section 6.1, the fundamental theorem of arbitrary CTrFFSME is discussed.

6.1 Fundamental Theorem of Arbitrary CTrFFSME.

AX+VYB=EF.

In this section, the arbitrary CTrFFSME {
CX+YD=F

in Eqg. (1.19) is converted to

an equivalent system of non-linear equations based on AMO and RAMO in

Sections 3.1.1, 3.1.2, 3.1.3.

Definition 6.1.1. A matrix equation in the form {4)5 tYB=E i called arbitrary
CX+YD=F

coupled trapezoidal fully fuzzy Sylvester matrix equations (ACTrFFSME) if

a,a?,0?,a®), ¢ = ()

i— (5 — €Y (2) (3) (4)
A_(aij)mxm_(ij' ij »QAij = (c ),

mxm lJ'lJ’lJ'

= P,6?, 6P, b,

V1 <ij<mB=(by) i b b

nxn
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D=(dy), =(ddy,d},d’)v1 <ij<n,

1 ) (3) )

% = (D @ B3 (4) —
X_( lj)an ( ij X ij X ij X ) Y (yl]) - (yl] ’yl] ’yl] ’yl]

mxn

& _ (5 —_ o, ,(2) (3) (4) 1) £(2) £B) (4
E= (eij)mxn = (e;5,€5 .6 €5 ) F= (fu) = W )

mxn

V1 <i<m1l<j < narearbitrary trapezoidal fuzzy matrices.

In the following Definition 6.1.2, the system of non-linear equations is introduced.
Definition 6.1.2. The system of equations in the form,

1 1 1 4 4 1 4 4 (1 1 4 1 4 1
min (@PxP, aPx®,a®x D, a®x®) + min (PP, y PP, y PP, yOp®y = (D

min(a®x :(jz> 52) gs) 53) gZ) ©2D) + min(yPb®,yPbP, yPb®,yPpP) = 32),
max(a@x®,a®x?,aPx?, af ® @) + max(yPb2, yPb2, y b2, yPbP) = ¢,
<max(a(n 10, ax® a® 2D, o @ x®) + max(yPbP, y PP, y D, yPp®) = ¢,
min [@dPxD, dPxP, dPx f}),d(“) D)+ min (7PeP, yPel, yPe®, W@y = £
min(d?x?, d(z) @, d(s) D 4DxP) +min(yPe®,yPe?,yPe®, yPe) = (),
max(dPx?, df,z) ®, d(z) @, d(z) D) 4 max(yPe®,y@ e, yPe®,yPe®) = (@,
max(dPx,d0x®, d(4) o, d(4) D) 4 max(yPe®,yPe®, yPe® y®®) - (4)_

is called a system of non-linear equations.
In the following Theorem 6.1.1, the ACTrFFSME is converted to an equivalent system
of non-linear equations.

Theorem 6.1.1 Fundamental Theorem of ACTrFFSME

T T

ACTrFFSME {‘g I is equivalent to the following system of non-linear

> <
= =<
(i

equations:
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min (am 1(11)' f,l) l(;a 1(14) f,l)' 1(14) <4>) + min (¥, mbf,l)'yu)bm'yu)bfjl)' 1(14)b(4)) _ ef}),
mln(a(z) 1(12)' 1(12) 1(13), 1(13) 1(]2)' ®) (3)) +min(y, (Z)bz(JZ)'ylj)b(3)'y1} >b(2),y”)b(3) 1(12)'
max(am 1(12)' agf)xff), a?f)xi(f), (3) (3)) + max(y, (z)b(z),y”)b(3),yl])b(2),yl])b(S) 1(13)’
<max(au) f,l), €)) 1(14), ff) 1(11), (4) (4)) + max(y, (1)bf,1),yu)b(4)'yu)bfjl), 1(14)b(4))_ 1(14)’ o1
min (d(l) 1(11)' d(l) l(;»)’ d(4) 1(11)' d(4) (4)) + min (y(n 1(11)’},1(]1) ff),yl(f) 1(11)’3,54) (4>) flfl)' :
min(da) 1(12)' d(z> 1(13)' d(s) 1(12)’ d(s) (3)) +mln(y(2) ff),yl(f) 5,3)'%(,3) ff)'yff) (3)) ng)’
max(dm ff),d(z) f,g)'d(g) 1(12)'d(3) (3)) +max(yf]2) f,z).yf,z) 1(13)’3,1(]3) 1(12),3,1(]3) (3)) 153)’
max(dm f}),d(” ff)'dm f}l)'dm (4)) +max(yf]1) f,l).yf,l) ff)'yl(f) 1(11),3,1(]4) (4)) (4)_
Proof:

be arbitrary

trapezoidal fuzzy matrices respectively, then the RAMO and EAMO in Sections 3.1.2,

3.1.3 and 3.2 respectively can be applied to obtain a;;x;;, yUbU, ¢;jX;; and yud as

follows:
n
~=Zdikikj vVi<i<m1<j<n,
k=

which can be written as AX = (M;j, Nij, P;j, Q;j) where

(1) €Y (1) (4) (4) €Y (4) (4))
lj‘ 1] lj‘ 1] I.]’

= min (a;

a X

(2) @ 2,03 3., (3) (3)
Xij o Qi Xy Ay X575 Ay ),

N;; = min (a;;

@), @ @,6) ), (3) (3))

Pi-=max(a Xii QX4 X, a

@, 1 ,O,@ @), 1) @) (4))

Qij = max(a;;"x;;7, a7 %5, Q5 %5 a;j

and,

n
7§=Z37ik5kj 1<i<ml<j<n,
k=1
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which can be written as YB = (F;j, L;j, H;j, R;;) Where

1)bl(]1) )b(4) NS (4)b(4))

FU = min (yl ’yl] ij l]

»Vij
2)1.(2 3 2 3

L;j = min (y; { )bl(]),yl] )b( ),yl] )b( )'3’11 )b( N,

H;; = max(y (Z)bf,z),yl, )b(”,yl, )b(”,yl] )b(3))1

4
Rij = max(y; 1)bl(]l),yl] )b(4)'3’1] )b(l),yl] )b( ))

Similarly,
n n
CX= ) dyuXj= ) (RjSi;p T Vij) 1<i<m1<j<n
k=1 k=1
where,
(1) €] (1) (4) (4) €Y (4) (4)
Rij = min (d;;"x;;°,d;; %7, dij %57, dy; )"
. 2 2 2 3 3 2 3 3
Siy = min (@2x2,d2xD, dPx?, dPx®),
2 2 2 3 3 2 3 3
Tl]:max(d() l(])’d() l(]),d() l(])'d() ())
1 1 1 4 4
Vi = max(@Px P, dPxP, dPx D, dPx®).
and,

n n
YD sz’ikékj :z Ui Wi, Yi5,Z) 1<i<m,1<j<n.
k=1 k=1

where,

M, 1),® @), 1)

— (4) (4)
ij = min (y l] ’yl] ij ’yl] ij 'yl] )

U;

— i (2) (2 (2) (3) (3) (@) (3) (3)
VVU = min (ylj ij +Yij €ij o Yij C€ij 1 Vij e )

2),@ @), 6,2

— (3) (3)
Yij _max(yl] ij +Yij €ij Yij €ij 2 Yij € ),

1 1 1 4 4 1 4 4
2 = max(yPe®, yPe, yPed, y® o0y
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n n

Zdikfkj-l_zyikgkj:éij VlSlSm,l S] < n,
k=1 k=1

n n
kEElkfk]-l_ yikdk]_fi] V1<lSm,1 S]STI
k=1 =1

Therefore, the ACTrFFSME is equivalent to the following non-linear system of

equations:

min (a(l) (1) a_(?)x.(‘}) a;"l-)x.(.l) (4) (4)) + min (y(l)b(l) y! )b(4) y! )b(l) y, )b(4)) — (1)
lj IRt Bl § B R § Bt § B2 1 i P 247 U ’
mi n(a(Z) 1(12), 1(12) 1(13)’ 1(13) 1(12)’ 1(13) (3)) +mi n(y(Z)bl(JZ)‘le )b(S)'ij )b1(12)’ 1(13)b(3) 1(12)’
max(a(z) (2) (2) 3) (3) 2 (3) (3)) + max(y Z)b(z) y! Z)b(3) y, 3)b(2) y, 3)b(3) — e(3)
Kij o Qg Xy Qi X7, A ij » Vij 1 Vij » Jij ij

1 1 1 4 4 1 4 4 (1 1 (1 4 (4 1 (4 4 4
) max(a( ) l(] )’al(] )xl(] )’al(] )xl(] )’ ( ) ( )) + max(yl )b( )'yl] )b( )’yl )b( )’yl )b( ) 1(] )’
min (d(l) fjl)’d(l) l(;})’d(4) 1(}1)’ d(4) (4)) + min (y(l) 1(11)’}][(]1) 1(14)’},1(}4) L(Jl)’yl(]‘*) (4)) — fi(‘l)'

2 2 2 3 3 2 3 3 2 2 2 3 3 2 3 3 2
mi TL(d( ) L(] ),d( ) L(] ),d( ) l(] ),d( ), ( )) + mi n(yl(J) L(} )'yl(J) l(] )’yl(]) l(] )‘yl(]) (3) 15 )’

(2) (2) (2) 3) (3) (2) (3) (3) (2) (2) (2) (3) (3) @) (3) (3) (3)
max(d X ,d 2y ,d x;; ,d )+max(yU ij 1% €Y G5 Vi

(1) (1) (1) (4) (4) (1) (4) (4) (1) (1) (1) (4) (4) @ @
max(d L] 'd L] 'd l] 'd )+max(yl] ij ’yl.] ij ’yl] ij 'yu

) (4)) (4)_

|
In the following Definition 6.1.3, the arbitrary trapezoidal fuzzy solution to the

ACTrFFSME is presented.

1) (2 .3 ¢4
(() @ 3 ())

Definition 6.1.3. The trapezoidal fuzzy matrices X = (%;;) ij o Xij XX

mxn

7 — (% — (v ,@ B3 @ (COIEIN€) N ¢ IS ¢ )
Y = (yi]-)mxn = (yu Yii Vi Vi ) where X;; _x] > xl] > xij ,
.. €] s , @05 @
1<1i,j<nmand Yij 2V 2 Y 2 ¥ ,1=sijsnm, are called arbitrary

fuzzy solution of the ACTrFFSME.
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To solve the ACTrFFSME in Eq. (1.19), the corresponding system of non-linear
equations in Eq. (6.1) is considered. In the following Section 6.2 the arbitrary fuzzy

solution to the ACTrFFSME is discussed.

6.2 Absolute System Method for Solving ACTrFFSME

In this section, the arbitrary fuzzy solution to the ACTrFFSME {‘§§ ::_' gg Z]LZ IS
considered. In order to solve the ACTrFFSME, the equivalent system of non-linear
equations in Eq. (6.1) is reduced to an equivalent system of absolute system of
equations based on Theorem 2.4.3.1. Then, the solution to the absolute system of
equations is obtained using Mathematica 12.1 and Maple 2019. The steps to the
constructed methods for obtaining the arbitrary solution to the ACTrFFSME are

discussed in the following steps:

Step 1: Convert the ACTrFFSME { to an equivalent non-linear system

in Eq. (6.1) using Theorem 6.1.1.

Step 2: Reduce the non-linear system in Step 1 to an absolute system of equation using
Theorem 2.4.3.1 and Definition 2.4.3.4.

Step 3: Solve the system of absolute equations and check which solution(s) satisfy the

following conditions:

L xP <P <xP<xP1<ismis<js<n
. oy P<yP<yP<yP1r<ismi<j<n

Il. At least one element of X is near zero TrFN.

V. At least one element of Y is near zero TrFN.
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Step 4: By solving the system of absolute equations in Step 3 and by eliminating the

non-fuzzy solutions, the following arbitrary fuzzy solution is obtained:

( ® @ 6 &) ® @ 6 @)
(x11 X110 X110 X ) (xln 1 Xin o X1n o X1n )
X = : : )
1) 2 .3 ¢4 n @ 0B (4
[ \20202) - (2222252) o
m @ 6 @ m @ 6 @ '
(y11 Y110 Y110 D11 ) (3’1n »Yin Yin o Yin )

Y =

1) 2)' 3) (4 ' 1) 2). 3) @
(yr(nl’yr(nl’yr(nl’yr(nl) (yr(nn'yr(nn'yr(nnlyr(nn)

\
Now, we proceed to the feasibility condition of the arbitrary fuzzy solution to the
ACTrFFSME.

Feasibility of the ACTrFFSME:

The arbitrary fuzzy solution to the ACTrFFSME is called feasible (strong arbitrary

fuzzy solution) if the following conditions are satisfied:

,1<i,j<nmand yl.(j‘” > y-(? ) > y-(-z) > yi(jl),

@5 65 @ l ¢

(€Y}
ij ij ij j

b = Xij
V1 <i,j <n,m. Inaddition, at least one element of X is near zero TrFN and at least
one element of ¥ is near zero TrFN.

In the following Section 6.3, the ABSM for solving the ACTrFFSME is illustrated.

6.3 Numerical Example for ACTrFFSME

In this section, the ABSM for solving the ACTrFFSME in Section 6.2 is illustrated by

solving the following Example 6.3.1.

Example 6.3.1 Consider the following ACTrFFSME and solve it by ABSM:

g

Il
T

> P
< =<t

o T

+
+
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where,

= ( (5,7,9,11) (2,4,7,10) )
- (—11, —9,—5,—2) (—4,—3, 2,4) ’
5= ( (2,4,7,9) (2,3,5,7) )
B (_5,_4; _3;_2) (_4;_2;4’; 6) ’
¢ = ( (5,7,10,12) (2,4,5,6) )
- (—10,—7,—4,—2) (—3,—2, 3,4) ’
b= ( (1,4,5,7) (3,4,5,7) )
B (_5;_4;_3;_2) (—6,—3,2,4) ’
P= ((—119,—51,50,126) (—87,-25, 89,160))
~ \ (~125,-65,24,95) (—134,—76,—6,65)
and F = ((—106, —47,43,102) (—79,—22,80,142) )
~ \ (~108,-50,23,86) (—138,—68,—10,50)/"
Solution

The solution to the given ACTrFFSME can be converted to a system of non-linear
equations where the solution to this system can be obtained as follows:

Step 1: Converting the given 2 x 2 ACTrFFSME to a system of non-linear equations
using RAMO in Sections 3.1.2, 3.1.3 and 3.2, respectively, as follows:

Min[5xY, 11x] + Min[2x{Y, 10xP] + Min[2y S, 9y D] + Min[-5y, —2y] = —119,
Min[7x2,9x2] + Min[4x?, 7x2] + Min[7y2, 4yP] + Min[-4y, -3y3] = —51,
Max[7xﬁ),9xﬁ)] + Max[4x§31), 7x§31)] + Max[4y1(f), 7y1(f)] + Max[—4y1(§), —3y1(§)] = 50,

Max[Sxﬁ), llxﬁ)] + Max[ng{), IOxS)] + Max[Zyl(‘;), 9y1(f)] + Max[—Syl(zl), —2y1(21)] = 126,
Min[SxS), 11x1%)] + Min[ZxS), 10x§?] + Min[Zyl(;), 7y1(i)] + Min[6y1(21), —4y1(§)] = —87,
Min[7x1(§), 9x1(§)] + Min[4x§?, 7xg)] + Min[5y1(f), Syff)] + Min[4y1(§), —ZyS) = 25,
Max[7xg),9x$)] + Max[4xg), 7x$)] + Max[3y1(f), Syff)] + Max[—Zyl(?, 4y1(§)] = 89,

