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Abstract

A fundamental problem in communications is the estimation of the channel.
The signal transmitted through a communications channel undergoes distor-
tions so that it is often received in an unrecognizable form at the receiver.
The receiver must expend significant signal processing effort in order to be
able to decode the transmit signal from this received signal. This signal pro-
cessing requires knowledge of how the channel distorts the transmit signal,
i.e. channel knowledge. To maintain a reliable link, the channel must be
estimated and tracked by the receiver.

The estimation of the channel at the receiver often proceeds by trans-
mission of a signal called the ‘pilot’ which is known a priori to the receiver.
The receiver forms its estimate of the transmitted signal based on how this
known signal is distorted by the channel, i.e. it estimates the channel from
the received signal and the pilot. This design of the pilot is & function of the
modulation, the type of training and the channel.

The pilot can be multiplexed into the unknown data in what is called
time multiplexed or explicit training. It may also be added at low power onto
the mnnknown data in a scheme called superimposed training. In this the-
sis, iterative semiblind channel estimation based on superimposed training
is studied for orthogonal frequency division multiplexing in frequency selec-
tive channels. Iterative semiblind estimation of doubly selective channels
with superimposed training is then studied for single carrier communica-
tions. Finally, iterative semiblind estimation of doubly selective channels
based on time multiplexed training is studied. Significant performance gains
are demonstrated with the application of iterative semiblind channel estima-

tion in all three cases.
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Chapter 1

INTRODUCTION

1.1 Introduction

Communications has evolved a long way since the electrical telegraph. The
invention of the radio telegraph by Guglielmo Marconi began the radio wire-
less revolution. Powerline communications technology has made it possible
to connect users with reduced wiring. Light amplification by stimulated
emission of radiation (Laser) has propelled growth in free space optics and
fiber optic communications. The communications industry has seen unprece-
dented growth in the last couple of decades spurred on by Shannon’s promise
of arbitrarily reliable communication at previously unimaginable data rates.

Wireless communications has given the end user a degree of flexibility
that would have been unimaginable to the technology outsider two decades
ago. Indeed what we take for granted in today’s networks had its detractors
even in the communications field [2]. The technology has been made pos-
sible through the use of radio frequencies and substantial signal processing.
Wireless communications technology has evolved into much more than the
original concept of a cell phone. It has provided people with connectivity to
the internet where wireline communications simply cannot provide services.
Thanks to wireless communications, we can now be connected seamlessly
with nothing but a portable hand held unit. Upcoming fourth generation

systems aim to provide wireless connectivity on an anytime anywhere basis?.

'Standards for fourth generation systems have not been developed yet but they are
projected to be completely packet switched networks which aim to provide data rates
from 100Mbs to 1Gbs on an anytime anywhere basis.
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This revolution in wireless communications has further propelled research
in wireline communications. In order to have any appeal to the customer,
wireline communications must offer him or her substantially higher data
rates to offset the advantages of ubiquitous connectivity. This rivalry be-
tween wireless and wireline communications has dramatically transformed
the concept of communications. Today’s end user requires much more than
just voice calls and text messaging. Networks are willing to offer streaming
rich multimedia content, video calls, high definition television (HDTYV), dig-
ital video broadcast (DVB) and much more.

All these services require high data rates and come with increasing sig-
nal processing complexity for both wireless and wireline communications.
The increase in complexity is more pronounced for wireless communications
as the end user expects to be provided the services regardless of his loca-
tion and any motion. Networks are also keen to profit by providing services
everywhere. The signal processing at the receiver to maintain a wireless
communications link requires knowledge of how the physical environment
(channel) distorts the signal as it propagates through it. This knowledge is
more difficult to obtain when the channel to the user is changing as the user
is vehicle borne. The focus of this work is mainly on the estimation of such

channels.

1.2 Thesis Outline

Many signal processing algorithms to extract the transmit information from
the received signal require channel knowledge at the receiver. The channel
needs to be estimated for the receiver signal processing. The focus of this
work is on the study of channel estimation for communications.

Chapter 2 surveys techniques for processing the received signal to deal
with channel distortions. Error control coding (ECC) is briefly introduced,

with emphasis on convolutional and turbo codes, as an effective technique
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to combat the effects of thermal noise. Equalization techniques that at-
tempt to detect the transmit signal by inverse filtering are explained and
the more complex sequence estimation algorithms are described. The de-
cision feedback equalizer is introduced as a compromise between the two.
Blind algorithms are also introduced as an alternative to the channel esti-
mation approach we use in this thesis.

Chapter 3 focuses on orthogonal frequency division multiplexing (OFDM).
Channel estimation based on superimposed pilots is explained and an itera-
tive channel estimation approach is proposed. The design of channel short-
ening equalizers is explained. Two separate cases of single input multiple
output (SIMO) and multiple input multiple cutput (MIMO) are consid-
ered. The MIMO-OFDM is space time coded for spatial multiplexing and
successive interference cancelation is introduced and the comparison to the
decision feedback equalizer drawn. Simulation results indicate significant
performance enhancement with the proposed iterative approach.

Chapter 4 studies superimposed training for single carrier communica-
tions over doubly selective channels. The separate cases of single input single
output (SISO) and MIMO are studied. The turbo equalization and space
time turbo equalization architectures are explained and an iterative semib-
lind approach is proposed for decision directed channel estimation.

Chapter 5 studies doubly selective channel estimation using time multi-
plexed training. Optimal training is designed based on a training based ca-
pacity where the training placement, choice and number of training symbols
and training power is optimized and a semiblind iterative channe! estimation
is proposed.

Conclusions are drawn in chapter 6. A brief summary is also provided

and potential areas of future research are identified.



Chapter 2

CODING AND
EQUALIZATION

2.1 Introduction

This chapter provides an overview of the the two most fundamental compo-
nents in any wireless communications system, namely coding and equaliza-
tion. A general block diagram of a communications system is given in figure

2.1. The channel coding and signal processing aspects are described next.

2.2 Coding

Contemporary communications systems usually employ matched filtering to
maximize the signal to noise ratio at the receiver. Nevertheless, the received
signal to noise ratio may still be insufficient to achieve the target bit error
rate (BER). Historically, repetition coding was applied to meet the required
BER performance until Shannon introduced the concept of channel capacity
in his ground breaking paper {3]. This paper laid the foundations for entirely
new fields like coding theory and information theory. For communications
theory, the implications of Shannon’s work were profound. His work laid
bare the fallacy that BER performance alone is a benchmark in communica~
tions and instead showed that performance is appropriately measured by a
three tuple of signal to noise ratio (SNR), the bit error rate (BER) and the

data rate.
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Shannon introduced the concept of channel capacity and established the
existence of codes that could, at Jeast theoretically, achieve it. However,
the real journey from the uncoded BER to the capacity started afterwards.
Shannon’s codes were constructed from randomly chosen codewords that en-
tailed excessive decoding complexity. Shannon opened the way for the real
problem in coding theory, i.e. to design codes with reasonable encoding /
decoding complexity that can get close to the capacity. From this perspec-
tive, repetition coding does not get anywhere because although the BER is
reduced, so is the data rate.

Coding theory has produced numerous milestones in the quest to achieve
channel capacity. Linear block and convolutional codes have been discov-
ered along with the Viterbi and BCJR algorithms that allow these codes to
be decoded with an acceptable complexity. The turbo principle has been

applied to codes with remarkable results.

Source Source _| Channel N Trasr}sr:artl‘ter
Coding "1 Coding T gna/
Processing
h 4
Chaninel
Destination | Sourca | Channel | Rg;:gii\:lar
-.Decodmg Decoding Processing

Figure 2.1. General communications block diagram.

Error correction codes introduce redundancy in the data stream before
transmission in such a way that errors introduced ¢an be corrected at the
decoder. An (n, k) linear code can be considered as a & dimensional sub-
space in the n dimensional space (F,=)" over the finite field Fgm. These
codes essentially try to place codewords as far apart as possible in all dimen-
sions thereby introducing temporal diversity which averages out the effect of

noise. Convelutional codes are the workhorse for wireless communications.
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This chapter will therefore focus on convolutional and turbo codes.

2.2.1 Convolutional Codes

Binary linear convolutional codes have gained widespread popularity for use
over the power limited regime. An (n,1,ds,e.) binary livear convolutional
encoder is a single input n output linear time invariant (L'TI) system that

may be defined using the D transform! as
C = {y(D) = u(D)g(D),u(D) € F2((D))} (22.1)

where g(D) is 1 x n vector of impulse responses, Fo((D)) is the set of all for-
mal Laurent series {4] and dy,.. is the free distance of the code. All vectors
in this sectioﬁ are row vectors as opposed to the use of column vectors in the
remainder of this dissertation. While this does inevitably introduce some
unconformity, it has been done to maintain consistency with the respective
fields of coding and communication theory which have used these notations.

Two generator n-tuples g(D) and g'(D) are equivalent if they generate
the same code, i.e. if C = C’. In general, a minimal encoder is chosen for
generating a code as it minimizes the complexity and ensures that the gen-
erator is not catastrophic?. A generator is minimal if and only if it is non
catastrophic and there are no {ransitions to or from the zero state with all
zero outputs except possibly a self loop.

Codes of a rate % can be generated using either a &k X r generator matrix
of impulse responses or alternatively puncturing a rate % code. Punctur-
ing is achieved by omitting bits from the encoded sequence according to a

puncturing matrix and it allows for a variable rate system without requiring

!The D transform is somewhat analogous to the 3 transform with two major differences.
D is just a placeholder so that u(D) is still in the time domain and a unit delay is given
by D rather than z~1. The D transform is thus not a transform in the strict sense as it
only provides a convenient form of notation and does not transform from one domain to
another,

2For a catastrophic generator, an infinite input sequence can generate a finite output
sequence, Its state transition diagram thus has cycle with all zero outputs other than the
zero state self loop
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multiple encoders / decoders. This requires that the low rate mother code
is chosen such that its codewords have the codewords of higher rate codes
embedded in them and the puncturing matrix is accordingly chosen so that
the higher rate code is retained after puncturing. Such mother codes are
termed as rate compatible convolutional codes.

The parameter dg,.. is called the free distance of the code and it deter-
mines the error correction and error detection capabilities of the code. The
free distance of a convolutional code is defined as the minimum distance be-
tween any two codewords. By the group property of linear codes, any sum of
two codewords is a codeword. The free distance is then equal to the weight
of the minimum weight codeword. The probability of an error event for the

code may then be predicted with the union bound estimate as [4]

2E, )

P = Kmm(c)Q( Yo7

N (2.2.2)

where .(C) = kdiree 35 the nominal coding gain of the convolutional code C

k1)
and K, is the number of error events of weight dy,, per unit time. The
effective coding gain vey¢ depends both on +; and Ki,. The function Q(.)
is called the Q function in communications and it measures the tail of a

Gaussian pdf

1 0O g2
Qa) = E-[z ez dr (2.2.3)

It is apparent from the union bound estimate that the key to the perfor-
mance improvement offered by convolutional codes lies in the free distance
properties of the convolutional code®. These codes have thus been tradition-
ally designed and chosen to have large minimum distance to achieve better
error performance. The BER performance of a good rat&% convolutional
code (i.e. a code with good free distance properties) and a punctured rate %
code obtained from this code are shown in figure 2.2. The BER performance

of the equivalent recursive systematic convolutional code are also shown in

*The corresponding quantity in linear block codes is called the minimum distance.
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BER

| —9—rate 1/3
4| | —%— punctured rate 1/2
L t]1 —+— rate 1/3 RSC code :
——— punctured rate 1/2 RSC code

Uncoded BPSK

i i

v
1 2 8 4 5

10°

=

Figure 2.2. BER performance of rate convolutional codes with generator
polynomial (31 27)

the figure along with the uncoded BER for reference.

2.2.2 Turbo Codes

Increasing constraint length implies strong coding behavior but also en-
tails exponentially increasing computational complexity. Coding theory has
worked around this by concatenating two shorter codes. Optimal decoding
of these concatenated codes would still be computationally infeasible, but
the concatenated structure allows for a computationally feasible albeit sub-
optimal approach. The codes can be decoded separately by using their own
decoders in a concatenated structure. Both block and convolutional codes
may be used and they may be concatenated serially or in parallel.
Concatenated codes [4] provide a tradeoff between coding gain and de-
coding complexity. The encoders can be concatenated in parallel so that
they both operate on the same bit stream (turbo codes) or they may be

concatenated in serial so that one operates on the output of the other (se-
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rial concatenated convolutional codes}. Serial concatenated codes have a
much higher interleaver gain and minimum free distance than their equiv-
alent parallel concatenated codes. Thus while parallel concatenated codes
tend to perform better in the waterfall region of the bit error rate curve, the
serial concatenated codes exhibit a much lower error floor. In this section,
the focus is on turbo, hence parallel concatenated codes, but the concept of
serial concatenated codes leads to a very useful concept of turbo equalization
which will be discussed later. These concatenated codes operate in the low
to moderate signal t0 noise ratioc (SNR) region and they can operate within
a fraction of a dB of the channel capacity. Turbo codes 4 were the first codes

to operate within a dB of Shannon capacity [4,5].

Turbo Encoder

Turbo codes are also called parallel concatenated convolutional codes (PCCC)
because the turbo encoder is formed from the concatenation of two system-
atic (typically also recursive) convolutional encoders separated by an inter-
leaver [6]. Thus the second encoder operates on an interleaved version of the
input to the first encoder. This is illustrated in figure 2.3.

Interleaving plays a very crucial part in the performance of turbo codes.
1t is necessary for the suboptimum decoding algorithm based on informa-
tion exchange between two component decoders that the inputs to the two
encoders be independent of one another. The interlea\‘fer serves the pur-
pose of decorrelating the inputs to the encoders. Consequently, there will
be a high probability that the errors that remain uncorrected after one de-
coder can be corrected by the other decoder. There are different kinds of
interleavers including block interleavers, convolutional interleavers, random
interleavers, and code matched interleavers. Only recursive systematic con-

volutional (RSC) component encoders can produce an interleaving perfor-

*Low density parity check (LDPC) codes can operate even claser to the Shannon ca-
pacity and lack of any patents provides a very attractive incentive over turbo codes, nev-
ertheless they have higher encoding complexity and decoding latency.
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d + b,
Recursive
—| Convolutional -+ b,
Encoder 1
Interleaver
Recursive
——ﬁ Convolutional - ‘bZ
Encoder 2

Figure 2.3. Turbo Encoder

mance gain which is vital for overall performance gain [7].

As with convolutional codes, trellis termination in a known state will im-
prove performance in turbo codes. Recursive encoders cannot be terminated
by a trailing sequence of zeros. Rather, they are terminated in a state of all
zeros by switching the input to the feedback in the encoder for the termina-
tion sequence. Termination of both encoders in a known state is somewhat
more complicated with negligible performance gain over termination of only
one encoder in a known state and is therefore beyond the scope of this work.

We consider the most general case of a rate % turbo code. Various codes
of higher rates can be obtained from this code by puncturing, i.e. sim-
ply omitting bits of the code according to a puncturing pattern called the
puncturing table. The receiver then simply decodes the code without as-
suming any channel observations related to the punctured bit. We used the
recursive systematic convolutional encoders with the generator polynomial
(1 1+ D+ D?+ D%+ D*Y. Other rate codes can also be achieved using
component encoders with different rates in the turbo encoder. For example,

if the rate of the first encoder is R; and that of the second encoder is Ry,
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then the rate of the overall turbo code R will satisfy {7]

1 1 1
=== 1
R R1+R2

Turbo Decoder

The turbo decoder is composed of two component decoders which may be
based on the maximum aposteriori {(MAP) algorithm or the soft output
Viterbi (SOVA) algorithm. The decoders are concatenated with the code in-
terleaver as shown in figure 2.4. The first MAP decoder takes the systematic
sequence, the sequence produced by the first encoder and the apriori infor-
mation from the second decoder to produce output extrinsi¢ information on
the decoded sequence. Similarly, the second decoder uses this a priori infor-
mation in addition to the interleaved systematic information and the output
sequence of the second encoder to decode. Thus information is iteratively
passed from one decoder to another and this can improve performance over
one shot decoding. This feedback loop in the decoder is similar to the feed-
back of engine heated air in the turbo engine, hence the name turbo codes.
In fact, it is not the code, but this decoding algorithm that is responsible
for the name ‘turbo code’.

To explain the working of turbo algorithms, it is necessary to understand
the concepts of a priori, intrinsic, a posteriori and extrinsic information.
In an iterative algorithm with information exchange between constituent
blocks, the a priori information for a constituent block is the information
provided by the previous block. The intrinsic information about a bit is
the information about that bit which is formed directly from its channel
observations. The a posteriori information for any constituent block is the
information generated at the cutput of that constituent block. The extrinsic
information of a constituent block is obtained by subtracting the a priori and
intrinsic information at the input of a constituent block from the a posteriori

information at the output of the constituent block.
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Figure 2.4. Turbo decoder block diagram.

It is essential to the performance of turbo algorithms that only extrinsic
information is fed back. Feeding back intrinsic information generally results
in faster convergence but the decoded data is typically far from the global
minimum and could also result in limit cycles. Similarly, the a priori infor-
mation must also be removed from the a posteriori information so that each
constituent block only provides new information to the next block. Also
interleaving is essential and the interleaver should decorrelate the sequences
input to the two encoders, otherwise both decoders will fail to correct the
same errors and the iterations will be useless. Although the intrinsic and
a priori information are removed, the forward backward algorithms like the
BCJR and the SOVA tend to produce outputs that are locally highly cor-
related so that a direct feedback effect will still persist. The interleaver is
introduced in the feedback loop to suppress these correlations so that the

direct feedback effect is avoided. An increasing interleaver size will better



Section 2.2, Coding 13

suppress these correlations and improve the BER performance.
The soft information for these iterative algorithms is expressed in log

likelihood ratios. The log likelihood ratio of a bit ¢ is expressed as

Aley) = 1Ogi’_’(_ck_=_0_)

2o =1) (2.2.4)

The extrinsic information at the output of the first decoder is given by {7]

(D \ i 2 ~(i—1)
Ajelex) = Allcr) — —37ko —Agze (k) (2.2.5)
aposteriont intrinsic apriori

where A denotes log likelihood ratios. The second term on the right hand side
represents the intrinsic information and the third term represents a priori
information - both of which have to be removed. Similarly, at the output of

the second decoder we have
i 3 2. ~(i
Age)(ck) = Aj(cx) - o,—zf'k,o - Agl}(ck) (2.2.6)

The two MAP decoders operating in an iterative manner are shown in figure
2.4 where the notations 4 and £ are used for a priori and extrinsic informa-
tion respectively.

The BER improvements over the iterations of a turbo code with an in-
terleaver depth of 420 in an additive white Gaussian noise channel are shown
in figure 2.6. It can be seen that the improvement in the BER performance
decreases with increasing number of iterations. After a certain number of
iterations, the decoders stop making progress and the final decoded sequence
can be obtained by taking hard decisions at the output of the second de-
coder. The BER curve of a turbo code consists of three regions. The region

of low Eb/No® where there is almost no improvement over the iterations,

8Eb/No is the bit energy per noise power spectral density also called the signal to
noise ratio per hit. For a coded system with code rate r, it is related to the SNR as
Eb/No = SNR/r,
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Figure 2.5. The regions of the BER curve of a turbo algorithm.

the ‘waterfall’ (also turbo cliff region) region where there is persistent BER
reduction over many iterations and the error floor region where there a low
BER is achieved over a few iterations. These regions are depicted in fig-
ure 2.5. Figure 2.6 shows the waterfall region of the code where there are

substantial performance improvements over eight iterations.

EXIT Charts

Extrinsic information transfer charts (EXIT) were introduced by ten Brink
in [8] as a useful graphical tool for the analysis and comparison of turbo

codes and was later extended for turbo equalization in [9]. EXIT charts pro-

vide useful insight into the convergence behavior of the iterative decoding
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BER Curve for Turbo Codes
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Figure 2.6, Convergence of turbo code waterfall region in the AWGN
channel

scheme. They graphically depict the flow of extrinsic information through
the decoding process based on mutual information. Ten Brink showed that
the averaged decoding trajectory is bounded on both sides by the transfer
characteristics of the two decoders [8). Decoding is therefore possible until
the transfer characteristics pinch off. In the low Eb/No region, the transfer
characteristics are pinched off, hence no improvement is made over the it-
erations. In the waterfall region, there is a narrow bottleneck between the
transfer characteristics that the decoding trajectory has to cross. The tra-
Jjectory takes many small steps in crossing this bottleneck explaining why
there is persistent BER improvement over many iterations in this region. In
the error fioor region, the transfer characteristics are wide open allowing fast
convergence in just a couple of iterations. The transfer characteristics are
obtained through stand alone operation of the decoder, The behavior of the
turbo code can thus be predicted without actually having to simulate the

entire decoder. For sufficient interleaver depth, the waterfall will lie at the
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(a) ) (¢}
T 1

Figure 2,7. EXIT charts for a punctured rate } code at (a) Eb/No = 0.4
dB {b) Eb/No = 0.7 dB (¢) Eb/No = 1 dB
Eb/No at which the transfer characteristics pinch off,

Figure 2.7 shows the EXIT charts for a punctured rate % turbo code at
various values of Eb/No. Initially, the averaged decoding trajectory matches
well with the transfer characteristics but increasing correlations of extrinsic
information begin to cause mismatch as the iterations progress. At Eb/No
= 0.7 dB, the decoding trajectory barely manages to sneak between the bot-
tléneck formed by the transfer characteristics suggesting the location of the

turbo cliff for this code.

2.3 Channel Characteristics

In order to understand the signal processing that is carried out in a commu—I
nications system, it is necessary to understand the physical characteristics
of the channel. In this section we explain how the transmit signal is dis-
torted by the channel as it propagates through it. The signal experiences

several different phenomenon. The channel distorts and spreads the signal
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in different dimensions so that, many times, the signal is unrecognizable
in its received form. Substantial signal processing is then required on the
received signal before the transmit information may be extracted from it.
These signal processing technigues are explained in the next section. While
they do increase receiver complexity and are sometimes detrimental to com-
munication, these channel effects may not always be harmful and can even
be exploited for gains at times.

As the signal propagates through the environment, it experiences path
loss. Another phenomenon induced by the wireless channel is fading whereby
the received signal fluctuates. These fluctuations are ohserved in both the
received signal amplitude and in its envelope. Fast fading, or short term
fading refers to rapid fluctuations of the received signal caused by scattering
off objects near a moving mobile. Under the assumption of a large number
of wavefronts with random amplitudes and angles of arrival with uniformly
distributed phases, the in-phase and quadrature components of the vertical
electrical field are Gaussian distributed. The envelope of the received signal

follows a Rayleigh density function [10]

22

;”’ge;_af, x > 0;
p(z) = {2.3.1)
, x <0

=]

where o2 is the variance. The fluctuations in the envelope are termed slow
fading while those in the signal itself are called fast fading. The slow fading,
or long term fading is caused by shadowing effects of buildings or landscape
features and it is determined by the local mean of the received waveform. The
slow fading is dependant on antenna heights, terrain features and operating

frequency. The received power averaged over a Rayleigh fading distribution
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follows a log normal distribution

plz) = (2.3.2)

The signal received over a wireless channel consists of many time delayed
and scaled replicas of the transmit signal arriving at the receiver®. These
replicas are called multipaths and they arise from scattering, reflection, re-
fraction and / or diffraction of the radiated energy off objects between the
transmitter and receiver. If these multiple paths arrive nearly simultane-
ously, the effective channel seen by the receiver is a single path with a gain
equal to the sum of the gains of these multiple paths and the channel is
termed frequency flat. However, if the replicas are significantly delayed so
that some replica corresponding to one transmission actually arrives nearly
simultaneously with other replicas from preceding transmissions, the chan-
nel is termed as frequency selective. Both the forward and reverse links see
the same multipaths. This is the reason behind the principle of reciprocity,
i.e. the forward and reverse channels are the same in a time division duplex
(TDD) system if the ping pong time” is much smaller than the channel co-
herence time. However, the path amplitudes and phases are a function of
the frequency so the principle of reciprocity does not carry over to frequency
division duplex (FDDY} systems.

Frequency selectivity can be caused by reflections from multiple scatter-
ers when the difference between the arrival times of the replicas formed by
the scatterers is larger than the reciprocal symbol transmission rate. Fre-
quency selective behavior is induced by remote scatterers, i.e. scatterers
neither in the vicinity of the mobile nor the base but in between the two.

