19 research outputs found

    MIMO Systems

    Get PDF
    In recent years, it was realized that the MIMO communication systems seems to be inevitable in accelerated evolution of high data rates applications due to their potential to dramatically increase the spectral efficiency and simultaneously sending individual information to the corresponding users in wireless systems. This book, intends to provide highlights of the current research topics in the field of MIMO system, to offer a snapshot of the recent advances and major issues faced today by the researchers in the MIMO related areas. The book is written by specialists working in universities and research centers all over the world to cover the fundamental principles and main advanced topics on high data rates wireless communications systems over MIMO channels. Moreover, the book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    PRE-FILTERING IN MC-CDMA DOWNLINK TRANSMISSIONS

    Get PDF
    Future wireless communication systems are expected to support high-speed and high-quality multimedia services. In theseapplications the received signal is typically affected byfrequency-selective fading, which must be properly counteracted toavoid a severe degradation of the system performance. MC-CDMA is a multiplexing technique that combines OFDM with direct sequence CDMA. It is robust to frequency-selective fading thanks to the underlying OFDM modulation and exploits frequency diversity by spreading the data of different users in the frequency domain. For these reasons it is considered as a promising candidate for the physical layer of future high-speed wireless communications. Recent publications show that MC-CDMA is particularly suitable for downlink transmissions, i.e., from the base station to the mobile terminals. In these applications orthogonal spreading codes are usually employed to provide protection against co-channel interference. In the presence of multipath propagation, however, signals undergo frequency-selective fading and the code orthogonality is lost. This gives rise to multiple-access interference, which strongly limits the system performance. In the past few years several advanced multi-user detection techniques have been proposed and discussed for interference mitigation. However, in spite of their effectiveness, all these methods are quite unattractive for downlink applications since they would entail high complexity and excessive power consumption at the remote units. As an alternative to multi-user detection, pre-filtering techniques can be employed in downlink transmissions to mitigate multiple-access interference and channel distortions. The idea behind pre-filtering is to vary the gain assigned to each subcarrier so that interference is reduced and the signal at the receiver appears undistorted. In this way, simple and low complex single-user detectors can be employed at the remote units, thereby moving most of the computational burden to the base station, where power consumption and computational resources are not critical issues. In general terms, the main contribution of this dissertation is threefold. First, we propose and discuss several linear and non-linear pre-filtering schemes for the downlink of MC-CDMA systems equipped with multiple transmit antennas and operating in a time-division-duplex mode. The resulting schemes are derived according to different optimization criteria and aim at combating the detrimental effects of MAI while maintaining the complexity of the remote units as low as possible. A second contribution comes from providing a unified framework for investigating pre-filtering in the downlink of both MC-CDMA and OFDMA systems. The use of a unified framework comprising both MC-CDMA and OFDMA allows a fair comparison between these multiple-access technologies under the same operating conditions. It turns out that OFDMA outperforms MC-CDMA when the system resources are optimally assigned to the active users according to the actual channel realization. As we shall see, in order to work properly, all the proposed schemes require explicit knowledge of the channel responses of the active users. In time-division-duplex systems this information can be achieved by exploiting the channel reciprocity between alternative uplink and downlink transmissions. If channel variations are sufficiently slow, the channel estimates of the active users can be derived at the base station during an uplink time-slot and reused for pre-filtering in the subsequent downlink time-slot. Thus, a third contribution comes from addressing the problem of channel acquisition in the uplink of an MC-CDMA system equipped with multiple receive antennas

