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Abstract

Researchers have shown that by combining multiple input multiple output (MIMO)

techniques with CDMA then higher gains in capacity, reliability and data transmis-

sion speed can be attained. But a major drawback of MIMO-CDMA systems is

multiple access interference (MAI) which can reduce the capacity and increase the

bit error rate (BER), so statistical analysis of MAI becomes a very important factor

in the performance analysis of these systems. In this thesis, a detailed analysis of

MAI is performed for binary phase-shift keying (BPSK) signals with random sig-

nature sequence in Raleigh fading environment and closed from expressions for the

probability density function of MAI and MAI with noise are derived. Further, prob-

ability of error is derived for the maximum Likelihood receiver. These derivations

are veri�ed through simulations and are found to reinforce the theoretical results.

Since the performance of MIMO su�ers signi�cantly from MAI and inter-symbol

interference (ISI), equalization is needed to mitigate these e�ects. It is well known

from the theory of constrained optimization that the learning speed of any adap-

tive �ltering algorithm can be increased by adding a constraint to it, as in the

case of the normalized least mean squared (NLMS) algorithm. Thus, in this work

both linear and non-linear decision feedback (DFE) equalizers for MIMO systems

with least mean square (LMS) based constrained stochastic gradient algorithm have

been designed. More speci�cally, an LMS algorithm has been developed , which was

equipped with the knowledge of number of users, spreading sequence (SS) length,

additive noise variance as well as MAI with noise (new constraint) and is named

MIMO-CDMA MAI with noise constrained (MNCLMS) algorithm. Convergence

and tracking analysis of the proposed algorithm are carried out in the scenario of

interference and noise limited systems, and simulation results are presented to com-
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pare the performance of MIMO-CDMA MNCLMS algorithm with other adaptive

algorithms.
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Chapter 1

Introduction

There has been a tremendous growth seen in the wireless mobile communication

systems since the end of the last century. Communication systems which were once

providing the traditional service of voice to a limited number of subscribers are

now dealing with increasing numbers of subscribers and a shift of demand from just

�voice� to higher data rate services. This led to an exponential increase in system

capacity and spectral e�ciency requirements. As bandwidth is limited, this demand

in high capacity has to be provided by an e�cient use of existing frequency bands and

channel conditions. One of the techniques, which can provide the required increase

in system capacity and enhanced performance is the use of multiple antennas at

transmitting as well as at receiving end [1]. This is referred to as multiple-input

multiple-output (MIMO) wireless system. MIMO technique is being used in the

third generation and beyond mobile systems [2].

MIMO is an antenna technology for wireless communications which utilizes mul-

tiple antennas at the source (transmitter) and the destination (receiver) to enhance

the communication system performance by increasing the system capacity and spec-

tral e�ciency. MIMO con�guration can be done in many ways for example a 3× 3

MIMO con�guration consists of 3 signal transmitting antennas (base Station) with

three antennas for receiving signal (mobile terminal). The antennas at each end
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of the communications system are combined to minimize errors and optimize data

speed.

The object of modern communication system is to provide higher, reliable and

secure transmission of data to ever increasing number of subscribers demand. Code

division multiple access (CDMA) is one of the communication schemes which allows

multiple subscribers to use a single radio channel at the same time with little in-

terference and much higher security. In spite of its numerous advantages, CDMA

system su�ers from MAI problem which arises due to nonzero cross-correlation in

the spreading codes of di�erent subscribers [3]. This can lead to an increased bit

error rate (BER). So, statistical analysis of MAI becomes very important factor in

analyzing the performance of this system.

Researchers have shown that by combining MIMO techniques with CDMA sys-

tem higher gains in capacity, reliability and data transmission speed can be at-

tained [4�8]. Such MIMO-CDMA systems have outperformed the SISO-CDMA

systems but both are prone to MAI.

In most digital data transmission systems the dispersive linear channel exhibits

amplitude and phase distortion. As a result, the received signal is contaminated by

ISI. In a system, which transmits a sequence of pulse-shaped information symbols,

the time domain full response signaling pulses are smeared by the hostile dispersive

channel, resulting in ISI. At the receiver, the linearly distorted signal has to be

equalized in order to recover the information.

The equalizers that are utilized to compensate for the ISI can be classi�ed ac-

cording to their structure, the optimizing criterion and the algorithms used to adapt

the equalizer coe�cients. On the basis of their structures, equalizers can be classi�ed

as linear or decision feedback equalizers.

The learning speed of an adaptive algorithm can be increased if partial knowledge

of the channel is incorporated in the design of an adaptive algorithm. Since MAI is a

limiting factor in MIMO-CDMA systems, there is a need for deriving the probability
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density functions (pdf) of MAI and noise and then use it as a constraint to develop

an algorithm for MIMO-CDMA systems.

1.1 Multiple Input-Multiple Output (MIMO) Sys-

tems

The need for MIMO systems arrived due to certain performance drawbacks in SISO

(single input, single output) technology used in conventional wireless communication

systems [9]. In SISO, a single antenna is used at the transmitter, and another single

antenna is used at the receiver. In some cases, this creates certain problems with

multipath e�ects. When the transmitted signal is obstructed by hills, buildings

or utility wires and towers, the wavefront become scattered, and as such can take

numerous paths to reach its destination. This late arrival of scattered portions

of the signal creates problems such as fading, cut-out and intermittent reception

(picket fencing). Another drawback of SISO can be seen in digital communications

systems such as wireless Internet, where the use of this technology has created

reduction in data speed as well as increased error propagation. The use of two

or more antennas, together with the transmission of multiple signals (one for each

antenna) at transmitter and receiver, not only eliminates the problems created by

multipath wave propagation,but also can take advantage of this e�ect and it is

achieved by applying an algorithm or a signal processing technique at the receiver to

sort out the multiple signals and produce a signal that has the required transmitted

data. MIMO technology is �nding application in digital communication because

of its certain applications in digital television (DTV), wireless local area networks

(WLANs), metropolitan area networks (MANs), and mobile communications. A

block diagram of MIMO system is shown in �gure 1.1.

The MIMO system shown in the �gure 1.1 is made up of N transmitting an-

tennas and M receiving antennas. By utilizing the same channel, every receiving
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Figure 1.1: A Block Diagram of MIMO Systems

antenna is receiving the direct component as well as the indirect components from

the transmitters which are intended for the other receivers. For example, h11 rep-

resents the direct connection between the transmitter number 1 and the receiver

number 1. In this way, a transmission matrix H of N ×M can be shown to be

H =



h11 h12 . . . h1n

h21 h22 . . . h2n

...
...

...
...

hm1 hm2 . . . hmn


(1.1.1)

If x is considered to be the input vector and y to be the receiving vector, then

the output vector y under additive noise ν would be

y = Hx + ν (1.1.2)
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1.2 Code Division Multiple Access (CDMA)

CDMA is one of the communication schemes which allow multiple subscribers to use

a single radio channel at the same time with little interference. A block diagram of

CDMA system is shown in �gure 1.2. Multiple-access capability in CDMA system

is accomplished by means of pseudo noise (PN) codes. Every subscriber in this

system is allocated a unique code sequence which is being used to encode that

subscriber's information signal. At the receiving end, knowing the code sequence of

the each subscriber, receiver decodes the received signal and recovers the original

signal. Since bandwidth of the code signal is much larger than the bandwidth of the

information signal, the encoding process spreads the spectrum whereas despreading

is achieved by correlating the received spread signal with a synchronized replica of

the spreading code signal. These spreading codes are independent of each other as

well as input process.

Figure 1.2: A block diagram of CDMA system

Some of the distinguishing features of CDMA systems are

� Usage of wide bandwidth: Just like other spread spectrum techniques,

CDMA, also utilizes wider bandwidth than is normally required. The use of a

wider bandwidth results in the increased security for signal and immunity to

interception or jamming.

� Use of spreading codes: Bandwidth is increased by spreading the infor-

mation signal with the help of codes and these codes are independent of the
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information signal.

� Enhanced level of security: The spreading code must be known at the

receiving end to decode the transmitted signal otherwise, it would be very

di�cult if not impossible to detect the transmitted signal. This feature of

CDMA results in very high level of security

� Multiple access: Each subscriber is assigned a unique spreading code and

these codes are independent of each other. By using these unique codes to-

gether with synchronous reception permits multiple subscribers to access the

same channel simultaneously.

Some of the advantages of CDMA system are

� CDMA system has the ability of using signals which arrive in the receiver hav-

ing di�erent time delays. This is refereed to as multipath phenomena. Being

narrow band systems, frequency-division multiple access (FDMA) and time

division multiple access (TDMA), are not able to discriminate between the

multipath signals arrival, and as such need equalization to get rid of the nega-

tive e�ects of multipath. On the other hand due to its wide bandwidth, CDMA

systems use multipath signals and combine these signals to get a stronger sig-

nal at the receiving end.

� In FDMA and TDMA schemes, maximum number of subscribers is �xed and

once that maximum number of subscribers is reached, new subscribers may

not be accommodated,where as CDMA system may allow more subscribers

with some background noise.

� Less timing organization as compared to TDMA, ISI as well as co-channel

interference (CCI) are not as severe as is the case in TDMA [10].

� To maintain a required temporal order among symbols, a complicated system

organization must be employed in TDMA, but such a complicated system is
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not required in CDMA [10].

1.3 MIMO-CDMA Systems

Researchers have shown that by combining MIMO techniques with CDMA sys-

tem, higher gains in capacity, reliability and data transmission speed can be at-

tained [4�8]. This is realized by the spatial diversity of multiple antennas at the

transmitting end as well as at the receiving end resulting in added degrees of freedom

when complex channel gains between di�erent transmitting and receiving antenna

pairs are adequately uncorrelated. MIMO-CDMA systems are more robust to MAI

as compared to SISO DS-CDMA. In fact MIMO-CDMA is a promising communica-

tion scheme allowing faster data speed multimedia services and web browsing [11].

Combining MIMO and CDMA can further improve the system transmission rate over

the traditional CDMA system [12]. A block diagram of a typical MIMO-CDMA is

given in �gure 1.3 .

Figure 1.3: Block diagram of MIMO-CDMA system
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1.4 Adaptive Equalization Techniques

All signals while passing through a channel undergo a certain amount of time dis-

persion since frequency response of that channel does not have constant magnitude

and linear phase. Due to this phenomena, tails of adjacent pulses interfere with the

measurement of current pulse (ISI) which can lead to an incorrect decision by the

receiver. Equalization techniques are used to avoid this problem. Equalization is the

process of adjusting the relative phases of di�erent frequencies in order to achieve a

constant group delay.

The equalizers that are utilized to compensate for the ISI can be classi�ed ac-

cording to their structure, the optimizing criterion and the algorithms used to adapt

the equalizer coe�cients. On the basis of their structures, the equalizers can be clas-

si�ed as linear or non linear (decision feedback) equalizers.

Equalizers can also be distinguished on the basis of the criterion used to optimize

their coe�cients. The optimization is governed by the performance criteria used.

For example, when applying the mean square error (MSE) criterion, the equalizer

is optimized such that the mean squared error between the distorted signal and

the actual transmitted signal is minimized. A range of adaptive algorithms can be

invoked, in order to provide the equalizer the means of adapting its coe�cients to

the time-varying dispersive channels.

1.4.1 Linear Equalization (LE)

In most digital data transmission systems the dispersive linear channel encountered

exhibits amplitude and phase distortion due to which the received signal is a�ected

by ISI. Systems in which a sequence of pulse-shaped information symbols are trans-

mitted, the time domain full response signaling pulses are distorted by the hostile

dispersive channel which leads to the inter symbol interference. At the receiver,

the linearly distorted signal has to be equalized to recover the information. Linear
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equalizers are used to mitigate the e�ect of ISI by learning the behavior of the chan-

nel and inverse its e�ect. linear equalizer (LE) can be termed as inverse modeling

�lter in broader sense due to the fact that linear equalizer works as inverse of a

channel. Linear equalizers are used in the communication systems, where ISI is not

severe [13]. As can be seen in the �gure it consists of a feed forward �lter which is

fed only with present and future received signal samples, implying that no latency

is in�icted. As a result of this, the feed forward �lter eliminates only the pre-cursor

ISI, but not the post-cursor ISI [14].

Figure 1.4: Block diagram of Linear Transverse Equalizer

1.4.2 Decision Feedback Equalization (DFE)

The development of the DFE was initiated by the idea of using previous detected

symbols to compensate for the ISI in a dispersive channel. DFE o�ers the potential

for improved performance over the LE while maintaining comparable complexity.

Reliable transmission of information at the highest possible data rates is the desired

goal of digital communication system. However one of the most important obstacle

in achieving this goal of maximum e�ciency is ISI caused by the communication

channel [15]. ISI refers to the e�ect of neighboring symbols on the current symbol
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and if not mitigated properly it can lead to high BER in the recovery of the trans-

mitted sequence at the receiver.Various methods have been developed to enhance

the performance of the communication systems by reducing the e�ects of the ISI.

Linear equalization is one of the methods employed but a major problem with lin-

ear equalization is that it doesn't takes in to account the fact that the transmitted

sequence has a "�nite alphabet" structure. To overcome this drawback of linear

equalization, DFE was proposed [15]. DFE uses previous decisions to improve the

equalizer performance. Almost all the techniques proposed for equalization make

some assumptions about the underlying characteristics of the disturbance signals

and the structure of the communication channel model. In many cases where true

information about the channel is not available, algorithms have to be used for the

correct estimation of the model parameters. For example, in mobile communications

the channel parameters are normally estimated by using the training sequences. The

time variations in these parameters also necessitate the need for tracking them . The

errors due to tracking is another point of concern. These concerns bring forward, the

question of robustness, that is, whether the small variations from the true model,

and small disturbances, can cause large degradations in the performances of the

algorithms using these parameters.

Figure 1.5: Block diagram of Decision Feedback Equalizer

Figure 1.5 shows a simpli�ed block diagram of a DFE where the forward �lter

and the feedback �lter can each be a linear �lter, such as transverse �lter.The

nonlinear characteristic of the DFE is due to the nonlinear characteristic of the
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detector which is used to provide input to the feedback �lter.The basic idea of a

DFE is that if the values of the symbols previously detected are known, then ISI

caused by these symbols can be mitigated at the output of the forward �lter by

subtracting previous symbol values with appropriate weighting. The feed forward

and feedback tap weights can be adjusted simultaneously to ful�ll a criterion such as

minimizing the MSE. The advantage of a DFE structure is the feedback �lter,which

is additionally working to remove ISI, operates on noiseless quantized levels resulting

in an output which is free of channel noise.

1.5 Literature Review

1.5.1 Statistical Analysis of Multiple access Interference (MAI)

in MIMO-CDMA Systems

In spite of its numerous advantages, a major drawback of MIMO-CDMA systems

is MAI which can reduce the capacity as well as BER resulting in a degraded com-

munication system, so statistical analysis of MAI becomes very important factor to

analyze the performance of these systems .

In CDMA systems, each subscriber is assigned a unique orthogonal spreading

code. These orthogonal codes should ideally provide perfect isolation from the other

subscribers to maintain error free communication between respective subscribers but

in reality the orthogonality between these codes is very di�cult to preserve due to

asynchronism and channel delay spread at the receiving end. Asynchronism and

channel delay spread exist on the up link while channel delay spread can be seen

on the down link of the channel. Correlation receiver cannot perfectly separate the

signals for the multiple subscribers. This phenomena leads to what is called MAI

causing a system performance degradation, which may render the system useless for

even moderate subscriber loads with equal power received from each subscriber.

Most of the research work has been done on the characterization of SISO-CDMA
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systems and was based on approximate derivations,such as, standard Gaussian ap-

proximation (SGA) [16] , improved Gaussian approximation (IGA) [17] and simpli-

�ed IGA (SIGA) [18]. Central limit theorem was applied in SGA to get an approx-

imate sum of an additive white Gaussian noise process (AWGNP). This method is

widely used because of its ease of application but a major drawback of SGA is that

it overestimates the system performance and this problem becomes severe when the

number of subscribers is less [17]. The Standard Hermite polynomial error correc-

tion method [19] was employed to improve the accuracy of SGA. The conditional

characteristic function of MAI and bounds on the error probability were derived for

binary direct-sequence spread-spectrum multiple access (DS/SSMA) systems. This

method was named the improved Gaussian approximation (IGA) [20]. In case when

the number of subscriber is small, IGA has outperformed the SGA [17] but the in-

creased computational complexity is a major limitation of this method. IGA was

further simpli�ed and was named simpli�ed IGA (SIGA) [21]

Another approach is to perform the BER of a spread spectrum multiple ac-

cess (SSMA) system without the knowledge or assumption about MAI. Most of

these techniques are basically an extension of previously studied ISI. Some of these

techniques include moment space method [22], characteristic function method [23],

moments method [24], and the approximate Fourier series method [25]. It has been

noted that these techniques are superior to the central limit theorem based tech-

niques in approximating BER but with higher computational costs. SNR of Rician

fading channels at the correlator receiver's output was performed [26]. The BER per-

formance of DS-CDMA system in frequency non selective Rayleigh fading channel for

deterministic sequences using SGA approach was evaluated by [27], whereas [23] uti-

lized the characteristic function (CF) technique to assess the performance of SSMA

scheme in an AWGN environment. The characteristic function (CF) method to

evaluate the performance of DS-SSMA scheme on multiptah fading channels with

multipath ISI was applied in [28] but MAI was ignored. An approximate Fourier se-
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ries technique [25,29] was utilized to evaluate the BER performance of selective and

non selective Rayleigh fading environment. System degradation caused by imperfect

chip and phase synchronization were also assessed in this technique.

For a given signal to noise ratio, BER dependency on number of subscribers was

analyzed by [30]. A closed form expression for the characteristic function of MAI for

asynchronous operation in Rayleigh fading environment was derived. Conditional

characteristic function of MAI together with bounds on probability error rate for DS-

SSMA scheme were also obtained [30]. Average probability of error at correlation

receiver's output for binary as well as quaternary synchronous and asynchronous

DS-SSMA schemes which use random signature sequence was derived in [31]

Probability density function of MAI for synchronous down link CDMA scheme in

an AWGN case was derived and the results were then used to derive the conditional

probability density function of MAI , inter carrier interference and noise in multi

carrier CDMA scheme provided that fading environment was known [32].

A new uni�ed approach to MAI analysis in fading environmrents was presented

[33], assuming that the channel phase is either known or has perfectly been esti-

mated. Random behavior of the channel fading was also included to get the realistic

results for the pdf of MAI together with noise.