Frequency selectivity can also be induced by limited bandwidth in the ab-

8 A sirnilar phenomenon to echoes in acoustics
"The ping pong time is the time between the transmission and reception of a frame in
TDD systems.
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sence of physical scatters. Limited bandwidth smears the transmit pulse in
time® so that interference is introduced. Frequency selective channels pro-
vide delay diversity which is a valuable resource in combating channel fading
but it also introduces intersymbol interference®. This behavior is also shown
by wired channels and even data storage systems like magnetic disks where
the head senses changes in flux and cannot pass DC. Frequency selective
behavior is characterized by the delay spread or the coherence bandwidth.
The delay spread is the span of path delays. The coherence bandwidth is
the maximum frequency separation for which the frequency domain channel
responses remain strongly correlated and is inversely proportional to the de-
lay spread.

Doppler spread is the spreading in frequency of a pure tone. It is also
caused by local to terminal scatterers in conjunction with mobility of the
mobile terminal. It is also caused by oscillator drifts and carrier frequency
offsets. This causes time selectivity so that such a channel varies rapidly
with time. The Doppler power spectrum is defined as the Fourier trans-
~ form of the autocorrelation function of the channel impulse response. The
Doppler spread is the support of the Doppler spectrum. The time selective
nature can be characterized by the Doppler spread or the coherence time.
The coherence time represents the time separation over which the channel
impulse response remains strongly correlated. Time selective channels can
provide Doppler diversity to combat fading.

Space selective fading is caused by local to base scatterers and remote
scatterers. These scatterers induce angle spread, i.e. they spread the angles
of arrival of the multipaths at the receiver. At the transmitter, the angle
spread refers to the spread of the departure angles of the multipaths. As a
result, the channel fades in the spatial dimension. The space selective fading

can be characterized by the coherence distance or the angle spread. The

®multiplication with a rect() in frequency appears as convolution with a sinc() in time
*Intersymbol interference or ISI is self interference that occurs when successive trans-
missions from a source interfere with each other.
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coherence distance is the distance over which the channel impulse response
remains strongly correlated. The coherence distance is inversely propor-
tional to the angle spread. Space selective behavior allows exploitation of
the spatial dimension for heamforming and spatial multiplexing because it
causes variations of the channel from antenna to antenna.

The delay, Doppler and angle spread present in a cell depends on the
physical environment. A list of typical values is shown in table 2.1 [1].
However, the selectivity seen in different dimensions depends on the system
parameters in addition to the environment, Although,‘ the underlying pa-
rameters are determined by the physical channel, their effects can be masked
or highlighted by the system parameters. For example the global system for
mobile communications {GSM) uses a bandwidth of 200k which is much
larger than the Doppler spread typical of a hilly environment. Thus GSM
does not suffer from time selectivity and does not require the channel to be
tracked during a transmission. It uses a very short symbol period of 3.7us
while the delay spread in a hilly environment is 20us. Thus we can see that
there will be substantial ISI with up to six paths and substantial effort must
be expended to deal with it. Another standard, the interim standard 54 (IS-
54) uses a symbol period of 41.6us so there is negligible ISI even in a hilly
environment. On the other hand, it uses a bandwidth of 30 kXHz and a time
slot of 6.66ms which is larger than the coherence time of the channel thus
showing time selectivity. Thus while IS-54 does not require any equalization
effort, it must track the channel variations during & transmission.

Similarly, the universal mobile telecommunications system (UMTS) uses
wideband code division multiple access (CDMA) so that all users transmit
over the entire bandwidth. The bandwidth is shared by all the users and
distinct chip sequences or codes are used %or multiple access. Because of

the wide bandwidth employed for transmission, the users will typically ex-

perience frequency selective propagation effects which are dealt with using
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Environment Delay Spread | Angle Spread | Doppler Spread
Flat Rural (Macrocell) 0.5 us 1° 190 Hz
Urban (Macrocell) 5 ps 20° 120 Hz
Hilly (Macrocell) 20 us 30° 190 Hz
Mall (Microcell} 0.3 us 120° 10 Hz
Indoors {Picocell) 0.1 ps 360° 5 Hz

Table 2.1. Typical delay, angle and Doppler spreads in cellular applications
1

a RAKE receiver'®. Also because of the wide bandwidth used for trans-
mission, time selectivity induced by Doppler spread will be much smaller as
compared to that induced in IS-54 and GSM. However, UMTS poses its own
distinct set of challenges. The UMTS standard has to contend with multiple
access interference (MAI) and has to maintain stringent power control over
the users to deal with the near far effect!?

In this work, we will be dealing with frequency selective and doubly se-
lective channels. Frequency selective channels are dispersive in time while
doubly selective channels are dispersive in both time and frequency. Thus
doubly selective channels have both delay and Doppler spread. Although an-
gle spread will not be explicitly discussed further, we will also be implicitly
taking it into consideration in our study of multiple input multiple output
(MIMO) systems. This is because the antenna arrays have to be designed so
that the separation between antennas is more than the coherence distance
so that the antennas see uncorrelated channels in order to achieve spatial
diversity. Thus in exploiting the spatial dimension, the underlying assump-
tion is that there is sufficient angle spread in the system.

Apart from all these channel induced effects, there is the ubiquitous ther-
mal noise. This omnipresent noise is generally Gaussian distributed but not
necessarily white. A simple noise whitening filter may be used at the receiver

before any other processing. A matched filter is used to maximize the signal

10The RAKE consists of multiple correlators followed by combining(typically maximum
ratio combining (MRC)).

1By the near far effect, the weak signal from a far user is swamped by the MAI from a
strong signal of a nearby user.
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to noise ratic and channel coding techuigues may be used to average out the

effects of noise.

2.4 Equalization

Channel equalization i required to mitigate the effects of fading and to re-
move interference. Equalization has been widely studied after the pioneering
paper by Lucky {11]. Some of the techniques developed are introduced in
this section.

Although channel equalization is generally performed at the receiver

(post equalization), it may also be carried out at the transmitter (pre equal-

ization) or balanced between the two [12]. Pre equalization is rarely applied
as it requires CSI at the transmitter which is generally unavailable. However,
with CSI at the transmitter, pre equalization can aveid the noise enhance-
ment problem, particularly if the channel matrix is ill conditioned. Balanced
equalization may or may not require CSI at the transmitter. An example
of the former is vector coding where the singular value decomposition of
a multiple input multiple output (MIMQO) channel is used to open parallel
data pipes between the transmitter and receiver [10]. 12 On the other hand,
orthogonal frequency division multiplexing {OFDM) uses balanced equaliza-
tion but CSI is not required at the transmitter. This is because the matrix
is diagonalized by means of a channel independent transformation [13]%.
CSI can be obtained at the receiver with a known training signal from the
transmitter and may be used to design an equalizer. Acquiring CS1 at the
transmitter is much more difficult and is usually achieved by feeding back
from the receiver or by exploiting some invariance properties to estimate the

forward channel from the reverse channel. Since the design of an equalizer

12Fn vector coding, the data streams are modulated with the right singular vectors at the
transmitter while they are demodulated with the the left singular vectors at the receiver
and this ensures that the streams are received without interference. Because different
chanrels can have different singular vectors, CSI is required at the transmitter to find the
right singelar vectors.

B3 Circulant matrices have the property that any eirculant matrix is diagonalized by the
DFT matrix. The Fourier basis are eigenvectors of the circulant matrices.
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requires a matrix inversion that is computationally complex, methods have
also been developed for direct equalizers that circumvent the estimation of
the channel. Much research has also focussed on the design of blind equal-
izers that can equalize the channel without the need for training or CSI at
the receiver.

Equalization may be serial or block based. Each of these approaches have
their own merits and drawbacks. Serial equalizers for example have smaller
design and implementation complexities and they can also tradeoff complex-
ity for performance. However, channel invertibility and symbol detection
are not always guaranteed. Block equalizers can provide better performance
and guarantee channel invertibility [12].

A length 5 frequency selective chanmel with impulse response

h[n] = 0.2278[n] + 0.465[n — 1) + 0.6885[n — 2] + 0.466]n — 3] + 0.2278[n — 4]

(2.4.1)
will be used in this section to illustrate the performance of the different
equalization algorithms discussed. This channel causes severe IST [14] and
is diffientlt to equalize as its four zeros are very close to the unit cirele and

its frequency response is characterized by a deep null as shown in figure 2.8,

2.4.1 Zero Forcing Equalization

Zero forcing equalization is based on the minimization of the peak distortion
criterion in order to eliminate intersymbol interference altogether [14] and
perfectly recover the input signal in the absence of noise. Finite length
baud spaced serial zero forcing equalization is not possible for a frequency
selective channel and it takes an [IR filter to invert an FIR filter. If the
channel transfer function is H(z), the transfer function of the serial zero
forcing equalizer is

Gzr(z) = (2.4.2)

H(z)
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Figure 2.8. (a) Locations of the channel zeros (b) Magnitude response of
the channel.

which is only causal and stable for minimum phase channels. Even theo-
retically, the IIR serial zero forcing equalizer can only be used to equalize
minimum phase channels.

It has been shown that it is possible to invert a channel with a finite
length equalizer if oversampling of the output is employed [15] in the ab-
sence of noise. This fractionally spaced equalization can be modelled by
both a multirate system model or a multichannel system model. Conse-
quently it is also possible to perfectly recover the input signal in the absence
of noise if the oversampling is applied in either the spatial dimension (SIMO
system) or the temporal dimension. Given a T/2 spaced system where T is
the baud rate, L is the channel length, and L is the equalizer length, the

overall channel equalizer respounse is given by

f=H,g= [Ho H] Be (2.4.3)

£o
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where H, (H,)is the L+ L.q~ 1 x L., baud spaced convolution matrix of the
odd (even) samples of the fractionally sampled impulse response and H,, is

a Sylvester matrix constructed from two convolution matrices.

-hgdd

hodd  potd
hgid

Ho= |pgtd, 1 .. pgid (2.4.4)

podd hgid

odd
hL_ ]

and H, is defined similarly from the even samples of the fractionally sampled
channel impulse response. For perfect source recovery with a delay 8, the

combined channel and equalizer response vector must be

f5=[0 ;e 0010 - or (2.4.5)

where the unity coefficient is in the §th position. The system of equations
fs = H,g must have a solution which requires that H, must be full row
rank, i.e

L + qu - 1 S 2Leq é’ Leq 2 L - 1 (2.4.6)

which is the minimum length of the equalizer required to obtain a zero forcing
solution in T/2 spaced systems. This is known as the length condition.
Notice that Hg; is a Sylvester matrix and by the properties of Sylvester
matrices, H, will be rank deficient if the polynomials h, and h, share a
common root. Hence the subchannels in a fractionally spaced system must
not share a common root for the zero forcing solution to exist.

As opposed to serial equalization, block zero forcing equalization can be

performed on a SISO band spaced system. Assuming a block of N output
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samples, the output samples may be expressed as

yln] = vE;Hx|n] + vin]

where
yinl=llr ... yln+N-17
x[n] ={z[p - L+1 ... zp+N-1]7
vin]=v[n] ... vln+N-1]F

and H is a (N 4+ L — 1) x N convolution matrix. The zero forcing solution

G,y is any N x (¥ + L — 1) matrix that satisfies
G H =1y (2.4.7)
The minimum norm block zero forcing solution is given by [10]
G.; = (H'R;'H)"'HR! (2.4.8)

where R, = E(v[r]vf[n]) is the autocorrelation matrix of the vector of noise
samples. This solution reduces to the Moore Penrose matrix pseudo inverse
for independent and identically distributed white noise [1]. Looking closely
at Eq. (2.4.8), it is obvious that the zero forcing operation involves noise
whitening, and a projection onto the signal subspace.

The zero forcing equalizer is also called the decorrelating detector. Its
primary disadvantage is noise enhancement. Although it eliminates ISI, it
also enhances noise thereby degrading performance at the receiver. If CSI
is available at the transmitter, pre-equalization based on the zero forcing
principle may be employed prior to transmission and the problem of noise
enhancement will be avoided at the price of possibly having to transmit

higher power. In maintaining a steady received signal to noise ratio, channel
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inversion can require a high amount of power which might not be possible
as many systems are peak power constrained. Even if inversion were truly
possible, the caveat here is that channel inversion is strictly suboptimal from
the information theoretic point of view as it is the exact opposite of the
waterfilling power allocation strategy that maximizes the system capacity.
Furthermore, channel knowledge at the transmitter is often hard to come
by. Nevertheless channel inversion does find some applications in slow fading

scenarios where waterfilling is not possible {13).

2.4.2 MMSE Equalization

Since noise is not taken into consideration in the design of zero forcing equal-
izers, they blow up noise while inverting the channel. The use of zero forc-
ing equalization is limited to channels with mild interference. It has been
proposed to design equalizers according to some criterion that balances in-
terference reduction with noise enhancement. One possible criterion is to
minimize the mean squared errcr between the transmitted signal and the

detected signal. The equalizer transfer function is

H*(z7Y)
Gumse(z) = FOTEGOEYT (2.4.9)
The block minimum mean squared error equalizer is given by [10]
Guuse = (H'RJ*H+R;)'HIR;! (2.4.10)

where Ry, = E(vvf) is the noise correlation matrix and Ry, = E(xx)
is the correlation matrix of the transmit signal and Hisa (N +L — 1) x 1

dimensional Toeplitz matrix of the channel taps. For the serial equalizer

Emmse = argmgin z(n) — z(n — 8)|2 (2.4.11)
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where the serial equalizer is applied to detect the transmitted signal as

Leg—1

z(n) = Z g:%mse(k)y(n - k) (2412)

k=0

Defining ¥ as an (L + Leg — 1) X Leg convolution matrix formed from the

channel taps, the serial equalizer is [10]
Bmmse = (HIR;TH 4+ R TTHIR o5 (2.4.13)

where e; is a column vector of zeros with a 1 in position §, termed the
equalization delay.

The equalization delay is an important parameter in the design of MMSE
equalizers. The choice of the delay will determine the mean square error
(MSE) and BER performance. The optimal equalization delay will depend
on the channel response’s center of mass. The earlier equalization delay will
perform better for minimum phase channels and later equalization cursors
will perform better for maximum phase channels'®. The optimal equalization
delay i3 given by the index of the minimmum diagonal entry of the MSE

matrix (10}

§ = argmin[R; "H(HT R + R THAR Y., (2.4.14)

For a block size N, the block equalizer design requires an inversion of
a N x N matrix and thus has a design complexity'® of ((N3) while the
equalization itsell requires multiplication by an N x (N + L — 1) matrix so

the implementation complexity is approximately (O(N?} flops. For the se-

A minimum phase system is a system whose zeros are all located within the unit
circle [16]. A maximum phase system has all its zeros located outside the unit circle. If
the zeros are scattered on both sides of the unit circle, the system is termed as mixed
phase.

5By exploiting the Toeplitz structure of the convolution matrix, this complexity can be
reduced to O(N?)
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rial equalizer, the design complexity is O(qu) flops becanse inversion of a
Loy X Legq matrix is required. The implementation complexity is O(N Leg).
For L., < N, the complexities are considerably less for serial equalization.

Fractionally spaced equalizers can also be designed according to the
MMSE criterion. While baud spaced equalizers would seem computationally
more feasible, the difference in complexity is not very pronounced [15]. In
order to achieve the same performance, band spaced equalizers have to be
severa] times the length of the channel while, at least theoretically, fraction-

ally spaced equalizers only need to satisfy the length and zero conditions,

Figure 2.9. (a) Block equalizer (2.4.10) performance for channel (2.4.15)
which has mild ISI. (b) Block equalizer {2.4.10) performances for channel
(2.4.1) which has severe ISI.

Figure 2.9 compares the BER performance of the block zero forcing and

MMSE equalizers. The comparison is made for both the channel with severe
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Figure 2.10. BER performance of block MMSE equalizer (2.4.10) and serial
MMSE equalizer (2.4.13) for channel (2.4.1).

ISIin (2.4.1) and also for the channel with mild 1SI'®

h{n) = —0.4186(n) — 0.23655(n — 1) — 0.10256(n — 2)

+0.858(n — 3) — 0.18646(n — 4)  (2.4.15)

Figure 2.10 compares block MMSE equalization with serial MMSE equaliza-
tion. Figure 2.11 shows the magnitude response of the channel, the MMSE
serial equalizer at 10 dB and the combined channel equalizer magnitude re-
sponse. It can be seen from figure 2.11 that because of the deep null in the
channel frequency response and the noise, the equalizer does not attempt to

invert the channel.

18Channel (2.4.1) has severe IS and is very difficult to equalize because of its zeros which
are located very close to the unit circle. These zeros induce highly frequency selective
behavior as the unit circle represents the axis of Fourier frequencies and the zeros cause
large attenuation at frequencies close to their location. The zevos of chamnel {2.4.15) are
further removed from the unit circle so the frequency response shows less variation.
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Figure 2.11. Frequency Responses of the channel (2.4.1}, MMSE equalizer
at 10dB and the response of the effective equalized channel on a linear scale.

2.4.3 ML Sequence Estimation

The equalizers discussed thus far are linear. Linearity is a desirable property
which leads to simple implementations in systems. Linear equalizers are,
however, outperformed by non linear detection techniques. The optimal
detection strategy employs Bayesian estimation and chooses the sequence

with maximum aposteriori probability.

X = argm)?xp(x|y) (2.4.16)

If all sequences are equally probable, maximization of the aposteriori
probability is equivalent to maximization of the likelihoods. Thus maximum
likelihood (ML) sequence estimation is the optimal detection strategy for

equiprobable transmitted sequences. The maximum likelihood estimate of x
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is chosen to be the vector that maximizes the likelihood function

p(y|x) = p(y(1),¥(2), ..., y(N)|x) (2.4.17)

Since the noise encountered in communication systems is Gaussian and be-
cause of the concavity of the natural logarithm, it is easier to work with the
log likelihood function. The ML detector thus tries to find the sequence that
minimizes

% = argmin ((y — Hx)"R;(y - Hx)) (2.4.18)

The complexity of this equalization grows exponentially in the length of the
channel to be equalized and the size of the constellation. A brute force
approach would involve computing the metric in (2.4.18) for all possible se-
quences and choosing the sequence with the least metric. Such an approach
would also increase complexity exponentially with the sequence length and
be infeasible for all but very short sequences. Viterbi [17] reduced the com-
plexity of ML detection to be linear in the length of the data sequence with
his algorithm. However, the complexity remains exponential in the modu-
lation order and the length of the channel to be equalized so that compu-
tational complexity of ML detection can often be very large even with the
Viterbi algorithm.

In practice the algorithm is too complex to use for detection with any-
thing but very short channels. Several authors have looked into channel
shortening to reduce the length of the channel and then apply ML detec-
tion [18,19].

2.4.4 Decision Feedback Equalization

The decision feedback equalizer is a nonlinear equalizer that seeks to com-
bine the simple implementation of linear equalizers while avoiding the noise
enhancement caused by them. It consists of a feedforward filter g and a feed-

back filter d as shown in figure 2.12. Previous detected symbols are fed back
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Figure 2.12. Decision feedback equalizer.

through the feedback filter to help cancel residual ISI. Under the assumption

of correct decision feedback, we have

a—1
Zn = C5Tn—§ + E CiTp—i
=0
information bearing cursor -

residual precursor ISI

Ny Ne Ny
+Y (Giys — di)Tosmit Y, CGTnoi + GV
i:’l D i=0+4Ng+1 1=0

v N — ——
modeled postcursor ISI residual posteursor ISI  filtered noise

(2.4.19)

where ¢ = g™ * h is the combined channel and feedforward filter response.
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Figure 2.13. BER performance comparison of an MMSE linear equalizer
with an MMSE decision feedback and MLSE equalizer for the channel (2.4.1)
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The objective of the feedforward filter is to minimize the residual pre and
posteursor ISI with a strong information bearing cursor while keeping the
noise gain |g||? small. The DFE uses the feedback filter to cancel out the
modeled postcursor ISI by matching the feed back faps to the channel equal-
izer equivalent response d; = ¢;, 1 <7 € Ny. The role of the feedback filter
is thus to cancel out some interference without introducing noise gain. Al-
though decision feedback equalization reduces noise enhancement, it suffers
from error propagation on account of incorrect estimates being fed back!?. It

has been shown that the DFE is a canonical®

transmission system in that it
can achieve capacity on the equivalent ISI free channel when combined with
sufficient coding [20-22]. A comparison of the performance of linear MMSE,
decision feedback MMSE and MLSE is provided in figure 2.13 where it can
be seen that the performance of the decision feedback MMSE equalizer lies

in between the linear MMSE equalizer and the MLSE.

2.4.5 Turbo Equalization

When forward error correction (FEC) is applied to a frequency selective
channel for data protection, the optimal detector will compare the received
sequence with all possible transmit sequences and thus find the ML transmit
sequence [9]). This optimal detector will jointly equalize and decode. Such
a detector is too complex to implement and the equalization and decoding
must be performed separately. The obvious way of doing so involves taking
hard decisions at the output of the equalizer for the decoder to operate on.
Hard decisions at the output of the equalizer destroy the soft information
in the signal which could have been used to improve the performance of the
receiver.

Since an optimal joint equalization and decoding algorithm is infeasi-

" This error propagation can be avoided by shifting the feedback section of the DFE to
the transmitter where errors do not occur. The increase in transmit power can be limited
through the use of the Tomlinson Harashima precoder {20].

A cancnical system is one which can, at least theoretically achieve the maximum
possible transmission rate offered by the physical channel.
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ble, the problem has to be split into two subproblems. Turbo equalization
achieves this by using separate equalization and decoding blocks that ex-
change soft information. It is an iterative equalization and decoding scheme
that was proposed in [23]. Some complexity reduction schemes for turbo
equalization were introduced in [9] while [24] later provided a very good
overview. The encoder and the channel are separated by the channel inter-
leaver. The operation of the turbo equalizer is similar to the decoding of
serial concatenated convolutional codes where the inner code is replaced by
the channel. In fact the ISI channel acts as the inner rate-1 convolutional
code, hence the decoding algorithm for serial concatenated convolutional
codes is directly applied to channel equalization as ‘turbo equalization’. The
iterative equalizer and the decoder exchange soft information according to
the turbo principle. Apart from decoding and equalization, the turbo prin-
ciple has also found application in iterative demapping [25] and iterative
multiuser detection [26,27]. Turbo equalization combined with turbo codes
has been proposed in [28].

The turbo equalizer was originally envisioned as a trellis based symbol
detector like the MAP or MLSE operating jointly with a MAP decoder.
Linear equalization can also be used as a simpler alternative. For turbo
equalization, the transmitter has an encoder followed by an interleaver. The
interfeaved encoded sequence is transmitted over the channel and is iter-
atively processed for equalization and decoding. Linear processing of the

output yx to obtain an estimate of the input %5, we have

Ep=gryn+ bi (2.4.20)

where g, is the linear equalizer chosen to minimize the mean square error
E(|xy — #x]*) between a symbol and its estimate. This can be achieved by

computing the estimate as (9]
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Figure 2.14. BER performance of turbo equalization over the iterations,

#x = E(zr) + gi (vx — E(ys)) (2.4.21)
where
gk = Cov(yx, ) ' Cov(ys, zx) (24.22)
and
Cov(ys, yi) = o°1+ HCov(x;, xk)ﬂT (2.4.23)
Cov(ys, zx) = HCov(xy,z) (2.4.24)
E(yy) = HE(x) (2.4.25)

where H is a Toeplitz matrix constructed according to the equalizer length.
Figure 2.14 shows the performance of the turbo equalization algorithm over

the iterations for the channel in (2.4.1).
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EXIT charts are an invaluable tool for design and analysis of turbo equal-
izers. Fig. 2.15 shows the EXIT charts for turbo equalization of the channel
(2.4.1) at various bit energy to noise power spectral densities where it can
be observed that the gap between the equalizer and decoder transfer char-
acteristics increases with Eb/No so that convergence is achieved with fewer

iterations.

(a) (b)
— Decodi'_ng

Figure 2.15. EXIT chart for turbo equalization for channel (2.4.1) at (a) -

Eb/No = 4.5 dB (b) Eb/No = 5 dB.

2.4.6 Blind Equalization

The design of an equalizer requires a matrix inversion which is computation-
ally intensive. It also require CSI at the receiver which implies training that
might be impractical in some situations, Much work has been done on self
recovering ¥ adaptive equalizers. Blind equalizers are generally based on
property restoral algorithms. They try to equalize the channel by restoring

gome property of the input signal that has been degraded by the channel.

