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ABSTRACT  

describes a VI  INM?-0c130A-6.110 %/V iYAO 
This thesis 	.the performance of various digital processing 

techniques used in high speed modemSin the presence of intersymbol inter-

ference and additive noise. The limitations of the existing techniques 

for such applications are stated and new kinds of equalizers are proposed 

to overcome some of these limitations. 

The first part deals with a new kind of non-recursive digital 

filter equalizer which leads to a significant reduction in the settling 

time of high speed modems. This is achieved by reducing the effects of 

intersymbol interference. For deterministic, discrete time channels this 

equalizer is initialized with a single isolated pulse and then is switched 

to the decision directed mode for on line adaptive operation to allow for 

continual tracking of the variations in the channel characteristics. 

Conditions for the Wiener solution are obtained using mean square error 

criterion. Since the rate of convergence depends on the eigenvalues of 

a discrete time channel output correlation matrix, the convergence rate can 

be improved by modifying the matrix by linear transformation. This results 

in a new structure, a generalized non recursive digital filter equalizer, 

which is transformed into a set of non recursive digital filter sections 

connected in parallel. The weighted outputs of these sections are added 

to produce the equalizer output. It is shown that by properly selecting 

the multiplier coefficients of each non recursive digital filter section, 

the new equalizer structure can be adjusted to yield minimum mean square 

error in one iteration of the algorithm. This equalizer may be suitable 

for systems (e.g. distributed processing, digital networks, multiparty 

polling systems etc.) in which the period of the training sequeneemay be 

shorter than the duration 
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of the impulse response of the equalizer. In this case signals entering 

the multipliers may not be linearly independent and hence the correlation 

matrix would be singular. In such a case, therefore, a Moore Penrose 

Pseudoinverse algorithm is proposed to obtain a better approximation to 

an orthogonality condition. An orthogonal Hadamard matrix is used and 

it is shown that the correlation matrix is equal to a projection matrix 

for which all eigenvalues are either '0' or '1' which is the desired 

condition for fast initialization ( or minimum settling time ). 

For noisy discrete time channels the proposed design algo-

rithm is modified and the convergence is studied in statistical sense. 

On-line adaptation is used and the tracking ability is improved for 

this digital noisy channel by using more than one initializing pulses. 

A diagnostic is proposed to cater for excess errors. The effects of 

several key parameters are studied. 

Six constrained recursive digital filter equalizers are 

proposed. The rate of convergence of these equalizers, using mean square 

error as the performance criterion have been studied by using optimization 

techniques. Also, the.relationship between the probability of error 

and signal to noise ratio has been investigated using Monte Carlo simu-

lation techniques. The performance of these equalizers has been compared 

with conventional non recursive digital filter equalizers and the results 

indicate that proposed methods are superior. 

Finally the use of a constrained recursive digital filter 

equalizer has been made with the maximum likelihood sequence estimator, 

also known as the Viterbi algorithm. Two receiver structures have been 

proposed and simulated for truncated discrete time channel impulse res-

ponse samples. The results show that there is a scope for application 

for these recursive digital filter equalizers into the Viterbi algorithm. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND REVIEW 

You have a right to perform prescribed duty, but you 

are not entitled to the fruits of action. Never con-

sider yourself to be the cause of the results of your 

activities, and never be attached to not doing your 

duty. 

BHAGAVAD-GTTK 	(CH. 2, TEXT 47) 
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1.1 	INTRODUCTION: 

Man has devised numerous machines to perform tasks that are 

either too difficult or too tedious for him to do unaided. These de-

vices have grown more complex over the years so that today it is nec-

essary for machines to communicate not only with men but also with 

other machines. Communications between computers, between business 

machines and computers, between spacecraft and ground stations are ex-

amples of machine-to-machine communication. This type of communication 

is really important today; its impact on society is felt quite clearly 

now a days in the form of video telephone, space shuttle, lunar mars 

landings, etc. This widespread use of machine-to-machine communica-

tion has lead to dramatic changes in man's way of life. Therefore, 

it is felt that today's immense growing communication needs can be met 

not only with developing new equipment but also, to a certain extent, 

by increasing the throughput of already existing data channels. A 

cost effective design will in both cases involve a tradeoff between 

the total power and bandwidth allocated to the digital signal on one 

hand, and complexity of the decision device (algorithm) on the other 

hand. A theoretical limit to what could be achieved in this respect 

is imposed by the concept of channel capacity. 

The maximum rate at which digital signals can be transmitted 

through a channel corrupted by additive White Gaussian Noise (WGN) is 

given by Shannon's Capacity formula [1-1]. 

C = BW log2  [1 + 	bits/sec 
NOW 

where BW is the channel bandwidth, P is the maximum average received 

signal power, and (N0/2) is the two-sided noise spectral density. 
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, 
When the available signal-to-noise ratio, SNR = r 	, is small, band- 

NoBW 

width is not the restricting factor and then we say that the capacity 

of the channel is power-limited. We can see this by using the expan-

sion: 

v? v3 v4  
± log2(1+X)=(X - - + L': - ±._ +....)/n2 	(IXI<l) 
2 	3 	4 

If P 
NoBW 

<< 1, the above formula reduces to 

C=BW [ (P 	) - (P 	)2/2 +  	]/1n2 
NoBW 	NoBW / 

:P/(No  1n2) 

which is independent of the bandwidth, BW. In other words, we can say 

that even when the information is to be transmitted at rates close to 

capacity, we have ample bandwidth available and the simple pulse shap-

ing techniques would suffice to ensure that the pulse overlap (hence-

forth called the intersymbol interference and abbreviated as ISI) is 

not a problem. 

 
When the available signal-to-noise ratio, SNR = ' 

, 
 is high, 
NOW 

that is 

C << P/(Noln2) 

then the bandwidth limitation becomes the main obstacle to high data 

transmission rate. 

According to the Sampling Theorem for a channel of bandwidth 

BW, the maximum rate at which these pulses or information symbols can 

be decoded without ISI is equal to the Nyquist rate (2xBW). When the 
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symbol rate is close to the Nyquist rate, say Sp  = 0x8W (where 0= 1 and 

is a constant) and the actual information rate Ra  is a fraction of of 

the channel capacity, then the number of bits of information per channel 

symbol equals 

Ra 
( 

13
) 	Af (C 	) 

0x8W 

= (
I3 
 Lf ) (B1V) = (i3_f  ) Log2 (1+SNR) 

This expression tends to infinity as SNR-} co, which shows that 

for high SNR multi-level signalling becomes essential if we wish to 

achieve transmission rates that are a reasonable fraction of the capac-

ity. However, because of the power constraint any increase in the num-

ber of levels forces energy levels of the signals closer together, and 

therefore causes the symbol error probability to be drastically higher. 

Therefore, we are forced to look for the smallest number of levels con-

sistent with the information rate (___). One is therefore tempted to 
S P 

push the pulse rate Sp  towards its limit of about 2BW. For most chan-

nels the ISI thus introduced does not cause a loss in error performance 

when compared with the case of no ISI. 

We concern ourselves with the area of high SNR typically 30db, 

i.e., existing telephone channel. In this channel bandwidth, usually 

2.8KH7, is the major constraint. The capacity of this channel, assuming 

White Gaussian Noise (WGN), can be estimated at 2800 log2(1+103)Pe.27.892 

Kilobits per second. Therefore in theory, reliable communication should 

be possible not only at 4,800 bits/sec., 9,600 bits/sec., but even at 

19,200 bits/seconds. 
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Various schemes have been derived to achieve such high rates 

of transmission of data. Also, it is hoped that this work might pro-

vide the means to operate a larger fraction of existing channels in-

cluding those with undesirable amplitude and phase characteristics at 

rates up to 9,600 bits/sec. 

1.2 	INTERSYMBOL INTERFERENCE (ISI): 

We have seen that the most important restraint for the channel 

under consideration is the Bandwidth limitation. The aim is to trans-

mit data at very high rate with the available bandwidth, using the lowest 

permissible number of levels (i.e., Binary signalling), consistent with 

the power requirements, and reliably. The reliability is usually spec-

ified in terms of the probability of error (Pe). But, when the data is 

transmitted it suffers time-dispersion. This time-dispersion imparted 

on the transmitted signal takes the form of symbol overlap in the time 

between successive symbols known as intersymbol interference (ISI). 

This thesis studies the ways of reducing the ISI digitally. This is 

usually accomplished by means of an equalizer and the process is called 

digital equalization. 

All real channels exhibit some form of time-dispersion. We 

mention the details about 	- two time-dispersive channels. The first 

is the telephone channel, where the time-dispersion is attributed to 

imperfect frequency response characteristics of the channels, which 

are usually expressed in terms of attenuation and envelope delay as 

functions of frequency [Figure (1.1)]. An ideal channel has a constant 

attenuation and envelope delay across its frequency band. 
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(A) AMPLITUDE CHARACTERISTICS FOR A TELEPHONE CHANNEL  
FIG. (1.1) 

(B) DELAY CHARACTERISTICS FOR A TELEPHONE CHANNEL.  

Since neither the envelope delay nor the attenuation delay 

is generally constant across its frequency band, the input signal 

suffers amplitude and delay distortion respectively both of which 

contribute heavily to ISI. 

The second channel considered is a high-frequency radio 

channel using tropospheric scatter, on which the time-dispersion 

and, hence, ISI is the result of multiple propagation modes or paths 

with different path delays. The number of paths and the relative 

time delays among the paths vary with time and, for this reason, 

these radio channels are usually called time-variant multipath chan-

nels. The time-variant multipath conditions give rise to a wide 

variety of frequency response characteristics. Consequently, the 

frequency response characterization that is used for telephone 
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channels is unsuitable for time-variant multipath channels. Instead, 

one should characterize statistically these channels in terms of 

scattering functions; in brief, this is a 2-dimensional representa-

tion of the average received signal power as a function of relative 

time-delay and frequency. 

ISI represents a kind of deterministic channel impairment. 

If the channel characteristic is known, it is usually feasible, in 

theory, to remove ISI. As such, it is desirable at this point to 

emphasize two important aspects in the problem of data transmission 

through time-dispersive channel: 

(I) the channel characteristics (i.e., channel impulse or 

frequency responses) are never known, a priori, 

and, (II) the response characteristic of the channel varies with 

time. 

Telephone Channels exhibit slow and small variations in their 

transmission characteristic while multipath channels exhibit relatively 

rapid and large variations in their transmission characteristics. 

In any case, the digital signal processing technique that is 

employed to cope with time-variant ISI conditions must include some 

means of measuring and tracking the channel response. Such operations 

should
A
and are performed at the receiving terminal. 

1.3 THE EQUALIZATION CONCEPT OF DISCRETE TIME NON-RECURSIVE  
MODEL CHANNELS: 

As stated earlier, the reduction of ISI by means of digital 

processing techniques is known as digital equalization and the device 
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FIG. (1.2) INTERSYMBOL INTERFERENCE(ISI) DUE  TO TIME-DISPERSION. 
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a, 
with which this is carried out is called Adigital equalizer. ISI is 

the time-dispersion, deterministic impairment and the way in which 

this occurs in real time is explained below: 

Figure (1.2) depicts the time-dispersion of a pulse by the 

band-limited discrete-time non-recursive channel. In figure (1.2), 

time has been normalized and therefore, Td, represents a normalized 

time delay of the transmitted pulse. On examining the whole phenomena 

closely, we see that the channel output at the sampling point (Td+3) 

is unity [Figure (1.2(C))], whereas the pulse transmitted correspond-

ing to that point was zero [Figure (1.2(a))]. Thus a message error 

has occurred. Even if ISI does not cause message errors by itself, 

it will certainly reduce the immunity of the system to noise. So, 

this error somehow has to be reduced (preferably eliminated!). Some 

ways to reduce the error rate include: 

(a) raising the signal-to-noise ratio (SNR), 

(b) introducing redundancy through coding, 

and, (c) the use of pulse-shaping filters to reshape the 

transmitted or received signals. This latter (c) 

approach is called discrete-time channel equali-

zation and the filter used for it is termed an 

equalizer. These equalizers are classified here. 

A number of classification schemes have been pro-

posed depending upon the type of signals being 

processed. They are: 
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BASED ON LINEARITY: 

(i) Linear, 

and, (ii) Non-Linear. 

BASED ON FEEDBACK: 

(i) Non-Recursive, 

and, (ii) Recursive. 

BASED ON SIGNAL-FLOW: 

(i) Parallel, 

(ii) Series, 

and, (iii) Cascade. 

BASED ON HISTORICAL NOMENCLATURE: 

(i) Transversal, 

(ii) Sampled-Data, 

and, (iii) Frequency Sampling. 

BASED ON STATISTICAL PROPERTIES: 

(i) Moving Average (MA), 

(ii) Auto-Regressive (AR), 

(iii) Moving Average Auto-Regressive (MAAR), 

and, (iv) Maximum Likelihood Sequence Estimator (MLSE) or the 

Viterbi Algorithm Detector (VA). 

In this Thesis, we shall concern ourselves with: 

(i) 	Non-recursive digital filter equalizer (henceforth 

abbreviated as NRDFE), 
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(ii) Recursive digital filter equalizer (henceforth abbrev-

iated as RDFE) and, 

(iii) Maximum-likelihood sequence estimator (henceforth 

abbreviated as MLSE or the VA). 

Next, we discuss the terminology connected with the equalizers. 

1.4 	FUNDAMENTALS ABOUT EQUALIZERS: 

Equalizers fall within three categories: 

Fixed (preset), 

Automatic, 

and, Adaptive. 

Fixed Equalizers [1-8] are adjusted to provide the amplitude 

and phase compensation necessary to correct the average distortion 

characteristics of dispersive channels, while Automatic and Adaptive 

Equalizers (also called Self-Adjusting Equalizers), on the other hand, 

have generally found applications in Synchronous data transmission to 

equalize the discrete-time channel, i.e., reducing the ISI at the samp-

ling times. The automatic equalizers [1-9] transmit their own pulse 

waveforms prior to data transmission, and they utilize these in adjust-

ing the multiplier coefficients of equalizers [1-11]. Adaptive equal-

izers differe from the automatic equalizers in that they adjust their 

parameters during data transmission, using either a training sequence 

or their own data in decision-directed mode until the mean-square error 

becomes acceptable [1-10, 1-12, 13, 14, 15]. It is assumed that a high 

percentage of the output decisions are correct so that the sequence of 
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output decisions closely approximate the transmitted sequence. The 

error signal is then the difference between the signals before and 

after the decisions are made. The limitation of the decision-directed 

mode is obvious; if the equalizer is adjusted poorly initially, then 

the output sequence contains so many errors that the use of an equal-

izer foils its own purpose. Therefore, it is usually necessary to 

initialize by transmitting an initial known training or test sequence 

which can be reproduced at the receiver. Comparison with the equalizer 

output before the decision device then gives the desired error signal. 

This known test sequence, transmitted during the training or initial-

ization period, is frequently selected to be a string of unit pulses 

with sufficient spacing between pulses to prevent the received wave-

forms from overlapping. After each such isolated test pulse, equal-

izer parameters are incremented according to an iterative procedure 

called an algorithm. Supposing that the algorithm is Convergent, the 

training period is continued till the initialization is achieved, at 

which time the message transmission commences. Once the algorithm 

converges, with a particular value of convergence increments, there 

is always some amount of residual error. It is intended that this 

error should be made as small as possible. To do this a control para-

meter called convergence factor (A) is selected which should be small. 

Small convergence factor means lengthy test sequences to achieve 

equalization. Such sequences are highly undesirable in the case of 

equalizers incorporated in high speed modems intended for network5of 

sensors or multiparty polling systems (Airline reservation systems, 

On-line banking systems, etc.). These are generally real-time infor-

mation retrieval systems where the inquiry and the response times are 

short (the message lengths are usually less than 1,000 bits). 
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With a 9,600 bits/sec. modem this message will require 104 

msec. to transmit. Consequently, the actual transmission time can be 

much less than the initialization of the system (which can be 3 sec. 

or even higher). In order to allow additional stations to be served 

or to reduce the response time of the system (response time is impor-

tant in real-time systems), it is necessary to reduce the initialization 

time (also called start-up time*) of the high speed modems drastically. 

This means that the settling time of the self-adjusting equalizers must 

be reduced considerably. So our aim here is the development of an equal-

izer with a short initializing period that can be operated in an adap-

tive manner after initialization and be suitable for noisy time-varying 

networks that include switching. 

1.5 	LITERATURE SURVEY: 

We survey here the relevant literature from 1949 to date. 

This survey is being carried out under two generalized headings of 

equalizers, viz, linear and non-linear equalizers. Linear equalizers 

embrace the conventional non-recursive digital filter equalizers and 

some of recursive equalizers. From the survey on the linear equal-

izers during the mid and late 1960's most of the emphasis on receiver 

design for dispersive channels centred on transversal systems and on 

their practical realizations in the form of adaptive equalizers. For 

channels of interest at that time, generally those exhibiting small 

distortion, linear systems perform almost as well as is theoretically 

*Start-up time is the time during which the receiver locks onto the 
carrier, establishes bit synchronization, and performs automatic 
equalization. 
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possible for any receiver. This could be shown by the use of the one-

shot receiver bound, i.e., by considering optimum (matched filter) re-

ception of a single transmitted pulse. Since 1970 attention has been 

focused on the area of speed of convergence and the search is continu-

ing. Non-linear equalizers include decision feedback and Viterbi 

algorithm equalizers. The interest in non-linear receiver structures 

was initially academic, but several factors combined to swing work 

away from linear systems to non-linear. The limitations of the non-

recursive model became apparent in the late 1960's so the search 

started for better results. This aroused interest in the non-linear 

model. In practice an interest arose in partial response (correlative) 

signalling schemes, in which a large amount of ISI is intentionally 

introduced for spectrum control. Furthermore, a trend toward higher 

symbol repetition rates also led to more severely distorted received 

pulses. For these badly distorted pulses, the SNR performance of the 

linear receiver is often several dB poorer than either the one-shot 

receiver bound or another generally tighter, receiver bound proposed 

by Forney [1-16] based on minimum distance between received sequences. 

Thus, non-linear receivers have a definite performance advantage to 

offer. In order to obtain this advantage, a variety of techniques 

have been proposed, but aside from certain noteworthy, but isolated 

proposals [1-17, 20] the most imporatnt contributions concern a par-

ticular structure known as the decision-feedback equalizer (DFE). 

However, this also proved insufficient, by the beginning of 

1970, to cope with the yet greater demand of high speed data trans-

mission (9,600 bits/sec.).Pc Search started for statistical equalizers 

based upon --. coding theory. It became apparent that the algorithm 
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of Viterbi [1-21] is the only suitable alternative. This search is 

very much alive at the present moment. 

1.5.1 	CONVENTIONAL NON-RECURSIVE DIGITAL FILTER EQUALIZERS: 

The earliest application of the tapped delay line (TDL) or 

"transversal filter" to pulse shaping for data transmission was made 

by Boothroyd and Creamer [1-22]. Tufts [1-23], and George [1-24], 

have shown that under a mean square error criterion the optimal re-

ceiver structure includes a TDL with delay between taps equal to the 

symbol period. Aaron and Tufts [1-25] have shown that the same re-

ceiver structure is needed to minimize the average error probability 

for binary data transmission. The basic approach to adaptive adjust-

ment of a set of weights where a mse criterion is used with gradient 

search procedure was noticed by Widrow and Hoff [1-26] who observed 

that no derivatives computation is needed. Narendra and McBride [1-27] 

proposed a self-optimizing Wiener filter using a continuous time grad-

ient algorithm and a filter structure whose transfer function is a 

weighted sum of fixed functions. Koford and Groner [1-28] used a mse 

criterion and a gradient learning algorithm to find an optimum set of 

weights for pattern classifying. Widrow [1-29] described a general 

adaptive filtering with the TDL filter. Coll and George [1-30] dis-

cussed the performance of George [1-24] optimum equalizer and indi-

cated a possible adaptive adjustment technique. Lucky and Rudin 

[1-31, 1-11] were the first to apply the mse critcrion with the grad-

ient search procedure to the field of adaptive equalization. Before 

that, Lucky [1-9] made the first noted attempt to make equalizers, 

using another criterion called peak-distortion error criterion. By 

defining the peak-distortion error criterion as a measure of ISI he 
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obtained conditions for the optimal parameter settings using a series 

of isolated initializing pulses prior to message transmission in con-

junction with a steepest-descent gradient algorithm. By computing 

the approximate gradient with only the polarity of the variables in-

volved he was able to realize the equalizer using only digital logic. 

Lucky subsequently combined the initialization procedure with a 

decision-directed on-line adaptive scheme for slowly varying channels, 

and was again able to realize the equalizer with digital circuits 

[1-10]. Although these equalizers performed well when initialized, 

the initialization procedure generally required a large number of 

initializing pulses and did not converge at all when the peak dis-

tortion was greater than unity. Such equalizers were easy to imple-

ment and were inherently stable. They were named zero-forcing (Z.F.), 

since the unit pulse response of the equalized channel was made zero 

at a number of points adjacent to the main pulse (head pulse), with 

the number of such zeros dependent on the equalizer length. Since 

1972 there has been continuing effort to understand thoroughly the 

choice of error criterion for equalization (MSE, MINIMAX, SNR, PROB. 

OF ERROR, etc.). This has been successful to a great extent [1-3, 

36]. Guida [1-37] re-examined the minimax criterion for non-independent 

data and the analysis of the mse was extended [1-38]. In 1970, three 

papers on practical equalizers [1-12, 13, 1-39] appeared. But, after 

1970, various implementations of adaptive equalizers for voiceband 

data modems have appeared [1-40, 49]. Some have discussed specific 

implementations of equalizers at higher frequencies for television, 

cable, and microwave applications [1-50, 55]. 
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New algorithms for equalizer adjustment using quadrature 

tapped delay lines at passband for phase modulated systems have been 

discovered [1-56, 58] while other authors have described algorithms 

for zero-forcing [1-59] and for mean-square equalization [1-60] which 

are useful in special circumstances. An equalizer for analog data 

has been constructed [1-61] and the theory of channel equalization to 

an ideal condition using a mean-square fidelity [1-62] has been ex-

tended. 

An adaptive equalizer interacts in a critical fashion with 

the timing and phase recovery circuits of a receiver. The problem 

of optimum timing instant has been studied [1-63, 64, 1-34], the best 

choice of reference tap has been derived [1-65], and the effect of 

phase jitter has been analyzed [1-66]. The use of data aided tracking 

loops for deriving carrier phase in systems using adaptive equaliza-

tion became important [1-67, 68]. 

1.5.2 FASTER CONVERGING EQUALIZERS (NRDFE): 

Need for faster converging equalizers arose since a decade 

ago prototype equalizers took about 10 seconds to converge. Settling 

time seemed unimportant then, but now a considerable effort is being 

devoted to speeding equalizer convergence. A number of authors have 

offered various analyses of equalizer convergence [1-69, 73]. A large 

number of new algorithms have been put forward claiming faster conver-

gence [1-74, 84]. A new algorithm using Kalman filter techniques for 

speeding convergence of a tapped delay line equalizers has offered 

especially dramatic improvement at the expense of increased complex-

ity [1-85, 87]. Finally, some new canonic forms for equalizers have 
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been proposed for the purpose of speeding convergence [1-88, 89]. It 

seems difficult to compare the already numerous schemes touted for fast 

convergence. No definition of what constitutes convergence has been 

accepted. Furthermore, the convergence time is a function of the par-

ticular channel selected (from mse point of view, reference [1-87] 

suggests differently). By choice of definition and example channel, 

different orderings of system speeds can be obtained. 

1.5.3 NEW LINEAR STRUCTURES FOR EQUALIZERS (NRDFE TYPE): 

Though the problem of optimum linear equalization receives 

some small perennial attention [1-90, 94], most linear equalizer effort 

is structurally constrained or based. Van Gerwen, et. al. [1-94] 

have introduced a digital filter consisting of a feedforward (NRDF) 

and a simple recursive network. The coefficients of the NRDF part 

are equal to integer powers of two or zero; thus complicated multi-

pliers are avoided and instead a simple routing circuit is used. Use 

of several types of the recursive network makes the filter applicable 

in different frequency ranges. The coefficients of the NRDF can be 

interpreted as the differences of successive values of the impulse 

response of the filter. It has been shown that this difference rout-

ing digital filter (DRDF) is especially suited for data transmission. 

The use of an adaptive recursive filter for equalization, 

i.e., giving moveable poles rather than zeros is an interesting al-

ternative which has started receiving attention [1-95]. The Kalman 

filter approach to equalization, which also uses a recursive struc-

ture, has been championed by other authors [1-97, 99]. Miscellaneous 

linear equalizers included bump equalizer [1-100], and adaptive pre-

filtering [1-101]. 
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1.5.4 	DECISION FEEDBACK EQUALIZERS (DFE): 

In the latter part of the 1960's the limitations of the 

linear equalizer for compensating severely distorted pulses without 

concomitant noise enhancement became apparent. The class of non-

linear equalizers offered a distinct advantage for high speed trans-

mission where pulses were necessarily highly distorted. A number of 

authors resuscitated the 50 year old idea of tail cancellation em-

bodied in decision feedback equalization and showed substantial ad-

vantages to this scheme. Austin [1-102] was the first to consider 

this equalizer. The fundamental optimization of the decision feed-

back receiver for minimum mean-square error (mmse) was first accomp-

lished by Monsen [1-103]. Subsequently, rice [1-104] examined the 

receiver under the premise that the forward and feedback equalizers 

are constrained to eliminate completely ISI - the so called zero - 

forcing mode of operation. The existence of such an equalizer is of 

conceptual interest and provides a clue to the performance advantage 

of decision feedback over conventional non-recursive equalizers. 

Price also observed that the mse for DFE is never greater than that 

for the linear system. Furthermore, the mse for DFE remains finite 

for algebraic zeros (channel nulls) in the folded spectrum; the 

linear equalizer (NRDFE) does not exist in this event. Messerschmitt 

[1-105] has explored the various aspects of duality between NRDFE and 

DFE. 

Salz [1-106] has optimized the DFE and solved the joint op-

timization problem under a mse criterion. He did not force the equal-

izer to eliminate ISI instead he allowed a trade off some of this effect 
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against noise. Salz's simple expression for the MSE of an optimized 

receiver is identical to Price's quoted previously, except for a factor 

of +1 being added to the argument of the algorithm. Similarly, adding 

1 to the term in brackets for the linear system converts it to a mean-

square solution. 

A number of authors [1-103], 113] have calculated or simulated 

performance of DFE and compared them with NRDFE under specific channel 

conditions. In general, these results show the superiority of the DFE 

- slight for good channels, moderate for channels with severe attenua-

tion distortion, and substantial for channels with spectral nulls in 

the Nyquist band. The problem of error propagation when incorrect de-

cisions are fed back was studied and shown not to be of crucial impor-

tance [1-114]. However, an ingenious circumvention of this difficulty 

has been suggested by Gerrish & Howson [1-115], Tomlinson [1-116], and 

Harashima and Miyakawa [1-117]. Their suggestion uses generalized pre-

coding at the transmitter rather than decision feedback at the receiver. 

The precoder is combined with a modulo-A operation which keeps the 

transmitted signal in the range +A; the received signal is subsequently 

reduced modulo-A. Although this system eliminates error propogation, 

it does result in correlating the transmitted symbols, and the exact 

spectral density or transmitted power is not known. An application 

of decision feedback to a passband system (QAN) has been described 

[1-118, 119]. Aside from the DFE there have been a few isolated pro-

posals involving other suboptimum non-linear equalizer structures 

[1-120, 123]. Experiments on the performance of DFE on real telephone 

lines were reported exclusively in Britain [1-124, 125]. 
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1.5.5 MAXIMUM LIKELIHOOD EQUALIZERS: 

These equalizers are well known by the name of Viterbi algor-

ithm (VA). In 1967 Viterbi [1-126]  published an algorithm which was 

shown to provide maximum likelihood decoding of convolution codes. In 

retrospect it seemed obvious that this algorithm can be applied to the 

ISI problem for PAM systems. However, the realization did not immed-

iately occur to workers in the ISI area. 

However, breakthrough came in 1970 in Noordwijk, Holland 

where three talks relating to the VA were given by three people - 

Forney, Kobayashi and Omura. The initial papers on the VA for PAM 

appeared on 1971 and 1972 by Kobayashi [1-127, 128], Omura [1-129], 

and Forney [1-130]. Kobayashi [1-128] treated in detail the corre-

lative (Partial Response) signalling format in which the channel 

impulse transforms have simple integer values such as f(Z-1) = 1+Z-1  

or f(Z-1)=1-Z-2. In PAM this "Controlled ISI" is sometimes used for 

spectral shaping whereas in digital recording system [1-127] it arises 

naturally. Omura [1-129] viewed the ISI problem as a regulator con-

trol problem and he used the control theoretic principle and applied 

dynamic programming for its solution. Forney [1-130] examined the 

general PAM system, derived the finite state machine model (either 

Moore or Mealey finite state machine model) shown in Figure (1.40 

using a whitened-matched filter (WMF), and described the application 

of the VA for maximum-likelihood sequence estimation. He showed 

that the Viterbi decoding algorithm could be used for optimum, i.e., 

MLSE, detection of symbols in the presence of noise and ISI. Fur-

ther analysis of maximum likelihood systems was reported by other 

authors [1-17, 1-131]. Forney [1-130] has derived rather tight 
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bounds on the probability of an error event in the form 

- 	dm- 
KL Q(dmin)  --;, -) < P- < K- 	 d(min) 
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where Q is the customary integral of the Gaussian density and (dmin) is 

the minimum euclidean distance between any two received paths. Magee 

and Proakis [1-131] have derived a bound on (dmin). It has been shown 

by Forney [1-130] that the error probability differs in most circum-

stances only by a small factor from the best that can be achieved for 

the given channel - thus implying that in many cases the VA uses all 

the energy in pulse detection and in effectively as good as if the ISI 

were absent [1-132]. Adaptive Viterbi receivers using NRDFE have been 

described by Magee and Proakis [1-33]. Qureshi and Newhall [1-134] 

combined the Viterbi algorithm with an adaptive NRDFE which compensates 

the channel to a predetermined response. 

The VA (a dynamic programming application) is in itself an 

extremely complex system, whose complexity grows exponentially with 

the channel memory (duration of impulse response). Much effort in 

this direction is at the present moment under way and some results 

have appeared where the necessary search in the VA itself for the 

correct data sequence has been made limiting. Ungerboeck [1-136] 

has reported a complete Viterbi receiver, including phasing and tim-

ing recovery loops. The fact that the Viterbi detector is a computer 

algorithm also has future significance. At the present moment, hand-

shaking of computers, packet switching, multiparty polling systems 

all need data at tremendous speed and therefore, for all those appli-

cations the future lies with the VA [1-137]. 
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1.6 PROBLEM STATEMENT AND THESIS STRUCTURE: 

The problem here is that of transmitting data at a rate con-

siderably higher than those being used at present over channels which 

are time-dispersive and have severe phase and amplitude distortions. 

Such high transmission rates are particularly suited to computer net-

works and multiparty polling systems where the quick set-up and response 

of communication link has become of paramount importance. 

Therefore, this thesis contains the possible answers to the 

problem outlined above. We have developed a theory for a non-recursive 

digital filter equalizer which is intended to reduce the settling time 

drastically. The approach is completely new, as far as we are aware, 

since this equalizer converges and a solution is obtained even if the 

channel correlation matrix becomes singular. Under the circumstance 

a method is proposed for making the selection using the MOORE PENROSE 

PSEUDOINVERSE (MPPI) of the channel correlation matrix, which gives a 

best solution to the problem. A second proposed method use a new 

orthogonal matrix called Hadamard matrix. It has been shown that a 

Hadamard matrix is similar to a projection matrix. Thus, all eigen-

values are either 1 or 0, which is the desired condition for rapid 

initialization in one algorithm iteration. 

Another equalizer structure proposed is a recursive digital 

filter equalizer (RDFE) which has been found advantageous over severet 

amplitude distorted channels. We have explored the possibilities of 

using six different forms of adaptive RDFE and studied their proper-

ties by using optimization and Monte-Carlo simulation techniques. 
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We have also tried to explore the possibility of using this 

recursive digital filter equalizer in conjunction with a maximum like-

lihood sequence estimator (MLSE). 

Finally, to facilitate continuity and ready reference in the 

exposition, certain basic transform, theories, and statistical methods 

used in communication system are outlined in appendices that are not 

reviewed here. 

This thesis has been divided into seven chapters: 

CHAPTER 1: 

We discuss some introductory material on digital equalizers 

and provide an exhaustive literature survey. Also, since the aim is 

entirely digital processing of signals, we have therefore developed 

a mathematical model of the channel. This channel modelremains the 

basis for all the chapters and whereever possible is referred to as 

the DISCRETE TIME CHANNEL (D.T. CHANNEL) or simply the channel. 

CHAPTER 2: 

We recapitulate the existing design procedures (and their 

related algorithms) of the NRDFE. Detailed analysis of an iterative 

procedure has been provided which leads on to the convergence prop-

erties of various algorithms. 

CHAPTER 3: 

We develop the initialization theory for an automatic NRDFE 

and design an NRDFE under the assumption that the channel is deter-

ministic (i.e., no background noise). The use of iterative techniques 
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and adaptive desired impulse response NRDFE. Computer simulation has 

been done for channels of length 3, 5, 7. 

CHAPTER 7: 

This chapter contains the conclusion and the possible prob-

lems for future investigations. 

Every chapter (except 1) contains its own summary and comments 

which we have found important and beneficial to grasp the immediate out-

come. At the end we provide an exhaustive bibliography. 

Finally, an appendix has been given which contains many known 

theories used in the course of this thesis. 

1.7 BASIC ASSUMPTIONS: 

Although every chapter contains its own data communication 

model and assumptions, 	certain basic assumptions are enumerated 

here: 

(I) Equalization process is located at the receiver. 

(II) The Discrete Time Channel of the NRDF type is assumed (Sec. 

1.9). 

(III) The D.T. channel is either time invariant or else varies slowly 

with time. 

(IV) The equalizer is held correctly matched to the channel. 

(V) The signal input to the transmitter is a sequences of binary 

impulses regularly spaced at intervals of T-secs. They are 

statistically independent and equally likely to have either 

binary value. 
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(VI) The delay in transmission, other than that involved in the 

time-dispersion of the transmitted signal is neglected for 

Chapter 5. 

(VII) White Gaussian Noise (WGN) with zero mean and a two-sided 

spectral density of No is added to the data signal at the 

output of transmission path (see Sec. 1.9). 

(VIII) Signal is digitized before entering the equalizer. 

(IX) The transfer function of the transmitter filter is such that 

the energy of an individual transmitted signal element is 

unity, and the transfer function of the receiver filter is 

such that the noise samples at its output are statistically 

independent Gaussian random variables with zero mean and 

variance aN. 

(X) Sampling instants are correctly synchronized to the received 

signal. 

(XI) No switching action occurs during the initialization (training) 

period. 

1.8 COMMENTS ON NOTATION USED: 

The theory of digital filters and equalizers has developed 

from a number of mathematical and engineering disciplines. Some of 

the disciplines are: 

1. Networks 

2. 	Communications (including Information and Coding theory) 
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3. Control Systems (including Estimation, Identification) 

4. Statistics (including the Probability and Time Series 

analysis) 

5. Optimization, and 

6. Mathematical Programming, etc. 

As a consequence, the notations and terminology used here vary consid-

erably. On many occasions we have used the same word over and over 

again and also often different words having the same meanings (e.g., 

training or initialization, on-line adaptation or tracking). 

All vectors are taken to be column vectors (if not exclus-

ively described), and vector and matrix variables are indicated by an 

underline. Several types of sequence notation are also used. Sequen-

ces have also been represented by the corresponding Z-transforms. 

1.9 DERIVATION OF A DISCRETE TIME EQUIVALENT CHANNEL MODEL: 

In order to deal with the problems encountered during digital 

processing of signals in the presence of ISI (and additive noise) on 

a quantitative basis we find it necessary to develop a mathematical 

model for the data communication systems. 

A data communication system, Figure (1.3), consists of three 

basic blocks: 

(a) The Transmitter, 

(b) The Channel, 

and, (c) The Receiver. 



TRANsmITTERIwr. 
X(t) 

Information CHANNEL RECEIVER 

t) 

-44- 

FIG. (1.3) MODEL OF DATA COMMUNICATION SYSTEM  

Information is transmitted by some form of carrier modulation through 

a bandpass channel. It is convenient, however, to represent such a 

channel by an equivalent lowpass or baseband (i.e., transmits energy 

to zero frequency [1-1]) channel. Moreover, a bandpass signal which 

is to be transmitted over a bandpass channel has a lowpass equivalent 

channel. Thus, all signals and filter response functions can be treated 

in complex-valued lowpass equivalent form although they are real valued 

bandpass signals and filters. 

In figure (1.3), the data sequence 1'0 modulates a basic 

transmitting filter pulse x(t) at a rate (1/T). 

The total transmitted signal is 

CO 

= E Ik x(t-kT) 	 (1.1) 
k=0 
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where T is the duration of the signalling interval, and, IK  is the 

information symbol transmitted in the interval kT < t < (k+l)T,k=O, 

1,2 	 

x(t) in (1 	 1) may be either partial response pulses or pulses having 

a raised cosine spectrum. When Ik  take one of M real values equally 

spaced about zero, then the signal in (1.1) is a pulse amplitude mod-

ulated (PAM) signal. If x(t) is complex-valued, then (1.1) represents 

a PAM Vestigial Sideband (VSB) signal or PAM single-sideband (SSB) 

signal [1-1]. However, phase (PM) and QAM (PAM+PM) modulations also 

fit the mathematical formulation given by (1.1). 