Due to the computational complexities in the statistical analysis of MAI in

MIMO-CDMA systems, considerable work is not found in the literature. So instead

of accurate statistical analysis of MAI, researchers have either used some strong as-

sumptions for example, Gaussian assumption for interference in MIMO system [34]

or suboptimal approaches to detect the subscriber without involving the need for

MAI statistics such as successive interference cancellation (SIC) [35] and parallel

interference cancellation (PIC). MAI was analyzed and approximated as Gaussian

distribution [36] for fading channel in MIMO case. In contrast to the existing works,

an exact characterization of MAI in Rayleigh fading environment is developed for

MIMO-CDMA systems in this thesis. Consequently, explicit closed-form expression
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for both the probability density functions (pdfs) of MAI and MAI plus noise is

derived for Rayleigh fading channel.

1.5.2 Equalization in Multiple Input Multiple Output (MIMO)

Systems

Multiple input multiple output (MIMO) communication schemes o�er the potential

for signi�cant increases in spectral e�ciency over their single-input single output

counterparts by enabling simultaneous transmission of independent data streams.

MIMO schemes also o�er the potential for signi�cant performance gains in a variety

of other metrics. Standard transceiver architectures for these schemes include lin-

ear precoding and equalization, and the combination of linear precoding and DFE,

which o�ers the potential for improved performance over the linear approach while

maintaining comparable complexity.

Equalization of wireless MIMO frequency-selective channels is a challenging task

mainly due to the fact that the respective MIMO equalizers should cope with inter

symbol as well as inter stream interference. When the channel is static and has al-

ready been estimated by the receiver, a well established solution would be to apply

a multicarrier technique, such as a MIMO orthogonal-frequency-division multiplex-

ing (OFDM) system [37]. Even though MIMO OFDM systems o�er simplicity in

analysis and receiver design, they still su�er from drawbacks related to implemen-

tation (peak to average power ratio), identi�ability (spectral nulls), and sensitivity

to carrier synchronization [38]. Another drawback is that uncoded OFDM has no

signi�cant performance gain as the delay spread of the channel increases [39], i.e.,

uncoded OFDM does not exploit multipath diversity. On the other hand, single-

carrier (SC) modulation is a well-proven technology in many existing wireless and

wire line applications and has been extensively used in practice. Thus, alternative

SC approaches for the design of batch MIMO decision feedback equalizers (DFEs)

have been proposed [40,41].
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However, in MIMO systems with relatively long bursts and under time varying

conditions, the involved channel impulse responses change within a burst and, as

expected, batch MIMO DFEs fail to equalize the channel. On the other hand, if a

MIMO OFDM system is employed, the frame size should be made short and thus

cyclic pre�x overhead becomes overwhelming [38]. Therefore, to achieve e�ective

channel equalization in such cases, adaptive methods are required. Both a mini-

mum bit error rate (MBER) design [42,43] and the standard minimum mean-square

error (MMSE) design [44, 45] and [46] have been invoked for implementing adap-

tive MIMO DFEs. The respective equalizers are updated either by using gradient

Newton methods or by employing stochastic gradient techniques. The main prob-

lems appearing in adaptive MIMO equalization, i.e., the increased �lter size and the

colored noise caused by inter stream interference, slow down signi�cantly the per-

formance of stochastic gradient algorithms. On the other hand, the computational

requirements of MIMO RLS algorithms increase signi�cantly. In some adaptive

schemes with convergence properties close to RLS but of lower computational cost

were proposed in [47]. But still the computational complexity is very high compared

to the LMS type algorithms.

For scenarios in which accurate channel state information (CSI) is available at

both the transmitter and the receiver, there is a well established framework that

uni�es the design of linear transceivers under many design criteria [48]. A coun-

terpart for the design of systems with DFE has recently emerged [49�51]. This

framework was also extended to MIMO systems with pre-interference subtraction

at the transmitter in [51]. However, in many scenarios, such as frequency division

duplex systems, obtaining accurate CSI at the transmitter may require a consider-

able amount of feedback to the transmitter. An approach that allows the designer

to limit the required amount of the feedback is to quantize the transmitter design.

In these limited feedback schemes [52] , the receiver uses its CSI to choose the best

transmitter design from a code book of available designs, and then feeds back the
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index of this precoder to the transmitter. This strategy has been considered for

beam forming schemes [53�56], unitary precoding with linear equalization [57] and

unitary precoding for orthogonal space time block codes [58, 59]. For zero-forcing

DFE schemes, a limited feedback scheme in which the receiver feeds back the order

of interference cancellation was proposed in [60, 61]. A limited feedback scheme for

systems with a (general) linear precoder at the transmitter and zero-forcing DFE at

the receiver was presented in [51].

From the theory of constrained optimization, it is found that the learning speed

of any adaptive �ltering algorithm can be increased by adding a constraint to it as in

the case of the normalized LMS (NLMS) [62] and the normalized least-mean-fourth

(NLMF) [63] algorithms. In an LMS-type algorithm that exploits the knowledge of

the channel noise variance for identi�cation and tracking of �nite impulse response

(FIR) channels, called noise constrained LMS (NCLMS) algorithm, was proposed

in [64] . Recently an LMS based constrained adaptive algorithm was designed for

CDMA systems which exploit the knowledge of both MAI and noise variances [65].

The novelty of this constraint resides in the fact that the MAI variance was never

used as a constraint before. Motivated by this, it is proposed to design both linear

and non-linear (DFE) equalizers for MIMO systems using the framework of [65].

1.6 Drawbacks in Previous Techniques: A motiva-

tion for the proposed work

There are several drawbacks in the techniques discussed above which are enumerated

as follows:

� Although MIMO OFDM systems o�er simplicity in analysis and receiver de-

sign, they still su�er from drawbacks related to implementation (peak to av-

erage power ratio), identi�ability (spectral nulls), and sensitivity to carrier

synchronization [38].
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� Uncoded OFDM has no signi�cant performance gain as the delay spread of

the channel increases [38] i.e., uncoded OFDM does not exploit multipath

diversity.

� Minimum bit error rate (MBER) DFE [42] can promise a better bit error rate

performance but due to its reliance on BER cost function which provides very

irregular surface is highly susceptible to divergence [66].

� The computational requirements of MIMO RLS algorithms increase signi�-

cantly [47].

� Performance of CSI based DFEs depends on the accurate estimate of channel

information [48]. This is problematic due to the time-varying nature of wireless

channels.

� A major drawback of MIMO-CDMA systems is MAI which can reduce the

capacity and increase BER, so statistical analysis of MAI becomes very impor-

tant factor in the performance analysis of these systems . Statistical analysis of

MAI in MIMO-CDMA is quite complicated and most of the researchers have

used suboptimal approach to detect the subscriber without involving the need

for MAI statistics such as successive interference cancellation (SIC) and par-

allel interference cancellation (PIC). Lack of research in the characterization

of MAI in MIMO-CDMA has provided a motivation to perform a complete

statistical analysis and �nd the closed form solution to the probability density

functions (pdf's) of MAI and MAI plus noise in Rayleigh channel environment.

� If partial knowledge of the channel is available, it can be used to enhance

the system performance. Moreover, CDMA systems su�er from MAI and

noise, consequently, there is a dire need to design a multiuser detector which

would deal with the MAI and noise. In previous research work, MAI has

been used as part of interfering noise, and was assumed to be an unstructured
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white Gaussian noise. [33] used MAI and noise to form a new constraint and

used it in developing an algorithm named MAI plus noise constrained LMS

(MNCLMS) algorithm. MNCLMS was shown to have outperformed the other

algorithms which were constrained on noise only but [33]'s work is related to

SISO-CDMA systems.

1.7 Thesis Objective

Thus, in the light of the above discussion it is apparent that there is a need for

designing new adaptive equalization techniques which can overcome the above men-

tioned drawbacks. The learning speed of an adaptive �ltering algorithm can be

increased by adding a constraint to it [62]. Recently an LMS based constrained

adaptive algorithm is designed for CDMA systems based on the knowledge of MAI

and noise variances [65]. The novelty of this constraint resides in the fact that

the MAI variance was never used as a constraint before. Motivated by this, it is

proposed to design both linear and non-linear (DFE) equalizers for MIMO systems

using the framework of [65].

The objectives of the proposed work are as follows:

1. To design a linear transverse and non-linear equalizer (DFE) for MIMO

systems based on constrained optimization technique employing the framework of

[65].

2. Constraints will be imposed on both MAI and noise variances. For this, the

statistical characterization of MAI and MAI plus noise in MIMO CDMA systems

will be analyzed.

3. Performance analysis (transient, steady-state, and tracking) of the proposed

adaptive algorithms will be carried out in the scenario of interference and noise

limited systems.

4. Extensive simulations will be presented to corroborate the theoretical �ndings.
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1.8 Thesis Organization

After the introductory chapter, a comprehensive analysis of MAI for MIMO syn-

chronous CDMA system using BPSK signal with random signal sequences in fading

environments such as Rayleigh is presented in chapter 2 with simulation results to

support the analytical results.

Chapter 3 deals with the investigation of optimum coherent reception in the

presence of multiple access interference and BER is derived for the Rayleigh chan-

nel.Simulation results shown at the end of chapter 3 show the close agreement to

the analytical �ndings. In chapter 4, various types of DFE are discussed. In chap-

ter 5, two types of MIMO receivers have been proposed: One with linear adaptive

equalization and the other with MIMO DFE. For both receivers, a new constrained

algorithm is proposed. Convergence analysis, transient analysis and tracking analy-

sis of the constrained algorithm are performed in chapter 6. Simulation results are

presented to validate the analysis. Chapter 7 deals with the conclusion, contribu-

tions and recommendations for the future work.
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Chapter 2

Statistical Analysis of multiple access

interference (MAI) and noise in

MIMO-CDMA systems

2.1 Introduction

In an ideal scenario, MIMO-CDMA system o�ers a great improvement in overall

system capacity [67]� [68]. But in practice, this achievement is limited due to the

presence of MAI. MAI reduces the capacity and increases the BER of the MIMO

systems resulting in the degradation of the system. Thus, a complete statistical

analysis of MAI is vital in the design and performance analysis of these systems.

Due to computational complexities in the statistical analysis of MAI in MIMO-

CDMA systems, there is no substantial research work in the literature. Thus, either

some strong assumptions are used, for example, Gaussian assumption for interfer-

ence in MIMO system [69, 70] or suboptimal approaches are employed to detect

the subscriber without involving the need for MAI statistics such as successive in-

terference cancellation (SIC) [71] and parallel interference cancellation (PIC) [72].

In contrast to the existing research, an exact characterization of MAI in Rayleigh
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fading environment is developed for MIMO-CDMA systems in this thesis. Conse-

quently, explicit closed-form expressions for both the probability density function

(pdfs) of MAI and MAI plus noise is derived for Rayleigh fading channel assuming

that the channel phase is either estimated or known at the receiving end.

2.2 Probability Density Function (pdf) of MAI Plus

Noise in Flat Fading Environment

In this section, closed form expressions for pdf of MAI and MAI plus noise for �at

fading channel (Rayleigh) has been derived under the assumption that the channel

phase is either known or has perfectly been estimated.

2.2.1 System Model

A block diagram of a MIMO-CDMA system withN transmit andM receive antennas

is considered as shown in �gure 2.1. Consider a �at-fading channel whose complex

impulse response between the nth transmitter and mth receiver for the lth symbol

is

H l
mn (t) = hlmne

jφlδ (t) (2.2.1)

where hlmn is the envelope and φn is the phase of the complex channel for the lth

symbol. Assuming that the receiver is able to perfectly track the phase of the

channel, the detector in the mth receiver observes the signal

rm (t) =
N∑
n=1

∞∑
l=−∞

K∑
k=1

Akbl,kn s
l,k
n (t)hlmn

+νm (t) , m = 1, 2, . . .M (2.2.2)

whereK represents the number of users, sl,kn (t) is the rectangular signature waveform

with random signature sequence of the kth subscriber de�ned in the (l − 1)Tb ≤
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t ≤ lTb, Tb and Tc are bit period and the chip interval, respectively, related by

Nc = Tb/Tc,
{
bl,kn
}
is the input bit stream of the kth subscriber, hlmn is the l

th channel

tap between the mth transmitter and the nth receiver (hlmn = 1 for the additive

white Gaussian noise (AWGN) channel), Ak is the transmitted amplitude of the kth

subscriber and νm is the additive white Gaussian noise with zero mean and variance

σ2
νm at the mth receiver. The cross-correlation between the signature sequences of

subscribers j and k for the lth symbol is ρk,jl =
´ lTb

(l−1)Tb
skn (t) sjn (t) dt =

∑Nc
i=1 c

k
l,ic

j
l,i,

where
{
ckl,i
}
is the normalized spreading sequence (so that the auto correlations of

the signature sequences are unity) of subscriber k for the lth symbol. The receiver

consists of a matched �lter at the front end which is matched to the signature

waveform of the desired user.
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Figure 2.1: Block Diagram of MIMO-CDMA Transmitter and Receiver
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In this analysis, the desired subscriber is subscriber 1. Thus, the matched �lter's

output for the lth symbol at the mth receiver can be written as follows:

H l
mn (t) = hlmne

jφlδ (t) (2.2.3)

For a Rayleigh fading channel, the pdf of hlmn will be

fhlmn (x) =
x

σ2
h

exp

(
− x2

2σ2
h

)
, for x > 0, (2.2.4)

where σ2
h represents the variance of the Rayleigh channel. Assuming that the receiver

is able to perfectly track the phase of the channel, the detector in the mth receiver

observes the signal

rm (t) =
N∑
n=1

∞∑
l=−∞

K∑
k=1

Akbl,kn s
l,k
n (t)hlmn

+νm (t) , m = 1, 2, . . .M (2.2.5)

The cross-correlation between the signature sequences of subscribers j and k for the

lth symbol is

ρk,jl =

ˆ lTb

(l−1)Tb

skn (t) sjn (t) dt =
Nc∑
i=1

ckl,ic
j
l,i (2.2.6)

The receiver consists of a matched �lter at the front end which is matched to the

signature waveform of the desired subscriber. In our analysis, the desired subscriber

is subscriber 1. Thus, the matched �lter's output for the lth symbol at the mth

receiver can be written as follows:

ylm =

ˆ lTb

(l−1)Tb

rm (t) sl,1m (t) dt

=
N∑
n=1

A1bl,1n h
l
mn + U l

m + νm, m = 1, 2, . . .M, (2.2.7)
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where νm is the additive noise at the mth receiver and U l
m is the MAI at the mth

receiver for the lth symbol in the presence of the fading channel hlmn and is given by

U l
m =

N∑
n=1

K∑
k=2

Akbl,kn ρ
k,1
n hlmn, m = 1, 2, . . .M (2.2.8)

which can also be expressed as follows

U l
m =

N∑
n=1

I l,kmnh
l
mn, m = 1, 2, . . .M (2.2.9)

where the random variable I l,k =
∑K

k=2A
kbl,kρk,1 is shown to follow Gaussian be-

havior in [33], that is, I l,k ∼ N (0, σ2
I ) where σ2

I =
A2 (K − 1)

Nc

. For the sake of

tractability of analysis, we have assumed the same behavior for random variable I l,k

in MIMO scenario.

Equation (2.2.6) shows that the cross-correlation ρk,l is in the range (=1,+1)

and can be set up by the following relation [33],

ρk,l =
Nc − 2d

Nc

, d = 0, 1 . . . Nc (2.2.10)

where d is a binomial random variable with an equal probability of success and

failure and its mean and variance are E (d) = Nc
2

and σ2
d = Nc

4
. Since the channel

taps are independent from the spreading sequences and the data sequences, the

interferer's components Akbl,kn ρ
k,1
n hlmn therefore, are independent of each other and

have zero mean.

Equation (2.2.7) can be written compactly as

ylm =
N∑
n=1

A1bl,1n h
l
mn + Z l

m, m = 1, 2, . . .M, (2.2.11)

where , Z l
m=U

l
m + νlm
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2.3 Probability Density Function (pdf) of Multiple

Access Interference (MAI)

In order to �nd the pdf of random variable pln = I l,kmnh
l
mn, the independence of I

l,k
mn

and hlmn can be applied as follows

fP (p) =

ˆ ∞
−∞

1

|x|
fI

(p
x

)
fhlmn (x) dx, x > 0

=

ˆ ∞
0

1

x

1√
2πσ2

I

exp

(
− p2

2x2σ2
I

)
x

σ2
h

exp

(
− x2

2σ2
h

)
dx,

which is found to be

fP (p) =
1

2σIσh
exp

(
− |p|
σhσI

)
(2.3.1)

Thus, the characteristic function of the random variable pln can be evaluated as

ΦP lm
(ω) = E

[
eiwP

]
=

1

2σIσh

ˆ ∞
−∞

exp (iωp) exp

(
− |p|
σhσI

)
dp

=
1

ω2σ2
P ln

+ 1

where σ2
P ln

= σ2
Iσ

2
h. Since the interferers are independent but not identical, therefore

from (2.2.9), it can be observed that the characteristic function of U l
m will be the

product of N characteristic functions of independent random variables P l
n, that is,

ΦU lm
(ω) =

N∏
n=1

ΦP ln
(ω) =

N∏
n=1

1

ω2σ2
P lm

+ 1
(2.3.2)

Where ΦU lm
(ω) is the characteristic function of U l

m and is the product of N

characteristic functions of independent random variables P l
n
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Inverse Fourier transform of the above characteristic function, ΦU lm
(ω) will yield

fU lm (u) = F−1
[
ΦU lm

(ω)
]

=
1

2π

ˆ ∞
−∞

exp
(
−iωU l

m

) N∏
n=1

1

ω2σ2
P ln

+ 1
dω (2.3.3)

The above integral is evaluated in Appendix A which gives the following expression

for the pdf of U l
m:

fU lm (u) =
1

2

N∑
n=1

Cne
− |u|
σ
Plm

σP ln
(2.3.4)

where Cn is de�ned in (A.2). The pdf of MAI in (2.3.4) shows that the MAI

experienced at any receiving antenna will be a sum of Laplacian distributed random

variables. It can be seen that by setting N = 1 in the above, the pdf of MAI will

reduce to single Laplacian random variable which is consistent with the result in [33].

