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Abstract 

A multi-disciplinary research project has been carried out at the University of Plymouth to design 

and develop an Unmanned Surface Vehicle (USV) named ýpringer. The work presented herein 

relates to formulation of a robust, reliable, accurate and adaptable navigation system to enable 

opringei to undertake various environmental monitoring tasks. Synergistically, sensor 

mathematical modelling, fuzzy logic, Multi-Sensor Data Fusion (MSDF), Multi-Model Adaptive 

Estimation (MMAE), fault adaptive data acquisition and an user interface system are combined to 

enhance the robustness and fault tolerance of the onboard navigation system. 

This thesis not only provides a holistic framework but also a concourse of computational 

techniques in the design of a fault tolerant navigation system. One of the principle novelties of this 

research is the use of various fuzzy logic based MSDF algorithms to provide an adaptive heading 

angle under various fault situations for Springer. This algorithm adapts the process noise 

covariance matrix ( Q) and measurement noise covariance matrix (R) in order to address one of 

the disadvantages of Kalman filtering. This algorithm has been implemented in Spi-inger in real 

time and results demonstrate excellent robustness qualities. In addition to the fuzzy logic based 

MSDF, a unique MMAE algorithm has been proposed in order to provide an alternative approach 

to enhance the fault tolerance of the heading angles for Springer. 

To the author's knowledge, the work presented in this thesis suggests a novel way forward in the 

development of autonomous navigation system design and, therefore, it is considered that the work 

constitutes a contribution to knowledge in this area of study. Also, there are a number of ways in 

which the work presented in this thesis can be extended to many other challenging domains. 
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Chapter I 

INTRODUCTION 

1.1 Motivation 

Over the past century the global growth of heavy industry and manufacturing has come 

with a dramatic increase in pollution. The adverse consequence of this increase is climate 

change. In particular, research carried out in the last decade emphasized the role played 

by ocean/water pollution in the prediction of global climate condition (Heal and Kristrbm 

2002). Therefore, pollutant tracking and environmental surveying have become very impor- 

tant issues. However, only 5% of the oceans have been characterized. One obvious reason 

is that the ocean environment is complex which could contain unknown biological, chemi- 

cal, and mineral (National Research Council, USA 2003). Hence, the exploration tasks are 

extremely difficult, expensive and dangerous for human beings. 

In order to explore the unknown ocean environment, in recent years. there has been sig- 

nificant progress in the development of Autonomous Underwater Vehicles (AUVs) and 

Remotely Operated Vehicles (ROVs), and a number of AUVs and ROVs ha%-e been suc- 

cessfully implemented in offshore industrial, militarY and commercial ai-eas (Butler and 

Hertog 1993, Griffiths et al. 1999, Yoerger et al. 2000, Loebis et al. 2006). HoN-ý-evei-, in 

I 



CHAPTER 1. INTRODUCTION 9 

shallow or inland waters, AUV,,,, and ROVs have limited capabilitie, ", for undertaking track- 

ing and surveying tasks. Currently, worldxide interest is gatheri into the de.,, ign t-) ing a pace i 

and development of cost effective Unmanned Surface Vehicle,, -) (USVs) to undertake surý-(, Ys 
in shallow waters, such as pollutant tracking and hydrographic tasks can be carried out in 

a more economical manner than is currently possible. 

To date, the USV market in the USA and Europe has grown significantlY ý\-Ith scverýll 
USVs on the horizon. The US Navy spent $55 million to develop their Spw'tan USV sYsteill 
(Tiron 2002), in Portugal, Delfim and Caravela 2000 USVs have been designed in order 

to undertake oceanographic research (Dynamical Systems and Ocean Robotics (DSOR) 

Laboratory 2000). Whilst in German, the MeasurZng Dolphffi USV has been employed for 

shallow water survey missions (Majohr et al. 2000). More details of on-going USV projects 

are presented in Chapter 2. In the UK research interest in this key area appearý, ' inainlY 

confined to that being undertaken by Corfield (Corfield 2002) who has developed variants 

of the Mimir USVs for naval and surveying missions. More details of on-going USVs are 

introduced in Chapter 2. From the relevant literature, it is clear that there is a widening 

technology gulf between the UK and other countries in this technologically interesting and 

extremely important area of study. Thus developing an USV in the UK cannot only close 

the gap in this field but also provide a low cost solution for environment monitoring and 

relevant pollutant investigations. 