1

Max[SxS), 11x$)] + Max[ng), 10x§;)] + Max[Zyl(f), 7y1(f)] + Max[—4y1(2), 6y1(§)] = 160,
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Min[—2x%, —11x%] + Min[4x{?, —4x{P] + Min[2y0, 9y] + Min[-5y, —2y{P] = —125,
Min[—SxS), —9x1(i)] + Min[Zxézl), —3x§31)] + Min[4y2(f), 7y2(f)] + Min[—4y2(;), —3y2(§)] = —65,
Max[—9xﬁ), —5xﬁ)] + Max[—3x§i), ZxS)] + Max[4y2(i’), 7y2(f)] + Max[—4y2(§), —3y2(§)] = 24,
Max[—11x}, —2xD] + Max[-4x{}, 4x{P] + Max[2y P, 9yP] + Max[-5y3’, —2y3’] = 95,
Min[—2x, ~11x%] + Min[4x(), —4x{P] + Min[2y0, 7y + Min[6y3, —4y3] = —134,
Min[—9x{3, —5x3| + Min[2x, —3x{3)| + Min[3y52), 53:2’] + Min[4y52’, —2y53'| = 76,
Max[—9x1(§), —5x$)] + Max[—3x§?, 2x$)] + Max[3y2(i’), SyZ(f)] + Max[—Zyz(?,A}yz(;)] = —6,

Max[—llxg), —ng)] + Max[—4x§;),4xg)] + MaX[Zyz(‘;

L 7y01 + Max[—4y53, 63531 = 65,
Min[5x2, 12xP] + Min[2x), 6x$7] + Min[y ), 7yD] + Min[-5y, —2yP] = —106,
Min[7x2,10x2] + Min[4x{?, 5x{¥] + Min[5y2, 43| + Min[-4y3, —3y] = —47,
Max[7xﬁ), 10xﬁ)] + Max[4x§i), 5x§31)] + Max[4y1(f), Syff)] + Max[—4y1(§), —3y1(§)] =43,
Max[Sxﬁ), 12xﬁ)] + MaX[ZxS), 6x§?] + Max[yl(f), 7y1(f)] + Max[—5y1(21), —ny;)] =102,
Min[5x3), 12x3] + Min[2xS}, 6x$2] + Min[3y,, 7y}] + Min[4y’, —6yP] = —79,
Min[7x2,10x2] + Min[4x2, 5x52] + Min[5y2, 4y2] + Min[2y 2, -3y3] = —22
Max[7xS), 10x$)] S Max[4xg), SxS)] + Max[4yff), Syff)] + Max[—3y1(§), nyg)] = 80,
Max[SxS), 12x$)] + Max[ng), 6x$)] + Max[3y1(f), 7y1(f)] + Max[—6y1(21), 4y1(;)] = 142,
Min[—Zxﬂ), —10xﬁ)] + Min[4x;), —SxS)] + Min[yz(}), 7y2(i)] + Min[—Syz(g), —ZyZ(;}) = —108,
Min[—4xP, ~7x3] + Min[3x2, —2x{P] + Min[4y?, 552 + Min[-4y>, -3y3] = —50,
Max[-7x2, —4x] + Max[-2x?, 3x] + Max[4yS, 53] + Max[-4y 2, —3y{?)] = 23,
Max[—leﬂ),—Zxﬂ)] + Max[—3x§?,4x§i)] + Max[yz(f)ﬂyz(f)] + Max[—Syz(é),—Zyz(;)] = 86,
Min[—2x3, —10x%] + Min[4x{), =3x{D] + Min[3y<P, 7y<P] + Min[4y3, —6y¥] = —138,
Min[-7x3), —4x2] + Min[3x2, —2x3] + Min[4y{?, 5y{2] + Min[2y?, =3P = —68,
Max[—7x1(§), —4x$)] + Max[—ng), 3xg)] + Max[4y2(f), SyZ(f)] + Max[—ByZ(?, 2y2(§) = —10,
Max[—10x(, —2x3] + Max[—3x(Y, 4x{D] + Max[3y{P, 7yP] + Max[-6y.3, 4yP] = 50.
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Step 2: Reduce the non-linear system in Step 1 to an absolute system of equation using

Theorem 2.4.3.1 and Definition 2.4.3.4.

8x(} + 6x (“+11y(1)—7y(4) 37| — 4l S D7 Y
2 2 2
162 119@ 7y(3) 3 x(z) ErAE
129 119® 7y(z) 3|x(3) 3P| @
3) 21 _ 3) —
8xjy +——+— > + || + St =50,
11 7 <
8xg)+6 g)_l_ 3’1 _ 3’12 +3| (4)|+4|x(4)|+ |Y11 | 3|31z |_ 126,
2 2 2 2
9y 5 y 1
B + 620 + 280 1 L 6,0 — 4y ) 3o - o] - 5] _Ligy 004 ) - gy
& 3|"22 |

1x 1
B+ o+ D 42 (1D~ 2D = o] - 2 - D] Sy + 29| = 25,

11x)
x® + 2 1y 1 L2 @ 4 @)+ 1)+ 2L 04 Ly - D) -8,

8xiy + 6x5y + y2“ += ( 4y + 6yy) + 3[x 3P| + 4x| + sy |+2| 4y3) - 633

= 160,

11y(1 7y(4)
—( 22y = 11x9) + = (4x(1) 4agy) + —5H -2 ——|—2x§})+11x(4)
7 y(l 3 Vay 4
|4x§i)+4 (4 |221 | |22 | —125,
119@  7,® 1 @ @)
—7xﬁ)+ (Zx(z)—3 @) 4 ;’21 _ y —2x @3) 2|2 ;21)"'3 ) |3’22 | |3’22 | = 65,
1y3 792 3lysi| | yss

—7xﬁ)+ > (= 3x2 4+ 2x (D) + 2L S-S+ 2 (2’|+ |-3x2 — 2P| + —S

= 24,

@ )
13>Zfﬁ)+ (—4x® + 4x (4))+11y(4)_73’2(1) 9|9‘211| 2| —4xV _ 4y (4)|+7|J’21| 3|J’221|

= 95,

340



—( 2x(1)—11x§‘”)+ (4x‘1) 4x ‘4))+ 31 += (6 @ 4y2;*))——|—2x1(§)+11x1(4)

L4 4 ax® Sl T, @
_§|4 27 t4x 2 _§|6YZ2 + 4y, | = 134,
1
72D+ 2@ - 3xD) + P + L D - D) 2k - L2 + 3] - )

1
— 545y + 2y | = =76,
1
722 43 (302 + 2x2) + D + 2 (-2 + 4y D) + 2| + 7|3 — 26| + i)

+3 2@ - ) =

(€9) (4 (€]
13x 9. 9|x 1
— 212 + = ( 4x(1) + 4x§4)) + 221 + = ( 4y(1) + 6y2(;)) + % + El — 4xg) 4x§4)|
4)
1
F = 51y +-1 -4y —6yiP| =65,
2 2
[€5) (4) (€Y)
17x 7 7|x
LA NN vl RPN T v S
2 2) @ @3
17xﬁ) 9x§21) 9y(2) 73/(3) 3|x§ : Ixél |y1 )| |Y1 )l — _47
2 2 2 2 2 2 2 2 ’
7y 9y oy 7y 3Pl bedl, il 2l
2 2 2 2 2 2 2 2 ’
4 (€] [©)] (€]
17x 7y 7|x |y |
5 s+ ay -2 Tl gy gy 2] gy
[€9)]
17x 1 7| 2
le + 4x§? + 5y1(11) + 5 (4y1(;) 6y(4) *12 | (1)| - 2|y11)| |4J’1(21) + 63’1(4)| 9
() () () ) (2) (2)
17x15° | 9%5 | 9y @ ) 3|x1 |x2 |)’1 | 1. @ 3)
2y 2 =-22
2 2 T2 T2 ( R 2 2 L ’
3) 3) 3 3 3) 3)
17x17  9%5 | iy ©) (3) |x1 | |x2 |y1 | (2) @3)
3 2 =3y, — 2 = 80,
2 2 2 +5 ( y12 + y12 ) + 2 2 2 2 | y12 |
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17x 7]x53)|

1 7|x 1
+ gy + Sy 5 (<6 +4y) + 5 20y | + 2P| + S |6y - 4v|

=142,
_( 25— 10x® W _ 3, ® w_ T L, W @) W 4 3, @
x X141 )+ (4x — 3x3; )+4y21 > > 2x;7 + 10, |4x21 + 3x;;
3@
oy -2l a0
11x(3) 9y(2) 7y(3) 3|x(3) 1 |y 2)| |y 3)|
—+ (3x(2) 2x) + 221 - 21 —2|3 xP 4+ 2x "’2 22 = —50,
11 9y®  7y@ 3@ 1 YO @
211 + = ( 2x2 +3x3) + 221 - |21 +§|—2x§21) (3)|+| 21 | |22 |
= 23,
73D y
Cxf + L (x4 + P T el 4 Do) a4 3 4 212
= 86,
1
—( Zx(l) = 10x£4)) = (4x(1) 3 3x2 ) + 53’2(1) + §(4y2(;) 6y2§)) | ZxS) + 10x(4)

\ —|4xm + 3257 = 20y - |4y2(§) +6y;,)| =-138,

_11?3) —(3x(2) nga))+ 3’21 Lz (2 2 3y2§)) 3|x12| 1|3x(2) 2% (3) |y;2)
1
— 5|2y +3y37)| = —68,
11x? 1 3x?P| 1
- ;12 ( 2x(2)+3x§3))+ 9t +5(- 3y2 + 2y80) + |xZZ|+E|—2x§? (3)|+|y221|

1
L -n@ -2 = 10,
—6xP + 3x(1) + 4x(4) + 5y(4) + 6y(1) + 4y. S 4|x(1)| + = | 3D — 4x(4)|
12 22 22 12 22 22

+2ys7)] +—| vy — 4ys9| = 50.

Steps 3 and 4: Getting the solution
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By solving the system of absolute equations in Step 2 and eliminating the non-fuzzy
solutions, based on the conditions in Step 3, the following arbitrary fuzzy solution is

obtained.

7= ((—3, -2,3,4) (3,4,5,6) )
- (_2; 2; 31 5) (_5' _4’; 2' 3) ’
Y _ ( (_4; _31 2; 4) (2! 41 5) 6) )
- \(—4,-3,-2,3) (-3,-2,2,5)/°
In the following Sections 6.3.1.1, 6.3.1.2 and 6.3.1.3 analysis of the obtained arbitrary

fuzzy solution to the given ACTrFFSME is discussed.

6.3.1.1 Verification of The Arbitrary Fuzzy Solution to The ACTrFFSME

To verify the obtained fuzzy solution, we first multiply AX as follows:

X = ( (5,7,9,11) (2,4,7,10) )((—3,—2, 3,4) (3,4,5,6) )
“\(-11,-9,-5,-2) (—4,-3,2,4) (-2,2,3,5) (-5,—4,2,3)
| ((—53, ~10,48,94)  (=35,0,59,96) )
~ \(—64,-36,24,53) (—86,—53,-8,14)/

and,

7B = ( (—4,-3,2,4) (2,4,5,6) ) ( (2,4,7,9) (2,3,5,7) )

B (_4; _3: _2, 3) (_3' _2: 2; 5) (_51 _4" _3; _2) (_41 _2: 4’; 6)

_ ((—66, —41,2,32) (-=52,-25,30, 64))
- \(—61,-29,0,42) (—48,-23,2,51) )

We also multiply X as follows:

% _( (5,7,10,12) (2,4,5,6) )((—3,—2,3,4) (3,4,5,6) )
~\(~10,-7,-4,-2) (-3,-2,3,4)/\ (=2,2,3,5) (-5,-4,2,3)

((—48, —12,45,78) (—15,8,60,90) )
(=55,—27,23,50) (—80,—47,—8,9)/)

and,
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75 = ( (-4,-3,2,4)  (2,4,5,6) )( (1,4,5,7) (3,4,5,7) )
B (_4r _31 _2l 3) (_3l _21 2; 5) (_51 _4‘; _3; _2) (_6l _3r 2) 4)
_((—58,—35,—2,24) (—64,—30,20,52))
~\ (-53,-23,0,36) (—58,—21,—2,41)/)
Therefore,
<o o= ((=119,—51,50,126) (—87,—25,89,160)) e
AX+ VB = ( (—125,—65,24,95) (—134,—76,—6,65)) — =
co o _ ((—106,—47,43,102) (=79,-22,80,142) ) e
CX+YD = ( (—108,-50,23,86) (—138,—68,—10,50)) F

Clearly, the obtained arbitrary fuzzy solution satisfies the given ACTrFFSME, and it is

feasible.

6.3.1.2 Representation of The Arbitrary Fuzzy Solution to The ACTrFFSME

In this section, the arbitrary fuzzy solution to the given ACTrFFSME in Example 6.3.1

is represented in Figure 6.1.

Arbitrary trapezoidal fuzzy solutions . and ¥
10 I — H - I 3 '_‘ r
i\ RN / [ pe— F11= (-3, -2.3.4)
l / \ L
1 . :
i N
0.8 1 g ] s ¥12=(3,4,5.6)
RN
I \ / \ \" - — = = % =(=2.2,3.5)
0.6 / ' ["
: (IR — e m = Xp=(=5.-4.2.3)
AT Y :
/ 1 l \ ~
04 / \ Voo Fu=(—4,-3,2.4)
/ / . \\
/ Vo : — — ¥12=(2.4,5.6)
0.2 / \ . '.‘ \ \ ]
! ' \ L— = = (4-3.-2.3)
[/ /Y \
0.0 , | | ' \ o — = $5,=(-3,-2.2.5)
2 0 2 4 6

Figure 6.1. Arbitrary fuzzy solution for Example 6.3.1.
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Figure 6.1 shows that the obtained solution is an arbitrary trapezoidal fuzzy solution
based on Definition 6.1.1. In the following Section 6.3.1.3, the feasibility conditions of
the obtained arbitrary trapezoidal fuzzy solution for the given ACTrFFSME in

Example 6.3.1 are discussed.

6.3.1.3 Feasibility of The Obtained Arbitrary Fuzzy Solution to The
ACTrFFSME

To check the feasibility of the obtained arbitrary fuzzy solution, the feasibility condition

needs to be satisfied. The feasibility conditions are checked as follow:

IA

n.

G =G =G D=6 3

3
)SJ’i(j

)] xi(jl) _<_xl-(j2) Sxi(f) Sxi(f) 1<i<mlc<j

i

v

2

) <yt d<y®1<i<mi<j<n,

ij
(:i —23) = (:3 —42) = (—22 g) = (g g)
I11) At least one element of X is near zero TrFN,
IV) At least one element of ¥ is near zero TrFN.
The feasibility condition is satisfied and therefore, the obtained arbitrary fuzzy solution
is feasibly.
Clearly from the verification, representation and feasibility of the obtained arbitrary

fuzzy solution, it satisfies the given ACTrFFSME, and it is strong fuzzy solution.
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6.4 Conclusion and Contribution

In this chapter six, the ACTrFFSME is converted to an equivalent system of non-linear
equations. Then the obtained non-linear system is reduced to a system of absolute
equations where the arbitrary fuzzy solution to the ACTrFFSME is obtained by solving
that system of absolute equations. The developed ABSM in this chapter is similar to
the ABSM method developed in Chapters Four for solving ATrFFSME. The following
contributions summarize the findings in this chapter:

)] The constructed methods demonstrate the transformation of ACTrFFSME to a
reduced system of non- linear equations and then into a system of absolute
equations.

i) Obtaining the unique and finitely many fuzzy solutions of ACTrFFSME.

I11)  Provide the necessary conditions for the feasibility of the ACTrFFSME to
have a strong positive fuzzy solution.