The channel is characterized, in general, by a time-variant 

impulse response. For our purposes, we shall assume that this time 

variation is much slower than the duration of the signalling interval. 

In other words, the channel can be considered as being relatively time-

invariant over a large number of signalling intervals. This assump-

tion is necessary and realistic to design adaptive equalizers. There-

fore, the channel output, 

s(t) = E Ik h(t-kT) 	 (1.2) 
k 

CO 

where h(t) = Jr. 	g(T) x(t-T)dT 	 (1.3) 
-CO 

and, 	g(t) is the channel impulse response 

When the noise n(t) is added to the system then the input to the re-

ceiver is represented as: 

r(t) = E Ik  h(t-kT)+n(t) 	 (1.4) 
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The noise process, assumed to be stationary, zero mean, white and 

Gaussian, is called random impairments. The response, h(t) is assumed 

to be square integrable, and from a practical point of view it is 

finite in duration, spanning a length of L symbol intervals, i.e., L 

is the smallest integer such that 

h(t) = 0 for t>LT, and, 

Ilh112 	h2(t) dt 	<0. 

The problem at the receiver, then, is to detect the information sequence 

{II4 from the available observation r(t). From a computation of the 

likelihood function [Figure (1.4)] it is easily shown that the output 

of a filter matched to h(t) and sampled periodically every T seconds, 

once every signalling interval, constitutes a set of sufficient statis-

tics for the detection of the sequence { Ik}. 

Estimated input 
sequence 
	• 	 

FIG. (1.4)  LIKELIHOOD SEQUENCE ESTIMATION 



[  

Rk  = 	Jr . h(t)h(t+kT)dt 	0< k < L 
_. 

0 	otherwise 	 (1.7) 
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With h(-t) as the filter matched to h(t) and r(t) as its 

input, the output of the matched filter (MF) is: 

a(t) 	r(t) h(T-t)dT 	 (1.5) 

The corresponding sampled values 

A 
am=a(mT) are 

am=E IkRm_k nm 	 (1.6) 

where Rk  denotes the sampled autocorrelation function of h(t) i.e., 

and inmt denotes the additive noise sequence 	at the output 

of the matched filter 

i.e., 
nm

=
J 	

n(T) h (T-mT)dT 	 (1.8) 

Manipulating (1.5), we have 

am  = ImR0  + E IkRm_k  + nm 	 (1.9) 
14m 

where ImRO represents the desired signal at the mth  sampling instant. 

E IkRm_k represents the ISI for the L adjacent symbols and nm  additive 
14m 
noise component. 

Up to this point, we have seen that the transmitter sends 

discrete time symbols/second and the sampled output of the MF is also 

a discrete time signal with samples occurring at a rate (1/T) per 7 



E[nink] =[NoRi_k  

0 otherwise 	 (1.10) 

i-k <L 
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second, therefore, it will be appropriate to represent the cascade of 

filters (analogue) x(t), g(t), h(-t) and the sampler by an equivalent 

discrete time non-recursive filter figure (1.5) spanning a time inter-

val of2LT seconds and having multiplier coefficients the sampled values 

Rk, 0<k<L, of the autocorrelation function of h(t). 
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FIG, (1.5) DISCRETE TIME MODEL OF DATA COMMUNICATION SYSTEM 

Input to this model [Figure (1.5)] is the sequence of infor-

mation symbols Ik}. To complete the equivalence between the contin-

uous time and discrete time model it is necessary to add a noise com-

ponent rik to the kth  output of the NRDF. However, this particular 

approach is unsuitable to the different filtering techniques to be 

described in the subsequent part of the thesis since the noise { nk 

now becomes coloured but Gaussian with autocorrelation function 
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where (N0/2) is the two-sided spectral density of the noise. So, our 

immediate concern is to whiten this noise sequence by further filter-

ing the sequence {am} . We shall, therefore, describe Forney's [1-5] 

discrete time, noise whitening filter. 

Let R(Z) denotes the two-sided Z-transform of the sampled 

autocorrelation function 

L-1 
R(Z) = E RkZ-k 

k=,  -(LH) 

since 	Rk = R_k , it follows that 

R(Z)=R(Z-1) and the L roots of R(Z) have the symmetry 

that if r is a root, l/r is also a root. Hence, R(Z) is factored as 

R(Z)=F(Z)F(Z-1) 	 (1.12) 

Where F(Z) is a polynomial of degree L having the roots r0,r1 	 

11_1 and F(Z-1) is a polynomial of degree L having the roots 

1 , 1 , . 
r0 r1 

Then an appropriate noise-whitening filter has a Z-transform 

[1/F(Z-1)]. As there are 2L  possible choices for the roots of F(Z-1), 

each choice resulting in a filter characteristic that is identical in 

magnitude but different in phase from other choices of the roots, we 

propose to choose the unique F(Z-1) having minimum phase, i.e., the 

polynomial having all its roots inside the unit circle. Then 
[1F(Z- )

] 

is a discrete time recursive filter which is stable and causal. Forney 

[1-S], has also considered the cases when F(Z-1) has some roots on the 

unit circle. Consequently, passage of the sequence {am} through the 

digital filter [1/F(Z-1)] results in an output sequence ylillwhich can 

be expressed as: 
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L-1 

Ym = k 0 PkIm-k 
= 

(1.13) 

where {nm} is a White Gaussian Noise sequence and {Pk} is a set of mul-

tiplier coefficients of an equivalent discrete time NRDF having a trans-

fer function F(Z). 

In summary, the cascade of the transmitting filter x(t), the 

channel g(t), the matched filter h(-t), the sampler, and the discrete 

time noise whitening filter [1/F(Z-1)] can be represented as a FINITE 

{} 

MEMORY EQUIVALENT DISCRETE TIME NRDF having the set Pk} as its multi-

plier coefficients. The additive noise sequence { nk corrupting the 

output of this NRDF is a WHITE GAUSSIAN NOISE (WGN) se kqence having zero 

mean and variance N0. 

Figure (1.6) illustrates the model. This model has been de-

rived not only from a mathematical point of view but it appears to be 

reasonably consistent with experience on real channels (Telephone cir-

cuits, H.F. Radio links, 600 ohm pair, coaxial cable links, and Fibre 

optic links.) We shall illustrate the above fact using the following 

example: 

EXAMPLE: Suppose that the transmitter signal pulse x(t) 

has duration T and unit energy and the received pulse is 

h(t)=x(t) + a x(t-T). Find the value of multiplier co-

efficients. 

The sampled autocorrolntion function is given as 
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a 	,k=1 
2 

Rk= 1+1a\ 	,k=0 	 (1.14) 

a 	,k=-1 

The Z-transform of Rk is 

1 
R(Z)= E RkZ-k 

k=-1 

= R ZI  +R + R Z-1  -1 +R0 1 

= aZ+(1+ a2  )+aZ-1  

= (a+Z-1) (a+Z) 

(1.15) 

Under this assumption thatlayl, one chooses 

F(Z)=.(a+Z-1) so that the equivalent NRDF consists of two 

multipliers p0=a, pi=1. 

When the channel impulse response is varying slowly with time, 

the MF becomes a TIME VARIABLE FILTER and the time variable filter pair 

give rise to a discrete time filter with TIME VARIABLE COEFFICIENTS. 

As the channel impulse response is not known at the receiver, therefore, 

the realization of time variable MF implies some kind of an ADAPTIVE 

SYNTHESIS TECHNIQUE. This can be accomplished by approximating the MF 

arbitrarily close by an NRDF with multiplier coefficients that are adjust-

able continuously by a cross correlation technique based on a known 

pseudo-random or customer's data 	which can be embedded in the 

information bearing signal and transmitted through the channel. There 

are, however, several instances of practical communication system when 

we abandon the idea of a.MF in favor of some kind of a simpler fixed 

filter that may either be matched to the transmitted (known) signal 

t 	' 

t • 
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pulse x(t) or more simply one that has a frequency response character-

istic appropriate for passing the received signal relatively undistorted 

and simultaneously limiting the noise at its input. In such cases, 

sampling the output of the fixed time filter at the symbol rate intro-

duces some loss in detectability which is usually small provided the 

sampling time within the sampling interval T is chosen judiciously. 

Time variations in the channel impulse response still give rise to 

time variable ISI effects which can be modelled now as in figure (1.6) 

by a discrete time non-recursive filter with time-variant multiplier 

coefficients. 

This model [Figure (1.6)] will be assumed everywhere unless 

otherwise stated. 

z — I 

I Ykl 

FIG. (1.6) FINITE MEMORY EQUIVALENT DISCRETE TIME CHANNEL MODEL  

WITH  WHITE GAUSSIAN NOISE  

z — I 
	z —I 

%I 
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CHAPTER 2 

DESIGN  OF ADAPTIVE NON-RECURSIVE 

DIGITAL FILTER EQUALIZERS  

A man must see, do and think things for himself, in 

the face of those who are sure that they have already 

been over all that ground. In science, there is no 

substitute for independence. 

J. BRONOWSKI, "SCIENCE AND HUMAN VALUES"  
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2.1 	INTRODUCTION: 

This chapter is a recapitulation of the existing design tech-

niques of adaptive non-recursive digital filter equalizer (NRDFE). We 

have used the word adaptive (i.e., on-line operation) since almost no 

a priori information about the channel is assumed. Also at the present 

momentpS% of the high speed modems employ either NRDFE or its analogue 

version called a transversal filter equalizer. The literature survey 

of ch. 1 also proves the fact that the same amount of work has been 

reported on NRDFE which adapt (track) to a quasistationary unknown 

channels [2-3, 16]. The difference between the various approaches is 

in the performance index used as a goal function for the adapting pro-

cedure and in the adaptive algorithm used to optimize the goal function 

[2-1, 2]. 

While using conventional NRDFE, there has been a tremendous 

effort to understand thoroughly the choice of performance (error) 

criterion for equalization (e.g., Peak-distortion, APSE, Prob. of 

error, Signal-to-Noise Ratio, . 	 etc.) 

[2-3, 4, 2-18] and the consequences of this choice. Since the most 

meaningful measure of performance for a data communication system is 

the probability of error Pe  (or Pr(e)), it is desirable to choose 

the coefficients {ak} to minimize this performance index [2-19]. 

However, Pe  is a highly non-linear function of {ak}. In addition, 

it is difficult to compute such a function (except in a few isolated 

cases) let alone minimize it. As a consequence, Pe  as a performance 

index for optimizing the coefficients {ak} has been impractical. 
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Professor R. E. Guilleman, in 1953, posed an intriguing 

question: "What is Nature's error criterion"? [2-1]. his answer 

is that nature adopts as a criterion a minimum-mean-square-error [2-2]. 

While the truth of this question and answer is debatable it is never-

the less true that the !ISE criterion is the most widely used in mathe-

matics and engineering. It is mathematically easily tractable and 

leads on to simple minimization algorithms. We shall he using, par-

ticularly, MSE criterion for our analysis and occasionally will make 

deviations to other error criteria, in the course of this thesis in 

order to establish more meaningful facts. 

In brief resume, we shall define the first three performance 

indices in the next section. 

2.2 	DESIGN OF AN NRDFE USING PEAK-DISTORTION ERROR CRITERION: 

This criterion is also known as Lucky's criteria [2-3, 4]. 

According to this criterion, the peak-distortion D(a) is defined 

D(a) = iLd E lqk, 
qi kii 

(2.1) 

Where {qn} represents the impulse response of the cascade of 

the equali2er and the equivalerct discrete-time channel and qi is the 

head pulse. The peak eye closure for an m-level system is (m-1)D(a) 

and the eye opening is [1-(m-1)D(a)]. The input pulse to the equal-

izer is 0-ssurnpd to have initial peak distortion DO(a)d  The reference 

sample qo will also be normalized to unity. The problem, here, is to 

determine the values of multipliers {ak} K-1 
0 

fcr the K shift-register taps which minimizes the final peak-distortion, 

e. g. , (2.1) where 
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K-1 
qn  = E 	aj  Yn_i 

j=0 
(2.2) 

There is an arbitrary gain factor involved in the equalizer 

setting; therefore the central sample (or head pulse) qi  must be con-

strained to be unity. All the other qk, k1i give rise to residual ISI 

at the output of the equalizer. 

The multiplier coefficients {ak} are chosen to minimize 

D(a). Since there are (K) adjustable parameters and K+L-1 outputs 

{qk}, it is generally impossible to eliminate completely the ISI at 

the output of the equalizer. There is always some residual ISI when 

the optimum coefficients are used. 

It can be easily shown that the functions D(a) is a convex 

functions of the coefficients{ ak} 	In general, we can carry out its 

minimization numerically, using for example, a steepest descent tech-

nique. For one special but important case, however, the minimum is 

easily obtained. This is the case in which the distortion prior to 

equalization is small (i.e., D0(a)<1.00). 

The equalizers using this criterion are called Zero-Forcing 

(Z.F.) equalizers. 

The major advantages of the peak distortion criterion are 

that the function D(a) possesses no relative minima but just a global 

minimum, and the zero-forcing algorithm is easily implemented. On 

the other hand, there are two disadvantages with the performance 

index. The first is that this algorithm does not cater for the 

additive noise, in other words, the additive noise is not included 

in the performance index. The second disadvantage is when D0>l, 
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the Z. F. algorithm does not necessarily yield the minimum of D(a) and 

sometimes may not even converge to any solution. Haaaver, on many tele-

phone channels, Do< 1. therefore the Z. F. algorithm is presently being 

used on some commercially available adaptive NRDFE. 

2.3 	DESIGN OF NRDFE BASED ON MEAN SQUARE ERROR CRITERION:  

The central problem of mean square error criterion can be 

stated as follows: 

" Given a real K x N matrix A of rank m <min (K,N), and 

given a real M-vector W, find a real N-vector Q
op

t mini- 

mizing the Euclidean length of A a pt 	W". 

If we doinot specify the size of K & N, then the MS problems can be shown 

as below ( symbol MS means mean square problem): 

A 	
a 	

A 

A _a  = W [ Rank(A)=K=N] 

MS 

= W [Rank(A)=m<K=N1 
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We concern ourselves in this thesis, depending upon the situations, 

with all the cases depicted here. However, we confine ourselves with 

case(1a)to illustrate the basic mathematics involved in the mean square 

analysis of a problem. 

A performance index that possesses the desired character-

istics of being a convex function of the multiplier coefficients fak}, 

but does not suffer from the limitations inherent in the peak distortion 

criterion is the mean-square error (MSE) or Widrow criterion [2-20] 

and will be denoted by J(g). We shall apply this criterion to design 

an adaptive NRDFE and study its various properties. An adaptive NRDFE 

in the decision directed mode is shown in Fig. (2.1). The input 

signal vector Yk  is defined as: 

Yok 

Ylk 

ik 
A 

YOk Ylk • 
T 

Y(K-1)k J 	(2.3) 

The input signal components are assumed to appear on all input lines 

at discrete time indexed by the subscript k. The Component y1  is a 

constant normally set to + 1 . The multiplying coefficients are given 

by: 

a0  

A 
a =  

a l 
(2.4) 

aK-1 

Therefore the output Ik  is equal to the inner product of Yk and CC 



DECISION 

DEVICE 

InPut 

	to- OU t Pu t 

FIG. (2.1) AN ADAPTIVE NON RECURSIVE DIGITAL FILTER EOUALI?ER [ DECISION DIRECTED MODE] 
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I = Y
T 
a = a Y 

k -k - - -k 
(2.5) 

The error ck is defined as the difference between the desired response 

{Ik} and the actual response {Ik} 

Etc Ik /k 

= I 	YT  a Ik -k - 

= Ik  - aT  Yk  (2.6) 

In most applications some ingenuity is required to obtain a suitable 

input for Ik  (therefore we use decision directed mode output Ik  ). 

After all, if we had already known the actual data at the output, 

then why bother to have an adaptive processor ? 

A general expression for MSE as a function of the multiplier 

value, assuming that the input data and the desired response are 

statistically stationary-and that the E
k 
are fixed, can be derived 

in the following manner. Expanding (2.6) and defining the MSE by 

J(a) E[ck] 

= E [ Ik  - 27 V 2  

T =E 	Ik j
2 
 - 2 E [ Ik Y

T 
- 

a + a
T 
 EL Y

--k  Yk 
 jot (2.7) 

--k - - 	- 

We shall now define W the cross-correlation between the desired res-

ponse ( a scalar ) and the Y vector; this yields 

I v 
k "Ok 

Ik ' 
v
lk 

I
k 

y
2k 

A, A 
W = E [Ik  ykj = E (2.8) 

I
k 

y
(K-1)k 
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The input correlation matrix A is defined as: 

YOkYOk 	YokYlk 	Y0kY 2k 

YlkY2k Y YOk 	YlkY lk lk 

2kY2k A ''-- E [Ar YT] = E 	 Y2kYlk Y '-k -4( 	Y2kYOk 

• • 

YOkY (K-1)k 

Y lkY (K-1)k 

Y2kY (K-1)k 

Y(K-1)knk Y(K-1)01k Y(K-1)02k 	Y (K-1)0r (K-1)k 

This matrix A is real, symmetric, positive definite ( or in rare cases 

positive semi-definite, this is our case in chapter (3)) 

Therefore we can express the MSE as 

A 
J(a) = E[cl 

E[ 2  
=EL Ik 	- 2 a T 	 aT  Aa 

— — — — — 
(2.10) 

We shall note here that the error is a quadratic function of the multi-

pliers coefficients, that can be pictured as a concave hyperparaboloidal 

surface, a function that never goes negative. Adjusting the multiplier 

coefficients to minimize the error involves discending along this sur-

face with the objective of getting to the bottom of the bowl[  2-20] 

The gradient 3J(a) (or g) of the error function is obtained 
3a 

by differentiating (2.10) i.e. 

3J(a) 
3a 0 

A 
= 3J(a) = 

3a 
= -2 W + 2 A a 	(2.11) 

3J(a) 
3a K-1 
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The optimal value of a (i.e. aopt ) usually called the Wiener  

multiplier vector, is obtained by setting the gradient of the MSE 

function to zero, yielding 

—opt 
= A

-1  W 
 — — 

This equation is a matrix form of the WIENER-HOPF EQUATION. 

(2.12) 

One way of finding the optimum set of multiplier vectors 

is to solve (2.12). This solution is generally straight forward, 

but present serious computational problems when the number of multipliers 

K is large and 	when data rates are high. In addition to the neces- 

sity of inverting a (KxK) matrix, this may require as many as 

(K+1)(K+2)/2 autocorrelation and cross-correlation measurements to 

obtain the elements of A. Furthermore, this process generally needs 

to be continually repeated in most practical situations where the 

input data changes slowly. No perfect solution of (2.12) is possible 

in practice because of the fact that an infinite statistical sample 

would be required to estimate perfectly the elements of the correlation 

matrices. 

So, we shall apply an approximation method to get a solu-

tion of (2.12). The accuracy of this method is limited by the 

statistical sample size, since it determines multiplier values based 

on finite-time measurements of input data signals. These methods 

do not require explicit measurements of correlation functions or 

matrix inversion. They are based on gradient-search techniques applied 

to MSE functions. Minimization is usually accomplished by gradient 

search techniques. One such method is the LMS algorithm[ 2-20] which 

is an implementation of the method of STEEPEST DESCENT. According to 



De
k 
 /aa 

ac k /3a1 

ac
k 
 /act

0  

ac2k  laa 1 

(2.14) = 2 ek  
ti 

B-k =  

ack /aaK-1 ac2kI aa K- 

a a  = ak sk  
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this method, the next nultiplier vector at any iteration is equal to 

the present multiplier vector plus a change proportional to the nega-

tive gradient. Accordingly, 

a
(k+1)(k) 	(k) (k) 

=a -1A 
2-(4)  

• • • (2.13) 

The parameter A is the factor that controls stability and the rate of 

convergence. Each iteration occupies a unit time period. The true 

gradient at the k
th 

iteration is represented by ET‘  or simply Rk  

The algorithm mentioned here estimates an instantaneous 

gradient in a crude but efficient manner by assuming that ci  , the 

square of a single error sample, is an estimate of the MSE and is given 

by differetiating c2 with respect to a. The relationship between true j  

and estimated gradients are given by the following expressions: 

lga) 
au, 

• 
• 

a.J(a) 
Da
K-1 

a ak 
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The estimated gradient components are related to the partial 

derivatives of the instantaneous error with respect to the multiplier 

coefficient, which can be obtained by differentiating e2 . Thus the 

expression for the gradient estimates can be simplified to 

,I, 
-g- 	- 2 Ek  X-k 
	 (2.15) 

using this estimate in place of the true gradient in (2.13) yields 

the Widrow-Hoff LMS algorithm (henceforth we shall refer to it by the 

name Widrow estimate F2-201 given by: 

a(k+1) . a
(k)  + A e(k)  Y(k) 	(2.16) 

this algorithm is simple and generally easy to implement. Although 

this makes use of gradients of MSE functions, it does not require 

squaring, averaging, or differentiation. 

LV. 
The gradient estimate used here is unbiased =.-: that the 

expected value of the multiplier coefficient vector values converge 

to the Wiener multiplier coefficient vector (2.12) a
npt 

 , when the 
- 

input vectors are uncorrelated over time (although they could, of 

-f foot 
course, be correlated 	input components to component). Starting 

with an arbitrary a, the algorithm will converge in the mean and will 

remain stable as long as the parameter A is greater than zero but less 

than the reciprocal of the largest eigenvalue 	A
max 

of the matrix A: 
- 

> A > 0 	 (2.17) 2 / A.lax 

We shall prove (2.17) in the following section. A great deal of infor-

mation is available on iterative algorithm etc. in reference [2-2 ] 

some of which are discussed in section (2.5). The basic algorithm 

given by (2.16), and some of the possible variations of it have been 
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incorporated in many commercial adaptive equalizers. These variations 

of the basic algorithm are obtained by using only sign information 
(k) 

contained in the error signal c
(k) 

and/or in the components of Y 	. 

Hence, we outline the following possible variations: 

(k+1) 
(a) 	a 	= a(k) + A Sgn {c(k)} y(k) 

k = 0, 	1, 	2, 	... 	(K-1) 

a  (k+1) . a(k)  + 	A c(k)  Sgn f 	(k)) 

 

(b) 

k = 0, 	1, 	2, 	... 	(K-1) 

	

(k+1) = a (k) + A Sgn {c(k)} 	Sgn { 
Y(k)

1  (c) 	a  

(2.18) 

(2.19) 

(2.20) 

k = 0, 1, 2, ... 	(K-1) 

1 if x>0 
Sgn(x) = 	= either 1 or -1 

-1 if x< 0 

As we can see algorithm (2.20) is the one which is most easily 

implemented, but this gives the smallest rate of convergence relative 

to the others. 

In the above discussion, we assumed that the receiver had 

a  priori 	knowledge of the transmitted information sequence in 

forming the error signal between the desired symbol and its estimate. 

Such knowledge can be made available during a short initialization 

( training ) period in which a signal with a known information sequence 

is transmitted to the receiver for initially adjusting the multipliers 

[ 2-10 1. This is not the practical scheme for continuous adjustments 

of {aid . In practice {ak} may be adjusted either in a decision 

directed mode of operation in which the decisions on the information 

symbols are assumed to be correct and are used in place of Ik  in forming 

the error signal ck, or a known pseudo-random probe sequence maybe 
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rn 
inserted in the information bearing signal either additivelymr 

by interleaving in time and the multiplier coefficient vectors are 

adjusted by comparing the received probe symbols with the known 

transmitted probe symbols. Therefore we can write 

{Ek} = {lk} 	- 	{Ik} 	for the decision directed mode 

(2.22) 
{ck} = {Ik} 	- 	{Ik} 	for the training mode 

As long  as the receiver is operating at low error rates an occasional 

error will have a negligible effect on the convergence of the algorithm. 

If the channel response changes, then the effect of this 

change will be reflected in the coefficients {ok} of the equivalent 

discrete time channel. Consequently, the error signal will change. 

Hence, the {ak} will be changed according to (2.16) reflecting the 

change in the channel. A similar change in {ak} occurs if the statis-

tics of the noise or the information sequence change. Thus the 

equalizer is said to be adaptive. 

2.4 	DESIGN OF NRDFE BASED ON THE PROBABILITY OF ERROR (Peor Pr(e)): 

As we have pointed out in section (2.1) - ' the most 

meaningful criterion for optimality of an equalization technique is 

usually the probability of error Pr(e) , but, it is also the most 

cumbersome, nonlinear and difficult to analyze mathematically. 

However, according to [2-10] , the SNR is related to the minimum MSE 

and there exists a relationship between the output SNR and the Pr(e) 

In the absence of ISI, the output is gaussian, i.e. the estimate {Ik}  

is a gaussian random variable. For this case, the Pe becomes a function 

of p R where 
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M S value of the desired signal 
PP= 

M S value of 	.additive noise 

However, in the presence of ISI, the estimate I
k 

is no longer gaussian 

and, as a result, there is no simple correspondence between the output 

SNR and the Pr(e). When the MS value of the ISI is small relative to 

the MS value of the additive gaussian noise, a good estimate of the 

Pr(e) can be obtained by using ppgiven by equation (30) of reference 

[ 2-10] , and assuming that the total ISI can be characterized as a 

gaussian variable. However, when the ISI dominates the additive 

gaussian noise, the quality of the gaussian approximation is poor, 

especially when estimating low error probabilities. In that case, we 

resort to a simple computational procedure as described by Proakis and 

Miller [2-10 ] for PAM signalling with equally probable, statistically 

independent information symbols. However, this method is useful for 

computing small probabilities of error. Since, we shall be dealing 

with error probabilities of 10
-4 

and larger, a more convenient method 

for estimating the Pr(e) (of the adaptive receivers operating in the 

presence of ISI) is by Monte-Carlo simulation. The Monte-Carlo simula-

tion technique is described in the Appendix and in [ 2-10, 2-21]. 

Programs are available in the Library subroutine packets. 

Aaron and Tufts [2-19] used Pr(e) as a performance index 

under the assumptions that an error occurs only if the centre symbol of 

the message is in error. They failed to make it suitable as an adaptive 

algorithm; this is yet to be found. 

Throughout this work our performance index will be MSE 

except occassional crossings to other criterion for computer simulation 

purposes. 
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2.5 	ITERATIVE ALGORITHMS FOR MEAN SQUARE ERROR: 

An iterative method is a route for operating on previous 

approximate solution 	to obtain an improved solution. These methods 

are preferred for solving large sparse systems because they can take 

advantage of zeros in the matrix and tend to be self correcting and hence 

tend to minimize the roundoff errors. Such methods are particularly 

good for almost diagonal or dominant diagonal systems in which converg-

gence is rapid. Our aim here is to solve the Wiener solution (2.12) 

a 	= A
-1 

W —opt — 
(2.12) 

iteratively. We shall start with a first degree iteration written as 

a (k+1)
.. ct 

(k) 	(k) 	(k) 	 (2.23) 

where step-size, A(k) , and direction matrix, E
(k) 

 , are functions of 

k, A, W and a
(k) 

 . 

Keeping in mind Fig.(2.1), the above representation must 

leave the Wiener solution vector aopt =A-IW invariant i.e., if — — — 
a(k) = A-1 w,  then 

a(k+1) = A-1  W 

Hence it is required that A(k) E(k)  = 0 when a(k)= A-IW 

We define, residual vector (at the k-th iteration) as 

A (k) 	(k) 	(k) 
r = 	=Aa -W= 3J(a)/3a (2.24) 

Multiplier error vector is defined as: 

(k) 	(k) 
e 	= a 	- a 

—Opt 
(2.25) 

Since aopt  is unknown, therefore, it is usually either the length of 
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1, 	1 
the residual vector ILE(k)II or the lengthll _(()_ __(k-1)II is used 

in a convergence test. 

For the first representation of the first degree iteration 

to let il(k)  = II(k) = r(k), the iteration may be written as: 

a
(k+1)= a 
	.g.  (k) 	(k) (k) 

This is satisfied by a
(k) 	

a
(k+1 

= A -1  W . Therefore, we have 

1 A W = ( I - A
(k) 

A ) A-1  W + A(k)  W 

Subtracting the quantity 

a(k+1)
(k) 

	

= ( I - A
(k) 

A ) 	+ A 	W 

yields 

(k+1) 
( A-

1 
 W - a 	) = ( I - A(k)  A )( A-1  W 	A(k)  ) 

(k+1) 
or, 	e 	= ( I - A(k)  A) e(k)  

=IT( I - A(i)  A ) e0  (2.26) 

The matrix ( I - A(i) A ) is called error or iteration matrix. 

This matrix converges if and only if 

k 
Mk+1 = II (I - A

(i) A) + 0 as 	k + 	(2.27) 
i=0 

If all eigenvalues of M
k+1 

are less than 1 in absolute value then the 

iteration converge. If we suppose A(Mk) be the spectral radius of Mk  

that is the magnitude of the eigenvalue of Mk  of largest magnitude then 

the average rate of convergence for fixed k is defined by 

R(Mk) h - (1/k) log( X(Mk)) 	 (2.28) 

and this is also the asymptotic rate of convergence for stationary case 
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We can put the convergence conditions into the following words with 

the help of Fig. (2.2) 

FIG. (2.2) NECESSARY RELATION OF ATO LOCATION OF  EIGENVALUES.  

The necessary and sufficient condition is that the eigenvalues of 

(I - AA) must lie inside the unit circle or the eigenvalues of A 

must lie in a circle centered at (1/A) with radius (1/A). It is shown 

that this convergence is monotonic [2-7] . The number of iterations 

k is given by the following relation: 

max II e(k)II 
. x

k 	n (say) 
e(°)# OH e(13) II 

so that the required k satisfies 

(2.28) 

- log n 
k > 	 (2.29) 

- log A 
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For the zero-forcing equalizers, if 
	

A 	is small in the iteration 

procedure the eigenvalues of A must lie in the right half complex 

plane. This implies that the phase of the channel must lie within 

+ 900. Therefore, for finite A, absolute convergence cannot be 

guaranteed unless initial distortion Do  < 1 [2-3] . 

For the mean square error equalizer, the coefficient matrix 

of the simultaneous linear equations is Hermitian and positive definite 

Therefore the convergence of many iterative algorithms are guaranteed 

[ 2-9 I. A particular iteration ( be it linear or nonlinear, stationary 

or non stationary ) depends on the choice of A
(k)

and Q(k) . Often we 

make our choice in such a way as to minimize some measure of error. 

Three such measures ( related to the MSE criterion ) are: 

(i) J1  (a) = <aop 
 t - a, a opt-a —> =<e e>=<A

- 
 ir 	

1  
A r>=<r (AAT)

-1 
 r> 

— 	— — 

(ii) J2(a) =< r, r > =< e, ATA e > 

(iii) J 	
1 

(a) =< e,A e>=<e,E>=<A EL, g> = 	( AT )-1 EL> 

JI(a) is the square of the length of the error vector and J2(a) is the 

square of the length of the residual vector. J
3 
 (a) should be used only 

when A is symmetric positive definite, otherwise its minimum might be 

negative. For every error measure the generalized version of Eq.(2.15) 

hold good. That is the determination of gradient of J(a) and the 

optimum value of A . Detailed analysis of this is beyond the scope of 

this thesis but the useful discussion can be found in [ 2-17 _1. 

However, the pertinent results are given here from Westlake [2-21] . 

Assume basic iterative algorithm: 

a(k+1) = a(k)_, A
(k) 2.(k) 

and the simultaneous equation A a = W . Then the gradients for various 
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measure of errors are given by: 

gradient for JI(a) = - 2 A-1r 

gradient for J2(a) = - 2 A
T 

r 
	

(2.30) 

gradient for J3(a) = - 2 r 

OPTIMUM VALUES OF A FOR ARBITRARY  a AND E : 

< 	(AT)-1  E > 	< A-1  A, p> 
for J1  (a) (a) 	A - 

   

< A  2, (AT)-1  p > < 2,2. > 

< A, A .2.  > 
for J2(a) , A 

< AE,AE> 

< 	AE> < A
T 

A
-1 II, E > <2 2

I.> 
for J3 

 , (a) A —  < E, A E > 	< p, A 2_ > <R,  A 2? 

(2.31) 

There are three standard iterative numerical methods for performing 

the minimizations of J(a) used in the equalization techniques. They 

are 

(i) The steepest descent method 

(ii) The conjugate gradient method [2-17, 2-21, 2-24] 

(iii) The Fletcher-Powell method [2-25] 

These methods are discussed next. 

2.6 	STEEPEST DESCENT GRADIENT METHODS: 

To solve the equation A (1  = W we start with a trial point 

(0) 
a 

	

	in n-space and move in the direction 
E_(k) to the new approximation 

(1) 
a 	, adding a correction of A(

k) 
E
00 

to a_(0)  • Gradient methods are 

characterized by the fact that 2_(k)  is chosen to be the gradient direc- 

tion. If in addition, A(k) is taken as the optimmA required to mini- 
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mize J(a) for arbitrary ft and p, the . 	steepest 

descent method are obtained. These methods are stationary, explicit, 

and nonlinear. For each of the three error measures, the summary below 

gives 2(k), A(k) for the iteration 

(i) 	J1  (a): 
Q(k) iA-I r(k) 

A(k) - <A-1  E.(k), 11(k)' 11A-1 
g(k)II 

  2 
<2.(k), .2.(k)> 	11 2(k) 112 = 1 

This is not suitable since it involves A-1. 

(ii) 	J3(a): 2.(k) = _ 2.(k) 2r(k) 

<2(k), .g..(k)› 	‹.8.(k) , EL.(k), 
A (k) - 

<2(k), A 200> 

il.a..(()112 

- 	 
<2(k), A II(k)> 

<2
(k)

, A 2
_00

> 

This is the familiar form of steepest descent algorithm. 

We can therefore write 

(k+1) 	(k) 	(k) (k) 	(k) (k) 
a 	= a 	- A 	.ft 	= (I - A(k) A) a 	+ A 	W 

(2.32) 
with error vector 

1 	
e(0)  = 

k (0) 
= (I - 6A) e(k)  = TT (I - A(1)A) 	Mk+1 

e(k+I) 	
(k) 	_ 	- 

i=0 
(2.33) 

Iteration Matrix (I - A(k)  A) provides the eigenvalues. The process 

converges if M104  -)- 0 as 1(.4... for every eigenvalues< unity. 	In the 

method of steepest descent, the vector r
(k) is chosen as the negative 

of the gradient vector il(k), i.e. r(k)= - j1(k). Consequently we 

obtain algorithm for determining Wiener solution a pt 
 by (2.32). 

With this method, g
(k)+ 0 
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A(k) 0 as k ... 

The method requires an infinite number of iterations to converge to 

a9pL but, practically, the algorithm may be stopped at a point where 

magnitude of the gradient components fall below some specified limit. 

2.7 	CONJUGATE-GRADIENT METHOD  

In this method [2-24, 2-261 the direction vector Ja(k)  

is chosen according to the relation 

P. 
(k+1) 

= r
(k+1) 

+ A
(k) P(k)k) 	

(2.34) 

where the coefficients Ac is chosen to satisfy the generalized ortho, 

gonality condition 

2(k+1),A  2.(k)> = 0 

From this condition we can obtain the result in two forms 

ii r(k+1)11 2 <EL(k+1) 	(k+1) 
>  A(k) 

111..(k)11 2 	
<a(k), g(k)> 

r
(k+1), A 2(k)> 	.g.(k+1), A A(k)>  

A (k) 
c 	

- 	 
t (k), A (k)> (k)

, A E
(k)

> 

(2.35) 

(2.36) 

The value of A(k) given by (2.35) is simpler to compute, but the rela-

tion (2.36) gives better results according to Hestenes and Stiefel [2-24]. 

It can be shown that [2-24] the gradients {&i}  are orthogonal, 

i.e., <.gi, gl> = 0 for 1..j and also 	<pi, A _pi> = 0 for iAj. The 

direction vectors, 20, 	... EK_I form a basis in K - dimensional 

space and,hence, the minimum of J(a) is obtained in at most K iterations 

where K represents the number of filter coefficients. This rapid rate 

of convergence to Wiener solution a 	is to be contrasted with the 
apt 
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relatively slow rate of convergence given by the steepest descent 

technique. 

However, a word of caution, that the orthogonality methods 

usually tend to accumulate round off errors and thereby this method may 

disturb the stability [2-21, p. 48 1  . 

2.8 	THE FLETCHER POWELL ALGORITHM: 

The Fletcher-Powell method [2-25] generates the direction 

vectors according to the relation 

(k)= - H (k) (k) 
	

(2.37) 

(k) 
where H 	is an (KxK) positive definite matrix that converges to the 

inverse of the Hessian A and which initially is - set equal to the iden-

tity matrix. Then H
(k) is generated by the recursive relation 

k) 
(k)  (Or (k) iT ( / 

(k+1) 	_.(k) 	(k) E. 	11' ' L .11' 	1 	H  
= 	H 	+ AF 	

[ z.
(k) 

]T H
(k) 

6( 
z
.(k)) 

( 

... 	H(k) 6( J1(k))[ 6(a(k))T 111(k) 

[ 6(a(k))]T H(k) 6( 2(k))  
(2.38) 

where 6(g.(k)) 	.11(k+1) - (k) 

and T denotes the transpose. It can be shown [2-25] that .7(20-, 

attains its minimum value in at most K iterations just as the conjugate 

gradient method. 

All these numerical methods need to know the gradients 

which are estimated according to the method outlined in the section 

(2.3). Therefore the multipliers are updated by the algorithm 
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/ci(k4.1) = a(k) + A(k) c(k) y(k) 
	

(2.39) 

Eq. (2.39) may be thought upon as the optimization of the averaging 

interval since the E [...1 has to be averaged over, say, LL symbols. 

Therefore by making LL=1 i.e. corrections are to be made after each 

symbol and no averaging at all is done. This method is usually called 

the stochastic approximation because the corrections become stochastic 

quantities whose means equal the desired gradient [2-22] . 