2.4 Probability Density Function (pdf) of Multiple

Access Interference (MAI) and Noise

In order to �nd the pdf of MAI and noise, equation (2.3.4) is being utilized. Z l
m is

considered to be a random variable resulting in MAI and noise

Thus, the pdf of random variable Z l
m can be evaluated by the convolution of the

pdfs of U l
m and νlm as follows

fZlm (z) = fU lm (ω) ∗ fνlm
(
νlm
)

=

ˆ ∞
−∞

fU lm (t) fνlm (u− t) dt

=
N∑
j=1

Cn
2σP ln

βn (2.4.1)

26



where ∗ is the the convolution operator and βn is the integral de�ned as

βn =
1√

2πσνlm

ˆ ∞
−∞

e
− |t|
σ
Plm

−
(ulm−t)

2

2σ2
νlm dt (2.4.2)

which can be solved by using completing square method and by employing the

de�nition of error complement function erfc(x) [73] and it is found to be:

βn =
e

σ2
νlm

2σ2
Pj

2

[
e
−p
σ
Ulm erfc

(
σνlm√
2σP ln

− Z l
m√

2σνlm

)

+e
Ulm
σ
Pln erfc

(
σνlm√
2σP ln

+
Z l
m√

2σνlm

)]
(2.4.3)

The pdf fZlm (z) can be set as

fZlm (z) =
1

2
√
π

N∑
n=1

Cn
σP lm

exp

(
σ2
νlm

2σ2
P ln

)
Γ

(
α,

σ2
νlm

2σ2
P ln

;

(
Z l
m

)2

4σ2
P ln

)
(2.4.4)

where Γ (α, x; b) is the generalized incomplete gamma function de�ned as [74]

de�ned as

Γ (a, x; b) :=

ˆ ∞
x

ta−1 exp (−t− b/t) dt. (2.4.5)

for α = 1
2
, the Generalized Incomplete Gamma Function can be written as

Γ

(
1

2
, x; b

)
=

√
π

2

[
exp

(
−2
√
b
)
erfc

(√
x−

√
b/x
)

+ exp
(

2
√
b
)
erfc

(√
x+

√
b/x
)]

(2.4.6)

where erfcx = 2
π

´∞
x
exp (−t2) dt is error complement function . Equation (2.4.4)

can expressed as

fZlm (z) =
1

2
√
π

N∑
n=1

Cn
σP ln

exp

(
σ2
νlm

2σ2
P ln

)
Γ

(
1

2
,
σ2
νlm

2σ2
P ln

;

(
Z l
m

)2

4σ2
P ln

)
(2.4.7)
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2.5 Simulation Results

This section deal with the simulation as well as numerical results to validate the

theoretical results derived. The e�ect of di�erent parameters on the pdf of MAI

and MAI and noise is also investigated in this section namely the e�ect of number

of transmitting as well as receiving antennas, length of pseudo noise (PN) sequence

and number of subscribers in the system.

The simulation setup consists of two di�erent scenarios consisting of of 2×2 and

4 × 4 MIMO systems. The CDMA system uses random signature sequences. The

SNR used for all simulations is 20dB. The Rayleigh channel is chosen to be �at slow

fading.

Figure 2.2 shows the e�ect on the pdf of MAI as the system's diversity increases.

As can be seen, the variance of MAI increases with an increase in diversity. This

is consistent with theoretical predictions that the severity of interference would

increase in the presence of such diversity. The e�ect of the length of signature

sequence on the pdf of MAI can be seen in �gure 2.3. The MIMO system in this case

is 4× 4. This is also consistent with results reported in [33]. As can be noticed, the

variance of MAI decreases with an increase in the length of the signature sequence.

Table 2.1 shows the comparison of analytical and experimental variances in each

case which demonstrates the correctness of the theoretical analysis. As mentioned

earlier in the analysis that the MIMO-MAI is a sum of Laplacian distributed random

variables, it is therefore prudent to inspect the kurtosis of the MIMO-MAI. Table

2.1 lists the kurtosis of MAI which is gradually decreasing as the signature length

increases. The increase in the signature sequence length would result in MAI in

AWGN to be Gaussian whereas e�ecting the MAI under the fading environment at

the same time.

The e�ect of interference, i.e, MAI and noise on a system's performance is de-

picted in Figure 2.4 . It is intuitive to predict that the system will be severely

degraded by the increase in the number of subscribers. As the number of sub-
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Figure 2.2: pdf of MAI for di�erent scenarios of transmit and receive antennas.
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Figure 2.3: pdf of MAI under various length of PN sequences.
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Table 2.1: Kurtosis and variance of MAI in a 4× 4 MIMO system with K = 4.
Nc = 31 Nc = 63 Nc = 127

Experimental Kurtosis of MAI 5.11 5.12 5.03
Experimental Variance 0.3833 0.1926 0.0946
Analytical Variance 0.387 0.19 0.0945

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

f(
z)

 

 
Simulation
Theory

K=4, 4 × 4 System

K=10, 4 × 4 System

K=15, 4 × 4 System

Figure 2.4: pdf of MAI-plus-noise under di�erent number of users in the system.
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scribers is increasing, the power of the MAI experienced by the desired subscriber is

also increasing as shown in Figure 2.4. Table 2.2 lists the experimental kurtosis of

MAI and noise under di�erent capacity and diversity scenarios to test its Gaussian-

ity. In all the cases, the kurtosis decreases with increase in the system user capacity.

Particularly for the 2 × 2 MIMO case, the MAI-plus-noise acts more like Gaussian

as kurtosis of Gaussian distribution is 3.

Table 2.2: Experimental Kurtosis of MAI-plus-noise under di�erent system's capac-
ity.

MIMO System 2× 2 4× 4

K = 4 3.77 4.63
K = 10 3.3 4.02
K = 15 3.18 3.9
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Figure 2.5: pdf of MAI-plus-noise for di�erent scenarios of transmit and receive
antennas.

Figure 2.5 shows the e�ect of diversity on the pdf of MAI-plus-noise. Even though

a MIMO-CDMA system will provide higher data rates with increase in reliability,

the system will be severely degraded by the limiting factors such as MAI and MAI
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plus noise. The results shown above motivate the fact that any receiver design

for such a system will have to take MAI plus noise in to account in order to have

optimum reception.

2.6 Remarks

In this chapter, a thorough statistical analysis of MAI and MAI-plus-noise for

MIMO-CDMA systems has been performed in the presence of Rayleigh fading chan-

nel. The analysis results in a new closed-form expressions for the pdf of MAI and

MAI and noise. It is found that the pdf of MAI and noise is a function of number of

subscribers, number of antennas, spreading code length, channel variance and noise

variance. Moreover, the e�ect of these parameters on the pdf of MAI is investi-

gated in simulations. The simulation results have shown a close agreement with the

theoretical �ndings.
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Chapter 3

BER Performance of MIMO-CDMA

Systems Based on Characterization

of Multiple-Access Interference

(MAI)

3.1 Introduction

This chapter deals with the design of an optimum receiver in the presence of MAI

plus noise for Rayleigh environment. Probability of error is derived for the maxi-

mum likelihood receiver. Simulation results shown at end of the chapter, support

the analytical �nding. Design as well as characteristics of optimum receivers in the

presence of AWGN for di�erent modulation methods have been extensively covered

in literature. It is reported in the literature that AWGN channels optimum detector

is comprised of a correlation demodulator or a matched �lter followed by an opti-

mum decision rule, is based on maximum aposteriori probability (MAP) criterion

for the case when a priori probabilities of the transmitted signal are unequal. Max-

imum likelihood (ML) criterion is used in case when a priori probabilities of the
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transmitted signal are equal. Decisions based on any of the criteria used depends

on the conditional probability function (pdf) of the received vector at the output

of the matched �lter or the correlator. In this analysis, maximum likelihood (ML)

criterion is utilized.

3.2 BER Performance

BER is the number of bits in error with respect to the total number of bits received

at a particular receiver. BER performance is considered to be very important criteria

for CDMA systems as it determines the quality of transmission as well as amount

of data to be transmitted per unit of bandwidth. Since all subscribers contribute to

the interference levels at the receiving side , the BER of each subscriber increases

when more subscribers try to access the channel. Subsequently, maximum number

of subscriber is determined by the amount of interference which can be accepted [75].

At the front end of the optimum receiver, a matched �lter is attached which is

matched to the desired subscriber. The desired subscriber in this analysis is the

subscriber 1. The matched �lter's output for the lth symbol at the mth receiver can

be written as follows:

ylm =

ˆ lTb

(l−1)Tb

rm (t) sl,1m (t) dt

=
N∑
n=1

A1bl,1n h
l
mn + U l

m + νlm, m = 1, 2, . . .M, (3.2.1)

In equation (3.2.1) , the �rst term represents the desired subscriber, the second

term represents MAI plus noise, whereas the third term represents the additive

Gaussian noise
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The pdf of MAI-plus-noise was found to be

fZ (z) =
1√
2

N∑
j=1

Cn
σU l

m

exp

(
σ2
νlm

2σ2
U l
m

)
Γ

(
1

2
,
σ2
νlm

2σ2
U l
m

;

(
Z l
m

)2

4σ2
U l
m

)
(3.2.2)

The output of the matched �lter matched to the signature waveform of the desired

subscriber for the lth symbol can be written as

ylm = wlm,i + Z l
m,i i = 1, 2 (for BPSK signals) (3.2.3)

wm,i in equation (3.2.3) is the desired symbol in a MIMO system. If Eb represents

the energy per bit then wm,i is either +Nαi
√
Eb or −Nαi

√
Eb for BPSK signals.

Moreover as the received signal is given by

ylm =

ˆ lTb

(l−1)Tb

rm (t) sl,1m (t) dt

=
N∑
n=1

A1bl,1n h
l
mn + zlm + νm, m = 1, 2, . . .M, (3.2.4)

where
∑N

n=1A
1bl,1n h

l
mn represents the desired signal, the channel taps α

l are no longer

Rayleigh fading but rather a sum of Rayleigh fading. This can be seen as

N∑
n=1

A1bl,1n h
l
mn = A1bl,1

N∑
n=1

hlmn (3.2.5)

Since it is ass that same data is being transmitted from each transmitting antenna

(a type of diversity that can be justi�ed). So αl =
∑N

n=1 h
l
mn that is sum of Rayleigh

fading.

In the derivation of BER, the pdf of
(
αl
)2

is required as can be seen in equation

(3.2.12) for which we need the pdf of αl. The pdf of αl is obtained from [76, Eq.
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4a-4b] as

fαl (t) =
α2N−1e−

α2

2b

2N−1bN (N − 1)!
, (3.2.6)

b =
σ2

N
[(2N − 1)!!]1/N (3.2.7)

where (2N − 1)!! = (2N − 1) (2N − 3) · · · 3.1 and αl = x/
√
N , x is the normalized

Rayleigh random variable and N is the number of transmitters. For BPSK signaling,

the conditional pdf p
(
ylm|wlm,1

)
can be obtained by using (2.4.4) as

p
(
ylm|wlm,1

)
=

1

2
√
π

N∑
n=1

Cn
σU l

m

exp

(
σ2
νlm

2σ2
U l
m

)
Γ

(
1

2
,
σ2
νlm

2σ2
U l
m

;

(
ylm −Nαi

√
Eb
)2

4σ2
U l
m

)
(3.2.8)

For the case when wlm,1 and w
l
m,2 have equal a priori probabilities, then according to

ML criterion, the optimum test statistic is the likelihood ratio
(
Λ = p

(
ylm|wlm,1

)
/p
(
ylm|wlm,2

))
.

Now assuming that the channel attenuation (αl) is deterministic, therefore any error

occurred is only due to the MAI-plus noise (Z l
m,i). It is shown in [33] that the MAI-

plus noise term has a zero mean and a zero skewness which shows its symmetric

behavior about its mean. Consequently, the conditional pdf p
(
ylm|wlm,1

)
with deter-

ministic channel attenuation will also be symmetric resulting in the threshold for

the ML optimum receiver to be its mean value, that is, zero. Finally, the probability
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of error given wlm,1 is transmitted is found to be

P (e|wi,1) =

ˆ 0

−∞
p
(
ylm|wlm,1

)
dylm

=
1

2
√
π

N∑
n=1

ˆ 0

−∞

Cn
σU l

m

exp

(
σ2
νlm

2σ2
U l
m

)

× Γ

(
1

2
,
σ2
νlm

2σ2
U l
m

;

(
ylm −Nαi

√
Eb
)2

4σ2
U l
m

)
dylm (3.2.9)

=
1

2

N∑
n=1

Cn exp

(
σ2
η

2σ2
Iσ

2
α

)

×
ˆ ∞
σ2
η/2σ

2
Iσ

2
α

e−terfc

(√
α2N2Eb
4σ2

Iσ
2
αt

)
dt (3.2.10)

In order to get the pdf of
(
αl
)2
, we apply a transformation to the random variable

αl. This can be as follows:

A new variable γz set up as

γz =
α2
iN

2Eb
4σ2

Iσ
2
αt

(3.2.11)

The mean of γz i.e. γz = E [γz] can be found as

γz = E [γz] =
E [α2

i ]N
2Eb

4σ2
Iσ

2
αt

=
2bNN2Eb

4σ2
Iσ

2
αt

=
bN3Eb
2σ2

Iσ
2
αt

(3.2.12)

From 3.2.11

αi =
2

N

√
γzσ2

Iσ
2
αt

Eb
(3.2.13)

To summarize

fγz (γz) =
fαi (αi)

|dγz/dαi|

∣∣∣∣
αi=

2
N

√
γzσ

2
I
σ2
αt

Eb

(3.2.14)

dγ

dα
=
αiN

2Eb
2σ2

Iσ
2
αt

=
2

N

√
γzσ2

Iσ
2
αt

Eb
× N2Eb

2σ2
Iσ

2
αt

(3.2.15)

The pdf of Mai-plus-noise and subsequently the BER are evaluated in Appendix B.
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The BER can therefore be setup as follows:

P (e) =
1

2

N∑
j=1

Cj2
1−N exp

(
σ2
η

2σ2
Iσ

2
α

)(
σ2
Iσ

2
α

bN2Eb

)N
Γ (2N)

Γ (N + 1)

×
ˆ ∞
σ2
η/2σ

2
Iσ

2
α

e−ttN 2F1

(
N,N +

1

2
;N + 1,−2σ2

Iσ
2
αt

bN2Eb

)
dt (3.2.16)

The integral in equation (3.2.16) is given by

ˆ ∞
σ2
η/2σ

2
Iσ

2
α

e−ttN 2F1

(
N,N +

1

2
;N + 1,−2σ2

Iσ
2
αt

bN2Eb

)
dt (3.2.17)

There is no closed form solution for the above integral so the result were evaluated

through numerical integration.

3.3 Simulation Results

Figure 3.1 shows the performance of CDMA systems in �at Rayleigh fading envi-

ronment. As can be seen that BER performance is worsening when the number of

subscriber is increasing. It is also worth noting that at a certain signal to noise

ratio, BER is not changing. As shown the proposed analytical results are closely

matched with the experimental one. Figure shows BER plotted against number of

subscribers for the 20dB SNR and a 2 × 2 MIMO system. It can be seen that the

analytical results are closely matched with the experimental one.
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Figure 3.1: Experimental and analytical results of probability of bit error in �at
Rayleigh fading environment versus SNR.
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Figure 3.2: Experimental and analytical results of probability of bit error in �at
Rayleigh fading environment versus number of subscriber.
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Chapter 4

Multiple Input Multiple Output

Decision Feedback Equalization

4.1 Introduction

This chapter deals with the construction of the DFE and its advantages. Some

alternative decision feedback equalizer structures will also be discussed. Some of the

constrained optimization techniques which are being applied to di�erent applications

of adaptive �ltering such as MIMO-DFE receivers will also be elaborated in this

chapter.

4.2 Decision Feedback Equalization (DFE)

In most digital data transmission systems the dispersive linear channel encounters

amplitude and phase distortion. As a result, the received signal is a�ected by ISI.

Systems in which a sequence of pulse-shaped information symbols are transmitted,

the time domain full response signaling pulses are distorted by the hostile dispersive

channel which leads to the inter symbol interference. At the receiver, the linearly

distorted signal has to be equalized to recover the information. Equalizers em-

ployed at the receiving end for ISI compensation can be classi�ed according to their
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structure, the optimizing criterion and the algorithms used to adapt the equalizer

coe�cients. On the basis of their structures, the equalizers can be classi�ed as linear

or decision feedback equalizers. Various methods have been developed to enhance

the performance of the communication systems by reducing the e�ects of the ISI.

Linear equalization is one of the methods employed but a major problem with lin-

ear equalization is that it doesn't takes in to account the fact that the transmitted

sequence has a "�nite alphabet" structure.

Figure 4.1: Block diagram of Decision Feedback Equalizer

Figure 4.1 shows a simpli�ed block diagram of a DFE where the forward �lter

and the feedback �lter can each be a linear �lter, such as transverse �lter. The

nonlinear characteristic of the DFE is due to the nonlinear characteristic of the

detector which is used to provide input to the feedback �lter. The basic idea of a

DFE is that if the values of the symbols previously detected are known, then ISI

caused by these symbols can be mitigated at the output of the forward �lter by

subtracting previous symbol values with appropriate weighting. The forward and

feedback tap weights can be adjusted simultaneously to ful�ll a criterion such as

minimizing the MSE. The advantage of a DFE structure is the feedback �lter,which

is additionally working to remove ISI, operates on noiseless quantized levels resulting

in an output which is free of channel noise.
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4.3 Some Alternative Decision feedback equalizer

Structures

4.3.1 Frequency Shift Decision Feedback Equalizer (FRESH-

DFE)

Frequency Shift Decision Feedback Equalizer (FRESH-DFE) [77] is a decision feed-

back equalization technique in which the feed forward �lter (FFF) is replaced by

a number (bank) of frequency shift adaptive �lters to optimize the performance of

DFE in a cyclostationary environment. A cyclostationary process is a random sig-

nal process that has been subjected to some form of repetitive operation such as

sampling, scanning, or multiplexing will usually exhibit statistical parameters that

vary periodically with time. In many cases, the repetitive operation is introduced

intentionally to put the signal in a format that is easily manipulated and preserves

the time-position integrity of the events that the signal is representing. FRESH �lter

basically is designed to extract data carrying waveform, but it can also be employed

to extract the data if its output is sampled at the baud rate. Such FRESH �lter

technique could be equivalent to a linear Fractionally Spaced Equalizer (FSES) (with

an unlimited number of equalizer taps) if the frequency shifts equal to the baud rate

and its harmonics. The Decision Feedback Equalizer (DFE) is shown to have better

performance in a cyclostationary environment and this is due to the fact that DFE

utilizes FSE as its forward �lter. DFE exploits the information of the baud rate

and its harmonics. The feedback �lter (FBF) is used to mitigate the residual IS1

caused by earlier symbols. When compared to the FSE, performance of the DFE

is much better, especially in cases where there is high noise and interference. [78]

and [77] have shown that FRESH-DFE can achieve better MSE and better Symbol

Error Rate (SER) compared to the DFE.

