8,936 research outputs found

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    Active sensor fault tolerant output feedback tracking control for wind turbine systems via T-S model

    Get PDF
    This paper presents a new approach to active sensor fault tolerant tracking control (FTTC) for offshore wind turbine (OWT) described via Takagi–Sugeno (T–S) multiple models. The FTTC strategy is designed in such way that aims to maintain nominal wind turbine controller without any change in both fault and fault-free cases. This is achieved by inserting T–S proportional state estimators augmented with proportional and integral feedback (PPI) fault estimators to be capable to estimate different generators and rotor speed sensors fault for compensation purposes. Due to the dependency of the FTTC strategy on the fault estimation the designed observer has the capability to estimate a wide range of time varying fault signals. Moreover, the robustness of the observer against the difference between the anemometer wind speed measurement and the immeasurable effective wind speed signal has been taken into account. The corrected measurements fed to a T–S fuzzy dynamic output feedback controller (TSDOFC) designed to track the desired trajectory. The stability proof with H∞ performance and D-stability constraints is formulated as a Linear Matrix Inequality (LMI) problem. The strategy is illustrated using a non-linear benchmark system model of a wind turbine offered within a competition led by the companies Mathworks and KK-Electronic

    An investigation on automatic systems for fault diagnosis in chemical processes

    Get PDF
    Plant safety is the most important concern of chemical industries. Process faults can cause economic loses as well as human and environmental damages. Most of the operational faults are normally considered in the process design phase by applying methodologies such as Hazard and Operability Analysis (HAZOP). However, it should be expected that failures may occur in an operating plant. For this reason, it is of paramount importance that plant operators can promptly detect and diagnose such faults in order to take the appropriate corrective actions. In addition, preventive maintenance needs to be considered in order to increase plant safety. Fault diagnosis has been faced with both analytic and data-based models and using several techniques and algorithms. However, there is not yet a general fault diagnosis framework that joins detection and diagnosis of faults, either registered or non-registered in records. Even more, less efforts have been focused to automate and implement the reported approaches in real practice. According to this background, this thesis proposes a general framework for data-driven Fault Detection and Diagnosis (FDD), applicable and susceptible to be automated in any industrial scenario in order to hold the plant safety. Thus, the main requirement for constructing this system is the existence of historical process data. In this sense, promising methods imported from the Machine Learning field are introduced as fault diagnosis methods. The learning algorithms, used as diagnosis methods, have proved to be capable to diagnose not only the modeled faults, but also novel faults. Furthermore, Risk-Based Maintenance (RBM) techniques, widely used in petrochemical industry, are proposed to be applied as part of the preventive maintenance in all industry sectors. The proposed FDD system together with an appropriate preventive maintenance program would represent a potential plant safety program to be implemented. Thus, chapter one presents a general introduction to the thesis topic, as well as the motivation and scope. Then, chapter two reviews the state of the art of the related fields. Fault detection and diagnosis methods found in literature are reviewed. In this sense a taxonomy that joins both Artificial Intelligence (AI) and Process Systems Engineering (PSE) classifications is proposed. The fault diagnosis assessment with performance indices is also reviewed. Moreover, it is exposed the state of the art corresponding to Risk Analysis (RA) as a tool for taking corrective actions to faults and the Maintenance Management for the preventive actions. Finally, the benchmark case studies against which FDD research is commonly validated are examined in this chapter. The second part of the thesis, integrated by chapters three to six, addresses the methods applied during the research work. Chapter three deals with the data pre-processing, chapter four with the feature processing stage and chapter five with the diagnosis algorithms. On the other hand, chapter six introduces the Risk-Based Maintenance techniques for addressing the plant preventive maintenance. The third part includes chapter seven, which constitutes the core of the thesis. In this chapter the proposed general FD system is outlined, divided in three steps: diagnosis model construction, model validation and on-line application. This scheme includes a fault detection module and an Anomaly Detection (AD) methodology for the detection of novel faults. Furthermore, several approaches are derived from this general scheme for continuous and batch processes. The fourth part of the thesis presents the validation of the approaches. Specifically, chapter eight presents the validation of the proposed approaches in continuous processes and chapter nine the validation of batch process approaches. Chapter ten raises the AD