¥also known as blind or unsupervised
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These algorithms can exploit some structure in the transmitted signal like
possibly a constant modulus or a finite alphabet. A mean cost function based
on such a structure or property is defined. Stochastic gradient descent min-

imization of that cost is then applied to equalize the channel {1,29).

Constant Modulus Algorithm

The constant modulus algorithm (CMA) exploits a constant modulus prop-
erty in the transmitted signal for blind equalization. The CM cost function
is

Jom = E{{v - 12"} (2.4.26)

where v = E{|z[*) /o2 is the dispersion constant of the transmit constellation.
For constant modulus signals like QPSK, vy is one. It has been shown that in a
noiseless environment, CM minima match exactly with the MSE cost minima
[30] in the combined channel equalizer space. With noise, the minima for
both criteria move towards the origin. The dislocation is more pronounced
in the CM cost. The CM cost surface is deformed by violations in the ideal
zero cost conditions like noise, under modeling of channel length, non CM
source and source correlation.

Let the received samples at the input to the CM equalizer at time n be
stacked in a vector ¥». Then the output sample of the CM equalizer would
be z, = wl'y,. The CM update rule is obtained by substituting the gradient
of the CM cost into the gradient descent algorithm. This gives (30]

Wni1 = Wn + p(1 = |2nl?)ynz), (2.4.27)

where ¢ is the step size. Convergence of the constant modulus algorithm
typically depends on the initialization. Convergence may be very slow along
the smaller modes, i.e. the smaller eigenvalues of the autocorrelation matrix
of the received signal Ry, = E(yy¥). The prewhitened constant modulus

(PW-CM) algorithm has been introduced to improve the convergence behav-
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ior of the algorithm. The convergence of constant modulus equalizer taps is
shown in figure 2.16.

Convergence of CMA
2 —— T T T 1

.

0.5F

Constant Modulus Equalizer Taps

ol
— Tapt —— Tap 2 Tap3 Tap4
-05 - : ; :
0 a.5 1 1.5 e =
Iteration Number x 10°

Figure 2.16. Convergence behavior of the constant modulus algorithm
g g

Shalvi Weinstein Equalization

It has been shown in [31] that a sufficient condition for equalization is that
the probability distribution of the equalized signal should be identical to
the probability distribution of the input signal. [31] also showed that second
order statistics are insufficient for phase identification. This leads to the
very inferesting observation that the problem of blind equalization cannot
be solved when the input is Gaussian distributed.

Shalvi and Weinstein [32] make use of the fact that input signals in
digital communications have discrete distributions to deduce sufficient and
necessary conditions for equalization. They show that it is sufficient to
maximize the kurtosis subject to the constraint that the variance (and hence
power) is one. They propose a scalar cost that is the absolute value of the
kurtosis and apply stochastic gradient descent on it, with a normalization

of the coefficients in each iteration. They also show analytically that this
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cost has no local minima. The input is pre-whitened and the vector update

equations are

g = g+ psgn(K (2))|zi*ziy; (2.4.28)
g = (/D 1912 (2.4.29)

where z, is the sequence at the output of the equalizer, u is the step size
of the gradient descent algorithm and sgn() is the signum function. Fig.
2.17(a) shows the combined channel equalizer response for Shalvi Weinstein

equalization of (2.4.1) with a length fifteen equalizer. Fig. 2.17(b) shows

the IST at the ontput of the equalizer as a function of the iterations while

tig. 2.17(c) depicts the convergence of the equalizer taps. This work was
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Figure 2,17, (a) Effective channel equalizer impulse response (b) Intersym-
bol interference over iterations (¢) Convergence of equalizer taps.

later extended by Papadias in [33] for the blind source separation with their
multiuser kurtosis maximization criterion (MUK) for separation of non con-

volutive mixtures which can find applications in communications to MIMO
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flat fading channels.

2.4.7 Multicarrier Communications

The channel equalizers discussed so far entail varying amount of complex-
ity. With a slight loss of throughput caused by the use of a cyclic prefix,
the complexity of the equalization process may be reduced to approximately
that of an FFT/IFFT pair by using multicarrier communications such as
orthogonal frequency division multiplexing (OFDM) and discrete multitone
(DMT) [10]. The cyclic prefix is needed to create the illusion of a circu-
lar convolution. This allows the broadband channel to be divided into many
narrow band sub channels that are free of interference. Just as the frequency
selective nature of the channel is a cause for receiver complexity, it is source
of loss in throughput for multicarrier communications. Apart from the small
complexity required by OFDM, it is very robust to impulsive noise [34]. Its
major shortcoming is the high peak to average power ratio and sensitivity
to time selective fading, carrier offsets, oscillator drifts, mobility ete. An al-
ternative to multicarrier communications is single carrier frequency domain
equalization ?° [35]. Any time variations in the channel cause the subcarriers
to lose their orthogonality resulting in intercarrier and intersymbol interfer-
ence. Multicarrier communications is generalized by discrete time channel
partitioning. Discrete time channel partitioning including DMT and vector

coding are canonical transmission systems.

2.5 Conclusion

The focus of this work is on the problem of channel estimation for commu-
nications. In order to gain a meaningful insight into the channel estimation
problem, it is necessary to take a step back and understand both the phys-
ical channel and the communications systems. This chapter has discussed

the dispersive effects of the communications channels that make channel

20150 known as single carrier cyclic prefix
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estimation necessary. These dispersive effects and their underlying causes
have been explained and signal processing techniques to deal with or exploit
these phenomenon have been introduced. Forward error correction (FEC)
has been explained with an emphasis on convolutional and turbo codes as
a means to combat AWGN and exploit the diversity effects of the channel.
Equalization has been introduced as a means to combat the time dispersive
nature of the channel and various equalization algorithms explained and
their complexity versus performance tradeoffs discussed. The actual chan-
nel estimation problem is considered in the next three chapters which study
channel estimation for multicarrier communications, and doubly selective

channel estimation for single carrier communications.




Chapter 3

SUPERIMPOSED TRAINING
FOR OFDM

3.1 [Introduction

Multicarrier communications has found widespread acceptance and appli-
cation in a very short span of time. It has been standardized for ADSL
in ITU G.992.1 in the form of DMT. For wireless communications, it has
been standardized in IEEE standards 802.11, 802.16 and 802.20 for wire-
less LAN (WiFi), Broadband Wireless Access (WiMax)! and Mobile Broad-
band Wireless Access (MBWA) [36-38] respectively in the form of coded
OFDM (COFDM). This popularity of multicarrier communications can be
attributed to its advantages including simple implementation and canonical
performance?.

The focus of this chapter is on superimposed training for channe] estima-
tion in OFDM which is typically used in wireless and broadeast applications
as opposed to DMT which is employed for wireline communications. The
contribution of this chapter lies in the use of semiblind techniques for the
channel estimation problem. Single input multiple output (SIMO) and mul-
tiple input multiple output (MIMO) OFDM systems are considered in this

chapter.

!Orthagonal frequency divsion multiple access is a competing technology for broadband
cellular wireless access

2 A communications system is said to be canonical if it can, atleast theoretically, achieve
the maximum possible data rate offered by the physical channel.

43
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As opposed to DMT, OFDM does not adapt the transmissions to the
channel individually for the subcarriers®. The transmission of the cyclic pre-
fix in the guard period results in a further loss of throughput which can be
substantial for short to moderate size OFDM symbols, especially for very
long channels. Several sclutions to this problem have been proposed in lit-
erature including the use of filtered multitone (FMT) or the use of channel
shortening equalizers for partial equalization of the channel impulse response
so that most of the energy in the effective response spans a shorter dﬁration
than the original channe] response and thus a shorter cyclic prefix may be
used.

In addition to ensuring no inter block interference, the cyclic prefix also
tricks the channel into believing the input is periodic. The cyclic prefix
should span the channel memory and because only N + L input symbols are
processed at a time, where N is the number of symbols in a block and L is
the channel memory, the convolution appears pericdic. The IBI corrupted
samples are discarded and receiver processing is performed in the frequency
demain,

Channel estimation in multicarrier communications is generally performed
by reserving tones for training purposes. With a fixed transmitter in OFDM,
this results in a further loss of throughput over and above that due to cyclic
prefix transmission. Superimposed training allows estimation of the channel
at the expense of power instead of throughput. It is for this reason that we

study superimposed training for OFDM.

3.2 Channel Shortening

Various literature has focussed on the design of channel shortening equaliz-
ers. One of the first channel shortening equalizers proposed was based on

the maximal shortening signal to noise ratio (MSSNR) criterion proposed

3The OFDM transmitter does adapt to the overall channel quality by changing the
modulation order so that a higher throughput is realized for better channels but there is
no adaptation from subcarrier to subcarrier.
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by Melsa in [39] and which has subsequently been shown to be a zero forc-
ing design. MMSE channel shorteners were proposed in [40] and bit rate
maximizing channel shorteners were proposed by [41,42]. It was later shown
by [43] that the bit rate maximizing channel shorteners are in fact target
impuise response optimized MMSE channel shorteners. Time domain chan-
nel shortening equalizers based on SINR maximization were studied in [44].
The problem of MIMO channel shortening was studied by [45]. A common
feature of these works was that the channel shortener was implemented in
the time domain, i.e. in direct cascade with the channel. [46] proposed per
tone equalizers that were implemented at the output of the FFT block in the
receiver with a different shortener for each tone. These per tone equalizers
have similar run time complexities as time domain channel shorteners but
their design complexity is considerably more if different equalizers are opti-
)mally designed for each tone. This complexity may bhe somewhat reduced
by grouping similar tones together and designing a single equalizer for each
group of tones. On the upside, a search of all delays is not required as per
tone equalizer performance is relatively insensitive to equalization delay. An-
other advantage that is very pronounced in wireline communications is that
while time domain channel shortening expends equal effort in equalizing all
tones, per tone equalization offers the flexibility to focus equalization effort
only on the desired tones while ignoring unused tones. The concept of per

tone equalization was extended to MIMO-OFDM in [47].

3.3 Channel ldentification

All this literature assumes perfect channel state information at the receiver.
In the absence of CSI an adaptive filter for direct blind equalization may
be employed. Such adaptive equalizers are based on a gradient descent of
cost functions determined from the eyclic prefix or the autocorrelation [34).

The multicarrier equalization for restoration of redundancy (MERRY) al-
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gorithm adapts the equalizer to minimize a cost function derived from the
eyelic prefix [48,49]. It tries to restore the cyclic nature that exists in the
transmit signal by restoring a cyclic prefix of length one. It has been shown
to be globally convergent and similar to the maximal shortening signal to
noise ratio (MSSNR) criterion proposed by [39]. The sum squared anto-
correlation minimization algorithm (SAM) adapts the equalizer to minimize
the sum of square of the autocorrelation taps of the processed signal cutside
the shortened length [50]. Both algorithms do not require any training but
are computationally complex. The MERRY is very slow to converge and
it has large memory requirements as it updates the adaptive equalizer once
per OFDM symbol. The SAM is much faster to converge but it suffers from
undesirable minima. The algorithm converges to any of these minima de-
pending on the initialization. It has been shown by the authors that these
minima. are related® to one another and an exhaustive search of these min-
ima will lead to the optimal solution. Nevertheless, considerable complexity
is introduced by an exhaustive search especially for longer channels which
have more numerous undesirable minima. The upside of these algorithms is
that there is no loss in throughput due to training.

As an alternative to these blind algorithms, training based algorithms
have also been proposed for channel identification in OFDM. The channel is
identified at the receiver with the help of pilot tones set aside for training [51].
These training based algorithms are computationally simple and practically
feasible but there is an associated loss in throughput. Recently a superim-
posed training scheme has been proposed for single carrier communications
which has the the desirable properties of both multiplexed training and blind

techniques. Like blind schemes, no explicit time slots are allocated for train-

4The autocorrelation of a sequence is unchanged if any of the roots are reflected over
the unit circle. Because the SAM cost is based on the autocorrelation function, it has
minima at all 28¢7 sequences that can be formed from the optimal equalizing solution
by reflecting roots about the unit circle. Only two of these minima actually shorten the
channel, but convergence depends on the initialization. Once convergence is achieved, an
exhaustive search may be required to obtain the shortening solution.
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ing and like trained systems the estimation is computationally simple and
elegant. This superimposed scheme estimates the channel at the expense of
power rather than bandwidth. It is thus suitable for the bandlimited regime
and also for fixed transmitter schemes like OFDM. Superimposed training
has previously been applied for channel shortening in multicarrier communi-
cations by [52]. However, we consider semiblind estimation for single input
multiple output (SIMO) and multiple input multiple output (MIMO) sys-
tems where the detected data is reused for channel estimation in an iterative

channel estimation and data detection process.

3.4 SIMO OFDM

We consider a baseband equivalent SIMO OFDM system where transmit
- and receive filtering are absorbed into the baseband channel coefficients.
The multiple outputs may be due to fractional sampling in time or in space.
The fundamental problem considered in this work is the problem of commu-
nication without CSI at the receiver. We study estimation of the channel
and detection of the {ransmit signal at the receiver. We consider a general
scenario where the channel memory exceeds the cyclic prefix length. We do
not consider peak to average ratio reduction which has otherwise been ex-
tensively studied in literature and techniques like tone reservation and tone
injection have been proposed. Further, we will consider perfect synchroniza-
tion between the transmitter and the receiver. Previous research has shown
that with a lack of synchronization between the transmitter and receiver,
the channel estimate obtained is a cyclically rotated version of the actual
channel. This rotated channel estimate cannot be used itself to design the
receiver but a simplistic brute force approach is to check all rotated versions
of the channel estimate. Other more feasible algorithms for synchronization

exist in the literature and are beyond the scope of this work {53].
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3.4.1 Superimposed Training

Superimposed training exploits the fact that the pilot added at low power
onto the unknown data passes through the same channel as the unknown
data. The superimposed pilot must be rich in modes for channel sounding,
i.e. a persistent excitation signal . Becanse it shares the time and frequency
dimensions with the unknown data, we must exploit some statistical prop-
erties to separate the training from the data at the receiver. The transmit

signal during the k** OFDM block,may be written as
% = ¢ + T, Fsy, (3.4.1)
——
Xk

where ¢ & CW+Le)x1 i5 the training signal, F is the N x N DFT matrix

whose (m,n)™® element is given by

Fln = e~ 70 (3.4.2)

3-

and Tgp € RWHEa) XN s the cyclic prefix insertion matrix

0 Loy L
Tcp _ Lopx(N—Lep) TLep (343)

Iy
Although equation (3.4.1) gives the impression of a single carrier signal ¢
being added onto a multicarrier signal, we note that ¢ is periodic, hence
cyclic. Thus we may consider the training to be multicarrier, t, where ¢ =
T, FAt is the time domain training. As the channel is unknown at the
transmitter, the optimal transmission strategy is for the transmit signal to

be independent and identically distributed, i.e. E(szsff) = I. We note that

a periodic sequence with period P is used for training, so the pilot is

c=1p®u (3.4.4)
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where we assume there are R periods of the pilot in one block so that Rx P =
N+ L and 1p is a R x 1 vector of ones. Also, we let u € CP*! be one
period of the training. A periodic training signal is chosen as this simplifies
the channel estimation. We will shortly see that with periodic training, an
estimate can be formed from a sample averaging operation at the receiver.
The product (®) is the Kronecker product. The Kronecker product between
a mxn matrix A and a px g matrix B is defined as the mp X ng dimensional

matrix

Qi1 v Gip anB -+ ai,B
A®B=|: . :leB=0 1t - (3.4.5)

Am1 " Omn am1B -0 amaB

We may define the training to information power ratio as

_r_ el
TR = % = Bl (349

The k'* signal block at the 1" receive antenna yy € CW+Lwlx1 can be

written as

y% = Xph, + X h, + v¥ (3.4.7)

T T
whore by = ) o mld] ¥ = g0 o Y 1)
vy € CW+Eka)xl contains the additive white Gaussian noise samples and

the matrix Xy is a Toeplitz matrix constructed from the transmit signal %;.
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For example, for k& =0,
(0]

Z[0]

Xi=0 =

[N + Lep — 1] &[N + Lep — 2

EIN + Loy ~ L — 1],
(3.4.8)

Where f{f:’fl is the Toeplitz matrix which introduces the interblock interfer-

ence from the (k — 1)** block to the k™ block. For example, for k = 0

0 z(-1) z(-2)
0 0 z(-1)
o c
X?cbi1=—1 =
0

z(~1)]

(3.4.9)

Stacking the received blocks at all the Mg receive antennas together, we get

-

Yi (Xe + Xibil)hl
Yo Xk + X )by
yi X, + Xibi

yﬁ/f 7 Xy + X’i;bi1

This may be concisely expressed as

Vi = (Inp @ X)h 4+ (Tng, @ X% Y4 vy

Vi
(3.4.10)
v,i"IR

Vi
-+ : (3.4.11)

M

R _vk R

(3.4.12)
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where y;, = [lecT yﬂ’[RT r € CMr(N+Lep)x1 = [h{ h’fﬂ;jﬂr €
CMr(L+1X1 We assume the channel to be constant over a symbol and vary
from symbol to symbol, i.e. block fading model which is a first order ap-
proximation of a slow fading environment. The channel taps are assumed
to be uncorrelated complex Gaussian fading gains. The noise is assumed to
zero mean identically distributed spatially and temporally white Gaussian,
ie. E(vyv) =02l

The channel must now be estimated before any receiver processing to
detect the data can take place. This estimation is done by exploiting the
cyclostationarity induced in the received signal by the transmission of a peri-
odic training signal. A sample averaging operation can be used to extract the
channel information. Because of the cyclostationarity, the sample averaging
is performed for the entire training period. This allows the traﬁning signal
to add coherently while the unknown data and the noise add destructively.

The received signal is processed as

1
z; = E(IJ"VIR @ W)y (8.4.13)

where ¥ = 1% ® Ip has the following structure

‘I’=[Ip IP]:- (3.4.14)

This may be written as
1 = 1 ibi i
2 = 5 (larp © YXp)h+ £ (I ® X2 )b + (Lo, © B)vi (34.15)

Now X = X + C, where X, and C are the Toeplitz matrices constructed
from x, and e respectively. Similarly f(}:’il = X}:’f 1T+ C¥#'. Because of the

periodic nature of ¢, we have C + C% = 15, ® U where Uis a P x (L + 1)
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circulant matrix constructed from u

w1 P vt UP_[41
Uz 1 :
U= (3.4.16)
: : up
| Up Up-1 UpP-L |

Now by substituting X, X&  C+ C? and ¥ = 1% ® Ip, we have

1
Zp = E(Iﬂffﬁ ® 17 ®1p) Iy, ®12® U)h +

1 b 1
(T, © (X + X ))h+ 7@tz ® T)vi

which becomes

1 . 1
= (I Uh +—(I W(X;, + X% Yh+ =(I T
7= (In, ® ) . +ﬁ( Mp ® U(X + ’“‘12,-'_\}2( Mg @ )vk,
term due to training term due to unknown data term due to noise

(3.4.17)
We note that the terms due to unknown data and noise involve a sum of
R uncorrelated random variables. In the subsequent discussion, we assume
that both the noise and the signal constellation are zero mean. We now use
the fact that when uncorrelated random variables are added, the variance
of the resulting signal is the sum of the variances of the original signals,

Assuming zero mean random vectors x and y, we have

E((x+y)(x+y)) = B(x"x) + B(y"y) + 2 x Real{ E(y"x)} (3.4.18)

=0

We also know that by multiplying a random variable with a constant ¢, the

power is changed by c?

E(exfexy = 2B(xx) (3.4.19)
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Using these facts, it is easy to see that the power of the second and third
terms in equation (3.4.17) will be reduced by a factor of R due to the sample
averaging operation. This is the idea behind periodic superimposed training.
Assuming R can be made as large as desired, these undesirable terms can be
made vanishingly small thereby factlitating estimation of the channel. The

least squares approximation can then be used to obtain the channel as |54]
h = (I, ® UFU) 1y, UMz (3.4.20)

As opposed to other estimators in classical estimation theory, the least
squares estimator makes no probabilistic assumptions about the received
"'data. For this reason, no optimality claims can be made about a least squares
estimate in general. The advantage of not specifying the probability density
function is that the least squares estimator can be used for a wide range of
problems. However, it requires the assumption of a model for the received
signal based on unknown parameters and then it tries to fit these unknown
parameters in such a way so as to minimize the sum of the squares of the
error between the received noisy samples and the noiseless modeled data.
The error of the least squares approach can thus come from two sources, er-
ror caused by any observation noise and any modeling errors resulting from
the choice of an inappropriate model for the problem. While the estimator
always tries its best to fit the parameters according to the given model, an
incorrect choice of a mode] can completely corrupt the estimate rendering
it useless. Fortunately for our problem, the model is already known apriori
and we do not need to choose one so the errors will only come from the
observation noise which is composed of both AWGN and interference from
the unknown data in this case.

The least squares estimator is generally used in situations where an op-
timal estimator cannot be found or where the computational burden of ob-

taining an optimal estimator may be cumbersome. The optimal minimum
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variance unbiased (MVU) estimator may not always exist. Even if it does
exist, it may not easily be found. Although the maximum likelihood estima-
tor (ML) is asymptotically optimal and always exists, finding it is often not
very easy and sometimes requires resorting to iterative methods to find an
extremuin of the likelihood function. In contrast, the least squares estima-
tor always exists and always has a closed form solution. The least squares
estimator coincides with the best linear unbiased estimator (BLUE) and the
MVU estimator under some special circumstances. For estimation of the
parameters of a linear model, the least squares estimator coincides with the
BLUE if the observations are zero mean, independent and identically dis-
tributed. If in addition, the ohservations are Gaussian, the least sqﬁares
estimator coincides with the MVU estimator.

In our situation, it is not straightforward to characterize the effective
noise term because of the contribution of the unknown data and we thus
have to resort to linear least squares without staking any claims to optimal-
ity. The choice of the training sequence u will affect the estimate through
UAU. The training sequence must be such that UFU is full rank for a
solution to exist. Theoretically, any training sequence that generates a full
rank matrix is equally good. However, practical considerations dictate that
the condition number should be as small as possible to avoid instability in
inverting UXU caused by roundoff errors [55]. Another issue that must
be kept in mind when designing training sequences is the computational
complexity. In both signal processing and coding for communications, the
computational burden of any algorithm can be just as important an issue as
the performance of the algorithm. Here we see that a single matrix inversion

of UHU is required as

(In, ® UAU)™ = (I, ® (UFU)Y) (3.4.21)
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However, if the training sequence is chosen such that U is unitary, this

matrix inversion is no longer necessary and
h = Iy, ® Uf)z,. (3.4.22)

An example of such a sequence is the Kronecker Delta u = [p PO .- 0} i
which results in a scaled identity matrix U = pPIr where P is the period
of the periodic training.

In theory the noise terms in (3.4.17) can be made as small as desired
by choosing large enough R to obtain a reliable estimate. In practice, the
choice of R is constrained to be moderate by various factors including chan-
nel variations, processing delay, memory constraints, etc. This has some
serious implications because we have already shown that the power of the
noise terms only decreases linearly in K. Consequently, the unknown data
will not completely cancel itself out with the sample averaging operation. It
will interfere with the training. The channel estimator would be inaccurate
even in a noise free environment and an error floor would be chserved with
respect to SNR due to the interference. Ideally, as R approaches infinity, the
noise and interference power approaches zero and a perfect channel estimate
can be obtained with superimposed training where the pilot is transmitted
at an arbitrary small but non zero power p. However, with moderate R,
the noise and data interference will be present. The accuracy of the channel
estimate formed will depend on the training signal to data interference and
noise ratio. While increasing p will improve the channel estimate accuracy,
it will leave lesser power 1 — p for data transmission. On the other hand, a

lower p will also affect the system through a mismatched channel estimate.

3.4.2 lterative Channel Estimation

We therefore propose an iterative semiblind approach to channel estimation

and data detection to overcome this difficulty. An initial channel estimate



Section 3.4, SIMO OFDM 56

is formed through the superimposed pilot and is used to detect the data.
Since we are discussing multicarrier modulation, full channel equalization is
not necessary and channel shortening equalizers are employed so that the
interblock interference fits within the cyclic prefix which is to be discarded.
This detected data is then assumed correct and used along with the received
signal to re-estimate the channel. The new estimate is again used for de-

tection and so on. The proposed scheme is summarized in algorithm 1. A

Algorithm 1 Iterative Superimposed Training Based Channel Estimation
and Data Detection for OFDM

1. At the transmitter, choose a periodic training sequence with period
greater than or equal to the channel delay spread and superimpose it
onto the signal to be transmitted.