    MIMO designs for filter bank multicarrier and multiantenna systems based on OQAM

    Get PDF
    From the perspective of increasingly data rate requirements in mobile communications, it is deemed necessary to do further research so that the future goals can be reached. To that end, the radio-based communications are resorting to multicarrier modulations and spatial diversity. Until today, the orthogonal frequency division multiplexing (OFDM) modulation is regarded as the dominant technology. On one hand, the OFDM modulation is able to accommodate multiantenna configurations in a very straightforward manner. On the other hand, the poor stopband attenuation exhibited by the OFDM modulation, highlights that a definitely tight synchronization is required. In addition, the cyclic prefix (CP) has to be sufficiently long to avoid inter-block interference, which may substantially reduce the spectral efficiency. In order to overcome the OFDM drawbacks, the filter bank multicarrier modulation based on OQAM (FBMC/OQAM) is introduced. This modulation does not need any CP and benefits from pulse shaping techniques. This aspect becomes crucial in cognitive radio networks and communication systems where nodes are unlikely to be synchronized. In principle, the poor frequency confinement exhibited by OFDM should tip the balance towards FBMC/OQAM. However, the perfect reconstruction property of FBMC/OQAM systems does not hold in presence of multipath fading. This means that the FBMC/OQAM modulation is affected by inter-symbol and inter-carrier interference, unless the channel is equalized to some extent. This observation highlights that the FBMC/OQAM extension to MIMO architectures becomes a big challenge due to the need to cope with both modulation- and multiantenna-induced interference. The goal of this thesis is to study how the FBMC/OQAM modulation scheme can benefit from the degrees of freedom provided by the spatial dimension. In this regard, the first attempt to put the research on track is based on designing signal processing techniques at reception. In this case the emphasis is on single-input-multiple-output (SIMO) architectures. Next, the possibility of pre-equalizing the channel at transmission is investigated. It is considered that multiple antennas are placed at the transmit side giving rise to a multiple-input-single-output (MISO) configuration. In this scenario, the research is not only focused on counteracting the channel but also on distributing the power among subcarriers. Finally, the joint transmitter and receiver design in multiple-input-multiple-output (MIMO) communication systems is covered. From the theory developed in this thesis, it is possible to conclude that the techniques originally devised in the OFDM context can be easily adapted to FBMC/OQAM systems if the channel frequency response is flat within the subchannels. However, metrics such as the peak to average power ratio or the sensitivity to the carrier frequency offset constraint the number of subcarriers, so that the frequency selectivity may be appreciable at the subcarrier level. Then, the flat fading assumption is not satisfied and the specificities of FBMC/OQAM systems have to be considered. In this situation, the proposed techniques allow FBMC/OQAM to remain competitive with OFDM. In addition, for some multiantenna configurations and propagation conditions FBMC/OQAM turns out to be the best choice. The simulation-based results together with the theoretical analysis conducted in this thesis contribute to make progress towards the application of FBMC/OQAM to MIMO channels. The signal processing techniques that are described in this dissertation allow designers to exploit the potentials of FBMC/OQAM and MIMO to improve the link reliability as well as the spectral efficiency

    Estimation and detection techniques for doubly-selective channels in wireless communications

    Get PDF
    A fundamental problem in communications is the estimation of the channel. The signal transmitted through a communications channel undergoes distortions so that it is often received in an unrecognizable form at the receiver. The receiver must expend significant signal processing effort in order to be able to decode the transmit signal from this received signal. This signal processing requires knowledge of how the channel distorts the transmit signal, i.e. channel knowledge. To maintain a reliable link, the channel must be estimated and tracked by the receiver. The estimation of the channel at the receiver often proceeds by transmission of a signal called the 'pilot' which is known a priori to the receiver. The receiver forms its estimate of the transmitted signal based on how this known signal is distorted by the channel, i.e. it estimates the channel from the received signal and the pilot. This design of the pilot is a function of the modulation, the type of training and the channel. [Continues.

    Digital processing of signals in the presence of inter-symbol interference and additive noise

    Get PDF
    Imperial Users onl

    CHANNEL CODING TECHNIQUES FOR A MULTIPLE TRACK DIGITAL MAGNETIC RECORDING SYSTEM

    Get PDF
    In magnetic recording greater area) bit packing densities are achieved through increasing track density by reducing space between and width of the recording tracks, and/or reducing the wavelength of the recorded information. This leads to the requirement of higher precision tape transport mechanisms and dedicated coding circuitry. A TMS320 10 digital signal processor is applied to a standard low-cost, low precision, multiple-track, compact cassette tape recording system. Advanced signal processing and coding techniques are employed to maximise recording density and to compensate for the mechanical deficiencies of this system. Parallel software encoding/decoding algorithms have been developed for several Run-Length Limited modulation codes. The results for a peak detection system show that Bi-Phase L code can be reliably employed up to a data rate of 5kbits/second/track. Development of a second system employing a TMS32025 and sampling detection permitted the utilisation of adaptive equalisation to slim the readback pulse. Application of conventional read equalisation techniques, that oppose inter-symbol interference, resulted in a 30% increase in performance. Further investigation shows that greater linear recording densities can be achieved by employing Partial Response signalling and Maximum Likelihood Detection. Partial response signalling schemes use controlled inter-symbol interference to increase recording density at the expense of a multi-level read back waveform which results in an increased noise penalty. Maximum Likelihood Sequence detection employs soft decisions on the readback waveform to recover this loss. The associated modulation coding techniques required for optimised operation of such a system are discussed. Two-dimensional run-length-limited (d, ky) modulation codes provide a further means of increasing storage capacity in multi-track recording systems. For example the code rate of a single track run length-limited code with constraints (1, 3), such as Miller code, can be increased by over 25% when using a 4-track two-dimensional code with the same d constraint and with the k constraint satisfied across a number of parallel channels. The k constraint along an individual track, kx, can be increased without loss of clock synchronisation since the clocking information derived by frequent signal transitions can be sub-divided across a number of, y, parallel tracks in terms of a ky constraint. This permits more code words to be generated for a given (d, k) constraint in two dimensions than is possible in one dimension. This coding technique is furthered by development of a reverse enumeration scheme based on the trellis description of the (d, ky) constraints. The application of a two-dimensional code to a high linear density system employing extended class IV partial response signalling and maximum likelihood detection is proposed. Finally, additional coding constraints to improve spectral response and error performance are discussed.Hewlett Packard, Computer Peripherals Division (Bristol