methodology in real scaled batch processes. First, the methodology is applied to a lab heat exchanger and then it is applied to a Photo-Fenton pilot plant, which corroborates its potential and success in real practice. Finally, the fifth part, including chapter eleven, is dedicated to stress the final conclusions and the main contributions of the thesis. Also, the scientific production achieved during the research period is listed and prospects on further work are envisaged.La seguridad de planta es el problema más inquietante para las industrias químicas. Un fallo en planta puede causar pérdidas económicas y daños humanos y al medio ambiente. La mayoría de los fallos operacionales son previstos en la etapa de diseño de un proceso mediante la aplicación de técnicas de Análisis de Riesgos y de Operabilidad (HAZOP). Sin embargo, existe la probabilidad de que pueda originarse un fallo en una planta en operación. Por esta razón, es de suma importancia que una planta pueda detectar y diagnosticar fallos en el proceso y tomar las medidas correctoras adecuadas para mitigar los efectos del fallo y evitar lamentables consecuencias. Es entonces también importante el mantenimiento preventivo para aumentar la seguridad y prevenir la ocurrencia de fallos. La diagnosis de fallos ha sido abordada tanto con modelos analíticos como con modelos basados en datos y usando varios tipos de técnicas y algoritmos. Sin embargo, hasta ahora no existe la propuesta de un sistema general de seguridad en planta que combine detección y diagnosis de fallos ya sea registrados o no registrados anteriormente. Menos aún se han reportado metodologías que puedan ser automatizadas e implementadas en la práctica real. Con la finalidad de abordar el problema de la seguridad en plantas químicas, esta tesis propone un sistema general para la detección y diagnosis de fallos capaz de implementarse de forma automatizada en cualquier industria. El principal requerimiento para la construcción de este sistema es la existencia de datos históricos de planta sin previo filtrado. En este sentido, diferentes métodos basados en datos son aplicados como métodos de diagnosis de fallos, principalmente aquellos importados del campo de “Aprendizaje Automático”. Estas técnicas de aprendizaje han resultado ser capaces de detectar y diagnosticar no sólo los fallos modelados o “aprendidos”, sino también nuevos fallos no incluidos en los modelos de diagnosis. Aunado a esto, algunas técnicas de mantenimiento basadas en riesgo (RBM) que son ampliamente usadas en la industria petroquímica, son también propuestas para su aplicación en el resto de sectores industriales como parte del mantenimiento preventivo. En conclusión, se propone implementar en un futuro no lejano un programa general de seguridad de planta que incluya el sistema de detección y diagnosis de fallos propuesto junto con un adecuado programa de mantenimiento preventivo. Desglosando el contenido de la tesis, el capítulo uno presenta una introducción general al tema de esta tesis, así como también la motivación generada para su desarrollo y el alcance delimitado. El capítulo dos expone el estado del arte de las áreas relacionadas al tema de tesis. De esta forma, los métodos de detección y diagnosis de fallos encontrados en la literatura son examinados en este capítulo. Asimismo, se propone una taxonomía de los métodos de diagnosis que unifica las clasificaciones propuestas en el área de Inteligencia Artificial y de Ingeniería de procesos. En consecuencia, se examina también la evaluación del performance de los métodos de diagnosis en la literatura. Además, en este capítulo se revisa y reporta el estado del arte correspondiente al “Análisis de Riesgos” y a la “Gestión del Mantenimiento” como técnicas complementarias para la toma de medidas correctoras y preventivas. Por último se abordan los casos de estudio considerados como puntos de referencia en el campo de investigación para la aplicación del sistema propuesto. La tercera parte incluye el capítulo siete, el cual constituye el corazón de la tesis. En este capítulo se presenta el esquema o sistema general de diagnosis de fallos propuesto. El sistema es dividido en tres partes: construcción de los modelos de diagnosis, validación de los modelos y aplicación on-line. Además incluye un modulo de detección de fallos previo a la diagnosis y una metodología de detección de anomalías para la detección de nuevos fallos. Por último, de este sistema se desglosan varias metodologías para procesos continuos y por lote. La cuarta parte de esta tesis presenta la validación de las metodologías propuestas. Específicamente, el capítulo ocho presenta la validación de las metodologías propuestas para su aplicación en procesos continuos y el capítulo nueve presenta la validación de las metodologías correspondientes a los procesos por lote. El capítulo diez valida la metodología de detección de anomalías en procesos por lote reales. Primero es aplicada a un intercambiador de calor escala laboratorio y después su aplicación es escalada a un proceso Foto-Fenton de planta piloto, lo cual corrobora el potencial y éxito de la metodología en la práctica real. Finalmente, la quinta parte de esta tesis, compuesta por el capítulo once, es dedicada a presentar y reafirmar las conclusiones finales y las principales contribuciones de la tesis. Además, se plantean las líneas de investigación futuras y se lista el trabajo desarrollado y presentado durante el periodo de investigación

    Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review

    Get PDF
    With the privatization and intense competition that characterize the volatile energy sector, the gas turbine industry currently faces new challenges of increasing operational flexibility, reducing operating costs, improving reliability and availability while mitigating the environmental impact. In this complex, changing sector, the gas turbine community could address a set of these challenges by further development of high fidelity, more accurate and computationally efficient engine health assessment, diagnostic and prognostic systems. Recent studies have shown that engine gas-path performance monitoring still remains the cornerstone for making informed decisions in operation and maintenance of gas turbines. This paper offers a systematic review of recently developed engine performance monitoring, diagnostic and prognostic techniques. The inception of performance monitoring and its evolution over time, techniques used to establish a high-quality dataset using engine model performance adaptation, and effects of computationally intelligent techniques on promoting the implementation of engine fault diagnosis are reviewed. Moreover, recent developments in prognostics techniques designed to enhance the maintenance decision-making scheme and main causes of gas turbine performance deterioration are discussed to facilitate the fault identification module. The article aims to organize, evaluate and identify patterns and trends in the literature as well as recognize research gaps and recommend new research areas in the field of gas turbine performance-based monitoring. The presented insightful concepts provide experts, students or novice researchers and decision-makers working in the area of gas turbine engines with the state of the art for performance-based condition monitoring

    Hydrogeological engineering approaches to investigate and characterize heterogeneous aquifers

    Get PDF
    This dissertation presents a compilation of five stand-alone manuscripts (Chapters 2 through 5 and Appendix A). Chapters 2 through 5 present hydrogeological analysis approaches, while Appendix A is utilized within the dissertation introduction as an example of a non-physically based modeling approach, albeit demonstrated on a non-hydrogeologically based application. Chapter 2 presents an inverse approach to decompose pumping influences from water-level fluctuations observed at a monitoring location. Chapter 3 presents an inferencing approach to identify effective aquifer properties at the interwell scale that can be applied to highly transient datasets. Chapter 4 introduces the use of a Markov-chain model of spatial correlation to an automated geostatistical inverse framework, demonstrating the approach on a 2-D two-stratigraphic-unit synthetic aquifer. Chapter 5 utilizes the inverse framework introduced in Chapter 4 to develop a stochastic analysis approach to identify the most plausible geostatistical model given the available data. The dissertation introduction reconciles these hydrogeological engineering approaches within the context of the current hydrogeological perspective, discussing where these approaches within the often conflicting goals of providing operational decision support based on modeling and advancing the science of hydrogeology beyond its current limitations

    Real-Time Machine Learning Based Open Switch Fault Detection and Isolation for Multilevel Multiphase Drives

    Get PDF
    Due to the rapid proliferation interest of the multiphase machines and their combination with multilevel inverters technology, the demand for high reliability and resilient in the multiphase multilevel drives is increased. High reliability can be achieved by deploying systematic preventive real-time monitoring, robust control, and efficient fault diagnosis strategies. Fault diagnosis, as an indispensable methodology to preserve the seamless post-fault operation, is carried out in consecutive steps; monitoring the observable signals to generate the residuals, evaluating the observations to make a binary decision if any abnormality has occurred, and identifying the characteristics of the abnormalities to locate and isolate the failed components. It is followed by applying an appropriate reconfiguration strategy to ensure that the system can tolerate the failure. The primary focus of presented dissertation was to address employing computational and machine learning techniques to construct a proficient fault diagnosis scheme in multilevel multiphase drives. First, the data-driven nonlinear model identification/prediction methods are used to form a hybrid fault detection framework, which combines module-level and system-level methods in power converters, to enhance the performance and obtain a rapid real-time detection. Applying suggested nonlinear model predictors along with different systems (conventional two-level inverter and three-level neutral point clamped inverter) result in reducing the detection time to 1% of stator current fundamental period without deploying component-level monitoring equipment. Further, two methods using semi-supervised learning and analytical data mining concepts are presented to isolate the failed component. The semi-supervised fuzzy algorithm is engaged in building the clustering model because the deficient labeled datasets (prior knowledge of the system) leads to degraded performance in supervised clustering. Also, an analytical data mining procedure is presented based on data interpretability that yields two criteria to isolate the failure. A key part of this work also dealt with the discrimination between the post-fault characteristics, which are supposed to carry the data reflecting the fault influence, and the output responses, which are compensated by controllers under closed-loop control strategy. The performance of all designed schemes is evaluated through experiments