IV)  Analyzing the obtained arbitrary fuzzy solution.
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CHAPTER SEVEN
SOLVING TRAPEZOIDAL FULLY FUZZY SYLVESTER MATRIX
EQUATION WITH LR TRAPEZOIDAL FUZZY NUMBERS

In all previous Chapters Three and Four, the solutions of PTrFFSME are presented with
TrFENSs in a general form. In this chapter, the solutions of PTrFFSME with TrFENs in LR
form are discussed. It is worth mentioning that the previously developed methods in
Section 3.4 for solving PTrFFSME in a general form can be employed on the LR form
as well. Therefore, in this chapter, both positive and negative solutions for PTrFFSME
in

Eq. (1.14) and Eq. (1.15) are obtained using MFMVM and FBSM in Sections 3.4.1 and

3.4.2 respectively.

7.1 Positive Fuzzy Solution of PTrFFSME with LR Trapezoidal Fuzzy Numbers

In this section, the analytical positive fuzzy solution of the PTrFFSME AX + XD = E
with LR-TrFNs is considered. In order to get the solution, the PTrFFSME is converted
to an equivalent system of SME using the DPMO in Eqg. (2.6a) in Definition 2.3.3.1.6.
In the following Theorem 7.1.1, the PTrFFSME in LR form is converted to an

equivalent system of SME.
Theorem 7.1.1. IfA = (mij,nij,aij,ﬂij)LR > O,D = (aij’bij'yij’6ij)LR > 0 and

X = (xl-j,yij,zij, qij)LR >0 and E = (Cij'gijl hij!fij)LR! then the PTrFFSME

AX + XD = E is equivalent to the following system of SME:
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myjxXi; + X5 = Cij,

n;Yij + Yijbij = gijs
{mijzij + a;ixi; + x5y + zijai; = hyj,
\nijqij + Bijyvij + ¥ij6ij + qijbij = fij-

(7.1)

Proof: Let A = (d;;)nxn = (mij,nij,aij,ﬁij)m > 0,
D = (di)mxm = (aij, bij:Vijr6ij)LR >0,
X = Fij)nxm = X/, Yij» 2ij Qij)ir > 0
and £ = (&;))nxm = (¢ij» Gijp hijy fij)Lr-
We have from Definition 2.3.3.1.6 and Eq. (2.6a),
AX = (a;)(%;) = (my iy aij, Bi) (i Vi 22 935)s
= (mijxij»nijyij:mijzij + a;jXij, Nijqij + ﬁij%’j)»
and
XD = (%)(dij) = (xij» vij, 2y, 955) (@ijs bijs vij 8i5),
= (xijaijryijbijrxijyij + z;5a;5,y;;6; + Clijbij)-

The PTrFFSME in Eq. (1.14) can be written as:

Therefore, the PTrFFSME AX + XD = E is equivalent to the following system of

SME:
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mijxl-]- + xijal-]- = Cij'
{nijyij + Yijbij = 9ij»

mijzl-j + aijxl-j + 'XUVU + Zijal'j = hij'

\Mijdij + Bijyij + ¥ij6ij + ijbij = fij-

To solve the PTrFFSME with LR-TrFN, the corresponding system of SME Eq. (7.1) is
considered. The solution to the system of SME in Eq. (7.1) can be obtained by the
MFMVM in Section 3.4.1. The MFMVM to obtain the solution is given in the following

five steps:

Step 1: Applying subtraction property of equality on the third and fourth equations in

Eq. (7.1), we get:

{mijxij + xijaij = Cij'
n;¥ij + Yijbij = i, 72)
my;zi; + 25055 = hij — (@i;xi; + X45¥ip), '

niiqij + 4ijbi; = fij — (Bijyij + vij6i))-
By applying Vec-operator in Definition 2.6.2.3 for both sides of Eq. (7.2), we have

fVeC(ml-jxl-j + xl-jaij) = Vec(cij),
Vec(njyj + yijbij) = Vec(gij),

7.3
VeC(mijZij + Zijaij) = VQC(hij - (ai]-xl-j + nyU)), ( )
Vec(nijqi; + qijbi) = Vec(fij — (Bijyij + ¥i6i5))-
Using Eq. (2.14a) in Definition 2.6.2.3, Eq. (7.3) can be written as follows:
(my;@®af;)Vec(x;;) = Vec(cy;),
(nij@b])Vec(yy;) = Vec(gy). 7.4

(my;@af;)Vec(z;;) = Vec(hy) — (ay;®y]) - Vec(x)),
(ny @bl )Vec(qij) = Vec(fiy) — (B ®8];) - Vec(yyy)-
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Step 2: LetK = ml-jEBal-T]- and L = nijEBbl-T]- be non-singular matrices, and substitute in

Eq. (7.4), the following system can be obtained:

(K)Vec(x;;) = Vec(cy),

(L)Vec(yy;) = Vec(gy),

(K)Vec(z;;) = Vec(hy;) — (ay®vi) - Vec(xi)),
\(L)Vee(qyy) = Vec(fy) — (B;®87) - Vec(yyy).

(7.5)

Step 3: Multiplying the first and the third equations by K~ and the second and fourth

equations by L™t in Eq. (7.5) gives:

Vec(x;;) = K™ - Vec(c;j),

Vec(yl-j) =L1. Vec(gij),

Vec(z;) =K™*- (Vec(hij) — (a;®v]) - Vec(xl—j)),
Vec(qi) = L7 (Vec(fii) = (B;®8) - VeC(J’ij))-

(7.6)

Step 4: By multiplying both sides of the Eq. (7.6) by the multiplicative inverse of

function Vec(+), we obtain the following:

(xij =Vec ' (K™ - Vec(c;))),

yij = Vec ' (L™ - Vec(g:))),

zij = Vec ™ (K™ - (Vec(hy;) — (ai; @) - Vec(xi))),
kqi]- = Vec™ (L7 - (Vec(fij) — (Bi;;®S]) - Vec(yij)))-

(7.7)

Step 5: Computing the values of x;;,y;j,z;; and q;;, the solution of FFSME is

represented by:

X= (xij)nxm = (xi, yij» Zij, qif)LR' or in matrix form as,

11, Y11 411, Y11 12, V12,412,412 1my Yimo 41mo Y1im

(11, Y11, 211, G11) - (%12, Y12, Z12, G12) (X1ms Yims Zims Qim)

% = (%21, Y21, 221, G21) (%22, Y22, 222, 922)  * (X2m» Yom Zam> Q2m)
(xnlrynl'znl'in) (an»)’nz'an'an) (xnmr:Vnernm'qnm) LR

350



In the following Definition 7.1.1, the positive fuzzy solution to the PTrFFSME in LR

form is defined.

Definition 7.1.1 Positive Fuzzy Solution to PTrFFSME in LR Form

A trapezoidal fuzzy solution matrix X = (%;)nxm = (Xij, Vij» Zij, qif)LR where
xij > O'yij > O'Zij >0, ql] > O,xij < yl] and xi]- — Zjj >0 is Ca“edapOSitiVEfuzzy

solution of the PTrFFSME in LR form.

The following Theorem 7.1.2 shows the equivalency between the positive solution of
the system of SME in Eq. (7.1) and the positive fuzzy solution to the PTrFFSME.

Theorem 7.1.2. Suppose that A = (my;, nyj, a;;, Bij)ir, D = (aij, bij,vij, 6:))r @nd
E= (ci i )k j)LR are three positive trapezoidal fuzzy matrices. Then the positive
fuzzy solution to the PTrFFSME AX + XD = E in LR form and the solution to the
system of SME in Eq. (7.1) are equivalent if the following conditions are satisfied:

K™t = (m;@af}) " > 0,17 = (ny@®bf}) >0, Kt <L,
hij > a;jx;ij + xijvij, fij > Bijyij + ¥i;6i; and ¢;; + (ajx;j + x;5vi5) > hyj.

Proof: Let 4, D, E, K and L are non-negative matrices, and K~ and L~! exists. The
PTrFFSME can be written as a system of SME in Eq. (7.1) by Theorem 7.1.1. By
applying the Vec-operator and Kronecker product to the system of SME, the following

system is obtained
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(xij = Vec ' (K™ - Vec(c;))),
yij = Vec (L1 - Vec(gy))),
zij = Vec ™ (K™' - (Vec(hy;) — (a;;®y]) - Vec(xi)))),
\qi; = Vec™ (L7 - (Vec(fy)) — (B ®8E) - Vec(yi)))).
Therefore, if K~1 = (ml-jEBal-Tj)_1 > 0 then
x;j = Vec ' (K™' - Vec(c;;)) > 0.
IfL ! = (nUGBbiTj)_l > 0 then
Yij = Vec_l(L_l ' Vec(-gij)) > 0.
Since K~! < L7 and Vec(cij) < Vec(gi;), then x;; < y;;.
On the other hand, because h;; > a;;x;; + x;;¥;; and fi; > B;;¥ij + ¥i;6;5, S0 with
zij = Vec ' (K™* - (Vec(hy;) — (a;;®y]) - Vec(xy))) and

qij = VeC_l(L_l N (VeC(fl]) = (ﬁu$6l’r]) ' VeC(yU))) we have Zij > 0 and q"] > 0.

In addition, if
Vec(x;;) = K~1 - Vec(c;j)
and
Vec(z;;) =K'+ (Vec(hl-j) — (al—jeayiTj) -Vec(x;))).
then,

VeC(xl'j) — VeC(Zij) = K_lVec(Ci]- — (hl] - (aijxij + XU]/U)))

Since Cij + (aijxl-j + xijyij) > hij’ then Vec(xl-j - Zij) > 0.

Therefore, x;; — z;; > 0.
Thus, by Definition 7.1.1, X = (x;;, ¥, Zi;, qij)1r 1S @ positive trapezoidal fuzzy

matrix in LR form that satisfies the PTrFFSME AX+ XD =E.
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Now, the feasibility of the positive solution to the PTrFFSME in LR form is discussed.
Feasibility of the Positive Solution to The PTrFFSME in LR Form

Let A = (mij,nij, al‘j,ﬁij)LR > 0, 5 = (aij, bij')/ij' 6ij)LR >0and K = mUGBaZ; and
L= nl-jEBbiTj be non-singular matrices; then the PTrFFSME has a positive fuzzy

solution if:

) x;j = Vec ' (K™' - Vec(c;;)) > 0.

1)  y; =Vec ' (L' -Vec(gy;)) > 0.

)z =Vec (K™ (Vec(d;;) — (a;;®y]) - Vec(x;;))) > 0.
IV)  q;; =Vec ' (L' - (Vec(e;;) — (Bi;j®S]) - Vec(yij))) > 0.
V) wirle  JEy

VI)  yij—x;=0.

In the following Example 7.1.1, the MFMVM is illustrated.

Example 7.1.1 Consider the following positive LR TrFFSME:

((5' 8,2,1) (610,3, 6)) . ((xn: Y11, Z11,G11) (%12, Y12, Z12, Chz))
(5,6,2,1) (3,52,3) (21, Y21, 221, 411)  (X22, Y22, 222, 922)

" ((xn’ V11,211 q11) (%12, Y12, Z12, ‘hz)) _ ((6, 7,1,2) (2,81, 2))
(21, Y21, 221, 911)  (X22, Y22, 222, 922) (5,6,3,1) (3,7,1,2)

_ ( (118,230,85,350)  (64,229,52, 420))
~\(123,198,102,291) (60,202,54,360))"

Solution
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By Theorem 7.1.1, the given PTrFFSME can be converted to an equivalent system of

SME where the positive fuzzy solution can be obtained as follows:

- i 58,2,1) (6,10,3,6
Step 1: Given 4 = (my;,nyj, @i, Biy) = (( ) ( )).

(5,6,2,1) (3,5,2,3)

The matrices m;;, n;;, a;; and B;; are defined as follows:
_ (M1 M2\ _ (5 6 _ (11 M2 _ (8 10
mij - (m21 mZZ) - (5 3)' nij N (n21 nZZ) B (6 5 ),

@ = (Zi Zi) = (; 3) and f;; = (gi gﬁ) B (i g)

(6,7,1,2) (2,81, 2))

Alsogiven, D = (ay. by y8) = ((56,31) (3,7.1,2)

the matrices a;;, b;j, y;j and &;; are defined as follows:

ij

w=(an aw) = D= 42)=( 7

= (2 1= (3 Dandsy=(50 2)=( 2)

and,

B L _((118,230,85,350) (64,229,52,420))
= (Cij 9ijo ajp fij) = (123,198,102,291) (60,202,54,360)/

The matrices c;;, g, h;; and f;; are defined as follows:

KR G R B

_ (h1a h12>_ 85 52 _<f11 f12)_ 350 420
hl]_<h21 Ry, _(102 54)’and fij = fa1 fa2 _(291 360)'

Step 2: We compute the following:
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11 5 6 0
_ r _ (5 6 6 2\ _[2 8 0 6
K=mi;j®a; (5 3)6(5 3)_ 5 0 9 5/
0 5 2 6
15 6 10 0
_ r (8 10 7 & [8 15 0 10
L‘"if®bif_(6 5)®(6 7)_ 6 0 12 6 |
0 6 8 12
3 3 3 0
1 3 0 3
w®ri=|, 5 3 3|
0 2 1 3
and,
31 6 0
2 3 0 6
ﬁif®55:1051
012 5

Step 3: Using the associated linear system Eq. (7.6), the value of Vec(x;;), Vec(y;;),

Vec(z;) and Vec(q;;) can be obtained as follows: We first find,

41 185 28 85 5 13 35 45
/ 339 339 113 113\ / 47 94 141 188\

74 152 34 79 26 5 15 35

-1 _ 339 339 113 113 -1 _ 141 47 47 141
K - 70 425 23 90 and L - 7 27 17 79
339 678 113 113 47 188 94 376

85 395 36 77 9 7 79 17

339 678 113 113 47 47 282 94

. . 118 64 230 229
By applying Definition 2.6.2.2 on ¢;; = (123 60)’ ij = (198 202),
85 52 350 420

hi = (19, 54)39f5 = (391 340 e nave
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118 230 85
64 229 52

Vec(cij)z 123 ,Vec(gij)z 198 ,Vec(hij)z 102 and
60 202 54
350
420
Vec(fl-j)= 291 |
360
Therefore,
_ A1 185 28 _ 85
339 339 113 113
74 152 34 79w 118 6
- _ 339 339 113 113 64 2
Vec(x;;) = K™ - Vec(c;;) = o a5 =z 90 || 123 )
339 678 113 113 60 6
_85 395 36 _77
339 678 113 113
_5 Bg 35gm 45
47 94 141 188
26 5 15 35 230 8
= | 141 a7 a7 141 229 5
Veclwy) =17 Veelgy) =1 527 i 7 | 10g) 7 )
47 188 94 376 202 9
-2 77 17
47 47 282 94

The value of Vec(x;;) and Vec(y;;) is substituted in Eq. (7.6) to compute Vec(z;;) and

Vec(q;;) as follows:

Vec(z;) =K+ (Vec(hij) - (aijEByiTj) Vec(x;;)).