2. At the receiver form an initial estimate of the channel coefficients from
the superimposed training signal.

3. Peel of the contribution of the superimposed training in the received
signal using the channel estimate.

4. Design a channel shortener from the channel estimate if necessary and
filter the signal with the channel shortener.

5. Demodulate the signal with an FFT followed by a single tap per tone
equalizer and detect the transmit data.

6. Use the estimates of the transmit data to re-estimate the channel.

7. Iterate steps 3 to 6.

block diagram of the proposed receiver architecture for a SIMO OFDM sys-
tem is shown in figure 3.1 where the dotted line from the detected data to
the channel estimator indicates that the detected data is reused for channel

estimation in the subsequent iterations.

3.4.3 MMSE Channel Shortening

Once the channel estimates are available, receiver processing for data detec-

tion can begin. If the cyclic prefix length used is sufficient, the processing

involves peeling off the training, followed by discarding the cyclic prefix and
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an FFT operation at each receive antenna. The signals at the receive anten-
nas are then coherently combined after a single tap per tone equalization to

remove any phase rotations. Mathematically, (3.4.12) can be written as
ve =H{xz +¢)+ Hibi(xk_l +c) +vy (3423)

T
where H = [Hi'" H%R] and H, is the convolution matrix for the

channel between the transmitter and receiver v, i.e.

[ 1, [0]
h,f1) b, [0]

H, = |h,[L] e hyl0) (3.4.24)
h,|L) c 0]

hv[L] hv[ol__
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and the IBI introducing matrix has the form

r -

0 -~ 0 hJL] .- AJI]

HY = | hull] (3.4.25)
: 0
_0 0 ]

If the cyclic prefix length is sufficient, these matrices form a circulant matrix,
otherwise we require a channel shortening filter so that the effective channel

gives a circulant structure. Using the channel estimate to peel off the training

yi — (H+ H®)e = Ax, + ﬁ(c + xz) + H®(c + Xp—1) + Vi, (3.4.26)

e

where H = H—H. The cyclic prefix removal and DFT operations are given
by
rp = (Ipnp ® FTDCP)(ﬂXk + V) (3.4.27)

where Tpep = [[)N>< Lop 1 N]. The cyclic prefix addition at the trans-
mitter and removal at the receiver gives the channel matrices a circulant
structure. A key property of circulant matrices is that they can be fac-
torized as H, = FYDF, where F is the familiar DFT matrix and D is a
diagonal matrix. Thus these matrices can be diagonalized through a channel
independent transformation. This is the key idea behind OFDM and DMT
- the interblock interference and the intercarrier interference are eliminated
without the requirement of channel knowledge at the transmitter as opposed

to vector coding. We thus get

T
r; = [D{ - DﬁR] 8 + (IMR & FTDC‘P)‘?k (3428)

% -’

D
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Figure 3.2. MMSE channel shortener.
and the transmitted signal is estimated as
§ = (D7D) "Dy, (3.4.29)

which is implemented as scaler multiplications because of the diagonal struc-
ture of D;.

However if the cyclic prefix length is insufficient, then the convolution
matrix does not become circulant. The insufficient cyclic prefix length in-
troduces interblock interference because all the corrupted samples are not
discarded at the beginning of an OFDM symbol. With ICI and IBI, the
QFDM receiver is considerably complicated as these must be mitigated. Be-
cause of the transmission of the cyclic prefix, it does not make sense to
completely equalize the channel but instead to shorten it so that the effec-
tive channel order fits within the cyclic prefix, An MMSE channel shortening
equalizer is thus introduced. The channel shortener is designed to minimize
the mean square error between the effective shortened impulse response and
a desired target impulse response of the target length as shown in figure 3.2.

Mathematically

Le
J = E(le[n]*) = 1\2 Fztn—A -1 =3 w(lyln-DF) (3.4.30)
=0
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where L, is the order of the channel shortener and L, is the desired channel ‘

order. In vector form, the cost may be written as

J =bR,b - b R,w — wR,,b + wiR,,w (3.4.31)

Reslmn =rezim—n) 0<m< Lg,0<n< Ly (3.4.32)

1

Channel 1 Channel 2
04 0.5

l$?UEéQ$TQ¢?

o
—o
—a
_e
ro
Lo

o

where the (m,n)™ entry of the convolution matrices is given by

-02
-04 -1
3 % 5 10 15 0 5 10 15
2
E) Shortener 1 Shortener 2
& 06 0.3 &
p= —T
04 0.2
0.2 T T 0.1 T
: &&T$° T
2 4 6 2 4 & 8

8
Delay

Figure 3.3. Impulse responses of the channels and the channel shortening
equalizers.

-0.2 & -0.1 @

0 0

Roylman=roy{im—n+6) 0<m<Ls0<n<L, (3.4.33) ‘
Yy Y

Ryylmn =ry(m—n+48) 0<m< L;,0<n< L, (3.4.34)
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where (1) = E(z]mlz*[m-+n]). Differentiating with respect the the target

impulse response w, we get [43]

a ~
8';* = Ryw—~Ry:b {3.4.35)
= w = R )Ry;b (3.4.36)

Substituting this value of the target impulse response into the cost gives [43]

Ruyy

which must be minimized subject to the unit energy constraint b%b = 1.

Shoertened Channel
05 — T ¥

04t :

0.3

021 ]

Magnitude

10 15 20
Delay
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Figure 3.4. Shortened channel impulse response.

This is simply solved as an eigenvalue problem. The chammel shortener is
given by the eigenvector associated with the smallest eigenvalue of R, and
the mean squared error is given by this eigenvalue [43].

As an example, a SIMO system with one transmit antenna and two re-

ceive antennas and channel impulse response length of twelve taps is short-
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ened to an effective length of three taps using channel shortening equalizers
of length eight at the receive antennas at SNR = 10dB. The channel impulse
responses and channel shortener impulse responses are shown in figure 3.3

while figure 3.4 shows the shortened impulse response.

3.4.4 Simulation Results

With the architecture described, one major issue is yet to be resolved. If the
total transmission power is fixed, how should the power be divided between
the training and data. We will resort to simulations to resolve this ques-
tion. The estimation MSE is plotted against p (the ratio of the total power
allocated to training) in figure 3.5 at 20 dB where we have used My = 2,
Lep =2, Ly = 8 and L = 6. The modulation is 4 QAM. It can be observed
that although the initial estimate improves with increasing p and hence in-
creasing power allocation to training, our iterative scheme does not. For
our iterative channel estimation and equalization scheme it can be observed
that the channel estimate quality degrades with allocation of p > 0.2 to the
training. So while in conventional training, it might make sense to allocate
more resources to the pilot for a better channel estimate, we see that in cur
scheme doing so actually degrades the channel estimate, With our scheme,
a sensible balance has to be achieved for power allocation at p = 0.2, It can
be seen that the channel estimate and the BER performance improves with
increasing p for p < 0.2. This is because of the large improvements in the
quality of the initial channel estimate with increasing p. In this region, the
performance of the iterative scheme is largely limited by the poor quality
of the initial channel estimate available. However, for p > 0.2, the effect
of the improvements in the initial channel estimate is offset by the limited
power available for data transmission. Because the data transmission has
less power to combat the noise, this resulfs in more detection errors. The de-
tected sequence is reused for channel estimation in the subsequent iterations

o that the improvement in the channel estimate is limited by the errors in
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data detection. In this region, the performance of the iterative scheme is
therefore largely limited by the reduced data signal to noise ratio.

It can be observed that at p = (.2, the iterative semiblind scheme can
provide a better channel estimate than simple superimposed training with
p=0.9. The BER results with the same parameters shown in figure 3.6 in-
dicate that the iterative process converges quickly within two iterations and
indicates that 0.1 < p < 0.2 minimizes the BER for the iterative semiblind

algorithm.

. ; ' ; z T '
Initial MSE
——— First Iteration
—— Second Iteration

-15}

Normalized Estimation MSE (dB)

0.1 0.2 0.3 0.4 05 0.6 0.7 08 09

Figure 3.5. Normalized Estimation mean square error is plotted against p
for various iterations at SNR = 20dB.
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Figure 3.6. BER is plotted against p for various iterations at SNR = 20dB.
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Figure 3.7. BER is plotted against Eb/No for various iterations with p =
0.2. The curves for the case of two receive antennas are dashed and those

for three receive antennas are solid.
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Figure 3.8. Normalized estimation mean square error is plotted against
Eb/No for various iterations with p = 0.2. The curves for the case of two
receive antennas are dashed and those for three receive antennas are solid.

Choosing p = 0.2, we simulated the same system for BER and MSE
results against SNR. These are provided in figures 3.7 and 3.8 respectively.
These results indicate that significant performance improvements are possi-
ble with the use of iterative detection and channel estimation for in conjunc-

tion with superimposed training in SIMO OFDM.

3.5 MIMO OFDM

We now consider semiblind channel estimation for a MIMO OFDM system
in the context of point to point MIMO. MIMO communications has the ca-
pability to provide a host of advantages including array gain, diversity gain,
interference reduction and spatial multiplexing gain that will be discussed
in more detail later. However, all these gains come with an increased com-

putational complexity as all taps in SISO communications are now replaced
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by matrix taps. Apart from intersymbol interference, the system has to
now contend with multiple stream interference® (MSI). Complete temporal
equalization of MIMO systems could become prohibitive. This computa-
tional burden may be alleviated by the use of OFDM. OFDM technology
is overlayed onto a SU-MIMO system where the IFFT/FFT and CP oper-
ations are performed at each of the transmit and receive antennas. With
a sufficient cyclic prefix, a frequency selective MIMO channel is decoupled.
into a set of parallel frequency flat MIMO channels. Thus the multipaths are
inherently resolved and the system has only to contend with MSL. However
the transmission of a cyclic prefix is a loss in throughput which can be mit-
igated somewhat by a channel shortening equalizer that the computational

resources allow.

3.5.1 Superimposed Training

‘We now consider superimposed training for a MIMO OFDM system for
spatial multiplexing. Explicit training or frequency division multiplexed
training for MIMO-OFDM has been studied in [56] among others. The
material in this section is similar to the material on superimposed training
for SIMO systems provided in section 3.4.1 with the essential difference being
that multiple transmit antennas are now included into the mathematical
framework and the required conditions to form a channel estimate are derived
and training design for the mmltiple transmitters is discussed.

We consider a system with My transmit and Mp receive antennas, an
OFDM symbol size N and maximum delay spread L and assume a cyclic
prefix L. The Mr input streams are parsed into blocks of size N to form
OFDM symbols for transmission. The block index k& is then related to the
serial index as

k= |n/N| (3.5.1)

*For a MIMO-MA channel, which is a uplink channel with multiple independent trans-
mitters accessing one base, this interference is termed as multiple access interference
(MAT),
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The frequency domain vector corresponding to the k** OFDM symbol is

T
then s, = [ST[k'N] o sTkN+N-— 1]:’ ¢ CMTNx1 apd

T
s{i] = [Slli] e SMy [z]] € CMr*l The average transmit power of each
antenna is normalized to one. The frequency domain signal is converted to

the time domain

x, = (F7 @ arp)se (3.5.2)

where x;, € CMTNX1_ A cyclic prefix is inserted and a pilot signal is super-

imposed onto the data to form the transmit signal

%Ki = (Tep ® Ingp )Xk + € (3.5.3)
where %, ¢ € CI¥HLap)Mrx1 The received signal is then given by

yi = Xgh+ X h+ v, (3.5.4)

where y, € CWV+Lep)Mrx1 apd X, is a block Toeplitz matrix

- X[m—n+k(N+ch)], m—n>
[Xilmn = (3.5.5)
0, otherwise.
For example, for k = 0 this is

X[0] 0 e 0
X[1] X[0)

- 0

Xk:U = ~

X[0]
XIN+Lp~1 X[N+Lp—2 -+ X[N+Lp—L-1]

(3.5.6)
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where X[i] = %7[i] ® In,,, i-e.

Xli] = Fﬁﬁan Zolillaz, - ﬁM&ﬁHMhJ (3.5.7)

where #,]i] is the i*® symbol transmitted from the x** transmit antenna and

the interblock interference (IBI) is captured by the block Toeplitz matrix

. Xim—n+k(N+ L), m—n<0;
X = (3.5.8)
0, otherwise.
Again for k£ = 0, this can be written as
0o X[-1 .- X-I] |
¢ . X[-L+1]
X = | X[-1] (3.5.9)
0
0 aQ
T
The channel vector is defined as h = [hT[gl - hT[ LI} and
hig] = (nT}] ... h:{JT [z]] where h;fi] = [h(l’j)[i] h(Mij){i]]. We

assume that the channel is Rayleigh fading and appropriately normalized
with an average gain of one between any transmitter receiver pair.

The received signal must, be processed for channel estimation. Again we
assume that the pilot signal superimposed on the data was periodic but with
pericd P = Mrp(L + 1). Then we can estimate the channels at each receive

antenna from all transmit antennas by a sample averaging operation

1
2 = ¥ (3.5.10)
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where W = 1%, @ Ipp, = [IPMR IPMR}' We can write X; = Xy, +
C where X, and C are appropriately formed from the vectors x and c
respectively. Because of the periodic nature of the training, we can write
C + C® = 15 ® U where U is a MgP x MpMr(L + 1) block circulant

matrix formed from one period of the training

‘U] Ulp] - UP—L41]
U= U_m vl _ (3.5.11)
_U[P] up-1 --- uP - Lj |
where Uli] = [Ulli]IMR +++ upgp[i)Iprg |- By substituting equation (3.5.4)

into (3.5.10), and using Xp=Xp+Cand C+C¥ =150 U, we get

1

Zi = E(IE ® Ipap ) (1R ® U)h+ Xh + X b + vy) (3.5.12)
1 -
2, = Uh+ E(lg @ Ipary)(Xih + X¥ h + vy) (3.5.13)
Vi

Again, the channel can be obtained by the least squares approximation
h = (UHU) Uz, (3.5.14)

We note that because the dimensions of U are MrP x MpMp(L + 1), the
condition required for a unique solution is P > (L + 1)Mry. Also, the pilot
signals from the M7 transmitters should be designed such that UZ U is well
conditioned. The matrix inversion can be avoided altogether if U is unitary,
by an appropriate choice of training. An example of such a pilot is when
c is a train of Kronecker deltas with a period of L. This corresponds to
the situation where all transmitters are using an impulse train for channel
identification and the other transmitters remain silent when any transmit-

ter is sounding the channel. The interference from the unknown data due
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to limited symbol length is still a major obstacle as it results in an early
error floor. With constraints like processing delay, memory, etc. precluding
an increase in the symbol length, the naive solution would be to transmit
the pilot at a higher power allowing for a better channel estimate and link
performance. This is not feasible for several reasons. It WOul& increase in-
terference in the network thereby automatically lowering network capacity.
Higher transmission power would also reduce battery life. Although error
control coding could be introduced, codes also require something to work
on - bandwidth for convolutional and binary linear block codes or power for
trellis coded modulation (TCM). Fortunately, all this can be avoided with
iterative semiblind processing at the receiver. We propose to employ the

detected data for channel re-estimation. The new channel estimate is then

used for data detection. This process is repeated and it converges to a solu-
tion much closer to what would be obtained with perfect channel knowledge.

Once an initial channel estimate becomes available, receiver processing
can begin. If the cyclic prefix length is sufficient, the received signal is
processed by dropping the cyclic prefix and then translating it back to the
frequency domain via FFT operations at each of the receive antennas. In the
general case, the cyclic prefix will be insufficient and the received signal must
be processed by a channel shortener. We choose to apply time domain chan-
nel shortener although a per tone equalizer [47] is equally possible. We next

describe channel shortening before we proceed to further receiver processing.

3.5.2 MIMO Channel Shortening

We have seen from the previous sections that

Vi = ikh + iibilh + v
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Because of the commutativity of the product of a Toeplitz matrix and a

vector, we may write

vi = H% + H®%,_, + v (3.5.16)
T
where yg = [yT[k‘(N-I— Lep)+1] oo ¥ R(N+ L)+ N +Lg—1)| »¥[El=
T
[yl[%'] yMa[i]] and
(1] © 0
m- (A Hio] 0 0 (3.5.17)
0 :
6 HI] --- Hp o0
I o --. 0 H[L] --- H[()]_
where
hali]l o haagli]
H[i] =
Aumptlil -+ farpng

Similarly the IBI introducing matrix is

0 ... o HEI - HY]

H% = | Hi (3.5.18)
: 0
-0 0 ]

Now we wish to apply a channel shortening equalizer to these received sam-
ples to shorten the effective channel. Let the order of the channel shortening

equalizer be L, so that it processes L, + 1 samples at any time instant.
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We note that because of the multiple antennas at the transmitter and the
receiver, the channel taps are matrices. Similarly the channel shortening
equalizer taps are matrices. Also% we denote the channel shortening equal-
izer as W = [Wg“ W};s] where W; is an Mp X Mt dimensional
matrix tap. Then the output of the channel shortening equalizer at the n'?

symbol in the k* block, i.e. at k(N + Lgp) +n is

yk(N+ch)+'ﬂ-‘_Ls
§i = WH : (3.5.19)

Yi(N+Lep)+n

.Ys,n

where ¥;, represents the output of the channel shortener. Similar to equation

{3.5.16) we can write

Xp(N+Lep)+n-Ls—L—1

Y¥sn=

0 ... 0 WH[L --- H[

Xpe(N+Lep)tn |

Xan

vk(N+ch)+n—Ls
+ .

Vi(N+Lep)+n |

g

Van

T

i = |pT T T

We denote the target impulse response as B = [Bo ... B Ld] and B;

are matrix taps with dimensions Mp x M. Then the desired channel and
shortener cascade output is

BH [XT

T
. xT and the error vector woul
k(N+ch)+ﬂ—A xk(N-l-ch)"'n_A_Ld:l error vect U d
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be

where
[ Onty Ax My ]
Bo 0A ML x(La+ )My
ﬁ - o I(Ld+1)MT B
Bi, 0Lt D=Ly~ A~1)Mp x (Ly+1) M
[OM (Lot LmLg= At 1)x My | r

Then by the principle of orthogonality E(esny2,) = 0 [14]. Thus we can
write

E(es,ny.fn) = E((ﬁHxs,n - WHYs,n)y‘gn)

This implies that
wH = B'R, R} (3.5.20)

where Ry = E(y,ayf)) and Ry = E(x, nyE,). The error autocorrelation

matrix is obtained as [45]
Ree = E(esnell) = E(B %0 — Wy, ) (x# B —y¥ W))  (3.5.21)
Simplification and substitution of equation (3.5.20) gives [45]

Re. = BY (Ryp — nyR;Ryml B (3.5.22)

o y

Ryly

The channel shortening equalizers are obtained by [45]
B,y = arg n}gn trace(Re.) subject to BHEB = | SV (3.5.23)

The solution to this problem is given by the eigenvectors corresponding to

the smallest eigenvalues of I'¥ R, I’ which are the channel shorteners.
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3.5.3 MIMO-OFDM Processing

Because of the commutativity of a Toeplitz matrix and a vector, the output

in (3.5.4) can also be expressed as
i = Hpy + HP Ry + v (3.5.24)
where Hj, is a Toeplitz matrix constructed from matrix channel taps

Hiym—-n|, 0<m-n<I;
Hilmn = (3.5.25)

0, otherwise.

and the matrix channel taps are

RODE <. ROMTI[
H[i] = (3.5.26)
h(MR!I}[?;I . h(MRsMT){E']

and Hi is defined accordingly.

The pilot is first peeled off the received signal

Vi — flkc = I:Ikxk + ﬁk(c + xp) + Hibilik + v (3.5.27)

Vi

Now in our model the effective noise is ¥;. We assume an equivalent Gaussian
noise in designing the channel shortener and the processing at the receiver
because this noise is difficult to characterize. It must be mentioned here that
this approach is strictly sub optimal because the noise term is not properly
characterized. If the cyclic prefix is insuflicient, the signal is then processed

by the channel shortening filter as follows

G = we % (Y — by * ) (3.5.28)
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where the * denotes the convolution operation. The signal at the output of
the channel shortener is then processed by discarding the cyclic prefix and

translating back to the frequency domain

T = (FTap @ Ing )55 (3.5.29)

The MIMO OFDM receiver is designed to process the received signal
block by block. It processes N 4 L., received samples per receive antenna
at a time. Thus if the cyclic prefix is longer than or equal to the channel
memory L., > L — 1, the signal appears periodic to the channel resulting
in circular convolution. This ensures that IBI is avoided as the corrupted
samples are discarded along with the cyclic prefix and allows for simple

equalization in the frequency domain. For suflicient length cyclic prefix,

(FTaep ® Ly (H 4+ HOY (T F @ 13, ) = D (3.5.30)
where
D = block diag( [D[l] D[N]J) (3.5.31)
and
d(lsl)[i] - d(lsMT) [3]
D[] = (3.5.32)
d(MRal) [i] P d(MR!MT) [i]
so that
Iy = Dsk + vg (3‘5.33)

Note that there is no interference between the tones. The MIMO frequency

selective channel has been transformed into N frequency flat MIMO channels.
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3.5.4 BLAST

By noting that the FFT and IFFT are both unitary operations, hence
simple rotations that do not change the properties of the circularly sym-
metric complex Gaussian noise, we see that the orthogonal frequency di-
vision multiplexing has already resolved the multipath without any noise
enhancement. In detecting the transmit signal, it remains to deal with the
MSI. The inputs to each of the frequency flat MIMO channels can be re-
covered through a zero forcing (ZF) egualization or MMSE equalization.

T
Once again, the transmit signal was s, = [ST[k N] «-. sTkN+4+N-— 1}]
T
where s[i| = [31[@'] e S [z]] and the received signal at the output

T
of the FFT demodulators is ry = [rT[k N| .- rT[k NI N— 1]] where

rfi] = [?‘1[’5] e TMg [@]J . The received signal is a mixture of the transmit

symbols that can be separated with MMSE equalization as

[

8li] = (D[] D[i] + 0*Lys,.) " DI} r[i]. (3.5.34)

wit

Note here that the index ¢ stands for the subcarrier. The zero forcing solu-
tion is obtained by simply setting the noise variance to zero in the MMSE
solution. These linear techniques are however suboptimal as they suffer from
noise enhancement. The best we could possibly do is to use ML detection
which would require checking all possible transmit vectors for the vector clos-
est® to the received vector. The complexity of optimal ML detection is of the
order MMT where we assume that M is the order of the modulation. This
is clearly infeasible for a large number of transmit antennas or large constel-
lations. It is possible to use a suboptimal scheme called ordered successive

interference cancelation (OSIC) which is analogous to the decision feedback

The definition of the closest depends on the distribution of the noise. For example, for
Gaussian noise, which is the commonly encountered, it is in terms of the Euclidean norm.
Simitarly, for Laplacian noise, it would be in terms of the taxi cab norm ({1 norm).
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equalizer. It has also been shown that OSIC can achieve the ergodic capacity
of MIMO-SU7 channels in a fast fading environment [13). In slow fading,
the outage capacity is still achieved but with diagonal encoding with the D-
BLAST architecture as opposed to the V-BLAST we use here [57]. SIC uses
a divide and conquer strategy as it peels off layers that have already been
detected and linearly equalizes the remaining layers thus mitigating noise
enhancement. It does introduce error propagation in the process which is
why detection has to be ordered from the strongest stream to the weakest
stream. By detecting the stream with the highest post equalization SNR at
each stage, the errors propagated into the other streams by peeling off this
stream are minimized. While ML equalization can offer Mp order diversity
and linear equalizers only provide Mp — Mr + 1 order diversity, OSIC gives
a compromise between the two. With OSIC, the streams detected from the
first to the last achieve diversity orders of Mp—~ Mr+1, Mg— M7r+2,--- Mg.