    Constrained Linear and Non-Linear Adaptive Equalization Techniques for MIMO-CDMA Systems

    Get PDF
    Researchers have shown that by combining multiple input multiple output (MIMO) techniques with CDMA then higher gains in capacity, reliability and data transmission speed can be attained. But a major drawback of MIMO-CDMA systems is multiple access interference (MAI) which can reduce the capacity and increase the bit error rate (BER), so statistical analysis of MAI becomes a very important factor in the performance analysis of these systems. In this thesis, a detailed analysis of MAI is performed for binary phase-shift keying (BPSK) signals with random signature sequence in Raleigh fading environment and closed from expressions for the probability density function of MAI and MAI with noise are derived. Further, probability of error is derived for the maximum Likelihood receiver. These derivations are verified through simulations and are found to reinforce the theoretical results. Since the performance of MIMO suffers significantly from MAI and inter-symbol interference (ISI), equalization is needed to mitigate these effects. It is well known from the theory of constrained optimization that the learning speed of any adaptive filtering algorithm can be increased by adding a constraint to it, as in the case of the normalized least mean squared (NLMS) algorithm. Thus, in this work both linear and non-linear decision feedback (DFE) equalizers for MIMO systems with least mean square (LMS) based constrained stochastic gradient algorithm have been designed. More specifically, an LMS algorithm has been developed , which was equipped with the knowledge of number of users, spreading sequence (SS) length, additive noise variance as well as MAI with noise (new constraint) and is named MIMO-CDMA MAI with noise constrained (MNCLMS) algorithm. Convergence and tracking analysis of the proposed algorithm are carried out in the scenario of interference and noise limited systems, and simulation results are presented to compare the performance of MIMO-CDMA MNCLMS algorithm with other adaptive algorithms

    Bandwidth Compressed Waveform and System Design for Wireless and Optical Communications: Theory and Practice

    Get PDF
    This thesis addresses theoretical and practical challenges of spectrally efficient frequency division multiplexing (SEFDM) systems in both wireless and optical domains. SEFDM improves spectral efficiency relative to the well-known orthogonal frequency division multiplexing (OFDM) by non-orthogonally multiplexing overlapped sub-carriers. However, the deliberate violation of orthogonality results in inter carrier interference (ICI) and associated detection complexity, thus posing many challenges to practical implementations. This thesis will present solutions for these issues. The thesis commences with the fundamentals by presenting the existing challenges of SEFDM, which are subsequently solved by proposed transceivers. An iterative detection (ID) detector iteratively removes self-created ICI. Following that, a hybrid ID together with fixed sphere decoding (FSD) shows an optimised performance/complexity trade-off. A complexity reduced Block-SEFDM can subdivide the signal detection into several blocks. Finally, a coded Turbo-SEFDM is proved to be an efficient technique that is compatible with the existing mobile standards. The thesis also reports the design and development of wireless and optical practical systems. In the optical domain, given the same spectral efficiency, a low-order modulation scheme is proved to have a better bit error rate (BER) performance when replacing a higher order one. In the wireless domain, an experimental testbed utilizing the LTE-Advanced carrier aggregation (CA) with SEFDM is operated in a realistic radio frequency (RF) environment. Experimental results show that 40% higher data rate can be achieved without extra spectrum occupation. Additionally, a new waveform, termed Nyquist-SEFDM, which compresses bandwidth and suppresses out-of-band power leakage is investigated. A 4th generation (4G) and 5th generation (5G) coexistence experiment is followed to verify its feasibility. Furthermore, a 60 GHz SEFDM testbed is designed and built in a point-to-point indoor fiber wireless experiment showing 67% data rate improvement compared to OFDM. Finally, to meet the requirements of future networks, two simplified SEFDM transceivers are designed together with application scenarios and experimental verifications

    Optics for AI and AI for Optics

    Get PDF
    Artificial intelligence is deeply involved in our daily lives via reinforcing the digital transformation of modern economies and infrastructure. It relies on powerful computing clusters, which face bottlenecks of power consumption for both data transmission and intensive computing. Meanwhile, optics (especially optical communications, which underpin today’s telecommunications) is penetrating short-reach connections down to the chip level, thus meeting with AI technology and creating numerous opportunities. This book is about the marriage of optics and AI and how each part can benefit from the other. Optics facilitates on-chip neural networks based on fast optical computing and energy-efficient interconnects and communications. On the other hand, AI enables efficient tools to address the challenges of today’s optical communication networks, which behave in an increasingly complex manner. The book collects contributions from pioneering researchers from both academy and industry to discuss the challenges and solutions in each of the respective fields
    corecore