Thus,
_ 4 185 28 85
339 339 113 113
74 152 34 79\ / 85 33 3 0 6\ 1
_| 339 339 113 113 |. 52 1 3 0 3V (2)|_{(1
Vec(zy)=| 5 s _2m  w <102>_ 2 0 3 3/'\7])|7\a)
339 678 113 113
e s s o | \NYT N0 213006 ’
339 678 113 113
Similarly,
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Vec(qiy) = L™t (Vec(fi)) — (Bi;®87;) - Vec(yy))). Thus,

5 13 35 45

47 94 141 188
26 5 15 35
141 47 47 141 |,

350
420
Veela)=| "7 5 v || |20t )"
47 188 94 376 \360
17

OR N W
_, O W R
N UTO O
= W)

9 7 79

47 Z; 282 94

Step 4: The value of x;;, y;;, z;j and gq;; is computed as follows:

By using Definition 2.6.2.2, we get

6 8
x;j =Vec™t ? = (? 2) yij = Vec™ g = (g g)
6 9
1 5
z;; =Vec™! 41} = (111 ;) and q;; = Vec™ 5 = (152 13)
2 10

Step 5: After computing the values of x;;,y;;, z;; and g;;. The positive fuzzy solution

X of PTrFFSME s

7 ( (6,8,1,5 (2,5,1, 13))
~\(7,8,4,12) (6,9,2,10)/)

Step 6: Feasibility of the solution

From the obtained solution in step 5, the following can be obtained.

n wy=(5 o)>o
) zijz(}} ;)>o,
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3 4
V) xl,=(i g)zo

" o ((6,81,5 (2,5, 1,13)) . .
The positive fuzzy solution X = <(7' 84,12) (6.9,2,10)) is feasible and strong

fuzzy solution.

The following Figure 7.1 shows the positive fuzzy solution X.

Positive fuzzy solution X
—_— ———— e
) S o p—— y
| i A
: 4\5 (PN
S nis. o, >
08 ! ,',,-’ M \ AN 1
7 : L ,.-"; AN \ R
- 1§ ABY "\
06 ! lf' V ‘% i
L 1 J 4 =~
; | : | = = - E=(68,15)
- / \ ]
04 ! FR S, |
ol ;:' ' * :"'., - - j]2= (275 91 :13)
1 il \‘"".,' 1
it
3 » ",
02} ] P \ . Utara Malays B=(184.12)
! ," ] , \ ‘N \\ , 1
ookt Ao \ N ] e 2p=(692,10)
5 10 15 20

Figure 7.1. Positive fuzzy solution for Example 7.1.1.

In the following Section 7.2, the MFMVM developed in Section 7.1 for solving

PTrFFSME is modified and applied to negative TTFFSME (NTrFFSME).

7.2 Negative Fuzzy Solution for Negative TrFFSME with LR-TrFNs.

In this section, the analytical negative fuzzy solution to the NTrFFSME AX + XD = E

is considered. In order to get the solution, the NTrFFSME is converted to an equivalent
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system of SME using the DPMO in Eq. (2.6b) in Definition 2.3.3.1.6. In the following
Theorem 7.2.1, the NTrFFSME in LR form is converted to an equivalent system of
SME.
Theorem 7.2.1 IfA = (mij,nij,aij,ﬁij)LR < O,D = (aij,bij,)/ij, 6ij)LR < 0and
X = (xl-j,yij,zij, qij)LR <0 and E = (Cij'gij!hijlfij)LR' Then the NTrFFSME
AX + XD = E is equivalent to the following system of SME:

{mijxij + xijaij = Cij'

nij¥ij + Yijbij = Gijy

ml-jzij + al-jxij + xij)/ij + Zijaij = _hij'
njqij + Bijyij + ¥ii0ij + qijbi; = —fij-

(7.8)

Proof:
Let A = (@;j)nxn = (Mij,nijy aij, Bij) <0, B = (Bij)mxm = (aijs bij, vij, 6i) <0,
X = ®ij)nxm = (xij, vijp 2ij,qij) < 0and € = (E;j)nxm = (ij» Gijo hijs fif)-
We have from Eq. (2.6b) in Definition 2.3.3.1.6.
AX = (@) (%) = (mjngo @i, Biy) (i Vi 7, 935)-
= (myjxi, Mgy, —MajZi; — @iXig, — N qij — BijYis)-
and
XB = (%) (bi) = Cxijp vi 21, 4ij) (@i, bijp vij, 63p)
= (xijaijvyijbijv —XijYij — ZijQij, —Yij5ij - qijbij)-

Since we can write AX + XD = E as:
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Then, the NTrFFSME is equivalent to the following system of SME:

miiX;j + X;jQ;; = Cij,

n;¥ij + Yijbij = 9ijs

—My;Zij — QiXij — Xij¥Vij = Zij Q5 = hyj,
—N;qij — BijYij — Yij0ij — Qijbij = fij-

(7.9)

Using multiplication property of equality on the third and fourth equations in Eq. (7.9)
gives:
mijxij + xijaij = Cij'

nijYij + Yijbij = 9ijs

ml‘jZij + aijxij + xijyij + Zijaij = _hij'

ni;qij + Bijyij + ¥ii0i + ijbi; = —fij-

To solve NTrFFSME, we consider the corresponding system of SME in Eq. (7.8) by
utilizing Vec-operator and Kronecker product. The solution of the system of SME in
Eq. (7.8) can be obtained by MFMVM in Section 3.4.1 is discussed in the following

five steps.
Step 1: Let —h;; = d;jand —f;; = e;;. Then Eq. (7.8) can be written as:

ml-jxl-j + xl-jal-j = Cij!
n;yij + Yijbij = gij,

7.10
ml-jzij+aijxl-j+xijyij+zijaij =d ( )

ijr

\nijdij + Bijyij + ¥ij6ij + qijbi; = eij-
Applying subtraction property of equality on the third and fourth equations in
Eq. (7.10), we get:
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(MijXij + X;ja;5 = Cij,
n;yij + Yijbij = gij, 11
myizij + zijai; = dij — (g + xi5745), (711)
niqij + Qijbij = eij — (Bijyij + vi;6i))-
By taking Vec-operator for both sides of Eq. (7.11), we have
Vec(ml-jxij + xl-jaij) = VBC(CU),
Vec(n;;yij + yijbi;) = Vec(gij), (712)

Vec(mijzl-j + Zijal'j) = VQC(dij - (a'l-jxij + XUVU)),
Vec(nijqij + Qijbij) = VeC(eij - (ﬁij)’ij + Yij5ij))-

Using Eq. (2.14b) in Definition 2.6.2.3, Eq. (7.12) can be written as follows:

(mijﬂaaiTj)Vec(xij) = Vec(cij),

(nyj@b;)Vec(yi;) = Vec(gi)), (7.13)
(ml-j@aiTj)Vec(zij) = Vec(dij) — (aijEByl-Tj) - Vec(xij), '
(ny;@®b]j)Vec(ai;) = Vec(ei;) — (B, ®8]) - Vec(yi;).

Step 2: Assuming K = miJ-EBaiTj and L = nijeabiTj to be non-singular matrices, and

substitute in Eq. (7.13), we obtain the following system:

(K)ec(x;;) = Vec(cy)),

(L)Vec(yij) = Vec(gl-j), (7.14)
1 (K)Vec(z;;) = Vec(dy;) — (ay;@v;) - Vec(xy;), |
\(L)Vec(ay;) = Vec(ey) — (B @8T) - Vee(yyy).

Step 3: Multiplying the first and the third equations by K~ and the second and fourth
equations by L™t in Eq. (7.14) gives:

(Vec(xij) = K- Vec(cy)),

Vec(yiy) = L7t - Vec(gy),

Vec(z;) =K' (Vec(dij) — (a;;®y7) - Vec(xij)), (7.15)
WVec(qy) = L7 (Vec(el-j) — (B;®8%) - Vec(Yij)).
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Step 4: By multiplying both sides of the Eqg. (7.15) by the multiplicative inverse of

function Vec(+), we obtain the following:

x;j = Vec ' (K™' - Vec(cy))),
yij =Vec ' (L7! - Vec(gip),
zij = Vec Y (K™ - (Vec(d;;) — (a;;®v) - Vec(xi))),
Lqij = Vec (L' - (Vec(e;;) — (Bij@5iTj) Vec(yij)))-

(7.16)

Step 5: Compute the values of x;;,y;;,z; and q;;. The solution of FFSME is

represented by:

X= (fij)nxm = (xij, vij» zij, qii)LR’ or in matrix form as,

(X110 Y10 %210 911) (2 Y12Z12,012) - (Cume Yimo Zum Qam)
£ = (X21, Y21, 221, G21)  (X22, Y22, Z22,922)  ** (X2m» Yams Z2ms G2m)
(xnlrynl'znltqnl) (an’ynZ'ZnZanZ) (xnm'ynm'znm'qnm) LR

In the following definition the negative fuzzy solution to the NTrFFSME in LR form is
defined.

Definition 7.2.1 A trapezoidal fuzzy matrix solution X = (xij;_Vij:Zij:qij)LR where
Xij < O'Yij < O,Zl'j > 0, qij > 0, Xij < Vij and Vij + qij <0, is called a negative

solution of the NTrFFSME in LR form.

The following Theorem 7.2.2 proves the equivalency between the negative fuzzy
solution obtained from the system of SME in Eq. (7.8) and the negative fuzzy solution

to the NTrFFSME.
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Theorem 7.2.2. A negative fuzzy solution to the NTrFFSME AX + XD = E in LR
form and the solution to the system of SME in Eq. (7.8) are equivalent if the following

conditions are satisfied:
K=t = (m@al)) <0,L7! = (n;@®b%,) " <0,k <L,
—hij < @ijxij + Xi¥ij —fij < Biyij + ¥i;6:; and gy — (Bijvis + ¥ii6i5) > fij-

Proof: The proof of this theorem can be obtained similar to the proof of Theorem 7.1.2.

Now, the feasibility of the negative solution to the NTRFFSME in LR form is

discussed.

Feasibility of the Negative solution to the NTrFFSME

Let A= (myj,nyj, @i, Bij)r < 0. D = (ajj, byj, i, 6:)1r < 0and K = m;;®aj; and
L= nijEBbiTj be non-singular matrices; then the NTrFFSME has a negative fuzzy
solution if:

) x;j = Vec™ ' (K™' - Vec(c;j)) <0,

1)  yi; =Vec '(L'-Vec(gi;)) <0,

)z =Vec (K™ (Vec(d;;) — (a;;®y]) - Vec(x;;))) > 0,

IV)  q; =Vec ™ (L' - (Vec(e;j) — (BijDS]) - Vec(yij))) >0,

V)  yij+4qi <0,

VI)  yij—x;=0.

In the following Example 7.2.1, the MFMVM is illustrated.

363



Example 7.2.1 Consider the following negative TrFFSME:

((—5; -4,1,1) (=6,-5,1, 1)) . ((xn» Y11, Z11,q11) (X122, Y12, Z12, Chz))
(-6,-51,1) (-4,-3,1,1) (%21, Y21, 221, G11)  (X22, Y22, Z22, 422)

n ((x11’ Y11, Z11,q11) (%12, V12, Z12, ‘hz)) ] ((—5, -4,1,1) (—4,-3,1, 1))
(%21, Y21, 221, Q11)  (X22, Y22, 222, 922)) \(=5,—4,1,1) (=6,—5,1,1)

_((111,73,42,34) (123,83,44,36))
~\(103,66,41,33) (116,77,43,35))'

Solution

By Theorem 7.2.1, the given NTrFFSME is transformed to a system of SME where the

fuzzy solution can be obtained as follows:

(=5,—-4,1,1) (—6,-5,1, 1))

Step 1: Given A = (mij,nijpaij;ﬂij) i ((—6 -51,1) (=4,-3,1,1)

The matrices m;;, n;;, a;; and p;; are defined as follows:

ijo

my = (e mag) = (e Zohmo =Gy ) = (G5 53)

a;j = (Zi Zi) = (1 }) and Bi; = (gi gli) - G 1)

Also given,

] (-5-411) (-4,-3,1,1)
D = (aij bij, vij, 6ij) = ((_5, “411) (—6-5.1 1)>.

The matrices a;j, b;j, y;; and &;; are defined as follows:

a= (g o) =2 D= y2)=(F D)
=0 1) =0 Deandey = (5 52)=( 1)
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and,

o  ((111,73,42,34) (123,83,44,36))
E = (cij gujr hijp fig) = ((103,66,41,33) (116,77,43,35))

The matrices c;;, g;;, h;j and f;; are defined as follows:

0= D=0 D= =0 D)

_ (h1 h12>_ 42 44 _<f11 f12>_ 34 36
hij_(hm ) = (a1 az)®d fu= () 72)= (5 35)

Step 2: We compute the following:

-10 -5 -6 0
-5 —6 -5 —4\" [ -4 —-11 0 -6
—6 —4)69(—5 —6) | -6 0 -9 517

0 -6 —4 -10

K = mUGBaZ} = (

-8 -3 -5 0
_ r_(—4 S5\n(—4 -3 _[-4 -9 0 -5
L—"ij@bij—(_5 _3)69(_4 _5) \-5 0 -7 =37
Os v M 51 ved
2 110
1 2 0 1
@@y = 101 1/
0 1 1 1
and,
2 11 0
1 2 0 1
By®S;; = 10 2 1
01 1 2

We also compute d;; and e;; as follows:

dij = —h;; = (:ﬁ :ig)'eif =—fij= (:gg :gg)
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Step 3: Using the associated linear system in Eg. (7.15), the value of Vec(xl-j),

Vec(y;;), Vec(z;) and Vec(gq;;) can be obtained as follows: We first find,

223 265 47 50 221 207 59 48

522 522 87 87 535 535 107 107

106 85 40 37 276 152 64 43

-1 _ 261 261 87 87 -1 _ 535 535 107 107
K - 47 50 15 35 and L™ = 59 48 56 51
87 87 29 58 107 107 107 107

40 37 14 23 64 43 68 39

87 87 29 58 107 107 107 107

By applying Definition 2.6.2.2 on ¢;; = (111 123), ij= (73 83),

103 116 66 77
_ (42 44 _ (34 36
hij = (41 43) and fl} = (33 35) we have,
111 73 42 34
123 83 44 36
Vec(cl-j)z 103 ,Vec(gij)= 66 ,Vec(hij)z 41 andVec(fl-j)z 33 |
116 77 43 35
Therefore,
2230 5 2650 | 47 50
/ 522 522 87 87
| 106 85 40 37I 111 —4
_ _| 261 261 87 87 123\ _ [ -7
Vec(xu)—K 1 Vec(cl])— Ca 50 15 35 103 = ¢ |
87 87 29 58 116 -5
40 37 _14 23
87 87 29 58
221 207 _ 59 48
/ 535 535 107 107
276 152 64 43 73 -3
_ - _| “s3s  s3s 107 " 107 83) _[-6
Vec(y;;) = L™t - Vec(gy)) —| S a8 s s ce | = _c |
\ 107 107 107 107 77 —4
64 43 68 39
107 107 107 107

The value of Vec(x;;) and Vec(y;;) is substituted in Eq. (7.15) to compute Vec(z;;)

and Vec(q;;) as follows:
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Vec(z;;) = K- (Vec(d;;) — (aijEByl-Tj) “Vec(x;))).

Thus,
23 _265 _47 50
( m Tm izﬁ o 2110 s A
w2 55 T (-2 0 2 (5))-C)
ks__g___gf) B !
87 87 29 58

Similarly, Vec(q;;) = L™ - (Vec(e;j) — (Bi;D6}) - Vec(yi))).