For OSIC with MMSE equalization, the detection order is determined by
the mean squared error. The stream with the smallest mean squared error
is detected first using a MMSE equalizer to suppress the other streams. The
contribution of this detected stream is peeled off (canceled) from the received
signal. Then the stream with the smallest MSE of the remaining streams is
detected using an MMSE equalizer to suppress the other streams (excluding
the one that has been peeled off). This detection of the streams proceeds
iteratively with fewer streams to suppress with each iteration as more have
been peeled off, until only one stream is left and is simply detected. The p*

iteration involves MMSE equalization

dmli] = el (DI D [i] + 0% Iar ) "D [i)z, (3.5.35)

"For MIMO-MAC, the capacity region is attained by ordered successive user cancelation
{OSUC) which is essentially identical.
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where e,, is the mt* column of the My identity matrix. The stream to be

detected in this iteration is determined by
m = arg nrlriln[(Df [i1Dpli] + 6*Xar,) mm (3.5.36)

The vector of received samples to be processed is updated by peeling off the

detected stream as

Zp+1li] = 2pli] ~ dfil3ml] (3.5.37)

where dy,[i] is the m® column of Dy[i] and Dyfi] is updated as

Dyt =Dylil (&7 -+ ep—1 0 epi1 -+ eMT] (3.5.38)

The OSIC is initialized with z,[i] = r[i] and D;[{] = D[¢].
SIC is generally carried out through a QR decomposition. Let the QR
decomposition of D[i} be Dfi] = QR where Q is a unitary matrix and R. is

an upper triangular matrix. Then for zero forcing SIC
5[] = Q7 r[i] = Rs[4] + ¥[4] (3.5.39)

where ¥[i] = Qvli]. The properties of the noise are unchanged because of
the unitary nature of Q. Because of the upper triangular structure of R [10]

M,
B = rpesy + Zzi Tki8; + Uk (3.5.40)
i=h+1
Thus the k** stream is free of interference from streams 1---k — 1. This
allows stream My to be detected as 855, = %fd? Asgsuming correct detec-
tion of sy, the detection of the sps.—;1 can proceed using the estimate of
sy and so on until the whole vector s is detected.

Although considerably less than ML detection, the computational com-

plexity of BLAST can still be large [58]. This complexity can be significantly
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reduced [59, 60} by settling for a suboptimal ordering that still manages to
salvage most of the gain. Detection in SIC proceeds from stream Mr to
stream 1 and to minimize error propagation, it is desired that SIC be or-
dered from the stream with the largest SNR to the one with the least. By
changing the order of the columns of D[¢] and the elements of s[i] we can get
a new QR factorization which corresponds to a different order of detection.
In a QR factorization, the SNR of each layer is given by |rs|?. To minimize
error propagation, it is necessary to maximize |ryt| for k = My, Mr—1,--- 1.
However QR factorization proceeds from ry; to rasar,. Thus to avoid hav-
ing to search exhaustively for the QR factorization which maximizes ry;, for
k = My, My - 1,--+1, we can while performing Gram Schmidt orthogonal-
ization try to minimize ryy, for £ = 1,2--- My [59]. The logic is that by
choosing a smaller |rge] for initial values of k, we will get larger values in
subsequent steps. This procedure is the sorted QRD and it does not always
result in the optimal order but the losses are small. For OSIC with MMSE
equalization, the augmented channel matrix is defined @ = [DT[z'] O',UI] T,
then the output of the MMSE filter is given by the form for the zero forcing
filter
: T
5= (@"0) e [r'r[i] DT} (3.5.41)
T

BLAST is accomplished by a QR factorization on this augmented channel

matrix.

o YR (3.5.42)

Q2
\-w/
Q

From this, we see that Q2 = o, ™! and Q1R = D[4] [59].

5[i] = Q7rlil = Q{'(QiRsli] + v[i]) = Rsli] - ¢, Q¥'s[i] + Qf v[i] (3.5.43)
N et e

interference noise
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The second term is a lower triangular matrix that constitutes interference

that is not removed. We have that [59]
8ls) = (DFHID[i] + o21) "D [i]r[4] (3.5.44)
The detection MSE is then given by [59]
E((8[i] - sll)(8li] - s[i)™) = o3 (@7 [IIO[]) ™ = oIRT'R™T  (3.5.45)

We see that small eigenvalues of ©[i]@]i] will lead to large errors due to
noise amplification. The estimation error for the k** stream is then 2/|ry |2
So we see that the optimal ordering for MMSE-SIC is the same as that for
ZF-8IC, i.e. we would like to choose an ordering that would maximize |rgg|
in each detection step. Thus the sorted QR decomposition algorithm for

ZF-5IC can again be applied here.

3.5.5 Simulation Results

Using p = 0.2, we simulated a MIMO OFDM system with M7 = 2 transmit
antennas, Mp == 3 receive antennas, and channel length L = 7 using 4
QAM modulation. A cyclic prefix order L, = 2 was taken and a shortening
equalizer with L, = 9 was used to shorten the channel to a desired length
Ly = Lep = 2. OFDM symbol length NV = 256 was used. The channel taps
were simulated as independent and identically distributed Rayleigh Fading.
The BER and normalized estimation mean squared error simulation results
are provided in figures 3.9 and 3.10 respectively for MMSE equalization and
MMSE equalization with OSIC.

Figure 3.9 shows that the performance improvement decreases with the
iterations. The largest improvement is shown by the first iteration over the
initial BER and subsequent iterations give diminishing gains. Further, it can

be seen that most of the gains are achieved in the first three iterations so that
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Figure 3.9. Bit error rate is plotted against Eb/No for various iterations
with MMSE equalization (dashed lines) and MMSE equalization with or-
dered successive interference cancellation (solid lines). Results for perfect
CSI are marked O.

the performance of our iterative approach is substantially better than that
of superimposed training alone. It can be seen that the iterative approach
provides BER performance that is nearly two orders of magnitude better
than a non iterative approach incase of an MMSE-OSIC receiver at 25-30
dB SNR. For & MMSE receiver, the iterative approach provides an order of
magnitude better performance than a non iterative approach at 25-30 dB
SNR. The performance gap with the perfect CSI is seen to be about 2 dB
in figure 3.9.

It can be seen that the initial estimates exhibit an early error floor.
This error floor occurs because of the superimposed training structure where
the channel estimate suffers interference from the residual unknown data
transmission. Notice that an error floor is also observed for our iterative
scheme at Eb/No > 25dB. However, this error floor is less than that due to

the non iterative approach by orders of magnitude. We remind the reader
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Figure 3.1¢. The normalized estimation mean square error is plotted
against Eb/No for MMSE equalization (dashed lines) and MMSE equaliza-
tion with ordered successive interference cancellation (solid lines). Results
for the initial superimposed training estimates are marked O.

that an OFDM system is under consideration and uncoded OFDM typically
suffers from an error floor even with perfect C8I because of carriers that
get nulled because of the channel frequency response. This is why OFDM
is used in conjunction with a code and an interleaver and the code bits are
scattered over multiple coherence bandwidths so that the transmit signal

may be recovered even if it sees channel fades,

3.6 Conclusion

Typically a BER of 107 is sufficient for voice communications with such an
error rate imperceptible to the human ear. Data applications may require
an even better link. We can see from the simulation results that super-
imposed training results in an early error floor. It cannot even be used

for voice communications, let alone data communications, regardless of the
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SNR. This error floor precludes the direct application of superimposed train-
ing to communications. Although OFDM is typically employed with forward
error correction, we see from the simulation results that with the proposed
iterative approach reasonable performance is achieved in the SNR band of in-
terest allowing for voice communication even without introducing codes. For
applications requiring better performance, error control coding can always
be introduced. A superimposed training based iterative scheme for wire-
less systems is proposed for multicarrier communications. Qur simulation
results indicate that an iterative approach to channel estimation equaliza-
tion and decoding in conjunction with superimposed training can provide

overwhelming performance gains including lower estimation MSE and BER.




Chapter 4

SUPERIMPOSED TRAINING
FOR SINGLE CARRIER
SYSTEMS

4.1 Introduction

The focus of this chapter is on superimposed training based, iterative semi-
blind channel estimation techniques for single carrier systems with empha-
sis on doubly selective channels. By now the reader is probably familiar
with the concepts behind superimposed training. While a brief overview of
existing literature on superimposed training is provided, the contribution
of this chapter will be to the study of a semiblind superimposed training
based scheme for a coded system in doubly selective channels. An excellent
overview of space time coding for wireless communications as well as error
correction coding is provided in [61].

Superimposed training exploits the fact that the training and data pass
through the same channel. It thus induces cyclostationarity in the trans-
mission to allow for channel estimation through a simple sample averaging
operation at the receiver. As a consequence of this cyclostationarity, the
training adds coherently at the receiver while the unknown data does not.
The channel information is extracted from the first order statistics of the

received signal. This makes it possible to estimate the channel without

84
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allocation of any explicit time slots for the transmission of training. Super-
imposed training thus allows for channel estimation at the expense of power
as opposed to time multiplexed training which estimates the channel at the
expense of bandwidth. This could have important ramifications when the
channel is fast varying and also when operating in the bandwidth limited
regime. Meanwhile, it retains the computational simplicity that is a striking
feature of time multiplexed training. An overview of pilot based channel
estimation is provided in [62].

Superimposed training may be considered as a compromise between blind
and time multiplexed training. Blind channel estimation techniques have
been motivated because they are known to be bandwidth efficient as they
allow estimation of the channel from only the channel output and statis-
tical (or other) information of the input. Blind techniques could be espe-
cially suitable for fast varying channels as a very significant portion of the
throughput would be consumed in training the receiver otherwise for such
channels. Trellis based blind algorithms like the per survivor processing ap-
proach in [63), or the expanded trellis approach of [64] are fast to converge
but computationally very intensive. Omn the other hand, inverse fltering and
channel estimation algorithms are computationally less complex but slower
converging. These blind techniques were initially based on higher order
statistics because phase information of the channel could not be extracted
from the second order statistics. This made them slow to converge and com-
putationally complex. Later, it was realized that the second order statistics
of a cyclostationary sequence contain the phase information and thus faster
blind techniques for channel estimation based on second order statistics were
developed for fractionally spaced systems [65-67]. Nevertheless, blind algo-
rithms are still computationally demanding. They also suffer from a phase
ambiguity in that the channel can be identified up to an unknown phase
offset. This requires the use of differential encoding for communications,

which incurs a three dB SNR penalty. Like blind techniques, superimposed
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training is also bandwidth efficient, as it does not require the allocation of
any explicit time slots for training. Furthermore, it relies on the first order
statistics and could therefore converge to a solution much faster and with
far less complexity. In terms of power, only a small fraction of the trans-
mit, power is allocated to the training so the loss is less than the three dB
incurred by the blind schemes. Thus superimposed training offers both the
bandwidth efficiency of blind techniques and the computational elegance of

multiplexed training.

4.2 Superimposed Training in Single Carrier

Superimposed training for communication over a multipath wireless envi-
ronment was first proposed in [68] and investigated by [69] where the second
order statistics of the received signal were used to obtain a channel esti-
mate. [70] was the first to realize that a reliable channel estimate could
actually be formed from the first order statistics of the received signal. Su-
perimposed training based on first order statistics was discussed in detail
in [53]. [71] proposed a simple method of dealing with mean value uncertainty
in the received sequence. Soon encugh, it was realized that superimposed
training alone could not provide sufficient performance levels because of an
early noise floor resulting from interference from the data. As a solution to
this problem, [72] proposed a data dependant superimposed training scheme
for cyclic prefixed transmission where the superimposed pilot is actually
modified by adding a data dependant component to the periodic pilot. This
data dependant component is meant to cancel out the interference of the
unknown data to the training. This scheme thus calculates the interference
from the data and cancels it out at the transmitter. The training and the
data are thus orthogonal at the receiver. Now a better channel estimate can
be obtained. Once the channel estimate is used to detect the data, it will

not detect the original data stream but instead will detect the data stream
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modified by the data dependant component of the training. Detection of the
original data stream then proceeds by minimum distance decoding (MDD)
over the set of possible transmit symbels and a lower complexity symbol by
symbol detection algorithm is also provided. An alternative approach is to
use an iterative semiblind superimposed training algorithm. MIMO channel
estimation using superimposed training was studied in [73].

Superimposed training for doubly selective channels has been previously
studied in [74-77]. A data dependant superimposed training algorithm was
proposed for superimposed training in complex exponential basis expansion
model doubly selective channels by [75], while a partially data dependant
scheme was proposed in [76] for discrete prolate spheroidal basis expansion
model doubly selective channels. Training power allocation was discussed
in [74] while superimposed training for MIMO doubly selective channel es-
timation was discussed in [77].

It has become clear that superimposed training suffers from an early er-
ror floor due to interference from data transmission into the channel estima-
tion which severely limits its applicability. We study superimposed training
based semiblind channel estimation for doubly selective channels where the
detected data is also introduced into the channel estimation. We consider a
coded system and an iterative equalization and decoding receiver so that the
sequence at the decoder output is used for channel re-estimation. In each
iteration, the channel is re-estimated and the equalizer is updated for the

next iteration based on these estimates.

4.3 Doubly Selective Channels

The demand for higher data rates and mobility has shifted the focus of chan-
nel estimation research towards doubly selective channels, These channels
result from a combination of multipath, high data rates, mobility, and carrier

frequency offsets and they display both time and frequency selectivity. They
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can be modeled using basis expansion models (BEM) [12]. The BEM mod-
els the channel variations within a block with basis functions which remain
unchanged from block to block. The variations between blocks are modeled
with the basis coefficients which are held constant in a block but vary from
block to block. Various choices for bases have been proposed including the
polynomial, wavelet, Fourier and the Slepian [78,79]. The BEM provides a
tractable description of the channel by sampling it in both the delay and
Doppler dimensions. Because of the time and frequency selectivity, these
channels offer both delay and Doppler diversity. But this also makes them
difficnlt to acquire.

The time varying impulse response of a channel including the effects of
the transmit receive filter pair and the doubly selective propagation effects
of the environment is denoted by k({t; 7). The Fourier transform of such an
impulse response is denoted by H(f;7). The delay spread Tme, and the
Doppler spread fmqz are defined such that |H(f;7)| & 0 for 7 > 10 or for
f > fimaz- The delay and Doppler spread are assumed to be bounded such
that the delay Doppler spread factor 2,02 Tmax 18 less than one. Otherwise
there would be more unknowns than equations and the estimation problem

will not be well posed. The baseband channel input output relation is

L
y(n) =Y _ h(n,Dz(n—1) +v(n) (4.3.1)

=0

where h(n,[) is the sampled channel response of the channel at time n to
an impulse applied at time n — I, y(n) is the channel output, z(n — I} is the
channel input at time n — [ and v(n) is the additive white Ganssian noise.
We note that the channel impulse response depends explicitly on the time
index. The parameter [ indicates frequency selectivity, while the parameter
n indicates time selectivity. If A(n,l) =0 V [ # 0, the channel is purely
time selective and if h(n,i) = h(l) V n, the channel is purely frequency

selective. The response h(n,!) includes any transmit receive filtering along
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with the physical channel. This channel is concisely described in the delay
Doppler dimensions as a finite set of complex exponential BEM coefficients

as
Q/2
2rng

A )= > hy(ln/N|, ))& (4.3.2)
9=-Q/2

where %’— is the discrete Doppler spread. The discrete parameters are related
to their continuous counterparts as L = |Tmar/Ts] and Q = 2[f0aNTy]
where T is the sampling period at the receiver. The BEM coefficients (k)
are used to model the channel variations between blocks and they are held
constant over a block. The basis vectors are unchanged across blocks and
are responsible for modeling the time variations within the blocks. The
BEM coeflicients may be viewed as two dimensional samples of the channel,
i.e. samples along the Doppler and the delay dimensions. We make the
assumption that the channel is underspread, i.e. the delay - Doppler spread
product is less than I for identifiability. We also note that there are (L +
1){@Q + 1) paths between the input and the output which is the order of
the diversity offered by the doubly selective channel. The N x (N + L)

dimensional convolution matrix for a linear time varying channel has the

structure
hO0,L) - R0,0) 0 " 0 0
0 h(l,L -+ h(L,0 0 X 0
. 1,) (1,0
|0 0 MN-1,L) - h(N-10)]
(4.3.3)
By substituting in equation (4.3.2) this becomes
o hq({))eﬂw:’ 2. hq(L)ejh:f : 0 e 0
2
=—Q 1 2m — i 2rg{N—
= 0 0 ha(0)e 5 ho(L)e 5
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where w, = %’{r—q. This is the product of two matrices

j2mq(0)
Q/2 N h?(o) hQ‘(L)
H= >
g=—Q/2 j2rg{N—1)
B hy(0) he(L)
{4.3.5)
This is written as
Q/2
H= ) DH, (4.3.6)
g=—0Q/2
where D, = diag [1 e»"'z"Tq eJMP} is an N x N diagonal matrix

and Hy is a N x (N + L) dimensional Toeplitz matrix. The linear time
varying (LTV) convolution matrix H has a banded structure, but no longer
possess the Toeplitz property characteristic of linear time invariant (LTI)
convolution matrices. Neither does it have the diagonal structure associated
with time selective channels.

A LTV receiver is required to process a signal received over a LTV chan-
nel. The design of LTV receivers according to the zero forcing criterion and
the MMSE criterion has been studied in [80]. This work was later extended
to the design of LTV decision feedback equalizers in [81]. [82] and [83] have
also studied LTV equalizer design for LTV channels. The design of LTV time
domain channel shorteners has been studied in [84] where LTV time domain
equalizers were designed according to the MMSE principle in order to elim-
inate the time selectivity of the channel and shorten the channel impulse
response length. By using a LTV receiver to transform the time varying
channel to a time invariant channel, the orthogonality between subcarriers

-is restored and OFDM may be employed. Stmilarly, LTV per tone equalizers
have been studied in [85] for use in OFDM for doubly selective channels.

It is also possible to to use an array of time invariant receivers to recover
the signal transmitted over a time varying channel. This approach considers

a time variant SIMO system as a time invariant MIMO system [86] and then
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blind equalization techniques that have been developed for time invariant
MIMO channels can be employed. The difficulty with this approach is the
large antenna array that is required at the receiver to blindly detect the
signal. The number of receive antennas required for this scheme is directly
related to the number of basis functions which can be large for rapidly fading
channels. Such large antenna arrays can be unwieldy. Similarly differential
modulation over doubly selective channels has been studied by [87] but there
is significant complexity as well as a 3 dB loss. With our iterative semiblind
superimposed training based approach we can establish the link with far less

complexity.

4.4 SISO Systems

4.4.1 Signal Model

The matrix vector model for block transmission over a doubly selective chan-

nel is

y=HX+v (4.4.1)

where v € CV*1 is the vector of additive white Gaussian noise, y € CV*! is

(N+L)x1 j5 the vector of transmit

the vector of received samples, and X € C
symbols. The doubly selective channel H is as defined in (4.3.6). For implicit

training, the pilot is superimposed on the unknown data as

X=x+c (4.4.2)

where x contains the unknown data while ¢ contains the pilot signal. We

can further define the training to information power ratio

TIR= P _ lleli3 443
-7~ B(D (443)
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as the fraction of the total power allocated to training. Allocation of more
power to the pilot results in better channel estimation but it also leaves
very little power and increased interference for data transmission. However,
allocation of insufficient power to channel estimation adversely affects the
detection of the unknown data through poor channel estimates. We delin-
eated this tradeoff for OFDM in the last chapter with the help of simulation

results.

4,.4.2 Channel Estimation

The problem we study is the semiblind estimation of doubly selective chan-
nels using superimposed training. Again, the material in this section is
similar to the that in 3.4.1 with the essential difference that the basis func-
tions for modeling the doubly selective channel are now introduced. While
only one sample averaging operation was required to estimate the channel
in 3.4.1, @ + 1 sample averaging operations are now required to estimate
all the BEM coefficients. By substituting equation (4.3.6) in {4.4.1), the N

received samples in a block are given by

Q/2
y= ) DHE+v (4.4.4)
q=—0Q/2
y= |:D_Q/2H_Q/2i sen DQ/QHQ/Qi] + v (445)

Because of the commutativity between a Toeplitz matrix and a vector, this

may be written as

y = [D_Q/2f{h_Q/2 DQ/ZihQﬂjl +v (4.4.6)
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X h_g/
X| | bop
h
y = [D—Q/E ces DQ/2:| (IQ+1 ® 5{)1’1 +v (448)
) 3

where X is a Toeplitz matrix constructed from % and h is a @+ L(L+1)
dimensional vector containing the BEM coefficients of the channel. The
received signal y(n) is not stationary owing to the deterministic training c. It
is, however, cyclostationary because of the periodicity of ¢, so that a sequence
of vector symbols comprising of P received symbols each is stationary and

a sample average can be formed. We now consider this sample average

7 = %@DH y (4.4.9)

where @ =T, ) ® $ has dimensions (Q+1)P x (Q+1)N, & = 11 0Ip =

[I p - I P] is a Px /N dimensional matrix that takes a sequence of P sam-
ple averages from R = ¥ samples, and z € C(@+)P*1, By using the fact that
D, = DZ,®D,,p where DF , = diag( [E&T’“ﬂ B Y e&%@ﬂ])
and D, p = diag( [eﬂ_’r:vﬁo—) HE L eﬂ—ﬂ%ﬂﬁ]) i.e. that the sample av-

eraging operation will add points on the DFT grid and will thus sum to zero
suppressing the BEM coefficients for all all ¢ but ¢ = 0. To estimate the
BEM coefficients for any other g, we must first mulitiply the received samples
with Df to translate these coefficients to ¢ = 0 and then perform the sample

averaging operation. Thus we will obtain

[
z=(1 ®Y)h+ = @D"v 44.10

A v
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where A has dimensions (Q + 1)P x (Q+1)(L+1), T = $C e CPx(i+1)
(where C is a Toeplitz matrix constructed from c). This allows us to form

a least squares estimate of the channel as
h=(A7A) 1A, (4.4.11)

The solution of this least squares problem requires that A be full rank
which in turn requires that Y be full rank, implying that P > L + 1 for
identifiability. As [88] pointed out, an important caveat here is that this
result assumes that the additive noise was zero mean - a situation that often
arises from linearization about an unknown bias point that is filtered out as
it contains no information. However since we wish to exploit the first order
statistics for channel estimation, we cannot just filter out the bias point and
it is necessary to include the effect of an unknown bias in the noise term.
Assuming now that the additive noise is actually v + mly then equation
(4.4.8) becomes

¥ =D(Lgin @ X)h+ v+ mly (4.4.12)

The BEM coefficient estimate is corrupted by the unknown mean m. As
pointed out by [71], the DFT matrix can be used overcome this difficulty
in channel estimation by noting that only the first term is affected by the
unknown mean. A DFT operation is introduced after the sample averaging
and the first DET term is discarded as it is corrupted by the wnknown mean
while the remaining terms are used for channel estimation. Let ¥ denote a
(P — 1) x P matrix obtained from the P x P DFT matrix by discarding its

first row. Then ® = I, ® & is replaced by ® = Ips1 ® F& and

. 1
= (I FY)h+ = &D¥ 44.1
Z (Q+1® ) + B Vv, ( 4 3)

A v/
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and the channel estimate is formed as
h=(a"an-"'ay (4.4.14)
and the unknown DC offset m is estimated as
= 15(y - D(Ig.1) ® C)h)/N (4.4.15)

where C is a Toeplitz matrix formed from the training sequence. The condi-
tion for unique identifiability of the channel is now P > L+2. From equation
(4.4.14), it is evident that the estimator performance depends on the choice
of the training sequence through Y = &C. This least squares estimate de-
pends on the condition number of YHY'. For a condition number of unity,
YHY = el where e is a scalar. Thus the training se(iuences should be chosen
such that the normalized circulant training matrix is unitary [53]. It was
shown in [53] that for any period P, such training sequences can always be
constructed along with the desirable property of a peak to average power
ratio of unity.