The structure of FRESH-DFE is divided in three parts namely, Conjugate-Linear
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(LCL) FRESH �lter [78], followed by a baud rate sampler (BRS) and a feedback

�lter (FBF). Conjugate-Linear �lter uses the information of the interference cyclic

frequencies at 0, m/Tin and 2fl+k/Tin, BRS uses the information of the symbol rate

1/T as well as its harmonics whereas feedback �lter (FBF) mitigates the residual

IS1 caused by earlier symbols. Even though the input is assumed to be continues in

time, it can be represented by an oversampled discrete version. To be able to recover

Spectral Correlation density (SCD) of a continues time signal from its discrete-time

counterpart, the sampling rate must be greater than twice the Nyquist rate [79]. The

higher the sampling rate the better is the performance of the FRESH-DFE. In an

environment where inter symbol interference (ISI) is high, FRESH-DFE outperforms

the DFE but the complexity increases.

4.3.2 FRESH-DFE: A New Structure for Interference Can-

cellation

Main causes of poor system performance in the digital cellular system are Fading,

shadowing, frequency selectivity and interference but among them ISI and interfer-

ence particularly lower the performance of any cellular system. Many techniques

such as the use of micro and macro diversity against fading and shadowing re-

spectively and equalization against frequency selectivity and interference have been

employed to mitigate the adverse e�ect caused by ISI, co-channel interference (CCI)

and adjacent channel interference (ACI). Most of these techniques utilize adaptive

�lters to alleviate the in�uence of time variant e�ects in digital communications.

In some cases interference is removed by serial, parallel, or hybrid interference can-

celers especially in the case of multiuser CDMA [78, 80, 81]. [82] has used DFE to

increase the capacity of CDMA system which uses short spreading sequences. [83]

has shown several interference erasure techniques. [84] and [85] have used what is

called cyclostationary properties to get rid of interference in a cellular system that

uses carriers with certain frequency o�sets. Although DFE techniques o�er con-
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siderable performance gains in systems operating over impaired channels but still

more research has to be done to further reduce the e�ect of interference. A major

drawback in a DFE structures found in literature [86�88] assume that digital signals

are wide-sense stationary processes but as shown by [89�91] digitally modulated

signals exhibit what is called �cyclostationary properties�. These cyclostationary

properties have been e�ectively used in digital communications to get rid of inter-

ference [82,92�94]. By using the cyclostationary properties of a digitally modulated

signal [77] has proposed a new structure of DFE to optimize the performance of DFE

under the assumption that the input to the receiver is composed of a quasi-periodic

digitally modulated signal of interest and other interfering signals, possibly all mu-

tually di�ering in carrier frequencies and/or symbol rates. Simulation results carried

out in [77] show that the proposed receiver realizes signi�cant improvement over the

system that uses conventional DFE. The results also indicate that the performance

improvement is much better at lower signal to interference ratio.

4.3.3 Multi Split Decision Feedback Equalizers

Due to the rapid changes in the characteristics of a channel, quick convergence of the

equalizer taps to the optimum value is extremely important. However faster conver-

gence will increase the computational cost and as such becomes a con�icting param-

eter compared to the quick convergence. To overcome this problem, split adaptive

techniques were developed which were shown to have quick convergence rate with

a small increase in complexity [95�97]. One of the advantages of a Split processing

technique is that it provides stability and quicker convergence at the expense of a

moderate increase in computational complexity. This idea of multi-split (MS) adap-

tive �ltering is extended to the DFE by [98] to develop a new technique called multi

split DFE (MS-DFE) in which split processing is achieved by continuously splitting

both the forward �lter and the feedback �lter with each splitting symmetry and anti

symmetry conditions are imposed separately conditions on the impulse responses of
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�lters by using appropriate and distinct sets of linear constraints. These �lters are

connected in parallel. Adaptive algorithms such as the LMS, LMS-DCT and RLS

algorithms are employed to update the tap coe�cients of the equalizer. MS-LMS

and MS-IUS algorithms are used when dealing with multi-splitting techniques.

The main problems appearing in adaptive MIMO equalization, i.e., the increased

�lter size and the colored noise caused by inter stream interference, slow down

signi�cantly the performance of stochastic gradient algorithms. On the other hand,

the computational requirements of MIMO RLS algorithms increase signi�cantly.

In [47], some adaptive schemes with convergence properties close to RLS but of

lower computational cost are proposed. But still there computational complexity is

very high compared to the LMS type algorithm. For scenarios in which accurate

CSI is available at both the transmitter and the receiver, there is a well established

framework that uni�es the design of linear transceivers under many design criteria

[48]. A counterpart for the design of systems with DFE has recently emerged [49�

51, 99]. This framework was also extended to MIMO systems with pre-interference

subtraction at the transmitter in [99]. However, in many scenarios, such as frequency

division duplex systems, obtaining accurate CSI at the transmitter may require a

considerable amount of feedback to the transmitter. An approach that allows the

designer to limit the required amount of the feedback is to quantize the transmitter

design. In these limited feedback schemes [52], the receiver uses its CSI to choose the

best transmitter design from a code book of available designs, and then feeds back

the index of this precoder to the transmitter. This strategy has been considered

for beam forming schemes (e.g., [53�56, 100�102]), unitary precoding with linear

equalization (e.g., [58]) and unitary precoding for orthogonal space time block codes

[58], [59]. For zero-forcing DFE schemes, a limited feedback scheme in which the

receiver feeds back the order of interference cancellation was proposed in [60, 61].

In [51], a limited feedback scheme for systems with a (general) linear precoder at

the transmitter and zero-forcing DFE at the receiver is designed.
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4.4 Constrained Adaptive Algorithms

The performance of an adaptive algorithm can be improved if the partial knowledge

of the channel is incorporated into the algorithm design [103,104]. Inspired by this

idea, an algorithm for the tracking and identi�cation of FIR channels incorporating

the variance of the channel noise has been proposed [103]. It was named noise

constrained least mean squares (NCLMS) algorithm. NCLMS is a variable step size

algorithm (VSLMS) and is a popular modi�cation of LMS algorithm in which step

size rule arises from the constraint i.e noise variance. An advantage of the NCLMS

algorithm is that it has the same computational complexity as the LMS but with

superior performance. NCLMS has been applied to the tracking time constant and

time varying channels [64]. A complementary pair LMS (CP-LMS) is developed

which could solve the problem of selecting appropriate update step size in LMS

algorithm [105]. CP-LMS algorithm is comprised of two adaptive �lters which are

operating in parallel with di�erent update step sizes with one �lter re-initializing

the other with the better coe�cient estimates. A variable step size for both �lters

of CP-LMS, which uses the noise variance is implemented in NC-VSLMS algorithm.

Though NCLMS outperforms the VSLMS algorithm in the constant channel en-

vironment, the performance will degrade with mismatch.While developing NCLMS,

it is assumed that noise variance is known to the receiver. Since it is very strong

assumption, an adaptive error constrained LMS has been presented [106]. This

algorithm is developed by using a constrained optimization technique called aug-

mented Lagrangian [107] to estimate the variance of the noise. Recently an LMS

based constrained adaptive algorithm is designed for CDMA systems which exploit

the knowledge of both MAI and noise variances [65]. The novelty of this algorithm

resides in the fact that MAI variance was never used as a constraint before. But

this algorithm is developed for single input single output CDMA system.
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4.5 Constrained optimization techniques

Constrained optimization techniques have been applied to di�erent applications of

adaptive �ltering such as MIMO-DFE receivers. Few of these techniques are dis-

cussed in this chapter.

4.5.1 Constrained MMSE-DFE

As mentioned earlier, the error propagation associated with DFE e�ects its per-

formance. Several techniques have been devised to mitigate this constraint. One

such technique is constrained MMSE-DFE [108] which imposes an inequality norm

constraint on the tap energy of the FBF. Therefore, the constraint on the FBF is

given as

tr
{
BHB

}
≤ ξ, (4.5.1)

where ξ is the energy threshold. This results in the constraint MMSE solution for

the FFF and FBF, respectively as

Fop (λ) =
(
H1H

H
1 + λH2H

H
2 + σ2

zI
)−1

H111, (4.5.2)

Bop (λ) = HH
2 Fop (λ) , (4.5.3)

where H1 and H2 are the sub-matrices of H and 11 = [0 0 . . . 0 IM ]T is a (DM ×M)

matrix; 0 is a (M ×M) matrix of all zeros. The choice of the value of the multiplier

λ, governs the behavior of the constrained DFE. When λ = 0, it results in the

conventional DFE. This assumes the ideal operation of the FBF, i.e., the post-

cursor ISI is canceled by the FBF. When λ = 1, it results in the MMSE linear

equalizer. This assumes that the FFF will mitigate not only the precursor ISI but

the post-cursor ISI as well. Severe error propagation can be dealt with by choosing

λ very close to 1.
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4.5.2 Cyclic MMSE

A property of modulated signals is that they are polycyclostationary (PCS) in nature

meaning modulated signals have correlation functions which are time poly-periodic.

This property of PCS together with MMSE is used to improve the equalization of

modulated signals [109]. The DFE structure is built from the received signal that

are possibly shifted by its cyclic frequencies. This structure is particularly bene�cial

for OFDM where the DFE has been shown exhibit improved BER performance in

the presence of narrow band and wide band interference.

4.5.3 Limited Feedback ZF-DFE

Precoding is one technique used in digital communication to suppress the channel

impairments to the transmitted symbol. If CSI is available to the transmitter, the

data can be precoded before transmission to minimize the channel e�ects on the

symbols. This is equivalent as stating that the data is weighted at the transmitter

such that the signal power is maximized at the receiver output, i.e.,

x = Pb, (4.5.4)

where P is the precoding matrix. The approach devised in [51] presents a design

framework for a limited low-rate feedback of the CSI to the transmitter with a zero-

forcing DFE. This approach assumes perfect CSI at the receiver. The optimum

zero-forcing DFE solution obtained can be written as

F = C (HP)† , (4.5.5)

B = diag (L11, . . .LKK) L−1 − I, (4.5.6)

where C = I + B, L is a lower triangular matrix resulting from the Cholesky

decomposition of σ2
z

(
PHHHHP

)−1
= LLH and (.)† is the pseudo-inverse.
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4.5.4 Adaptive Channel Aided DFE

Another approach devised in [110] uses a basic property of the DFE, i.e., the post-

cursors of the channel response convolved with the FFF is canceled by the FBF.

This approach results in e�ectively mitigating the propagation errors. The LMS

algorithm is used to estimate the channel response and subsequently the optimum

solution of the FBF. It incorporates the channel estimator in the DFE structure.

The update equation for the MIMO DFE can be written as

fnm,k+1 = fnm,k + µfynm,ke
∗
k, (4.5.7)

where µf is the learning rate of the algorithm and e∗k is the error. If the coe�cients

of the channel estimator is denoted by q then the LMS update equation for the

estimator is given as

qnm,k+1 = qnm,k + µqbnm,ke
∗
k, (4.5.8)

where µq is the learning rate of the algorithm and bk is the FFF decision. It is shown

in [110] that this is essentially a system identi�cation problem where qnm,opt = h∗nm.

With the optimum solution qnm,opt, the optimum solution for the FBF is given as

bnm,opt = post {qnm,opt ⊗ fnm,opt} , (4.5.9)

where⊗ indicates convolution and post {.} denotes the post-cursor-taking operation.

4.5.5 Adaptive Conjugate Gradient Decision Feedback Equal-

izer

The complexity involved in the design of the DFE is the main issue addressed in [47].

The proposed idea applied an adaptive modi�ed conjugate gradient algorithm to de-

rive an equalizer with identical convergence, improved tracking capabilities but with

a problem of higher computational load as compared to RLS algorithm. Two updat-
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ing strategies of the equalizers �lters based on the Galerkin projection are utilized to

reduce the complexity. It has been shown that SISO adaptive algorithms based on

conjugate gradient methods are numerically steady. Another advantage is that their

convergence properties are comparable to the RLS and their computational cost is

between RLS and LMS algorithms. The main motivation for this approach was that

no work has been done for developing MIMO adaptive equalization algorithms based

on CG method. The MIMO DFE solution using the least squares criterion can be

computed as the minimum of the cost function

J (w,Φ (k) , ri (k)) =
wHΦ (k) w

2
−Re

{
wHri (k)

}
(4.5.10)

with respect to w. Matrix Φ (k) stands for the exponentially time-averaged input

data auto correlation and ri (k) is the cross correlation vector. The modi�ed CG

method for the MIMO DFE minimizes the cost function in (4.5.10) by iteratively

updating the vector W as

W (k) = W (k − 1) + U (k) A (k) , (4.5.11)

where the columns of U (k) are the search direction for each M systems and A (k)

is a M ×M diagonal matrix having the ith step size, αi (k) given by

αi (k) =
uHi (k) ti (k)

uHi (k) Φ (k) ui (k)
, i = 1, . . . ,M (4.5.12)

The search direction is updated as

U (k + 1) = G (k) + U (k) β (k) , (4.5.13)

where G (k) is the gradient of the system given by

G (k) = T (k)− Φ (k) U (k) A (k) , (4.5.14)
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where T (k) is de�ned as

T (k) = λG (k − 1) + y (k) eH (k) . (4.5.15)

The search direction vectors for the next update can be computed as

U (k + 1) = G (k) + U (k) β (k) , (4.5.16)

where the ith diagonal element of the matrix β (k) can be computed as

βi (k) =
(gi (k)− gi (k − 1))H gi (k)

gHi (k − 1) gi (k − 1)
, (4.5.17)

where gi (k) is the ith column of the gradient matrix G (k). Now all the linear sys-

tems are constantly updated by the modi�ed conjugate gradient algorithm. This is

computationally complex. Using the Galerkin projections, an approximate solution

can be obtained by updating through just one seed system j at each instant, while

the other systems are updated through the projections, i.e., they use the search

direction of the seed system as

wi (k) = wi (k − 1) + uj (k)αi (k) , (4.5.18)

where the step size αi (k) is selected as

αi (k) =
uHj (k) ti (k)

uHj (k) Φ (k) ui (k)
, i = 1, . . . ,M (4.5.19)

and uj (k) is the search direction of the seed system. This scheme although reduces

the complexity but at the expense of the small performance degradation.
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4.5.6 MBER Space-Time Decision Feedback Equalization As-

sisted Multiuser Detection for Multiple Antenna Aided

Space-Division Multiple Access (SDMA) Systems

In the CDMA system, users are separated by a unique user-speci�c spreading code,

whereas in an SDMA system users are separated by a unique user-speci�c channel

impulse response (CIR) found at the receiver antennas. CIR in this case can be

termed as a user-speci�c CDMA signatures and are non orthogonal to each other.

This property is not considered a serious limitation as orthogonal spreading codes

become non-orthogonal due to the convolution process by the CIR. However, due

to this property of the CIRs, an e�cient multiuser receiver would be required for

separating the users in the SDMA system. One of the popular SDMA-receiver

designs is to employ the minimum mean square error (MMSE) multi user detection

(MUD) [111]. However, in CDMA and an adaptive beam forming-based MUD cases,

perhaps a better option is to choose detector's coe�cients by directly minimizing

the system's bit error (BER) [112, 113]. For the single-user single-antenna system,

the minimum BER (MBER) has been shown to be less susceptible to the error

propagation (EP) due to decision feedback errors compared to the MMSE DFE [112].

For the base station employing multiple transmit antennas, an MBER multiuser

transmission scheme has been proposed [114], while for the multiple antenna assisted

receiver, an MBER rake receiver is proposed based on the adaptive minimum bit

error rate (AMBER) criterion [115]. Theoretically MBER ST-DFE-MUD, which

is unachievable in practice. The adaptive least bit error rate (LBER) aided ST-

DFE-MUD can practically be implemented and can also be characterized in terms

of its steady-state BER as well as convergence performance [42]. The MBER ST-

DFE-MUD design shows a better BER performance as compared to the standard

MMSE design [42]. Another advantage of this technique is that, unlike MMSE

design, whose performance decreases considerably due to decision feedback errors
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in the presence of multiuser feedback loops, the MBER ST-DFE-MUD is robust to

the error propagation (EP). An adaptive implementation of the MBER ST-DFE-

MUD is considered based on a stochastic gradient learning algorithm referred to as

the LBER technique. LBER ST-DFE-MUD consistently outperforms not only the

least mean square (LMS) based ST-DFE-MUD but also has a lower computational

complexity than the latter in the case of the BPSK modulation scheme [42]

4.5.7 Fast Techniques for Computing Finite-Length MIMO

MMSE Decision Feedback Equalizers

In broadband applications, data is normally transmitted in packets, These packets

are made up of a predetermined training sequence followed by random data. An

e�cient equalization scheme in this scenario can be based on a DFE.

A major concern regarding the success of an equalization scheme is the com-

plexity required for computing the optimal DFE �lters. Algorithms for �nding the

optimal tap coe�cients of a MMSE-DFE are based on the Cholesky factorization ap-

proach [116]. The approach used in [117] used the generalized Schur algorithm [118]

for fast Cholesky decomposition of the matrices involved in both feedback and feed

forward �lters computation. An alternative approach for computing the optimal

DFE coe�cients in MIMO DFE is based on formulating the MMSE- DFE as a

linear estimation problem [119], as opposed to the constrained linear estimation

cost function [117]. But since using the DFE cost function as a linear estimation

problem provides same general result, the usefulness of its corresponding optimal

expressions has not been fully appreciated. This approach provides more compact

formulas than the ones resulting from the constrained formulation of [116] and this

can be achieved via a simple observation,that the expression of the resulting feed

forward �lter (FFF) corresponds exactly to the de�nition of the Kalman gain ma-

trix encountered in regularized RLS problems in which fast recursions are ready

to be used. Subsequently FFF can be e�ciently and e�ectively computed through
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fast Kalman gain (FKG) update, whereas the feedback �lter (FBF) is achieved

through fast and reliable MIMO convolution techniques. The alternative approach

for computing the optimal DFE coe�cients in MIMO DFE based on formulating

the MMSE- DFE as a linear estimation problem has number of advantages when

compared to the previously employed techniques namely

1. Signi�cantly reduced computational complexity, for the same channel and DFE

�lters length and noise statistics. By linear estimation, the complexity of

the corresponding formulas depends strongly on and can achieve additional

computational gains.