Thus,
221 207 59 48
26 13 e 4| (/=34 /2 1 1 0\ /-3 1
- B2 B R (150 ()
s e |\ N0 L2
107 107 107 107

Step 4: The value of x;;, y;;, z;; and q;; is computed as follows:

By using Definition 2.6.2.2, we get

—4 -3

xy =Vec | T = (T2 Ty =veet| T2 = (32 29
-5 —4
1 1

z;j =Vec™! 1 =(1 1)andql—j=Vec‘1 1 =(1 1)
1 1

Step 5: After Computing the values of x;;, y;;, z;; and q;;. The negative fuzzy solution

s ((=4,-3,1,1) (-7,-6,1,1)
X ((—6, -5,1,1) (-5,-4,1, 1))'
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Step 6: Feasibility of the negative fuzzy solution. Since

) =(CF Z))<o,
:2)<0,

1 1
VI) oy -y = (1 1) >0
(=4=311) (=7,-61, 1)) is feasible.

the negative fuzzy solution X = ((—6, —51,1) (=5—4,1,1)

Negative fuzzy solution 'S
T T T T 1F T T T T T T T T T T
1oL .y N e N W 4
'.' ;‘\‘ ;‘-; "- \
. f \ 1 3 I \
7 ., 7)) = : \
o8 #x  URivers tara;
r Y
I ] 3 '
I fi : 1 \ / \ \
06 i / / ! \ 8
L a" ] "5‘ \ B
o i ;‘ ‘{ \ \ = = - Ey=(-4-3,L0)
041 1 { " I“*x ‘\ \ -
I H ] ]
L. ;" I [ \ \ T ¥p=(-7-6,1.1)
- i ' / % \ ]
02 . j \ \ .
_ / L LI — Er= (-6,-5,1,1)
! i A iﬁ,} \
ook R M e e o = (<5411
- -7 -5 4 -3 -2

Figure 7.2. Positive fuzzy solution for Example 7.2.1.
In the following Section 7.3, the positive fuzzy solution for other form of the TrTFFSME

AX — XD = E in Eq. (1.15) is discussed. In order to obtain this solution three different

methods are applied.
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7.3 Positive Solution for Other Form of TrFFSME in LR Form

In this section, the analytical positive fuzzy solution of the other forms of TrFFSME
(PTrFFSME-O) AX — XD = E with LR-TrFNs is considered. In order to get the
solution, the PTrFFSME is converted to an equivalent system of SME using the DPMO
in Eq. (2.6a) in Definition 2.3.3.1.6.

However, in applying the existing fuzzy subtraction in Definition 2.3.3.1.6 in Eq. (2.5¢)
for solving the PTrFFSME-O, the obtained system of SME is very challenging to be
solved. Therefore, in the following Definition 7.3.1, a new direct subtraction operation
between LR-TrFNs is introduced based on the subtraction operation defined in Gani

and Assarudeen (2012).

Definition 7.3.1 Let A = (my,ny, a4, f;) and B = (m,, n,, a5, 8,) be two LR-TrFNs.

Ifm; >m,,n; >n,, a > a,andpf; > B, then

A-B= (my,ny, a1, 1) — (My, Nz, a5, 52) = (Mg — My, Ny — Ny, a1 — a3, By — ).

In the following Theorem 7.3.1, the PTrFFSME in LR form is converted to an

equivalent system of SME.
Theorem 7.3.1. |fA = (ml-j,nij, aij,,b’ij)LR > O,D = (aij,bij,]/l-j,&j)m > 0and

X = (xij,yij,Zij, qij)LR >0 and E' = (Cl'j'gij'hiiji]')LR' Then the PTrFFSME-O
AX — XD = E is equivalent to the following system of SME:

myjXij = XijQij = Cij
{ Ny ¥ij — Yijbij = 9ijs

My;Zij + QX — XijVij — ZijQ; = hyj,

c

(7.17)
n;;jqi; + ﬁij)’ij - )’ij5ij - qijbij = fij-
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Proof:
Let A = (G;)nxn = (mij'nijfaijfﬁij)LR >0,D = (dip)mxm = (ayj, bijfyij:(sij)LR >
0, X= (Xij)nxm = (Xij, Yij» Zij» Qij)ir > 0 and E = (€ij)nxm = (€ij» Gij» hij fij) Lr-
We have from Definition 2.3.3.1.6 and Eqg. (2.6a),

AX = (@) (%) = (myj i iy, Biy) (xijs Vi 2ijp i),

= (mijxij:ninijrmijZij + a;jxij, nijqij + ﬁinij),

and

XB = (%;;)(bij) = (xi, ¥ij» 2ij» 41j) (aijs bijo vij» 655,

= (xij@ij, ¥ijbij Xij¥ij + Zijuj ¥ij6ij + Qijbij)-

By applying LR-TrFN’s subtraction operation in Definition 7.3.1, the following is
obtained,
AX - XB = (mijxij'nijyij'mijzij + a;;x;j, N4 + .Bijyij) -
(xijaij, yisbij, xivij + 2035, ¥i;6ij + ijbiz)-
Thus,
AX - XB = (mijxij — XijQij, NijYi; = Vijbij Mijzi; + agxi; — xi5vij —
ZijQij, Nijqi; + BijYij — Yijbij — qijbij)-

Since AX — XB = C can be written as:



therefore, the PTrFFFSME AX — XD = E is equivalent to the following system of SME:

mjXij — X;;Q;j = Cij,
nyij — Yijbij = Gij)

my;zi; + agXij — Xi¥ij — ZijQi; = hyj,
niiqi; + Bijyij — Yij6ij — qijbi; = fij-

O

The solution of the PTrFFSME-O AX — XD = E in Eq. (1.15) can be obtained by
converting the PTrFFSME-O to the corresponding system of SME in Eq. (7.17). Then
the system of SME is solved by developing three different methods namely the
Modified Fuzzy Bartels Stewart Method (MFBSM), Fuzzy Coefficients Matrix Method
(FCMM) and the MFMVM. In the following Section 7.3.1, the FBSM in Section 3.4.2

is modified and applied to the system of SME in Eq. (7.17).

7.3.1 MFBSM for Solving PTrFFSME-O

In this section, the positive fuzzy solution to the PTrFFSME-O AX — XD = E is
obtained by modifying the FBSM (MFBSM) in Section 3.4.2. The details of the
constructed method are as follows:

Step 1: Suppose m;;, a;;, n;; and b;; are real and have real Schur decompositions
myj = U R UYL, ai; = ViSiViT, ny; = UpR,US | by = VoS,V whereU and V are
orthogonal and R and S are upper quasi-triangular. Then the first two equations in
Eq. (7.17) can be transformed to the following by Definition 2.8.2.1:

Ufmy;Uy - Uf x;;V; — Uf V1.V a Vs = Uf ¢V,

UzniUz Uz yiVa = Uz yijVa. Vs byjVa = Uz gijVa.
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Consequently, they can be written as:

{R1W1 — W18, = Dy,
R2W2 - Wzsz = Dz.

where,
R, = U{mijub R, = U;nijUz, W = foijvp W, = UzTYijVZn $1 = V1TaijV1'
S, = VbV, Dy = Ufc;;V; and D, = UL g;;V,.
Then, this system can be written as:
Pyw; = d;,
P,w, =d,,
where
P, = I®R, — ST®I, w;, = vec(W;) and d; = vec(D,),
P, = IQR, — ST®I, w, = vec(W,) and d, = vec(D;).
Gaussian elimination and backward substitution are applied to obtain w,and w,,.
Step 2: The values of x;; and y;; can be computed as follows:
Xij = UATAZE

Yij = U2W2V2T-
Step 3: The third and fourth equations in Eq. (7.17) can be written as follows:

{mijzij — zjja;; = hyy — agx; + x5y

7.18
nijqij — qijbij = fij — Bijyij + ¥ij0ij- (7.18)

If we let
hi = hij — aijxij + xi57i;
and
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fi* = fij = Bijyij + vij6ij,

then Eq. (7.18) can be written as:

{mijzij—zijaij = f; (719)

niiqij — qijbi; = fi-
Since Eq. (7.19) has the same structure as the first two equations in Eq. (7.17), it can
be transformed to:
UimjUs - U3 z;Vs — U3 2;;V3. V4 a;Vs = U§h1g-V3,
U4T"ijU4 ' UICIijVAL - U4TCIijV4- V4Tnijv4 = UZf1Z-V41
that is,

{R3W3 — W3S3 = Ds,
R4W4 — W4S4_ = D4.

or equivalently

Psw; =ds,

Pywy = d,,
where,
P; = IQR; — ST®I, wy = vec(Ws) and d3 = vec(D;),
P, = IQR, — SI®I, w, = vec(W,) and d, = vec(D,).
Gaussian elimination and back substitution are applied to obtain wsand w;.
Step 4: The values of z;; and g;; can be computed as follows:

Zij = U3W3V3T'

qij = U4W4V4T-
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Step 5: Combining the values of x;;, y;;, z;;and q;; which are obtained in Steps 2 and

4. The solution to the PTrFFSME is represented by:

X = (fij)nxm = (xij'yijrzij: Clij)LR, V{l1<ij<nm}

In addition to the MFBSM in Section 7.3.1, the system of SME in Eq. (7.17) can be
solved also by constructing the FCMM which is based on getting an associated linear
system for the system of SME in Eq. (7.17), where the fuzzy solution is obtained by
matrix inversion method. The details of the FCMM are discussed in the following

Section 7.3.2.

7.3.2 FCMM for Solving PTrFFSME-O.

In this section, the positive fuzzy solution to the PTIFFSME-O AX — XD =E is
obtained by FCMM. In order to get the solution, the system of SME in Eq. (7.17) is
converted to an associated linear system by using the concept of Vec-operator and
Kronecker product. This method is inspired from the method by Malkawi et al. (2015c)
for solving SME with LR-TFN. It is worth mentioning that the construction of the
FCMM is similar to the MFMVM in Section 7.1. However, it is shorter compared to
the MFMVM in terms of computational timing. The details to the FCMM are discuss

as follows.
Step 1: Decompose the matrices 4, D, X and E in AX — XD = E as follows:
A = (mij,nij,aij,ﬁij),V{l < l,] < n}, D = (aij,bij,yij; SU);V{l < l;] < m}v

X = (xipyijzip i), V1 < i j <nmyand E = (¢, gijohij fiy ) V(1< i) <

n, m}.
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Step 2: By applying Vec-operator and Kronecker product on the first and second

equations of the system of SME in Eq. (7.17), we get:

Rl - Sl = Tl’ (7.20)
where,
Myy — Qg —az; myy 0 0 0 0 0 0 0 0
—aq2 Mmyy — Ay 0 my, My 0 0 0 0 0 0
myy 0 My — Aqq —ayq —QAym 0 0 0 0 0 0
0 M1 —Qi; My —a d 0 0 0 0 0 0
: : : : 3 : 0 0 0 0 0 0
R, = 0 Mn1 0 Mn2 t Mpn = A 0 0 0 0 0 0
1= 0 0 0 0 0 0 Ny —byy  —byy 1 0 0

0 0 0 0 0 0 —by;  my—by O M Tun

0 0 0 0 0 0 N2y 0 Mgz — by —by, —bam

0 0 0 0 0 0 0 o ~bi;  mp—by ;

0 0 0 0 0 0 : : : :

0 0 0 0 0 0 0 M1 0 Mp2 Npn = b
X11 C11
X C

nm nm
S, = and T; =

Y11 911
Ynm gnm

Multiplying Eq. (7.20) by R, ~* gives:
S, =R, '-Ty. (7.21)

xnm

Y11

)

Step 3: Rewrite the third and fourth equations in the system of SME in Eq. (7.17) as

Solve for §; =

follows:

{mijzij =z = hyy — agxi; + X545 (7.22)

nijqij — qijbij = fij = Bijyij + Yi0ij-

If we let,
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T{ = hyj — aixij + x5y
and
T3 = fij — Bijyij + ¥ij6ij,

then, the system of equations in Eq. (7.22) can be written as:

Rl ) SZ = Tz, (723)
where,
Z11 T1a11
Z: 1“
nm nm
= nd T, =
52 q11 and T, Tzall
\qnm Tzanm

Multiplying Eq. (7.23) by R, ~* gives:
S, =R, 1T, (7.24)
By solving Eq. (7.24) for S, we can obtain the values of z;;and g;; as follows,

Z11

an
S
q11

Qnm
Step 4: Combining the values of x;;, y;;, z;;and q;;, the solution of PTrFFSME-O is

represented by:

X= (fij)nxm = (xij'yij'zij' qij)LR1 V1<i,j<nm.
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In the following Section 7.3.3, the solution to the system of SME in Eq. (7.17) is

obtained by applying the MFMVM.

7.3.3 MFMVM for Solving PTrFFSME-O.

In this section, the solution to the PTrFFSME-O AX — XD = E in Eq. (1.15) is obtained

as follows:

Step 1: Applying subtraction property of equality on the third and fourth equations in

the system of SME in Eq. (7.17), we get:

myjXij = XijQij = Cijs
ni;Yij = Yijbij = 9ijs
m;zi; — ziiai; = hij — (@Xi; — X45¥i5),

n;;qij — qijbij = fij — (.Bijyij — yij6ij)'

(7.25)

By applying the VVec-operator and Kronecker product for both sides of Eq. (7.25), we

have

VeC(mijxij - xl‘jai]’) = VeC(Cij),
Vec(n;jyij — yijbij) = Vec(gij),

7.26
Vec(my;z;; — zjja;;) = Vec(hy; — (ayxij — Xi¥i)» (7.26)
Vec(n;jqi; + qijbi;) = Vec(fij — (Bijyij — ¥ij6ij))-
Using the Kronecker difference in Definition 2.6.2.3 on Eq. (7.26), we get
((my; © al;)Vec(x;;) = Vec(cy)),
(ni; © bij)Vec(yi;) = Vec(gi), (7.27)

| (mi; © aij)Vec(zy) = Vec(hy) — (a;; © vij) - Vee(xy),
\(ni; © bfj)Vec(aiy) = Vec(fiy) = (B © 87)) - Vec(yy).

Step 2: If we let K = m;; © aj; and L = n;; © b]; be non-singular matrices, and

substitute in Eq. (7.27), we obtain the following system:
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(K)Vec(xi;) = Vec(cy),

(L)Vec(yy) = Vec(gyy),

(K)ec(z;;) = Vec(hyj) — (ai; © v;) - Vec(xi),
\(LyVec(ayy) = Vec(fiy) = (Bi; © 85) - Vec(yyy).

(7.28)

Step 3: Multiplying the first and third equations by K~ and the second and fourth

equations by L™1 in Eq. (7.28) gives:

Vec(x;j) = K™ - Vec(c;)),

Vec(y;j) = L7t - Vec(gij),

Vec(z;j) =K'~ (Vec(hl-j) —(a;075) Vec(xij)),
Vec(qi) = L7 (Vec(fij) - (B ©65)- Vec(yij))-

(7.29)

Step 4: By the multiplicative inverse of function Vec(-), we obtain the following:

(Xij = Vec }(K™1- Vec(cij)),

yij = Vec (L™ - Vec(gi))),

z;; = Vec '(K1- (Vec(hij) —(a;; © )/17;) Vec(x;;))),
kqij = Vec™ (L™ - (Vec(fij) — (Bij © 6[}) - Vec(yi))))-

(7.30)

Step 5: The positive fuzzy solution of the PTrFFSME-O is represented by:

X =) ., =y 2, i) VL S 0j < mym),

Now, the feasibility of the positive solution to the positive LR PTrFFSME-O is
discussed.

Feasibility of the positive solution to the LR TrFFSME-O

Let A= (my,n ai;,Bi) =0, B =(a;,byj,vi,6;) =0 and K = m;; © a]; and
L=n;© bl-Tj be non-singular matrices, then the PTrFFSME-O in LR form has a

positive fuzzy solution if and only if:
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) x;=Vec YK~ Vec(c;)) >0,

1) y;=Vec (L™ Vec(g;)) > 0,

)z =Vec (K- (Vec(hy;) — (ai; © v5) - Vec(x;)))) > 0,
IV) g =Vec™ (L™ (Vec(fi) — (Bi; © &) - Vec(v))) > 0,
V) oy —x; =0,

Vl) xl'j—Zij > 0.

In the following Example 7.3.1, the three developed methods in Sections 7.3.1, 7.3.2

and 7.3.3 are illustrated.