This way the implementation of the algorithms become easier and cheaper. 
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2.9 
	

SUMMARY AND COMMENTS: 

(A) 
	

We have recapitulated the existing design techniques for 

designing NRDFE and discussed the three main error criteria. 

However, our performance criterion is the mean square error. 

(B) 
	

We have mentioned and detailed the numerical control algori- 

thms for updating the coefficient. There. are of. course 

other control algorithms, such as that proposed by Di Toro 

[2-8J , Gersho [2-9J , as well. In addition to all these 

following algorithms are also used. 

(a) Fixed Shift Jacobi 

(b) Seidel (successive displacements ) 

(c) Jacobi 

with the list order generally reflecting increasing hardware 

comlexity. It is clear that every iterative method for 

solving a set of simultaneous equations gives rise to a 

multiplier coefficient adjustment algorithm and there is no 

shortage of methods - FOrsythe [2-17] mentions over 500 

papers on the subject. 

(C) 
	

Monte carlo simulation technique is the only method to 

study the most meaningful criterion- the probability of error 

Pe. 
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CHAPTER 3  

A DETERMINISTIC DESIGN FOR A FAST-INITIALIZING  

NON-RECURSIVE DIGITAL FILTER EQUALIZER USING  

HADAMARD MATRIX  

"The formulation of a problem is often more 

essential than its solution, which may be merely 

a matter of mathematical or experimental skill. 

To raise new questions, new possibilities, to 

regard old problems from a new angle, requires 

creative imagination and marks real advance in 

science". 

ALBERT EINSTEIN,(The evolution of physics (p.95)) 
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3.1 	INTRODUCTION:  

With the development of computer networks and multiparty 

polling systems a large demand/kervery high speed modembecame inevitable. 

Because messagesin such a system may consist of only a few hundred bits, 

it is essential that the start up period of the modem be very short. 

Preferably the modem start up time should waste fewer bits than are con-

tained in an average message to guarantee a reasonable system throughput. 

cowl.c1 susse.st 
This : -- 	_ 	- 	that the start up time should be inversely 

proportional to the data rate; this is a contradictory requirement, 

since more accurate and complex operations are usually required during 

start up of a high speed modem than with a low speed version. Timing 

recovery, carrier recovery (if required ), and initialization of the auto-

matic equalizer are the most important start up operations. The time that 

must be allowed for the equalizer initialization, is usually the major 

delay in start up; thus, it seems worthwhile to concentrate some of our 

efforts in the direction of reducing start up time. 

Throughout the development of digital NRDFE there have been 

continuing attempts to reduce the time required for initialization. In 

the early days an equalizer using the mean square error criterion was 

reported to require several thousand isolated initializing symbols [3-1] 

and a considerably larger number of symbols were required when the equal-

ization was done using the more slowly convergent z.f. equalizer. A 

number of methods have been proposed to speed up this convergence. 

Schonfeld and Schwartz [3-2] allowed the loop gains to be time varying 

throughout adaptation, so as to provide optimal convergence at the end of 

specified duration. In another paper [3-3] the same authors incorporated 

a second order tracking scheme in order to minimize the norm of the tap 
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gain error at each iteration . Richman and Schwartz [3-4] have used 

a dynamic programming approach to the adjustment of loop-gains while 

Walzman and Schwartz [3-5] have developed a discrete frequency domain 

technique to obtain faster convergence. In this latter technique the use 

of the fast fourier transform allows dealing with the frequency domain, 

where optimum gain constants are more readily available than in the 

time domain where a similar optimization would require determination of 

the eigenvalues of a matrix related to the system impulse response. 

Chang [3-6] orthogonalized the signals present at the various tap gains 

through a fixed weighting matrix to improve convergence. Chang and Ho 

[3-7] selected maximum length pseudo-random sequences of short prriods 

for training purposes. They showed that the equalizer multiplier con-

vergence rate is independent of the phase characteristic of the communi-

cation channel and of the choice of pseudorandom sequences which have 

the same period. 

Kosovy and Pickholtz [3-8] have proposed fast automatic 

equalization using a successive overrelaxation iterative technique 

during a training period using isolated symbols for the minimization 

of the mean square error. Mueller [3-9] has presented a new, generalized 

mean square algorithm to adjust the taps of an adaptive transversal 

equalizer. He has taken into account any knowledge of the channel or 

signalling format to speed up the the convergence process mainly for 

partial response signalling by eliminating the interaction between the 

individual tap increments. This is achieved by decorrelating the compo-

nents of the gradient in a fixed weighting matrix prior to adjustment. 

In any case he claims this algorithm is extremely fast. 

In another paper Mueller and Spaulding [3-10] have described 

a new rapidly converging equalization technique for synchronous data 

communication judiciously called Cyclic Equalization. A special training 
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sequence whose period in symbols is equal to the number of equalizer 

taps is used initially to achieve an open eye pattern, but, the resulting 

equalizer coefficients may be cyclically displaced from their proper 

positions. After the eye is opened by this process, the equalizer co-

efficients are rotated to their proper positions, and decision directed 

equalization is used with either a longer training sequence or random 

data to achieve final tap settings. They have shown that the cyclic 

equalization provides perfect equalization at evenly spaced points in 

the frequency domain. 

Recently Kalman filtering theory [3-11,13] has been proposed 

for obtaining fast convergence of the tap gains of NRDFE to their optimal 

ea 
settings. Kalman filt4tchannel equalization requires (1) a knowledge 

of the initial state variable estimate and the initial covariance matrix, 

and (2) a knowledge of the channel impulse response. So, this equalization 

approach largely depends upon the correct initial estimate of (t) and 

(2). Under a known channel condition the Kalman filter, which is dual to 

the channel model, represents the optimum linear equalizer in that the 

number of equalizer taps need be only the same as the number of channel 

taps. A NRDFE performance is a direct function of the degree of freedom 

associated with it. Therefore a Kalman equalizer may be superior to.a 

conventional NRDFE 	4 51_ SxwAA. V‘,Wwliae-4=1" 

Lawrence and Kaufman [3-14] have used a Kalman filter for 

channel equalization under a known channel conditions. Mark [3-18] has 

studied the modified Kalman filter for channel equalization in which the 

channel tap gains are estimated via decision feedback approach and the 

initial state variable is estimated by a prediction process. 

Godard [3-19] in this paper has shown how a Kalman filter 

may be applied to the problem of tap setting of transversal equalizers to 
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minimize the mean square distortion. In the presence of noise and 

without prior knowledge about the channel, the filter algorithm leads to 

faster convergence than other methods and its speed of convergence depends 

only on the number of taps. 

No doubt, Kalman filter is an optimal equalizer , but, is 

nonlinear and too complex to be implemented even in the presence of 

modern LSI technology. 

Kobayashi [3-15] used 'llestens-Stiefel algorithm [3-16] to 

channel equalization. This algorithm is an iterative method and possesses 

the proprty of fast convergence. Nevertheless, it is quite difficult 

to implement. De and Davis [3-17] have proposed the method of conjugate 

gradients as the MSE control algorithm. Their method has many desirable 

properties as a computation tool; study of implementation requirements 

shows that it is more complex than the more natural automatic Gram-Schmidt 

(AGS) control algorithm [3-20]. 

We have surveyed iterative (simple, complex) and finite 

step algorithms. They all seem justified in their approaches. Moreover, 

all of them, presumbly, have the same applications in their minds as us. 

All papers [3-1,20] stress the problem of fast initialization. It is 

therefore imperative that we talk about the choice of the training 

sequence. Obviously, a strictly 	random data pattern would be a bad 

choice, since transitions occur on a probabilistic basis and cannot be 

guaranteed. The variability of repeated convergence runs would be large. 

This can be avoided by transmitting a short period training sequence. 

Even if the starting point occurred at random, convergence would be 

more predictable. But, this condition may lead on to a situation where 

correlation matrix A would become singular and a unique solution for 

the optimum multiplier coefficient vector a would not be possible. 
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However, we intend to study the case when the matrix A 

is singular and find a solution by proposing a new algorithm called 

MOORE-PENROSE PSEUDOINVERSE (MPPI). 

3.2 	FUNDAMENTALS:  

For convenience we shall draw the following digital 

communication system for the noise-free channel [ Fig. (3.1) ]. 

Inatito_ TRANSMITTER Transmitted DISCRETE-TIME Channel 
CRANNEL 

{ik} Scylenee (LINEAR) Output 1Y0 

OiGITAL(NRDFE) 
EQUALIZER 
(LINEAR) 

NRDFEout, 

{Ik}  

Estimated 

17 -4 	 
Gutput  

DECISION D-VICE 
(QUANTIZER,Q) 

(:■01:-1.1M..\11) 

FIG. (3. 1)  NOIS,--17,c1-..E DIGITAL COMMUNICATION SYSTEM. 

( 	) is a sequence of binary data. This sequence is sent 

through a D.T. NRDF channel which distorts the input to produce the 

channel output sequence { Yik} . The impulse response of this channel 

is given by { gic}. In order to compensate for the effect of the channel 



2[ j (a ) ] 
- 2 A =0?< Y 	Y > 

—k ' J 3 a j  3a j  
(3.2) 

-84- 

imperfections, an equalizer is employed at the D. T. channel output 

and finally a nonlinear decision device [ Quantizer Q ] is used to 

obtain an estimate of the transmitted sequence based on the obser-

vation of the equalizer output sequence { Ik  ). Basic assumptions 

outlined in chapter 1 are supposed to apply in the foregoing discussions. 

The function of an equalizer has been explained in Chapter 2. 

We shall, however, explain the following results on convergence on the 

basis of chapter 2, [section 2.3 ] and relate them with the problem of 

equalization at hand. From Eq. (2.10), we have the MSE given by 

T 	T 
J[a ] = E[Ik

2] - 2a W fa Aa (2.10) 

where 	a , W and A are given by Equations (2.4), (2.8) and (2.9) 

respectively. On the assumptions made in section (2.3) the elements of 

Yk of Aare linearly independent. As a consequence A is symmetric,  

positive definite and hence non-singular. However{ Yk} may not be 

linearly independent, in that case A is positive semidefinite and hence 

singular [ 3-28 ]. (The mean square problem will be, then, like cases 

2a to 3b (chapter 2) where we have the rank deficiency.) 

The gradient of the error function is given by 

$_ = 	D [ J ( a ) ] = -2W + 2 A a 

3 a. 
J 	 = 2 < Yk ' c> 
	(3.1) 

where c is the error given by (2.6) and < 	> is the inner product 

notation. The second derivative of J ( a ) is given by 



-85- 

This means that the error surface is a concave surface, that never goes 

negative [ 3-29 ] and therefore any standard gradient and related algorithm 

can be used to find - optimum multiplier coefficient75 In order to 

illustrate the convergence properties we shall assume that the signals 

correlation matrix A is positive definite. The Wiener multiplier vector 

is given by equating .s.= 0 in (3.1). That is, 

a 	= A-1  W 
—opt. — — 

(3.3) 

The multiplier coefficient error vector, e(k)  , after kth' adjustment 

is given by 
(k) 	(k) 
e 	= a 	- a 

opt. 
(k) 	

1 = a 	- A W 

(3.4) 

and the MSE J ( a ) becomes 

2 
J(ct ) = 	[ Tic 	- 	A W  I +1[ S 	A e 	I 	(3.5) 

Ji(a ) R 	) 

This consists of two parts, the first part Ji(a ) is the irreducible 

part [which is the MMSE, J 	(a ) ] and is given by 
min — 

T 
J(1) = J

min 
(a) = E [ Tk2 	- W A- 14 
	

(3.7) 

(k) T 	(k) 
The second part JR  (a ) = [e 	] A e 	 (3.8) 

is, in fact, zero when e(k)= 0. i.e. when, 

2(k) =aopt.k = 0, 1, 2, 	 (3.9) 

Using the steepest descent gradient algorithm the (k+l)th. adjustment 

of multiplier coefficient is done according to the Eq. (2.32), i.e. 

T -1 	(k) T 	(k) 
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(k+1) 	(k) 	(k) (k) 
a 	=a - 1/2 A 

(3.9) 

(k) 	(k) 	(k) 
=[I-A 	A] a 	+ A 	W 

It can be easily shown that the multiplier error vector is [Eq. (2.33)] 

e(k+1) = [ I - Ak)A ] e(k) 	k=0 1,  1 2 3... 
	(3.10) 

We now proceed to study the convergence properties with the help of 

Eq. (3.8). Let the eigenvalues of A be related to each other as: 

X < X 	< X 
0- 	1 - 2 • • • 5 AK-1 (3.11) 

and let ill  , i = 0, 1, 2, 	(K-1) be a set of orthonormal eigen- 

vectors of A ( U is the eigenvector of A corresponding to eigenvalues Xi
). 

Since A is symmetric, it can easily be proved that it is real (appendix). 

Since all eigenvalues are real therefore, there exists a unitery trans-

formation g such that 

A = 4 A 
RT 	 (3.12) 

th 
where A is a (K x K ) diagonal matrix whose i diagonal element 

is Xi  and q is a (KxK) matrix whose ith column is the eigenvector Ui. 

It is also well known that Q is an orthogonal matrix, i.e. 

[Q]T = 
[11]-1 
	

(3.13) 

From (3.12) and (3.13) 

(k) 	(k) 
[I-A 	A] =Q[I- A 	A] Q 	(3.14) 

Repeated application of (3.10), with decreasing index k, results in the 

telescoping form, [Eq. (2.26) ]. 
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e (k) = [ 	_ Sk—OA 	_ A(k -.2)A ] 	[I- IP)A ] e(o)  

k-1 
IT 	[ I - A(1)  A ] e(°)  
i=0 

= [ I - A(i)  A 1k  e(°)  

Substituting (3.14) into (3.15) and noting that 

27 - I gives 

e(k) = 	[ 	_ Si) A  ]k QT e(0) 

which when substituted in (3.8) yields 

(k) 	K-1 
j 
R  (
a  ) = E 	[{ e(0  }T u  ]2x  ( 1 _ A(i)A  )2k  

i=0 

(3.15) 

(3.16) 

(3.17) 

From Eq. (3.17) it is evident that two sets of parameters A(0), A(1), 

... (K-1) and A
O ' 

A
l ' 	

AK-1 control JR  (a (a ) in effect, the  

convergence. The first set of parameters corresponds to the magnitudes 

of the multiplier control adjustments. The second set of parameters 

X
0' 

A 	
...K-1 

depend on the modulation scheme and channel character- 

stics. The eigenvalue spread of A ( i.e. the difference between the 

largest and the smallest eigenvalues ) is an important factor in determining 

the rate of convergence. If 

AO = Al = 	
= A

K-1 

and 	A(k)  =1/ Ak, for all k 

then Ji(ta ) = 0 

and convergence takes place on first iteration only. Consequently 
A 

the mean square error JO ) is reduced to its irreducible value Ji(a )= 

MMEE, after only one adjustment. 
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This kind of convergence is obtained regardless of the initial equalizer 

settings, the carrier phase and system timing, the phase characteristic 

of the transmission medium, and the phase characteristics of the trans-

mitting and the re ceiving filters. 

However, the signalling format, the channel atte-

nuation , and the choice of initializing (training) pulse determine the 

eigenvalues. In practical situations, eigenvalues will not be equal so 

in order to get fast convergence, the difference between the eigenvalues 

should be maintained as small as possible. 

But, because of the nature of arguments we may ourselves 

ask a few questions, namely 

(i) What causes the eigenvalues to be different? 

(ii) Is it possible to reduce the eigenvalue spread by altering 

the equalizer structure? 

Partial answers to these questions have been given; however, 

we shall elaborate these answers a bit further. From chapter (2), we 

know that the matrix 

A 	[ aij  ] = E [ yk_iyk_i  l i,j = 0,1,... (K-1) 

Since these are the inputs to the ith  and the jth multipliers, therefore, 

a
ij 

is simply the cross-correlation between these inputs and A is the 

correlation matrix. Therefore. we might state that it is the correlations 

between the inputs to the multiplier coefficients that result in the 

differences between the eigenvalues. When these inputs are orthonormal, 

A is an identity matrix and the eigenvalues are equal. Therefore, in 

order to answer our questions we should construct a new equalizer, where 

the inputs to the multipliers are orthonormal. Such an equalizer is called 

a Generalized Equalizer Structure and is shown in Fig. (3.2). 
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3.3 	A GENERALIZED EQUALIZER STRUCTURE: 

For convenience, we divide Fig. (3.2) into two blocks, block 

(1) and block (2). Block (1) contains a band of filters, each having 

transfer functions Pi
( z), connected in parallel. The multiplier co-

efficients of these filters, block (1), once determined, do not change 

with the change in channel characteristics and are held fixed while the 

remaining multipliers of block (2) are adaptively adjusted. The input 

{yid enters the system through the first member of block (1) and gives 

output {vk) . The output of the ith filter [ of block 1 ] is connected 

through a variable multiplier 
1  a

i  to the summer of block (2). The 

output from block (2) is the generalized equalizer output which is given 

by 
I k = 

K-1 
E 	ai vi ' k = 0,1, 	 
i=0 

(3.18) 

using z-transform notation, we can write 

... 	T 	T 
I (z) = a V(z) = a [P(z) Y(z) ] 

	
(3.19) 

where 	I(z), V(z), and Y(z) are the z-transform of Ik' 	m v,, and 7k respect 

ively . 	From Fig. 	(3.2) we define, 

A 	 T 
(3.20) Ct =[a0 	aI 	

... 	... 	a
K-1

] 

A T 
V(z)=[V0(z) V1(z) ... V

K-1
] (3.21) 

A T 
and 	P(z)=[P0(z) P1(z) ... P

K-1
] (3.22) 

The signals, vi, 	i=0, 	1, 	-• • 	(K-1) are orthonormal provided 

1 if i=j 
< vi 	, vj> = 	(5ij  = (3.23) 

0 if i#j 
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We may show that it is always possible to choose a fixed 

set of filters with transfer functions pi(z) such that the outputs 

are orthogonal for all inputs. 

Consider a set of filters as above for which the set of impulse 

responses are pi(z) . Then it is possible to choose pi(z) such 

that the outputs are orthogonal. One such set would be 

11).(Z) = U. Z 

Now by superposition , if y(z) is the z-transform of the input 

sequence, the output sequence will be given by y(z). pi(z) correspond-

ing to the sequence vi  = yk  . pi
(k-J) 

Since the pk  are orthogonal then the sequence vi  will also be 

orthogonal. 
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In the following, we show that for any given channel, the filters in 

Fig. (3.2) can be designed to satisfy Eq. (3.23). 

In section (3.2), we illustrated certain convergence 

properties by assuming the matrix A is positive definite implying that 

the system of signals are linearly independent. However, in high speed 

data communication systems ( sensor networks, polling systems, digital 

networks etc. ) the available signal correlation matrix A is positive 

semi-definite [3-30]. In that case A is singular.[It is our aim to 

consider such a case and look for a possible solution.] 

However, the matrix A can be made nonsingular and 

therefore, strictly positive definite, by the proper selection of filter 

sections. In particular, if 

P(z) = z 	, for i=0,1,... 	(K-1) 	(3.24) 

and allow all the filter sections to be connected to a common shift-register, 

then those filter sections are, in effect, just non-recursive digital 

filter sections. One such filter section employing an NRDF is shown in 

Fig. (3.3). From now onwards, singular and non-singular matrices will be 

denoted by X and A respectively. 

Chang, in a recent paper [3-6] has proposed a generalized 

equalizer structure having the following shortcomings and limitations: 

(1) 	The channel correlation matrix is strictly non-singular 

(W). That is, the structure deals with the linearly 

independent signals only. 

(ii) Number of filter sections (K) equals the length of 

individual filter section (N). 

(iii) He does not consider the telephone channel in particular. 

(iv) No averaging over a priori known channel is performed. 

(v) He does not mention anything about the kind of ortho-

gonal matrix. 
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ft:7,4.00414 & ci.Ccou4AJC 
The possible explanations put 	 disadvantages 

outlined above may be 	the following: 

1. In the case of sensor network and polling systems, very 

fast initialization is required. Fast initialization 

inevitably means a short period training sequence. But 

by making the period of the training sequence shorter 

than the duration of the impulse response of the equalizer, 

the input signals to the multipliers remain nolonger 

linearly independent and the signal correlation matrix 

0 
becomes singular, A, and positive semidefinite. There 

may be other circumstances where the matrix A will be 

singular. A generalized structure must have the capability 

of tackling such a situation if it exists. 

2. The choices of K and N equally affect the singularity 

conditions. If K = N, then the matrix is cei; otherwise 

0 
always A. 

3. Averaging takes up considerable time. The first order 

steepest descent gradient algorithm can be written 

(k-1-1) 	(k) 	(k) 	(k) 
a= a 	- 	A 	g _ 	— 2 

(3.9) 

where 

= 2< Yk  , Ek> 	 (3.1) 

From an implementation point of view, this is a convenient quantity 

because Yk is readily available, and the error Ek 	Ik- Ik 	can 

be  estimated. A difficulty still persists in that the expected 

value is not available in real time and must be estimated by averaging 
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over a finite number of symbols, say, LL. Equation (3.9) can be rewritten 

is 

	

using systems in which A 	non-singular for equalizers where 

this is appropriate 

(k+1) 	(k) 	(k) 	(k) 
a 	a 	- A 	[ A-a 	- W 

(k) 	(k) 	T (k) 

	

a 	- A 	[E{YiYj}a 	- E{Ij_d Yj)  ] 	(3.25) 

(k) (k)1 	T (k) 

	

a 	- A 	E 	Xi [Xi 	- Ij_ts 
LL J=0 

where 5 is the delay between the arrival at the equalizer of the first 

precursor of the channel unit pulse response and the beginning of the 

locally generated desired pulse. Usually averaging is recommended for 

the channels possessing severe distortions. 

In order to concentrate upon the shortcomings we propose 

a generalized NRDFE which will be based upon the cases (2a) to (3b) 

outlined in chapter (2). These cases always give rank deficient matrices 

(which are, of course, singular). Solutions to such cases are proposed 

by MOORE PENROSE PSEUDOINVERSE algorithm described in subsquent sections. 

The question here arises as to whether there exists some N x K matrix Al, 

uniquely determined by A , such that the (unique) minimum length solution 

of problem MS is given by a = A1W. This is indeed the case and this 

matrix Al is called the MPPI pseudoinverse of A. We provide following 

theorems which lead to a constructive definition of the pseudoinverse of 

an K x N matrix I. 

THEOREM 1:  

Suppose that A is an K x N matrix of rank m and that 

0 

A = H1 R1 Kl 
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Where 

(a) H1 is an K x K orthogonal matrix 

(b) R1 is an K x N matrix of the form 

R1 	0 

	

R1 = 	11 
0 	0 

(c) R1 is a mxmmatrix of rank m 
11 

(d) K1 is a N x N orthogonal matrix 

Define the vector 

H1 W = 	= 
T 	

1 

} 
2 

and introduce the new variable 

T 
K1 0(_ 	= 

} 
1 

N-m 
2 

  

Define yl to be the unique solution of 

R1 y7.1 = gel  
--11 1 1 

... 
a 	= 	Kl  

[-'.1 

yl 
where 	y12  is arbitrary. 

2 
Any such 	a 	gives rise to the same residual vector 	r satisfying 

• 0  

r 	= 	W-Aa 	= 	H1 
gl 

2 

(3) The norm of r satisfies 

lir!' 	1114- Ri 	'112_111 
2 

} m 

(1) Then all solutions to the problem of minimizing IIA a - WII 

are of the form 

(2)  
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(4) The unique solution of minimum length is 

yl 
= Kl 

opt. 	0 

THEOREM 2: 

0 
Let A be a K x N matrix of rank m with an orthogonal 

decomposition 

A = H1 R1 Kl 

as in hypotheses of Theorem (1). Then the unique minimum 

length solution of problem MS is given by: 

R1 1  

= Kl[ 11 	H1 W a 	
0] 	T 

THEOREM 3: 

	

0 
	T 

	

Let A 
	

= H1 R1 Kl as in Theorem (2) . 
x N 

Define 

R1-1 	0 T 
Al 	= Kl 	11 

[ 

H1 
0 	0 

0 
Then Al is uniquely defined by A ; it does not depend 

0 
on the particular orthogonal decomposition of A 

In view of Theorems (2) and (3), we make the following definition 

DEFINITION: 

For a general K x N matrix R, the MPPI of R, denoted by A+, 

is the N x K matrix whose jti" column zj  is the unique 

minimum length solution of the mean square problem 

A a., = 	, 
-J 

where OA is the jth column of the identity matrix I . 

Next, we consider the structures and its related algorithms. 

opt. 0 	0 
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3.4 A GENERALIZED NON-RECURSIVE DIGITAL FILTER EQUALIZER:  

It has been proposed in the previous section that the filter 

sections are to be replaced by Non-Recursive digital filters and that 

all the filter sections are connected to the same shift register. A typical 

generalized NRDFE is shown in Fig. (3.3). This fulfills the conditions 

that the matrix given by < v
i
, v

j
> is now strictly positive definite. 

Secondly, for convenience as well as to fulfil other conditions laid 

down in section (3.3), we assume 

(1) All the filter sections are of equal length N 

and 	(2) N is strictly less than K. 

Then the filter section shown in Fig. (3.3) can be defined as 

N-1 	,‘ 
Pi  (z) = 	E 	p1-1/  z-J , i=0,1,... (K-1) 	(3.26) 

j= 
where pi 	is the jth :ultiplier coefficient of ith section. 

Expanding Eq. (3.26), we get 

We define a 

r 	(0) (1) (2) (N-1)T -0 
P (z) P P P P 
0 0 0 0 	0 

(0) (1) (2) (N-1) -1 
P 	(z) P P P P z 
1 1 1 1 1 

• • 
(3.27) 

• 

• • 

(0) (1) (2) (N-1) -(N-1) 
P (z) P P P 	P 
K-1 K-1 K-1 K-1 K-1 

T 
(KxK) matrix 	P by adding (K-N) zeros to each row of 

(KxN) matrix of Eq. (3.27) 
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(0) 
P
o 

(1) 	(N-1)  (K-N)zeros  
p
o 	

p 	p 	0 	0 
0 	0 

(0) 	(1) 	(r) 	(N-1) 

P p 	... 	p ... 	p ... 
1 	1 	1 	1 

T A 
P 

(0) 	(1) 	(r) 	(N-1) 

P P 	... 	p ... 	p ... 
K-1 	K-1 	K-1 	K-1 - 

(3.28) 

K x K 

It can be seen from Eq. (3.28) that the column i of P corresponds to 

the coefficients of P1(z). This means that we are physically extending 

the shift register length from N to K and assigning zeros to the new 

multiplier coefficients. Next, we define a K-vector given by: 

T A 	-0 -1 -2 	-K+1 
F = [z z z 	z 	] 

K x 1 

From (3.27), (3.28) and (3.29), we get 

T 
P (z) = P 	F 

The output of the filter section is given by: 

(3.29) 

(3.30) 

T 
✓ (z) = P F Y(z) 	 (3.31) 

The New MSE is given by: 

T T 	T T 
J ) =a P AP - 2a P W+EII2  ] 

k-6 

where NI  in J (a ) stands for New. 
N  

(3.32) 
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Differentiating Eq. (3.32) w.r.t. a , we obtain the gradient 

A aJ i  (a ) 	T 
£ = 	 N 	= 2 (PAP -PW) 
N' 	3 a 

 (3.33) 

A 
= 2 (A a - W ) 	 (3.34) 

T 
It has been shown that RA =PAP] is singular, although A is 

non-singular. It is possible to find a 	since W is always in the 

range space of R [ 3-29,33 ]. 

a 	= A W 
o

- 

pt. 

opt. 
The optimal value of a is given by 

(3.35) 

where A is the MPPI of X [ Appendix A.4]. The multiplier error (e ) 

is given by 

+ 
em- = a - a 	=a-AW 

o

- 

pt. 

and the Eq. (3.32) is given by: 

(3.36) 

T + 

J 1
(a ) =E[ 12  ] -W AW +e R em  (3.37) 

k-d 	L- 
4111 	J1413 

As before, the irreducible ( or minimum) MSE is given by: 

T + 
• (a ) = E [ 12 	-WAW 
Nei k-6 

whereas the reducible MSE 

T 
J (a ) =eRe 
NSR 

—m 

(3.38) 

(3.39) 

Since R is real and symmetric, therefore, the matrix g having the 

normalized eigenvectors { Di} of R as columns, forms a unitary trans-

formation that diagonalizes X according to 

T ° 
A g = A 
	

(3.40) 
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where 
JIM. 

A 0 
0 	A 

1 	A (3.41) 
A = 2 	A 

3 
- 	- A 

0 K-1 

and 	{ A
k 

 } are the set of eigenvalues of R . The first order steepest 

descent algorithm is given by: 

(k+1) 	(k) 	(k) 	(k) 
a 	=[I-A 	X]a + A W 

and 

(k+1) 	(k) 	(k) 

ern 	= [ I - A 	R] e 	,k=0,1, ... --- 
T 

(3.42) 

(3.43) 

Also, after some manipulations and noting that Q =
T1 

, we obtain 

(k+1) 	(k) k T (0) 
fm, 	=Q [I-A 	A] ae 	 (3.44) 

in Eq. (3.39) yields 

(0) T 	(k) 	2k 
[{ e 	} III ]2A1  (1- A 	Ai) 

m  
(3.45) 

... .. . O. 	, 	q.4- ; '■ u 0 
N-1 	K 

J 	( a ) = 0, for k> 1 

Substituting 	Eq. 

(k) 

(3.44) 

K-1 
J 	(a 
NIII 

)= E 
i=0 

From (3.45), 	if 

A 	=A  . A . 
0 1 2 
(k) 

and A = 1/ A 

then (k) 
N 

This means the convergence will take place on first iteration only. 
T 	0 

Since Pand hence A is singular, it is possible that one or more of 

the eigenvalues A
i 

will be zero, therefore, the corresponding terms of 
T 

Eq. (3.45) will become zero as well. Therefore, P has to be selected in 

such a way that all non-zero eigenvalues of A are equal to (1/A ). This, 

in effect, will ensure rapid initialization to take place in the neighborhood 

of first iteration only. 
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Next we consider this rapid initialization by the suitable design of P 

3.5 	CONDITIONS FOR RAPID INITIALIZATION: 

As said earlier we intend to design a Non-Recursive Digital 
T 

Filter P . Therefore, we proceed by making certain elementary approaches, 

that is, suppose an input sequence { Ik} of length I is transmitted over 

the D.T. channel, then, the output of the channel is given by 

Y(z) = I(z) G(z) 

I-1 	G-1 
E I z-k E 
k=0 	1=0 gl 

z  

G-1 I-1 

gl 	
z-(1+k) 

= E   
1=0 k=0 

A 
Rearranging the summation and putting i= l+k , we obtain 

1+G-2 
i 	 J> I 

Y(z) = E 	(E gl 	] z-i provided, Ij=0 
i=0 	1=0 	 j< 0 

A L-1 
= E yi  Z 
i=0 

the D.T. channel output sequence. 

where L = I + G -1 is the length of 

As can be seen from above the channel output sequence{ 7k} 

is given by the discrete convolution of the channel input {Ik} and the 

channel unit pulse response {gk} . On this argument we can, therefore, 

say that the output of the ith  filter section of length N is the discrete 

convolution as shown below: 

L+N-2 k 
Vi(z) = 	E 	[ E 	(n) 	z-k 

Yk-n 
k=0 	n=0 
PP-1 	( 
E 	v k) z-k  

A 	k=0 
where PP= L+N-1 is the length of the sequence{ vi(14} 

(3.46) 
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In order to make the discussion more vivid, it is necessary to make 

some assumptions which will lead to the filter section length N and the 

number of such sections K . Since our channel is of NRDF type, a finite 

upper limit of the D.T. channel output sequence, assumed known, does exists. 

Also, we assume the following constraint on the length of of the filter 

section output sequence PP, i.e. K > PP. This inequality also ensures 

that the output sequence length can always be extended from PP to K by 

adding ( K-PP) zeros to the transmitted information sequence {TO 

Elaborating the discrete convolution relationship [ Eq. (3.46) 1, 

v 
(k) 

i 	= 

(0) 

k 
E 
n=0 

p 
i 

(n) 
y 
k-n 

with 	y 	= 0 	for 	j > L, we 
j 

obtain 

(0) 
v 
i 

y 
0 

0 0 0 0 P 
i 

(1) (1) 
v 
i 

Y 
1 

Y
o 

0 0 0 P 
i 

(2) 
v 
i 

Y 
2 

y 
1 

Y 

y 
0  

y 

0 0 

• 
2 1 

. • . . . 
(L-1) (3.47) 
v Y Y . . Y 
i = L-1 L-2 L-N 
L 

v 
i 

0 Y 
L-1 

Y 
L-2 

. Y 
L-N+1 

. . 

(PP-1) (N-1) 
v 
i 

0 0 0 0 y 
L-1 

P 
i 

• • • • 
(K-1) 
v 
i 

0 0 0 0 0 
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Writing briefly, we have 

yl  = YY pi 
	 (3.48) 

Where 	i=0,1, 	,(K-1) 

YY is a K x N matrix of rank N (since N x N principal 

minor is lower triangular with non-zero diagonal elements) 

v
i 
is a filter section output vector of length K, 

and 	El  is filter section multiplier vector of length N. 

The correlation matrix, from the outputs of an arbitrary pair of filter 

sections j and k, is given by 

o A 	T ti 
A =PAP= [ a

jk 
] = <vj, vk> 	(3.49) _ 

From Eq. (3.49) it is evident that the elements of X depend on the 

filter section output vectors {vi} , therefore, their relationship to 

the eigenvalues of a is very important. For rapid ( i.e. one-step ) 

initialization a sufficient condition, A = I, and the necessary ortho-

normality conditions given by Eq.(3.23) must be fullfilled. These two 

conditions, in this case, allow us to assume a theoretical solution to 

determine a set of theoretical multiplier vectors {. aft} that would make 

the corresponding output set {vit} orthonormal (suffix t stands for 

theoretical). Equation (3.48) represents K-scalar equations in N 

unknowns with N< K which can be solved using MPPI algorithm only. 

Therefore, a best optimum solution 

21 = YY  !it 
	 (3.50) 

exists. 

Where 
	

YY is the MPPI of YY and is unique [ 3-31, pp. 26 & 49 ] 

and 
	

El  is the actual filter section multiplier vectors. 

An approximate relationship between la and Eit  can be obtained from 

Eq. (3.48) and Eq. (3.50) as 

vi  = YY a = YY YY v 
— —it 

(3.51) 
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Now, from Eqs. (3.49) and (3.51), we obtain 

X = [ ajk ] =< v 	> j _kv  

=< YY YY vjt  YY YY v
k 
 > 

— 	9 	-t 

	

=< 
vet ' 	- YY YY vkt  > 

	from Appendix 	(3.52) 
-  

Let { 	, i = 0,1, ... 	(X-1)} be the orthonormal set of vectors 

obtained by Gram Schmidt orthonormalization applied to column of YY. 

Then we have [ 3-31, pp. 210 and from Appendix ( A.4) using the spectral 

representations for YY and YY
+ 

+ 	N-1 	T 
YY YY = E 	* IP — — 	-i 1 

i=0 
(3.53) 

From Appendix ( A.2 ), since the set {14} is orthonormal, they are linearly 

independent, thus, it forms a basis for the real vector space of dimension 

K. It should be noted that the vectors vi  and 	belong to the real 

vector space of dimension K. As a result, we may represent vit  in the 

basis by: 

K-1 
yit = E 

=0 
hijj 
	 (3.54) 

where hij a scaler , is the coordinate of vit  in the direction of 4,1  . 

It can easily be shown that ip 	is also unitary [3-29]. Then, 

K-1 	K-1 
<v-it ,v >= <E 	him  1pm  , E h n 141> 

m=0 	n=0 
K-1 K-1 

= E 	E him  hjn  < 1pm  , In  > 
m=0 n=0 
K-1 

= E 	h
ik 

h
in 	 (3.55)  

k=0 

We can now obtain X from Eqs. (3.52), (3.54), and (3.55), i.e., 

R = [ aij  ] = E
-1 
 hik  hjk 	 (3.56) 
k=0 
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Next, suppose that H, 1/t, and kp be the matrices corresponding to the 

columns coinciding with the ordered sets { hij 	— }, {v t  } , and {11)i} 

respectively, then, from Eq. (3.55) it can be shown that by making H 

orthogonal, inevitably, makes Vt  orthogonal. Also, H must be orthogonal 

to make the set {hi} orthonormal. Since there are an infinite number 

of orthogonal matrices , we shall be using one specisl type called 

Hadamard matrix, henceforth abbreviated as " H-matrix or simply H". 

Since the design and analysis of H is complicated we shall 	refer 

to [ 3-40 ] for an advanced treatment. 

0 
The eigenvalues of A are most important; therefore, we 

shall determine them first. By observing Eq. (3.49), we write 

X = VT V 
	

(3.57) 

where V is defined to be a (KxK) matrix having columns coinciding 

with {v} . Now, using the projection operator (f ) properties, 

A 
= YY YY 

T 
= f 0 = 02  

We can , from Eq. (3.51), write 

V = f V — — t 

Putting Eq. (3.54) into Eq. (3.59) yields 

V = fkl) H 

From Eqs. (3.57), (3.58) and (3.60), we get 

(3.58) 

(3.59) 

(3.60) 

 T T T 
A = [f 	11] [f H] = H 	f w H 

T T 	 (3.61) 
= H q)0q) H 

From Appendix (A.6.5), tiir aloki) 	eiluels the block diagonal matrix 

diag. [ I 10 	]. Since H is orthogonal, Eq. (3.61) implies that 2 
N K-N 

is similar to diag. [ I 1 0 	] and therefore has the same eigenvalues, 
N K-N 
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N of which are equal to unity and ( K-N) equal to zero. This gives 

the desired condition for rapid ( one step) initialization. 
(k) 

Thus by making 	A =1 in Eq.(3.45), we get 

(k) 
J 	( a ) = 0 
NR 

and the rapid initialization has been achieved regardless of the values 

of e(0) . 