2. The new DFE tap computation uses simpli�ed structured recursions, suitable

for a control-�ow implementation, making it much simpler than the method

used in [117], as the [117] relies on the use of non-structured recursive equa-

tions, while often requiring the use of a digital signal processor (DSP).
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Chapter 5

Proposed MIMO Receivers

5.1 Introduction

Since MAI is a limiting factor in MIMO-CDMA systems, it is imperative to study the

e�ect of MAI on the system performance. It has been reported in the literature that

the learning ability of an adaptive algorithm can be increased if a constraint is added

to it. In this chapter, a MIMO-CDMA constrained LMS algorithm is developed

to be implemented for the two types of MIMO receivers i.e one with the linear

adaptive equalization and the other with MIMO decision feedback equalization. The

proposed algorithm is equipped with the knowledge of the number of subscribers,

spreading sequence (SS) length, additive noise variance as well as the variance of

MAI plus noise (new constraint). A distinguishing feature of this algorithm is that

MAI variance has never been used as a constraint though MAI plus noise was used

by [65] to develop an algorithm named MAI and noise constrained (MNCLMS) but

MNLMS algorithm is applicable to SISO CDMA systems whereas in this work, an

algorithm is being developed for MIMO- CDMA systems. A Robbins - Monroe

algorithm [?] is utilized to minimize the conventional mean-square error criterion

incorporating MAI and noise as a new constraint. This scheme will result in MAI and

noise constrained LMS (MNCLMS) algorithm in the MIMO-CDMA systems. The
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proposed algorithm is a variable step size algorithm as the step size rule is applicable

placing the constraints on MAI and noise. By using the proposed, algorithm,the

performance of both receivers will be analyzed.

5.2 Motivation

Adaptive algorithms such as least LMS and RLS do not use models for channel

coe�cients and or noise. Whereas model based algorithms use various types of

models such as random walk, auto-regressive etc for coe�cients and the additive

white Gaussian noise. Model parameters are known or are jointly estimated with

the channel. Adaptive algorithms can be inferred to as model based algorithms

with model parameters choice dependent on data [120]. It has been reported in

the adaptive �ltering literature that practically it is possible to improve the perfor-

mance of the adaptive algorithm if the partial knowledge of the channel is available

provided that the computational cost of an algorithm is not increased tremendously.

According to the noise constrained LMS algorithm [64]

wn+1 = wn + µlnenXn (5.2.1)

µn+1 = 2µln(1 + γλn) (5.2.2)

λn+1 = λn + β

[
(
1

2
e2
n − σ2

νlm
)− λn

]
(5.2.3)

λ, α and β are positive constants. This algorithm is a variable step size LMS

algorithm because the step size rule is applicable due to the constraint on the noise

variance. The computational cost of the aforementioned algorithm is the same as

of LMS but the convergence rate of the noise constrained LMS algorithm is much
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faster than the LMS due to its three independent parameters.

MAI is the major limiting factor in the system performance of a multisubscriber

environment, it is required to design a multi receiver scheme which will mitigate

the e�ect of MAI and additive noise. Previous research work treated MAI as part

of interfering noise. This assumption is not practically correct which led this work

to use MAI as an additional constraint by using structured information contained

in it. It is also believed that by using the combined information of MAI and the

interfering noise to form into a single constrained will result in an algorithm which

would outperform the noise only constrained algorithm. It should be noted that

using MAI alone as a constraint is not a viable choice since noise is an undeniable

physical constraint and as such cannot be ignored while developing such algorithms.

As NCLMS algorithm is noise constrained only, a new e�ective constrained al-

gorithm is developed by incorporating MAI variance in addition to the the noise

variance in the algorithm resulting in a generalized MAI plus noise constrained LMS

(MNCLMS) adaptive algorithm. Since the proposed algorithm is generalized, this

algorithm is able to deduce MAI constrained algorithm, noise constrained algorithm

and zero constrained noise algorithm as special cases.

5.3 Algorithm Development

5.3.1 MIMO-CDMA MNCLMS Constrained Algorithm for

Linear Equalizer (LE)

The desired subscriber's component can be written as

blm =
[(

hlm1

)T (
hlm2

)T
. . .
(
hlmn

)T] [(
xl1
)T (

xl2
)T

. . .
(
xlN
)T]T

(5.3.1)

In (5.3.1), hlm1 =
[
hlm1 h

l−1
m1 . . . hl−L+1

m1

]T
is the time varying impulse response of
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the channels and is an L× 1 vector, whereas xln =
[
xln x

l−1
n . . . xl−L+1

n

]T
is an L× 1

vector. The �lter impulse response of the linear equalizer which consists of a feed

forward �lter is given by

wl
n =

[(
F l
n

)T]
(5.3.2)

In (5.3.2), F l
n is the n

th MISO feed forward �lter (FFF) with dimension ofML×1,

where L is the taps of feed forward �lter and M is the number of receivers.

The mean-squared error to be minimized is given by

J
(
wl
n

)
=
[
eln
]2

(5.3.3)

Where eln is the error between the output of the decision device and the linear

�lter and can be written as

eln = x̂n −wl
nD

l
n (5.3.4)

Dl
n is the combined input to the LE and is given by

Dl
n =

[(
yln
)T]

(5.3.5)

and is of the order of (ML× 1). yln =

[(
yl1
)T (

yl2
)T (

ylM

)T]T
is the input

to the feed forward �lter (FFF) of dimension ML× 1 and is a collection of vectors

consisting of y lm given by ylm =
[
y l
m y l−1

m y l−L+1
m

]T
.

and

x̂n = wT
oD

l
n = xln + ν̄ln (5.3.6)

or
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xln = wT
oD

l
n − ν̄ln (5.3.7)

ν̄ln is the �ltered noise which passes through feed forward �lter and is composed

of MAI and noise.

Minimization of the cost function in (5.3.3) over wl
n will give the optimal value

at time l. In other words, wopt = H l
mn(of size 1 × NL matrix) with Ĵ(opt) = σ2

ν̄ln

represents the minimum mean squared error (MSE).It is shown in the literature

that knowledge of σ2
ν̄ln

[64] is quite helpful in the selecting the search direction for

an adaptive algorithm in multiuser case similar to the MNCLMS algorithm in single

user environment.

Now, it is desired to minimize J(wl
n) over wl

n subject to the constraint J(wl
n) =

σ2
ν̄ln
. The Lagrangian of this would be

J1(wl
n, λ

l
n) = J(wl

n) + λln

[
J(wl

n)− σ2
ν̄ln

]
(5.3.8)

As critical values of λln are not unique in our case, so we are using an augmented

Lagrangian to get rid of this issue by de�ning the under mentioned cost function

J2(wl
n, λ

l
n) = J(wl

n + γλln

[
J(wl

n)− σ2
ν̄ln

]
− γnλ2

n (5.3.9)

Solution to (5.3.9) is given by using the method used in [64] and is shown to be

wl+1
n = wl

n + µlne
l
nD

l
n (5.3.10)

where µln is the positive step size and is

µln = µn
(
1 + γnλ

l
n

)
m = 1, 2, . . . ,M (5.3.11)

λl+1
n = λn + βn

[
1

2
(el

2

n − σ2
ν̄ln

)− λln
]
m = 1, 2, , . . . ,M (5.3.12)
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As channel taps are independent from the spreading sequences and the data

sequences, the interferer's components are also independent of each other with zero

mean.

The variance of MAI for an equal power can be set up as

U l
m = A2

(
K − 1

NC

) N∑
n=1

E
[
h2
mn

]
(5.3.13)

whereas the variance of MAI in the unequal transmitted power is given by

U l
m =

k∑
k=2

(Ak)2

NC

N∑
n=1

E
[
h2
mn

]
(5.3.14)

In (6.4.14) and (5.3.14) E [h2
mn] is the second moment of E [hmn].

5.3.2 MIMO-CDMA MNCLMS Constrained Algorithm for

Decision Feedback Equalizer (DFE)

Desired subscriber's component can be expressed as

blm =
[(

hlm1

)T (
hlm2

)T
. . .
(
hlmn

)T]T [(
xl1
)T (

xl2
)T

. . .
(
xlN
)T]T

(5.3.15)

In the equation above, hmn =
[
hlmn h

l−1
mn . . . h

l−L+1
mn

]T
is the time varying impulse

response of the channels and is an L×1 vector, whereas xln =
[
xln x

l−1
n . . . xl−L+1

n

]T
is

an L× 1 vector.The impulse �lter response of the decision feedback equalizer which

consists of a feed forward and a feedback �lter is given by

wl
n =

[(
F l
n

)T
,−
(
Bl
n

)T]T
(5.3.16)

In 5.3.16, F l
n is the n

th MISO feed forward �lter (FFF) with dimension ofML×1
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and Bl
n is the n

th MISO feedback �lter (FBF) of NQ× 1 dimension, whereas L and

Q are the taps of FFF and FBF respectively.

The mean-squared error to be minimized is given by

J
(
wl
n

)
=
[
eln
]2

(5.3.17)

Where eln is the error between the output of the decision device and the DFE

and can be written as

eln = x̂n −wl
nD

l
n (5.3.18)

Dl
n is the combined input to the DFE and is given by

Dl
n =

[(
yln
)T (

xln
)T]T

(5.3.19)

and is of the order of (ML+NQ)× 1). It should be noted that

yln =

[(
yl1
)T (

yl2
)T (

ylM

)T]T

is the input to the feed forward �lter (FFF) of dimension ML×1 and is a collection

of vectors consisting of y lm given by

ylm =
[
y l
m y l−1

m y l−L+1
m

]T
xln =

[(
xl1
)T (

xlN
)T]T

xln is the input to FBF of dimension NQ× 1 , whereas xlN =
[
xln xl−1

n xl−Q+1
n

]T
and

x̂n = wT
oD

l
n = xln + ν̄ln (5.3.20)
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or

xln = wl
oD

l
n − ν̄ln (5.3.21)

ν̄ln is the �ltered noise which passes through feed forward �lter and is composed

of MAI and noise.

Figure 5.1: MIMO-DFE at single antenna

Minimization of the cost function in equation (5.3.17) over wl
n will give the

optimal value at time l. In other words, wopt = H l
mn(of size 1 × NL matrix)

with Ĵ(opt) = σ2
ν̄ln

represents the minimum MSE. It is shown in the literature that

knowledge of σ2
ν̄ln

[64] is quite helpful in the selecting the search direction for an

adaptive algorithm in multiuser case similar to the MNCLMS algorithm in single

subscriber environment.

Now, it is desired to minimize J(wl
n) over wl

n subject to the constraint J(wl
n) =

σ2
ν̄ln
. The Lagrangian of this would be
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J1(wl
n, λ

l
n) = J(wl

n) + λln

[
J(wl

n)− σ2
ν̄ln

]
(5.3.22)

As critical values of λln are not unique in our case, so We are using an augmented

Lagrangian to get rid of this issue by de�ning the under mentioned cost function

J2(wl
n, λ

l
n) = J(wl

n + γλln

[
J(wl

n)− σ2
ν̄ln

]
− γnλ2

n (5.3.23)

Solution to (5.3.23) is given by using the method used in [64] and is shown to be

wl+1
n = wl

n + µlne
l
nD

l
n (5.3.24)

where µln is the positive step size and is

µln = µn
(
1 + γnλ

l
n

)
m = 1, 2, . . . ,M (5.3.25)

λl+1
n = λn + βn

[
1

2
(el

2

n − σ2
ν̄ln

)− λln
]
m = 1, 2, , . . . ,M (5.3.26)

5.4 Generalized MIMOMAI and Noise-Constrained

LMS Algorithm

Based on the MAI variance analysis, the proposed MAI and noise constrained LMS

(MNCLMS) algorithm as was de�ned in equations (5.3.24) , (5.3.25) and (5.3.26) is

being modi�ed to include the MAI variance.

So for equal transmitted power (EPT) the algorithm will look like

λl+1
n = λln + βn


1

2

(eln)2 −
A2(k − 1)

N∑
n=1

E([h]

NC

− σ2
ν̄ln


− λ

l
n (5.4.1)
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And for unequal transmitted power (UTP), MNCLMS would be

λl+1
n = λln + βn


1

2


(
eln
)2 −

k∑
k=2

(AK)2

N∑
n=1

E([h]

NC

− σ2
ν̄ln




− λln (5.4.2)

5.5 Computational Complexity of the Proposed Al-

gorithms

Computational cost of an algorithm is an important aspect of any algorithm. Higher

computational cost can render an algorithm useless. A trade o� between compu-

tational cost and the performance is possible, i.e, if the increased cost results in

considerable performance gain, then higher cost can be ignored. In this section, we

present the computational costs of few algorithms. As can be seen in table 5.1 and

table 5.2, computational cost of the proposed algorithms is higher when compared

to [65] but MNCLMS is for SISO- CDMA case, whereas, the proposed algorithm is

for MIMO- CDMA case. This algorithm can be used for run-time applications like

channel estimation, tracking and channel equalization. MIMO systems are being

used in modern wireless standards.
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Table 5.1: Computational complexity per iteration for di�erent algorithms for real
valued data in terms of the real multiplications, real additions and real divisions

Algorithm × +

LMS 2L+ 1 L
RLS L2 + 5L+ 1 L2 + 3L

MNCLMS [121] 2L+ 1 2L+ 6
MIMO-MNCLMS(LE) 2ML+ 8 2ML+ 4

Table 5.2: Computational complexity per iteration for di�erent algorithms for real
valued data in terms of the real multiplications, real additions and real divisions

Algorithm × +

LMS 2L+ 1 2L
RLS L2 + 5L+ 1 L2 + 3L

MNCLMS [121] 2L+ 1 2L+ 6
MIMO-MNCLMS(DFE) 2 (ML+NQ) + 8 ML+NQ+ 4
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Chapter 6

Convergence Analysis, Transient

Analysis and Tracking Analysis of

the MNCLMS Algorithms in The

Presence of MAI and Noise

6.1 Introduction

In this chapter, convergence analysis, transient analysis and tracking analysis of the

MNCLMS algorithms will be performed in the presence of MAI and noise for linear

as well as decision feedback equalizers. Performance of the proposed MNCLMS

algorithms for LE and DFE will be presented at the end of the chapter by comparing

it with other algorithms such as ZNCLMS, NCLMS and the MCLMS.
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6.2 Convergence Analysis of the MNCLMS Algo-

rithms in the Presence of MAI and Noise

This section deals with the convergence analysis of the proposed MNCLMS algo-

rithm in the presence of noise plus MAI. Following independent assumptions [122]

are being used while performing the convergence analysis.

A1: The input process
{
xln
}
is an i.i.d random variable with correlation matrix

of Rxx

A2: The noise sequence is zero mean i.i.d. sequence, Gaussian random variable

with variance σ2
ν̄ln
and is independent of the input process

A3: MAI in AWGN environment represented by Um
l is zero mean i.i.d Gaussian

random variable with variance σ2
U lm

and is independent of both the input process as

well as the noise.

A4: For any �xed time say l, step size µln and weight vector vln are thought to

be statistically independent.

The above mentioned assumptions are justi�ed as follow

For assumption 1, we did not placed a strong condition, i.e we are not assuming

that the input process should be Gaussian.

Assumption 2 termed as independent assumption, is also commonly used in the

literature

Gaussian appropriation of MAI in AWGN is well known and has been used

numerous forms [123]. As MAI is independent of the noise process, assumption

3 can be validated. In this way, MAI plus noise is also independent of the input

process.

Generally µln and vln are dependent but if the parameters are chosen in such

a way that steady-state variance of µln and or vln is small, assumption 4 can be

justi�ed.
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xk and xn are also independent as both are uncorrelated for n 6= k.Thus the input

vector xn and the weight error vector (de�ned later)vln are also independent [124].

6.3 Convergence in the Mean for Linear Equalizer

(LE)

Weight update equation of the proposed algorithm is given by

wl+1
n = wl

n + µlne
l
nD

l
n (6.3.1)

Where n = 1, 2........, N represents the nth stream.

If wn(opt) is said to be the optimum value of weight, then the weight error vector

vln can be de�ned as

vln = wn(opt) −wl
n (6.3.2)

Subtracting wn(opt) from both side of (5.3.24) results in

vl+1
n + wn(opt) = −wl

n + wn(opt) − µlnelnDl
n

vl+1
n = vln − µlnelnDl

n (6.3.3)

The desired response of the decision device
(
x̃ln
)
can be expressed as

x̃ln = wT
(opt)D

l
n (6.3.4)

The error is then given by

eln = wT
(opt) − (wl

n)T (6.3.5)
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For n = 1, 2, . . . N .

(6.3.5) can be compactly written as

eln =
(
vln
)T
Dl
n =

(
Dl
n

)T
vln (6.3.6)

Now the recursion of the weight error vector can be shown to be

vl+1
n = vln − µlnDl

n

(
Dl
n

)T
vln (6.3.7)

vl+1
n =

{
I− µlnDl

n

(
Dl
n

)T}
vln (6.3.8)

Taking expectation on both sides of (6.3.8) with the assumptions made earlier,

will yield

v̄ln =
[
I− µ̄lnE

{
Dl
n

(
Dl
n

)T}]
v̄ln (6.3.9)

µ̄ln = E
[
µln
]
is the mean step size and v̄ln = E

[
vln
]
is the weight error vector in

the equation above. Whereas

E
[
Dl
n

(
Dl
n

)T]
= E

[(
yln
)T] [(

yln
)T]T

or

R̃ = E
[(

yln
)T]T [(

yln
)T]

(6.3.10)

6.3.1 Auto-correlation Structure of MIMO-CDMA Linear Equal-

izer (LE)

R̃ is the correlation matrix of the input process i.e, R̃ = E
[
Dl
n

(
Dl
n

)T]
and is given

by
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R̃ = RDlnD
l
n

(6.3.11)

6.3.2 Eigenvalues of Linear Equalizer (LE)

The value of µ̄nis bounded in the range

0 < µ̄n <
2

κmax
(6.3.12)

where κmax is the maximum eigenvalue of the input correlation matrix R̃. By using

a strong but simpler condition for convergence of the mean weight error

vector [125] can be written as

µmax <
2

κmax
(6.3.13)

6.4 Convergence in the Mean for Decision Feedback

Equalizer (DFE)

Weight update equation of our proposed algorithm is given by

wl+1
n = wl

n + µlne
l
nD

l
n (6.4.1)

If wn(opt) is said to be the optimum value of weight, then the weight error vector

vlncan be de�ned as

vln = wn(opt) −wl
n (6.4.2)

Subtracting wn(opt) from both side of (5.3.24) results in

vl+1
n + wn(opt) = −wl

n + wn(opt) − µlnelnDl
n
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vl+1
n = vln − µlnelnDl

n (6.4.3)

If the DFE is optimum then, the desired response of the decision device
(
x̃ln
)
can

be expressed as

x̃ln = wT
(opt)D

l
n (6.4.4)

The error is then given by

eln = wT
(opt) − (wl

n)T (6.4.5)

For n = 1, 2, . . . N .