Example 7.3.1 Consider the 2 x 2 PTrFFSME-O:

((8' 9’ 7’ 6) (7’ 9' 4’ 5) ) . (5511 f12) _ <Z11 le) B ((4! 5: 2; 7) (2) 3; 1; 3))
(6r 81 Sr 2) (9r 10; 6! 7) f21 f22 )?21 f22 (41 6; 3! 3) (4I 6; 1) 7)

_((21,26,30,16) (29,36,54,9))
-~ \(27,36,37,10) (33,44,56,4))

where,

5 _ (X111 X1z o .
X = (f21 f22) and Xij = (WijJYileij' qij)' V{l <i,j< 2}
Solution:

The three developed methods are applied to obtain the positive fuzzy solution

~ X X
X = (31 ~12> as follows:
X21 X322

MFBSM for solving PTrFFSME-O in LR form.

(8,9,7,6) (7,9,4,5)
(6,8,5,2) (9,10,6,7)

m= (s )= Dmo=G 2= 1o
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o= (9= (] Hana gy = (B Be)= (S %)

(4) 51 2; 7) (2, 3, 1, 3)

Also given, D = <(4’ 6,3,3) (4,6,1,7)

), we can obtain the following:
@ = (a11 a12) _ (4 2) b — (b11 blz) _ (5 3)
Uoo\dy1 ap; 4 47 7Y \byy by 6 6/

o= ) =G Dmen = 5)-G 3

and,

o ((21,26,30,16) (29,36,54,9)

(27,36,37,10) (33,44, 56, 4)), we can obtain the following:

w=(cr o) =7 32)95=(gn 5:)=(5¢ 42)

_ (h11 h12) _ (30 54 | <f11 f12> _ (16 9
huj = <h21 hyp) (37 56)’ and fij = for f22) (10 4)'
We decompose the following matrices by applying Definition 2.8.2.1 as follows:
ml-j = U1R1Uir, al-j = Vl.SlVlT , nl-j = UZRZU;1 bl] = VZSZVZT

We get:

0= (gson —orsea) = (Cogson —07s93) ™R = (5 1s)
U= (Cosoar —orarah ¥ = (Cogans —orara) ™R = (o 10)

(0 5774 —0.8165) T=(0.5774 0.8165) ds =(6.8284 —2. )
0.8165 0.5774 —0.8165 0.5774 1 0. 1.1716/°

_ ( 0.622466 —0.782647) VT = (—0.6225 0.7826 )and
0.782647 —0.622466/" "> —0.7826 —0.6225
(1 228 )
9.772
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This will be followed by obtaining P,and P, by the definition of Kronecker difference
in Definition 2.6.2.5 as follows:

P, = IQR, — ST®I,

—4.8284 0 1 0
p. = 2 0.8284 0 1
1 0 0 8.1716 0 ’
0 0 2 13.8284
and,
P, = I®R, — STQI.
—0.228 0 1 0
p. = 3 —-8.772 0 1
2= 0 0 16.772 0
0 0 3 8.228

Also, D; and D, can be computed as follows:

0.49534215036505636 —1.6415427908134843
Dy = Ul ¥y = ( )

—55.59562271245731  2.5349184669532754

and

—0.9710063775999993 —4.959557317200002)
—16.9564343352 69.9365292416

D, = US gV = (
Now, we can find d, and d, by applying Definition 2.6.2.2 on D,, D,, W;and W, as
follows:

d, = vec(D,) and d, = vec(D,).

0.4953 —-0.971
—1.6415 —4.9595
di = vec(D) = _ge 5o56 | %2 = VP2 ={ _160564 |
2.5349 69.9365
() (o) (b) (b)
w. w. w. w.
Since W, = < 1(}1) 1(2)) and W, = ( 1(11,) 15,)), applying Definition 2.6.2.2 on
Ww. w. Ww. w
21 22 21 22

W,and W, gives:
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()

(a)
Wio

(@)
Wy

(@) (b)
Wso Ws2

wy = vec(W;) =

Now we can solve for w; and w, as follows:

P1W1 = dl and P2W2 = dz,

—4.8284 0 1 0 @ 0.4953
2 0.8284 0 1 Wia _ —1.6415
0 0 8.1716 0 Wz(?) —55.5956 |
0 0 2 138284/ \ 2 2.5349
Ws2
L ®
—0.228 0 1 0 1(2) —0.9710
3 —8.772 0 1 Wi, _ —4.9595
0 0 16.772 0 WZ(I;) —16.9564 |
0 0 3 8228/ \ 4 69.9365
w

Gaussian elimination and back substitution are applied to obtain W,and W,.

—1.51165 0.25886)

A E
1 (—6.80354 1.16731

—0.17539 1.51639)
—-1.0112 8.86844/

WZ = (
Step 2: We compute x;; and y;; as follows:
xij = U WV =

(—0.7593 —0.6508)(—1.51165 0.25886)( 0.5774 0.8165)
0.6508 —0.7593/\-6.80354 1.16731/\-0.8165 0.5774/°

Thus,

=3 %)
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yij = U,WoV)

_ (—0.7474 —0.6644) (—0.1753 1.51639) (—0.6225 0.7826)
0.6644 —0.7474/\-1.0112 8.86844/\—-0.7826 —0.6225/°

Thus,

_(5 5
YVij = (4 4)-
Step 3: The values of x;; and y;; are used to compute h{ and f;* as follows:
hi = hij — aijxij + xi57ij,
& = fij — Bijyij + ¥ij6ij,
a«_ (30 54\ (7 4\(4 4 4 4\(2 1\_ (10 22
hi = (37 56) (5 6) (3 3)+(3 3) (3 1) B (14 24)'
a_ (16 9 (6 5\(5 5 5 5\/7 3\_/16 9
i = (10 4) (2 7) (4 4) 1 (4 4) (3 7) B (12 6)'
The values of h{ and f,* are substituted in the following equations.
ml'jZij | -4 Zl'jai]' = h‘lx
nijqij — Qijbij = fi".

Step 4: Since the obtained equations have the same structure as the first two equations

in Eq. (7.17), z;; and g;; can be computed similar to x;; and y;;. Thus,

and

Step 5: The positive fuzzy solution X of the given PTrFFSME-O is:
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o _ ((4,52,1) (4,53,1)
X= ((3, 4,2,2) (3,4,2, 1))'

The obtained positive fuzzy solution for the given PTrFFSME-O is found by FCMM

as follows:

FCMM for solving PTrFFSME-O

Step 1: Since A=(my,nja;B;),v1<i,j<2 D= (ajbijvij i)
v1<ij<2, X=(xpyjzqj),v1<ij<2and E=(c;jg;hjfij)
V1<i,j<2.

We can obtain the following:

mi=C D= = -

and

= D= D= 1= 3

and
=3y Bou=Co Dm=C n=(5

By the first and second equations in Eq. (7.17), we obtain the following equations:

(6 o)Cor )= G =) D=7 33) (731

9 9\ Y11 V12 Y1 Y12\ (5 3\ _ (26 36
(8 10)(3/21 yzz) (}’21 yZZ)(6 6)_(36 44)' (7.32)
Step 2: Applying the associated linear system in Eq. (7.20) on Eq. (7.31) and Eq. (7.32),

we get the following:
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4 -4 7 0 0 0 0 0 X1 21
2 4 0 7 0 0 0 0 X1 29
6 0 5 -4 0 0 0 0 Xa1 27
O 6 -2 5 0 0 0 0 X2 33

Ri=lo 0o 0 0 4 -6 9 o 57|y |™=]%|
o 0 0 0 -3 3 0 9 Y12 36
o 0 0 0 8 0 5 -6 Va1 36
O 0 0 0 0 8 -3 4 V22 44

which can be converted to the matrix equation R, - S; = T; as follows:

4 -4 7 0 0 0 0 0 X11 21
-2 4 0 7 0 0 0 0 X12 29
6 0 5 -4 0 0 0 0 X21 27
0 6 -2 5 0 0 0 0 X22 33
0 0 0 0 4 -6 9 0 yiu || 26 (7:33)
0 0 0 0 -3 3 0 9 Y12 36
0 0 0 0 8 0 5 —6]\Ya 36
0 0 0 0 0 8 -3 4 Y22 44

Thus,
Xij = (;L ;L) and y;; = (i i)

Step 3: We also compute,

T = hyj — agixg; + x5y and T3 = fi; — Biyyij + ¥ij6i;
=G -G OC 46 96 D-Ch D)

=00 -G DG DG DG =02



Thus,

R85 =T,
4 -4 7 0 0 0 0 0
-2 4 0 7 0 0 0 0
6 0 5 —4 0 0 0 0
0 6 -2 5 0 0 0 0
0 0 0 0 4 -6 9 0
0 0 0 0 -3 3 0 9
0 0 0 0 8 0 5 -6
0 0 0 0 0 8 -3 4

d11
qi2
q21
qz2

Multiplying both sides of Eq. (7.34) by R, ~* we get:

Z11
Z12
Z21
Z22
q11
d12
q21
qz>

)

N
Il
Il

Thus,

= Yomia-(

P NP RPN WN

Step 4: The solution X of the given PTrFFSME-O is:

MFMVM for solving PTrFFSME-O

o 8,9,7,
Step 1: Given 4 = (myj,nyj, a;j, Bij) = ((

We defined the following matrices:

m--—(mll m12)_(8 7) '_(n11 Nz
Y My My 6 9/ Y Ny Moo
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v ((41 5' 2; 1) (41 51 31 1)
(3,4,2,2) (3,4,2,1)

6)

):

9
8 10

10
22
14
24
16

12

(7,9,4,5)
(6,8,5,2) (9,10,6,7)

)

(7.34)



e =( S =(] Hengy= (B Fyo (5

Also given, D= (aijr bij’)/ij: 6ij) — ((4‘, 52,7) (2,31, 3))

(4,6,3,3) (4,6,1,7)

We defined the following matrices:

@ = (a11 a12) _ (4 2) b = (b11 blz) _ (5 3)
Uoo\dy1 ap; 4 4779 \by; by 6 6/
yor = (V11 Y12) _ (2 1) and 8. = <511 512) _ (7 3)
Y Y21 V22 3 1 Y 61 Oy 3 7/

E 21,26,30,16 29,36,54,9
and, £ = (cij, ij» hij, fij) = <( ) )).

(27,36,37,10) (33,44,56,4)

We defined the following matrices:
_ (€11 G2\ _ (21 29\ = _ (911 Y12\ _ (26 36
Cif_(ch 622)"(27 33)’911“(g21 922)_(36 44)’
_ (h11 h12)_ 30 54 _(fu f12)_ 16 9
h”‘<h21 me) =7 seh @ fi=(g) 72) = (1o o)
Step 2: We compute the following:

Kemjoa=( No(* 3 =(2 4 0 7

4 -6 9 0
_ r _ (9 9 5 3/ [-3 3 0 9
L‘”"febif_(S 10)9(6 6) | 8 0o 5 -6/

0 8 -3 4

5 -3 4 0

-1 6 0 4

wOV;=| 5 o 4 3|
0 5 -1 5



and,

49

226
63

226

113
25

113

0
5
-3
0
_59 37 63 _36
46 23 46 23
37 _70 _18 51
46 69 23 46
28 32 _ 26 33
23 23 23 23
_16 68 3 _4
23 69 46 46
30 16
54 9
- and Vec(f;;) = ol
56 4
63
113
49 21 4
“226 | [29)_ (4
_50 27 3/
113 33 3
32
113
_36
23
51 26 5
46 36 1 _|[5
33 36 4 |
23 44 4
_4a
46

-1 -3
r _| -3 -1
ﬁijeai] 2 0
0 2
Step 3: We first find,
7 5 4 63
226 113 226 113
_52 A 63 _4
-1 _ 226 226 226 226 -
K1= s 2 s and L™t
113 113 113 113
27 2 2 32
113 113 113 113
By Definition 2.6.2.2, we get:
27 26
29 36
Vec(c;j) = " 8 Vec(gij) = 26 ,Vec(h;;) =
33 44
Therefore,
7 5
226 113
i
Vec(x;) =K -Vec(cij) =| 57 %
T 113 113
27 2
113 113
_5 37 63
46 23 46
7 _70 _18
- 6 9 23
Vec(yy) =L7"-Vec(gy) =| 22 3 2
23 23 23
\_E 68 33
23 69 46
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The values of Vec(x;;) and Vec(y;;) are substituted in Eq. (7.29) to compute Vec(z;;)

and Vec(q;;) as follows:

Vec(z;j) = K™ (Vec(hy;) — (a;; © v]) - Vec(x;))). Thus,

75 49 e
(l_%if %%? iif _ 2§'\ 30 5 __3 4 0 4 2
- 533 B (3]0 e ) )]
k_____ _) 0 N0 s —1 s/ R
113 113 113 113

Similarly, Vec(q;;) = L™ - (Vec(fij) — (,/.?l-j e 66) -Vec(y;j)). Thus,

ECI A R
46 23 46 23
37 70 18 51 16 -1 -3 5 0 5 1
_| s e 23 a6 9 -3 -1 0 5| ([5)|_(1
Veelay)=| % 2 2 3| <10>_ 2 0 0 -3 '<4> ‘(2)'
758> 23 23 23
\_Eﬁ_sﬁ_ﬂ/ i ‘E " A !
23 69 46 46

4 5
xij = Vec™ le :(;L g)’yifzvec_l Z :(5 5)’
3 4

— -1
Zij = Vec

NN WN
Il
N
NN

)
N—
o1}
5
o
)
[y
Il
<
o
a
=
_N
/N
N -
=
N—"

Step 5: Combining x;;, y;;, z;; and q;;, the fuzzy solution X is represented by:

s ((4,52,1) (453,1)
X ((3,4,2,2) (3,4,2,1))'

Step 6: Feasibility of the solution

Since
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(3 3>
=0 5)>o
0 zU=@ @>0
V) %':G 1)>°’

V) oy x = (i D >0,
VI x—z; ::(

(4,5,2,1) (4,53,1)

therefore, the solution X = ((3' 4,2,2) (3,421

) is feasible.

Figure 7.3 shows the positive fuzzy solution X.

Positive fuzzy solution X

10+ e e e )
.j\‘ f. f," ‘-
i/ A \
; , \
) / '\' [
§ '_\«" A ' \
¢ [ " \
r' ’ :' ' % \
§ /
08 ! ’ ' \
d 4 ' \
& 4 ’ ' % \
',‘-"\ / ’ ' '7"», . =
i : ' v\ - — = X3=452.1
( & s 1 % |
AR : oo i,
S LN e %= (4,53.1)
i’ ; ' 5 N
i ¢ | %\
& : || l""f. v =
g s s P T X=(3422)
‘-"s/ 3 . )
| ',!/ 'A.‘ |I 3 | _
0ol . (S - Xn=(342.1)
1 2 3 4 5 6

Figure 7.3. Positive fuzzy solution for Example 7.3.1.

Verification of the solution:

To verify the obtained positive fuzzy solution, we first multiply 4 and X as follows:
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Jf = ((8, 9,7,6) (7,9,4,5) ) ((4, 52,1 (4,53, 1))

(6,8,52) (9,10,6,7)/\(3,4,2,2) (3,4,2,1)

B ((53, 81,70,77) (53,81,78, 68))
~ \(51,80,68,66) (51,80,74,56)/)

We also multiply X and D as follows:

-~ ((4,52,1) (4,53,1)\(45,2,7) (2,31,3)
D ((3,4,2,2) (3,4,2,1))((4,6,3,3) (4,6,1,7))

B ((32, 55,40,61) (24, 45,24, 59))
— \(24,44,31,56) (18,36,18,52)/)°

Therefore,

A% — %D = ((53, 81,70,77) (53, 81,78, 68))

(51,80,68,66) (51,80,74,56)

B ((32, 55,40,61) (24, 45, 24, 59))
(24,44,31,56) (18,36,18,52))

_ ((21,26,30, 16) (29,36,54, 9))
~\(27,36,37,10) (33,44,56,4))"

The value of AX — XB is exactly equal to the constant matrix E.