3.6 	CALCULATION OF FILTER SECTION MULTIPLIERS: 

There are many methods discussed in Ref.[ 3-32 pp.209-217 ] 

Here we describe a method based on the spectral representation definiti 

-on of the MPPI. This is an indirect method where we donot require the 

direct computation of YY . Since we have the relationships: 

+ 	N-1 	T 
YY YY= E 	IP 	IP -1 -1 

i=0 
(3.53) 

and 

K-1 
y = E h 4).

1  
hi  

j=0 

Qi = 

(3.54) 

(3.50) 

therefore, from the spectral representation definition of YY , we have 

N-1 -1 T 	K-1 

24 =[ Ek  4 	[ E 	hi4 Ii-jj 
k=0 	j=0 

(3.62) 
N-1 -1 

= 
 k=0 	
E k 	h

ik 
I
k 

where i=0,1,...(K-1) 

This expression requires only the first N,rows of H and the eigenvalues 
T 

{C 2}and eigenvectors {}of the N x N real symmetric matrix YY YY as 

discussed in Ref. [3-31 , pp. 224; 3-32 ]. A number of numerical methods 
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exist for finding eigenvalues and eigenvectors of real symmetric matrices. 

We mention the names of two such methods used in the computation ,the 

details of which are available in the Ref. [3-33,34]: 

1. The Jacobi Method [3-33] 

and 	2. The Givens-Householder Method [3-34] 

Both methods are iterative and make use of orthogonal transformation, 

as a basic tool, thereby reducing the given matrix to a simplified form. 

A detailed description of the Jacobi method along with 

Computer program in Fortran IV is given by Greenstadt [3-33] whereas the 

Givens-Householder method has been explained at length by Ortega [3-34] 

Library subroutines are also available ao CDC 6600 and IBM 360 computers. 
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3.7 	ORTHOGONAL MATRIX ( HADAMARD MATRIX ): 

In section (3.3) we indicated about the definite choice of an 

orthogonal 
	matrix which has been lacking in [3-6] . Out of an 

infinite number of orthogonal matrices we select a special one called 

Hadamard Matrix (H) because of its binary nature. 

A Hadamard matrix (H) is a square matrix whose elements are 

ONES and MINUS ONES and whose row (column) vectors are mutually ortho-

gonal [3-35] . For example (a) and (b) 

A 11 11 
(a) Ho  = 

1 	-1 2x2 

(b) Hi  
A 

4x4 

    

are the two Hadamard matrices of (2x2) and (4x4) order respectively. 

It is clear from the definition of these matrices that one may 

(1) interchange rows 

(2) interchange columns 

(3) change the sign of every element in a row 

	

and (4) 	change the sign of every element without disturbing the 

Hadamard property. 

If HI  and H2  are equivalent Hadamard matrices, then H2  = P HI  a (*) 

* 	All notations, except H, are independent of the similar notations 

used previously. 
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where P and 2 are monomial permutation matrices of +1's and -1's. 

By this we mean that P and Q have exactly one non zero entry in every 

row and in every column, and this non-zero entry is +1 or -1. 

P gives the permutation and change of sign of rows; Q of columns. 

Given an H matrix, we can always find an equivalent matrix whose first 

row and first column consist entirely of +1's. Such a Hadamard matrix 

is called normalized. 

3.7.1 	CONSTRUCTION OF HADAMARD MATRICES: 

Very little work has been reported [3-35, 40] on Hadamard 

matrices. Our work, although independent resembles the works of Paley 

[3-37] and Williamson [3-39] . The order of H matrix plays an impor-

tant role in the mathematical analysis, therefore we shall investigate 

the conditions for orders under which we may construct H with all its 

elements ±1. Let K be the order of the matrix, then apart from the 

exceptional cases K = 1, 2, it is necessary that K should be divisible 

by 4. To prove this let the matrix H be represented by 

then 

H„ ( 0 < i < K-1,0 < j < K-1, K > 3 ) 

K-1 	 K-1 
E [H 	+ H 	1 [H 	+ H, 1 = 	E 	Hi p 

	= K (3.63) 
=0 -4,i -Id -1,i 	j=0

j 

Since 	DI 	+H ] [ H 

	

- 	
+ H 	= 4 or 0 

-2,j 	4,j  -3,j 

We see that it must be 4 or 1/41( values of j, and that K must be divisible 

r  has been. 1100,4t 
by 4. 	tt _ _ 	_ 	that, whenever K is divisible by 4, 

it is possible to construct a H matrix of order K( < 200 ) composed of 

±1 except when K=116, 156, 188 [3-351 	. For those orders which are 

also powers of two, the construction can be done recursively by starting 
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with H
0 
 iteratively as 

— 

k 

H 
k 	- k 

However, when K is not a power of 2 then the construction of H is 

somewhat more complicated ( since it requires the notions of finite 

field, Legendre symbol, prime, quadratic residue etc. ). It is 

possible to construct Hadamard matrices of the following orders 

K ( in this list, p is an odd prime ) 

I 	K = 2r  

II K = pr  + 1 = 0 (mod 4) 

III K h(pr+1), h Z2, order of H-matrix 

IV K = h(h-1), h a product of numbers of forms I and II 

V 	K = h(h+3), h and h+4, both products from I and II 

VI 	K = 111112(pr_mpr, h1 > 1 and h271, orders of Hadamard matrices. 

The construction of these matrices are described in the appendix. 



3.8 	COMPUTER SIMULATION: 

The NRDFE rapid (one-step) initialization theory developed 

in this chapter was tested by using a digital computer. A brief descrip-

tion of the simulation is given here. Two discrete time channels, one 

theoretical and another practical, have been used to verify the tech-

nique developed here. 

The simulation, written in Fortran IV for CDC 6600 computer 

consists of a main routine called MAIN, and a number of subroutines 

which together simulate a transmitter, D.T. channel, and the NRDFE. A 

GRAPH subroutine has been used for producing graphical output of the 

equalizer performance. MAIN also uses two other subroutines, namely 

FLTSET and HADGEN to compute the initial multiplier settings in accor-

dance with Eq. (3.62). Each of these, in turn calls two or more 

subroutines as shown in Fig.(3.4). Two numerical methods for finding 

eigenvalues and eigenvectors of real symmetric matrices are described. 

One is used by the IBM library subroutine EIGEN whereas the other by 

UNIVAC library subroutine TRIDMX, EIGVAL, and EIGVEC. 

	

3.8.1 	DESCRIPTION OF PROGRAM MAIN: 

The program MAIN consists of two basic parts: 

(a) The first part simulates the transmission of an initializing 

pulse through the D.T. channel and performs the NRDFE initia-

lization based on the theory developed in this chapter. 

(b) The second part generates the transmitter message sequence 

and uses the initialized equalizer to adapt the channel. This 

is well illustrated by the flow chart diagram shown in Fig. (3.5). 
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SUBROUTINE QADRES 

L=0 

DO 1 I=1,P 

7  "I 

COMPUTE QUADRATI 
-C RESIDUE 

OF I 

/ 

	 RESIDUE 

IS 

RE 
IN STA- 

CK? 

NO 

PUT IN CORRECT 

STACK LOCATIO N 

QADRES 

RETURN 
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For reasons of continuity a few parameters, usually pertaining to 

small blocks of code, are set locally as they occur rather than at the 

beginning of the program. 

A concise description of the program is found in block O. 

The program is designed to repeat until no further data cards are 

found, at which time it terminates normally. After reading the simula-

tion parameters and initializing variables in blocks 0-30, the channel 

output sequence (Y1 is formed in blocks 40-50 by passing an initializing 

pulse through the noisy channel (CHNL, G, CNOISE). Block 60 calls the 

subroutine FLSET which returns in common the eigenvalue and eigenvector 

information (FSET) for computing Eq.(3.62). In block 70, an (KxK) 

Hadamard matrix H is formed by subroutine HADGEN, and the matrix P, 

whose columns are the filter-scetion multiplier coefficients is then 

computed as the product of FSET and H. The NRDFE is now initialized 

in block 80 by computing the multiplier corrections (DELALF), then adding 

the result to then existing multipliers (ALF) in accordance with 

Eq.(3.9). 

The remaining part of MAIN, starting with a description 

in block 100, is essentially a large loop that iterates once for each 

transmitted pulse. All coding inside the loop has been done in-line 

i.e., there are no subroutines, in order to reduce the program execution 

time. After a number of variables are initialized in block 110, the 

loop begins. A transmitter pulse (DD) is generated in block 120 using 

either a pseudo-noise sequence (TRTYPE='PNSEQ') or a random binary number 

(TRTYPE='RANDNO') generated by quantizing random numbers that are uni 

formly distributed between 0 and 1. If no transmitter type is specified 

then a unit pulse is transmitted. In block 130 the pulse is next passed 
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through the channel which is corrupted by gaussian noise. Since time 

variation in communication channels is rather arbitrary, this effect 

is simulated by inserting a user supplied description immediately 

after staement 130. The transmitted pulse (YY) is then filtered by 

the equalizer in block 140 to produce the NRDFE output (I). The average 

MSE/Symbol (ASME) and total (cumulative) MSE(TMSE) are next calculated 

and the symbol error (E) is compared against the maximum acceptable error 

value (ELIM). If the maximum value exceeded the limit an error message 

is printed and the NRDFE either goes for reinitialization by returning 

to block 50, or the run can be terminated by transfer to 500. Otherwise 

at block 150 the NRDFE multiplier coefficients are adjusted in accordance 

with Eq. (3.62) and, when indicated by a local parameter (NLINE), a line 

of data concerning the iteration is printed before repeating the loop 

for the next transmitter symbol. After the indicated number (MSGLTH) 

of information symbols has been transmitted, the total number of symbol 

errors is printed and GRAPH is called to plot the frequency of occur-

rence of each value of the NRDFE output. 

3.8.2 	DISCRETE TIME CHANNEL DESCRIPTION: 

We simulated a large number of channels. However, for conve-

nience two of the channels are described here. 

D. T. CHANNEL  1: 

This channel is a low pass filter (LPF) having a normalized 

cut-off frequency of 1.0 Hz and a 40 dB/decade roll-off . It can be 

described mathematically by the Fourier Transform pair 

-2 
G1(f) = ( 1 + j f ) 	gi(t) = 4 1T1t e-2ITt  , t > 0 
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Samples of the unit pulse response, taken at 10. msec interval, are 

given by {2.11, 2.25, 1.80, 1.28, 0.85, 0.55, 0.34, 0.210, 0.120, 

0.07, 0.04, 0.02} . Normalizing the main pulse of 2.25, the unit 

pulse-response {0.938, 1.000, 0.800, 0.569, 0.378, 0.244, 0.151, 

0.093, 0.053, 0.031, 0.018, 0.009) has been plotted in Fig. (3.6a). 

This is a hypothetical D.T. channel for actual data communications, 

nevertheless, it is useful to demonstrate the equalizer performance 

with non-negative samples which are relatively large with respect to 

unity. As can be seen from Fig. (3.6a) the normalized peak distortion 

Eq. (2.1) is 3.284, implying that the binary eye*  is completely 

closed. 

D. T.  CHANNEL  2: 

This channel model represents the unit-pulse response of 

a vestigial-sideband (VSB) amplitude-modulated data link composed of 

two carrier systems and 160 Km of loaded cable. When sampled at 0.4167 

msec, corresponding to a transmisiion rate of 2,400 baud , the unit pulse 

response of length 9 is given by { -0.05, 0.05, -0.20, -0.05, 0.90, 

0.12, 0.15, 0.05, 0.03) and is shown in Fig.(3.7a). The magnitude of 

the distortion depicted in Fig. (3.7a) is such that binary transmission 

would be marginal, the binary eye being impaired by some 14 dB, and multi-

level operation is never possible without adaptive equalization. Unlike 

D.T. channel (1), this has relatively large number of precursors as 

well as nonlinear phase characteristics and is an example of typical 

British Public Switched Telephone Network (BPSTN) channel[ 3-27] . 

* The " binary eye" is a convenient way of displaying on an oscilloscope 
the aggregate ISI over an element period when transmitting a wavetrain 
[3-26] . Binary eye is given by 	E = ( 1 - peak distortion ) 
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Since, NOISE FREE channels are being considered, therefore, 

we programmed entire digital communication system by assuming SNR=80 dB 

on a per-bit basis, which means [ Eb/No  = 1 / o2] . 

An isolated unit pulse (1000 ... ) was transmitted 	MSE 

was computed on the basis of algorithm (3.3). We studied the effects 

of three parameters involved; 

(1) 	DELAY '6' : between the arrival at the equalizer of the 

first precursor of the channel unit-pulse res 

ponse and the begining of the locally generated 

desired pulse. 

(ii) N 	: the number of shift register stages in each 

filter section. 

(iii) K 	: the number of filter sections. K>N 

Finally we studied the equalization of the channels under investigation. 

3.8.3 	EFFECT OF DELAY (¢ ): 

D.T. CHANNEL 1: 	[Fig. (3.6C) ]  

For the study of 6 we worked through various equalizer 

orderings and finally settled on two particular orders which in a way 

exhibited the largest and smsllest equalizers: 

K = 32 
Largest Equalizer Structure: 

N = 20 

K = 24 
Smallest Equalizer Structure: 

N = 12 
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The graphs plotted [ Fig.(3.6c)] show the effect on MSE of the delay ' 6 ' 

'6 ' (being varied) while keeping K and N fixed. These graphs show an 

interesting point that with K- i. 32, any value of delay less than six 

essentially reduces the MSE. Because of the large amplitudes of the first 

two samples of the channel output, either could be considered to corres-

pond to the transmitted unit pulse. Hence the channel delay is small and 

could easily be zero, depending on which sample the equalizer chooses 

to correspond to the unity output. Due to the nature of the computed 

multipliers for this channel the smallest residual MSE values occur when 

the channel output sequence begins to enter the shift register, rather 

than after most of the postcursors are included as might be expected 

intuitively. 

D. T. CHANNEL 2: [Fig.(3.7d)]  

As before the graphs plotted show the effects of '6 ' on MSE 

while maintaining K and N fixed. Equalizers with less than 6 delays seem 

quite appropriate to reduce the MSE to an acceptable level. 

3.8.4 	EFFECTS OF SHIFT REGISTER LENGTH (N):  

In order to study the effects of shift register length (N) on 

MSE we assigned K=32 and nominal value to 6 . On the arguments provided, 

the values of 6  = 0.25 N and 6 = 0.50 N for channel 1 and 2 respectively 

were found to give the lowest acceptable MSE. A basic question now arises, 

why should we have to assign a nominal value to '6 ' at all? We can put 

forward the following arguments in support of providing the nominal value 

to '6 '. We shall describe the filter section in the frequency domain. 

Since each filter section is a NRDF with, in general, no symmetry 
(k) 

in the set of multipliers { pi 	} , the phase versus frequency characteristics 
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is nonlinear and the corresponding delay cannot be expected to be 

constant. And therefore the different frequencies will be delayed by 

different amounts. This nonlinearity is also referred to as the delay 

distortion which tends to cause relatively long precursors in addition 

to an average time delay of the signal maximum. Skewing of the signal 

peak is another phenomena attributed to this phase nonlinearity. The 

transmitted signal also undergoes amplitude distortion in the channel. 

This effect is due to nonuniform amplitude versus frequency character-

istics in both the channel passband and the stopband,and it causes 

dispersion of the transmitted pulse with the resulting precursors. Based 

on these arguments we assigned 6 = 0.25 N for D. T. channel 1 since 

this channel exhibits phase linearity over most of the passband. A 

nominal value of approximately 6 = 0.50 N for D. T. channel 2 was assigned 

in view of the loading and modulation. 

Finally, after simulation runs with these values of 6 , we 

found that the larger values of N produce better performance. [ Figs. 

(3.6d) and (3.7e) ] 

	

3.8.5 	EFFECTS OF FILTER SECTIONS (K): 

In order to study the effects of filter sections (K) on 

the MSE both channels were simulated and the results clearly indicated 

the fact that the larger values of K is needed to reduce the MSE [Figs. 

(3.6e) and (3.7f) 1. 

	

3.8.6 	EQUALIZATION: 

Finally both the channels were successfully equalized [Figs. 

(3.6b), (3.7b), (3.7c) 1. As could be seen that the channel 1 was 

easy to equalize and attained convergence quickly (6 = 0 ) with smaller 

equalizer structure whereas channel 2 required longer to converge 
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( IS = 14, 10 ) and needed longer structures. 

This is conceptually satisfying since the channel 2 [ Fig. (3.7a) ] 

exhibits both positive and negative sidelobes, thereby introducing a 

cancellation effect, which is absent in channel 1 [ Fig. (3.6a) ] 

where all the sidelobes are positive. 
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3.9 
	

SUMMARY AND COMMENTS:  

(A) We have developed and designed independently a new equalizer 

for fast data communication which affords considerable reduction 

of the ISI for the noise free channels [ assumed SNR = 80 dB] 

considered. 

(B) All the channels were successfully equalized even when N 

was less than L, the channel unit pulse response. This is an 

important observation because the ammount of computation 
3 

required is N . This would have been difficult to achieve 

with ordinary NRDFE. 

(C) The maximum shift register length N is clearly limited by 

the digital computer used for the initialization computation. 

The ammount and speed of digital hardware available for the 

shift register, multipliers, summers, limits N, and K as 

well. 

(D) Good estimates of the delays is required. But, this in 

turn require some a priori knowledge of the channel character-

istics or some preliminary experimental data. D. T. channels 

are random in nature therefore larger values of N provides 

a good solution in the absence of good estimates of $ . 

However, it is conjectured that the value of 5 between 0.25 N 

and .85 N provides a good estimate for all kinds of D. T. 

channels. 

(E) We have outlined in this chapter first the importance of 

Moore Penrose Pseudoinverse matrix and shown that MPPI 

provides a best estimate multiplier values;second, we have 

shown that when the signals are linearly dependent, the matrix 

I singular, then the signals can be orthogonalized and very 
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fast convergence ( one step initialization ) can be achieved by 

solving an orthogonal matrix ( H ) called Hadamard Matrix. The idea 

that the communication systems resulting in singular correlation 

matrix ( 
0  
A ) cannot be solved has been succesfully challenged. 

However, it could be said that this equalizer is 

general in nature and the design of it may be approached from quite 

different points of view.[ 1-91 ] 
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DI3CRETE TIME CHANNEL 	2. 
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CHAPTER 4  

REAL - TIME ADAPTIVE OPERATION OF THE FAST INITIALIZED GENERALIZED 

NON-RECURSIVE DIGITAL FILTER EOUALIZER(NRDFE) IN NOISY ENVIRONMENT. 

Satyam, Shivam, Sundaram 

(The Truth is Beauty.) 

A SANSKRIT PROVERB. 

Lest men suspect your tale untrue, 

Keep probability in view. 

JOHN GAY (1727) 
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4.1 INTRODUCTION:  

In chapter (3) we developed and designed a one-step initi-

alized non-recursive digital filter equalizer.In this chapter,the aim 

is to modify the design to make it applicable for real-time adaptive 

operation in the presence of additive noise.Chapter (2) contains some 

of the basic ingredients of this chapter(e.g. Widrow's estimate). The 

relevant digital communication system can be shown as Fig.(4.1) 

1.k Estimated sequence DIGITAL DECISION 

EQUALIZER DEVICE 

(LINEAR) (NON-LINEAR) 

NRDFE QUANTIZER Output 

FIG. (4.1) NOISY DIGITAL COMMUNICATION SYSTEM. 

Since it is impractical to compute the exact gradient of the system shown 

in Fig.(4.1),so a simple method of estimating this quantity is presented. 

Some convergence properties of the resulting algorithm are then developed 

and an eigenvalue condition is obtained.This eigenvalue condition ensures 

convergence in the stochastic sense under the stated assumptions. 
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When these assumptions are violeted the possibility of divergence exists 

and then a simple diagnostic determines the need for reinitialization. 

Finally the effect of noise on the initialization procedure and the on-

line adaptation is studied. 

4.2 FUNDAMENTALS:  

In chapter (3),fast initialization was achieved for a noise-

free channel in one iteration only using an isolated test pulse.It was, 

therefore,quite feasible to compute the gradient of J( a). 

However,the present situation is not so straightforward due 

to the following reasons: 

(i) An equalizer is to he used for real-time adaptive signal 

processing using decision-directed mode in the presence of 

noise. 

(ii)Due to the presence of noise,the equalizer output sample 

is a discrete random variable,therefore,the need for some 

kind of statistical averaging arises 

and, (iii)Signal pulses are no longer isolated at the channel 

output,therefore,it is necessary to distinguish between 

error samples corresponding to each pulse transmitted. 

Since in real-time operation we need to adjust the equalizer iteratively 

for each pulse transmitted,it will he convenient to denote the error c, 
(k) 

at iteration k by c(k) rather than c 	used previously.Similar pattern 

will follow for other variables as well. 

From Eq. 	(2.22) 
A 

c(k)=I(k)-I(k) (4.1) 

using the ?LSE as the performance criterion we define 

J ( a) = E0k) ) 
	

(4.2) 

The on-line algorithm for adjusting the multiplier coefficients is 

given by: 

a(k +1) .. a(k)+ A/2 p1(k) 
	

(4.3) 
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.A where 13,kkl=estimated  gradient vector of J{a(k)} 	with respect to a . 

As 
A  
. scaler constant controlling the rate of convergence and 

stability. 

Differentiating r.q.(4.2),we get the gradient 

L(k) . 2 E{c(k)7c (k)} 	 (4.4) 

where 	Vc(kA 24(9 
let 

We define the filter section output vector v(k) as 

, 
v(k)m.

A 
 {v0(k) vi(k)  	vk(k)1 	(4.5) 

Therefore,using inner-product notation, 

i(k) = <a(k),v(k)> = aT(k)v(k) 	 (4.6) 

and 	c(k) = <a(k),v(k)> - i(k) 	 (4.7) 

From Eq. (4.4) and Eq.(4.7),we obtain 

$(k)=2E {c(k) v(k)} 	 (4.8) 

.2E {v(k)vT(k) a(k)} - 2E{ I(k)v(k)} 

From an implementation point of view Eq. (4.8) is a convenient quantity. 

Because the signal vector v(k) is readily available and the error is 

also known,however,a difficulty still remains in that the expected 

value is not available in real time and,therefore,must he estimated by 

averaging over a finite number of symbols. To circumvent this difficulty 

the gradient is estimated using Widrow's noisy estimates method [4-1] given 

by: 

(k): 2 c(k) v(k) 	 (4.9) 

Which is an unbiased estimate [4-]. Thus,we may say that for a given 

multiplier vector,the expected value of the estimate equals the true value. 

The algorithm given by Eq.(4.3) reduces to 

a(10-1)= a(k) - As E(k) v(k) 	 (4.10) 

As can he seen here,Eq.(4.10) involves no a priori statistical infor-

mation,nevertheless,it is based upon the decision directed hypothesis 

that the output decision of the equalizer III) closely approximates the 
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original information transmitted fIk  }.It should be noted that the ini-

tialization procedure requires a priori information in the form of the 

locally generated desired pulses.In that case,hetter known algorithms 

are available C4-2,J . 

Using Eq.(4.10),the implementation of the new equalizer stru-

cture for real-time on line adaptive operation is shown in Fig.(4.2). 

All variables shown in Fig.(4.2) correspond to the output /(k).Noise n(k) 

is added to the discrete channel output s(k) to obtain the equalizer input 

Y(k).As can he observed from Fig.(4.2),that a filter section output vi(k), 

i=0,1, 	,(K-1),is obtained by multiplying N input samples with the 

multiplier coefficients pi ,k=0,1,.... (1-1) of block (1).The filter 

section multiplier vector is given by (Tq.3.62,chapter 3): 
N-I _1  

-= 	t 'hi 	(K-1) 	(4.11) 
x=00 

The equalizer output is given by: 

f(k)= <a (k),v(k)> 	 (4.12) 

From Fig.(4.2),it can be seen that the output i(k) is fed back,when switched 

on to the on-line adaptive operation,to form the error signal c(k) in a 

decision-directed fashion.The error signal, c(k) after being multiplied 

by the convergence factor As  is fed into the multiplier setting 

processor along with v(k) to produce - As  c(k) v(k) which is applied to 

the equalizer multiplier vectorsa as shown by AA. 

Finally,a diasnosttc ha.; berm provc.deA to ta%e care or the fact 

that when the error lc (c)1 becomes larger than a predetermined positive 

threshold value, c max, then the multiplier setting processor automatically 

stops and the equalizer goes for reinitialization.However,when the error is 

less than the predetermined positive threshold value cmax then the 

adaptation ensues undisturbed. 
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4.3 CONVERGENCE PROPERTIES OF THE ON-LINE ADAPTIVE ALGORITHM: 

The multiplier coefficient vector a(k) obtained through 

repeated use of this stochastic iterative Equation (4.10) is a random 

vector.Therefore,the convergence properties of the algorithm may be con-

veniently explained in the statistical sense,using the first and second 

statistical moments of a (k).To this effect we restate the assumptions 

made in chapter (1) that the signal and the interfering noises can be 

simply modeled as stationary random processes with zero mean and finite 

variance and that they are uncorrelated.From Fig.(4.2),we define 

E {s(k) } = E { n(k)} 	=0 

E {s(k) sT(k) } A ass 	
(4.13) 

E {n(k) nT(k) ) 	Ln  

E {s(k) nT(k) 	=0 

Nowstaking the first moment of (4.10),we get 

E{a(k+1)} = Ma(k)}-As  (E{v(k)vT(k)a(k)} - E{I(k)v(k)} ) (4.14) 

We define 

E{v(k)vT(k)} A Avv 

The filter section correlation matrix 	(4.15) 

Ea(k)v(k)) AAIv 

=A cross correlation vector 	(4.16) 

Then Equation (4.14) reduces to 

E{a (k+1)} 	=E{a(k)}  - As (Avv E{(1(k)} 	AI v) 	(4.17) 

A channel output K-vector Y(k) at iteration k consists of the current 

shift register contents,which produce 1(k) for the first N components and 

the most recent (K-N) samples to have passed through the shift register as 

the remaining components.Therefore,we define,the channel auto-correlation 

matrix, 

-11Y y 
	E {Y(k) YT(k)} 	 (4.18) 
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and cross-correlation vector, 

AIy A E (I(k)Y(k)) 

Also from chapter (3),Fig. (3.3),we write 

v(k) = P
T 
Y(k) 

it follows that 

Avv =P
T  Ayy  

and 	AIv  = PT AT  

(4.19) 

(4.20) 

(4.21) 

(4.22) 

Since we have assumed that the noise n(k) and signal s(k) areAndependent 

therefore from the relationship 

Y(k)= s(k)+n(k) 	 (4.23) 

and from (4.18)& (4.13),we get 

Ayy = Ass + Lin 	 (4.24) 

Since Ass is the signal correlation matrix,hence it is positive semi-

definite.Next,Ann  can he diagonalized by a unitary transformation matrix 

a  to yield 
aTA = n 	 (4.25) 

However,upon defining, m(t)mA  0T  n(k) a new representation of the noise 

results with correlation matrix 

E {2T nOc)nT(k)3 }' 2TAina = Lin 	 (4.26) 

i.e.,the cross-correlation matrix of m(k) is diagonal.The elements are 

variances,thus are all positive.It follows that Ann  and Ayy are positive 

definite and thus non-singular. 

From chapter (3),G:fis.3.27&3.28), we note that N <K)PT  is 

a rectangular matrix,hence Avv  of (4.21) is positive semidefinite.From 

E q. (4.17) ,we have 

Oc 41) }no CI- A Av-V] E(a( 	+As  Aix 	(4.27) 

where I is an identity matrix.With an initial multiplier vector a(0), 

(181-1) iterations of (4.27) become 

yfl) 
E(a4c+1)} = [I-A 	a(0)+A 4 AvO 	AD: 	(4.28) s  .;:w v — 	s 	L'1 i=0 	s- 
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Eq.(4,28) may he put in diagonal form by using  the appropriate similarity 

transformation n for the matrix A that :s 

A = 2712 a —vv 
(4.29) 

where 

      

      

 

D 

 

A 0 	0 	0 	0 	0 	Oa.. 	.000 	0 

0 	Al 	o 	o 	o 	• .. 

A2 	 0 	•••• 	0 

• • 	• 	• 	 • 

. 	• 	• • 	 • 

. 	• 	• 	 • 

0 	0 	0 	0 	0606 	• • • • 
	AN„ 

       

is the diagonal matrix of eigenvalues.The non-zero eigenvalues are 

positive,since A is positive semidefinite.Equation (4.28) may be now 
—vv 

expressed as 

E{a(41)} = 	
(k+1) 	+ AsEo[I_ As 271D  [11- As  01E.1 	 AIv 

Asn  141) 	a(0) +As 0-1  Eo  C- AsIg ig Aiv (4.30) 

Consider the diagonal matrix (I-As  n),as long  as its diagonal terms are 

all of magnitude less than unity 

ni(k+1) klim. [II- As 	0 

and the first term of (4.30) vanishes as the number of iterations increases. 

The second term in (4.30) generally converges to a nonzero limit.The 

summation factor 	As  qi becomes 

	

Oa 1 E.1.7  As  T =1/A 271 	(4.31)* 

* E (1+ As  A p  )i ,-.1/{ 1— (1+2 A A )} =-1/2 As  AP  ,Geometric Series 
i= o 
property. 
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Thus,in the limit E.q.(4.30) becomes 

E{a(k+.1)}■ E71  D-1  a 

Lic.v Aiv 
	 (4.32) 

where Ary  is the MPPI of Avv. But,as the number of iterations 

increases without limit, the expected value of a converges to the Wiener 

solution.. Therefore, we have 

-o
a ■ A A 	 (4.33) 

pt -Ar —Iv 

as the optimal expected solution of the on-line adaptive algorithm in 

which Widrow's noisy estimate has been used. 

Suppose A 	has rank N <K , then the uniqueness 

theorem implies the existence of one optimum vector. Therefore,Eq. (4.33) 

has an infinity of solutions each of which is an optimum multiplier 

vector that generates the resulting signal 4. Let TT denote the null space 

of Avv  then 

a inn    > Avv a -0 	 (4.34) 

LetR denote the range space of Am  so that 

a inR 	> a - Avv  v for some V. 
•■• 	 •■•• 	1•■ 	 1=•• 

Since Avv  is symmetric, U &Rare orthogonal and any vector ahas a 

unique representation as the sum ap± a TTwith ailL iniZ& arr in TT 

[4-4 	This implies that there exists only one optimum vector a P  

contained in R that satisfies (4.33). Therefore every optimum vector 
a 	can be expressed in the form 
-npt 

a 	..aP+a N1  —opt 
Ni 

for some a
N 

in TT and ap  orthogonal to a (p and N
1 

imply 

positive and null respectively). The orthogonality implies 

I a' 	1 > I a1 •  unless a 	- aP 
—opt 	 opt 

 

so that of all optimum vectors satisfying (4.33), .aP has the smallest 

norm or smallest energy. 

Next we study the convergence conditions,, by defining the 

multiplier error vector as: 

(4.35) 
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e(k) 	a(k) - -opt 

and using the relationship derived in Eq. (2.26) as 

2(k) 	[- As LA] (k-1) e(1) 

A vector e can he decomposed in the form 

e(1) eP(1) 01(1) 

(4.37) 

(4.38) 

E avvi 
K-N 

a  OE   _v vs jr ce 

(4.39) 

 

where avvi, avvj are the suitable coefficients for the basis 2#v  and 

{uvvi } , 
	

0, 	(N-1) are the eigenvectors of Avv  with nonzero 

eigenvalues and{ uvvi} 0= 0, 011160 ,(KH) are the remaining eigenvectors. 

Now from (4.38) 
N-1  

[II - As Irv] 	E aVVIAVVilNVi 0 
where Avv  is the eigenvalue and 

e(k) 	eP(k) + e (ic) 

N-1 	Nk71 	 -N 
(4.41) 0E avvi(1  - As Avvi i -Li vi + 0  ayviliNvj 

where (1- As Avvi ) are the diagonal terms of II - As Avvi 
From (4.41) it is apparent that the last term is simply eN1(1) 	i.e. 

eN1  (k) . eN1(1) 	for all 	k. 
1111•••• 

The remaining component eP(k) will converge provided As is 

so chosen as to ensure that 

max. { 
	1  - As Avvi 	< 	1 	(4.42) 

Ic p 
since in this case 

II eP(')II< max. {I 1  - A 	A 	JI} IIE 	a 	u As VNT a. 	VV —VVi II 

<11e11(1)11 

Therefore the condition to ensure convergence of (4.33) is found from 

(4.42) to he 

0 <As < 2/( Aim)  max. 	 (4.43) 

(4.40) 

N-1  

where ( Avv  )max > ( Avv) 	
for all i 
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4.4 COliTUTER SIMULATION: 

Basic structures of the computer programs for chapters (3) & (4) 

remain the same.. In particular we have made provisions for 

(i) generating a random binary sequence to simulate the trans-

mitted information, 

(ii)ad ding gaussian noise with specified stltigti.et, 

and, 	0.10adjusting the multipliers iteratively at each symbol 

interval. 

Also, we have devised a scheme to detect the errors during on-line operation 

using decision directed mode, 

Different equalizer structures have been used to 

compensate the effects due to ISI and the SNR variation from 80 dB down 

to 15 dB over the discrete time channels discussed in chapter (3) [Section 

(3.8i] . Choice of K has been made on the basis of lladamard Matrix (H) 

i.e. K will assume values either 2; 21 2; 25  etc. or 12,20,24,28 etc. 

At 15 dB the noise standard deviation (s.d.), calculated using the 

formula (SNR/20) = antilog 	(1/s.d.), is 0.1778 and the symbol error 
10 

rate is frequent and significant. 

As before we studied the effects of parameters delay 

( 6),shift register length ( N) and the number of filter sections (K). 

We specified the convergence factor As  = 0.025 which is equivalent to 5% 

of the decision threshold value. 	The transmitted message was simulated 

by repeatedly generating a 255 symbol pseudorandom sequence, and the error 

criterion was taken to he the average MSE c2(r) after 600 iterations of 

the on-line adaptation algorithm. 	For programming convenience, we 

determined c(r) by transmitting the symbol I(r) in place of the output 

decisions I(r). 	This assumption has negligible effect when there are 

no decision errors. 

* This was our assumption for the noise-free case. 
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4.4.1 	ErrrcTs Or DELAY ( 6)  

Delay (6 ), we studied, is the time difference between the arrival 

at the equalizer of the first precursor of the channel unit-pulse response 

and the beginning of the locally generated desired pulse ( I
r }• 

DTSCRETE- TIME CHANNEL 1 pigs. 4.3(d) or 3.4 (a)]: 

The simulation results have been plotted in Fig. 4.3(a), which 

shows the variation of average *'SE as a function of 6 for SNR, 40 dB. 

and 20 dB.(Assuming 30 dB as the working SNR level). 	This channel has 

been successfully equalized for SNR of 30 dB or greater[ius.4.3(a)&4.3(c)] 

DISCRETE - TIME CHANNEL 2  Eig. 3.5(a)] : 

The simulation results have been plotted in Fig. 4.4(a), which 

shows the variation of average MSE as a function of 6 for SNR, 40 dB 

and 20 dB. This channel was successfully equalized for SNR of 30 dB 

or greater Eurves (b) & (c) , Curve 4.4(a)7] . 	These curves indicate 

that there is no significant improvement in performance for the larger 

structures provided dig properly chosen, in fact, the smaller structure 

perform slightly better. 	However, there is a much wider range of feasible 

values of 6 	for larger structures and this range is not so much sensitive 

to SNR. Thus the possibility of had equalization , due to incorrect 

selection of 6, with a small structure must be compared with the complexity 

and cost of the larger structure. 	Delay 6 also depends on the knowledge 

of channel characteristics which is usually unknown and time varyinglin 

that case , a larger structure will perform better. 	Therefore, a 

proper selection of the nominal values of 6 will certainly be advantageous. 

Based on these considerations nominal values of 6 for noisy discrete-time 

charnels (1) and (2) were selected to be 0.60 N and 0.85 N respectively. 
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Equalizer structures for this case 

DISCRETE TIP-'E CHANNEL 1 
	 DISCRETE TIPT .CHANNEL_ 2 

N 	K 	 N 	K 
Equalizer # 1 	20 	32 	 17 	32 

Equalizer # 2 	16 	28 	 13 	28 

Equalizer 13 12 	24 	9 	20 

4.4.2 EFFECTS OF SHIFT REGISTER LENGTH (N) : 

Both channels were simulated by using K= 32 and 6=0.6N 

(LPF) and 6=0.85N (VSB). SNR was varied from SO 411 to 7f 	(It was 

not possible to simulate for 15 dB SNR). 

For both channels, high SNR values , performance either improved . 

or remained constant. As can he seen from Figs. 4.3 (b) & 4.4 (b) that 

the performance degraded slightly for N greater than 10. This degradation 

in performance can surely he attributed to the accumulated round-off noise. 

Also, for SNR greater than and equal to 30 dB , there is a lower value of 

N above which there is very little change in the performance, in other words, 

there is very little improvement in performance by using shift-register 

length (N) greater than the channel impulse response. Smaller N makes 

computation easy but makes the selection of 6 difficult. It is 

interesting to note that , in LPF channel, equalization was achieved for 

SNR = 20 dB with N=5 	[Fig. 4.3 (b) ]. 	For VSB channel [Fig. 4.4 CO], 

at 20 dB, the performance was poor and errors were detected which eventually 

improved. 
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4.4.3 EFFECTS OF SNR AND MULTIPLE INITIALIZING PULSES : 

DISCRETE TINE  CHANNEL 1 [pig. 4.3 (c):1 

We selected two structures: 

K = 32 	 K = 24 

N r= 20 	and 	N = 12 

6 = 12 	 6 = 8 

Simulations were carried out with these two equalizer structures. 