(6.4.5) can be compactly written as

eln =
(
vln
)T
Dl
n =

(
Dl
n

)T
vln, (6.4.6)

Now the recursion of the weight error vector can be shown to be

vl+1
n = vln − µlnDl

n

(
Dl
n

)T
vln (6.4.7)

vl+1
n =

{
I− µlnDl

n

(
Dl
n

)T}
vln (6.4.8)

Taking expectation on both sides of (6.4.8) with the assumptions made earlier,

will yield

v̄l+1
n =

[
I− µ̄lnE

{
Dl
n

(
Dl
n

)T}]
v̄l
n (6.4.9)

µ̄ln = E
[
µln
]
is the mean step size and v̄ln = E

[
vln
]
is the weight error vector in

the equation above and
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E
[
Dl
n

(
Dl
n

)T]
= E

[(
yln
)T (

xln
)T] [(

yln
)T (

xln
)T]T

or

R̃ = E
[(

yln
)T (

xln
)T]T [(

yln
)T (

xln
)T]

(6.4.10)

6.4.1 Auto-correlation Structure of Decision Feedback Equal-

izer (DFE)

R̃ is the correlation matrix of the input process i.e, R̃ = E
[
Dl
n

(
Dl
n

)T]
and is given

by

R̃ =

 Ryy Ryx

Rxy Rxx

 (6.4.11)

Now (6.4.9) looks like

v̄l+1
n =

(
I − µ̄lnR̃

)
v̄l
n (6.4.12)

Ryy in (6.4.11) refers to the auto-correlation matrix of ylm i.e input to the feed

forward �lter and is composed of

Ryy = Rbn +RU lm
+Rν̄ln

(6.4.13)

Rν̄ln
= σ2

ν̄ln
I and Rb = EbnI, since noise and data sequence are both i.i.d. Now,

RU lm
=

N∑
n=1

σ2
1nIσ

2
hnI. (6.4.13) can be written as

Ryy = EbI +
N∑
n=1

σ2
1nσ

2
hnI + σ2

ν̄ln
I (6.4.14)

The second term of (6.4.14) represents the MAI because it is an independent but

is not identical and I is an ML×ML identity matrix.
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6.4.2 Eigenvalues of Decision Feedback Equalizer (DFE)

To �nd the eign value of R̃, we are transforming it according to the following

 Ryy Ryx

Rxy Rxx

 =

 c b

bT Q

 (6.4.15)

where, c = Eb + σ2
ν̄ln

+
N∑
n=1

σ2
U lm

and is a scalar, Q is a sub matrix of R̃ given as

Q = R̃(2 : ML +NQ, 2 : ML +NQ). First row and �rst column of R̃ are left out.

b = [01 . . . 0ML−1, x1, . . . xNQ−1], and bT b = ‖b‖2

As there is no closed form expression for determining the eigenvalues of the

correlation matrix de�ned in equation (6.4.11). A method to bound the eigenvalues

of positive-de�nite Toeplitz matrices can be found in [126] and its application to the

correlation matrix given in (6.4.11) can be found in [127] and are given by

κmax ≤ κ ≤ κmin (6.4.16)

where

κmin =

Eb + σ2
ν̄ln

+
N∑
n=1

σ2
U ln

+ η1

2
+

√√√√√√
(
Eb + σ2

ν̄ln
+

N∑
n=1

σ2
U lm

)2

4
+ ‖b‖2

κmax =

Eb + σ2
ν̄ln

+
N∑
n=1

σ2
U lm

+ ηp−1

2
+

√√√√√√
(
Eb + σ2

ν̄ln
+

N∑
n=1

σ2
U lm
− ηp−1

)
+ ‖b‖2

4

where η1 is any lower bound on the minimal eigenvalue and ηp−1 is any upper

bound on maximal eigenvalue of Q respectively.

If L ≥ 1 and Q ≥ 2, then

κmax ≈ Eb + (ML+ 1)
N∑
n=1

σ2
U lm

+ σ2
ν̄lm

(6.4.17)
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and

κmin =
2Eb + σ2

ν̄ln
−
√

4 (Eb)
2 +

(
σ2
ν̄ln

)2

2
(6.4.18)

Since, µ̄ln = E [µn] is the mean step size and λ̄n = E [λn], the value of µ̄ln is

bounded in the range

0 < µ̄ln <
2

κmax
(6.4.19)

Where κmax is given by (6.4.17).

6.5 Transient Analysis of the Proposed Algorithm

Transient analysis of an adaptive algorithm is very important to observe the con-

vergence behavior of an adaptive algorithm and to derive steady-state expressions

for di�erent error performance measures, such as EMSE and mean-square devia-

tion (MSD). Basically, transient analysis is the observation of the time-evolution

of the adaptive algorithms when there are variations in the signal statistics; or in

other words to study the learning mechanism of an adaptive algorithm. Energy

conservation method is used to carry out the transient analysis [128].

6.5.1 Error Measures

Transient analysis of an adaptive algorithm deals with the time evaluation of of

E
[∣∣eln∣∣2]and E [‖vln‖2

]
, where vln is the weight error vector and is given by

vln = wl
n(opt) −wl

n (6.5.1)

For some symmetric positive de�nite weighting matrix Ω ,We de�ne, weighted a

priori and a posteriori estimation errors as

eΩ
an =

(
vln
)T

ΩDl
n (6.5.2)
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and

eΩ
pn =

(
vl+1
n

)T
ΩDl

n (6.5.3)

For the case when, Ω = I, the weighted a priori and a posteriori estimation errors

de�ned above will be reduced to a standard a priori and a posteriori estimation

errors, respectively, i.e

elan =
(
Dl
n

)T
vln (6.5.4)

and

elpn =
(
Dl
n

)T
vl+1
n (6.5.5)

It will be elaborated later in that di�erent choices of Ω will yield di�erent per-

formance measures for the evaluation of an adaptive �lter.

Since,

eln = xln −
(
wl
n

)T
Dl
n =

(
w(opt)

)T − ν̄ln − (wl
n

)T
Dl
n

eln =
(
vln
)T
Dl
n − νln = elan − ν̄ln (6.5.6)

Also, by using (6.5.3) and and (6.4.3) it can be shown that

eΩ,l
pn = eΩ,l

an − µln‖Dl
n‖2

Ωe
l
n (6.5.7)

6.5.2 Performance Measures

The EMSE of the proposed algorithm is given by

EMSE = E
[∣∣elan∣∣2] (6.5.8)

and steady state EMSE is

E
[∣∣elan∣∣2] = ξ∞ (6.5.9)
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6.5.3 Fundamental Weighted Energy Relation

The fundamental weighted-energy conservation relation [128] is used in this sec-

tion to develop the framework for the transient analysis of the proposed MNCLMS

algorithm. (6.5.7) can be expressed as

eΩ,l
n =

eΩ,n
n − eΩ,l

pn

µln ‖Dl
n‖

2
Ω

(6.5.10)

By using (6.4.3) and (6.5.10) ,the following equation can be established

v̄l+1
n = vln −

Dl
n

‖Dl
n‖

2
Ω

[
eΩ,l
an − eΩ,l

n

]
(6.5.11)

The fundamental weighted-energy conservation relation can be shown as

vl+1
n +

1

‖Dl
n‖

2
Ω

∣∣eΩ
an

∣∣2 =
∥∥vln∥∥2

Ω
+

1

‖Dl
n‖

2
Ω

∣∣el,Ωpn ∣∣2 (6.5.12)

6.5.12 describes, how the weighted energies of the error quantities evolve with

time. Di�erent choices of Ω will yield di�erent performance measures for the evalu-

ation of an adaptive �lter [128].

6.5.4 Time Evolution of the Weighted Variance

This section deals with derivation of time evolution of the weighted variance for the

proposed MNCLMS algorithm using the fundamental weighted-energy conservation

relation equation (6.5.12). Substituting (6.5.7) into (6.5.12) and taking expectation

on both sides will result in

E
[∥∥vl+1

n

∥∥2

Ω

]
= E

[∥∥vln∥∥2

Ω

]
− 2µ̄lnE

[
el,Ωan en

]
+ (µln)2E

[∥∥Dl
n

∥∥2

Ω
e2
n

]
(6.5.13)

where (µln)2 is E[
(
µln
)2

]. Next, the expectations in the second and third terms

on the right hand side of equation (6.5.13) is evaluated by using the following as-
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sumption

A5): For any constant matrix Ω and for all l, elan and eΩ
an are jointly Gaussian.

This assumption seems reasonable for longer �lters using the central limit theo-

rem [65,129,130]. So, E
[
e
l,Ω

anen

]
can be simpli�ed as

E
[
el,Ωan en

]
= E

[(
Dl
n

)T
Ωvln

(
Dl
n

)T
Ivln

]
= E

[(
vln
)T (

Ω
(
Dl
n

) (
Dl
n

)T
I
)

vln

]
= E

[∥∥vln∥∥2

ΩE
[
(Dln)(Dln)

T
]] = E

[∥∥vln∥∥2

ΩR̃

]
(6.5.14)

Now, E
[∥∥Dl

n

∥∥2

Ω
e2
n

]
is being solved by using the following assumption

A6):The adaptive �lter is long enough so that
∥∥Dl

n

∥∥2

Ω
and e2

n are uncorrelated

[128].

This assumption is more realistic when the �lter length gets longer [128]. As

MAI plus noise is independent of Dl
n, expectation E

[∥∥Dl
n

∥∥2

Ω
e2
n

]
can be simpli�ed

as

E
[∥∥Dl

n

∥∥2

Ω
e2
n

]
= E

[∥∥Dl
n

∥∥2

Ω

]
E
[
e2
n

]
= E

[∥∥Dl
n

∥∥2
] (
E
[(
elan
)2
]
− σ2

ν̄ln

)
(6.5.15)

Now using (6.5.14) and (6.5.15) and, (6.5.13) can be written as

E
[∥∥vl+1

n

∥∥2

Ω

]
= E

[∥∥vln∥∥2

Ω

]
− 2µ̄lnE

[∥∥vln∥∥2

ΩR̃

]
+ (µln)2E

[∥∥Dl
n

∥∥2

Ω

] (
ξln − σ2

ν̄ln

)
(6.5.16)

(6.5.16) shows the time evaluation or the transient behavior of the weighted vari-

ance E
[∥∥vln∥∥2

Ω

]
for any constant weight matrix Ω. Di�erent performance measures

can be achieved by the proper choice of the weight matrix Ω.
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6.5.5 Constructing the Learning Curves for the Excess Mean

Square Error (EMSE)

Learning curves for the EMSE can be constructed by using EMSE = E
[(
elan
)2
]

=

E
[∥∥vln∥∥2

R̃

]
. If Ω = I, R̃, . . . , R̃N−1, a set of relations can be obtained. Now by using

the Cayley-Hamilton theorem, following can be established

Ω = −p0I − p1R̃− . . .− pN−1R̃
N−1 (6.5.17)

where

p(x) , det
(
xI − R̃

)
= p0 + p1x+ . . .+ pN−1x

N−1 + xN (6.5.18)

is the characteristic polynomial of R̃.Consequently,

E
[∥∥vl+1

n

∥∥2

R̃N−1

]
= E

[∥∥vln∥∥2

R̃N−1

]
+ 2µ̄ln

(
p0E

[∥∥vln∥∥2

I

]
+ p1E

[∥∥vln∥∥2

R̃

]
+ . . .

+pN−1E
[∥∥vln∥∥2

R̃N−1

])
+(µln)2E

[∥∥Dl
n

∥∥2

R̃N−1

] (
ξln + σ2

ν̄ln

)
(6.5.19)

So,

Υl
n =



1 −2µ̄ln 0 · · · 0 0

0 1 −2µ̄ln 0 · · · 0

... 0 1 −2µ̄ln · · · ...

0 0 0 1 −2µ̄ln 0

0 0 · · · 0 1 −2µ̄ln

2µ̄lnp0 2 ¯µlnp1 2µ̄lnp2 · · · 2µ̄lnpN−2 1 + 2µ̄lnpN−1


(6.5.20)
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And

$l
n =



E
[∥∥vln∥∥2

I

]
E
[∥∥vln∥∥2

R̃

]
...

E
[∥∥vln∥∥2

R̃N−1

]


(6.5.21)

Similarity

Þln =



E
[∥∥Dl

n

∥∥2

I

]
E
[∥∥Dl

n

∥∥2

R̃

]
...

E
[∥∥Dl

n

∥∥2
]


(6.5.22)

By combining 6.5.20 , 6.5.21 and 6.5.22 ,

$l+1
n = Υl

n$
l
n + (µln)2

(
ξln + σ2

ν̄ln

)
Þln (6.5.23)

6.6 Steady-State Analysis of the MNCLMS Algo-

rithms

Steady-state analysis of an adaptive �lter is performed to study the behavior of

steady-state EMSE and MSD. Steady-state performance measures is also obtained

by analyzing (6.5.13) when l→∞ which is presented in the next section i.e

lim
l→∞

E
[∥∥vl+1

n

∥∥2

Ω

]
= lim

l→∞
E
[∥∥vln∥∥2

]
(6.6.1)

So at steady-state (6.5.16) will become

2µ̄∞n lim
l→∞

E
[∥∥vln∥∥2

ΩR̃

]
= (µ∞n )2 lim

l→∞
E
[∥∥Dl

n

∥∥2

Ω

] (
ξ∞n + σ2

ν̄ln

)
(6.6.2)

Where µ̄∞n , (µ∞n )2and ξ∞n are steady-state values of µ̄ln, (µln)2and ξln respectively.
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Now using (5.3.25) and (5.3.26) it can be shown that

(
µ̄ln
)2

= (µln)2
(

2γλln + γ2
(
λ̄ln
)2
)

(6.6.3)

(
λl+1
n

)2
= (1− β)2 (λln)2

+ β (1− β) λ̄lnξ
l
n +

β2

4

[
E
[∣∣eln∣∣4]

−2σ2
ν̄ln

(
ξln + σ2

ν̄ln

)
+ σ4

ν̄ln

]
(6.6.4)

(6.6.4) can be written compactly as

(
λl+1
n

)2
= (1 + β)2 (λln)2 + β (1− β) λ̄lnξ

l
n +

β

2
ξlnσ

2
ν̄ln

(6.6.5)

If we de�ne mean Lagrangian multiplier as λ̄ln = E
[
λln
]
, it can be shown that at

steady-state

λ̄ln =
ξ∞n
2

(6.6.6)

Similarly, if µ̄ln = E
[
µln
]
, it can be shown that

µ̄∞n = µ

(
1 + γ

ξ∞n
2

)
(6.6.7)

(6.6.3) can be expressed as

(µ∞n )2 = µ2
[
1 + 2γλ∞n + γ2 (λ∞n )2] (6.6.8)

(6.6.5) is written as

(λ∞n )2 =
1

(2− β)

[
(1− β)

2
(ξ∞n )2 + βξ∞n σ

2
ν̄ln

]
(6.6.9)
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Using (6.6.2) with Ω = I,

2ξ∞n + γ (ξ∞n )2 = µTr
(
R̃
)
ξ∞n + µTr

(
R̃
)
σ2
ν̄ln

+ µγTr
(
R̃
)

(ξ∞n )2 + µγTr
(
R̃
)
σ2
ν̄ln
ξ∞n

+µγ2

(
1

2− β

)(
1− β

2

)
Tr
(
R̃
)

(ξ∞n )3

+µγ2

(
1

2− β

)(
1− β

2

)
Tr
(
R̃
)

+µβTr
(
R̃
)
σ2
ν̄ln

(ξ∞n )2 + µβTr
(
R̃
)
σ2
ν̄ln
ξ∞n (6.6.10)

(6.6.10) is cubic in terms of ξ∞n and can be expressed as

A (ξ∞n )3 +B (ξ∞n )2 + Cξ∞n +D = 0 (6.6.11)

In 6.6.11above,

A = −µγ2Tr
(
R̃
)( 1

2− β

)(
1− β

2

)
(6.6.12)

B = γ − µTr
(
R̃
)[

γ + σ2
ν̄ln

{(
1

1− β

)(
1− β

2

)
+ β

}]
(6.6.13)

C = 2− µTr
(
R̃
) [

1 +
(
γ + βσ2

ν̄ln

)
σ2
ν̄ln

]
(6.6.14)

And

D = −µTr
(
R̃
)
σ2
ν̄ln

(6.6.15)

Now assuming that at steady-state, µTr
(
R̃
)
� 1 [131], it can be shown that at

steady-state, the value of ξ∞n is close to zero meaning that higher powers of ξ∞n can

be ignored. Consequently, (6.6.11) will become,

Cξ∞n +D = 0 (6.6.16)
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or

ξ∞n =
−D
C

(6.6.17)

Hence, steady-state EMSE of the proposed MNCLMS algorithm in the presence

of MAI and noise can be shown to be

ξ∞n(MNCLMS) ≈
µTr

(
R̃
)
σ2
ν̄ln

2− µTr
(
R̃
) [

1 +
(
γ + βσ2

ν̄ln

)
σ2
ν̄ln

] (6.6.18)

By using the same procedure developed above, steady-state EMSE of the LMS,

NCLMS, ZNCLMS, and MCLMS algorithms in the presence of MAI and noise can

be shown, respectively to be

ξ∞n(LMS) ≈
µTr

(
R̃
)
σ2
ν̄ln

2
(6.6.19)

ξ∞NCLMS ≈
−
(
2 + γσ2

U

)
+ 2µTr

(
R̃
)
σ2
U

[
1 + γσ4

U
+ γ2

(
1−β
2−β

){
σ2
U

+ σ4
U

}]
(
2 + γσ2

U

)
− 2µTr

(
R̃
) (6.6.20)

ξ∞ZNCLMS ≈
−
(

2 + γσ2
ν̄ln

)
+ 2µTr

(
R̃
)
σ2
ν̄ln

[
1 + γσ4

ν̄ln
+ γ2

(
1−β
2−β

){
σ2
ν̄ln

+ σ4
ν̄ln

}]
(

2 + γσ2
ν̄ln

)
− 2µTr

(
R̃
)

(6.6.21)

ξ∞MCLMS ≈
−
(

2 + γσ2
ν̄ln

)
+ 2µTr

(
R̃
)
σ2
ν̄ln

[
1 + γσ4

ν̄ln
+ γ2

(
1−β
2−β

){
σ2
ν̄ln

+ σ4
ν̄ln

}]
(

2 + γσ2
ν̄ln

)
− 2µTr

(
R̃
)

(6.6.22)
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6.6.1 Steady State Mean Square Deviation (MSD)

For the steady-state MSD, the weight matrix is chosen to be equal to the inverse of

the input correlation matrix
(

Ω = R̃−1
)
so (6.6.2) will be reduced to

2µ̄∞n MSD = (µ∞n )2 lim
l→∞

E
[∥∥Dl

n

∥∥2
˜R−1

] (
ξ∞n + σ2

ν̄ln

)
(6.6.23)

WhereMSD = liml→∞E
[∥∥vln∥∥2

]
. By using diagonalization of R̃−1 it can shown

that

lim
l→∞

E
[∥∥Dl

n

∥∥2
˜R−1

]
= L (6.6.24)

Where L is the length of the adaptive �lter. Now (6.6.23) can be solved for MSD

by substituting the values of µ̄∞n and (µ∞n )2 in it

2µ̄∞n MSD = (µ∞n )2L
(
ξ∞n + σ2

ν̄ln

)
(6.6.25)

(6.6.25) can be expressed as

2

(
1 +

µ∞n
2

)
MSD = µ

[
1 + γξ∞n + γ2

{(
1− β

2 (2− β)

)
(ξ∞n )2 + βξ∞n σ

2
ν̄ln

}]
×L

(
ξ∞n + σ2

ν̄ln

)
(6.6.26)

MSD =
µ

2
(
1 + µ∞n

2

) [1 + γξ∞n + γ2

{(
1− β

2 (2− β)

)
(ξ∞n )2 + βξ∞n σ

2
ν̄ln

}]
×L

(
ξ∞n + σ2

ν̄ln

)
(6.6.27)

By putting the value of ξ∞n in (6.6.27), MSD can be found.
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6.7 Tracking Analysis of the MNCLMS Algorithms

for the Random Walk Channel in the Presence

of MAI and Noise

Tracking analysis of an adaptive �lter is performed to study its ability to track down

the time variations in the channel. This is due to the fact that statistical properties

of the weight vector and error signals are able to track the changes in the input

signal variation by relying on instantaneous data [128]. In this section, tracking

analysis of the proposed algorithm is performed for a random walk model.