7.4 Conclusion and Contributions

In this chapter, different methods are developed for solving the TrFFSME in the form

AX + XB = C and the PTrFFSME-O in the form AX — XB = C with LR fuzzy

numbers. The positive and negative fuzzy solutions are obtained by three analytical

methods, the MFBSM, FCMM and MFMVM. In terms of accuracy, all the three

methods are able to obtain the same fuzzy solution. In addition, the methods can also be

applied to TFFSME. Since the MFBSM and FCMM avoided using Kronecker operation

which means they required short computational timing than the MFMVM it makes it
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possible to find the fuzzy solution for large TrFFSME using Mathematica 12.1 and

Maple 2019.

The following contributions summarize the findings in this chapter:

1. New MFMVM, FCMM and MFBSM have been developed, which gives the
analytical solution for PTrFFSME AX + XB = C in LR form.

2. New MFMVM, FCMM and MFBSM have been developed, which gives the
analytical solution for negative TrTFFSME AX + XB = C in LR form.

3. New MFMVM, FCMM and MFBSM have been developed, which gives the
analytical solution for PTrFFSME-O AX — XB = C in LR form.

4. Provide the sufficient and necessary conditions for the feasibility of the
TrFFSME, to have a strong positive fuzzy solution.

5. Analyzing the obtained positive fuzzy solution.
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CHAPTER EIGHT
CONCLUSION AND FUTURE STUDIES

This chapter presents the conclusion of the whole study in addition to the main
contributions and the suggestions of future works. To conclude, this thesis has
successfully accomplished all the objectives. The contribution of this thesis is beneficial
to researchers from diverse fields, such as linear algebra, fuzzy theory, and social
sciences. Apart from that, the contributions are also applicable for real-life applications,
particularly in control system engineering and noise reduction in medical imaging. In

the following Section 8.1, the conclusion of this study is discussed.

8.1 Conclusion of the Study

The GFFSME with positive or arbitrary TrFNs is not investigated in the literature.
Many studies considered its special cases only. Several researchers have proposed
methods for solving fuzzy matrix equations. However, these studies have some
limitations; for instance, the existing methods for solving FFME and FFSME based on
DPMO have sign restrictions on its coefficients and fuzzy solutions, where either the
coefficients or the fuzzy solutions are strictly positive. In addition, the existing
analytical approaches for solving FFME and FFSME are limited to small size only, and
the numerical methods that can solve FFME and FFSME with large size are not

developed in the literature.

Furthermore, the theoretical development of the fuzzy solution’s existence, uniqueness,

and feasibility are not investigated in many existing methods. In addition, in most
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existing studies, researchers converted the fuzzy matrix equations into a corresponding
system of linear equations without checking the equivalency between the fuzzy
equation and the linear system. Furthermore, the accuracy and convergence of
numerical methods in the literature are not examined in many studies. Therefore, in this
thesis, new analytical and numerical methods for solving GFFSME and its special
cases, which include FFSME, FFCTLME, FFStME, FFEME and FFME, in addition to
a CFFSME which are capable of addressing the limitations in the previous literature. In
addition, the developed methods are able to solve GFFSME and its special and general
cases with TrEN, TEN, LR-TrFN and LR-TFN. The numerical examples considered in
this thesis showed that the analytical methods are able to find the exact fuzzy solution
to the GFFSME and its special and general cases, while the numerical methods
approximated the exact fuzzy solution with few iterations. In the following Section 8.2,

the main contributions of the developed methods are presented.

8.2 Main Contributions

This thesis mainly focused on the new methods for solving fully fuzzy matrix equations
and a couple of fully fuzzy matrix equations. The following contributions are achieved
in this study.

I) Constructing methods for solving generalized trapezoidal fully fuzzy

Sylvester matrix equation with restricted and unrestricted coefficients.

In this thesis, two different approaches are constructed based on the sign of the

GTrFFSME. The analytical approaches can solve the AGTrFFSME with positive,
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negative and near-zero TrFNSs. In contrast, the numerical approaches can solve the
positive GTrFFSME with positive trapezoidal fuzzy numbers only. In order to develop
the analytical and numerical approaches, new fuzzy arithmetic multiplication
operations (AMO) between trapezoidal fuzzy numbers are introduced based on @ — cut
intervals. This AMO is required in this study since the available fuzzy arithmetic
multiplication operations cannot be applied to all different cases of GTrFFSME. To
reduce the computational time needed for solving the positive GTrFFSME, the AMO
is reduced to RAMO. The RAMO is very effective in converting the PGTrFFSME to
an equivalent system of SME. This system of SME is solved by newly developed
methods, namely FMVM, FGIM and FLSIM. With the available computer power,
FGIM and FLSIM can solve PGTrFFSME up to 100 x 100. To solve the
AGTrFFSME, AMO is extended to EAMO to handle the multiplication between three
TrENs. The arbitrary GTrFFSME is converted to an equivalent system of non-linear
equations using the EAMO; then, the non-linear system is reduced to an absolute
system of equations where the arbitrary fuzzy solutions are obtained by solving that

system.

1)) Modifying the constructed analytical and numerical methods for

generalized trapezoidal fully fuzzy Sylvester matrix equation and apply it to

different fuzzy equations, numbers, and forms.
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The constructed analytical and numerical methods for solving the AGTrFFSME and
PGTrFFSME are modified and applied to its special cases with TrFNs and TFNs in a
general form, which includes the following:

e The TrFFSME AX + XD = E with arbitrary and positive coefficients.

e The TrFFCTLME AX + XAT = E with arbitrary and positive coefficients.

e The TrFFStME X + CXD = E with arbitrary and positive coefficients.

e The TrEFFME AXB = E with arbitrary and positive coefficients.

e The TrFFME AX = E with arbitrary and positive coefficients.
In addition, the constructed analytical and numerical methods for solving the
AGTrFFSME and PGTrFFSME can be applied to its special cases with LR-TrFNs. In
this thesis, we just modified two analytical methods and applied them to the following
special cases:

e The PTrFFSME AX + XD = E with positive LR-TrFNs.

e The NTrFFSME AX + XD = E with negative LR-TrFNs.

e The PTrFFSME AX — XD = E with positive LR-TrFNs.

I11)  Extending the constructed methods of GTrFFSME and applying them to a

couple of fuzzy matrix equations.

The developed methods for solving the GTrFFSME can be extended to find all possible
positive and arbitrary fuzzy solutions to the following fuzzy equations:
e Couple generalized fully fuzzy Sylvester matrix equations with trapezoidal and

triangular fuzzy numbers.

396



e Couple fully fuzzy Sylvester matrix equations with trapezoidal and triangular
fuzzy numbers.

e Couple fully fuzzy Lyapunov matrix equations with arbitrary trapezoidal and
triangular fuzzy numbers and arbitrary fuzzy solutions.

e Fully fuzzy matrix equation with arbitrary triangular and trapezoidal fuzzy

numbers and arbitrary fuzzy solutions.

IV) To verify the constructed methods by analyzing the solutions and
checking the numerical method's performance in terms of accuracy and
efficiency.

e Providing the sufficient and necessary conditions for the existence and
uniqueness of the fuzzy solution. These conditions are used to examine fuzzy
equation before getting the solution.

e Provide the necessary conditions for the feasibility of the fuzzy solution to the
GTrFFSME, TrFFSME, TrFFME, TrFFCTLME and TrFFStME, to have a
strong positive fuzzy solution.

e Analyzing the obtained positive fuzzy solution graphically.

8.3 Limitation of the Constructed Methods

This study has successfully achieved its objectives. However, the constructed numerical
methods cannot be extended to AGTrFFSME. This is because the non-linear system of
equations equivalent to the AGTrFFSME cannot be solved numerically, and it must be
solved analytically or using optimization techniques. In addition, in this thesis, we
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obtain analytical and numerical fuzzy solutions whenever they exist. This is because
the development of the numerical approaches is based on the fact that the solution to

the fuzzy system exists, and it is unique.

8.4 Suggestion for Future Studies

Future research would be more significant if the developed methods in this thesis were
extended to fuzzy matrix equations with other types of fuzzy numbers such as
hexagonal fuzzy numbers, complex fuzzy numbers, and bipolar trapezoidal fuzzy
numbers. Inaddition, non-linear fully fuzzy matrix equations such as the Riccati matrix

equation, couple of FFCTLME and couple Riccati matrix equation can be explored.

In this thesis, analytical and numerical solutions are obtained whenever they exist; it is
suggested to provide Moore—Penrose pseudo inverse for the case of no solution. Finally,
it is strongly recommended to approximate the fuzzy solution to the AGTrFFSME using
optimization methods such as universal global optimization and robust global
optimization as global optimization methods provides functions that search for global

solutions to problems that contain multiple maxima or minima.
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Appendix A

Solutions of Examples in Chapter 3

Example 3.3.1.2. The solution for the given 5 x 5 GTrFFSME is obtained by FMVM as follows:

Stepl: Decompose 4, X, B, C, D and E into

[OSEEGR TN B8 BN

5 1 4 3 3 6 2 4 3 2 7322 4 6 3 2 2 1
352 31 351 1 4 45 4 2 4 153 2 4
al’=12 35 1 2|bP=|1 45 3 3|c¢’=[4 16 3 3[d’=|5106 2 3]
4 2 45 3 2 12 6 3 2 1 4 5 2 2 115 2
3113 6 142 45 2 12 15 2 12 35
785 797 811 867 1000 6 3 5 4 4 7 35 4 3 8 4
829 781 854 902 1009 4 6 4 4 2 4 6 2 35 5 7
el =671 676 718 759 857 |,a’=|3 5 7 2 3[bP=|2 5 7 4 4|,cP=|5 2
726 802 748 820 941 53 6 7 4 3 3 48 4 3 2
565 623 574 678 768 42 2 47 2 5 35 7 5 2
7 4 3 3 2 2476 2564 2670 2727 2841 7 46 5 6 8
/2 7 4 3 \ /2581 2583 2767 2788 2885 /5 8 5 5 3\
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Step 2: Apply Vec-operator and Kronecker product.
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11

19
11
10

27
16
12
18
14
24
14
12
12
10
41
24
20
22
18
60
35
30
30
25

N =N —_
B OO 5 U0 57 N W U N

[ee]

10
17
12

18
12
26
20

12
12
22
16

22
20
38
28
10
30
30
55
40
15

11

16
16

11
14
29
14
10
10
10
22
24
16
17
18
39
35
25
25
25
55




(b

)
3]

98
63
56
56
63
50
32
29
27
32
54
35
30
34
35
48
31
27
29
31
34
22
19
21
22

)T®a(3)

49
91
49
35
28
25
46
23
17
14
27
51
31
21
16
24
45
26
18
14
17
32
19
13
10

ij

63
63
98
77
35
31
32
49
38
18
37
35
56
45
19
32
31
49
39
17
23
22
35
28
12

+ (@) ®c

49
56
49
98
56
24
28
26
49
28
29
32
25
56
32
25
28
23
49
28
18
20
16
35
20

63
49
49
49
91
32
26
25
24
45
35
25
27
29
53
31
23
24
25
46
22
16
17
18
33

40
26
22
26
26
92
59
53
51
59
44
28
26
22
28
42
27
24
24
27
70
45
40
40
45

@ _
3]

20
38
24
16
12
46
85
44
32
26
22
40
18
14
12
21
39
21
15
12
35
65
35
25
20

28
26
42
34
14
58
59
91
71
33
26
28
42
32
16
27
27
42
33
15
45
45
70
55
25

22
24
18
42
24
45
52
47
91
52
20
24
24
42
24
21
24
21
42
24
35
40
35
70
40

26
18
20
22
40
59
47
46
45
84
28
24
22
20
38
27
21
21
21
39
45
35
35
35
65

60
38
36
28
38
46
30
25
31
30
106
68
61
59
68
48
31
27
29
31
56
36
32
32
36

30
54
22
18
16
23
44
29
19
14
53
98
51
37
30
24
45
26
18
14
28
52
28
20
16

34
38
56
42
22
33
30
49
40
16
67
68
105
82
38
32
31
49
39
17
36
36
56
44
20
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26
32
34
56
32
26
28
20
49
28
52
60
54
105
60
25
28
23
49
28
28
32
28
56
32

38
34
30
26
50
30
20
23
26
47
68
54
53
52
97
31
23
24
25
46
36
28
28
28
52

42
27
24
24
27
42
27
24
24
27
40
26
22
26
26
104
67
59
61
67
48
31
27
29
31

21
39
21
15
12
21
39
21
15
12
20
38
24
16
12
52
97
54
38
30
24
45
26
18
14

27
27
42
33
15
27
27
42
33
15
28
26
42
34
14
68
67
105
83
37
32
31
49
39
17

21
24
21
42
24
21
24
21
42
24
22
24
18
42
24
53
60
51
105
60
25
28
23
49
28

27
21
21
21
39
27
21
21
21
39
26
18
20
22
40
67
51
52
53
98
31
23
24
25
46

44
28
26
22
28
46
30
25
31
30
50
32
29
27
32
62
40
35
37
40
90
58
51
53
58

22
40
18
14
12
23
44
29
19
14
25
46
23
17
14
31
58
33
23
18
45
84
47
33
26

26
28
42
32
16
33
30
49
40
16
31
32
49
38
18
41
40
63
50
22
59
58
91
72
32

20
24
24
42
24
26
28
20
49
28
24
28
26
49
28
32
36
30
63
36
46
52
44
91
52

28
24
22
20
38
30
20
23
26
47
32
26
25
24
45
40
30
31
32
59
58
44
45
46
85




128 72
88 128
88 72
80 56
88 56
89 50
61 88
62 48
54 38
61 38
78 44
54 80
52 48
52 36
54 36
71 40
49 72
48 42
46 32
49 32
69 39
48 72
45 45
48 33
48 33
4
(b)) ®a

2
ij

62
43
41
42
43
121
83
84
74
83
66
45
47
38
45
64
44
44
40
44
96
66
66
60
66

9% 72 96
88 80 72
128 80 72
104 136 72
56 80 128
66 49 66
61 55 51
88 56 50
71 93 49
39 55 87
60 46 60
54 50 42
80 48 44
66 86 46
34 50 82
54 41 54
49 457139
72 44 40
59 77 41
31 45 73
54 42 54
48 45 36
72 42 39
60 78 42
30 45 75
+ @) ®c) =

35
64
39
29
29
68
120
66
52
52
37
64
33
27
27
36
64
36
28
28
54
96
54
42
42

48
43
64
53
27
90
83
120
97
53
48
45
64
51
29
48
44
64
52
28
72
66
96
78
42

37
40
38
69
40
67
75
76
127
75
35
40
42
67
40
36
40
40
68
40
54
60
60
102
60

48
33
35
37
66
90
69
68
67
119
48
39
37
35
62
48
36
36
36
64
72
54
54
54
96

84
57
61
46
57
69
48
45
48
48
137
94
95
84
94
71
49
48
46
49
80
55
55
50
55

47
80
39
33
33
39
72
45
33
33
77
136
75
59
59
40
72
42
32
32
45
80
45
35
35

414

60 43
57 50
80 54
63 83
37 50
54 42
48 45
72 42
60 78
30 45
102 76
94 85
136 86
110 144
60 85
54 41
49 45
72 44
59 77
31 45
60 45
55 50
80 50
65 85
35 50