1.1.1 Springer project objectives 

The SprZnger USV project commenced in early 2004 at the University of Plymouth. The 

Springer USV is intended to be a mobile, rapidly sampling, remotely operated sensor 

platform which can undertake various hydrological surveys, including real time mapping of 

polluta nt, spills, tracking of pollutant spills to their sources, quantification of sharp pollut ant 

and other scientifically important gradient phenomena. 
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The Sp't'i'iqjc'r vehicle is easily deployable and can accommodate \-ýirious requirement witli- 

out výu-Ylng the existing payload. Hence, the Springer can also be used as a test bed plat- 
form for other academic and scientific institutions involved in environmental datýi gatlier- 

ing, sensor and instrumentation technology, control systems engineering and power sY,, 't(, iii, "' 
based on alternative energy sources. More details of the Spriiiyc'r are introduce in Cliapter 

I 

1.1.2 Navigation, Guidance and Control (NGC) 

Onboard NGC system play a vital role in autonomous vehicle operation. The navigation 

system provides information related to the target. The guidance systein manipulates the 

outputs from the navigation system and by utilizing proper guidance laws generates suitable 

trajectories to be followed by the vehicle. The control system is responsible for keeping the 

vehicle on course as specified by the guidance processor(Lin 1992). In remotely operated 

systems, guidance commands are sent from a ground station by a trained human operator 

whilst autonomous vehicles have an onboard guidance processor. A generic block diagram 

of a integrated NGC system of a vehicle is depicted in Figure I. I. 

Set t Vehicle 
Guidance 

po 
x --0. ontroller 0 Vehicle -T-posilion i nt 

4T 

Navigation 

Figure 1.1: Navigation, Guidance and Control process 

The navigation systern is responsible for accurate positioning of the USV, it should be able 

to cope with any kind of sensor noise/faults that may occur during an operation. For this 

purpose. Alulti-Sensor Data Fusion (MSDF) algorithms which combines data from various 
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onboard sensors and prmides the best, estimate for the vehicle are alwýiys used to itchieve 
intrinsic redundancy. More techniques involved in navigat' 1 I ion s. vstems will be presented 
throughout the thesis. 

The guidance and control system plays a vital role in bringing autononlY to t Ile 

and keeping the vehicle on the proper trajectory. A good account of several guidance 
laws employed by AUVs have been documented by Naeem et al. (2004). For Sprillyer, 

an intelligent fuzzy logic ba-sed model predictive controller, a fuzzy logic Linear Quadratic 

Gaussian (LQG) controller and LQG with Loop Transfer Recovery (LQR, ) algorithms haN'e 

been implemented (Naeem et al. 2007). 

1.2 Aim and objectives of the research 

Intelligent multi-sensor navigation system design has recently received a great deal of in- 

terest, in particular hybrid MSDF algorithms with Artificial Intelligence (AI) techniques. 

However, until now, such an approach has not been employed on modern autonomous ve- 

hicles. An intelligent navigation approach must have the ability to learn a process, adapt 

its behaviour in light of process change, store and recall relevant information and au- 

tonomously improve its performance when required to do so. It is therefore important that 

such a system can adapt to register new information. 

The overall aim of the thesis is to develop an intelligent navigation system for the Sprittger 

vehicle. This also entails the implementation and cooperation with a guidance and control 

system in real time. The main objectives of this research include the onboard navigation 

sensor modelling, user interface development , 
fault tolerant MSDF navigation strategy 

design and full scale real time trial and evaluations. 

Broken down as subinodules, the objectives of this research are provided as follows: 
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Critically review current autonomous navicration techniques. 

* Survey current USV projects and analYsis the featmvs of different applications. 

e Develop a friendly user interface which can allow the user access an onboard _NGC 
system remotelY. Also design a practicable communi cation manner between the -N(F 'C 

for real time trials. 

e Design a novel fault tolerant fuzzy logic based XISDF system for SpT-i'nge7- ýiý, mi 

onboard navigation system. 