6.7.1 Random Walk Model

This section deals with the tracking analysis of the MNCLMS algorithm performed

for a random walk channel. A general framework for the tracking analysis of adaptive

algorithms is used in this section which can handle random system nonstationarities

[132] . This framework is based on an energy conservation relation and is valid for

adaptive algorithms whose recursion is of the form

wl+1
n = wl

n + µlnD
l
nf
(
eln
)

(6.7.1)

Where f
(
eln
)
represents a general scalar function of the output estimation error

eln. For an LMS algorithm f
(
eln
)

= eln.

The random walk model for a channel is given by

wl+1
n = wl

o,n + qln (6.7.2)

qln in (6.7.2) is assumed to be zero mean, i.i.d, with a positive de�nite co-variance

matrix E
[
qnq

T
n

]
= Q and is also statistically independent of the input regressor and

the MAI plus noise, whereas wo
n is the unknown system to be tracked. For tracking
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analysis of an adaptive algorithm, a very important measure is its steady-state

tracking EMSE (ξ∞n ) de�ned as

ξ∞n = lim
l→∞

E
[∣∣elan∣∣2] = E

[∥∥vln∥∥2

R̃

]
(6.7.3)

Where vln = wo
n −wl

n is the weight error vector for the random walk channel.

6.7.2 Fundamental Energy Relation for the Random Walk

Channel

In this section, the fundamental energy conservation relation [128] is used to develop

the framework for the tracking analysis of the proposed MNCLMS algorithm. By

using (5.3.24) and (6.7.2), it can be shown that

vl+1
n = vln − µlnelnDl

n + q (6.7.4)

Consider the (6.7.1) , which is given by

wl+1
n = wl

n + µlnD
l
nf
(
eln
)

(6.7.5)

Subtracting both sides of the (6.7.5) from wl+1
0,n

(
wl+1
o,n −wl+1

n

)
=
(
wl+1
o,n −wl

n

)
− µlnDl

nf
(
eln
)

(6.7.6)

In case of an LMS algorithm, f
(
eln
)

= eln, so (6.7.6) becomes

wl+1
o,n −wl+1

n =
(
wl+1
o,n −wl

n

)
− µlnDl

ne
l
n (6.7.7)

Now we transpose both sides of (6.7.7)

(
wl+1
o,n −wl+1

n

)T
=
(
wl+1
o,n −wl

n

)T − µlneln (Dl
n

)T
(6.7.8)
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By multiplying both sides of (6.7.8) with Dl
n from left yields

(
wl+1
o,n −wl+1

n

)T
Dl
n =

(
wl+1
o,n −wl

n

)T
Dl
n − µlneln

(
Dl
n

)T
Dl
n (6.7.9)

Equation (6.7.9) in terms of a priori error and a posteriori errors can be expressed

as

elp,n = ela,n − µlneln
∥∥Dl

n

∥∥2
(6.7.10)

For the case when Ω = I, 6.7.4 becomes

vl+1
n = vln −Dl

n

[
elan − elpn
‖Dl

n‖
2

]
+ qln (6.7.11)

By evaluating the energies on both sides of (6.7.11) We get

∥∥vl+1
n − qln

∥∥2
+

1

‖Dl
n‖

2

∣∣elan∣∣2 =
∥∥vlnl∥∥2

+
1

‖Dl
n‖

2

∣∣elpn∣∣2 (6.7.12)

Since qln is a zero mean stationary random vector and is independent of the input

regressor vector and the MAI plus noise, so (6.7.12) , can be expressed as

∥∥vl+1
n

∥∥2 −
∥∥qln∥∥2

+
1

‖Dl
n‖

2

∣∣elan∣∣2 =
∥∥vln∥∥2

+
1

‖Dl
n‖

2

∣∣elpn∣∣2 (6.7.13)

(6.7.13) is the random walk tracking model for MNCLMS algorithm. The energy

relation is used to evaluate the excess mean-square error at steady state.

6.7.3 Tracking Steady-State EMSE of the MNCLMS Algo-

rithms

A7): qn is a zero-mean stationary random vector process with a positive de�nite

covariance matrix Q and is statistically independent of the input regressor vector

xln and MAI plus noise Z l
m sequence .

Taking expectation on both sides of equation (6.7.13) and using equation (6.5.7)
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assumption A7) and the fact that at steady-state, vl+1
n = vln , the following equation

can be obtained

2E [µ∞n ξ
∞
n ] = Tr (Q∞n ) + E

[
(µ∞n )2 ‖D∞n ‖

2 (e∞n )2] (6.7.14)

Where Tr (Q∞n ) =
[
q∞n (q∞n )T

]
. By using equation (6.7.14) together with as-

sumption A4 yields

2µ∞n ξ
∞
n = Tr (Q∞n ) + (µ∞n )2Tr

(
R̃
)(

ξ∞n − σ2
ν̄ln

)
(6.7.15)

By substituting the values of µ̄∞n , λ̄
∞
n , (µ∞n )

2
and (λ∞n )2 in equation (6.7.15) , we

get the steady-state EMSE of the proposed algorithm.

ξ∞n ≈
µTr

(
R̃
)
σ2
ν̄ln

2− µTr
(
R̃
) [

1 +
(
γ + βσ2

ν̄ln

)
σ2
ν̄ln

] + Tr

(
Q∞n
2µ

)
(6.7.16)

Since q is assumed to be an i.i.d, therefore Tr (Q∞n ) = Lσ2
q , so equation (6.7.16)

will be reduced to

ξ∞n(MNCLMS) ≈
µTr

(
R̃
)
σ2
ν̄ln

2− µTr
(
R̃
) [

1 +
(
γ + βσ2

ν̄ln

)
σ2
ν̄ln

] +
Lσ2

q

2µ
(6.7.17)

Where L is the length of the decision feedback �lter.

6.8 Simulation Results for MIMO-CDMAMNCLMS

Algorithm (DFE)

In this section, simulation resulst are shown to assess the performance of the MN-

CLMS algorithm for the MIMO CDMA DFE case. The performance of the proposed

MIMO-CDMA MNCLMS algorithm is compared with the standard LMS, MCLMS,

noise constrained LMS and zero noise algorithms. The average MSE is the perfor-
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mance measure through which the algorithms are assessed. A 2× 2 MIMO system

is considered here. Random signature sequences of length 31 and rectangular chip

waveforms are used. SNR is kept at 10 dB and 20 dB for 4 and 20 subscribers

respectively. Two channel environments have been used in the simulations i.e �at

fading Rayleigh channel and AWGN channel. All simulations are performed using

a MIMO DFE with feed forward �lter of length 10 and feedback �lter length of 5.

To compare the convergence rates of the algorithms, the usual way is to set

the parameters such that all the algorithms have the same steady-state EMSE. To

obtain this, the step-size of the LMS algorithm (µLMS) required to achieve a speci�ed

steady-state EMSE is found �rst and then the step sizes of the comparing algorithms

are set to the step-size value of the LMS algorithm. In other words

µLMS = µMCLMS = µNCLMS = µZNCLMS = µMNCLMS (6.8.1)

Now the tuning parameters µ, β and γ for LMS, ZNCLMS, MCLMS,NCLMS

and MNCLMS algorithms are speci�ed in such a way that

ξ∞n(MNCLMS) = ξ∞n(ZNCLMS) = ξ∞n(NCLMS) = ξ∞n(MCLMS) = ξ∞n(LMS) (6.8.2)

6.8.1 Interference Cancellation in an AWGN Channel

In an AWGN channel, µ, β and γ are selected according to the previously described

method and are given in tables 6.1 and 6.2 for an SNR of 20 dB and 10 dB. As is

evident from the tables, analytical EMSE is increasing with the increase in the value

of γ. For a speci�c value of µ and a speci�c value of β the convergence behavior of

the MNCLMS algorithm can be improved by increasing the value of γ but at the

cost of an increased MSE as shown in �gure 6.1.
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Table 6.1: Tuning Parameters of MIMO-CDMA MNCLMS algorithm for DFE in
the AWGN Environment at 20 dB SNR

K = 4 K = 20

Tuning Parameters EMSE Tuning Parameters EMSE
µ = 0.0005

0.0014966
µ = 0.0005

0.00984869
β = 0.005,γ = 1 β = 0.005,γ = 1
µ = 0.0005

0.0016146
µ = 0.0005

0.0190205
β = 0.0005, γ = 50 β = 0.0005, γ = 50

µ = 0.0005
0.0017566

µ = 0.0005
0.3923183

β = 0.0005, γ = 100 β = 0.0005, γ = 100

Table 6.2: Tuning Parameters of the Proposed MIMO-CDMA MNCLMS Algorithm
for DFE in the AWGN Environment at 10 dB SNR

K = 4 K = 20

Tuning Parameters EMSE Tuning Parameters EMSE
µ = 0.0005

0.0011098
µ = 0.0005,

0.0098486
β = 0.005,γ = 1 β = 0.005,γ = 1
µ = 0.0005

0.0011709
µ = 0.0005

0.0190205
β = 0.0005, γ = 50 β = 0.0005, γ = 50

µ = 0.0005
0.0013024

µ = 0.0005
0.3923183

β = 0.0005, γ = 100 β = 0.0005, γ = 100

It is also clear from the �gure that a lower steady state MSE is achieved with a

faster initial convergence, if the value of β is decreased and that of γ is increased.

This led us to the conclusion that a faster convergence can be achieved by choosing

a larger value of γ while keeping the value of β as low as possible.

The results of the comparison of the convergence speed of these algorithms for

4 and 20 subscribers, in an AWGN channel, are depicted, respectively, in Figs.6.4

and 6.3. In both cases, it can be seen that the MIMO-CDMA MNCLMS algorithm

converges faster than the rest of the algorithms. Moreover, it is also obvious that

MSE worsens as the number of subscribers is increased from 4 to 20. The degradation

in MSE is because of the increase in MAI at the receiver. In the case of 4 subscribers,
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Figure 6.1: E�ect of β and γ on MSE learning curves of the MNCLMS algorithm
in an AWGN environment with K = 4 at 20 dB SNR
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Figure 6.2: E�ect of β and γ on MSE learning curves of the MNCLMS algorithm
in an AWGN environment with K = 4 at 10 dB SNR
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the proposed algorithm was able to achieve an MSE at around -10 dB at around 150

iterations while the �rst of the other algorithms converged at this same MSE value

after 400 iterations. In case of 20 subscribers, the proposed MNCLMS algorithm

was able to achieve MSE at -4 dB and in around 200 iteration. Hence it can be

concluded that there is a two-fold gain in convergence speed. Similar behavior is

obtained for the case when SNR is kept at 10 dB with 4 and 20 subscribers.
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Figure 6.3: MSE behavior for di�erent algorithms in an AWGN environment with
K = 20

Behavior of the step size of the MIMO-CDMA MNCLMS algorithm is shown

in �gure 6.7 for 4 subscribers. As can be seen, in the transient state, the MIMO-

CDMA MNCLMS algorithm has the largest step-size value when compared to the

other algorithms and, thus, yields the fastest convergence. Also, in the steady state,

the step-size parameter of the MNCLMS algorithm was reduced to the smallest

value amongst all algorithms. The step-size parameter of the proposed algorithm

behaves as what is called a �gear-shifting� mechanism. Same behavior is achieved

for 4 subscribers when an SNR is kept at 10 dB.
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Figure 6.4: MSE behavior for di�erent algorithms in an AWGN environment with
K = 4 at 20dB
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Figure 6.5: MSE behavior for di�erent algorithms in an AWGN environment with
K = 4 at 10dB
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Figure 6.6: MSE behavior for di�erent algorithms in an AWGN environment with
K = 20 at 10dB
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Figure 6.7: Behavior of time-varying step size of the MNCLMS algorithm for K = 4
at 20 dB SNR
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Figure 6.8: Behavior of time-varying step size of the MNCLMS algorithm for K = 4
at 10 dB SNR

E�ect of the spreading sequence length Nc on the performance of the comparing

algorithms is shown in table 6.3. It can be seen from the table that the proposed

MIMO-CDMA MNCLMS algorithm required the lowest number of iterations to

achieve the same steady-state MSE as compared to other algorithms. It is also

evident from the table that the number of iterations is increasing as Nc is increasing.

Table 6.3: E�ect of Nc on the convergence behavior, number of iteration, in the
AWGN environment at 20 dB

Algorithm Nc = 31 Nc = 63 Nc = 127 Nc = 255

LMS 443 588 739 792
NCLMS 237 290 400 398
ZNCLMS 291 382 511 527
MCLMS 163 236 273 286
MNCLMS 100 136 165 203

The e�ect of a sudden increase in the number of subscribers on the performance

behavior of di�erent algorithms is shown in �gure 6.9. It is clear from the �gure
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that the proposed algorithm is able to recover faster than the rest of the algorithms

as the number of subscribers is suddenly increased from four to ten which shows

that a consistency in the performance of the proposed algorithm is maintained.
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Figure 6.9: E�ect of a sudden increase in the number of subscribers from 4 to 10
subscribers

In UTP case, subscriber of interest(subscriber one) has a transmitted power

that is one; whereas, transmitted powers of the rest of the subscribers are uniformly

distributed between zero and one. Figure 6.10 shows the comparison of the conver-

gence speed for the algorithms under consideration. As can be seen, a consistency

in performance of the proposed algorithm is sustained.

MIMO-CDMA MNCLMS algorithm was able to achieve an MSE of around -

13dB at around 190 iterations while the �rst of the other algorithms converged at

the same MSE value at around 310 iterations.The result for UTP, �gure 6.10 is

superior as compared to the ETP case, �gure 6.4. This is due to fact that in an

UTP , some subscribers may have transmitted powers of less than one (due to the

uniform power assignment between zero and one) which reduces the e�ect of MAI in

the system whereas in an ETP case, all subscribers have equal transmitted powers

(one) which will increase MAI in the system.

95



0 500 1000 1500 2000
−14

−12

−10

−8

−6

−4

−2

0

iterations

M
S
E

(d
B
)

 

 
LMS
MCLMS
NCLMS
ZNCLMS
MNCLMS

Figure 6.10: MSE behavior for di�erent algorithms in an AWGN environment with
K = 4 under the unequal transmitted powers scenario at 20 dB SNR

6.9 Interference Cancellation in Rayleigh Fading Chan-

nel

In this section the convergence speed of MIMO-CDMAMNCLMS algorithm is inves-

tigated for 4 and 20 subscribers and for this purpose, a �at Rayleigh fading channel

is used with a Doppler frequency of fd = 250Hz using BPSK modulation while

SNR is kept at 20 dB. Figure 6.11 and �gure 6.12 show the MSE learning curves

for di�erent algorithms. As can be seen, The MIMO-CDMA MNCLMS algorithm

is outperforming rest of the algorithms in terms of faster convergence. It is also

evident from the �gures that when the number of subscribers is increased, there

is a deterioration in the steady-state performance of all algorithms.This deteriora-

tion is attributed to a larger MAI produced by the increasing subscribers. Similar

behavior is seen for the case when SNR was kept at 10dB. All algorithms reached

at the same steady-state MSE value, but the proposed MIMO-CDMA MNCLMS
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algorithm achieved this value �rst as it was speci�cally designed to do so.
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Figure 6.11: MSE in �at Rayleigh fading, fd = 250Hz, K = 4 at 20dB

6.10 Tracking Performance for RandomWalk Chan-

nel in the Presence of MAI

Tracking performance in a random walk channel is investigated in this section. As

was shown earlier, the selection of the adaptation parameters is of paramount im-

portance to the performance behavior of the algorithms. A similar approach used

in the previous section for the selection of these parameters is utilized here. First,

the optimal step size for the LMS algorithm µoLMS is obtained by di�erentiating its

respective steady-state tracking EMSE given by (6.7.8) and then equating it to zero.

This gives

µoLMS =

√√√√ Nσ2
q

Tr
(
R̃
)
σ2
ν̄ln

(6.10.1)
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Figure 6.12: MSE in �at Rayleigh fading, fd = 250Hz, K = 20 at 20dB
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Figure 6.13: MSE in �at Rayleigh fading, fd = 250Hz, K = 4 at 10dB
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Figure 6.14: MSE in �at Rayleigh fading, fd = 250Hz, K = 20 at 10dB

And the corresponding optimal steady-state tracking EMSE of the LMS algo-

rithm (ξoLMS) is calculated and is found to be

ξoLMS
∼=
√
NTr

(
R̃
)
σ2
ν̄ln
σ2
q (6.10.2)

Step sizes of the other algorithms are then chosen to be equal to the optimal

step size of the LMS algorithm de�ned by (6.10.1). After that values of β and γ are

found in such a way that

ξ∞n(MNCLMS) = ξ∞n(ZNCLMS) = ξ∞n(NCLMS) = ξ∞n(MCLMS) = ξ∞n(LMS) (6.10.3)

Examples of the selection of the tuning parameters in a random walk channel

using the aforementioned procedure are reported in table 6.4 for two di�erent values

of σ2
q (10−7 and 10−10) and K = 20.