Fig. 4.3 (c) shows the effect of SNR on equalizer performance when both 

a single initializing pulse and an average of two initializing pulses 

were used by the equalizer to better identify the channel. It is clear 

from the curves (c) & (d) that the use of multiple initializing pulses 

is quite henificial when the SNR is low and the noise represents a 

significant part of the unit pulse amplitude. However, this is not the 

case at SNR > 30 db, because multiple initializing pulses offer very little 

advantage. 

DISCRETE TIME CHANNEL 2 [Fig. 4.4 (c) 

We selected two structures: 

K = 32 	 K = 20 

N= 17 	and 	N= 9 

6 = 15 	 6 = 8 

Simulations were carried out with these two equalizers. As we can see the 

similarity in curves between Figs. 4.3 (c) & 4.4 (c) 	therefore,similar 

interpretations are applicable in this channel as well. 

4.4.4 EQUALIZATION:  

Channels (1) & (2) were successfully equalized with a 20 dB SNR 

[Figs. 4.3 (d) & 4.4 (01 ,however, it was not sufficient for very many 

other channels which required 30 dB to be equalized without errors. 

As said earlier, the noise has been superimposed on the 

This has not been shown before equalization part of Figs. 4.3 (d) & 4.4 (d). 

However,the after equalization part of Figs. 4.3 (d) & 4.4 (d) have been 
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drawn only when the channel impulse response with added noise has been 

equalized. 
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4.5 	SU'VTARY AND C011/TNTS:  

(A) We have designed, 	developed and extended the design 

of the new initialized equalizer structure of chapter (3) to 

make it suitable for real-time on line adaptive operation on 

noisy channels. 

(B) It has been shown that the channels (1) and (2) could be equalized 

successfully even at 20 dB noise. However,certain other 

channels with more overshoots required 30 dB at least to get 

equalized but it has not been considered here . 

(C) We have used the stochastic approximation for estimating the 

notsy gradtent:4. 

(H) 
	

We found that no value of N was reached above which the 

equalizer performance remained fairly constant.It suggested 

that the better equalization is attainable for larger 

equalizer parameters than the maximum of (30, 20, d ) 

and (32, 17, d). 

(E) 
	

From the foregoing considerations we have found that there 

are a number of tradeoffs in selecting the equalizer parameters: 

By selecting large values of N & K gives a 

larger range of values from which to select the nominal delay d. 

This is, particularly important if little is known about the 

channel a priori. On the other hand, small value of shift 

register length (N) greatly reduce the amount and time of 

computation required for initialization, while smaller values 

of K reduce the number of on-line adaptive multiplications 

required at each iteration. We can think of these considerations 

as tradeoffs between the accuracy desired from the equalizer 

and the cost that must be paid to achieve it. 
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(r) 
	

If the nominal value of 6 is uncertain or if considerable 

variation is expected in the channel unit-pulse response then 

a large value of N will make the equalizer perfopmance less 

sensitive to d . 

(n) 
	

Since single symbol errors are highly probable when the SNR 

is low or the channel badly equalized, some form of averaging 

must he used to avoid an excessive number of reinitialization 

diagnostic calls. This could he made possible by keeping a 

running count of the number of times le(k)I exceeds a pre-

determined limit c
max 

over the last , say, k iterations and 

reinitializing only if it is exceeded n <k times, where n 

and k are known integers. 

(N) 
	

The scheme outlined in (r,) would also prevent shorst bursts of 

impulse or switching noise from causing needless 

reinitialization. 
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CHAPTER 5 

DESIGN OF RECURSIVE DIGITAL FILTER EQUALIZERS (RDFE)  

There is nothing more difficult to take in hand, more 

perilous to conduct, or more uncertain in its success, 

than to take the lead in the introduction of a new order 

of things. 

-NICCOLO' MACHIAVELLI ( The Prince 1513 ) 
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5.1 	INTRODUCTION: 

In this chapter we consider a recursive digital filter 

as an equalizer ( initialized and on-line adaptation ) as a means to 

equalize discrete time channels ( noise free and noisy ) by reducing ISI. 

Fitch and Kurtz [5-11 have proposed a design procedure for the 

receiver of a PAM system in the presence of ISI and noise. In the 

receiver an estimate of each source symbol is made based on the Weiner-

Kolmogorov theory of minimum variance estimation for stationary time 

series. The resulting structure has been called a recursive equalizer 

and its taps have been obtained by taking the Canonical factorization of 

the spectral density function followed by the operations of polynomial 

multiplication. and division. A comparison has been made with conventional 

NRDFE. Some improvements have been reported, but the basic question of 

on-line adaptation has not been touched upon. 

Nantey [5-2], proposed a method for adapting a recursive network 

which will converge on a unique minimum. His method involved breaking the 

feedback link during the on-line adaptive operation and exciting the feed-

back branch with the desired response. He has shown that the adaptation 

using modified mean-square error algorithm yeilds weights which give the 

best estimates of the desired response based upon weighting the past inputs 

and the desired responses. If the minimum mean-square error of this 

minimization is small, then the system when returned to the operate mode 

yields very satisfactory performance. His modified USE is an approximate 

criterion teq.(29) P.22,[5-2]} and fails to operate in noisy conditions as 

an on-line adaptive equalizer. 
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So, from the survey of literature it appears that upto now 

very little has been known about recursive digital filter equalizer (RDFE). 

The basic question of its suitability has 	vaguely been proposed but 

its implementation with detailed analyses are yet to come. It is our 

aim, here, to add some useful investigations in the form of important 

communication properties e.g. convergence, on-line adaptation using deci-

sion directed mode, probability of error using Monte-Carlo simulations 

etc. However, it must he emphasised that the general approach is the 

digital filtering where in itself, a vast amount of literature is available 

but none on its implementation as an equalizer. 

We have made an independent investigation on the various 

forms of RDFE and compared their suitabilLty 	NTWE by means of 

computer simulation for severe phase and amplitude distortion channels. 

The most meaningful error, Pe, has been obtained using Monte-Carlo simu-

lation technique. Also, the pole-zero constellation equalization has been 

explained. 
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5 . 2 FUNDMENTALS : 

A digital communication system using a recursive digital 

filter equalizer (RDFE), is shown in Fig. (5.1). 

Noise 

FIG.(5.1) DIGITAL COMMUNICATION SYSTEM USING RDFE.  

The basic element of an adaptive RDFE is a recursive digital 

filter (RDF) which is described in terms of z- transform as a rational 

polynomial in 1-1  and is given by, 

A 
I(z) 

11(z) 
Y(z) 

i=ei z  , It> N (5.1) 

 

1+ Pa4 z-i  
1 - =1 

where at least one of the a
i 

is nonzero and all the roots of the denomina-

tor are not cancelled exactly by the roots of the numerator. The filter 

of eq. (5.1) has, in general, M finite zeros and N finite poles. The 

zeros of 11(z) can he anywhere in the z-plane but the poles must lie inside 
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the unit circle for stability i.e. poles must satisfy the following 

sufficient inequality condition 

la
i
l< 1 
	

(5.2) 

The input-output relationship from Eq. (5.1) is given by 

the difference equation 

A 	M 	N 	A 
I
k i

Eay 	-EATk-1E1  i k-i 	-i -
1 	11 

	 (5.3) 

A 
where {yid and {Ik} are the input and output sequence, and (aid and 

{Bk} are the filter adjustable coefficients. In practical circumstances 

A 
the characteristic of H(z) should be such that the output {Ik} approximates 

the input (Ik) by fulfilling the performances MSE, criterion, which is 

defined as 

J(a,B) ! r „2, A E[ e21 
ku-co 	k 

(5.4) 

A  
where the error, ek  = Ik  - Ik 	 (5.5) 

in the initializing mode , 

AA 
and 	ek  = Ik  - Ik 	 (5.6) 

when using on-line adaptation using decision-directed mode. Next it 

remains to he seen that the minimum of the performance criterion yields a 

quadratic surface. From (5.3) to (5.6), we have 

J(a,13).. E[en -j2  = E [ in - Ini 2 

M 	N 	A 
.. E[ E a

i 
y
n-i 

- E 
Si  In-i 

 i
n

2 
i=0 	1=1 

Differentiating (5.7) w.r.t. a k  we get 

aJ (a, S. 	co 3e 
= 2 E 	n e

n 	
k=0,1, 	M 

Bak 
 

n=03a k 

(5.7) 



= a 	M 	N A 
= 2—E 	a y

n-i
-E8

i
In-i) cn 

n=
E
0 aa

k 
i=
E 
0 	i=1 

A 
= 2 E y 	[ E a y 	-E B 

n-k 12.0 	n-i 1.1 	
In (5.8) 

Differentiating (5.8) w.r.t. a
k' 
 it yields 

a2j  (a,B) 	2  
=2 E y 
n=0 n-k  

>0 	 (5.9) 
"• 

Where A is the autocorrelation function of the input signal and 

this is always positive for all values of k's and is constant. Similarly 

differentiating (5.7) w.r.t. p:s, we get 

;J(a,8) 	0,  A 
	= 2 E I 	c 	[k= 1,2, 	11] 	(5.10) 

n=0 n-k n 

a2J(a 	co A 	A 

(-32 
	 = 2 E I

n-k In-k 
n=0 

= 2 All  > 	0 	 (5.11) 

and remains the same for all values of a, 
J. 

Since both sets of second partial derivatives are everywhere 

positive and constant, therefore, J(g,p) has a quadratic surface and this 

assures single minimum convergence and hence any standard iterative 

search procedure can he applied to it. 

3a,? 



As the direct solution to Eq.(5.7) involves cc-Tlicated circuitry 

and also because of the quadratic nature of MSE surface it is customary 

to adopt some form of iterative procedure. Thevefore, the coefficients 

adjustments are made using the following iterative algorithms: 

(i44) 0) 1 (i) (1) 
Litt 	=.ak 	2 A2 	go' 

k 

044) (i) 1 (1) (j) . 0 	6 	_ - A • g and 
-k 	 k 2 3 -13k 

where the gradient vectors after jth iteration are given by: 

A 
aJ (a,a) 	31 

aa 	
cn n g 	= 	 } 	E 2 	 

-gk 
k 	

a -
ak 

(5.12) 

(5.13) 

(5.14) 

  

(i) 	3J (a0) (j) 
and 	go 	= { 	} 	E 

-12k 	ar3 
(5.15) 

   

(1) 
and 0

2  , A3 

(1) 
are the convergence constants. However, a difficulty 

always remains in that the expected value is not available in real time 

and has to be estimated by averaging over a finite number of symbols, say 

LL, or by using the stochastic approximation techniques for noisy envi.,  

ronment as suggested by Widrow (Ch.2). In the former case, equations 

(5.12) and (5.13) are given by 
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A 
Ad' LL-1 	a 

a(1411 ail- 	2 	c(i) 	n  
-k -k n=0 n3a 

LL 

A 

and 	(1+1) 	(j) A 1+71 c(i) 	
3 In 

P- . 1c —3-  n -k 	a
n=s, 

LL 	36 -k 

 

(5.16) 

(5.17) 

  

In the stochastic approximations, coefficients are adjusted on a sample 

by sample basis. Therefore, Eqs. (5.12) & (5.13) are written as: 

ai(j) 
a(j+1) = a (j) - A4  c(J)  	 (5.18) 

3a 

and 	 a I(j) 
3(j+1) =6 (i) -A 5  c(j) 

	

	 (5.19) 
as 

Next we consider the convergence conditions of the algorithh. 

5.2.1 	CONVERGENCE CONDITIONS: 

Following the results of chapter (2), the iterative algorithms 

of Equations (5.12) and (5.13) will converge to optimum solutions 

prilvid,!d 

II - AP)  A I  <1 	 (5.20) 

and, 	IT - A j)  A I <1 
	 (5.21) 

where A is a correlation matrix with jk
th element E[yn_i  yn_jand I is 

an identity matrix. 

That is to say, in order to ensure convergence the step sizes 

A
2 
 and A

3 
 must be restricted to the same range of values as shown by 

0< 4 (i )  < 
	2 	

(5.22) 
2 	max 
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and 	0 < A(J)  < 	2  3 	Amax 

where X 	is the maximum eigenvalue of A. 
max 

(5.23) 

5,2.2 STABILITY: 

Stability is the most important problem in the case of a RDF(E). 

We examine the stability criterion for an individual second order system. 

[5-5,6] . 

Let us consider an Nth order recursive digital filter with the 

transfer function given by, say 

1 	i(z) 
H (z) = 

N 	 Y(z) 
1 + E B

k 
z
-k 

k=1 

The input output relationship is given by 

N 
I
n 	

= - k=E 
 1 k 

I
n-k 

+ y
n 

(5.24) 

(5.25) 

where {v n} , {In}  are input and output sequences, respectively. 
 

Defining the state variables as 

xn 	In-k 	k=1,2 ••• N (5.26) 

Then the state variable description of RDF(E) becomes 

. A x_ + B v •--11+ 1 	-n 

i• 
I 	=C x +Dv -41 -n 

where x 	E 1 
, x

2 
, 	xN] T 

-n n 

is the N-state vector, and 

(5.27) 

(5.28) 
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-5
1  

-52 • • • —8N—I sN 

1 0 ••• 0 0 

••• (5.29) 

004 1 NxN 

1 

0 

A 

B = (5.30) 

••• (5.31) 

(5.32) 

and yn  is a scalar. 

We shall use Jury's stability test [5-7,8] and define 

alk 	B N-k 

a 	A 	1 
1,N  

k=0, 1, .... (N-1) 
(5.33) 

where, as usual, B's are the multiplier coefficients as in (5.24). 

Therefore, the conditions for stability are 

(i) a 	+ a 	.• 1,N 	1,N-1 

(ii) al,N al,N-1 

(iii) 
I a1 0 

I < 1 
, 

I a2,0 1  > la2,N-11  

I aN_1,01 > laN_1,2I 

+ a
10 	> 0 

(.4)N
10 

> 0  

(5.34) 
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where 

a 
n r 

a 

a 
n-1,0 
	... 

	

a n-1,N-n+2-r 

a
n-1,N-n+2 

a 
n -1,r 

Thus the system (5.27) is 	stable in the sense that its poles 

are located inside the unit circle of the z-plane if and only if (5.34) is 

true. 

Examples: 

(A) When N=2 (second order filter ) the conditions for stability 

are 

Ig i l < ( 1+ 132) 

(5.35) 
11321 < 1 

These conditions can be shown by the stability triangle in 

the ( a1,  B2)-plane 	Fig.(5.2) 

FIG.(5.2) STABILITY DOMAIN FOR A SECOND ORDER RDFE. 
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(B) When N=3 (Third-order filter ) 

The conditions for stability are 

1 13 / 	133  I < 11+32  1 

1 33 1  < 1 

1  B1 33 - R2 1 < 1 a; -1 1 

(5.36) 

These inequalities will be applied in the subsequent 

sections where we consider the implementation of RDFE. 

5.2.3 BLOCK DIAGRAM REPRESENTATION OF RDFE: 

Basic structure of an RDFE can be shown as Fig. (5.3) 

FIG. (5.3) BLOCK DIAGRAM REPRESENTATION OF RECURSIVE DIGITAL FILTER  

EQUALIZER. 
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With the help of this block diagram we shall try to study the various 

forms of RDFE. 

5.3 	IMPLEMENTATION  OF DIRECT FORM (I) ADAPTIVE RDFF.  : 

This is the simplest form of RDFE, and its basic structure 

shown in Fig. (5.4), is the network corresponding to equation (5.3). 

FIG.(5.4) BASIC DIRECT FORM(I) RDFE (M=N)  

Error is formed according to equation (5.5) or (5.6) and the MSE is 

calculated from.(5.7). The multiplier coefficient "(-1  is updated using 

Iq. (5.16) where from Eq. (5.3), on differentiation, 
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. 	. 
DI 	N 	DI 
n_ , 	- E (3 	n-i ... 

'n-k 	i Da 	i=0 as 
-k 	-1 

where 	k=0,1,  	11 

An 'a' updating processor is shown in Fig. (5.5). 

(5.37) 

Similarly, the multiplier coefficient '8' is updated using 

Eq. (5.17) where from Eq. (5.3), on differentiation, 

ain N DI 
n-i 

-k 

= - I
n-k 

- E 
i=0 iaf3 

 -k 

where 	k=1,2, 

(5.38) 

A's' updating processor including stability control given by Eq. (5.39) 

is shown in Fig. (5.6). 

I 13 (ij )  I < 	1 (5.39) 

Fig. (5.8) shows the full implementation of a direct form (I) RDFE, 

( M=N ) which can he obtained by combining Figures (5.4) to (5.7). 

As can he seen from the structure Fig. (5.8) 	the number of 

multiplications required for the basic direct form (I) RDFE and for the 

coefficient adjustment algorithms are (1PEN+1) and (1+11+2N+MN+N
2 
) 

respectively. 

5.4 	IMPLEMENTATION OF DIRECT FORT1 (II) ADAPTIVE RDFE: 

Since the set of coefficients (ak
} 
'k}  correspond to the 

numerator and denominator polynomials of H(z), we can interpret the 

basic direct form (I) RDFE structure as consisting of a cascade of two 

networks, the first realizing the zeros and the second realizing the 

poles. In other words, rewriting Eq. (5.1), we get 
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a 	n-k 
ak- 
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I(z) 	ti 	1  
11(z) 	= ( E 	a4  z 	) 	 (5.40) 

Y(z) 	i=0 	1+ E E z 
i=1 

Equation (5.40) can be described by the following pair of 

difference equations 

N 
W rrsy — w 
n 	n i.

E 
 1  Si

6   n-i 

M 

(5.41) 

and 	I
n 
=E 	aw 	 (5.42) 

i=0 	n-i  

where {w
n 

} is the state (intermediate) variable.Eqs. (5.41) and (5.42) can 

be implemented in either canonic or 	non-canonic forms. We shall 

consider the canonic form only since one set of delays is sufficient 

for the entire RDFE. Fig. (5.9) shows the basic direct form (II) RDFE 

and it is canonic in the sense that it has minimum number of multiplier, 

adder, and delay elements. However, we shall drop the word canonic 

and will use simply direct form (II) RDFE. 

The coefficients m p are adjusted according to the iterative 

relationships given by Equations (5.16) and (5.17) respectively. 

However, 

al
nn-i = E a 

36 i=0 i 36 
(5.44) 

and 
3w 	N 	awnod n _E 0 	 

36 	i=1 i 36 —k 

^
n-k 

(5.45) 

An 'a' updating processor implemented by using Equations (5.16) and (5.43) 

is shown in Fig. (5.10). 
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FIG.. (5.12) IMPLEMENTATION OF A COMPLETE DIRECT-FORM(II) RDFE,(M: N 
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A 'a,  updating processor along with stability control, 

implemented by using Equations (5.17), (5.45) and (5.39), is shown in 

Fig. (5.11). Error formation is similar to Fig. (5.7). 

Fig. (5.12) shows the full implementation of a direct form (II) 

RDFE, (M=N) which can he obtained by. combining Figures (5.9) to (5.11). 

As can be seen from the structure [Fig. (5.12)] the number of multiplica-

tions required for the basic direct form (II) RDFE and for the coefficient 

updating algorithms are given by (M+N+1) and (1441+2N+MN+N2) respectively. 

Since these two forms RDF are susceptible to instability 

therefore, the need for more stable structures are sought. Next, we 

consider such structures. 

5.5 	IMPLEMENTATION OF CASCADE FORM ADAPTIVE RDFE: 

The realization of RDFE by cascading second order sections has 

many desirable features, such as better noise performance than the 

direct form realization, and permitting a modular realization of high-

order digital filter equalizer in a flexible manner. The realization is 

not as straight forward as it appears to be. It is because of the fact 

that when a fixed point digital filter (equalizer) is realized by 

cascading its second order sections under dynamic range constraints, 

the resulting round-off error due to the use of finite word length, 

convergence, and MMSE are highly dependent upon the pole-zero pairings, 

initial conditions and specific oredrings. We shall follow closely with 

Jackson [5-10] for these requirements. Briefly stated, the procedure 

we propose calls for choosing a random assignment and performing a " local 

optimization ". This is repeated a number of times and the best of these 

local optima is taken as the " near optimal " solution (assignment). 
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When a RDF is realized in the cascade form, its transfer function 

H(z) is factorized into ratios of second order polynomials as follows: 

K 
II 	

- ( a 	+ a, z 	+ ak3 z-2 ) 	1(z) 
H(z) = a0 	k=1 	kl 	12 	

1 
 

-1 	-2 	
Y(z) 

R ( 1 + 0, z + R z ) 
k=1 	k2 	k3 

(5.46) 

where K is the number of second order sections to he cascaded and is an 

integer . Let the kth quadratic factor of the denominator be paired 

with the nth quadratic factor of the numerator to form the i-1  second 

order section. That is 

K 
H(z) = a 	R 	H (z) 

0 
i=1 

where 	 (5.47) 
1 + an2 z-1 + an3 z-2 

The total number of such assignments is (IC!)
2
. Again taking 

into account the scaling coefficients {S
i i=0

, So as to avoid overflow 

at certain branch nodes, we can express Eq. (5.47) as 

K 
H(z) = S0  R Si  Hi(z) 

i=1 
(5.47a) 

with 	S0.S1.S2 

 

SN = a0 

 

Assuming S0= S1= S2=....SN  = 1, the realization of (5.47a) can be shown 

in Fig. (5.13). (Faoe 1St) 

The individual second-order section of Fig. (5.5) may be real-

ized in either direct form (I) or (II). The reasons for choosing a 

cascade of second order sections is that a second order section is 

required to realize a complex pole, or zero, with real multiplier 

coefficients. 

H (z)-  
i 	1 	-2 

1+ R
k2  z 
	+ 13k3 
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It is extremely difficult to describe the time domain relation-

ship for the entire cascade structure because it depends on the reali-

zation of the subsystems Hi(z). For mathematical convenience, we 

suppose that the subsystems are of direct form (I), and describe the 

outputs in the following difference equations form: 

2 	A 	2 

/ = a /0 k 	ak n-k 1,n k=0  k,1 ,n- k=1 

2 	A 	2 
I 	E ak 2  II k  - 	ak /2 2,n 	k=0 	' 	'n- 	k=

E 
 1 	'2 	

'n-k 
 

(5.48) 

2 	 2 
I 	= E a 	I 	- E ok K iK n-k K,n k.0  k,K (K-1),(n-k) k=1 ' 

where I0,n = a0 yn 

Coefficients are updated according to equations (5.16) and 

(5.17), i.e. using 

where 

and 

where 

0+0= 

(i)  
-ek,i 

k=0, 	1 

(j+1) 
B 
k,i 

(j)  

k=1, 2 

	

(4) 	2 	(4) 	(4 
1 	 ' - 	g

) 

	

-k,i 	2i 	-a k,i 

40. 

;I 
n 	}(j)  {

1
--- 	E 	E 	. (5.49) 

(5.50) 

n LL 	LL 	aagi 

; 	and i=1, 2, 	K 

R(J) 	1,„ AO) 	(1) 
= 	' 	3i 	

4 koi 

aI
n 	}(i) . {I_ E 	c 

LL LL 	n  

; 	and i=1, 2, 	K 



2 DI
K,(n-k)  K,n _ 	- E B 

K,(n-k) 	r=1 r,i ank,i 313k,i 

(5.52) 
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As before, Ns denote the step sizes and 2:s denote the 

gradient vectors. The partial derivatives of In 
with respect to the 

RDFE adjustable parameters is very complicated. However, considering 

equation (5.48), 

. 	. 	. 
ain 	aIk n 31n 	al

K n 
= 	and 	= 

3ak o. 	aak,i 	31.3.k,i 	aa,i 

are given by the following (K-i+1) difference equations, 

ai 
n 

a-ak,i 

2  
I 	- E O 	

ai1,(n-r) 
- 

(i-1),(n-k) r=1 v  

3I
i,(n-r) 	

3i I  3i(1+1),n.  E 
2 
 a 

2 
E 	(i+1).(n-r) 

Daki 	r=0r,(i+1)aak,i 	
r=1 r,(i+1) 

• 

(5.51) 
• 

3IK,(n-r) 2 	ai (K-1),(n-r)  E 
2 

a
r,K 

= E a' 
r=1 	a2k,i ,K a 3 r=0 

r 
-k,i 

aIK,n 

aak,i 

Similarly, 

Basic cascade form adaptive RDFE structure, "a" and "A" 

updating processors are shown in Figures (5.14) to (5.16) respectively. 

Error formation is made according to Fig. (5.7). Finally, Fig. (5.17) 

shows the implementation of a cascade form adaptive RDFE. The number of 
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multiplications required for the basic cascade form RDFE and for the 

coefficient adjustment algorithms are ( 1 + 2N ) and ( 2 + 4N + N
2 
) 

respectively ( assuming M=N ). Stability for individual section is 

tested according to Fig. (5.18). 

FIG.(').1E) :;11. 1 ABILI_LY DC AIN :FOIL CASCADE S'2UCInG'. 

(5' 53) 

5.5.1 	INITIAL CONDITIONS: 

In cascade form RDFE, there are two important factors relating 

to convergence and MMSE. 

(a) The pairing of poles and zeros and 

(b) Orderings of the K-sections 

There is considerable flexibility in the manner in which the poles 

and zeros are paired together and in the order in which the resulting 

second order subsystems are cascaded. It appears that all such pairing 
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and orderings are equivalent for infinite precision arithmetic, though 

they may differ considerably in practice, owing to finite word-length 

effects. A detailed analysis is complicated. However, the above 

mentioned factors are easily accomplished by optimizing the filter 

design in the direction of minimizing either peak or total round off 

noise energy. It has been found that peak energy can be minimized 

by arranging sections approximately in order of decreasing Q[ 5-10 ]. 

In this case the high Q-section which has the largest peak response 

and hence will tend to amplify the round off noise most, is placed 

early in the basic structure and encounters the maximum subsequent 

filtering action. Also, this arrangement requires the largest amount 

of pre-scaling before entering the filter to prevent overflow. In 

the somewhat more common case of desiring to minimize total noise 

energy, the sections are arranged roughly in the order of increasing 

Q D-101 . However, this is the case usually used in practice. 

The pole-zero pairing and the difficulty encountered can be 

overcome by the proper selection of initial conditions which are given 

by (5.54) [5-6, Page 3131 

1 

1,i 
= -2 r Cos(27ri) 

R2 

2 
alai  =--Cos( 27ri ) 

R 	K  
0
2i 

= r
2 (5.54) 

a 	1 2,i 

where 	i= 1, 2, 	 

with 	r= 1/R and 0.2 < r < 0.5 



H (z) 
1 + 814 z

-1 
' 
.„ 
 "2,i 

a
0,1 

+ a1  i z-1. 
(5.56) 

Hi(  7) 

	 HK(Z)  
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5.6 	IMPLEMENTATION OF PARALLEL-FORM ADAPTIVE RDFE: 

An alternate approach is to write equation(5.1) in the partial 

fraction expansion form. 

K 
H(z) = C(z) + E Hi(z) 	 (5.55) 

i=1 

where H1(z) is the second order section of the form 

K is the integer part of (N + 1)/2 and C = ( aN  / 8N  ) 	(5.57) 

The realization of Equation (5.55) is called the parallel form and is 

shown in Fig. (5.19). 

The input-output relationship is given by the following 

difference equations. For mathematical convenience, considering only 

the direct form (I) second-order systems we have 



ai n (5.61) 
= 

"akiak) 	"ak/Bk) 	
Yn-k 
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I
0 ,n = E ( ak  / 8k) Yn-k 

2 	2 
I1 	= E ak 1 yn-k - 
'
n 

k=0 	' 	k=1 	' 

(5.58) 

2 	2 

IK ,n = E
k=0 	' 	k=

E  ak K Yn-k 	61(0( IK,n-k 
1 

K 
In = E I 

i0'
n  

Coefficient adjustments are done according  to Equations (5.49) and (5.50) 

i.e. 

ai
n 	aii,n 	2 	

aii,n-r - 
= Yn-k 	E  ar i 

Dak,i D'21c,i 	r=1 ' Dak,i  

and 	ain 	aiin 	. 	2 	ai
i,n-r 

- 	- - 	,n - 	r i 
38. 	3e„

, 	Ii 	s -k 
r=1 ' 38 

(5.59) 

(5.60) 

The coefficient of ( ak  / ek  ) is adjusted using  

k 

n-k 

in 

ak. (j+1) 
	

(5.62) 

ak 	Bk 	`akin' 
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where 

	

LL-1 	DIn  
R(j) 	= 1/LL E En 	. 
(ak/Sk) 	n=0 	3(ak/ak) 

(5.63) 

The implementation of basic parallel form adaptive RDFE structure 

"aK, " ak/ak  ", in along with stability control, updating processors are 

shown in Figs. (5.20 ) to (5.23 ) respectively. The formation of error 

is made according to Fig. (5.7) and Fig. (5.24) shows the implementation 

of complete parallel form adaptive RDFE. 

The number of multiplications required for the basic parallel 

form RDFE and for the coefficients adjustment algorithms are ( 1+2N ) 

and ( 2+6N ) respectively ( assuming M=N ) 

5.6.1 STABILITY OF PARALLEL-FORM ADAPTIVE RDFE: 

From Eq. (5.55) it can be seen that H(z) consists of a non- 
K 

recursive part C(z) in parallel with a recursive part 2: Hfz) made 
i=1 

up of second order elements as in Eq. (5.56). The problem of stability 

in the case of NRDF does not arise, whereas for the recursive individual 

section the question of stability has already been dealt with in section 

(5.2.2) and the same conditions apply here as well. 

5.6.2 	INITIAL CONDITIONS: 

Approximate initial conditions have baen discussed in section 

(5.5.1) and the same apply here as well. 



En-14 = i wn + 6  741  

In 	= H Wn+1 I 	(5.66) 
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5.7 	IMPLEMENTATION OF LATTICE-FORM ADAPTIVE RDFE: 

There is evidence that in addition to standard digital filter 

forms such as the direct (I and II), cascade, and parallel forms, 

digital lattice and ladder filters may play an important role in 

finite word-length implementation of equalizers. 

We consider here lattice form digital filter proposed by Gray 

and Markel [5-111as an adaptive RDFE. This structure is based on the 

properties of orthogonal polynomials. It has the advantage that its 

stability is easy to test and its stability conditions are given by its 

feedback multiplier coefficients {ki )1.1  

1 
ki  I < 1 	i= 1, 2, ... N 	 (5.64) 

Gray and Markel C5-11
J 
 have considered three models of this particular 

form i.e. (a) Two-multipliers, (b) one-multiplier and (c) Three multi-

pliers. We have selected "two-multiplier model" since each section 

contains two-multipliers and that the other models can be easily deduced 

from it. A general implementation of lattice ( and ladder ) form and 

the prototype filter for the two multiplier model are shown in Figs. 

(5.25) and (5.26) respectively. 

The input-output relationship of this model is given by the 

following state-equations in the discrete form 

where 

T 
Wn 	1,n = [-w 	, w2,n .-.. 	wN , nl 

(5.66) 

is the vector of state variables 
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-kN_, 	-kN  

-kIkN_I -klkN 

-k k- 2 N-1 	-k2kN 

... 	... 
(5.67) 

-kN_2kN_I  -kN_2kN  

2 1 - kN_1 -kN_lkN 
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-k1 

1-ki2   

-k2  

-k1k2 

0 1-k2 
2 

0 0 
= 

0 0 

0 0 0 

0 0 0 

111■• 

r 
GT = Ll, kl, k2, 	kN_2, 

and 	H = NO' vl. v2, vN-1]  

(5.68) 

(5.69) 

The adjustments of the coefficients of the lattice-fora adaptive RDFE 

are given by the following iterative relationships. 

k
(j+1) 

	

. 4ni) - 	A  0 ) 	E.(1) 	
(5.7 0) 

-m 7 	m 

-m 

v (j+1) 

= -m 

	

v 
(j) 
 - 	AO) 	.8.(

v
J
m
) 

8 	
(5.71) 

where gradient vectors are given by 

and 

(j) = 1/LL E 	
c o)  

=0 m 	n 	

a'n LL-1 

3km  

m  
0) = 1/LL E 

n=0 

c(j) n  
1 ai LL-1 

3v
m  

for m=1,2,...N 	(5.72) 

for m=0,1,...M 	(5.73) 

for which 

atn 
W 
	 (5.74) 

avm 
	m,n 

and 
	3In is calculated using method described in Eq.(5.48). 

3km  

and 
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The implementation of basic 1'ttice form adaptive RDFE; "v", "k" 

along with stability control updating processors are shown in Figures 

(5.27), (5.28) and (5.29) respectively. The formation of error is 

made according to Fig. (5.7) and Fig. (5.30) shows the implementation 

of complete lattice-form adaptive RDFE. 

The number of multiplications required for the basic lattice 

form RDFE and for the parameters adjustment algorithms are (1+14+2N) and 

(1+M+2N+MN+2N2) respectively. 

5.7.1 	STABILITY CONDITIONS: 

A built-in stability test exists within the synthesis process 

which is given by the inequality (5.64). If any k-parameter:magnitude 

exceeds or equals unity, the equalizer is unstable, otherwise stable. 

5.8 	IMPLEMENTATION OF A DECISION-FEEDBACK RDFE: 

If the discrete-time channel to be equalized has a zero ON the 

unit circle, the recursive digital filter equalizers discussed earlier 

will become unstable. In order to avoid this situation we proposei that 

[

quantized versions of output Q In_k  , are fed back leading to the modi-. 

fied difference equation: 

r 
I
n 

= E ak  yn-k  - E k Q [In-k k=0 	k=1 
(5.75) 

Implementation of Eq. (5.75) shown in Fig. (5.31) is called a decision 

feedback RDFE. The partial derivatives of Eq. (5.75) are given by 
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a I
n 	

3Q [I
n-k  

E B 
a a i 

- 

Yn-i - 	k 
k=1 	aa i  

(5.76) 

where 	i=0, 1, 	M 

  

 

ain 
- - Q 	- E B 

k k=1 

aQ [In_k] 

 

   

 

9Bi  (5.77) 

where 	N 

Now if we assume the changes in ak ( deck ) and 6k  ( ask  ) to 

be very small then the equalizer is not disturbed materially and,therefore, 

we can write 

. 

and 

From 

and 

( Assuming 

Q [in-k1 	= In-k = 	A desired 

no decision errors by the 

aQ I In-k 1 - 0 	[ i= 0, 

information symbol 

decision device ) 

M ] 

1 	...M ] 

N I 

(5.78) 

(5.79) 

(5.80) 

(5.81) 

(5.82) 

. 
acti  

3Q [ In-k  
o 	[ - 	i=1 

aai  

(5.76) and 	(5.79) we obtain 

DI
n 
- 	[ i=0,  

Dai 	
Yn-i 

	

from (5.77) and 	(5.80), we get 

DI
n 

[In_i] 	[ 
aBi  



(.1") a(i) 	A( 	Ect  ) 	(J) 
--k 	__k 	- % 2  (5.83) 

k(Q) 

Finally multiplier coefficients updating algorithms are given by 

AO) LL-1 	-  0+1) = 
a(-1)  	E 	c (3) 2k 	-1( 	

Yn-' 
u 

LL n=0 n  - 

= a(
k
j)  - 	da(

k
J ) 	k=0, 1, 	M - - 

(5.87) 
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The multiplier coefficients are updated using the following 

iterative algorithms 

and 

(j+1) 	(j) 
13-1( 	= 	- A  g)(jk)(Q)  

(ik)o) 	
LL 

2/L 	cnj) 	ain 1(j) 

T 

	

n=0 	3a
k 

	

LL-1 	 4  
= 2/LL E 	E

n

(
J

) 
	

n-k 

LL-1 

	

ai 	(j)  
g9) 	= 2/LL E 	

N { 
	n } 

-16k(0) 	n=0 n  36 

LL-1 	
i) = 2/LL E 	E
( 	-{0(In-k)} • 

n=0 n  

and 

where 

and 

n=0 

k 

(5.84) 

(5.85) 

(5.86) 

A(J )  LL-1 E(j) 0+1) 
	13(1) 	10  

0 	= a   	E'J' {-Q] } 
-k 	-k LL n=0 

. 0) _ 60)  
-k 	-k  k=1, 	N (5.88) 

A very interesting observation from these two equations, 

that is the change in multiplier coefficients, are obtained by the 

cross correlations between the error and the input or the quantized 

decision feedback. Since the quantized decisions are fed back, 

therefore the name decision-feedback RDFE seems justified. 
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Basic decision feedback RDFE structure, "a" and "0" updating 

processors, are shown in Figures (5.31), (5.32) and (5.33) respectively. 

Fig. (5.34) shows the imp]ementation of a decision feedback 

RDFE. 

5.9 	COMPUTER SIMULATION: 

Tests were carried out to study 

(i) the properties of adaptive recursive digital filter equalizers, 

(ii) the comparison of various forms of adaptive RDFE developed in 

previous sections, 

(iii) whether RDFE can adapt better than NRDFE to an unknown or vary-

ing channel, 

(iv) whether the results are valid for a variety of channels, 

(v) whether use of a learning sequence (initialization) is necessary 

or even advantageous, 

(vi) whether or not use of an estimate of E [ej  I(j+k)] results in 

better adaptation than an estimate of E; Cep  Y(j+k)l for the NRDF 

section, 

(vii) Probability of error performance of RDFE (P
e) as a function of 

SNR (dB) using Monte Carlo simulation technique. 