The initial channel estimate thus formed is used to design an equalizer
and begin turbo equalization. In every iteration of the turbo equalization,
the channel is re-estimated when soft estimates of all transmit symbols have
been generated by the decoder. In doing so, we incorporate the unknown
data into the channel estimation process as well. Let % denote the soft
estimates of the transmitted signal generated by the decoder, then we have

Q/2

y= > DXh+v (4.4.16)
g=-0/2

where X is a L*? order Toeplitz matrix. We thus have

x=®h+v (4.4.17)
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T
where ® = [D_Q/QX DQ/Q)(] and h = {IEQ/:: hg/:;] . The

least squares channel estimate using the detected data as training is then
h=(a"®) oy (4.4.18)

4.4.3 Turbo Equalization

Although discovered four decades later, turbo equalization and turbo cod-
ing are directly inspired by the first of three lessons from Shannon’s ground
breaking paper, i.e. to never prematurely discard information that may be
useful in making a decision until after all decisions related to that informa-
tion have been made. It is for this reason that their decoding algorithms do
not take any hard decisions till the decoding is complete, These probabilistic
decoding algorithms operate directly on the Bayesian principle whereby the
extrinsic information produced by one component serves as a priori informa-
tion to the other. This a priori is weighted by the constituent block against
its observations. If the observations are unreliable, the algorithm will rely
morte on the a priorl and vice versa. Incase of zero a priori information, the
algorithm relies entirely on the observations. Turbo equalization is such an
iterative equalization and decoding algorithm used in place of the computa-
tionally infeasible, albeit optimal joint maximum likelihood equalization and
decoding. It involves a detector that uses a priori symbol estimates to gen-
erate a soft replica of the interference. The detector mitigates intersymbol
interference by subtracting soft replicas of the interference from the received
signal and then filters the signal to further minimize the effect of any resid-
ual interference. We employ a MMSE detector and a rate 1/3 convolutional
code with generator polynormial (145,133, 7)g for forward error correction. A
sequential MMSE equalizer of order L., and a MAP decoder exchange soft
information iteratively and the turbo principle is used. An estimate of the

training contribution to the received signal is removed to form the effective




Section 4.4, 5150 Systems 97

signal for processing in each iteration.
y=y-Hc~mly (4.4.19)
The linear MMSE estimate of x,, is then obtained as [9]
2 = b7 Cov(§n, ) ™' (I — HaZn + Zabn) (4.4.20)

where ¥n = |g(n = [Leq/2]) - §(n+ [Leg/2))|s Bu is the (Leg +1) X
(Leg + L + 1) time variant convolution matrix reconstructed from the esti-

mates of the BEM coeflicients and
. 2 & Y H H
Cov{¥n, ¥n) = (o5y + HoQuH,, + (1 — ga)bab,) (4.4.21)

where g, = Cov(z,,T,) and

n = Foc\@ateqal - Tasltazeg/al” (44.22)
Qr = Diag([@-(L4Legyi2i -+ @tl@4Leg/z))  (44.23)

bn = Hal0ix(zazeqysa) 1 Oux(fetegyopl” — (44.24)

Note that since we use only extrinsic information in equations (4.4.20) and
(4.4.21), the prior &, is not involved in the computation of #,. Once the
estimates have been obtained, they are converted to log likelihood ratios for

exchange with the decoder [9]
Lp(zn) = 2(£n,un,+1)/0'i,+1 (4.4.25)

The statistics used in (4.4.25) are

tnu = BHEGE |2 = 2) — HoRe + Znba) = 27 by, (4.4.26)
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0% = 8 Cov(Fm, Yulzn = 2)gn = g7 bn(l - blTgn)  (44.27)
and g, £ Cov(¥n,¥n) 'bn is the equalizer. The effect of the equalizer should
be to convert the channel into an equivalent AWGN channel on which the
decoder can operate.

Turbo equalization and space time turbo equalization for MIMO systems
can provide significant performance improvements over a non iterative re-
ceiver if coding is employed. However, exploiting these gains requires the
receiver to have good CSI. The channel has to be estimated and is character-
ized by estimation errors which reduce the ability of the equalizer to remove
the correlation introduced in the received signal by the channel. These cor-
relations cause the turbo equalization algorithm to stall and it fails to make
any significant progress over the iterations. As a solution to this problem,
the channel estimation is introduced in the iterative equalization and de-
coding loop so that the channel is re-estimated after the completion of each
iteration. This allows the channel estimate to be refined along with the

iterations.

MAP Decoder

To minimize the probability of symbol error, the decoder has to maximize

the a posteriori probabilities for all bits.
zy = argmax p(z4|y) (4.4.28)
2k

The a posteriori probability is

plzy=zly)= > plxly)= plybplx) (4.4.29)

XiTp=T XL =T p(y

The maximum a posteriori principle can be used for equalization as well as
decoding. MAP equalization will minimize the probability of symbol error

at the equalizer output. Although we use a MMSE equalizer and a MAP
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decoder, we use the the channel input and output variables x and ¥ in this
section to highlight the applicability of this algorithm to the equalization
task. Furthermore, turbo equalization was initially envisaged with a MAP
equalizer. At this point we can give a reason why separate equalization and
decoding fare so poorly compared to iterative equalization and decoding.
Assuming a block length N, a code rate r and BPSK modulation, we see
that there would be 2% possible input and output sequences of the encoder
but 2¥/7 possible input and output sequences of the equalizer. When the
equalizer processes the received signal according to (4.4.29), it assumes that
all of the 2¥/7 sequences are equally likely whereas the the code in series
with the channel has imposed the constraint that only 2V of these 2V/T ge-
quences are actually possible. Thus the ideal approach should be to modify
(4.4.29) so that only those sequences are considered that are possible. By
only considering the sequences that are actually possible, much of the per-
formance loss would be recovered by a separate equalization and decoding
scheme. However, this would require exhaustive searches and be infeasible
as we explain shortly. Another reason for the performance gain is the use
of soft information. The performance of the turbo equalization with MMSE
and MAP equalizers converge for large block lengths and the performance
approaches that of the code in an equivalent AWGN channel. The perfor-
mance can be further improved beyond this by the use of a precoder.

In concept, decoding a sequence by maximizing the a posteriori proba-
bilities is quite simple. However, unlike the Viterbi algorithm which only
retains the survivors and discards the other paths, the summations here are
over all possible allowed paths. This means that the complexity of a direct
approach to the problem using equations (4.4.28) and (4.4.29) is exponen-
tial in the length of the sequence to decode and hence infeasible, However,
many of the operations performed in such a direet approach are redundant
and simplification is possible by noting that these operations are repeated

time and again. We thus explain an efficient algorithm for computing a pos-
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teriori probabilities known as the BCJR algorithm known alter its inventors,
Bahl, Cocke, Jelenik and Raviv [89].

The APP decoder exploits the structure of the channel / encoder and the
Markov property, i.e. its trellis. The Markov property states that random
variables E, F, G form a Markov chain, denoted by E & F « @, if we can
write

p(E,G|F) = p(E|F)p(G|, F) (4.4.30)

Two equivalent conditions are p(E|F, G) = p(E|F) and p(G|E, F) = p(G|F).
For the equalization or decoding problem, we denote the states in the trellis

at time & by a variable sy, then it is possible to write

pley=zly)= D plsg_1 =05, =ly) (4.4.31)
(Ir.hHew=
where 5% denotes the set of all state transitions sx_; = I’ = s, = [ which

correspond to a symbol x, = x.

Plsp—1 =0, 86 = Uy]) = p(¥i.118% = Op(sk-1 = Uy s = Ly¥ ™1, 1) /0(y)
(4.4.32)

Again by application of conditional probabilities

plsk—1 = Ussk = LY ua) = plsk = Lywlse—1 = U, y5 Np(se—r = U, y5Y)
(4.4.33)
Thus by substituting equation (4.4.33) in {4.4.32) and by the Markov prop-

erty, we have

plsp-1 =1, 8, =lly]) = (4.4.34)

P(yirilse =D p(sk = Lyelsi-1 =) plsp—1 = I, y]7") /p(y) (4.4.35)

Br(f) 'Yk&’-l") ar—1 (1)

Where the a’s and 3's are forward and backward messages, the reason for

which will become clear shortly. Computation of the these proceeds itera-
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tively

ap-1(l) =py¥ 551 = 1) = Z PV g, = sk = 1)

P

(4.4.36)

ap(I) = Z P\_(yk—lssk—l'—_ilisk—z=Q?(yl1c_2,5k—2 =1) (44.37)
(L)ews o1 () ak—a(l)

Thus oy is computed from oy_; and so on. The computation of a’s begins
at the left of the trellis and proceeds in the forward direction toward the

right. For computation of the the s,

B = > plyirise=lsiss =1)/plsi =1) (4.4.38)
(1) em=

Be(l) = Z P(y;+2|yk+1,sk =1, 5541 = Dp(Yis1, 5k = L, Spaq = I
(t1)eBe psk =1)
(4.4.39)

which can be simplified by applying the Markov property as

A= >0 pksalsist =) phss, ks =Vl =1)  (44.40)
L)em ﬁk+T(l') Y1 (L)

Thus G is calculated from B,41 and so on. The computation of the 3’s
begins at the right end of the trellis and proceeds in the backward direction
towards the left hence the name backward messages. The APP decoder is
also called a forward backward algorithm for obvious reasons. This leaves

the computation of the v’s.

YW, = plyks1, sk1 =Vise =1) (4.4.41)

= plyprilsrr =1, 85 = Op(sen = Uls =1)  (4.4.42)

where p(sg+1 = /|sy =) is the state transition probability determined by
the structure of the trellis and p(yg41)sk+1 =¥, s, = 1) is the probability of

the output given a state transition. The variables associated with a state
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transition are known from the trellis, hence

1 ~fygg1 =112

P(Yksalsirr = Uy 36 = 1) = plyesa [zra1) = WE 2oy
v

(4.4.43)

It is more convenient to work with log likelihood ratios rather than prob-
abilities. For binary constellations, while there are two probabilities, they
are constrained to add up to one so that there is only one degree of freedom.
Thus only one variable is needed to convey the reliability information, i.e.

the log likelihood ratio

plok =0ly) _ Lpayem -1l

Lz = = 4.4.44
ElY) = o =1l ~ S OG0B0 4
The decision rule on the variable thus becomes
0, Lz >0
By = (zxly) (4.4.45)

1, L(mﬂy) < 0.

The APP algorithm just described is actually the message passing algo-
rithm when applied to a trellis. The message passing algorithm for proba-
bilistic decoding is applied to codes on graphs for decoding. On cycle free
graphs, i.e. trees, the message passing algorithm is finite and exact while it
is iterative and approximate on graphs with cycles. The performance loss in
this case depends on the length of the smallest cycle and is smaller for larger
cycles. The message passing algorithm essentially solves global constraints
by factoring them into small local constraints and then proceeds to solve
the problem by passing messages between these local constraints. It thus
solves a computationally difficult problem by solving a multitude of easier
subproblems. In the example of our convolutional code or the communi-

cations channel, the branches of the trellis represent the variables and the
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nodes represent constraints. The message passing algorithm is also known as

the sum product algorithm because it involves taking the sum of products!.

4.4.4 Simulation Results

: ' : : : initial Estimate
—f— First iteration
~—S—- Second tteration |1
—%—- Third Iteration
Fourth Iteration
—»— Fifth lteration
—— Sixth Meration

Nommalized MSE (dB)

-12
0

Figure 4.1. The normalized estimation mean square error as a function of
the power allocation p at Eb/No = 5 dB for various iterations.

The joint channel estimation and symbol detection algorithm was simu-
lated for doubly selective channels with four taps and a Doppler spread of
0.01 normalized to the symbol rate. Block lengths of N = 2400 were used,
iLe. Q/2 =24. Apart from the Doppler spread, no prior channel knowledge
was assumed. The simulation results in figure 4.4 indicate that superim-
posed training used in conjunction with turbo equalization has the potential
to considerably improve performance over a simple superimposed training
based system. In all our simulation results, the bit energy to noise power
spectral density definition used includes the training power in the bit energy.

The normalized mean squared error (channel estimation) is plotted against
the power allocation g in figure 4.1 at an Eb/No of 5 dB. We note that

for the initial estimate (and similarly a non iterative scheme), estimation

In statistical inference, the message passing algotithm is called belief propagation
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MSE decreases monotonically with increasing allocation of power to train-

ing. However, for our iterative approach, the estimation MSE decreases

10
107"k
[0
0
I
102k AN % : . ——+—First lteration ||
SEEEEREEE! WL VEER 1] —e— Second lteration |
: BT "'} —%-— Third lteration
DUTILIINY S LIl ——Fourth lteration |]
........................................... ~—— Fifth Iteration
—&— Sixth Hteration
-3 : . ; : :
10 L Il 1 L J— sk 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9
p

Figure 4.2. The BER as a function of p at Eb/No = 5 dB for various
iterations. '

steeply till p = 0.15 and remains steady till p = 0.45. This steep improve-
ment in the estimation MSE at p < 0.15 can be attributed to an improving
initial estimate for beginning the turbo equalization. While the share of
power to the unknown data (which is also used in estimation in subsequent
iterations) is decreasing, it is easily compensated for by the more accurate
initialization of equalizer in the turbo equalization. The steady region from
0.15 < p <€ 0.45 is where the any gains due to an improved initial estimate
are offset by the decrease in power allocation to the unknown data. It is
evident from these results that the iterative scheme proposed here provides
the comparable estimation performance at p = 0.2 to the estimation per-
formance of a simple superimposed scheme at p = .9. This improvement
can translate to a large gain in the BER as 80% of the transmit power may
now be allocated to data transmission as opposed to 10% while achieving

comparable channel estimation performance. This improvement in BER, is
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evident in figure 4.2 where the BER is plotted against p. The BER is min-
imum when the estimation MSE is at its lowest and the power allocated to ‘

the unknown data is maximum.
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Normalized MSE (¢B)

Figure 4.3. The normalized MSE performance plotted against Eb/No for ‘
various iterations {p = 0.2).
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Figure 4.4. The bit error rate curves for turbo equalization with perfect CS1
and the iterations of turbo equalization with iterative channel estimation.
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Figure 4.5. The EXIT chart for the iterative channel estimation and turbo

equalization process at 4 dB signal to noise ratio
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The normalized channel estimation mean squared error is plotted for
various iterations against Eb/No with p = 0.2 in figure 4.3. We see that
the normalized mean squared error is reduced by approx. 8 dB (at 6 dB
Eb/No) compared to a simple non iterative scheme. The BER results in
figure 4.4 indicate approx. 3 dB gain at a BER of 101, The results in
figure 4.4 indicate that there is a 2 dB penalty as compared to the situation
with perfect CSI. An EXIT chart [8} is shown in figure 4.5 for turbo equal-
ization with perfect CSI and our iterative scheme at Eb/No = 4 dB. Note
that while the turbo equalization converges in one iteration due to the wide
open gap between the transfer characteristics, our algorithm requires several
iterations to make its way. Because of the unavailability of true CSI, the
trajectory is more confined than the equalizer transfer characteristics and
cannot achieve the mutual information bounds set by it in the equalization
steps. Nevertheless, with the channel updates in every iteration, the mutual

information at the equalizer output increases along with the iterations.

4.4.5 Conclusion

A superimposed training based iterative scheme for wireless systems with
doubly selective channels has been proposed. Our simulation results indi-
cate that by including channel estimation in the iterative equalization and
decoding loop, the turbo equalization algorithm can provide significant per-
formance gains including a lower estimation MSE and BER. Also, no error

floor is observed in our simulation results.

4.5 MIMO Systems

The capacity of a practical communications system is given by

C=Wlogy(1+ S—ll\_I\I—{) bits/s (4.5.1)
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where SNR = -, P is the transmit power, W is the bandwidth, No is the
one sided noise power spectral density and T is called the gap? and is a func-
tion of the desired BER performance, system margin and coding gain {13]. It
is obvious from this equation that increase in capacity requires simultaneous
increase in both power and bandwidth. Failure to increase the bandwidth
will only push the system into the bandwidth Hmited regime where a three
dB power increase will only yield one additional bit per dimension increase
in spectral efficiency. Similarly only increasing the bandwidth will push the
system into the power limited regime. The capacity will saturate at N%logze
despite the availability of infinite Bandwidth.

High data rates could theoretically be achieved with SISO systems em-
ploying sufficient bandwidth and power, but such a system cannot be practi-
cally feasible [90]. For one thing, bandwidth is a scarce resource in terrestrial
applications. The use of a large bandwidth also entails a range penalty®. On
the other hand, the transmission power is limited by a host of factors in-
cluding the battery life, biohazard issues, difficulty in building cheap linear
amplifiers over the larger output range, etc. The capacity of SISO systems is
therefore capped. MISO and SIMO systems do not, fare much better either.
MISO systems can provide a diversity gain so their capacity is bounded by
the AWGN channel capacity. SIMO systems offer an array gain which boosts
the receiver SNR. to provide a further improvement over MISQ systems and
their capacity increases logarithmically in the number of receive antennas
employed - hardly a feasible method of increasing capacity given that there
will be a diminishing return because of the concavity of the logarithm func-
tion.

MIMO provides a practical means of boosting the system capacity. Like
SIMO and MISO, MIMO provides a diversity gain. Like SIMO, MIMO

also offers an array gain. However, there is a spatial multiplexing gain [91]

2also referred to as SNR,grm sometimes
*With the total transmit power capped, the signal to noise ratio per hertz will decrease,
reducing the range.
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which is unique to MIMO systems. Spatial multiplexing makes it possible
to transmit multiple streams through the channel so that the capacity in-
creases linearly in the minimum number of antennas at either end. The
diversity gain allows any SNR improvement in the link to be transformed
into an improvement in the link reliability while the spatial multiplexing
gain exploits any SNR improvement to enhance the data rate supported by
the link. While both these gains may be exploited simultaneously, there is a
tradeoft between the diversity gain and the spatial multiplexing gain that a
space time coding scheme can exploit. This tradeoff has been studied in [92].
MIMO systems can also pave the way for a large gains at the network level
including trunking gain where the static sector frequency assignment can be
relaxed providing a larger pool of channels where needed. With a little co-
ordination between base stations, it can help reduce co-channel interference
(CCI). It also makes resource reuse within cell* (RWC) possible at the cost
of introducing multip\le access interference.

We consider a simple MIMO system where My data streams are encoded,
interleaved, and transmitted once the pilots have been superimposed onto
them at low power. The channels between the transmit and receive anten-
nas are doubly selective complex exponential BEM channels and no channel
knowledge is assumed at the receiver. The signal received at an array of Mp
antennas is then processed by the channel estimator and space time turbo

equalizer to recover the Mt data streams,

4.5.1 Channel Estimation

The material in this section is similar to that in section 4.4.2 with the essen-
tial difference that multiple transmit and receive antennas are now included

in the mathematical framework. We can describe the channel between the

*also known as space division multiple access (SDMA)
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k** transmitter and the v** receiver using a BEM as follows [78]

Q2
RO (k) = Y plieledtnat/N (4.5.2)
q=—0Q/2
In block form, we can write (78]
Q/2
HE = 5" DHE (4.5.3)
g=—0Q/2
where D, := diag( [1 e2ma/N .. pi2mq(N-1)/N |} and Hg”’”) is a as de-

scribed previously. The convolution matrix H(**) no longer has the Toeplitz
structure characteristic of an LTTsystem. Q/2 is the discrete Doppler spread.
We assume that the channel is underspread, i.e. the delay Doppler spread
product is less than  for identifiability.

We assume a zero prefixed block based transmission scheme so the obser-
vations may be expressed using a matrix vector model where the zero prefix
of length L equal to the maximum order of the channel ensures IBI free
transmission. We assurne the length of the block is N + L. The observations

at the v* receive antenna are given by

My
Yo=Y HO"%, tv, (4.5.4)

k=1

By substituting equation (4.5.3) into (4.5.4) and by commutativity of the

product of a Toeplitz matrix and a vector, we may write

Q/2 Mr
= 3. DY XbPI 4, (4.5.5)
g=—-Qf2 =1

where X, is a Toeplitz matrix constructed from the x®® users transmit

sequence X, and h,(;"”) = [hg””‘)(()) hg"’ﬁ)(L)}. Similarly let hy =
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T
[hf;’vl)T . hg"aMT)T] , then we have
Yo = [D—Q/Q v DQ/2:| (IQ+1 & X)hy -+ v, (4.5.6)
where X = [X XMT] and h, = [h’i o ha /2]. The transmit

signal X comprises the known periodic training C added at low power to

the unknown data X. Thus we have X = C + X where

C:[(j1 CMT] (4.5.7)

and X is defined similarly. The training sequence ¢, is known and periodic to
allow for estimation of the channel through first order statistics. We assume
the training period P is chosen such that N/P = R is an integer. Denote
the P x L +1 toeplitz matrix formed from a period of the training sequence

as T,, then we have

C=1p® [Tl TMT] (458)

~ )

T
where 1 is a R x 1 vector of all ones. Stacking the received vectors at all

receive antennas, we can write

y =y, ® [D_Q/z e DQ/g] YXg+na, ® X)h + v (4.5.9)
T
where h = |:h’i“ cee hﬂﬁ] and v and y are defined similarly. Now let us
define
H
. Do
z = RQ(IMR ® : )y (4.5.10)
DH

Q/2



Section 4.5. MIMO Systems 112

where 2 = Iy 0.9 ®1%21p simply takes a sample average of the received

sequence over a period P. Simplifying the right hand side gives equation

(4.5.11).
H
1 1 DZop
z = EQ(IMR ®Dc)h+ E(Q(IMR @Dx)h+ Q@ | 1 ()v)
H
- Do
Pt
(4.5.11)
where
[ ¢ b D,C
DC C - DpC
Do=| 91 (4.5.12)
(D_oC D_,C Cc |
r 1
X D1X DQX
DX X - DgX
Dy=| 9t (4.5.13)
DX -+ D4X X |

Substituting the expression for C and that for 2, we have equation

(1£®IP)(IR®T) (1£®IP)DQ(IR®T)
5 (1£®IP)D_1(].R®T) (1£®IP)DQ_1(1R®T)
C = . . .

(13 ®Ip)D_g(1r®Y) - (1ze@Ip)(1z@Y) |
(4.5.14)
But (1} ® Ip)(1z ® Y) = RY and we may write D, = D, @ D, p
where DéTR = diag( [e —jzﬁp(o) e_jzﬂzgal} e:i?%(ﬂl ) and D,p =
diag( [e:%‘ﬂ T L e:&'}ép—‘il]) so that (15 Ip)D (1@ T) =

1}'{D£RIR ®@DgpX =0 as IEDf,RlR =0 as DgR just contains the points
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on the R* order DFT grid. We thus have

1
2= (I ®Tg41 @ )+ =¥ (4.5.15)

A

where ¥ is a random vector that contains the contribution of the noise and
the unknown data. The sample averaging operation performed by §2 on the
noise and unknown data will increase the power by R but the scaling term
1/R will reduce it by 1/R? so that there will be a linear decrease in the
power of the effective noise term with increasing R. At large enough R, this
noise term may become negligible. A least squares estimate of the channel

BEM coefficients can then be formed as
h=(AFA) AT, (4.5.16)

This solution requires A to be full column rank implying the condition
P > (L + 1)My for identifiability. As (88] pointed out, an important caveat
here is that this result assumes that the additive noise was zero mean, a
situation that often arises from linearization about an unknown bias point
which is filtered out as it contains no information. However since we wish to
exploit the first order statistics for channel estimation, we cannot just filter
out the bias point and it is necessary to include the effect of an unknown
bias in the noise term [88]. Assuming now that the additive noise at the »**

receive antenna has mean m, then
¥y =, @ D) ginm, @ X)h+m@ 1y +v (4.5.17)

T
where m = [ml cer M MR:| , and m; is the mean of the noise at the i

receive antenna. When the sample averaging operation is applied at the
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receiver, this mean term gives

DH mllN

%Q(IMR DY) (me1y) =0 : (4.5.18)

DH mus 1y

DH mllN
-;—BQ(IMR eDNHmely) = Q (4.5.19)
D mupln
ro. -
ﬂd_Q/2m1
QdQ/Zml
= : (4.5.20)
Qd-—Q/2mMR
| udgpomay |

But ﬁdq is just the sum of uniformly separated points on the DFT grid and
is zero. Thus the estimates of the BEM coefficients for ¢ # 0 are unaffected
by the unknown DC offset. However, the estimates for ¢ = 0 suffer from
an amplitude ambiguity because of the DC offset. Again this is solved by
a DFT operation after the sample averaging. The first term of the DFT is
discarded because it is affected by the unknown mean. Let I denote the
(P ~ 1) x P matrix obtained by discarding the first row of a P x P DFT
matrix. Then, £2 = Ip 041 ® FQ and

= 1
Z = \(IMR(Q_*-I) ® FT)Jh + —Rg\-" (4.5.21)

Al
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Then the channel estimate may be formed as
h=(a7an-1a", (4.5.22)
The unknown DC offset at the +** antenna can be estimated as
1y, = 15 (y, — D(Ip1 ® Ch,)/N (4.5.23)

where € is the training. The condition for unique identifiability of the
channels is now P > (L + 1)Mr + 1. Note that the block diagonal structure
of A allows the various estimations to be separated. For example if the BEM
coefficients from all transmitters to the v** receive antenna for the ¢** basis

were required, they could be obtained as
. 1 e
hY = R(TH FAFRY) (152 1p)Dly (4.5.24)

The estimator performance depends on the choice of the training sequence
through Y. This least squares estimate depends on the condition number of
YTHY and which implies that in addition to satisfying the discussed period-
icity constraints, the training sequences for the transmitters must be chosen
such that TH#Y is close to a scaled identity. A possible choice of training
sequence for the k™ transmitter could be e:, »® e{ My Where ef’ﬁ is the xt*

row of the P x P matrix and P = P/Mr.