60
51
47
43
76
54
36
39
42
75
102
78
77
76
135
54
39
40
41
73
60
45
45
45
80

64
44
44
40
44
64
44
44
40
44
62
43
41
42
43
144
99
99
90
99
71
49
48
46
49

36
64
36
28
28
36
64
36
28
28
35
64
39
29
29
81
144
81
63
63
40
72
42
32
32

48 36
44 40
64 40
52 68
28 40
48 36
44 40
64 40
52 68
28 40
48 37
43 40
64 38
53 69
27 40
108 81
99 90
144 90
117 153
63 90
54 41
49 45
72 44
59 77
31 45

48
36
36
36
64
48
36
36
36
64
48
33
35
37
66
108
81
81
81
144
54
39
40
41
73

66
45
47
38
45
69
48
45
48
48
73
50
51
44
50
87
60
59
56
60
119
82
81
76
82

37
64
33
27
27
39
72
45
33
33
41
72
39
31
31
49
88
51
39
39
67
120
69
53
53

48
45
64
51
29
54
48
72
60
30
54
50
72
58
32
66
60
88
72
38
90
82
120
98
52

35
40
42
67
40
42
45
42
78
45
40
45
46
76
45
50
55
54
94
55
68
75
74
128
75

48
39
37
35
62
54
36
39
42
75
54
42
41
40
71
66
48
49
50
89
90
66
67
68
121




162
117
117
117
117
118
85
86
84
85
106
77
75
79
77
116
84
83
85
84
104
76
72
80
76

108
162
108
99
81
78
117
77
71
58
72
108
74
67
55
78
117
79
72
59
72
108
76
68
56

126
117
162
144
90
91
85
117
104
66
84
77
108
96
58
91
84
117
104
64
84
76
108
96
56

108
117
108
171
126
78
84
79
123
91
72
79
70
115
84
78
85
77
124
91
72
80
68
116
84

126
108
117
108
189
91
79
85
77
136
84
70
77
74
127
91
77
84
79
137
84
68
76
76
128

88
64
62
66
64
154
111
112
110
111
102
73
76
70
73
90
65
65
65
65
126
91
91
91
91

60
90
62
56
46
102
153
101
93
76
66
99
63
59
48
60
90
60
55
45
84
126
84
7
63

70
64
90
80
48
119
111
153
136
86
77
73
99
88
58
70
65
90
80
50
98
91
126
112
70

60
66
58
96
70
102
110
103
161
119
66
70
69
103
77
60
65
60
95
70
84
91
84
133
98

70
58
64
62
106
119
103
111
101
178
77
69
73
63
114
70
60
65
60
105
98
84
91
84
147

120
86
89
83
86
96
70
67
73
70

180

130

130

130

130
98
71
70
72
71

126
91
91
91
91

78
117
75
70
57
66
99
69
62
51
120
180
120
110
90
66
99
67
61
50
84
126
84
77
63

91
86
117
104
68
77
70
99
88
52
140
130
180
160
100
77
71
99
88
54
98
91
126
112
70
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78
83
81
122
91
66
73
63
106
77
120
130
120
190
140
66
72
65
105
77
84
91
84
133
98

91
81
86
75
135
77
63
70
69
117
140
120
130
120
210
77
65
71
67
116
98
84
91
84
147

90
65
65
65
65
108
78
78
78
78
88
64
62
66
64
198
143
143
143
143
98
71
70
72
71

60
90
60
55
45
72
108
72
66
54
60
90
62
56
46
132
198
132
121
99
66
99
67
61
50

70
65
90
80
50
84
78
108
96
60
70
64
90
80
48
154
143
198
176
110
77
71
99
88
54

60
65
60
95
70
72
78
72
114
84
60
66
58
96
70
132
143
132
209
154
66
72
65
105
77

70
60
65
60
105
84
72
78
72
126
70
58
64
62
106
154
132
143
132
231
77
65
71
67
116

92
66
68
64
66
126
91
91
91
91
120
86
89
83
86
126
91
91
91
91
180
130
130
130
130

60
90
58
54
44
84
126
84
77
63
78
117
75
70
57
84
126
84
77
63
120
180
120
110
90

70
66
90
80
52
98
91
126
112
70
91
86
117
104
68
98
91
126
112
70
140
130
180
160
100

60
64
62
94
70
84
91
84
133
98
78
83
81
122
91
84
91
84
133
98
120
130
120
190
140

70
62
66
58
104
98
84
91
84
147
91
81
86
75
135
98
84
91
84
147
140
120
130
120
210




785 2476 6202 12395

829 2581 6138 12240
671 2300 5909 12068
726 2385 5969 12540
565 2087 5448 11839
797 2564 6399 13618
781 2583 6235 13407
676 2413 6100 13227
802 2590 6347 13923
623 2199 5722 13077
811 2670 6587 13679
854 2767 6470 13488
vec(ei(jl)) =| 718 |, vec(ei(jz)) =1 2512 ,vec(ei(f) = | 6263 | and vec(ei(f)) =| 13313
748 2574 6329 13783
574 2230 5821 13033
867 B 7 27 6794 14226
902 2788 6667 14066
759 2548 6471 13819
820 2684 6669 14535
678 2339 6095 13685
1000 2841 6936 14685
1009 2885 6777 14478
857 2654 6593 14233
941 2801 6836 15031
768 2431 6209 14094
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Step 3 and Step 4 can be summarized as follows:

vec(x)) = (b{)®ai) + (d) ®c{))tvec(e

J ij ij ij

417
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2 2 2 2 2)N\— 2
vec(xi(j)) = ((bi(j))T®al-(j) + (di(j))T®cl-(j)) 1vec(ei(j)) =

418
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vec(x;

(

D= (0

)
ij

) ®a

()
ij

+(d

@)
ij

) ®c

(3)y-1
ij ) vec(e;
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vec(xi(]‘.})) = ((b(4))T®a

i

ij

@ 4 (dl-(?))T®c-(fl))"1vec(ei(f})) =

tj

J
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Step 5: By combing the obtained solutions in Step 4, the positive fuzzy solution to Example

33.12is

(1,2,4,5)
(2,3,4,5)
X=|(1.246)
k(2,3,5,6)
(1,2,3,5)

(2,3,4,6)
(1,2,3,4)
(1,3,4,5)
(3,4,5,7)
(2,3,4,5)

(2,3,5,7)
(3,4,5,7)
(2,3,5,7)
(1,2,3,4)
(1,2,5,6)

(1,2,3,5)
(2,3,4,6)
(1,2,4,5)
(1,2,4,6)
(2,3,5,6)
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(2,3,4,6)
(3,4,5,7)

(2,3,5,6) |.
(2,3,5,7)
(3,4,6,7)



Appendix B

Solution of Example 4.2.1

The reduced non-linear system for €XD in Example 4.2.1

myy = Min{(2Min[x;, @, 73, V] + 2Min[3x,, D, 7x21(1)]), (=5Max[1x;, ™, 7x;; W] + —5Max[3x5,@, 7x,, @])} +

Min{(Min[x,, @, 71, ] + Min[3x,, D, 725, P]) + (5Min[x;, @, 721, D] + 5Min[3x,, D, 7x,,P])}.

my, = Min{(Min[4x;; @, 5x,, @] + Min[4x,, @, 5x5,®]), (~4Max[4x,,®, 5%, D] + —4Max[4x,,®, 5x,,®])} +

Min{(3Min[4x;,@, 5x,,P] + 3Min[4x,,@, 5x,,P]) + (4Min[4x,, P, 5x1,P] + 4Min[4x,,@, 5x,,P])}.

mas = Max{(—4Min[4x,,®,5x,, P + —4Min[4x,,?, 5x21(2)]), (Max[4x1,®, 5%y, @] + Max[4x,,®, 5x,,®])} +

Max{(3Max[4x12(3), 5x1, 3] + 3Max[4x,,®, 5x22(3)]), (4Max[4x12(3), 5x1, 3] + 4Max[4x,,®, 5x22(3)])}.

Myq = Max{(=5Min[xy; @, 7x, D] + —5Min[3x,, @, 7x21(1)]), (2Max|1x1,®, 72, ®] + 2Max[3x5, @, 75, @])} +

421



Max{(Max[x;,™, 7x;, ] + Max[3x,,®, 7x22(4)]), (5Max[xy,®, 7x1,™®] + 5Max([3x,,@, 7x22(4)])}.

nyy = Min{(3Min[xy; D, 7, @] + 3Min[3x,1, @, 75, P]), (6Min[xy, D, 721, @] + 6Min[3x,, @, 7x,, P])} +

Min{(4Min[x;, Y, 7x;, V] + 4Min[3x,, D, 7x22(1)]), (—3Max[x;, ™, 73, W] + —3Max[3x,,@, 7x22(4)])}.

Ny, = Min{(4Min[4x;; @, 5x;, @] + 4Min[4x,,?, 5x,, ?]), (5Min[4x,, @, 5%, @] + 5Min[dx,, @, 5x,, P])} +

Min{(Min[4x,,®, 5x,,@] + Min[4x,,@, 5x,,?]), (—2Max[4x,,®,5x,,®] + —2Max[4x,,®, 5x,,])}.

N33 = Max{(4Max[4x1,®, 5x1,®] + 4Max[4x,1, @, 5x,,®]), (5Max[4x1;, @, 5x1; @] + 5Max[4x,,®, 5x,, P]} +

Max{(_ZMln[4x12(2), lez(z)] + —2Mi7’l[4x22(2), 5x22(2)]), (Max[4x12(3), 5le(3)] + Max[4x22(3), 5x22(3)])}

Naq = Max{(3Max|[1x;;®, 7, ®]| + 3Max[3x,; @, 7x,,P]), (6Max[1x; @, 7x1; @] + 6Max[3x,, W, 7x,, W]} +
Max{(—3Min[x,, D, 7x;, V] + —3Min[3x,, D, 752, V), (4Max[x1,@, 721, ®] + 4Max[3x,, @, 72, ]}
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P11 = Min{(ZMin[—5x11(4), —x11®] + 2Min[—6x5, @, 2x,, D)), (=5Max[—xy; @, —5x,; V] + —5Max[2x,, ¥, —6x,, D))} +

Mln{(Mln[_5x12(4), _x12(4)] + Min[_6x22(4), Zsz(l)]) + (5Ml7’l[—5x12(4), _x12(4)] + 5Mi7’l[—6x22(4), ZXZZ(I)])}.

P22 = Min{(Min[=3x,,®, =2x,, @] + Min[-3x,,®, x5, @]), (=4Max[-2x,, P, =3x, P| + —4Max[x;,®, —x,,P])} +

Min{(3Min[—3x1,®, —2x;,®] + 3Min[—3x,,®, %2, @]) + (4Min[-3x,,®, —2x;,®] + 4Min[—3x,,, x,,P])3}.

P33 = MG,X{(_4‘Min[_3X11(3), _lel(3)] + —4Min[—3x21(3), le(z)]), (Ma.X'[_lel(z), —3X11(2)] + MaX[le(S), —3x21(2)])} +

Max{(SMax[—lez(z), —3x1,P] + 3Max[x,,®, —3x,,D)), (4Max[—2x12(1), —3x1, D] + 4Max[x;,®, —3x,,P])}.

Pas = Max{(_SMin[_5x11(4), _x11(4)] + —5Min[—6x21(4), 2X21(1)]), (ZMax[_xll(l), _5x11(1)] + ZMQX[ZXZ1(4), —6x21(1)])} +

Max{(Max[—x;,V, =5x1, D] + Max[2x,,Y, —6x5,P]), (SMax[—x1,V, —5x1, V] + 5Max[2x,,W, —6x,, ]}
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G = Min{(3Min[—5x11(4), —x1, @] + 3Min[—6x,, @, 2x,,V)), (6Min[—5x11(4), —x1; W] + 6Min[—6x,, @, 2x,, V])} +

Mln{(4Mln[_5x12 (4), —x12 (4)] + 4Min[_6x22(4), Zsz(l)]), (_3Max[_x12(1), _5x12(1)] + —3Max[2x22(4), _6x22(1)])}.

G2z = Min{(4Min[—3x,,®, —2x,, @] + 4Min[-3x,1, @, x5, @]), (5Min[-3x,,®, —2x,, @] + 5Min[-3x,, @, x,, P])} +

Mln{(Mln[—3x12(3), —2x12(3)] + Min[_3xZ2(3),xZ2(2)]), (_ZMax[_lez(z), _BX]_Z(Z)] + _2MaX[x22(3), —3x22(2)])}

433 = MaX{(4MQX[_ZX11(2), —3x11(2)] + 4‘MaX[xZ1(3), —3x21(2)]), (5Max[—2x11(2), _3X11(2)] + 5Max[x21(3), —3x21(2)]} +

Max{(_ZMin[_3x12(3), _2x12(3)] + _ZMin[_Bsz(g), xzz(z)]), (Max[_lez(Z), _3x12(2)] + Max[x22(3), _SXZZ(Z)])}

Qas = Max{(3Max[—x;;®, =5x; V] + 3Max[2x,,», —6x,; P]), (6Max[—x,, D, —5x1; V] + 6Max[2x,,», —6x,, P]} +

Max{(_SMln[_5x12(4), _x12(4)] + _3Min[_6x22(4), 2x22(1)]), (4Max[—x12(1), _lez(l)] + 4Max[2x22(4), _6x22(1)])}
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The non-linear system obtained in Example 4.2.1 is converted to a system of 16

absolute equations

) S Dy TSy I 1 9o

2 2 2 2
%g)n 2120311+ 4xD)

( |x11)|+4x(4)) ( |x21)|+5x(1))+5( |x21)|+5x(4) 2| |x12
|x22)|+4x(1) ( |x12)|+4x(1))

505, = 5(- 5|x§”|+92§?)| ST D) + e S)>+3<—|x£‘”|+1bzcg)>

+7(- P+ g;>)+3( 53|
B 1 S e - D+ LA Sty 11T 1300

e )

1
+5 (=3I D)+ 22Dy —531x®] + 42 + 2202 | + 523) — 521

4- 1 1
+5x0)) +5 <3|x£>| 2|3

W
9x 1
+4x(y +5(— 3|x§§)|+4x§;))+5x(“+5(— g2 |+ =520 +5 (7(——|x§1>|
(€Y) 4
11x;, 5 (4) 11x;,
— 3(=
+ 1) = 3G P+ —)
W @
13x 13x
+7(=5 2 1) + —)-3G 2] + —22)) = ~964

xP x®
) 3)
|x11 | |x221 | 4(9 (3) | |)) L1 (7( (2)
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|x12| O @ |« (2)| ©

13x
7 )+ (-5x - 222 +6(5x(3 — x5 D) = Ix |
©) (2)
13x X
+6(— - |2 )8 22| ~2(5x?
@ (2) () (2) 3
—|x (2)D 2( 13x;7 | |)| _l|9x11 9x31 _| | |x11|
11 2 2 2! 2 2 2 2
2)
|x21 | 9 (3) |x21 | 1 _9x$) _9x§?
2 2= 2
xD @ 3) @
13x 13x,
] Pol) 2 ie® 1 2252 4 65 — @)+ )+ 62
5|x§2>| 5)x53 |
=276
2 )t
@3)
19xD 9xf) | 9x Ixul | D, o |x21| |x21|
2% 2 2 2 2
@ | ()I e
- (8(5x(3)+|x(3)|)+8( 221 2
| 3) @ | ()| @
X12 9x 13x,
D+ T )+ ( 5xiy = 2+ 2| + 6057 + [x13 )
3)
R 6(13x§;>+5| SO
2 2 2 2 2 2
3) @
9x (2) |x11 | |x11 | 9x§i) |x21 | |x21 | +1
2 2 2 2
13x3 |x21| 1 9% 9x{
(3) (3) 21 12 22
2(5x11 |x11 |) o e =
(3) (3) ) (2)
T 13 xzz
7 1t3 2
) 3)
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