We simulated six discrete-time equivalent channels (3,4,5,6,7 

and 8). The first three (3,4,5) are the telephone and cable channels 

where the phase distortion is severe and the amplitude distortion is 

moderate. The remaining three (6,7,8) are, usually, the multipath 

radio channels where amplitude distortion is severe and which frequently 

possess nulls in their time variant spectral characteristics. Therefore, 

we have embraced the most important channel characteristics apparently 
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met in practice. It can also be observed that channels (3) and (5) 

exhibit short-time dispersion impulse response while channel (4) 

exhibits long-time dispersion impulse response. Since the simulation 

runs were carried out for on-line adaptive equalizers, therefore, we 

decided first to initialize using a training sequence and then to switch 

on to the on-line-operation in a decision-directed mode. 

5.9.1 	DISCRETE TIME CHANNEL (3): 

A series of tests were made to explain the concept of pole 

zero constellation equalization as well as the effects of training, sPauence 

and decision directed modes 	on equalization when the channel 

characteristics are unknown and quasistationary. 

5.9.1.1 EOUALIZATION USING INITIALIZING (TRAINING) SEQUENCE: 

The input sequence to the equalizer given by 	0.17, 1.00, 

0.75, -0.95, 0.85, -0.56, 0.28, -0.10, -0.029, -0.0063, 0.00, 0.00 

is shown in Fig. (5.35 (a) ). Zeros of the z-transform Y(z) of the 

input signal are given in table (5.1) and are plotted in Fig. (5.35(c)). 

The effects of these zeros are cancelled by the poles/ zeros of three 

equalizer structures shown in Figures 5.35 (d)) to (5.35 (0] and 

discussed in the next section. The locations of the z-plane zeros 

of the input pulse are also useful in determining the rate of convergence 

of the equalizer time-series. If the input pulse has a zero on the 

unit circle, the equalizer response cannot converge for some real 

frequency. If the input pulse does not have a zero on the unit circle 

the pulse can be equalized and the rate of convergence of the equalizer 

is determined by the distances from the unit circle of the zeros. 
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TABLE (5.1) ZEROS OF THE z-TRANSFORM Y(z) OF THE INPUT SIGNAL 

ZEROS Re(z) Im(z) 

01  -4.410 0.000 

02  -2.340 0.000 

03  -0.099 0.460 

04 -0.099 -0.460 

05  0.440 0.000 

06 0.040 0.430 

07 0.040 -0.430 

08  0.330 0.290 

0
9 0.330 -0.290 

5.9.1.2 POLES OF RDFEF POLE ZERO CONSTELLATION EQUALIZATION]: 

In order to study the equalization based en.this method We 

studied the effects of the poles of three RDFE structures viz, 

(i) 	Direct form (I) RDFE having M=N=5. 

Since there are seven zeros inside the unit circle to be 

equalized and this structure can provide maximum of five poles 

only, therefore such deficient structures will be known as 

TOO-LOW AN ORDER RDFE. 

The poles of this equalizer are given in table (5.2) and are 

plotted in Fig. (5.35(d) ). This equalizer was able to equalize 

the channel and always had a tendency to use all its poles to rea-

lize the best approximation in the mean square sense. 
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(ii) Direct form (I) RDFE having  M=N=7  

On the basis of the above argument, this structure will be 

known as an OPTIMUM ORDER RDFE. 

The poles of this equalizer are given in table (5.3) and are 

plotted in Fig. (5.35(e)). As can be expected, this equalizer 

used all its poles to cancel the effects of the channel zeros 

inside the unit circle. 

(iii) Direct form (I) RDFE having M=N=9  

Since this structure has two more poles than the number of 

zeros inside the unit circle it will be known as TOO HIGH AN 

ORDER RDFE. 

The poles of this equalizer are given in table (5.4) and are 

plotted in Fig. (5.35(f)). The two superfluous poles of this equali-

zer, as can be seen, tend to converge towards the orgin and hence 

tend to help in achieving convergence with comparatively less MMSE. 

TABLE(5.2) POLES OF TOO LOW AN ORDER RDFE (M=N=5) [Fig. (5.35(d)) 

POLES 	Re(z) 	Im(z) 

P3 
-0.131 0.570 

P4 -0.131 -0.570 

P5 0.581 0.000 

P6 0.332 0.481 

P7 0.330 -0.481 
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TABLE (5.3) POLES  OF AN OPTIMUM ORDER RDFE M=N=7 	[Fig. (5.35(e))] 

POLES Re(z) Im(z) 

P3 -0.081 0.450 

P4 
-0.08] -0.450 

P5  0.470 0.000 

P6 
-0.022 0.440 

P7  -0.022 -0.440 

P
8 

0.342 0.321 

P9 0.342 -0.321 

TABLE (5.4) POLES OF TWO HIGH AN ORDER RDFE N=M=9 [Fig.(5.35(f)) ]  

POLES 

P
3 

P4 

P5 

P6 

P
7 

P8 

P9 

P10 

p10 

Re(z) 

-0.067 

-0.067 

6.440 

-0.015 

-0.015 

0.328 

0.328 

0.150 

0.150 

Im(z) 

0.410 

-0.410 

0.000 

0.390 

-0.390 

0.290 

-0.290 

0.130 

-0.130 
EXCESS POLES 

Let us compare the poles of the three equalizers [ Tables 

5.2 to 5.4 ] with the zeros of the input signal [ Table 5.1 ] we note 

that there is very good correlation between the poles of RDFE (M=N=7) 

with the zeros of the input signal, but in the other two cases the excess 
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or deficiency of poles in the equalizer causes a compromise to be made 

which is unlikely to give such a satisfactory impulse response or MSE. This 

method is called the Pole Zero Constellation Equalization. 

5.9.1.3 	CONVERGENCE PROPERTIES: 

Simulation runs were made using the following initial zondi- 

tions: 

aT  = 	[0, 	0, 	... 1] 
Multiplier coefficients 

8 	= 	0 

-0.004 < Al  < -0.002 
Convergence constants 

and -0.038 < A2  < -0.015 

using an initializing mode, we found all the equalizers converged to 

some minimum MSE values [ Fig. 5.35 (g) ]. It was noted that RDFE 

(N=M=5) was quick to converge with large residual MSE whereas optimum 

(M=N=7) and larger (M=N=9) structures converged rather slowly but 

apparently with significantly less MMSE. The final multiplier values 

(i.e. a and a ) are given in tables (5.5) and (5.6) and the corres-

ponding RDFE outputs are given in table (5.7) 

TABLE (5.5) VALUES OF a AND 8 AFTER CONVERGENCE (M=N=7)  

i 0 1 2 3 4 5 6 7 

ai  -0.C1 0.01 -0.0295 0.071 -0.159 0.350 -0.661 1.00 

Si 1.00 -0.985 0.768 -0.443 0.224 -0.081 0.020 -0.005 
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TABLE (5.6) VALUES OF a AND a AFTER CONVERGENCE M=N=5 

i 0 1 2 3 4 5 

ai  -0.032 0.073 -0.162 0.350 -0.67 1.00 

Si 1.000 -0.985 0.760 -0.443 0.224 -0.081 

5.9.1.4 	EOUALIZATION USING DECISION DIRECTED MODE: 

A test was carried out to compare between the advantages 

offered by using initializing pulses and those using decision directed 

mode by adding to each sample of the channel a zero mean gaussian 

random number with standard deviation 1.17 x 10-3 after each 100 

symbols had been passed through the discrete time channel. 

Convergence curves, thus obtained [ Fig. 5.35(h) ] were 

compared with the curves of [ Fig. 5.35(g) ] . It was noted that the use 

of initializing pulse sequence improved the speed of convergence of 

the adaptive algorithm by a factor of three. Furthermore, the same 

values of minimum MSE were obtained in both the decision directed and 

the initialized (trained) modes of operation. 
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TABLE (5.7) EQUALIZER OUTPUTS Sit  AFTER CONVERGENCE 

k 	Ik 
(M=N=7) 	I

k 
(M=N=5) 

0 	-0.56 x 10-3 	-3.20 % 10
-3 

1 	-2.54 x 10-3 	-1.31 x 10
-3 

MAIN PULSE M----2 	0.09 x 10
-3 	

-0.410x 10-3-MAIN PULSE-M 

3 	-0.04 x 10-3 	-0.841x 10-3  

4 	-0.84 x 10
-3 	

0.132x 10-3 

5 	-0.04 x 10-3 	0.598x 103  

6 	-0.14 x 10
-3 	

-0.471x 10
-3 

7 	0.62 x 10-3 	1.000 	-MAIN PULSE 

8 	-0.42 x 10
-3 	

-0.342x 10
3 

MAIN PULSE 	 9 	1.00 	0.672x 10
-3 

10 	-0.13 x 10
-3 	

-0.672x 10
-3 

11 	0.74 x 10-3 	1.00 x 10-3 

12 	-0.74 x 10
-3 	

0.03 x 10-3-MAIN PULSE+N 

13 	1.11 x 10
-3 	

171 x 10-3 

14 	0.03 x 10
-3 	

141 x 10-3 

15 	-0.26 x 10
-3 	

0.67 x 10
-3 

MAIN PULSE+N 	16 	0.67 x 10
-3 	

-2.25 x 10-3 

17 	-0.73 x 10-3 	0.13 x 10
-3 

18 	-0.07 x 10
-3 	

0.45 x 10
-3 

19 	0.07 x 10-3 	0.21 x 10
-3 

20 	0.010x 10
-3 	

0.43 x 10-3 

	

210.000 	0.29 x 10
-3 

22 	0.000 	0.04 x 10
-3  

RES. MSE=0.01 	RES. MSE=0.03 
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5.9.2 	DISCRETE TIME CHANNEL (4): 

The impulse response of this channel given by 

[ 0.05, 0.2, -0.9, 0.1, 1.0, 0.63, 0.4, -0.4, 0.5, -0.2, 0.3, -0.2, 0.2, 

-0.1, 0.15, 0.1, -0.10, 0.10, -0.08, 0.06, -0.05, 0.04, -0.02 ] 

is plotted in Fig.[ 5.36(a)] . 

This channel exhibits long dispersion and requires 23 zeros 

to be equalized. We attempted to equalize this channel with three 

RDFE structures having M=N=5, 7, and 9 to compensate for 10, 14, and 18 

zeros of the input pulse to the equalizer. These structures were selec-

ted taking into consideration the quantization errors accumulated by the 

larger strucrures than 9. We studied the followinp nronPrties: 

5.9.2.1 	PERFORMANCE OF THREE DIRECT FORM RDFE: 

The simulated results were plotted in Fig. 5.36(c). 

Equalizer M=N=5 converged [ Curve D ] but left behind a large MMSE 

(0.04). Equalizer M=N=7 converged [ Curve E ] with an acceptable MMSE 

(0.024) whereas equalizer M=N=9 converged [ Curve F ] with an MMSE 

(0.020) which proved to be an optimum case here. Furthermore increase 

in RDFE structure provided almost no reduction in MMSE since the perfor— . 

mance was impaired by the accumulated quantization error. A study to 

this effect has been widely reported in the annals of digital filters. 

For a given channel characteristic, the output SNR is mono-

tonically related to the probability of error and it is much easier to 

compute even in the case where the residual ISI exists over an infinite 

number of symbols. A relationship between the output SNR and MMSE exists 

[ 5-12, 5-5, 6 ]. 
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5.9.2.2 	COMPARISON OF PERFORMANCES OF VARIOUS RDFE STRUCTURES: 

Simulations were made to compare the convergence properties 

of various derived RDFE. Convergence constants (A) for the various struc- ,  

tures were judiciously selected from the values outlined in section[5.9.1.3] 

We experienced difficulties with the parallel form [ Curve 4 ] 

structure. Literally it did not converge within 36 iteration steps. 

However, the convergence took place in the cases of 

(a) Direct form I and II RDFE [ Curves (1) and (2) 	I 

(b) Lattice form RDFE [ Curve (5) 
Fig. 

(c) Decision feedback RDFE [ Curve (6) 	] 5.36(d) 

(d) Cascade form RDFE [ Curve (3) 	] 

Curve (6) was different because of the fact that the quantized output 

symbols have been fedback. 

Finally a rough comparison of derived RDFE structures on the 

basis of hardware and/or software complexities and on the stability 

can be shown as in table (5.8). 

5.9.2.3 	COMPARISON OF PERFORMANCES BETWEEN ADAPTIVE RDFE AND NRDFE: 

A comparison of performances between adaptive versions of 

RDFE and NRDFE, over discrete time channel 4 was made. Fig.[5.36 (e)] 

shows the curve obtained by using different structures. It can be seen 

that the performance. of NRDFE converges slowly towards that of the 

RDFE. The reasons can be explained easily on the pole-zero constellation 

equalization technique that during equalization, the zeros of the trans-

fer function of the NRDFE outside the unit circle in the z-plane converge 

towards the zeros (outside the unit circle) of the RDFE. 
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TABLE (5.8) COMPARISON ON THE BASIS OF MULTIPLICATIONS AND STABILITY 
OF DERIVED RDFE STRUCTURES: 

Legend: 0 EM=N=5 	Q EM=N=7 	EM=N=9 

NO. OF MULTIPLICATIONS REQD. 

EQUALIZER TYPE BASIC RDFE 

STRUCTURE 

COEFF. ADJUSTMENT 
WITHOUT STEP SIZE 
MULTIPLICATION 

STABILITY 

TESTING 

1 2 3 1 2 	, 3 

DIRECT FORM (I) 11 15 19 66 91 190 EASY 

DIRECT FORM (II) 11 15 19 66 91 190 EASY 

CASCADE FORM 11 15 19 47 	79 	119 EASY 
assuming M=N 

PARALLEL FORM 11 	15 19 32 	44 	56 EASY 

LATTICE FORM 
assuming 
16 	I 	22 

M=N 
28 

tappT) 

91 	169 	271 VERY EASY 

5.9.3 	DISCRETE TIME CHANNEL (5): 

The spectral characteristic for this data quality telephone 

discrete-time channel possess a depression of about -12 dB. The channel 

impulse response given by [ 0.07, -0.08, 0.1, -0.3, -0.62, 1.0, 0.5, 

0.0, 0.3, 0.05, 0.1 ] is shown in Fig. (5.37). The initial distortion 

is 2.80 and the binary eye is completely closed. 

The decision-directed on-line adaptation convergence curves 

are shown in Fig. [ 5.37(a) 	. As can be seen from Curve (1), that the 

MMSE equals 0.033 whereas from Curve (2), the 4SE equals 0.01. RDFE 

structure number 1 was unable to compensate for the entire ISI whereas 

number 2 having superfluous poles was able to reduce the MSE to the 

absolutely minimum level. RDFE structure number 3 exhibited very little 

superiority Wg. 	WA-0i IM21 to 	7Prits, vemt 

again, proves the fact that the superfluous poles provided by structures 
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(2) and (3) helped in the convergence of the adaptive algorithm and 

influenced immensely in reducing the MSE. 

5.9.4 	DISCRETE TIME CHANNEL (6): 

This channel impulse response is symmetrical about the main 

pulse (1.00), possesses severe amplitude distortion effects and is a 

difficult channel to equalize [ Fig. (5.38). 

This channel was equalized using equalizers in decision-

directed mode. On close examination of Fig. [5.38(a)] , we notice that 

these curves exhibited an overshoot. That is, MSE decreased to some 

minimum value and then increased slightly after which it tended to decrease 

again. This effect occured on any channel where very rapid initial 

convergence was obtained and appears to be an overshoot effect due to 

the transient properties of the adaptive algorithm. 

Also, convergence was the fastest; this could be attributed to the 

impulse. response symmetry about the main pulse. As a matter of fact, 

the persymmetry properties correspond to the case of a matched-filter 

preceding the RDFE. 

The minimum MSE attained by RDFE was 0.024 whereas by NRDFE 

was 0.037. The bottoming effect was more pronounced with NRDFE ( M=35 ). 

The conclusion reached here is that a NRDFE cannot compensate very well 

for channel characteristics that exhibit large depressions or nulls in 

their spectral characteristics, whereas, RDFE performs considerably 

better. 
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5.9.5 	DISCRETE-TIME CHANNELS (7)  AND (8): 

The impulse responses for these channels are shown in 

Figures (5.39) and (5.40) respectively. These channels were equalized 

with structures similar to those used in Fig.[(5.38 (a)], and exhibited 

the same pattern of curves as shown in Fig.[(5.38(a)] . However, 

the residual MSE was considerably more in the case of RDFE structure 

M=N=9. 

	

5.9.6 	PERFORMANCE OF RDFE AS A FUNCTION OF THE SIGNAL TO  

ADDITIVE NOISE RATIO: 

As the additive noise level is increased decision errors 

at the RDFE output seven after convergence has occured, will become more 

frequent. The most significant measure of equalizer performance in 

this case is the output probability of error, Pe  , as a function of the 

input SNR, (SNR)IN  , which in this case is defined as 

[Main Pulse 2  
[SNR] IN = 	 (5.89) 

NO  

where N
0 
 is the additive noise variance [ 5-12] . Because of the 

complexity and the absence of any analytical procedure, we estimated 

the P
e 

by means of Monte-Carlo simulation technique [ 5-2, 5-18] . 

Extensive tests were conducted using the same equalizers 

and channel impulse responses as in the convergence tests. Our main 

interest here was in the steady-state error rate, namely the value of 

P
e 

obtained after the equalizer has converged to within a small 

neighbourhood of its optimum operating point. We therefore used a 

training sequence of 510 symbols so as to obtain. rapid initial convergence 
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and then waited a further 2000 symbols durations in the decision directed 

mode to allow ample time for the equalizer to reach its steady state. 

The error rate was then measured by counting the number of errors that 

occured. This count was continued until errors had been counted, and 

the procedure was repeated over a range of SNR's. 

The results of these simulations for D.T. channels (5), (6), 

(7), 	are shown in Figures [5.41] , [5.42] , and [5.43] respectively 

where we have plotted the estimated Pe  or error rate as a function of 

[SNR ]
IN for the channel responses shown. Also, we have plotted in 

these figures the following curves[ 5-14, 15 ] 

(1) The ideal case P
e 
as a_function of [SNR ]IN 	This is 

a lower bound on the attainable P
e 
for a non-dispersive 

channel. 

(2) The Pe obtained when no equalization is used. This has 

been obtained by using Hill's method [5-13] . 

(3) The corresponding Pe  obtained by simulating the RDFE. 

We observe: 

(i) From Fig. (5.41) that, for phase distorted channels, 

the performances of RDFE and NRDFE remain within 3 dB 

of the performance achieved with no interference, 

however, the gain is achieved in the number of shift 

register stages. 

(ii) The performance of RDFE was remarkably superior on the 

severe amplitude distorted channels, Figures( 5.42 and 

5.43 1. The performance of NRDFE was the least satis-

factory. It could be attributed to the fact the chan-

nels, (6), (7), and (8) exhibit spectral nulls and on 
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such channels an adaptive NRDFE cannot compensate for ISI 

very well. 

(iii) During the tests it was observed that by increasing the number 

of taps of RDFE the performance was improved on amplitude 

distorted channels, Fig. (5.43). Whereas NRDFE taps did not 

improve the performance at all. 

(iv) The probability of error Pe  obtained by using an NRDFE of 

length 35 on D.T. channels 7 	is large. Also, NRDFE 

appears to encounter the convergence difficulties. 

(v) Although sufficient improvement in performance over NRDFE 

has been noted, still there is considerable degradation in 

performance of the RDFE due to residual ISI, especially on 

channels with severe distortion. 
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5.10 	SUMMARY AND COMMENTS: 

(A) 	We have discussed the design procedures of the following 

forms of adaptive RDFE 

(i) Direct form (I) 

(ii) Direct form (II) 

(iii) Cascade form 

(iv) Parallel form 

(v) Lattice form 

(vi) Decision-feedback 

(B) 	The concept of pole-zero constellation equalization has been 

explained [ Fig. 5-35 (a) to (0] . 

(C) 
	

The ratio between the two convergence rates, one using 

the training sequence and another using the decision directed 

mode, has been found to be a factor of three [ Fig. 5.35 (01  

and (h) 1 and weighs heavily in favour of the training 

sequence. 

(D) 
	

Convergence qualities of these forms have been studied for 

various different conditions and have been found to converge 

locally except tile parallel form adaptive RDFE. 

Figures [5.36 (a) to (e)] , [5.37 (a)]and[5.38 (a)]  

(E) 	Because of the digital nature, all the RDFE structures 

can be easily implemented and time-multiplexed. 

(F) 
	

Decision feedback RDFE offers very little advantage. 

Nevertheless, it shows that an ordinary RDFE can be made 

a decision feedback equalizer easily, and therefore is 
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more versatile than any other forms of equalizers [Fig. 

5.36 (d) ] . 

(G) 	By Monte-Carlo simulations, we have estimated the probability 

of error, Pe  , and found that 

(i) For severe phase distortion channel, both equalizers 

(NRDFE, RDFE) performances are well within 3-dB of the 

ideal (No ISI) conditions. Slightly better performance 

behaviour of RDFE can easily be seen ( Fig. 5.41 ) 

(ii) For severe-amplitude distortion channels, the superb 

performances of RDFE can be compared with the worst 

performances of NRDFE [Fig. 5.42] and[4.43] 	. 

(H) 
	

We would, therefore, expect that an RDFE should provide an 

attractive replacement for existing equalizers on phase 

( telephone and cable ) and amplitude ( radio multipath ) 

distorted channels. 

(I) 	The speed of convergence is dependent on.the channel charac- 

teristics. 

(J) 	In order not to exceed an acceptable amount of computer 

time we found that it is impossible to estimate error prob-

ability of an order of magnitude less than 10
-3 by using 

Monte-Carlo simulation technique ( see appendix ). 

(K) 	The convergence properties of the derived adaptive RDFE 

strongly depend on the chosen convergence, constants for their 

coefficient adjustments. Therefore, a comparison of their 

performances is difficult and the results thus far obtained 

must be considered with caution. However, the selection is 

recommended on the basis of table (5.8). 
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(L) We have been made aware of the facts that an adaptive RDFE 

is being considered at various establishments [5-16, 171 . 

(M) A detailed study of the quantization errors (Signal, Multi-

plier coefficients quantization etc.) in adaptive RDFE should 

be made. 

(N) An effort should be made to consider the possible use of the 

following RDF schemes 

(1) 	Multirate recursive digital filter ( prollo sed by 

Wong and King of Imperial College,London ) 

(ii) Ladder form recursive digital filter ( proposed by 

Mitra and Sherwood of Univ. of California ). 

(iii) Charge coupled recursive digital filter ( proposed by 

Gersho and Gopinath of Bell Labs. Murray Hill ). 

All of the above RDF schemes are equally serious contenders. 

jy(lptS1141,e(AtOkUo AS 

(0) 	_ 	of RDFE using currently available microprocessors 

(:INTEL 3000, MOTOROLLA 6800 ) appear to provide very good 

oppurtunity to emulate the entire system. 
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CHAPTER 6  

ADAPTIVE RECURSIVE DIGITAL FILTER EQUALIZER RECEIVERS USING MAXIMUM-

LIKELIHOOD SEQUENCE ESTIMATION (THE VITERBI ALGORITHM )  

"Explain all that', said the MOCK Turtle 

"No, No! The adventures first," said the Gryphon in an 

impatient tone: 

"Explanations take such a dreadful time", 

-LEWIS CARROLL (Alice's Adventures in Wonderland )  
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6.1 	INTRODUCTION: 

In chapter (1), a discrete time channel model has been derived. 

The output of this discrete time channel model is, a finite state Markov 

process corrupted by additive white gaussian noise, a property which is 

important in our discussion of an optimum detection algor!thn for the 

sequence of symbols {Ik }. 

From chapters (2) to (4), we have discussed NRDFE. These 

equalizers always entails so called " noise enhancement ", i.e., the noise 

variance at the output is bigger than at its input [6-1, p. 142]. 	Also, 

if the channel possesses nulls in the folded power spectrum of the pulse, 

then it is even more difficult to find a reasonable size NRDFE. 	In order 

to cope with the spectrum nulls in digital channels reasonably well, the 

existence of an equalizer, viz RDFE has been proposed and evaluated in 

ch. (5). However, the superiority of RDFE over NRDFE can he impaired badly 

if the no decision error propagation and the stability conditions are not 

observed properly. 	Because of certain superior features of RDFE we look 

upon , here, its suitability as a prefilter in conjuction with the VITERBI 

algorithm or maximum likelihood sequence estimator (henceforth to be 

abbreviated as the VA or HLSE ). 

The classical theory of ML detection of the transmitted symbols 

provides a conceptually simple solution to the problem of ISI: for an 

information of N symbols from an alphabet of size H, M
N 
matched filters, 

each matched to one possible information waveform, are used at the receiver. 

The information sequence with the largest output sample value is the most 

likely transmitted one and hence is chosen as the receiver's guess of the 

transmitted sequence [6-2 1. However,this approach is impractical since 

the number of matched filters (H.F.) grows exponentially with the information 

length. 
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In 1967, Viterbi[ 6-3] devised an algorithm for decoding convolution 

codes, thereafter commonly referred to as the VA. 	Forney [6-41 pointed 

out that 	this algorithm is indeed a maximum likelihood rule, and 

therefore always optimum.Later it was identified by Omura E6-51'as a 

version of forward dynamic programming. 	Recognizing the fact that 

convolution codes and the ISI process are both shift register processes 

[5-6] , Omura [6-7] , Forney► [6-31 , Kobayashi [6-91 showed that the VA 

is equally applicable to decoding ISI. As we shall see later the 

performance of the !ILSE is so superb while its complexity grows very fast 

with the number of ISI terms in the received signal, it is very worthwhile 

to make an attempt to limit its complexity while retaining its good 

performance. One immediate approach is to use an equalizer to shape the 

channel into some desited one whose impulse response is short and then employ 

the VA to this equalized channel characteristic. This was the scheme 

put forward by Forney in his original work [6-8]. This resulted in much 

attention being given to practical methods of applying his results and 

suggestions. Qureshi and Newhall [6-10] examined this receiver for slowly 

time-varying channels and analyzed the effects of coloured noise and 

residual ISI on the performance. It is quite successful, especially when 

the shapes of unconditioned channel spectrum and the desired one are similar. 

A slightly better scheme than [6-161 has been proposed by Falconer and 

Magee [6-11] 	They adaptively optimized both the desired impulse response 

(DIP) itself and the NRDFE parameters in order to minimize the ?TSE between 

the output of the NRDFE and the DIR while constraining the energy in the 

DIR to be fixed. Cantoni and Kwong [6-12] have shown that minimum MSE 

achievable for this structure is a monotonically decreasing function of 

both the length of the desired impulse response and the delay involved in 

updating it. A similar scheme studied by Messerschmitt [6-13] also uses a 
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NRDF to design a finite impulse response for the VA. The impulse 

response of the filter is determined to minimize the noise variance while 

holding the first nonzero sample fixed. A numerical example for coaxial 

cable channel shows that the performance of the infinite impulse response 

can he approached by a short impulse response in this way. Recently 

Fredricsson [6-14] studied the optimization of the transmitting filter, 

as well as the optimization of thr, traqsmttting aad n!oeiving ElltQr46-15]. 

In both cases he has put a constraint on the receiver complexity by limiting 

the length of the system impulse response. The results over the coaxial 

cable channel show that the VA is preferable even when the length of the 

system impulse response is quite short. 

Recently novel approaches have been made to limit the complexity 

of the ni,sE and thereby simplifying the VA itself. One method was 

discussed by Forney [6-8], which is suitable to the class of partial 

response system and the system does not incur much loss in performance 

compared to the original VA. Fredricsson [6-16], Vermeullen and Hellman 

[6-17] independentlyderived a two state receiver which keeps only two 

survivors. This reduced-state receiver was shown to he asymptotically 

optimal for high SNR under the sufficient condition of (dmin/2) <0.625. 

Kazakos [6-18] saved computations, without affecting the optimality of 

the algorithm, by observing that certain transitions cannot occur 

simultaneously in the VA for a given impulse response. Magee and Proakis 

[6-19] developed an adaptive TaSE and estimated its performance when only 

the pulse response energy and duration are known. Ungerboeck [6-20] also 

examined an adaptive receiver in which he used a modified version of the 

VA that operates directly on the output of the matched filter thus 

eliminating the need for a noise whitening filter. 
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Except for the schemes to simplify the algorithm itself, all of the work 

so far, used a NRnF to shape the impulse into some desired one. 

In this chapter, we will study the use of RDFE in place of 

NRDFE, which is our first and independent effort. We propose and then 

analyze by computer simulation two receivers consisting of an adaptive 

RDFE (direct form) with the VA as the decision device. 	A method of 

estimating the performance of the MLSE is presented for the case when 

the delay in the ?tLSE is limited. 

In the proposed receiver structure (1) tentative decisions of 

the VA are used to cancel the effect of the tail of the channel impulse 

response. 	Desired impulse response filter is fixed and the basic RDFE 

ifs an adaptive filter. 

However, we propose a more practical receiver structure (2), 

in which a seperate NRDF is used as a DIR which has been considered to 

be an adaptive filter to cater for the slowly varying channels. 

Because of the nonlinear nature of the optimization problem main 

emphasis has been laid on the computer simulation. 
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6.2 	FUNDAMOITAI S • 

In chapter (1) [section (1.9)], a discrete time channel 

model has been developed. 	We have stated that the cascade of the 

transmitting filter x(t), the channel g(t), the matched filter h(-t), 

the sampler and the discrete time noise whitening filter g/F(z-1)] can 

he represented as a finite memory equivalent discrete time NRDF having 

the set {pk} as its multipliers. The output of this model is a finite 

state Markov process corrupted by white gaussian noise of zero mean and 

variance N0' 	This is illustrated by Figs. (6.1) and (6.2). 

We describe receivers which are optimum in the sense that the 

entire received sequence is correct rather than minimizing the average 

number of errors in the received sequence. 	These receivers are in fact 

asymptotically optimum in terms of the average number of errors as will 

he shown in subsquent sections . 

In section (6.2.1) the method of maximum likelihood is describeA. 

In section (6.2.2) the VA, a simplified algorithm for sequence estimation 

is discussed. 	In section (6.2.3) the performance of the VA is discussed 

and an upper bound on performance is developed. 	In section (6.3) we 

describe the proposed adaptive versions of VA receivers in conjunction with 

a recursive digital filter equalizer . 	Finally we analyze by simulation 

the receiver structures in section (6.3.1). In section (6.4) a more 

practical receiver has been proposed in which DIR is an adaptive filter. 

Section (6.5) deals with the computer simulation. 
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6.2.1 TIAYITINt LIKELIHOOD SEQUENCE ESTIMATION: 

The classical theory of maximum likelihood detection of the 

transmitted symbols provides conceptually simple solution to the problem 

of ISI: 

For a message of N symbols from an alphabet of size H, MN  

matched filters, each matched to one possible message waveform, are used 

at the receiver, The message sequence with the largest output sample 

value is the most likely transmitted one and hence is chosen as the 

receiver's guess of the transmitted sequence. This approach, which 

minimizes the average number of errors in the received sequence, is of 

no practical use, however,since the number of matched filters grows 

exponentially with the message length and, in any practical situation, 

is much too large to he implemented. 

Thus, having failed to minimize the average number of errors 

MaX 
simply, one can investigate 	imizing the probability that the entire 

AA 
received sequence is correct. This type of decision mthing is simply 

asymptotically optimum, which means that at moderate SNR it is effectively 

as good as the optimum detector. The VA is a simple efficient algorithm 

which accomplishes this problem [6-8] . 

From Fig. (6.2), the output of the discrete time channel 

finite state machine is written: 

r(z 1) 	I(z 1) o(z-1) 

This output is then added to a white gaussian noise (WGH) sequence n(z-1) 

with autocorrelation function 62dij to form the received sequence Y(z
-1), 

The channel consists of a shift register of L memory elements, each having 

m- states(i.e. the number of signal levels). These memory elements contain 

the L-most recent inputs. The machine has mL  possible states given by the 

L most recent inputs: 

 
sk = ( 

T 
Lk-ls ik-20  "" 

	Ik-L) 
	

(6.1) 
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where k = 0 for k<o 

Since there are mL  states, therefore, we can set a one-to-one correspondence 

between the states and the integers ranging from 1 to 4. The state 

sequence s(z-1) is given by: 

s(z-1) = s0+siz-1  +52z-2  + 	040 	 (6.2) 

and two successive states determine an output 

rk  = r (sk  , sk+1 ) 	 (6.3) 

Since it is the entire received sequence which is to be estimsted, the 

maximum likelihood sequence estimation rule i4 (1,!FtlIQI aq ,=.1ect1T13 

I (3-1) for which the likelihood function p[lY(z-1)1I(z-1)11 is maximum 

over all allowable source sequences I(z ); that is, the receiver chooses 

as its estimate the one which gives the largest value of conditional 

probability density. Since for a given discrete time channel, the mappings 

from I(7.71) to s(z-1) and to r(z-1) are one-to-one, therefore, the choice 

of the most likely I(z-1) is equivalent to the choice of most probable 

s(z-1) or r(z-1) from the noisy observation Y(z-1). The VA is a simple 

method of performing the computations of HLSE. 

6.2.2 THE VITERBI ALGORITHM (VA): 

To construct the recursive estimation algorithm known as the 

VA, we first use the fact that the noise terms nk  are independent. Then 

the log likelihood function 

In p [Y(z-1)Is(z-1)] 

breaks up into a sum of two independent increments: 

In p[Y(z-1)1s(z-1)1= Ek  In pn  Y C-k- r(sk ,sk+1)] 	(6.4) 

where 	1 	( n2 ) 

	 exp 	 (6.5) 
Pn(  a) = )12

7; an 	a 02n  
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is the probability density function of the gaussian noise sample nk with 

variance a 	, .-ia and rk is given by Eq. (6.3) [6-C . For notational 
••  

convenience, we denote the partial sum in the log likelihood function 

from k1  to 

r 

r 

then the log 

r 

(k1-1) as: 

rz-1) 

rz-1)1 

likelihood 

s(z-1) 

jkl 

i 

k2  

k2 k 

k 1 	kmk1 

function 

= r 

F. 

and define 

-1 

from, 

(z-i) 

0■;k1‹:k2  

it 

In 	Pn 

say 
k 

+r 
0 

as 

[fic- r( sk • sk+1 )] 

k=0 to k=K would be 

(I-1)] 	
lc 

(6.6) 

(6.7) 

for any k, 0< 15 K 

For each state 1, j c(1, 2, 	 mL} we call the state sequence having 
"k 

[ 

maximum log likelihood s(z-1) I among all allowable sequences evolving 
0 	 - -1 

at state j at time k the survivor for state j , and denote it by Si(z)i  

For any time k, there are mL survivors in all , one for each state. 

Principle of optimality dictates that with the final survivor at time K 

must begin with 

is simply to 

one 	s(z 	) 
[c_v 	-1 

one of these survivors [6-21] 

compute the log likelihood 

, one for each state Sk  = 
0 	- 	-1 

. 

s(z
1
) 

j 	and store 

The function of the VA 
k 

, select the largest 
0 

them with their 

corresponding survivor sequences Si(z ). Because it computes the likeli-

hoods recursively therefore it saves computations considerably.Forneyr6-id 

has shown that the VA can he used to detect on m-level sequence passing 

through a discrete time channel with known ISI. The complexity of the VA 

detector or MLSE depends on the shift register length L of Fig.(6.2). The 

storage required is at least 2(D-L+1)mL-1 bits where 1) is the maximum 

allowable delay in the detector and m is the size of the input alphabet. 

The detector must he capable of performing m
Lsubtractions , mL squaring 

operations, mL  miditions and (m-l)mL-1 binary comparisons every symbol 

period. 
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6.2.3 	PERFOIrfANCE Or THE 1fLSE:  

The performance of the receiver based upon the principle of
f 

 the 

VA can he greatly superior to other receivers. It has been shown 6-81 

that its performance is as good as could he attained by any receiver 

structure and in many cases as good as if ISI absent. 	The concept of 

7tic7!Cern distorce !TI 1.-eiven=JcnA s5mr,1 space between any two signals, 

r 
1 
 (z-1) and r2(z-1

) is used. This is defined as the energy in the asso-

ciated difference square. Lei" 

 
1. 	

1 	-1 	 (6.8) 
= 1(z  ) r2(z  ) 

and its square root called the distance between r1(z-1) and r2(z-1) 

is used. 	Here 

d2- 	- r2(z-1)112  

Ilyz 1)112 

of 	 2 

i=0 ri 
where tri = (rii-r2i) is the difference between two received signal 

values rli and r2i 
at time 1. Using this notion Forney [6-8] has given a 

tight lower hound as well as an approximation to an upper bound on error 

(6.10) 

where q .]is given by 

(6.9) 

[ 
co 

1 	-v2/2 
e 	dy (6.11) 

2n x 
KL  and K

u 
are constants which will he described below, 

drain 
 is 

min 

the minimum distance between any two distinct allowable received signal 

sequence. Bounds given by Eq. (6.10) are essential in the study of our 

receivers, therefore, derivation of these bounds , need the notion of 

error event 	' 
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An error event 'E' is said to extend from time kl  to k2  , when the 

estimated state sequence s(z-1) is equal to the correct state sequence 

s(z-1) at time k1 	' and k2, d 	but nowhere in between. The length of the 

error event is defined as n=
A  
 k2-k1-1. Clearly n 3L, with no upper hound; 

however, we can prove that n is finite with probability one. 