4.5.2 Space Time Turbo Equalization

The idea behind space time turbo equalization is the same 2s that behind
turbo codes or turbo equalization, i.e. probabilistic processing between the
constituent blocks at the receiver so that no information is prematurely dis-
carded. Turbo equalization can eliminate ISI, which is self interference lying
in the temporal dimension in a SISO or SIMO system. With the addition of

multiple transmitters, it becomes necessary to exploit the spatial dimension
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to separate these streams with the help of their distinct spatial signatures.
In the MIMO-SU system, the multiple antennas are possessed by one user
at each end of the link. The source signal can be processed in different ways
depending on the conditions and requirements. The source stream may be
demultiplexed into My streams which are then encoded independently. This
scheme, called horizontal encoding, is the basis for V-BLAST and it consider-
ably simplifies receiver design [10]. Tt can achieve the capacity in fast fading
environments but it can only provide a diversity order of at most Mg in slow
fading environments because any given symbol is transmitted from only one

antenna. It is depicted in figure 4.6. Alternatively, the source stream may be

Stream 1 Encoder Interleaver

SFEHTIM Encoder Interleaver

Figure 4.6. A block diagram of the transmitter for space time turbo equal-
ization using horizontal encoding.

first encoded and interleaved and then demultiplexed for {ransmission from
the Mp antennas. This scheme is called vertical encoding and it can achieve
the capacity in a slow fading environment. However, the problem with this
scheme is that it can be computationally infeasible because it requires joint
equalization and decoding. It can be employed with much less complexity
in an iterative equalization and decoding architecture like space time turbo

equalization. A compromise between the two is the diagonal encoding used
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by D-BLAST which uses horizontal encoding but employs a stream rotator
immediately before transmission so that all antennas are used in the trans-
mission of any stream [10]. The diagonal encoding structure then allows for
a relatively simple receiver that can achieve the capacity of a slow fading
channel. However, it does result in an initial wasted triangular block during
startup. The space time turbo equalization architecture can employ any of
these encoding structures for spatial multiplexing®. In the following, we use
horizontal encoding.

To facilitate space time turbo equalization [93] the streams are inde-
pendently encoded and interleaved before transmission. The signals at the
receiver are iteratively processed by a single MIMO MMSE detector and
a SISO decoder corresponding to each stream with the operations of de-
interleaving and interleaving performed as these blocks exchange soft infor-
mation as depicted in figure 4.7. The MIMO MMSE detector mitigates IS1
and multiple stream interference (MSI) by replicating them from the inter-
ferer’s log likelihood ratios (LLR) that have been fed back from the decoders.
It then tries to remove the residual interference by filtering in order to min-
imize the mean square error between the filter cutput and the desired user’s
coded signal, The detector thus generates estimates of the user’s coded data.
The decoding for each of the users is performed independently by individ-
ual decoders operating on the extrinsic information output from the MIMO
MMSE detector after it is de-interleaved. The extrinsic information from the
decoder’s output is then interleaved and used by the MIMO MMSE detector
to repeat iterations of the process.

We define the vector ¥ by rearranging the received symbols as

y=Ply-fAc-m®1y) (4.5.25)

®Just as it can use different transmitter architectures for space time diversity coding.
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v () Interlgaver
Deinterieaver 4 Decoder 1
Soft in Soft out
MIMC Equalizer
i !
| |
l
Deinterleaver Decoder M, )
vig, (1) )

Figure 4.7. A block diagram of the receiver for space time turbo equaliza-
tion with horizontal encoding.

T
where ¢ = [c'f - C%:IT] and H is generated from the estimates of the

BEM coefficients. The DC offset estimate is subtracted from the received

signal before processing. The matrix P is the following permutation matrix

T
p= [IMR ®er -+ Iy, ® eN} (4.5.26)

where e, is the m'® column of the N x N identity matrix. Also defining %

and Vv accordingly, we have

T
)'Cé [IMT®31 IMT®eN] X (4527)
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We may write

y=P(fIx+}"Ix+fIc+fh®1N+v)=g_}‘£r_ﬁfc+w‘z (4.5.28)

2
where v is the effective noise. The space time turbo equalizer (MIMO soft,
input soft output equalizer) operates on the the residual interference by
subtracting a soft replica of the interference (combination of the MSI from
undesired streams and the ISI from the stream of interest) from the received

signals at the Mg receive antennas over L., delays as
I =¥ — HiR} (4.5.29)

where

T
Ve = (|es (o) - ek+[Leq/2]] ® Lnrp)¥ (4.5.30)

and the matrix Hy, is a sub block of H given by

H, = VH® (4.5.31)

where & = [ekAL(Leq+L)/2J ek+r(Leq+L)/21] ®Ipny isa NMp x (Leg +
T

L + 1)Myp matrix and ¥ = [ek—LLeq/zj ek+[Leq/2]] Iy is a (Leg+

1)Mp x N Mp matrix. The vector &7 contains the estimates of ®% = #Tx

used to construct residual soft interference
T
= |97~ /2] &7+ (L2 (15:32)

where %7 [m] = [;%l[m] o gy [m]J but care is taken to set &,[k] equal
to zero. The space time soft input soft output equalizer for the n® user is

then constructed by minimizing the cost function

g = argmin lgrfge — & k]l (4.5.33)
k
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and the equalizer is obtained as [93]
gi = (HeQRHY + 0T g, h1yn,) T Hal, (4.5.39)

where 1, is a (L + Leq + 1)Mp x 1 vector of zeros with a one in position

[{Z + Leg)/2) MR + n. The matrix Q7 is

Qi = ding(|Qlk ~ [(Z-+ Lag)/21] - Qlk + [(Z-+ Leg)/2N]]) (4539

and Q[m] = diag( [1 —dm] - 1- ﬁ%/[r [m]]) but again care is taken to
set 25, [k] = 0. The log likelihood ratios produced by the equalizer are [93]

. _ 4Re(zn(k])
Mz lk]) = = k] (4.5.36)
where z,[k] = wiF} is the equalizer output and
pnlk] = LTAF(IQEHY + 0T, )arz) " Hiln (4.5.37)

A rate 1/3 convolutional code with generator polynomial (145,133,7)

was employed for each stream.

4.5.3 Simutation Results

We simulated a simple MIMO system with Mp = 2 transmit antennas and
Mp = 3 receive antennas. The channels between the transmitter and receiver
are doubly selective with order L = 3 and doppler spread normalized to the
symbol rate fy = 0.005. We took a block size of N = 2400 (Q/2 = 12). No
prior channel knowledge was assumed and joint channel estimation equaliza-
tion aud decoding was performed over each block. Mean square estimmation
error and bit error rate results are presented in figures 4.8 and 4.9 where the
known training is included in the bit energy definition. It can be observed

from the simulation results that the space time turbo equalization provides
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Algorithm 2 Iterative Channel Estimation and Equalization and Decoding
algorithm

1. At the transmitter, choose a periodic training sequence according to
section 4.5.1, and add it onto the interleaver shuffied coded data stream

2. Form an initial BEM coefficient estimate h according to (4.5.22) and
an initial estimate of the dec offset according to (4.5.23).

3. Carry out an iteration of the space time turbo equalization algorithm
using h and 1.

4. Convert the LLRs generated by the decoder into soft estimates, inter-
leave them and add the known training to form a virtual pilot p, for
all transmitters.

5. Form E, as the Toeplitz matrix of p,, and then obtain the BEM
coefficient estimate as h = (Inr, ® 29 E)"1(In, @ Ef )y where E =
[El EMT]'

6. Iterate steps 3 to 6.

Normalized MSE (dB)

_10[| —&— Initial Estimate | .. . . L e,
—%— First [teration : :
=11 H —e=w Second lteration - .............. P PP

—&~ Third lteration | : : :

-1 -0.5 0 0.5 1 1.5 2

Figure 4.8. The normalized estimation mean square error is plotted against
the Eb/No for the iterations.

significant performance improvements over three iterations. These simula-
tion results show that the normalized estimation mean square error improves
by 7 dB at Eb/No = 1 dB while the BER is reduced by approximately two
orders of magnitude as compared to a non iterative scheme. .

Although the space time turbo equalization algorithm can provide perfor-
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BER

First Iteration
Second Iteration
|| = Third lteration
10 . ::
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T

Figure 4.9. The BER is plotted against Eb/No for various iterations of the
algorithim.

mance improvements over many iterations, the algorithm requires the use of
large block lengths to suppress the correlations introduced by the constituent
forward backward algorithms. But becaunse of the time varying nature of the
doubly selective channel, the block length would usually be kept small to
moderate sized. The BEM is a linear approximation of the doubly selective
channel that may only be valid locally. Furthermore, larger block lengths
will require more parameters to be estimated and increase estimation com-
plexity. Furthermore, the equalization delay for turbo equalization of time
invariant channels is often optimized®. The taps of doubly selective chan-
nels for the varions transmitter receiver pairs are time varying and so is the
optimal equalization delay. In our simulations, we fix the equalization de-
lay and do not track the optimal delay with the time variations. Because of
these imperfections, the turbo equalization with iterative channel estimation

only provides performance gains over three iterations. Nevertheless, these

“The equalization delay was optimized for the results provided in Chapter 2.
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performance gains provided are significant.

4.6 Conclusion

Superimposed training provides a simple channel estimation algorithm. Sim-
ilarly the turbo equalization algorithm provides remarkable performance
when the chamnel is perfectly known at the receiver. However complica-
tions arise in the turbo equalization procedure with imperfect CSI, Simi-
larly, superimposed training performance improvement requires an increase
in transmission power {or block length). Combining the two algorithms by
including channel estimation in the iterative process, significant improve-
ments in the performance can still be obtained without the need for any
extra power transmission. This can have very significant effects both at the
physical and network layers. The SNR required for a target BER is greatly
reduced which may translate into a reduction in the transmit power, an in-
crease in the range, or even an increase in throughput. It can also mean

reduced interference in the cells.



Chapter 5

TIME MULTIPLEXED
TRAINING FOR DOUBLY
SELECTIVE CHANNELS

5.1 Introduction

An alternative training technique is to multiplex the pilot into the unknown
data. This technique, called explicit training, has been around for much
longer than superimposed training and has been widely studied for time and
frequency selective channels. For time selective channels, it is termed as pilot
symbol assisted modulation (PSAM) [94]. It has been applied to both single
carrier and multicarrier communications for frequency selective channels.

These techniques are generally used to decouple the channel estimation
and the data detection so that the data transmission does not interfere with
the channel estimation. This allows accurate channel estimation while re-
ducing complexity and relaxing the identifiability conditions.

Initially, the Cramer-Rao lower bound (CRLB) and the estimator mean
square error were used for training design and optimization. But it was
quickly realized that channel estimation is just one facet of the problem and
the design of training affects not only the channel estimate but also the de-
tection of the unknown symbols. While increasing power allocation to pilots

will always result in better channel estimates with smaller error, it will also

124
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reduce the power available for data transmission to combat noise. Similarly,
an increasing number of pilots will also provide better channel estimation
but will leave little time for data transmission resulting in diminishing data
rates. The signal processing performance criterion of estimation MSE was
replaced by the information theoretic criterion of training based capacity
as the appropriate criterion for optimal design of training. Training based
capacity [95] makes a global assessment of the communications system. It is
different from capacity in the traditional sense in that it takes into consid-
eration the estimation of the unknown channel.

The contribution of this work is the application of iterative estimation
and detection for time multiplexed training in doubly selective channels, We
use existing optimal training designs for training and apply iterative tech-

nigues Yo improve on the performance.

5.2 Frequency Selective Channel

For single carrier communications, the pilot symbols are grouped together
and transmitted at the beginning of a block in what is called a training
preamble. The baseband vector matrix block transmission model for fre-

quency selective channels is
y=Hx+v=Xh+v (5.2.1)

T
where h = [h[o] h[L]] where L is the channel order and H is a
convolution matrix constructed from h. The transmit block is assumed to
span P + N symbols, where the first P symbols constitute the training

preamble and the remaining N compose unknown data. We can write

X = [Cl cer Cp 81 v SN] (5.2.2)
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and -
[eoir 0 o 0
Cr+1
cp .. 0
81 cp CL+1
C .
S
SN Teoep
0 SN 81
0 e 0 SN

We can partition the received signal into the first P received samples which
only depend on the training and the remaining N samples which are deter-

mined by the data and have interference from the training

. C v,
6 I gl EAPI A (5.2.4)

Ys S Vs

Since we know ¢, we can form the maximum likelihood channel estimate as
h=(CHC)~Cfy, (5.2.5)

To ensure that there is no interblock interference, the transmitter is silent
in the first I transmissions, i.e. ¢; = 0,7 < L. There are L +1 parameters
to be estirﬁated, so we require at least L + 1 observations. Therefore, the
training preamble must contain P > 21 + 1 pilots. This channel estimate
may then be used for detecting the received signal. However, a word of
caution is necessary because any receiver that assumes this estimate to be
the true channel will be suboptimal. The process of using such a channel
estimate in the receiver as if it were the true channel is information lossy,
ie,

I(ys;s|h) > I(y,;s|h) (5.2.6)
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where I(x;y) denotes the mutual information between random variables x
and y [96].

For P = 2L + 1, this preamble placement is optimal from the training
based capacity perspective. However, in case of significantly more training,
P > 2L 4 1, it has been shown by [97] that the training based capacity is
actually maximized by the use of a placement scheme called the quasi peri-
odic placement (QPP-a) where the pilots are divided into as many clusters
of length @ > 2L+ 1 as possible and these training clusters are placed as far
apart as possible with the separation between them as uniform as possible.
Assuming a block consisting of N, data symbols and N, pilot symbols, an «
and let P = | N./a], then a QPP-a scheme can be defined by any two tuple

(ns,n.) that satisfies the following two conditions [97]

1. n, e N, where
Ne = {(Neas .- , Nep) | Z§=1 Nep = Ne,min({N_1,...,Nep}) 2 af
2. ng € Ny where
Ne = {(Nogs- s Nop) | S0 Nop = Ny, Nop € { [N,/ P, | No/P| +
1}
Simply put, the training clusters in QPP-a should be as uniform as possi-

ble and scattered as uniformly as possible. A transmit block with QPP-o

placement is depicted in figure 5.1.

VA 7 2 H

D Data % Training

Figure 5.1. Pilots embedded in a transmit block by time multiplexing them
with the data according to QPP-a.

The optimality of the QPP-o scheme stems from the concavity of the

logarithm. Assuming a received signal to noise ratio p and that all training
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clusters contain at least L symbols so that successive data clusters do not
interfere with one another, the capacity of such a training scheme can be
expressed as

C log det(Iy,+n, + pHOH) (5.2.7)

1
- N, + N,
where © is a diagonal matrix with ones in the positions corresponding to
‘data symbols and zeros for training. This may be expressed as [9§]
1 P
H

A > logdet(Ly, , + pH,HY) (5.2.8)
8 € =1

where H, is the segment of the channel matrix corresponding to the p** data

block. Jensen’s inequality states that for a convex function f of a random

variable X,

E(f(X)) = f(E(X)) (5.2.9)

It can now be seen by Jensen’s inequality that because of the concave na-
ture of the logarithm, this summation is maximized by having all P terms as
equal as possible. The optimal placement is thus QPP-a. Intuitively, in ad-
dition to estimating the channel, the training helps to remove ISI. The more
the training symbols are scattered, the more ISI that is known apriori and
can simply be subtracted out once the channel estimate has been obtained.
This leaves less ISI for the system to contend with, improving performance.
The gain offered by the QPP-a scheme over a preamble based or ancther
scheme is greater with more severe ISI in the channel. Similarly the gap
between the use of QPP-o placement and any other arbitrary placement is
larger at higher SNR. because the link performance is dominated by ISI at
higher SNRs.

The problem of placement of known symbeols for training users in broad-
cast channels was studied in [98] where it was again shown that the QPP-«

placement is optimal for the outage capacity. In broadcast applications, pe-

riodic transmission of training is necessary as the users may tune in at any
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time. The surprising aspect of this result is that the optimal placement is
independent of the channel statistics. While different users may experience
different channels, the QPP-a placement is optimal for all users irrespective
of their channels. It has also been shown in [99] that the QPP-c scheme
is optimal for training in slowly fading wireless channels, i.e. channels over

which if is not possible to code over multiple coherence intervals.

5.3 Time Selective Channel

For a memoryless! SISO time selective channel, PSAM design consists of
inserting lone pilot symbols periodically in the streain of the unknown data.
The time selective channel could be obtained through the use of a BEM.
The fading waveform exhibits a great deal of correlation. Although the
channel realization at each symbol is different, it is highly correlated with
the adjacent channel realizations thus underscoring the fact that the vary-
ing channel is generated by a small number of fixed underlying parameters
which are responsible for these variations. The channel variation is caused
by Doppler spreads and carrier frequency offsets, so it is reasonable to ex-
pect the Doppler domain to provide a finite parameter representation of the
channel. The channel fading waveform can be expressed as the weighted

sum of exponentials

Q/2
h= Z dsh, = [d—o/z dQﬂ] b (5.3.1)
q=-Q/2 - — .
D
T
where ) = [h—Q 2 o hg /2] are the unknown parameters and d, =
T
[1 e—iBE L. e—i%v_—ll} . Thig allows modeling of any fading wave-

!The use of memoryless here implies that the channel has no delay spread, i.e. a flat
frequency response. In general a time selective channel does have memory in the sense
that the fading waveform is correlated and so is the channel behavior. When the channel is
in a fade and more errors oceur, it remembers that it is in a fade and continues to produce
more errors for the duration of the fade.
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form resulting from a Doppler spread of f; by choosing @ = 2[f;N1. The

input output relation is
y=hex+v=Dhox+v (5.3.2)

where @ is the Hadamard product. We require estimates of Q+1 parameters,

so we need at least () -+ 1 observations. The transmit signal is of the form

T
X = Sl €1 83 c3 - sg_‘-l CQ+1:| (5.3.3)

where the ¢; are training symbols. The @ + 1 observations thus obtained by

inserting @ + 1 pilots are given by
Ypitot = Dpitoth O € + vt (5.3.4)
These can then be used to get the channel estimate as
b =D} Zpitor (5.3.5)

where Zpiiot(k) = Ypitor(k)/c(k). As an alternative to the BEM, the first
order Gauss Markov process has also been used to model the channel varia-
tions in time where a recursive least squares {RLS) or Kalman filter may be

used to estimate the channel {100].

5.4 SISO Doubly Selective Channels

Explicit training involves time division multiplexing of the training with the
data. The design of explicit training has been studied by various authors in
the literature. Periodic insertion of pilots, termed as pilot symbol assisted
modulation (PSAM), was proposed in [94] for time selective channels. As the

problem of channe] estimation became clearer, different optimization criteria

for the design of training were proposed.
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{95] studied the optimization of training for multiple input multiple
output flat fading channels. The degrees of freedom to be optimized in
such a channel were the power allocation between training and data, the
number of training symbols and the choice of these training symbols. Some
important insights of their work were that training based schemes are strictly
suboptimal when the coherence time is small or when the SNR is low but they
are capacity approaching at large coherence times and large SNR. Optimal
design of training for frequency selective channels was considered soon after
by [97] and [101]. While [101] considered only the single carrier system,
both researchers came to the same optimal design where the training is
concentrated in a single cluster at one end of the block. An interesting
result in [97] was that the same placement which maximized the training
based capacity also minimized the channel estimation mean square error.
Further [97] considered the multicarrier scenario where he proposed a pilot
tone assisted modulation scheme where the pilots are inserted in uniformly
separated tones for maximizing the training based capacity. Interestingly,
this scheme had previously been proposed by [51] as an optimal placement in
terms of the estimation mean square error. The problem was then considered
for doubly selective channels by [102] where optimal training sequences were
designed for doubly selective channels. The first section of this chapter
concerning explicit training will try to build on the work by [102] and much

of the rest of this section will therefore follow [102].

5.4.1 Channel Estimation

We consider a block based transmission scheme where the channel estimation
and data detection is performed on a block by block basis. The transmit

vector is partitioned into P information and pilot sub-blocks

x=|sT(k) <T(k) ... sG(k) <E(k) (54.1)
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where the s,(k) and c,(k) represent information and training sub-blocks of

length N, and N.p. Let the total number of training symbols be N, and

the total number of information symbols be N, so that N = N, + N.. Also,
r Nep= N, and 327 Nep = Ne.

Thus the output of the k% block of N samples may be expressed using

the matrix vector notation as

yik) = H{k)x(k) + H®(k)x(k — 1) 4+ v(k) (5.4.2)

T
where y(k) = (y(kN) ... y{kN+ N —1)| and the noise is assumed to

be additive white Gaussian. The matrices H(k) and H® (k) are N x N lower
and upper triangular matrices defined by [H(k)]nm = h(kN + n,n — m)
and [H®(k)|mn = A(EN +n,N +n —m) for n,m = 1,...,N. For IBI
frét; transmission, either a cyclic prefix or a zero prefix may be inserted at
the transmitter and the interference corrupted samples are discarded at the
receiver. We use zeros prefixed transmission [12]. With IBI free trdnsmission,

we get H®(k)x(k — 1) =0, so
y{k) = H(k)x(k) + v(k) (5.4.3)

Because of the zero prefix, the transmitter has to be silent for the last L
symbol periods in a block where L is the channel order. Because the zero
prefix is not used for data transmission so these L symbols are thus con-
gidered as a part of the pilot. The BEM allows the channel matrix to be

written as (see 4.3.6)

Q
H=) D, (5.4.4)
g=0
where D, = diag [1 L L —1)] and H, is a lower triangular
T
Toeplitz matrix with first column [hq(ﬂ) cew he(L) O ... 0] - The

received vector y is now partitioned into two vectors, ys and ye. y. contains
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the received symbols due to training that are free of any interference from the
unknown data while y; contains all other received symbols. These received
symbols, y., will be used for channel estimation. The channel matrix B
can also be decomposed according to this partition of the received samples
into H, which relates the input training samples with y., H, which relates
the unknown data with y, and H, which describes the contribution of the

training to y, [102]

¥s = His +HS+ v, (5.4.5)
ye = Hee + v, (5.4.6)

‘ T T
where s = [s%’ Sg] and ¢ = [c'{ cg] and € is formed from

the elements of ¢, that interfere with s. Similarly v, and v, denote the noise
vectors. This partition of the convolution matrix for one block is depicted
in figure 5.2. The shaded region indicates the interference of training into the
data observations ys. The structure of Hy, H, and H, is depicted in figure
5.3. The output vector that solely depends on the pilots may be written
as [102]
¥i Hfeq
Ye=1:|=]  |+v (5.4.7)
¥p pep
If any of the training sub-blocks ¢, has less than L symbols, the matrix

HC

» vanishes altogether and the training symbols in the p* cluster do not

contribute to an estimate of the channel. Thus each of the P clusters must
have at least L training symbols each. Notice that there are N, training
symbols in P clusters, thus providing N, — PL pilot dependant observations
because the first L symbols in each cluster are affected by interference from

the data transmission. As there are (@ + 1){L + 1} unknown parameters to
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Figure 5.2. Convolution matrix,

be estimated, the number of training symbols must satisfy {102]

N ZPL+(Q+1)(L+1) (5.4.8)

to ensure a unique solution. We see that the number of training symbols de-
pends on the number of training clusters P and the minimum number would
be achieved if only one cluster were to be used, similar to the preamble based

approach for frequency selective channels. However, an optimal training is
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Figure 5.3, Partition of the convolution matrix.

sought we will see that P = @ + 1 is optimal [102]. Equation (5.4.4) may

now be used to write [102]

Q Dgachalcl
yc p=— Z E + Vc (5.4.9)

L]

C C
Dg pHy pcp




Section 5.4. SISO Doubly Selective Channels 136

Because the channel coefficients are to be estimated using the known pilot
symbols, the convolution should be expressed using Toeplitz data matrices,

ie. HE ¢, = Cphy where C, is a [™* order Toeplitz matrix

Cp,L e Cp,0
C,=| : (5.4.10)
CpsNb,f)_l U cpaNb,p_L_]-
and
hq(0)
hy=| ! (5.4.11)
hqe(L)

where ¢ is the (n + 1)st entry of c,. The input output relation in (5.4.9)

may be written as

Ye=®h+ v, (5.4.12)
where
D;,C1 -+ D%,C
o= | : (5.4.13)
DE,PCP e (CQ,PCP
and
T
h= [hg ... th (5.4.14)

The Wiener solution of (5.4.12) is the conditional mean of h given ¢, y. and

it can be obtained as [102]
. 1,5 1 _
h = E(hle,y.) = ;2-(11,11 + ;@f @) ey, (5.4.15)
v v

The covariance of the estimation error h=h— h is given by [102]

1

R; = E(hh) = (R;' + ;@f )"t (5.4.16)
v
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and the estimation mean square error is J’% = tr(Ry). The statistics Ry, of
the channel are assumed to be known at the receiver. In a rich scattering
environment with no line of sight, the central limit theorem assures that
these statistics will approximate the identity matrix [102]. The estimation
mean squared error is affected by the placement through ®..