    A Review of Fault Diagnosing Methods in Power Transmission Systems

    Get PDF
    Transient stability is important in power systems. Disturbances like faults need to be segregated to restore transient stability. A comprehensive review of fault diagnosing methods in the power transmission system is presented in this paper. Typically, voltage and current samples are deployed for analysis. Three tasks/topics; fault detection, classification, and location are presented separately to convey a more logical and comprehensive understanding of the concepts. Feature extractions, transformations with dimensionality reduction methods are discussed. Fault classification and location techniques largely use artificial intelligence (AI) and signal processing methods. After the discussion of overall methods and concepts, advancements and future aspects are discussed. Generalized strengths and weaknesses of different AI and machine learning-based algorithms are assessed. A comparison of different fault detection, classification, and location methods is also presented considering features, inputs, complexity, system used and results. This paper may serve as a guideline for the researchers to understand different methods and techniques in this field

    Distribution network development planning with quality of supply (QOS) costing

    Get PDF
    Includes bibliographical references.The report outlines details of research in distribution network development with consideration of costs due to quality. Network planning methods are diverse with the common objective of establishing minimum cost options without violating network constraints. The selected network alternative is directed to meet customer requirements. Network planning models have evolved from consideration of simplistic models to multi variable and more realistic approaches. It is not always possible to achieve the desired outcome because planning is a difficult and complex task. There are usually uncertainties due to vague or no information available about the long-term (15-20 years) planning. The uncertainties generally result in risks, which have to be sufficiently analysed before reaching planning decisions. The recently proposed Minimum Risk Criterion is not a preferred risk resolution approach because it suggests that utilities should not establish expensive networks due to cost risk. Uncertainty modeling approaches based on fuzzy logic are proposed as the solution for analysis of uncertain conditions where very limited information is available. Costs in distribution lines are usually due to capital investment and operating costs. Distribution capital costs are primarily due to cost of conductor, s ucture and insulator. The cost of conductor and structure varies with size and type. Insulator costs do not vary significantly with variations in insulator type and properties. Quality related costs are a relatively new concept in distribution costing and are developed in the research. They are primarily due to mitigation, condition monitoring and interruptions. Quality mitigation costs are defined in the mitigation cost models in Figure 4- 8 and Figure 4- 9. The impact cost values in the models were established on the basis of assumptions, which require further research. According to CTLab [12], quality-monitoring equipment costs could vary from R50, 000 to R250, 000. Interruption costs are incurred through penalty cost and revenue losses. The penalty cost is similar to the revenue loss cost in many respects but is incurred when the standard limits are violated. Revenue loss costs are applicable whenever the frequency or voltage deviates from the nominal. It may be preferred to accept revenue losses where mitigation is expensive

    An intelligent navigation system for an unmanned surface vehicle

    Get PDF
    Merged with duplicate record 10026.1/2768 on 27.03.2017 by CS (TIS)A multi-disciplinary research project has been carried out at the University of Plymouth to design and develop an Unmanned Surface Vehicle (USV) named ýpringer. The work presented herein relates to formulation of a robust, reliable, accurate and adaptable navigation system to enable opringei to undertake various environmental monitoring tasks. Synergistically, sensor mathematical modelling, fuzzy logic, Multi-Sensor Data Fusion (MSDF), Multi-Model Adaptive Estimation (MMAE), fault adaptive data acquisition and an user interface system are combined to enhance the robustness and fault tolerance of the onboard navigation system. This thesis not only provides a holistic framework but also a concourse of computational techniques in the design of a fault tolerant navigation system. One of the principle novelties of this research is the use of various fuzzy logic based MSDF algorithms to provide an adaptive heading angle under various fault situations for Springer. This algorithm adapts the process noise covariance matrix ( Q) and measurement noise covariance matrix (R) in order to address one of the disadvantages of Kalman filtering. This algorithm has been implemented in Spi-inger in real time and results demonstrate excellent robustness qualities. In addition to the fuzzy logic based MSDF, a unique MMAE algorithm has been proposed in order to provide an alternative approach to enhance the fault tolerance of the heading angles for Springer. To the author's knowledge, the work presented in this thesis suggests a novel way forward in the development of autonomous navigation system design and, therefore, it is considered that the work constitutes a contribution to knowledge in this area of study. Also, there are a number of ways in which the work presented in this thesis can be extended to many other challenging domains.DEVONPORT MANAGEMENT LTD, J&S MARINE LTD AND SOUTH WEST WATER PL
    corecore