The probability of an error event 'E' is calculated as follows: 

- k, . 	-. The input error sequence is such that I(z-1) + z 	JEI(z 1  ) 

is an allowable sequence I(z-1) 

The noise terms nk, k1<  k< ki+n, must be such that 

over this segment I(z-1) has greater likelihood than I(z-1) 

or in terms of partial sum notations: 

k1+n+1 	jkl+n+1 
r s(z-J-)] > 	r[ s(z-1) 

k1 	kl 

In addition it is useful to define the suhevent: 

The noise terms are such that I(z 1)  has greater likelihood 

. - 1.)  

	

than the true Ikz 	, but not necessarily the greatest. 

Clearly E2 is contained in 1.... Then we have 

Pr (E ) = Pr (EI) Pr (E2IE1) 

Pr (E1) Pr (*El) 	(6.12) 

Assuming that the input symbols are independent and equiprobable, it is 

easy to show that [6-8] 

n-.1, 	m-IIil  Pi:( El) = n 	 (6.13) 
i=0 	m 

In terms of partial sum(7-f2  17. ) is ' 	- 	-1 

	

r -.(z--) ". 	> r s(z —". 
kl4n41 ki4n41  [ li  

[ 

	

k
1 	

k
1 

Since the noise is white and gaussian with variance, a2, then from 

(6.4) and (6.5) 

-1 

7. I. 
-2 • 

(6.14) 
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we get 

so that 

1 
in pn  (Y.

K
- r

k 
 ) = --In 27rcr2  

2 
- (Yk- rk) 2  /2 10-121  (6.15) 

[ 

, , k1+n+1 A - ki+n+1 
r s (z-l) 	= r 

k1 	 kl  1 

(k1-1-n+1)-1 
= E 	in pn  [Yk- rkl 

k=k1  

k +n 	1 	 (Yk- = E 1 In 	 exp. 
N 	

(' 
 r
-k)2) 

k=k1 	{-rran 	2 on 

and, similarly, 

r  F( z-1.)-1 
ki+n+1 	A  F k1+n+1 r   
kl 	 k1  

Subtracting, we get 

r  k1+n+1 1 k1411 21 
E 	(Yk-rk)

2 
- (Yk-rk) k1 	2a2n  k=ki  

(6.16) 

1 iy(z-1)..r(z-1)-112_11 IlY(z-1 	 ki4r  2 a2 	 kl 

in an obvious notation. 
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In words, i(z-1) is more likely than r(z-1) if i(z-1) is closer to Y(z-1) 

than is r(z-1) in the (n+1)- dimensional space corresponding to times k1 

to (ki+n). Since the distance squared between r(z-1) and r(z-1) is just 

the Euclidean weight d2(E) of r(z-1), the probability of E2' is given 

by 	
Pr( E2' 1E1  ) = Q[d(E)/2a 	 (6.17) 

where Q(. ) is defined in Eq. (6.11). Therefore the probability of a 

particular event E is 

Pr(E) .5Q[ d(E)/2a ni 	H 
	

m- 'Ti' 	
(6.18) 

10 m 

The symbol error probability associated withEis computed by weighting the 

error event E by the number of decision errors w
H 

) it entails: 

d(E) 
Pr 
	[41  (E  ) nll-L 

2crn 	i=0 	m 
(6.19) 

From the probabilities of individual error events we obtain a bound 

through the union hound. Let E he the set of all possible error events 

starting at time kl  and D he the set of all possible distances d(E ), 

then the probability of symbol error is hounded and 

Pr ( E ) < ZUH  (E )2Pr(E) 	 (6.20) 
EcE 	CC-P 

Because of the exponential decrease of the gaussian distribution function 

0 ( . ) with its arguments, the relationship given by Eq. (6.20 ) will 

be dominated at high SNR, i.e. small an, by the term involving the 

minimum value d
min 

of d(E ) 

where 

Pr (E) <Ku Q 
d
min  

2 an  

(6.21) 

n-L 
Ku = E wH

(E ) H 
EcE 	i=0 

dmin  

(6.22) 

 

denoting the set of error events having the minimum with E
dmin 

distance . Forney [6-8, pp 371] has proposed Eq. ( 6.21) to be a 



2an  

[iRo  
Pr (e) 

(6.23a) 
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hound, which, in fact, is only an approximation to a true upper bound; 

the accuracy of this bound depends on the assumption that all distances 

d( E) in D which are not identical to dmin and constitute extra terms in 

Eq. (6.20 ) are to he deleted. However, the estimate (6.21) is an 

asymptotic hound [6-22] and will become a true upper hound as the noise 

variance will he vanishing. In the high SNR cases, Eq. (6.21) gives a 

good approximation to the actual performance in many cases [6-8] . (It 

is possible to obtain this upper hound by generating function method 

which is more involved and therefore not described here [6-8] ). 

Next we describe the derivation of the true lower bound and its 

estimates. Let K
L 
 he the probability that the input sequence I(z-1) will 

be such that I (z) 	I (z-1) + z-k 	(z-1) is an allowable input 

sequence for at least one 	(2-1) c Ed 	and for some k. The prob. 
min 

that such an I(z-1) will be closer than I(z-1) to the received sequence 

z (z-1) is exactly Q Rmin/ ton  ] • Hence, with prob. KL, the prob. of 

an error event starting at time k for any k is at least Q blintn/ 2%1  , 

so 	dmin] 
Pr (e) > KL 

ton  (6.23) 

For comparison purposes, the prob. of error for a matched filter receiver 

in the absence of ISI is 

where R0 is the energy of an isolated pulse [ (6.23) reduces to (6.23a) 

in this case ]. Forney asserts that the lower bound of Eq. (6.23) is also 

a lower bound on the error prob. of any receiver [6-23] . Thus, the MLSE 

achieves within the multiplicative constant (Ku/KL), the minimum prob. 

of error attainable by any receiver at high SNR, and, in a very fundamental 

sense, the quantity (d2min /R0 ) is a measure of the effective decrease 
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in the SNR (relative to the detection of an isolated pulse ) resulting 

from ISI. 

2 
The determination of the quantity dmin  (known as the minimum 

distance problem ) is therefore a very important one for, even if the 

implementation of the HLSE is not contemplated for a particular channel, 

,2 is a measure of the potential performance which can be obtained 'Min 

using receivers of arbitrary complexity. However, on channels with 

severe ISI, the exact analytical determination of dmin does not appear 

feasible because of the nonlinear nature of the problem. We therefore de-

termine the minimum distance under a fixed energy and pulse response 

length constraints. 

Since the channel is linear, the input error sequence &/(z-1) 

maps simply to the output,
r
(z
-1

), by 

yz-1) 	I(z 1) g(z 1) 	 (6.24) 

From Eqs. (6.9) & (6.24), we write 4in  as: 

dmin
11 E1(z-1) g(z-1)112 
	

(6.25) 

and note that the distance is dependent only upon the relative energies 

involved. We shall, now, consider specific cases for a few discrete time 

channels: 

CASE 1: 	A DISCRETI TIYE CHANNEL WHOSE IMPULSE RESPONSE CONSISTS 

OF UNIT PULSE (LENGTH ONE). 

It is obvious that in this case the minimum distance 

is always equal to the energy in the pulse. Hence 

2 
dmin ' lig(z-1)11 2  ' PO 

CASE 2: 	A DISCRETE TIME CHANNEL WHOSE IMPULSE RESPONSE CONSISTS 

OF TWO PULSES (LENGTH TWO). 

This channel, say, is given by g0+glz-1. 

(6.26) 
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It is clear that for any input error sequence (E
I
) 

there must always he ± g0 at the beginning and ± gl  

at the end of the output error sequence{yz-1)}{g(z-1)} 

Thus even if the terms in the middle of the output 

error sequence cancel, the error distance, drain , is 

2 
at least ( go + g

2
). We know that (go  + gi ) is also 

the distance caused by the single error, any pulse 

response length of two will have a minimum distance 

equal to the pulse response energy. Thus there is no 

performance loss for a length TWO channel over a length 

ONE channel except for the constant multiplier Ku. 

CASE 3: A DISCRETE TIME CHANNEL WHOSE IMPULSE RESPONSE CONSISTS 

OF THREE PULSES (LENGTH THREE). 

We can express this channel, say, as ( go  + giz
-1

+g2z-2). 

Then the expression for the error distance for a multiple 

input error of the form (1-z-1) is 

d2 
	Pp 
	(g1..s0)2.4. (g

2-

g1)24. g3 

	

(6.27) 

Note that, g0, gpand g2  must all be of the same sign 

for the terms in brackets to he minimum. We can express 

Eq. (6.27), quite conveniently, in the matrix form 

(since it is in quadratic form). The minimum of Eq. (6.27) 

under a unit energy constraint on the pulse response, 

is the minimum eigenvalue of the matrix of the quadratic 

form. The values of g0, gl, and g2  can he found easily 

as below: 

Since 	(!g 112 = 	 1 " 

	

0 
,2 ,2 ,22 
	(6.28) 

' 	" 
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Therefore, by 

;(d2 / 11g112 )  
.0 

ago  

a(d2/11$1112  ) 

agl 

(6.29) 

(6.30) 

and 

a(d2/11/3 112) 

ag2 

yield 

g0 
	g2 =  0.5  

gl 1//2 

and  

=0 	 (6.31) 

(6.32) 

dmin = ( 2- /2) = 0.586 

We have demonstrated these facts by expressing the error sequence 

, 
pattern as ( 1 - z

-1 
 ). However, this error sequence pattern can also 

be expressed as ( 1 + z
-1 

), ( 1 4-  z-1 	z-2  ), ( 1 ± z-2  )• 

DISCUSSION ABOUT DIFFERENT FORKS Or ERROR SEOUENCE PATTERN : 

FORD (1 + z-1  ): 

This form will yield 
■■•••••.■ 

g0 0.5 

gl  =- 1/12 

g2  = 1/2 

and 	din 	' = 0.586 

(6.33) 

Thus the error sequence form ( 1 + z-1  ) only result in alternating 

signs for g0 	gi  , and g2. 
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FORM (1 + z-1  + z-2  ) :  

This longer sequence of errors can only result in a larger or equal 

distance.'- 	the same terms which are in Eq. (6.27) will remain, but 

additional positive definite terms are added. 

FORM (ltz-2)  

We can show, in this case, that this pattern of error results in a larger 

or equal error distance and does not offer many cancellations in the 

quadratic form and thus cannot have a smaller error distance. 

Therefore, as suggested in P3-81 and confirmed by us , we conclude 

that the error sequence for the minimum distance channels, should always 

be expressed in the form (ltz-1). Thus for the discrete time channel of 

length 3, we have 

d2 in = 0.586 and 
m 

therefore , the corresponding upper bound on the prob. of error is 

[0:586 
Pr(e)$, Ku  

2 an  
(6.34) 

Table (6.1) shows the maximum SNR loss and corresponding channel character-

istics using the error pattern ( 1 - z
-1 

) only. 

TABLE (6.1) PERFORMANCE LOSS AND CORRESPONDING NON-UNIQUE MINIMUM DISTANCE 

PULSE RESPONSE 

D.T.Channel Length  Performance Loss dB 

-10 log (d 	) 10 (drain)  

D.T. Channel Characteristics  

k = 0,1, 

1 
(a,b) where a2+ b2= 1 
(0.50 , 0.71 , 0.50 ) 
(0.38,0.60,0.60,0.38) 
(0.29,0.50,0.58,0.50,0.29) 
(0.23,0.42,0,S2,0,52,0.42,0.25) 
(0.19,0.35,0.46,0.50,0.46,0.35,0.19) 
(0,16,0.30,0.41,0.46,0.46,0.40,0.30, 
0.16) 

(0.14,0.26,0.36,0.43,0.45,0.43,0.36, 
0.26,0.14) 

(0.12,0.23,0.32,0.39,0.42,0.42,0.39, 
0.32,0.23,0.12) 

1 
2 
3 
4 
5 
6 
7 
8 

9 

10 

0 
0 
2.3 
4.2 
5.7 
7.0 
8.2 
9.2 

10.1 
10.9 
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FIG. (6.3) PERFORMANCE 'PERFORMANCE LOSS VRS. CHANNEL PULSE RESPONSE 

LENGTH. 
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Fig. (6.3 ) shows a plot of - log 
10 

 (d2 ) versus discrete time channel 
min 

pulse response length. Since the D.T. channels are normalized to unit 

energy, we find the maximum loss in performance (dB) at high SNR, compared 

to the best case D.T. channel which has d
2 in equal to energy (one) in the 
m 

channel pulse response. 

Finally, Ku  of Eq. (6.34) can be calculated by actually computing 

the channels (the worst possible channel which can have a continuous string 

of errors without increasing the minimum distance ) and then using the 

following results [6-8] : 

n 
[n. -1 

K
u 
 5 E 	2n 

n=1 

= 2 m (m - 1 ) 

(6.35) 

  

where m is the number of levels. 

Forney's excellent results, thus far, obtained are intended for 

known discrete time channels. However, the results of this thesis are 

intended to apply to unknown channels. In order to cope with the unknown 

channels Forney [6-8] suggested the use of an adaptive receiver with the 

help of a linear equalizer to track the channel. Recently some works[6-10, 

6-11,6-19,20] have been reported in this direction, all of them, have 

made an exclusive use of a nonrecursive digital filter equalizer (NRDFE). 

We attempt independently, for the first time, the use of an adaptive 

recursive digital filter equalizer (RDFE) in place of an NRDFE. The gist 

of the proposed approach is that the reception of digital signals in the 

presence of ISI is shared by an RDFE and a VA detector. This allows the 

VA to he made of a practical size with a small degradation in performance. 
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6.3 	AN ADAPTIVE RECURSIVE DIGITAL FILTER RECEIVER (11 1 )USING THE VA: 

The block diagram representation of the proposed receiver 

structure # 1 is shown in Fig. (6.4 ). 

An adaptive RDFE (direct form ) , and desired impulse response 

filter ( NRDF type ) are shown in Figs. (6.5) & (6.6) respectively. 

Basic description of RDFE and its coefficient updating processors are 

described in chapter (5). The received sequence {Yid is first passed 

through an adaptive RDFE which limits the ISI by the D.T. channel. The 

equalized sequence {I
k 

is fed to the VA which produces an estimate {Ik} 

of the information sequence {Ik} with a delay " 6" symbol periods. This 

estimate is the recovered data. 

A sequence CYO of tentative decisions chosen from the survi-

ving path with the maximum log-likelihood is used for equalizer adjustment 

in the feedback circuit. This sequence, which has suffered a delay of at 

least 61  units ( 61>6 ) in the VA detector, is passed through a fixed 

NRDF Fig. (6.6), the coefficient of which represent the desired pulse 

response {gk} of the channel and the equalizer in cascade. The output of 

NRDF is then the desired output of the equalizer. The actual RDFE output 

{I }being delayed by 6 symbols, is subtracted from the desired output to 

produce the error sequence {ck} 	The adaptive RDFE multiplier coefficients 

{ak} and{y are adjusted to minimize the USE E[Ek] iteratively. 

The survivors in the VA must be long enough to allow adjustment of the 

{Sk} 	The VA detector assumes a fixed channel with pulse response {Ak} 

and additive WGN. The first assumption is justified provided the RDFE 

is capable of tracking the slow variations in the channel response. 

Neglecting the decision errors, we can write: 

{Ik} 	
{y} *fa

k
} _ {y

k
}*{B

k
} 
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FEEDBACK PART 
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VA DETECTOR 
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DIRECTED 
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LENGTH(M) 

TRAINING MODE 

< 

DESIRED IMPULSE 

RESPONSE (DIR) 
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v  

   

   

error sequence for adjustment of{al: ,{Pk} 

icx-E4 
FIG. (6.4) BLOCK DIAGRAM REPRESENTATION OF ADAPTIVE RDF RECEIVER NO. I.  
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= {Ik} 
*Ipk1 4-{nk

} 
 

{Bk} 	*f 

and 	{Ek} = {Ik} -{ B } k 

6.3.1 
	

RECEIVER /I 1. PERFORMANCE 

The output (equalized) symbol from a RDFE is given by Fig. (6.5) 

" 
lka  

i=0 a
i  Yk_i 

 - 1=1 81 
Ik-d -1 

From Fig. (6.2) 
L-1 

yk  = E 	p 	I 	nk 
i1=0 i1  k-i1  

(6.36) 

(6.37) 

From Fig. (6.6) the desired truncated received sequence is given by, 

L1-1 

B1:-E 
	gi  Tk_o_i  
i2=0 2 	2 

The error in the equalized symbol Fig. (6.7) 

k-6 = ( 
I
k-6

-  B
k-o 

) 

(6.38) 

(6.38a) 

Assuming that the error prob. of the receiver is low enough so that 
A 
I
k 

= Ik 

Therefore, the !ISE is given by 

Ar 
J (at a 	) = EL ck_ ts  

L1-1 
= E[ ik-6-  E 	I k-6-i

2 i
2
=0 12 

(6.39) 

The MSE J( a, (3, 	) is minimized when 

3.1 ( a, B, 	) _ 
= 	0  , k=0,1, 

k 	a a 
 

(6.40) 
N 	a I

k- 1- 1 
=2Eck-d 	E 61 1=1 	3 a -R 
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and 

    

 

3 J(a,13 , .a ) 

  

CI 

    

    

 

a sp 

   

N 	a T
k  -(5  -1  I 

■ 2Ec
k-S [I

- I
k-6 -1 -  1.21 3S -k 

■ 0 , 	k= 1,2, ••• 	N 

 

(6.41) 

Solving the last two sets of Equations simultaneously, we obtain 

 

M 	N 
E 	ai (Rin - ai 	E 	

pi-i pin 
) 

i■O 	=S 

  

 

	

2 L-1 	N 

aI • E 	gi Pi-n - E  gi Pi—n 

	

i■O 	i°6  

 

(6.42) 

 

n_ 0, 1, 	... M 

  

where Rin - E [yiY n] 
	

(6.43) 

The minimum mean square error achievable is given by; 

H 

[ 	

H 

jmin( 2.° ° .1) m aI E E 	a0i Pk-i - °Ok-gic +ati E a(2), (6.44) 
k i■O 	 i■O ' 

where aoi and f3oi are the optimum values of the ith  feedforward and 

i
th
feedback multipliers. Multiplier coefficients are adjusted using the 

iterative algorithms given by Eqs. (6.45) & (6.46) respectively: 

(j+1) 
ack  

(i) A11
0) 
	 (i) 

m  2k 	zittit  
2 

N 	
] (j) AO) e(i)[y 	- E Si 

31
k- 1-6 	

(6.45) -11 k-S k-6-i 1-1 agk 
 

kr. 0, 1, 	M 
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-k 

A(J) 
6  ( j+1 ) 	) 	12 = 0 

-k 	 (i) 
2 	Bk 

	

N 	aik .1  
- 
80) A

l 
 ( p 	

„ 
(i)  c 	— fk-6-1 — 

1E  k - 	k-6 
=1 138k 

k=1,2, • • • • • • • • 	N. 

(6.46) 

Feedback multiplier coefficients B are constrained according to 

z 	1 a(j) 1 < 1 
	

(6.47) 
1=1 

Block diagram description of an error formation, an " a " updating 

processor, and a " B " updating processor incorporating stability test 

instrumentation, are shown in Figs. (6.7), (6.8), and (6.9) respectively. 

However, in practice, these complicated algorithms (6.45), and 

(6.46) are simplified by using unbiased but Widrow's noisy estimates of 

the gradients. Hence they are: 

a(j+1)= a(J) - A(1)c(j) y 	k=0,I,....M 	(6.48) 
11 k-6 k-6-1 

00+1), 	- p(j)c(i)  (— 	k=1,2,...N and, 	 (6.49) 
-k 	-k 	12 k-6-1 

In the above expressions we have taken into account the delay in 

the a,f..3 adjustment processes. Al2  and A11 are very small constants, which 

determine the rate of convergence of the multipliers and the excess noise 

due to misadjustment. 	The " 6 " units of delay are caused by the VA 

which is usually assumed to be between 8 and 18 symbol intervals. 

The noise sequence 	nk) at the input to the VA detector 

consisys of: 

(i) WGN passing through the RDFE, 

(ii) Excess noise due to random fluctuations in the multiplier 

coefficients after steady state, 

and, 	(iii) any ISI other than the desired controlled value. 



-270- 

Usually the excess noise due to random fluctuations of the multipliers is 

negligible compared to the value of minimum NSE, J (a,B,X ). Therefore, 

we can split the noise at the RDFE output into two components, that is, 

ek  = vk + nk 	 (6.50) 

where n
k 

is the zero mean WGN with covariance function [6-10] 
ti 

E[ n 	ca  
P
n = 	E a 
q 

	

	
(6.51) 

i=0 

( an =0.001 corresponding to 34 dB SNR) 

and zero mean variable vk is the residual ISI, the probability distribu-

tion function of which is unknown. However, 

Ivkl* 	Al uk l 	 (6.52) 

rt 
uk iE0  uoi ak-i 	BOk gk 

and A is the peak value taken by (Ild . Also, from [6-10] 

E]  = a E u u P v  q 	I K  k k+q-p 	
(6.54) 

(G2 	= 1/4 for binary 0 or 1 transmission) 

The upper bound on the prob. of symbol error of the VA can be evaluated 

in accordance with Eqs. (6.21), (6.22), (6.35), (6.51-54). However, in 

the present case, the bound will only be an estimate since the effects 

of error due to incorrect decision in the feedback path have been 

assumed negligible. 

The stability and convergence to optimum multiplier coefficients 

of the iterative process defined by Eq. (6.48) and (6.49) is: 

where (6.53) 

0‹ A11< 2/(25 +1)A max 

0< A12< 2/(26 +1)X max 

6 =0,1,....20. 
whereX

max 
is the max. eigenvalue of 

(6.43) 
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6.4 	AN ADAPTIVE RECURSIVE DIGITAL FILTER RECEIVER (# 2 ) USING THE  

VA AND ADAPTIVE DESIRED IMPULSE RESPONSE FILTER: 

In the receiver # 1,we made no effort to optimize the desired 

truncated response and thereby failed to make adjustment of DIR filter 

adaptive. Since the channel pulse response is not usually known prior 

to the start of transmission , therefore, we consider a more practical 

receiver in which {a} 	, and {g} are adjusted iteratively. 

An adaptive RDFE receiver (Ii 2 ) using the VA is shown in 

Fig. (6.10). The received sequence {Yid feeds a RDF whose function is 

to shorten the overall impulse response length. The output of this 

filter feeds the VA which detects the information sequence. The VA makes 

decisions on the assumptions that the DIR {gi} is the actual overall 

channel response. The value of L1 ( the length of the DIR NRDF) is much 

less than L. (Which we have maintained very close to the actual channel 

response.) We have selected L1 to make acceptable the complexity of the 

VA while taking a small penalty in the preprocessing. 

An adaptive RDF is shown in Fig. (6.11). The error signal is 

formed by feeding the estimated information sequence sequence {Ik_6} 

through the NRDF representing the desired channel impulse response 

[Fig. (6-10) 1 . This forms the desired truncated channel received 

sequence{ Bk_ts} which is then compared with a delayed version of the actual 

prefilter (RDF) output to form an error sequence. It is this error which 

we intend to minimize since it is a sum of the additive noise, and the 

difference between the desired and actual overall impulse response. 

The output (equalizer ) symbol from RDFE Fig. (6.5) is given by 

ik = E 	ai Yk-i 	E 	al ik-1 
i=0 	1=1 

(6.55) 



it 

[ 	

L
1 

= E 1k-6 - E 
	g'1 11 	il 1  

A 
J ( a, B, 	) = E 

(6.58) 
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From Fig. ( 6.11 ), the desired truncated received sequence is givenlby 

L1-1 . 
k_6 	-6-1 1 

i 	
gi
1 
IK  

1=0  

The error in the equalized symbol, Fig. (6.10) 

Ek-6 = ( ik-6 	Bk-6 ) 

Therefore the MSE is defined by 

(6.56) 

(6.57) 

The mean-square error J ( a, 13, g ) is minimized when 

( a, B, g_ ) 
= 0 

3 ( a, B, g ) 
= 0 

ask  

and, 	 = 0 
°Rk 

(6.59) 

Adaptive RDFE multiplier coefficients are adjusted iteratively.Thy using 

the following relationships: 

[N 

	akE-1 4 	 1 2(c  j+1 ) = 24J) 	3  - A1 	c 	Y 	- 	E 0 k_6 	k_ ts_ i 	"1 
l  

1=1 	as k (6.60) 

 

k=0,1, 	 

 

   

8(j+1) /4N 	
A 

-k 	
= fe--A c 14 k-d [-I

k_6  -1 
1=1  

-E 	Bi 
 alk-6-1 

aBk 	X6.61) 
k=1,2,....N 
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Feedback multipliers {Bk}  are subject to the constraint 

fA)I < 1 	 (6.62) 

An "a " updating processor and a "B " updating processor with stability 

control are shown in Figs. ( 6.13 ) & ( 6.14 ) respectively. i13 and 

Al4  are the adjustment parameters which control the accuracy and the 

speed of convergence. The algorithm to obtain an iterative solution for 

is complicated since it has to work under a fixed energy constraint. 

However, for most practical purpose the unconstrained algorithm: 

gli+1) 	8(i) _ Ail) EIN (-ik_6_i  ) 
k 	 1 

(6.63) 

is sufficient. This is a noisy estimate of the required cross-correlation. 

A15' 
is convergence factor,should never be equal to 1 simply because 

of the fact that when the noisy estimates are used the algorithm will 

amplify the noise and therefore will tend to diverge. So A15 
has to be 

much smaller than 1 . 

The lower and upper bound details are somewhat similar to the 

receiver structure #1. 

An exact analysis of the receiver's performance would be very 

involved, since two nonlinear devices are combined in.one framework. 

Therefore, no effort has been made to take up, analytically, a very 

difficult task. However, we have developed method to predict the perfor-

mance numerically. Using several approximations and bounding procedures, 

we have been able to obtain a lower and upper estimate on the error prob. 

of the receiver. They are well suited for computer calculations. 
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6.5 COMPUTER SIMULATION: 

Two most difficult discrete time channels (7) and (8) exhibiting 

in band second order nulls were simulated . The proposed receivers were 

implemented in the main program for binary signalling system. It simulates 

an entire communication system consisting of the source, discrete time 

channel, RDFE loop, the VA and the DIR (NRDF) . The input data, we 

assumed, consisted of equally likely pseudorandom binary symbols which 

were transmitted to the unknown (supposed) D.T. channels. The gaussian 

noise terms were generated using the polar method [6-24]. The channel 

simply convolves the source sequence with the given discrete time channel 

characteristic. The VA detector used in the program had a maximum delay 

of 18 symbol intervals. 

6.5.1 	RECEIVER STRUCTURE 1/ 1: 

The RDFE assumed had M=N=9. Algorithms (6.48) & ;6.49) were 

implemented. The feedback coefficients(0k) were constrained to the con-

tions of the stability triangle triangle developed in chapter (5). 

Forney's lower and upper bounds were calculated according to (6.23) & (6.21) 

respectively. The first RDFE routine makes a tentative decisions on a 

transmitted symbol. These decisions are fedback to the feedback part of 

RDFE and to the fixed DIR. The VA performs MLS estimation without any 

quantization of received signal. In order to avoid degradation due to 

premature decisions resulting from insufficient storage spaces, each 

state was allowed to store upto 50 symbols ( i.e. a survivor of length 50). 

The final decisions were made by examining the merging of states. If 

there was no merge before the allowed 50 symbol storage was exhausted 

then the decisions were m.de only on the first half of the stored symbols 

by choosing the sequence with largest log-likelihood as the detected sequence. 
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The receiver was switched to the decision-directed mode after 

the first 400 symbols. The error counts are based on single runs sample 

sizes of 20,000 for SNR 8 and 9 dB, 100,000 for SNR 10 to 12 dB, and 

106 for SNR greater than 12 dB respectively. The desired channel equalizer 

pulse response length in channels (7) and (8) were 7 and 5 respectively. 

The performances of 35 stage NRDFE; M=N=9 RDFE, were evaluated for channels 

under consideration. The results are plotted in Figs. (6.15) and (6.16) 

for channels (7) and (8) repectively. 

Although the experience with this simulation is limited, we 

can draw some important conclusions: 

1. First of all,the proposed receiver performs well not only in 

analysis but also in practice, fulfilling our objective of a 

compromise between complexity and performance. Over the D.T. 

channel (7), the receiver suffers a loss of 5 dB relative to 

the case of no ISI. RDFE suffers even a greater loss. 

Over the D.T. channel (8) , the receiver 11 1 shows about 1.5 

dB degradation relative to the case of no ISI. 

2. Equally importantly, the analysis agrees very well with the 

experiment. The performance analysis we developed is 

remarkably accurate over a wide range of SNR's. 

Next, in order to study the effects of tentative decision errors on the 

VA performance, the simulation program was run with the correct trans-

mitted symbols being fed back into the feedback path. The results are 

shown by (x) in Figs. (6.15) and (6.16). Also drawn are the performance 

curves ( based on simulation ) of the pure RDFE with and without error in 

the feedback path ( * ), for the same channels and noise conditions. 

3. The errors in the tentative decisions do degrade the final 

performance more or less, therefore the effects of these errors 

cannot be ignored in the system design. 
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6.5.2 	RECEIVER STRUCTURE # 2: 

In this case we simulated a telephone channel whose impulse 

response is given in Fig. (6.17). We selected g0  , g1 , and g2  to he the 

desired impulse response and therefore selected 3 stage adaptive NRDFE 

in conjunction with the RDFE [ M = N =9 ] and the VA having maximum 

' delay of 18 symbols. 	The algorithms developed in (6.60) to (6.63) were 

used for updating a , B , and the NRDFE multiplier coefficients. 

We found that the performance degradation at Pr(e) = 10-3  was 

about 1.5 dB. 	[ Fig. (6.18) ] 

6.5.3 	THE COMPLEXITY OF THE VA DETECTOR:  

The complexity of the VA is calculated for D.T. channels (7), 

(8) and (9) when m = 2 (binary) and m = 4 (for very high speed trans-

mission ) for per symbol processing 

TABLE (6.2): 

	

For m = 2 or (m = 4) 	Delay ( D ) = 18  

Channel (7) 	Channel (8) I 	Channel (9 

(mL1) 

SUBTRACTIONS:  

128(16,384) 32(1,024) 8(64) 

ADDITIONS: 
(mL1) 128(16,384) 32(1,024) 8(64) 

SQUARING: 
(mL1) 128(16,384) 32(1,024) 8(64) 

COMPARISONS: 
(m_1)mL1-1 64 	(12,288) 16(768 	) 4(32) 

STORAGE READ.: 
2(D-L1+1)mL1-1  

Bits. 

1,536(98,304) 448(7,168) 128(512) 
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6.6 	SUMMARY AND  COMMENTS: 

(A) In this chapter, we have, for the first time proposed,analysed 

and simulated a RDFE in conjunction with the VA as a detector 

and fixed and variable desired impulse response NRDF. 

(B) The proposed receiver structures outperformed the NRDFE and the 

RDFE and can be conveniently implemented digitally. 

(C) We have not made use of a Marched filter, as such, some loss in 

performance 	is expected. However, it is believed,in practice, 

they are ordinarily not.used, also they offer little gain in 

performance. But, it is hoped that a Matched filter may be 

desirable at high Lata rates because it would eliminate the 

great sensitivity at these rates to timing and carrier phase. 

(D) Theoretically we have shown a relationship between pulse response 

length and the performance. One may use graph [Fig. (6.3)] as an 

approximate guideline to compare the performances of various 

length channels. 

(E) We have assumed throughout that the noise is Not Correlated. 

A more realistic approach, in our opinion, will be to consider 

the effects of noise correlation. However, some studies, to 

this effect , have been reported [ 6-10, 6-14,15]. It has been 

found that the noise correlation does not affect the performance 

more than a few dB and it clearly does not affect at the place 

in the performance curve at which the performance begins to 

degrade seriously. 

(F) The optimization criterion we used , i.e. the minimization of 

the MSE with respect to the parameters a, B, and g; duration, 

relative delay of the DIR being fixed- is admittedly somewhat 

ad hoc. Nevertheless, it could safely be said that in view of 
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the performance estimates for the sample channel the use of the 

VA in conjunction with RDFE ( as suggested ) appear attractive 

for high speed data transmission relative to other schemes. 

(G) 	The MLSE technique using the VA suffers a disadvantage that the 

computational burden on the VA grows exponentially with the 

number L of the interfering paths and therefore the storage 

required becomes prohibitive. 	However, in our case with 

3, 5, and 7 samples the VA processor was less burdened. 

Also, the VA has been incorporated only in modems designed for the case 

when L is relatively small, or for example, in the detection of Partial 

response signals where ISI is purposely introduced to obtain a desired 

signal spectrum. It is hoped that the Bell Laboratories, Holmdel,New Jersey 

is engaged in hardware designs of modems incorporating the VA for telephone 

channels [6-25]. 
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_FIG. (6.18) PERFORMANCE OF PRO:OSED RECEIVER STRUCTURE NO. 2. 
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CHAPTER 7  

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH  

" And suppose we solve all the problems it presents. 

What happens ? We end up with more problems than 

we started with. Because that's the way problems 

propagate their species. A problem left to itself 

dries up or goes rotten. But fertilize a problem 

with a solution - you'll hatch out dozens". 

N. F. SIMPSON, ( A Resounding Tinkle)  
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7.1 	CONCLUSIONS:  

This research led to the designs, analysis and estimation of 

(i) fast generalized non recursive digital filter equalizers 

[ Chapters (3) and (4) ] 

(ii) recursive digital filter equalizers [ Chapter (5) ], and 

(iii) use of direct form RDFE in conjunction with the VA 

[ Chapter (6) ] 

In Chapter (1) we have developed the discrete time channel model. 

Chapter (2) deals with the well established design techniques for NRDFE 

to-date. Also, it contains the summary of mathematics involved in the 

design of equalizers using the mean square error criterion. The yorks 

outlined in this chapter are meant for the conventional NRDFE only. 

Chapter (3), we have designed and developed a fast initialization 

algorithm employing a digital computer. This equalizer is initialized 

with an isolated pulse provided the SNR is nct too low. We have 

equalized the British Public Switched Telephone Network (PSTN) channels 

successfully. We have equalized two channels, D. T. channel # 1 (a 

theoretical channel) and D. T. channel # 2 ( a practical channel) with 

the help of the algorithm developed here. In addition, we studied the 

effects of three parameters involved; delay, shift register length, 

number of filter sections, the summary of which is outlined in section 

(3.9). The use of Moore Penrose Pseudoinverse (MPPI) and an 

orthogonal Hadamard matrix have been exploited. Convergence properties 

have been outlined. 

In Chapter (4), we have extended the design developed in Ch. (3) 

to 	decision directed, on line adaptive mode of operation. 
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We studied the effects of three p'rameters involved, the summary and 

comments of which are outlined in section (4.5). Convergence properties 

have been outlined. Since the equalizer is working in decision directed 

mode,threfore, the use of diagnostic ensures reinitialization in case 

of excess error. 

Chapter (5), we have designed, evaluated independently, six 

different recursive digital filter equalizers on channels (3), (4), 

(5), (6), 	(7) 	and (8). D.T. channels (3), (4) and (5) are 

severely phase distorted channels whereas the remaining channels 

possess severe amplitude distortion. We have studied the pole-zero 

constellation equalization and then the optimization techniques based 

upon the individual coefficient adjustment algorithms. A comparison 

based upon the number of multiplications, stability and the coefficient 

quantization have been suggested with caution! By Monte - Carlo simulation 

we estimated the probability of error P at various SNR. We found 
e 

little improvement over NRDFE in case of severe phase distorted channels 

(3), (4), and (5), whereas significant improvement was obtained for 

severe amplitude distorted channels (6), (7) and (8). Summary of 

the findings is given in section (5.11). Results dictate in the favour 

of RDFE over certain channels. 

In Chapter (6), we have used RDFE in conjunction with the 

VA and a desired impulse response NRDFE. Two receiver structures have 

been analysed on ideal and most practical (unknown) discrete time channels 

These designs are based upon the availability of three channel samples, 

3, 5 	and 7,from channels (9), (8) and (7) respectively. 

Summary of the results is given in section (6.6). The complexity of the 

VA processor / symbol 
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processing is shown in table (6.2) 	Section (6.5.3) . We have 

developed an adaptive asymntotically optimum, Viterbi Algorithm 

receiver structure that performs effectively as well over an unknown 

channel as any receiver structure can perform even over a known 

channel. Since these receiver structures are realizable, we hope it 

should provide a practical solution to the ISI problem. 
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7.2 	RECOMMENDATIONS FOR FUTURE RESEARCH: 

There are a number of interesting areas which could provide 

motivation for further investigation: 

(1) Particularly germane area seems the equalizers (NRDFE, RDFE, 

MLSE) on time varying channels and the effect of the convergence 

factor A 's on this tracking. 

(2) A theoretical study should be made for finding efficient 

algorithms for finding eigenvalues and eigenvectors and there-

fore to reduce the amount of computation in order to achieve 

faster initialization. ( This could be done by finding an 

exact (or near exact) guess for the coefficients in every 

equalizer structures). 

(3) Most important area is to investigate the effects of short 

word lengths, truncation, and round-off errors. Some work 

for NRDFE has been reported [ 7-1, 2] . However, theoretical 

[7-1] and simulation works [7-2, 3] must be done using MINI-

COMPUTERS (16 bits), MICRO-COMPUTERS and MICRO-PROCESSORS 

(8 bits) and all these works should be extended to the six 

RDFE structures. Direct inversion of the 	channel 

covariance matrix 	should be done using microprocessors 

available. Stability of RDFE and the MLSE should be considered. 

(4) There should be some study in the possibility of further 

simplifying the online adaptive algorithm (NRDFE, RDFE, MLSE) 

by using only polarity information of some of the variables. 