Figure 6.15 shows the MSE learning curve for the considered algorithms in a
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Table 6.4: E�ect of Tuning Parameters of the Adaptive Algorithm in a Random
Walk Channel on Analytical EMSE

σ2
q = 10−10 σ2

q = 10−7

Tuning Parameters EMSE Tuning Parameters EMSE
µ = 0.0005

0.0011098
µ = 0.0005,

0.0098486
β = 0.005,γ = 1 β = 0.005,γ = 5
µ = 0.0005

0.0011709
µ = 0.0005

0.0190205
β = 0.0005, γ = 5 β = 0.0005, γ = 50

µ = 0.0005
0.0013024

µ = 0.0005
0.3923183

β = 0.0005, γ = 50 β = 0.0005, γ = 100

random walk channel for four subscribers with σq = 10−10 and an SNR of 20dB.

As can be seen in the �gure, the proposed MIMO-CDMA MNCLMS algorithm is

outperforming the other algorithms. Similar results are obtained with an SNR of 10

dB
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Figure 6.15: Tracking performance in a random walk channel with σq = 10−10 and
SNR of 20 dB
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Figure 6.16: Tracking performance in a random walk channel with σq = 10−10 and
SNR of 10 dB

6.11 Simulation Results For MIMO-CDMA MN-

CLMS Algorithm(LE)

6.11.1 Interference Cancellation in an AWGN Channel

In this section, we present simulation results to assess the performance of the MN-

CLMS algorithm for the MIMO CDMA LE case. The performance of the proposed

MIMO-CDMA MNCLMS algorithm is compared with the standard LMS, MCLMS

noise constrained LMS and zero noise algorithms. The average mean square error

is the performance measure through which the algorithms are assessed. A 2 × 2

MIMO system is considered in this section. Random signature sequences of length

31 and rectangular chip waveforms are used. SNR is kept at 20 dB for 10 and 20

subscribers.

The results of the comparison of the convergence speed of these algorithms for

10 and 20 subscribers, in an AWGN channel, are depicted, respectively, in Figs.6.17

and 6.18. In both cases, it can be seen that the MIMO-CDMA MNCLMS algorithm

converges faster than the rest of the algorithms. Moreover, it is also obvious that
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MSE worsens as the number of subscribers is increased from 10 to 20. The degra-

dation in MSE is because of the increase in MAI at the receiver. In the case of 10

subscribers, the proposed algorithm was able to achieve an MSE at around -6 dB at

around 120 iterations while the �rst of the other algorithms converged at this same

MSE value after 140 iterations. In case of 20 subscribers, the proposed MNCLMS

algorithm was able to achieve MSE at around -2.6 dB and in around 140 iterations.
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Figure 6.17: MSE behavior for di�erent algorithms in an AWGN environment with
K = 10 at 20dB

Behavior of the step size of the MIMO-CDMA MNCLMS algorithm is shown in

�gure 6.19 for 10 subscribers. As can be seen, in the transient state, the MIMO-

CDMA MNCLMS algorithm has the largest step-size value when compared to the

other algorithms and, thus, yields the fastest convergence. Also, in the steady state,

the step-size parameter of the MNCLMS algorithm was reduced to the smallest value

amongst all algorithms. Same behavior is achieved for 20 subscribers as shown in

�gure 6.20
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Figure 6.18: MSE behavior for di�erent algorithms in an AWGN environment with
K = 20 at 20dB
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Figure 6.19: Behavior of time-varying step size of the MNCLMS algorithm for K =
10 at 20 dB SNR
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Figure 6.20: Behavior of time-varying step size of the MNCLMS algorithm for K =
25 at 20 dB SNR

6.12 Interference Cancellation in Rayleigh Fading

Channel

In this section, simulation results are presented to assess the performance of the MN-

CLMS algorithm for the MIMO CDMA LE case. The performance of the proposed

MIMO-CDMA MNCLMS algorithm is compared with the standard LMS, MCLMS

noise constrained LMS and zero noise algorithms. The average MSE is the perfor-

mance measure through which the algorithms are assessed. A 2× 2 MIMO system

is considered here. Random signature sequences of length 31 and rectangular chip

waveforms are used. The SNR is kept at 10 dB and 20 dB respectively.

The results of the comparison of the convergence speed of these algorithms for

10 and 25 subscribers, in a Rayleigh fading channel, are depicted, respectively, in

Figure.6.21 and �gure 6.22. In both cases, it can be seen that the MIMO-CDMA
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MNCLMS algorithm converges faster than the rest of the algorithms. In the case

of 10 subscribers, the proposed algorithm was able to achieve an MSE at around

-4.8 dB at around 200 iterations . In case of 25 subscribers, the proposed MNCLMS

algorithm was able to achieve MSE at -5.2 dB and in around 240 iterations.
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Figure 6.21: MSE behavior for di�erent algorithms in Rayleigh Fading environment
with for K = 10 at 10 dB SNR
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Figure 6.22: MSE behavior for di�erent algorithms in Rayleigh Fading environment
for K = 20 at 20 dB SNR
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Chapter 7

Dissertation Contribution,

Conclusion and Recommendation for

Future Work

7.1 Dissertation Contribution and Conclusion

Statistical analysis of MAI in Synchronous MIMO - CDMA system for BPSK signals

with random signature sequence is performed in the fading environment (Rayleigh).

The derivation of the pdf of MAI and noise has been used to design an LMS based

algorithm. Major contributions of this dissertation are

1. Statistical analysis of MAI in Synchronous MIMO - CDMA system for BPSK

signals with random signature sequence is performed in the fading environment

( Rayleigh) and a closed form expression for the pdf of MAI together with noise

for a MIMO-CDMA system is derived.

2. Optimum coherent reception with MAI is investigated for BER and a closed

form expression is derived.

3. The closed form expression for the pdf of MAI and noise has been used to
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design an LMS based algorithm. In this approach, a Robbins - Monroe algo-

rithm is used to minimize the conventional MSE criterion incorporating MAI

and noise as a constraint. This scheme resulted in MAI and noise constrained

LMS (MNCLMS) algorithm in the MIMO-CDMA scenario.The proposed al-

gorithm is a variable step size algorithm as the step size rule is applicable

placing the constraint on MAI and noise.

4. Convergence analysis is performed in the mean and mean square sense.

5. Tracking ability of the algorithm is tested in the presence of MAI and for this

task, random walk channel is used. A closed form expression for the steady

state MSE is also derived.

7.2 Recommendations for Future Work

A closed from expression for MAI in MIMO-CDMA synchronous system in �at

fading channel such as Rayleigh is derived and and based on that, a MNCLMS

algorithm has been developed for linear as well as decision feedback equalization.

This work can be extended to frequency selective fading channels and asynchronous

CDMA systems.
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Appendix A

Probability Density Function of fP (p)

Evaluation of 1
2π

´∞
−∞

exp(−iωz)∏N
n=1(ω2σ2

pl
n

+1)
dω

Before evaluating the inverse Fourier transform, a partial fraction expansion of the

product in equation (2.3.2) is performed as follows:

N∏
n=1

1

ω2σ2
pln

+ 1
=

N∑
n=1

Cn
ω2σ2

pln
+ 1

(A.1)

where constant Cn in the numerator is given by

Cn =

(
σ2
pln

)N−1

∏N
j=1,j 6=n

(
σ2
plj
− σ2

pli

) (A.2)

Thus, the inverse Fourier transform can be set up as

fZ (z) = F−1 [ΦZ (ω)]

=
1

2π

ˆ ∞
−∞

exp (−iωz)
N∑
n=1

Cn
ω2σ2

P ln
+ 1

dω

=
N∑
n=1

Cn
2π

ˆ ∞
−∞

exp (−iωz)

ω2σ2
P ln

+ 1
dω (A.3)
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which is a sum of N inverse Fourier transforms. The inner integral can be easily

evaluated using the residue theory [73] as

1

2π

ˆ ∞
−∞

e−iωz

ω2σ2
P ln

+ 1
dω =

e
− z
σ
Pln

2σP ln

(
e

2z
σ
Pln

θ(−z)+θ(z)
)

(A.4)

where θ (z) is the unit step function. The result in equation (A.4) can be simpli�ed

as

1

2π

ˆ ∞
−∞

e−iωz

ω2σ2
P ln

+ 1
dω =

1

2

e
− |z|
σ
Pln

σP ln
(A.5)

Finally, after substituting the result for the above integral in equation (A.3), the

pdf of the MAI is found to be given in equation (2.3.4).
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Appendix B

Evaluation of Pdf of MAI-plus-noise

and the BER

The pdf of Mai-plus-noise can be setup as follows:

fγz (γz) =

(
2
N

√
γzσ2

Iσ
2
αt

Eb

)2N−1

exp

−
(

2
N

√
γzσ

2
I
σ2
αt

Eb

)2

2b


2N−1bN (N − 1)!

(
2
N

√
γzσ2

Iσ
2
αt

Eb
× N2Eb

2σ2
Iσ

2
αt

)

=

(
4γzσ2

Iσ
2
αt

N2Eb

)N−1

exp
(
−2γzσ2

Iσ
2
αt

N2bEb

)
2N−2bN (N − 1)!

N2Eb
σ2
Iσ

2
αt

(B.1)

fγz (γz) =
2NγN−1

z

(
σ2
Iσ

2
αt

N2bEb

)N
exp

(
−2γzσ2

Iσ
2
αt

N2bEb

)
(N − 1)!

=
2NγN−1

z

(
N

2γz

)N
exp

(
−Nγz

γz

)
(N − 1)!

fγz (γz) =
γN−1
z

(
N
γz

)N
exp

(
−Nγz

γz

)
(N − 1)!

(B.2)

For N = 1, the pdf of γz reduces to

fγz (γz) =
1

γz
e−γz/γz (B.3)

which is consistent with [33]. So the conditional probability of error can be
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written as

P (e|wi,1) =
1

2

N∑
j=1

Cj exp

(
σ2
η

2σ2
Iσ

2
α

) ˆ ∞
σ2
η/2σ

2
Iσ

2
α

e−terfc (
√
γz) dt (B.4)

As the channel attenuation is taken to be deterministic then γz is also deterministic.

If αi is taken to be random then the above conditional pdf will have to be averaged

over the pdf of γz. So the average probability of error in BPSK symbols can be

obtained as

P (e) =

ˆ ∞
0

P (e|wi,1) p (γz) dγz

=
1

2

N∑
j=1

Cj exp

(
σ2
η

2σ2
Iσ

2
α

) ˆ ∞
0

[ˆ ∞
σ2
η/2σ

2
Iσ

2
α

e−terfc (
√
γz) dt

]

×
γN−1
z

(
N
γz

)N
exp

(
−Nγz

γz

)
(N − 1)!

dγz (B.5)

Rearranging the above, following is obtained

P (e) =
1

2

N∑
j=1

Cj exp

(
σ2
η

2σ2
Iσ

2
α

) ˆ ∞
σ2
η/2σ

2
Iσ

2
α

e−t
(
N

γz

)N
×
[ˆ ∞

0

γN−1
z exp

(
−Nγz

γz

)
erfc (

√
γz) dγz

]
dt (B.6)

The inner integral can be evaluated as

Iγz =

ˆ ∞
0

γN−1
z exp

(
−Nγz

γz

)
erfc (

√
γz) dγz

Iγz = 21−2NΓ (2N) 2F1

(
N,N +

1

2
;N + 1,−N

γz

)
/Γ (N + 1)

The above result is again consistent with [33] for N = 1 which yields Iγz =

γz

(
1−

√
γz

1 + γz

)
. Replacing in the above integral we get
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P (e) =
1

2

N∑
j=1

Cj exp
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σ2
η

2σ2
Iσ

2
α
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η/2σ

2
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2
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2
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=
1

2
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η
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2
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Γ (N + 1)
NN

ˆ ∞
σ2
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2
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The integral in (B.10) is given by
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Appendix C

EMSE of the LMS NCLMS,

ZNCLMS and the MCLMS

Algorithms in the Presence of Both

MAI and Noise

EMSE of LMS Algorithm

In LMS algorithm for Ω = I equation (6.6.18) will be reduce to the following

equation

2ξ∞LMS = µ∞n Tr(R̃)
(
ξ∞LMS + σ2

ν̄ln

)
(C.1)

EMSE of the LMS algorithm can be shown to be

ξ∞n(LMS) ≈
µTr

(
R̃
)
σ2
ν̄ln

2− µTr
(
R̃
) (C.2)

By using the small step size assumption, EMSE of the LMS algorithm can be

written as

ξ∞n(LMS) ≈
µTr

(
R̃
)
σ2
ν̄ln

2
(C.3)
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EMSE of NCLMS Algorithm

In case of NCLMS algorithm, equations (6.6.6), (6.6.7) and (6.6.9) are modi�ed

as below

λ̄∞n =
ξ∞NCLMS + σ2

U

2
(C.4)

µ̄∞n = µ
[
1 +

γ

2

(
ξ∞NCLMS + σ2

U

)]
(C.5)

(λ∞n )2 =
1

(2− β)

[
(1− β)

2

(
ξ∞NCLMS + σ2

U

)2
+ β

(
ξ∞NCLMS + σ2

U

)
σ2
U

]

(λ∞n )2 =
1

(2− β)

[
(1− β)

2

(
(ξ∞NCLMS)2 + σ2

U
+ 2ξ∞NCLMSσ

2
U

)
+β
(
ξ∞NCLMS + σ2

U

)
σ2
U

]
(C.6)

Using the criteria mentioned in section 6.4, EMSE of the MCLMS algorithm in

presence of MAI and noise can be written as

Constants A, B , C and D can be shown to be

A = −µγ2Tr
(
R̃
)[ 1− β

2 (2− β)

]
(C.7)

B = γ − µTr
(
R̃
)[

γ + βσ2
U

+ γ2

(
1− β
2− β

)]
σ2
U

(C.8)

C =
(
2 + γσ2

U

)
− µTr

(
R̃
)[

1 + 3γσ2
U

+ 3βσ4
U

+ γ

{
1− β

2(2− β)

}
σ2
U

]
(C.9)
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D =
(

2 + γσ2
ν̄ln

)
− 2µTr

(
R̃
)
σ2
U

[
1 + γσ4

U
+ γ2

(
1− β
2− β

){
σ2
U

+ σ4
U

}]
(C.10)

Using the criteria mentioned in section 6.4, EMSE of the MCLMS algorithm in

presence of MAI and noise can be written as

ξ∞NCLMS ≈
−
(
2 + γσ2

U

)
+ 2µTr

(
R̃
)
σ2
U

[
1 + γσ4

U
+ γ2

(
1−β
2−β

){
σ2
U

+ σ4
U

}]
(
2 + γσ2

U

)
− 2µTr

(
R̃
) (C.11)

EMSE of ZNCLMS Algorithm

In case of ZNCLMS algorithm, equations (6.6.6), (6.6.7) and (6.6.9) are modi�ed

as below

λ̄∞n =
ξ∞ZNCLMS + σ2

ν̄ln

2
(C.12)

µ̄∞n = µ
[
1 +

γ

2

(
ξ∞ZNCLMS + σ2

ν̄ln

)]
(C.13)

(λ∞n )2 =
1

(2− β)

[
(1− β)

2

(
ξ∞ZNCLMS + σ2

ν̄ln

)2

+ β
(
ξ∞ZNCLMS + σ2

ν̄ln

)
σ2
ν̄ln

]

(λ∞n )2 =
1

(2− β)

[
(1− β)

2

(
(ξ∞ZNCLMS)2 + σ4

ν̄ln
+ 2ξ∞ZNCLMSσ

2
ν̄ln

)
+β
(
ξ∞ZNCLMS + σ2

ν̄ln

)
σ2
ν̄ln

]
(C.14)

Constants A, B , C and D can be shown to be
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A = −µγ2Tr
(
R̃
)[ 1− β

2 (2− β)

]
(C.15)

B = γ − µTr
(
R̃
)[

γ + βσ2
ν̄ln

+ γ2

(
1− β
2− β

)]
σ2
ν̄ln

(C.16)

C =
(

2 + γσ2
ν̄ln

)
− µTr

(
R̃
)[

1 + 3γσ2
ν̄ln

+ 3βσ4
ν̄ln

+ γ

{
1− β

2(2− β)

}
σ2
ν̄ln

]
(C.17)

D =
(

2 + γσ2
ν̄ln

)
− 2µTr

(
R̃
)[

1 + γσ4
ν̄ln

+ γ2

(
1− β
2− β

){
σ2
ν̄ln

+ σ4
ν̄ln

}
σ2
ν̄ln

]
(C.18)

Using the criteria mentioned in section 6.4, EMSE of the MCLMS algorithm in

presence of MAI and noise can be written as

ξ∞ZNCLMS ≈
−
(

2 + γσ2
ν̄ln

)
+ 2µTr

(
R̃σ2

ν̄ln

) [
1 + γσ4

ν̄ln
+ γ2

(
1−β
2−β

){
σ2
ν̄ln

+ σ4
ν̄ln

}]
(

2 + γσ2
ν̄ln

)
− 2µTr

(
R̃
)

(C.19)

EMSE of MCLMS Algorithm

In case of MCLMS algorithm, equations (6.6.6), (6.6.7) and (6.6.9) are modi�ed

as below

λ̄∞n =
ξ∞MCLMS + σ2

ν̄ln

2
(C.20)

µ̄∞n = µ
[
1 +

γ

2

(
ξ∞MCLMS + σ2

ν̄ln

)]
(C.21)
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(λ∞n )2 =
1

(2− β)

[
(1− β)

2

(
ξ∞MCLMS + σ2

ν̄ln
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+ β
(
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ν̄ln
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σ2
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(C.22)

Constants A, B , C and D can be shown to be

A = −µγ2Tr
(
R̃
)[ 1− β

2 (2− β)

]
(C.23)

B = γ − µTr
(
R̃
)[

γ + βσ2
ν̄ln
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(
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(C.24)
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D =
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1 + γσ4
ν̄ln

+ γ2
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2− β
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ν̄ln

+ σ4
ν̄ln

}]
(C.26)

Using the criteria mentioned in section 6.4, EMSE of the MCLMS algorithm in

presence of MAI and noise can be written as

ξ∞MCLMS ≈
−
(

2 + γσ2
ν̄ln

)
+ 2µTr

(
R̃
)
σ2
ν̄ln

[
1 + γσ4

ν̄ln
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σ2
ν̄ln
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ν̄ln
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(

2 + γσ2
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− 2µTr

(
R̃
)

(C.27)
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