The design of optimal training has been obtained by [102]. According
to this design, the transmitter should be silent during the first and last L
samples of a training cluster. Intuitively, the first L received samples in a
training cluster are corrupted by interference from the unknown data and
cannot be used for channel estimation. Thus the energy allocated to these
samples is not completely useful for channe! estimation. In fact, only the
energy that is received after a delay of the initial L samples can be used
while the rest is simply wasted. Similarly, because of the delay profile of
the channel, all the energy transmitted during the last I samples of the
cluster is also not used. Once unknown data paths begin to arrive, the mul-
tipaths associated with the training become useless wastage as they cannot
be decoupled from the unknown data and used. In fact, the training now
constitutes interference to the data transmission. This interference may be
peeled off using the channel estimate, but there will still be some residual
interference due to channel estimation error. Thus to ensure that all energy
allocated to the pilot is used for estimation, the transmitter should be silent
during the first and last L samples of any training cluster and to concen-
trate its energy in the window between these samples. This is depicted in
figure 5.4 where we see that if the training is not appropriately designed,
it interferes with the data transmission as depicted in part a of the figure.
However, if the transmitter is silent during the transmission of the first and
last L samples of a training cluster the data transients die out before training
and the traiming transients are allowed to die out before data transmission
is resumed as depicted in part b of the figure. This allows the pilot energy

to be concentrated in only the samples which will be nused to measure the
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channel. The transmitter thus avoids interference between the training and
the unknown data altogether facilitating a better training based channel ca-

pacity and a better channel estimate.

(@)

7

Input Signal

.

Channel Qutput

(b)

3
<
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w
L)
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=3

Channel Output

LEGEND: D Unknown Data Z Training

Figure 5.4. (a) Training and data transmission interfere with one another
(b} No interference between training and data transmission.

Another result of [102] is that each training cluster should have 2L + 1
symbols with all the cluster energy concentrated in the (L + 1) symbol.
Intuitively, estimation of the channel requires more than or equal to 2L 4 1
symbols because of the frequency selective nature of the channel. Any in-
crease in the number of pilot symbols in the training cluster will not help the
channel estimate because the channel can be estimated with 2L+ 1 symbols,

but it will reduce the number of data transmissions before the training must
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be transmitted again. The training cluster is thus simply an impulse. Dur-
ing each training cluster, the transmitter becomes silent to allow the channel
transients due to the data transmission to die out before it sends an impulse
to sound the channel. The transmitter remains silent till all transients due
to the this impulse have died out at the receiver before resuming transmis-
sion of the data. It has also been shown by [102] that the optimal number
of training clusters in a block is P = ¢} + 1. Again, more training clusters
will only reduce the throughput and there will not be any improvement in
the estimator performance.

Intuitively, the time selective channel is varying in time and therefore
must be sampled periodically in time. Because the channel has no memory,
this sampling is achieved by simply placing a single pilot at each sampling
instant. The frequency seleciive channel varies with frequency and must
therefore be sampled uniformly in frequency. For frequency domain trans-
missions, this can be achieved by employing uniformly spaced pilot tones
for sampling the frequency response. For time domain transmissions, the
channel may be measured once as it does not change. However, because
of the channel’s memory, the channel transients should be allowed to die
out before the channel is sounded for time domain transmission and data
transmission cannot resume until all transients have died out. The doubly
selective channel is a frequency selective channel with time selective charac-
teristics as well. Therefore it must be sampled periodically in time and each

sampling must be preceded and succeeded by silent periods.

5.4.2 lterative Estimation and Equalization

The doubly selective channel is estimated according to the optimal pilot
design strategy discussed above. As opposed to superimposed training where
the channel estimate is affected by interference from the unknown data as
well as noise, the channel estimate is now perfectly decoupled irom data

transmission and is only affected by the noise. In the high SNR region,
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this may result in sufficiently good channel estimates. However, in the low
to moderate SNR. region of operation of the turbo equalization algorithm,
the channel estimate is insufficient for any significant performance gains.
With these channel estimates, the iterative equalization and decoding scheme
simply does not converge because the equalizer fails to undo the effects of
the channel. The equalizer cannot even take advantage of the correct a priori
information provided by the decoder because it generates and tries to cancel
out an incorrect soft replica of the interference, thereby inadvertently passing
and even introducing new interference while also providing fake reliability
information to the decoder. The significant performance gains promised by
turbo equalization thus fizzle out.

By introducing channel estimation into the iterative equalization and
decoding loop, these gains can be recovered. In each iteration, the channel
is re-estimated at the end of the decoding operation before proceeding to
the next iteration. The channel estimate is thus updated in accordance with
the information gleaned by the decoder. Now that the channel estimate
has been updated to reflect the observations of the decoder in the iterative

" equalization and decoding loop, this allows the equalizer to exploit the a
priori information provided by the decoder. The equalizer was unable to
do so without the channel re-estimation because the channel estimate used
by the equalizer was not consistent with the observations of the decoder.
The channel estimate is thus updated with a new estimate formed from
the soft information of the decoder and the received signal in each iteration
before proceeding to the next iteration. A least squares estimator is used
to form the new estimates. This allows the equalizer to exploit the a priori
information from the decoder and generate reliable new extrinsic information

for the decoder and the process iterates.




Section 5.4. SISO Doubly Selective Channels 141

5.4.3 Simulation Results

We simulated a SISO system with a doubly selective channel with four taps

and a Doppler spread of f; = 0.01 normalized to the symbol rate.  We used
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Figure 5.5. BER performance for various iterations of the algorithm when
channel is generated using (a) Jakes fading model (b) the basis expansion
model
block lengths of N = 300 so that /2 = 3 and used an equalizer of order
Ley = 3. Simulation results are provided in figures 5.5 and 5.6. Simulation
results in figure 5.5 indicate that the penalty for lack of CSI is approximately
1.5 dB for channels generated with the complex exponential BEM. For chan-
nels generated by Jakes fading model, the penalty is approximately 2 dB. We
note that the performance improvements seen are less than the performance
improvements produced by iterative semiblind channel estimation based on
superimposed training. This can be attributed to the better initial estimates
formed from time multiplexed training as there is no interference from the
unknown data.

The simulation results indicates that the performance improvements of-

fered by turbo equalization can be achieved over a doubly selective channel
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Figure 5.6. Normalized channel estimation mean square ervor for various
iterations of the algorithm when channel is generated using (a) Jakes fading
model (b) the basis expansion model

by introducing channel re-estimation in the iterative equalization and decod-
ing loop. It is seen from figure 5.5 that most of the performance improvement
is achieved in the first two or three iterations. This is because of the short
block size of N = 300. For rapidly changing channels, channel estimation and
turbo equalization have somewhat conflicting requirements. Turbo equaliza-
tion favors long blocks so that the interleaver can suppress the correlations
introduced by the forward backward algorithm in the samples. However,
channel estimation favors small block lengths with fewer parameters to es-
timate. Another factor is that the BEM is a linear approximation that can
only be locally valid for modeling physical time varying channels in a small
window. Further, the equalization delay is not optimized for these channels
because the channel taps are time varying and the optimal delay will also be

time varying but we have chosen a fixed equalization delay throughout the

block.
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5.5 MIMO Doubly Selective Channels

We asstime a zero prefixed block based transmission scheme so the observa-
tions may be expressed using a matrix vector model where the zero prefix
of length L equal to the maximum order of the channel ensures IBI free

transmission. The observations at the v** receive antenna are given by

Mr
yo=) H®x, 4v, (5.5.1)

k=1

where we assume Mr transmit antennas. Stacking the received vectors at
all the receive antennas we can write y = Hx + v. Because we process
the received signal block by block, the block and serial indices are dropped.
Each transmit block is partitioned into P sub blocks of training symbols &,

and unknown data s, as

T
(5.5.2)

T T
w1l 't Bep Cop

to decouple channel estimation and data detection. The sub blocks are of
identical lengths with N, = N./P and N, = N,/P representing the number
of symbols in a training and data sub block so that N, + N, = N. The
total energy in the block is divided as P = P, + P, where P, is the energy
allocated to training and P; is the energy allocated to data transmission.
Because of this structure of the transmit vector, it is possible to rearrange
the observations at the v** receive antenna so that the observations that
depend on training only are separated because these will be employed for

channel estimation [103)

y!/,S _ f ng,'ﬁ) H‘E:{;K‘j S n V,A;,,g (5.5.3)
Ve K=l 0 ch,n Cx Vo

where y,.; captures the contribution of the unknown data and the interfer-

ence due to the unknown data in the training while y, . contains the output
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samples due to training that are free of any interference from the data. We

can write
Mrp
Yoe =Y B +v,.=Eh, +v,, (5.5.4)
k=1
where
Dii10Be1 - Dpi10Be
B = : : (5.5.5)
Dy poBepr -+ DppoBurp

We may then collect the terms for all receive antennas as
Ye= (Imr @ E)h + v, (5.5.6)

where @ denotes the Kronecker product. This is identical in form to the
relation for the SISO case. The Wiener solution for the channel estimate is

given by [103]
h = (02 apnp (onyigrn) F (Tagp ® ETE) HInr, @ 2y, (5.5.7)
and the mean square error of the estimator is
o = Mptr((Tnpz+1y(041) + Gigaffa)—l) (5.5.8)

where tr()} is the trace operator. This mean square error is lower bounded

by
1
2
oy > MR = (559)
h ; Matp(z+1)@+1) + 77 E Elmm
with equality only if E¥Z is diagonal. The mean square error depends on the

choice of training sequence through 2, Similar to the SISO case, this mean
square error is minimized when Zf 2 = P,I. By following a similar line
of argument as for the SISO case, we have P training clusters transmitted
for the estimation of Mp(L 4+ 1)(Q + 1) parameters. The first L samples

in any training cluster are useless as they contain interference from data
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transmission, so the number of pilots required is now
N.> PL+M7r(Q+ 1)(L+1) (5.5.10)

Under this condition and the assumption of a Gaussian source, it was shown
in {102, 103] that the minimization of the mean square error also maximizes
a tight lower bound on the training based capacity. Similar to the SISO
case, the effective noise term will include the additive noise, interference
from the data transmission due to channel errors and interference due to
training. The effect of the noise can be minimized by choosing training so
that it does not interfere with the data. So optimal training sequences are
again an impulse with all the training sub block energy P, concentrated in
a single position. Intuitively, the use of an impulse is advantageous as it
ensures that all the energy in the training sequence is used for training as
the observations corresponding to the first L pilots are corrupted by the
unknown data and are rendered unusable, hence no energy is allocated to
those pilots. Further, the last L pilots in the training sub block will interfere
with the first L data samples in the next unknown data sub block, so they
should also be silent. However, each of the P training clusters will consist of
Mr(L+1)+ L samples. The first L zeros in the pilot will be for the channel
transients to die out. Then the pilot transmitted by the x transmitter will

be

l:om(L+1)—1 'Pc O(Mr—n)(L+1)+L] (5511)

This will ensure that the structure EFE = P.I is satisfied. It can be in-
terpreted as sampling [102] of the channel in both the delay and Doppler
dimensions to obtain the BEM coefficients. Only P = @ + 1 training clus-
ters will be required to form an estimate of the channel and any more will
only decrease the throughput while providing negligible improvement in the

channel estimate. This structure of the training sequence is depicted in fig-
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ure 5.7 for two transmitters.

The MIMO system will train as My SIMO systems by virtue of the strue-
ture of the optimal training sequence. The transmitters will become silent
for all channels and wait for the ISI to die out. Then the My transmitters
will take turns training the receivers one by one. Each transmitter will re-
main silent and wait for its turn to train the receivers. A transmitter will
train the receivers by transmitting an impulse once the transients from the
previous transmitter have died out. Meanwhile, each receiver will be able to

form an estimate of the channel from that transmitter.

Vg | g |
MM § Ol s [ EENENOEl S s

Figure 5.7, Structure of training sequence for two transmitters.

Apart from the choice of optimal training design, the power allocation
between training and data also affects the estimator performance through
P.. Although increasing P, will result in less estimation MSE, it will also re-
duce the energy available for data transmission. This tradeoff was delineated
in [102,103] where the optimal power allocation for training based capacity
was found in terms of the SNR and asymptotic power allocations were found
for high SNR. While these choices of the training sequence, placement, and
power allocation are indeed optimal, better MSE and BER performance can
still be achieved if the unknown data can be incorporated into the chan-
nel estimation process. The data is detected and this detected data can
be used to further improve on the channel estimate because of the finite
alphabet property of practical data transmission systems. Once a linear or
decision feedback equalizer is applied to the received signal, the signal is
passed through a nonlinear decision device to quantize the equalized signal
to the transmit constellation. This detected data can be treated as a vir-

tual pilot, i.e. we assume that this was the sequence transmitted and use
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Algorithm 3 Iterative Channel Estimation and Equalization and Decoding
algorithm

1. Design training according to [103], multiplex it into the data and trans-
mit.

2. Form an initial channel estimate h according to equation (5.5.7).

3. Carry out an iteration of the space time turbo equalization algorithm
using h.

4. Convert the LLRs generated by the decoder into soft estimates, inter-
leave them and multiplex the known training to form a virtual pilot
v.

5. Form an estimate of Y using v and then solve for an estimate
of the channel using the least squares approximation h = (I, ®
THY) I, @ TH)y.

6. Repeat steps 3 to 6.

it along with the received sequence to form a new channel estimate using
a least squares estimator. In a coded system, the correction capability of a
code can be used to iteratively improve on the channel estimation by using
an estimate of the transmit signal generated by the decoder. Improvements
on the channel estimate will result in correction of more errors in the equal-
ization and decoding in the next iteration so the channel estimation and
equalization iteratively propel one another until the process converges in a
few iterations. We have considered such a coded system. The process is

summarized in algorithm 3.

5.5.1 Simulation Results

We simulated a MIMO system with M7 = 2 transmit antennas, Mr = 3
receive antennas and a channel order of L = 2. The space time equalizer at
the receiver had an order Le, = 2. We assumed a block length of N = 300
and a Doppler spread of f; = 0.01 normalized to the symbol rate so that
@/2 = 3. The simulation results for the BER and normalized estimation

MSE are provided in figures 5.8 and 5.9 respectively. We see that similar
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Figure 5.8. The BER is plotted against Eb/No for various iterations of the
algorithm and also for turbo equalization with perfect CSI

to space time turbo equalization with perfect CSI, performance improve-
ments are observed with the use of iferative equalization and decoding in
a trained system that uses time multiplexed training if the channel estima-
tion is included in the iterative equalization and decoding loop. However,
the performance losses over a systemn with perfect CSI are larger. There
is approximately a 4 dB loss at a BER of 1072 in addition to the loss in
throughput incurred by the transmission of the time multiplexed pilots. A
performance improvement of approximately 1 dB is observed at a BER of
1072 in figure 5.8 for both turbo equalization and iterative channel estima-
tion, equalization and decoding. It is seen that iterative channel estimation,
equalization and decoding only provides performance improvement over a

couple of iterations because of the small block size used.
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Figure 5.9. The estimation mean square error is plotted against the Eb/No

for the iterations

5.6 Conclusion

Simulation results indicate that in the low SNR region of operation of the

turbo equalization algorithm, the quality of the channel estimates for dou-

bly selective channels is insufficient to provide the gains expected from the

turbo equalization algorithm even with optimally designed time multiplexed

training where the estimates are not affected by interference from the data

transmission. However with introduction of channel estimation in the iter-

ative equalization and decoding loop, the turbo equalization iterations can

provide significant performance gains.



Chapter 6

SUMMARY, CONCLUSION
AND FUTURE WORK

When a message is transmitted over a communications channel, the received
signal has undergone distortion because of several unwanted effects of the
channel including interference, time variations, and thermal noise. The re-
ceived signal requires signal processing to deal with these distortive effects of
the channel before the transmit information can be extracted from it. This
receiver processing cannot increase the information about the transmit mes-
sage in the received signal, it only brings the received signal in format that
is recognizable by the receiver. Although the received signal contains the
transmit information, it is not in a form that can be used to detect this in-
formation until such processing has been performed. This signal processing
needed to mitigate the unwanted effects of the channel requires knowledge
of how the channel distorts the signal, i.e. it needs to know and track the
channel. It is pertinent to mention here that even if the receiver is perfectly
armed with the CSI, such receiver processing does not guarantee that the
transmit signal can always be recovered.

Most, literature assumes that the receiver has perfect CSI and thus over-
looks this problem. The channel can be estimated through the transmission
of a pilot signal or blindly. Blind schemes use some statistical or other infor-
mation about the transmit signal that is known a priori. For trained schemes,

the pilot signal is known a priori to the receiver and it is used to estimate the
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channel from the received signal. The pilots may be multiplexed with the
unknown data or they may be superimposed on it, i.e. added onto it with a
low power, or any combination of these schemes may be used. However, it
is often desirable in engineering applications to make the channel estimation
process as computationally simple as possible. These training based channel
estimation schemes have been studied in this thesis. _

Superimposed training was introduced first and applied to OFDM in
chapter 3 for frequency selective channels. The general case where the chan-
nel delay spread exceeds the cyclic prefix has been considered and the channel
shortening equalizers are explained. Superimposed training in multicarrier
communications is studied for both SIMO OFDM and MIMO OFDM. For
the MIMO OFDM system, we have explained MIMO channel shortening and
studied ST coding for spatial multiplexing. The novelty of our work is that
we have proposed the use of semiblind iterative channel estimation based on
superimposed training for OFDM.

The focus of channel estimation research has recently shified to doubly
selective channels in which the transmit signal experiences fading in both
the time and frequency dimensions. Because of the fast varying nature of
these channels, they are difficult to track and require continual training. The
superimposed training scheme was studied for single carrier communications
in chapter 4 for doubly selective channels. A coded transmission system
was considered where channel estimation was introduced in the iterative
equalization and decoding loop. The cases of SISO and MIMO for spatial
multiplexing were considered and it was shown that an iterative approach
that allows the inclusion of detected data in channel estimation significantly
enhances the performance over a non iterative scheme. The channel estimate
formed by superimposed training suffers from interference from the unknown
data in addition to the noise effects and exhibits poor performance because
of an error floor. By inclusion of the detected data in channel re-estimation

in each iteration, the performance is considerably enhanced over a few it-
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erations. Turbo equalization along with superimposed training for doubly
selective channels has not been studied previously in the literature.

Time multiplexed training was introduced for doubly selective channels
in chapter 5 for SISO and MIMO spatial multiplexing. It was observed that
the channel estimate formed from an optimal design of pilots in the low to
moderate SNR region is insufficient for the turbo equalization process that
operates in this SNR region. The turbo equalization fails to make any signif-
icant performance improvements over the iterations when this initial channel
estimate is employed to design the equalizer. However, if the detected data
is reused in conjunction with the received signal to re-estimate the channel
BEM coefficients in each iteration and the equalizer is updated with the
new estimates, the turbo equalization algorithm shows similar performance
improvements as it does for perfect CSI. The novelty of this work is in the
use of iterative equalization and decoding for BEM parameterized doubly
selective channel estimation with time multiplexed training.

As a possible extension, it would be interesting to study the application
of robust estimation techniques to the channel estimation problem. For time
multiplexed training, the least squares estimate of the channel is the max-
imum likelihood estimate because the noise is independent and identically
distributed Gaussian and the communications model is linear. However, it
has been stressed before that when superimposed training is employed, the
effective noise term includes an interference term along with the noise which
may not Gaussian. 1t would be an interesting problem to study the effective
noise and possibly characterize i{s statistics which may lead to a better es-
timator than the least squares estimator. For example it is well known that
the least squares estimator is very sensitive to outliers. This is of course not
a problem when the noise is Gaussian because the Gaussian distribution is
mostly clustered within three standard deviations and outliers are unlikely
to occur anyway. However, incase the noise distribution is less clustered like

the Laplacian distribution, outliers are very likely to occur and it is more
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sensible to apply the [ norm minimization instead

minimize |[Xh -y {6.0.1)

This is minimized as a linear program by introducing a slack variable ¢ [104]

20 T T T
Real Line
------- Least Squares
181 I, norm i
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Figure 6.1. Comparison of {; and ! norm approximation.

minimize ¢

subject to —{1<Xh-y <11

In fact the Iy norm approximation is known to be robust estimation because
it is relatively insensitive to outliers. It is also the maximum likelihood es-
timator if the noise distribution is Laplacian instead of Gaussian!. In figure

6.1, we have taken observations on a straight line y = mz + ¢ and added

'In practical applications noise is typically Gaussian so that the l; norm approximation
is more accurate. If we know that the noise is Gaussian and we want to be careful about
outliers which are introduced by some other mechanism, then we could also use the Huber
penalty function which approximates Iz norm approximation for small residuals and I
norm approximation for large residuals [104].
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some noise. Two outliers are also introduced in the observations and then
we perform l; and I norm regressions to estimate the parameters of the line.
It is clearly seen that !; norm is robust to the outliers.

As we already know, the least squares estimate of this problem is h =
(X#X)"1Xy. In both superirﬁposed training and time multiplexed train-
ing, when an iterative channel estimate is formed based on the detected
data, there is always an uncertainty in the matrix X because of detection
errors, particularly at low signal to noise ratios. The estimation problem
where we wish to minimize [[Xh — y|| thus suffers from an incorrect model
because X is not known perfectly and it may vary somewhat around our
estimate. It would be interesting to study the effects this model uncer-

tainty, especially the performance losses incurred because of these detection
errors and how much of these losses can be salvaged through a more robust
scheme. The application of robust approximation techniques to this prob-
lem could be studied. Robust approximation problems are divided into two
categories, i.e. stochastic robust approximation and worst case robust ap-
proximation. Stochastic robust approximation assumes that X is a random

variable around a mean X so that [104]
X=X+U

where U is a zero mean random matrix that describes the statistical variation

of X around X. Stochastic robust approximation then tries to
minimize El|Xh -y (6.0.2)

In case the system model matrix X assumes a finite set of values as in our

case where the elements of X are constellation points, this can be written as

minimize p1]|Xih - y]| + - 4 pel|Xih — ¥|| (6.0.3)



155

where X assumes value X; with probability p;. Then this problem can be

written as

minimize plt (6.0.4)

(Xih—yll < (6.0.5)

which may be solved as a linear program or a second order cone program
depending on the choice of the norm [104]. Similarly, worst case robust
approximation tries to minimize the worst case error. Assuming that X € &,

then the associated worst case error is

ewc(h) = sup{[[Xh - yf} | X € &} (6.0.6)

In a study of the application of robust estimation and approximation tech-
nigues to iterative channel estimation, an important issue that needs consid-
eration is a comparison of the performance gaing achieved and the computa-
tional complexity involved, in order to assess the feasibility of such schemes
in the channel estimation problem.

A related future research direction is the study and design of robust
equalizers for communications. Regardiess of the channel estimation algo-
rithm employed, there will always be a channel estimation error. Typical
equalizer designs including the equalizers we used assume a perfect chanmnel
estimate which is clearly unavailable. In a practical communications scheme
where the channel estimate will have errors, it is wiser to design a robust
equalizer which is relatively insensitive to small variations of the channel
around the estimate. Some work has already been started in this direction

by [105].
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