(5) The theory which we have described concerns the transmission 

of a single data sequence. There are many situations in 

which several data sequences are transmitted in parallel either 

over a single channel as with multiplexed systems, or over 
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separate but interacting channels such as multipair cable 

a study is recommended for this as well. 

(6) A study should be made for some modern communication media 

for instance, satellite links, where channels are non-linear. 

Can these equalizers cope with the non-linear channels? 

(7) The most practical use of an RDFE seems as an adaptive  

noise canceller for various forms of periodic interference 

in electrocardiography, in speech signals,tape,turn-table, 

and in antenna array. A study with a RDFE and an MLSE would 

be most useful. 

(8) Implementation of an RDFE using modulo-arithmetic is recom-

mended. Ref. [ 7-4 1 can provide possible guidelines. 

(9) Development of simplified or approximate form for the Viterbi 

Algorithm to enhance VA receiver structure economic feasibility. 

We have made an adhoc attempt. Low complexity decoder for 

channels with ISI has been reported [7-5] . 

(10) Development of faster convergence algorithms ( e.g. Southwell 

relaxation: Richardson-overrelaxation; second-order gradient, 

conjugate-gradient etc.) methods for RDFE/ NRDFE should be 

studied to cope with the problem of more quickly varying 

channels. 

(11) A study should be made at din 	instead of just MSE since 

d in  really controls the Pe  for the VA. 

(12) The choice of decoding delay of VA in the presence of ISI 

and the dynamics of the adjustment algorithm should be con-

sidered in detail. 

(13) The specific implementation of the VA receivers using RDFE 

will be another interesting topic. 



-292- 

(14) 	Making the reduced state algorithm adaptive in an efficient 

manner, especially for large channel constraint length, 

will be another worthwhile topic to investigate. 
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APPENDIX - A  

MATHEMATICAL PRELIMINARIES  
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A.1 	INTRODUCTION:  

This appendix scattered in various subsections is going 

to provide a brief outline of the topics from linear algebra and from 

operator theory. A detailed description of the matrices used in this 

work is also provided to explain the newly developed subject of Moore-Penrose 

pseudoinverse (MPPI). This is followed by the separate sections on the 

z-transform and statistics including the Monte-Carlo simulation technique. 

Finally, certain supplementary results are derived. However, for detailed 

discussions on these topics a list of references have been provided. 
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A.2 	LINEAR VECTOR SPACES AND OPERATORS: 

A mathematical field F consists of a set of elements called 

scalars which satisfy a particular set of axiomsfA-1, ( pp. 2-3 )J 

The only fields used herein are the sets of all real and complex numbers. 

A linear vector space over a field F is denoted ( U,F ) or just U and F 

The elements of U, called vectors, also satisfy a certain set of axioms 

[ A-1 , p.5] and are related to each other and to the Sc lar by the 

operations of vector addition and scalar multiplication. Linear vector 

spaces are also known as linear spaces or simply vector spaces. Vector 

spaces are called real or complex,according to whether the field is real 

or complex, respectively. A set of vectors ( xl, x2, ... x ) in U 

span U if every vector y.  in U can be expressed as a linear combination 

of the set i.e. if there exists a set of scalars ( al' 
a
2' 

that 
K 

= E icic 
 C k 

k=1 

...a 	) such 
k 

(1) 

A set { x } is linearly independent if the only way that their linear 

combination can be made to equal zero is for all of the scalar multiplier 

to be zero. Any linearly independent set that spans Uis called a basis 

of U , and the number of elements in any basis is called the dimension 

of U. Only vector spaces of finite dimension will be considered by us. 

Let (U,F) and (V,F) be vector spaces witholda being arbitrary 

scalars in F and W, X, Y  arbitrary vectors in U. Suppose that to each 

element of U there is assigned a unique element of V, then the collection 

of these assignments is called a map T from U into V. Maps are also 

known as functions , transformations or operators, and we shall use these 

terms interchangeably. 
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The identity operator I is defined by Ix = x , and a map 

T-1 satisfying the relation T-1 T = T T
1 
= I is called the inverse of T. 

The inverse operator may not exist; however, when it does then T is said 

to be invertible. The set of scalars A for which the map (T -A I) is 

not invertible is called the spectrum of T and will be denoted a(T) . 

When T satisfies the relation 

	

T( ax + By) . aT(z) + BT(2) 
	

(2) 

it is known as a linear operator. It is interesting to note that a 

field is a vector space, and also the set of all linear operators from 

U into V forms a vector space in which each linear operator is itself a 

vector space EA-2, p.85] . 

There are many important maps between vector spaces. An 

inner of scalar product is a scalar-valued function of two vectors denoted 

< x, y.  > , which is defined by the following four axioms: 

(1) < 	x> = < x, X?* 

(2) < ax + By , W> = a <x, W> + 	w> 

(3) < x, x » 0 
	

with equality only when x = 0 

(4) < ax, Y> = a<x, y> 

A vector space with an inner- product defined on it is called 

an inner product space. The inner product determines the relative direc-

tions of vectors, and two vectors are said to be orthogonal if < x, y> =0. 

The notion of distance in vector spaces is indicated by a non-negative 

scalar valued map called a norm, II x II, which has the following proper 

ties. 

II a xII .1a1 IIx 

I I x+ Y. 11 < II x 11 I. 11 x 11 	( the triangle inequality ) 

II x II > 0 	with equality only when x = 0 

I 	,y;› I < I I x. II II )1,_ I I 	( Schwartz's inequality ) 
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A set of vectors {xm 
	 -mi 

is an orthonormal set if 'Ix 11= 1 
- 	 1  

for every m and it is an orthogonal set. A vector space with a norm 

defined on it is a normed vector space. For the finite dimensional vector 

spaces considered herein it will be convenient to define the inner 

product of two vectors, say x = ( xl, x2, .... xk  )T  and / = (Yl' y2.. 

—Yk by by 

A K-1 * 

<a, Y? 	E xk Yk 
k=0' 

which then defines a norm of x by 

I I xl 	< x x> ) 1/2  
- 

T * 
x 

A map T, not necessarily linear, is called convex if for every value 

of a satisfying 0 < a < 1 , it has the following property: 

T( [1 - a] x + ay ) < ( 1 - a ) T(x) + a T(y) 

For the strict inequality case, map T is strictly convex. 

For every linear operator T on a space U there exists another 

operator T
A called the adjoint of T defined by 

T(x), 	> =< x, TA(y)> 

If T=TA  then T is called a self-adjoint operator, and if TTA=TAT then T 

is a normal operator. A projection operator is one which is both self 

adjoint and idempotent, i.e. TT=T.fty map for which the adjoint equals 

the inverse is a unitary operator. 

There is an important notion, which deals with the geometric 

interpretation of a map T form U to V. The set of elements x in U such 

that Tx = 0 is called the null space, or sometimes the kernel of T, and 
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is denoted by N(T). The set of elements y.  in V which can be written 

y.  = T x for some x in U is called the range space, or image, of T and 

is denoted by R(T). The null space of T is related to the range space 

of its adjoint T
A 
in the following way: every element in N(T) is 

orthogonal to every element of R(TA) . We can show this by noting that 

x belongs to N(T) if and only if < y, T x > = 0 for any v in U, and since 

< y, T x > = < TA  x, y.  > then x is orthogonal to every W in U such that 

W = TA Y for some y. But this set of W's is just the range space of TA 

hence the desired result is proven. 

We can also prove the following important consequence that 

R(TA) and R(TAT) are identical. We know that if x is in N(TA) then 

(TTA)x = T(TAx) = T(0) = 0 so x is also in N(TAT). Coversely, if x is 

in N(TAT) then 

11Tx112  =< Tx, Tx > =< x, TATx > = < x, 0> = 0 

so that Tx = 0 and x is in N(T). We complete this proof by noting that 

every element of R(TA) and R(TAT) is orthogonal to every element of 

N(T) and N(TAT), respectively. Hence R(TA) and R(TAT) must be identical. 

A.3 MATRICES: 

An MxN matrix A is a rectangular array of elements having 

M-rows and N-columns; the element in row m and column n is denoted by 

amn and the entire matrix A is sometimes denoted by LamnI . By defining 

the sum of two matrices and the multiplication of a matrix by a scalar 

in the usual way, it can be shown that the set of all MxN matrices, with 

elements in the same field F, forms a vector space [ A-3, p.167] . The 

way that matrices are used to represent linear operators is made precise 

by the following representation theorem [ A-1, p.15] . 

Let (U,F) and (V,F) be real or complex vector spaces with 

bases { ul, u2, 	uN} 	and { vi, v2, ... ym } 	respectively, and 



-299- 

let T be a linear map from U4  V. Then, with respect to these bases, T 

is represented by the MxN matrix A = [annj where the elements of column 

i of A are the components of T Ui  with respect to the basis {v  } 

When M=N , then A is a square matrix and U is identical to V, i.e., T maps 

U into itself. 	If M=N and { m i, u2, 	 u
N 
 } is another basis for 

U in which A represents T, then there exists a nonsingular square matrix 

P that relates these representations according to A = P 1A P. Such a 

mapping is called a similarity transformation, and the matrices A and A 

are said to be similar. We therefore say that the similar matrices 

represent the same operator in different bases. 

For a square matrix A of order N the spectrum a[ A ] is that 

set of scalarsXfor which 	(A - A I) fails to be invertible, or equivalently 

for which the determinant det(A - X I) = 0 . This equation is a polyno-

mial in X of order N, so that arAl contains exactly N elements which 

may not be distinct. These elements are called the eigenvalues of A, or 

sometimes called proper or characteristic values. The spectrum is a pro-

perty of the abstract operator T and does not depend on the particular 

representation, e.g., A or A. This can be seen by noting that 

A = P-1  A P 
	

(3) 

therefore det(A - XI) = det(P-1A P -A P-4) 

= det(P-1)det(P)det(A -A I) 

= det(A -X I) 

Any nonzero vector 1' such that (A -X I) 	= 0 with >t in at A ] , is 

called an eigenvector of A corresponding to the eigenvalue X . 
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We shall now elaborate upon some special matrices on the basis 

of various operators defined in (A.2). The square matrix representing 

the adjoint TA of an abstract linear transformation T on vector space U 

is the complex conjugate transpose of A denoted by AH as can be seen 

from the following 

< x, A y.  > = xT ( A y.  ) = x
T A* y = < AH x, y> 

( note T means transpose ) 

when T is self adjoint, A = AH, < x, A y.  > = < A x, y? and A is called 

a Hermitian matrix. If the vector space U is real rather than complex 

then AH = AT and T being self-adjoint implies A = AT. Such a matrix is 

called real symmetric. 

The eigenvalues of an NxN hermetian matrix A are always 

real, and there always exists a set {pm} 	of N linearly independent 

eigenvectors which are orthogonal [ A-4 	, ( p 321, theorem 10.10 (ii))] . 

In fact, since when R is an eigenvector then Rill 2.  II is too, then the 

set { .pm} can always be taken orthonormal. Writing the eigenvector 

equation A pm  = Am  pm  for m=0, 2, ... Nlin matrix forms gives A 

[219 22, 	PN1 	RI, R2, .OG RN  I diag( A1, A2, ... AN) or, 

more concisely in terms of the matrices P and A , 

AP=PA 

Furthermore, since <pm, 	= mn 
and a similar relation exists for 

the rows of P [A-4, (p 333)] , then P-I= PH  which implies P is a 

unitary matrix. Cosequently the similarity transformation A = P-I  A P 

that diagonises A becomes 

A =PAP 	 (4) 

which is called a unitary transformation. 
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Hermetian matrices can be easily decomposed into their spectral represen-

tations by using unitary transformations in the following way, 

N-I 

A =P/N
A PH 

 = 	X m  pin  pin  (5) 

When the vector space is real and therefore A is real symmetric then the 

complex conjugate transpose is simply the transpose. 

A projection operator is represented by a projection matrix 

A only when A is hermitian and possesses idempotent property A
2
= A. Ber-_ 

berian [A-2, p.(163)] has shown that all eigenvalues of a projection 

matrix are either zero or unity, and that the eigenvectors of unity 

eigenvalues span the subspace into which the operator.. projects. Thus 

any projection operator is similar to the diagonal matrix 

diag( I / 0 ) = diag( 1, 1, ... 1, 0, ... 0) where the square matrices 

I and 0 are of orders equal to the number of unity and zero eigenvalues 

respectively. A quadratic form in real variables xm  associated with a 

real matrix A, is a scalar quantity consisting of a sum of multiples of 

products and squares of the variables: 

n-I nd 
F( xl, x2, ... xN  ) = 	aij xi  xj. 

i=o j=0 

	

2 	 2 

	

allxl 	( al2 	a21 ) xlx2  + a22  x2  +... 

Now, if we introduce the real symmetric matrices 

x 
 = [

xi I 	A = [a
ij] 

the quadratic form can be written as 

F(x) = <x, A x> = xT  A x 

In the more general complex case when A is hermitian the function is still 

a quadratic form [A-4. (p.386) ] . 
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A real symmetric matrix A is positive semidefinite if, for any choice 

of x, the quadratic form F(x) =<x, Ax > is nonnegative. 

If F(x) = 0 only when x = 0 then A is positive definite. 

If A is positive semidefinite all eigenvalues are nonnegative while all 

eigenvalues are strictly positive when A is positive definite. If A is 

is positive definite it is invertible too. 

1 
A Gramian matrix, G, for a set of N-real vectors x

m 
is 

defined as 

.Xm 

x2.xl x2.x2 

Xm•Xl 

 

xm.xm 

 

clearly, the vectors are mutually orthogonal if and 	if G is 

orthogonal. For a set of real N-vectors xm  Cf?.0 . This equality 

holds if and only if the vectors are linearly dependent [A-5, (p.103)] . 

A gramian matrix is always positive definite or positive semidefinite. 

An Hadamard matrix [A-6, 17] is a square matrix whose elements are 

ONES and MINUS ONES and whose row vectors are mutually orthogonal 

( equivalently, whose column vectors are mutually orthogonal ). Examples 

are shown below 

(a)  [1] 1 1 1 1 

(b)  (c)  1 -1 1 -1 

1 -1 1 1 -1 -1 

1 -1 -1 1 
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(d) 

  

  

     

     

     

It is clear from the definition of these matrices that one may 

(1) interchange rows 

(2) interchange columns 

(3) change the sign of every element in a row 

(4) change the sign of every element in a column, without disturbing the 

Hadamard property. Using these operations it is possible to estab-

lish a normal form for Hadamard matrices by insisting that the first 

row and first column contain only ones. All examples given above 

are in Normal form. 

Hadamard matrices may exist only for orders which are integer multiple 

of four, and have been constructed for all such orders upto 200. Assuming 

for 2x2 case 

H 	= 
0 	1 -1 

We can recursively find the higher order matrices as below: 

Hk  

k 

  

Hk  

-H. 
—k 

  

    

The construction of other orders involves the determination of quadratic 
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[residues [A-7] , 	A-17 I and is thus more involved but in spite 

of this fact it is more conveniently implemented using a digital computer. 

There are a number of methods for constructing Hadamard matrices. CA-17 

p.(207) 
1 
 . Let M be the order of the matrix. In order to construct a 

Hadamard matrix H, apart from the exceptional cases M=1, 2 it is necessary 

that M should be divisible by four. If M is a power of 2, i.e. 22, 23, 

24, 25, then H should be formed in the manner discussed above and doubled 

(for computational purposes). We shall now consider the case of generating 

H when M is divisible by 4. This is a bit more complicated and the use of 

Legendre symbol is quite useful. The Legendre symbol (n/p) is defined 

for a prime p to be 1 when n is a quadratic residue of p, and -1 when n 

is a quadratic non-residue. If the congruence relation r2  = n(mod p) has 

a solution r(mod p) for integers n, p, and r, then n is called a quadratic 

residue otherwise it is a non-quadratic residue. The remaining results 

we shall provide in the form of Lemmas. 

LEMMA 1: If we have an H matrix of the order MI  and an H matrix of order 

M2, then we may construct an H matrix of order M1M2. 

LEMMA 2: Let M be of the form (p+1), where p „:= 3(mod 4), is prime. 

Then we can construct an H matrix of order M. 

LEMMA 3: Let M be divisible by 4 and be of the form 21((p+1) where p is 

prime. Then we can construct an H matrix of order M. 

In this case p=3(mod 4) i.e. M = 12, 20, 40, then the (p+1)x(p+1) array 

His first formed, with each element computed according to 

h
ij 

1 	if i=1 or J=1 

-1 	if i=J 	and 

(j-i/p) 	otherwise 

i > 1 
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where the quadratic residues are determined by subroutine. 

LEMMA 4: Repeating Lemma 3 for the case izii.1(mod 4), K=1 i.e. M=28 

then H is computed according to 

1 	if i = 1 or J = 1 but i 0 J 

if i = J 

(j - i/p 	otherwise 

A.4 	MOORE-PENROSE PSEUDO-INVERSE MATRIX (MPPI) [A-18, 23]  

Matrix division is not defined Per se. The concept of matrix 

inverse effectively allows us to "divide" however. In this section we 

develope the concept of pseudoinverses and illustrate the computation of 

the inverse when it exists. In the past it has been conjectured that 

the inverse of a singular matrix, which is analogo= to a scalar, does 

not exist. The pseudo inverse was introduced for the first time by 

Moore [A-25] 	and later rediscovered by Penrose [A-21, 27] whose 

papers initiated a vogue in the subject. The nascent concept is being 

tried for the first time for digital processing of PAM data signals. 

Before defining the MPPI matrix we ought to know a number of preliminary 

notions. Let the MxN matrix A represent a linear map from a vector space 

U to a normed vector space V of dimension N and M respectively. Assuming 

that the field is a set of real numbers and that W;N, then all eigenvalues 

T 	 T 
of th.:1 real symmetric matrices A A and A A are real and nonnegative. 

The real property follows from symmetry but to show that the matrix ATA 

is nonnegative we let V !. A U for some arbitrary vector U in U. Then 

0 <I I Jll 2  = VTV = ( A U )
T
( A U ) = U

T
A
T
A U 

h
ij 

13 
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So ATA is positive semidefinite from which the desired result follows. 

The result for A A
T follows analogously. If the rank of A is R and is 

less than N, then it can be shown[ A-23, p.841 that both ATA and A AT  

have exactly R identical nonzero eigenvalues, say {E, 
1 

with all other eigenvalues zero. Furthermore, from symmetry it follows 

that ATA and AA
T each have a set of orthonormal eigenvectors which we 

shall denote by the sets{ Ad, A2, X3, 	 xN} and (24, 22, iv 	2.14} 

respectively. These sets are ordered so that xm  and 2m  correspond to 

Eri for m = 1, 2, 3, ... R. The rectangular matrix A can now be expressed 

f 2-23, p.851 in the generalized spectral representation 

R 	 T  
A = E Ek 	Xk 

k=1 
(6) 

when A is real symmetric, hence square, then (6) reduces to (5). This 

can be shown by noting that 

AT  A A 	ATA = A2  

and from the Frobenius Theorem [A-39, p.244] the nonzero eigenvalues of 

A are {El, E2, E3, ... ER} Let us suppose that k is a normalized 

eigenvector of A corresponding to E , then it is also an eigenvector 

of A' corresponding to E2 . In order to show this we note that 

( A - E 	= Q 

implies that ( A2  - 	= A( Ap_ ) - EA p.  

=A ( - 1)p.  

consequently, for this case { pm  } , { xm} , ard{ im} are all equal 

and the desired result follows. 
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We shall now propose a formal definition of Moore-Penrose pseudo-inverse 

matrix (MPPI) A+  which is given by 

R 
A+  = E E L  X 1.1)  

k=1 k 
(7) 

The most important application of this definition can be seen by consid-

ering the matrix equation 

AU=  V 	 (8) 

If V belongs to the range space of A then an exact solution exists, but 

is unique only when A is non singular, in which case it is given by the 

usual inverse A-1 as 

U = A-1  v 	 (9) 

But, when the matrix A is singular then there are more linearly indepen-

dent equations than unknowns and an exact solution does not exist in 

either case, the MPPI solution [ A-23, p.86] 

U = A V 

is the unique best solution in the sense that, for any other possible 

solution U', the relationship is given by 

I I A 	- vi 1 1 Kut 	II 

Properties of MPPI [ A-4, p.144] 

The MPPI matrix A+  of A has the following properties: 

(i) (A A+)T  = A A+  

(ii) A A+  A = A 

(iii) (A A+)T(A A+) = A A+  

An example below shows how to compute MPPI 
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EXAMPLE  

Find the MPPI of 

-1 	0 	1 	2 

-1 1 0 -1 

0 -1 1 3 

0 1 -1 -3 

1 -1 0 1 

1 0 -1 -2 

Solution: Before solving this example we shall state the following theorems. 

Theorem 1: If A is m x n and of rank k, and we can partition A in the 

form 
A 	A —11 —12 

A = 

—
A
21 A —22 

where A
41 
 is a nonsingular matrix of rank k, then 

A = 

  

I 

 

—
A
11 

 

I  A = 
P Au [I Q1 = [Is] 	(10) 

 

P A
2

- 1

.  

      

      

where P = A A 
 

0 A
ll Al2 2111 ' 	= -41 -12 

Theorem 2: If A = B C where A, B, C are respectively, MxN, MxK, and KxN, 

and all three matrices are of rank K, then the solution A x = b which 

minimizes 

(a) the sum of the square of the residuals rT  r , where r = b - A x 

(b) the sum of the squares of the uknowns xT  x is given by 

x = A
+ 
b where At= CT( C CT)-1  (BT  B)-1  BT 	(11) 



A11 
B 

A21 

   

-1 
= A41 Al2  = 

 

-1 	2 

-1 -3 

   

   

In the terminology of theorem 2 we now set 

-1 0 

1 -1 

1 0 
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Reducing the matrix A to Row-Echelon form, the rank is found to be 2. 

The 2x2 matrix in the upper left of A is nonsingular so that we can choose 

A11 = — 

-1 	0 

-1 	1 
A
-1 

= 
-1 

-1 0 

-1 	1 

    

    

    

working in terms of the third formula in (10), we compute 

C = I 2 	= 
[ 1 	0 	-1 

0 1 -1 -3 

substituting in (11) we get MPPI 

-15 -18 3 -3 18 15 

1 	8 13 -5 5 -13 -8 
A+ 

102 7 5 2 -2 -5 -7 

6 -3 9 -9 3 -6 
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A.5 	STATISTICS: 

The essence of communication is randomness. Digital 

communication involve digital processing of random signals. These random 

signals usually possess infinite sequence 	energy. Thus, the 

mathematical representation of such signals lies in their description in 

terms of averages. We shall develop many (but not all) of the properties 

of such signals in terms of a finite energy sequence called the Autocorr-

elation or Autocovariance sequence, for which the z-transform or the 

Fourier transform often exists. It is impossible to go into all the details 

of statistics involved, however, a few necessary requirements will be 

catered for and the rest will be referenced to the standard texts [A-27,36] 

The expected value or mean of a random variable x is the 

integral 

E [x] =Ix f(x) dx 	 (20) 

where f(x) is the density of x. If x is of discrete type, taking the 

values xn  with probability pn, then 

E [x] = E xn  P (x=xn) =E xnpn 	(20a) 
n 	 n 

This will be denoted by n . Another important parameter is the Variance 

or Dispersion which is defined as: 

02 = E[(x-n 52] = 	)2f(x) dx 	(21) 
-00 

The square root a is called the Standard Deviation . If x is of discrete 

type, then 
02 = E (x  -n )2  P ( x=xn) 

n n  

=E [x
2
] - [E(x)]2 

(21a)  

(21b)  

Two random variable x and y.  are called Uncorrelated if 

E[xx] = E [x]E[i]. They are orthogonal if E[x y] = 0 

and independent if f(x,y)=fx(x) fy(y). The autocorrelation R(ti,t2) of 

a process x(t) is the joint moment of the random variable x(ti) and 
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x(t2) and is given by: 

R (ti,t2) = E [x(ti)x(t2)] 	 (22) 

The cross correlation of two processes, real or complex, is defined by 

* 
R (t ,t ) 	E [x(t ) y(t ) ] 
	

(23) 
xy 1 2 	1 	2 

* 
where denotes the complex conjugate . A stochastic process x(t) is 

stationary (in the strict sence) if its statistics are not affected by a 

shift in the time origin. This means that the two processes x(t) and 

x(t+e) have the same statistics for any e. A process is -ailed stationary 

in the wide sense (or weakly stationary), if its expected value is a 

constant and its autocorrelation depends only on (ti-t2): 

E [ x(t)] = n = a constant 
(24) 

E[x(t4r)x(t) ] = R (r ) 

A process x(t) is normal and stationary in the wide sense, then it is 

stationary also in the strict sense. 

So far, we have mentioned about the ensemble averages i.e. 

E [. ], but in a practical sense, we would prefer to deal with a single 

sequence rather than an infinite ensemble of sequences. To formalize 

this intuitive notion, we define the time averages 	> of a random 

process as 	Lim. 
< xn> = N-►00 	1 /2N+1 	E 	xn  

n=-N 

Similarly, the time autocorrelation sequence is defined as: 

Lim. 
< xn'xn4.m> = N-*o 1/2N+1 	E 	x

n
x n 

n=-N 

It can be shown that the above limits exist if{ xn
} is a stationary 

process with finite mean. When the time averages of a process equal 

ensemble averages then it is called an ergodic process [A_27].Properties 

of correlation and covariance sequences are tabulated in [A-25,pp.388]. 

(25)  

(26)  
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MONTE CARLO SIMULATION TECHNIQUE: [ 5-3]  

In chapter 5, we came across a problem of evaluating the 

most meaningful criterion, the probability of error Pr(e) or Pe. Since 

an analytical expressionis not available, we resort to an approximate 

technique the so called Monte Carlo techniques. In this case the solution 

is attained in four steps: 

(a) Generation of the transmitted data sequence; 

(b) Generation of the noise, Which is then combined linearly 

with the transmitted signal to obtain the received signal; 

(c) Application of the equalization operation to the received 

signal so as to obtain the received data sequence; 

(d) Comparison of this sequence with the transmitted one to count 

the number of errors that have occurred, from which the required 

estimate of the error prob. is then readily derived. 

It is assumed throughout this chapter that the transmitted data sequence 

is binary and thus step (a) above requires in general the use of a 

binary pseudo-random generator. However, in all cases studied in chapter 

(5) the prob. of detecting a digit in error is the same whether it is a 

'Zero' or a 'one' and therefore it is possible and convenient to asume 

that the transmitter sends a sequence of identical digits (say, zeros). 

It is also assumed in this chapter that the receiver processes samples 

of the received signal. Therefore, step (b) of the simulation procedure 

can be accomplished by using a pseudo-random number generator to generate 

the noise samples, which are then combined linearly with the corresponding 

samples of the transmitted signals. 

The generation of the noise samples usually takes most of the 

computer time in the simulation procedure. Since in order to obtain 
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a sufficiently accurate estimate of the error prob. it is usually 

necessary to use long transmitted sequence, the noise structure 

must be simple enough to permit its generation in a reasonable amount 

of time. 

Before the simulation experiment starts it is very desirable 

to have an estimate of the No. of transmitted digits required to estimate 

the error prob. with the prescribed accuracy. Assuming for simplicity 

that the errors are statistically independent events, the No. of errors 

in :51 digits obeys a binomial distribution of mean nPe and variance 

nPe (1-Pe), where Pe is the prob. of error. For sufficiently large n 

this distribution becomes approximately gaussian and thus the prob. of 

a given No. of errors can easily be determined. The relative error in 

estimating Pe is given by (x-nPe)/(nPe), where x is a No. of observed errors. 

This relative error has an approximately gaussian distribution with zero 

mean and standatd deviation /(1-Pe)/(nPe) . Thus, to find the prob. P 

of maintaining a given level of accuracy A it is necessary to determine n 

from the Equation 

P = 	prob. 
x-nPe 

< 

nPe 

1 	/4K 
= c 

-i/2 
dt = 	(I) 	(Ka 	) 

7-lir ./4k 

where 
I 

2- 
K 

[nPe 
= 

1-Pe 

This can be written in the form 
-1 

K = (Pi or 	n = 
2[1-Pe -I 

K 
Pe 

Therefore, if 

n 

P = 90% 
300 

and A = 0.1 then 

Pe 
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A.6 	PROOF OF SUPPLEMENT RESULTS:  

A.6.1 

PROOF: 

Prove that the matrix A defined by: 

1 	-1 -1 -1 
a 	- 	j[Y(z) F (z) F (z ) Y(z ) z dz 
pq 	27 j 

is hermitian and positive semidefinite. 

Letting  z= exp.(jw ), it follows that 
7r 

1 
a = — Y(jw) Y(-jw ) F (jw) F (-jw ) j d w 
pq 	2nj qr 

1 	* 
=--.11 Y(jw )12F (jw ) F (jw ) dw 

27 _71- 	p 	q 
* 

=a 
qp 

and this means that A is hermitian. To prove that A is 

also positive semidefnite let us suppose that is an arbi- 

trary vector of size M. Then 
T 	1 	T 	T -1 	-1 
a A a =—a V (z) V (z ) a z dz 

27' 
T 

Since I(z) = a V(z), it follows that 

T 	1 	-1 -1 
a A a - 	 I(z) I(z ) z 	dz 

2 Trif 
fn. ,, 

	jr1 I(jw )1 2  d w > 0 
2ft 

This proves the positive definiteness [ A-42 1. 

-i 
A.42.2 	Prove that the matrix A defined by P (z) = z 	in (3.24) 

i 
is positive definite. 

PROOF: 
With respect to Fig. (3.2), we have 

K-1 
I (z ) = E 	a 	P (z) Y (z) 

i=0 i i 
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K-1 
= [ E 	ai  z 	) Y ( z ) 

i=0 

= c(z)Y(z) 

K-1 	-1 
where C ( z ) = E 	a

i 
z 

i=0 
T 

The quadratic form a A a can be written as 

T 	1 	-1 
a A a= I( 	) dz/z 

27j c  
1 cc  

 	1 C(jw )12! Y ( jw )12  dw 
2 7 

Now C(jw ) is a linear combination of K complex exponentials, 

and hence must have always nonzero values on any finite 

interval unless a = O. Also, the input signal is made digital 

by means of an ADC operating at a sampling rate which is at 

least twice the highest signal frequency in accordance with 

the uniform sampling theorem. Consequently, the spectrum 

Y ( jw ) must have nonzero values on some interval of the 
T 

primary region [- 7, 7), and therefore, a A a > 0 for a A 0 

and A is positive definite. 

A.6.3 	Prove that the vector W in Eq. (3.31) belongs to the 

range space R ( A ) of A. 

PROOF: [ A-1, 38) 	Suppose 47 is an arbitrary vector in space R(A). 
We have 

T 
W = P W 

T 
A =PAP 

T 
Therefore,it will suffice to show that R(A) = R ( P ). 

Here, A is nonsingular and real symmetric . It has a square 

root 	which is also nonsingular and real symmetric:conse- 

quently, A can be written as 

T 	A T 
A = ( A'1. P ) 	( 	hP ) = X X 
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T , 	- 
Also, W = P (A' A7"-5) W 

T 
= X ( h 	) . We also observe that 

T 	 T 	T 
X is the adjoint of X therefore R(X ) =R(X X)=R(A) 

However, W is obtained by applying 

T T 
X =P Alto the arbitrary vector h W and since k. is 

one-to-one, then 
T 	T 

R(X ) = R(P ) 
T 	T 

Hence, R(P ) = R(X )= R(A)'. 

This proves the proposition. 

A.6.4 	Prove that the map 
T 

+ N-1 
YY YY = E 	i 	. 

i=0 1 

given by Eq. (3.53) is a projection matrix, i.e., it is both 

self adjoint and idempotent. 

PROOF: 
is hermitian since it is real 

T 	N-1 	T T 

	

Therefore, 4) =[E':' 	] 
i=0 i i 

N-1 	T 

	

' 	E 	I) 	lb 	. 4) _ 
i=0 	1 	i 

Furthermore, since 

N-1 	T 	N-1 
ct) 

 

2 = L E !Pi V)i j 	z tvi 	4).i 
i=0 	j=0 

N-1 N-1 

	

= E
- 	) 
1( -1  I 

i=o j=0 
N-1 N-1 
E 	E 	tp 	6 	4, 

	

i=0 j=0 i 	—j 

Then 4) is also idempotent. Therefore 4)represents a projection matrix 

and the proposition is proved. 
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A.b.5 	Prove that the matrix 

T 

Iii (1) IP = diag. [ 	I 	1 0 	] 

N K-N 

PROOF: 
{11)} is orthonormal set, therefore, 

m 
 

til 

T 

4.), 

4)2 

N-1 	T 

E 4'i. 4'1. 	[ IPO 4)1 4)2 — ' IPK-1 ] 
i=0 

.T 

4'K-1 

I 	 0 
N 

0 0 
K-N 

= diag. [I 10 	] 
N K-N 

T 

IP 	cP IP :: 
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GLOSSARY OF SYMBOLS AND TERMS  

ai 	Vector 

{a
m
} 	Matched filter output in sampled form 

A 	Matrix A 
0 
A 	Singular matrix 

Stictly non singular matrix 

A
+ 

Moore Penrose Pseudoinverse matrix of A 

{Bk-6} 
	

Desired truncated received sequence 

{o, } 
	

Feedforward multiplier coefficient of non recursive digital 

filter equalizer and recursive digital filter equalizer 

{B) 
	

Feedback multiplier coeeficient of recursive digital filter 

equalizer (RDFS) 

6 
	

Delay between the arrival at the equalizer of the first 

precursor of the channel unit pulse response and the occurrence 

of the locally generated reference pulse 

6ii 	Kronecker delta (if i=j then 6ii  = 1; if. i 	j then 6ii  = 0 ) 

ck 	k th  error = ( Ik - Ik-d) or ( Ik 	) sample 

(1) 	Projection matrix 

A 	Iterative convergence factor 

V 	Gradient operator 

The probability of an error event 

Summation notation 

Partial sum of the log likelihood function 

A. 	ith eigenvalue of matrix A 
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T 
Orthonormal eigenvector set of YY YY 

T 
Orthonormal eigenvector set of YY YY 

T 
Eigenvalues of the N x N real symmetr'c matrix YY YY 

Additive coloured gaussian noise component sequence 

[KxK] diagonal matrix 

an 	Standard deviation 

{p) 	Multiplier coefficients of finite memory discrete time NRDF 

{E} 	Input error sequence (Chapter 6) 

D ( a ) 	Peak distortion criterion 

d
ij 	

Coordinate in the direction of *
A 
 and 
 -1 

dmin 	Minimum distance weight (the VA algorithm) 

D Diagonal matrix 

(% 	
kth  multiplier error vector 

E [ x ] 	Expected value of the random variable x 

ffkl 	Set of multiplier coefficients of a NRDF model of discrete 

time channel with finite memory 

G Length of channel unit pulse response 

{gk} 	Channel impulse response 

Ak 	Estimated gradient vector of J [ ak  ] w.r.t. ak, also 

residual vector 

H Hadamard matrix 

h Combined impulse response of channel and transmitter 

I 	Diagonal matrix 

I 	Length of the input sequence {Ik} 

{Ik} 	Data (Symbol) sequence 

{Ik} 	Equalizer output before decisions 
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' 	{ Tk} 	Equalizer output after decisions 

IN 	N x N identity matrix 

J (a ) 	Mean square error criterion used for NRDFE cases only 

111 (a  ) 	Noisy performance criterion 

J (a ,E ) 	Mean square error criterion used for RDFE cases only 

K Number of filter sections 

KL 	Lower bound multiplier factor 

KU 	Upper bound multiplier factor 

L Length of the channel output sequence 

LL 	Total number of samples 

Log (la) 	Natural logarithm 

Logs 	Logarithm to the base b 

M 	Size of the alphabet ,also used for the NO. Of a's in RDFE 

m 	Number of levels 

N Number of shift register stages in each filter section 

(NRDFE), also used for the number of feedback multiplier 

coefficients E's in RDFE 

n 	An index integer 

n(t) 	White gaussian noise component of the channel output 

NO 	Two sided noise spectral density 

P Average power 

Pr(e),  Pe 	Probability of error ( both notations have been used ) 

PM 	Probability of sending ith  message 

p(Eli) 	Conditional probability 

Pi(z) 	Transfer function of 

PP 	Length of the filter section output 

Q 	 Gain of a digital filter 
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Q 	A matrix having normalized eigenvector of A 

Q ( . ) 	Error function (erf) 

Q [ . 	Quantized output 

qi 	Main or Head pulse 

{rk} 	Input to the receiver, Fig. (2.1) 

r 	Residual vector 

RW 	Filter section correlation matrix 

RIv 	Cross correlation matrix 

S(t) 	Transmitted signal through the channel 

sk 	State sequence 
T 

• [ S 	Transpose of the matrix S 

T 	Duration of the signalling interval 

1 	Eigenvectors of the matrix A 

vk 	Output of the kth filter section [Chs. 3 & 4 

< u , v > 	Inner product of u and v 

IJ 	Cross correlation vector 

Y 	Input vector to the equalizer 

{Yi} 	Sequence of input vector(symbols,bits,digits,pulses) 
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* (on-line) 	Convolution 

* (superscript) 	Complex conjugate of a number (i. e. z*) 

Approximately equal 

IZI 	Modulus of the random number Z 

Greater than or equal to 

Less than or equal to 

IIZII 	Norm of Z 

Is defined as 

MLSE 	Maximum likelihood sequence estimation or estimator 

VA 	The Viterbi algorithm 

MPPI 	Moore Penrose Pseudoinverse 

NRDFE 	Non recursive digital filter equalizer 

NRDF 	Non recursive digital filter 

RDFE 	Recursive digital filter equalizer 

RDF 	Recursive digital filter 

WGN 	White gaussian noise 

BW 	Bandwidth 

lE 	Number 

Prob. 	Probability 
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