* Design a Multi-Model Adaptive Estimation (NINIAE) algorithm as an alternatiw 

navigation solution. 

9 Evaluate the proposed navigation strategy performances in simulations for \-ýii-ious 

scenarios. 

* Employ a simulated navigation strategy in the full scale trials, and evaluate the 

experimental performance results. 

All of the objectives mentioned here will be revisited at the end of the thesis. 

1.3 Thesis overview 

Accordingly, the thesis is constructed as follows, 

Chapter 2 elaborates upon the related research, technologies and projects relating to the 

USVs. This review is sub-divided into two distinct parts, the autonomous navigation 

techniques and the deta, ils of on-going USV projects. The first part surveys the autonomous 

navigation strategies and navigation sensors. Whilst, the second part provides ýt broad 

review on the current military, research and commercial USVs all over the world. 
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Since there was no previous hardware details of Springer in the lilerýmire. it Nvas deemed 

necessary to disseminate this information in Chapter 3. The contents includes the liardware 

setup. navigation sensor suite, controller and other equipment. The user mterf; we design is 

also emphasized. The fault tolerant Data AcQuisition (DAQ) ýivstem. data processing and 

the data transmitting structure of the NGC sYstern is also included. 

Chapter 4 delves into sensor modelling. Clearly, in order to design a, proper Kalman filter. 

an accurate sensor model must be available. Consequently, a first principle algorithm is used 

to derive the model of a Global Positioning System (GPS) 
, whilst a Sys'telll Identification 

(SI) method is implemented in deriving the models for the onboard compasses. 

With the knowledge gained through the aforementioned survey. it was decided that this 

research would focus on the development of an intelligent MSDF navigatioii algorithm. 

Its intriguing properties coupled with its strong potential for practical iniplementatlon 

rendered it a worthy topic of research. Hence, Chapter 5 presents the development of 

various cascaded Kalman filters combined with fuzzy logic. Also, a fuzzy logic observer 

is designed to offer an observation window for the user in order to tune the fuzzy rules 

and membership functions. The fault tolerant capabilities of each algorithm are examined 

under different types of sensor fault. As a result, a fuzzy logic based federated Kalman 

filter with adaptive information feedback was selected as an onboard navigation system. 

Following the success of the MSDF simulations conducted in Chapter 5, an alternative fault 

tolerant multiple sensor navigation approach based on a MMAE algorithm is developed in 

Chapter 6. Three elemental filters are utilised for each sensor in order to derive an estimate 

for the actual state. Then the individual estimates are combined together by using a fuzzy 

logic centralised Kalman filter. In the process of the development of this XINIAE approach, 

the measurement noise covariance matrix (R) and the process covariance matrix (Q) are 

varying for each elemental filter. The res'dual and probabilltv simulation results m-e sliowii. 
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Chapter 7 presents the experimental results from several Sprrligcr trials. The experinien- 

tal setup is elucidated. A Model Predictive Control (MP(I algorithiii is implemented as 

the control strategy, and a Federated Kalman Filter (FKF) with and witlioiit fuzzy logic 

algorithms are implemented. The results demonstrate that the proposed MSDF sti-Megies n 
perform remarkably well in a real time environment despite the existeii(v of Nx-ind/NN-ave 

disturbances. 

Concluding remarks, a summary of the thesis achievements and recommendations for futwe 

research are presented in Chapter 8. 

In addition, Appendix A provides the author's published work. The features of different 

types of USVs are compared in Appendix B. The details of the onboard sensor strings ýuv 

presented in Appendix C, and Appendix D briefly introduces model predictive control and 

Genetic Algorithm (CA) based MPC for completeness. 

1.4 Contributions of the thesis 

The major research contributions of the thesis are seen as: 

Providing an up-to-date comprehensive review of the current autonomous navigation 

techniques with special attention to on-going USV projects. 
I 

eA user interface which enables the user access and to monitor the vehicle is developed 

using LabView. 

Onboard navigation sensor models are developed using first principle and sYstein 

identification techniques. 

novel flizzy logic MSDF algorithin with fault tolerance is proposed. To atitlior*s 

knowledge, this is the first study of an USV implementation of this particular tech- 
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nique. Q and I? matrices are adapted on-line in order to improve the robustness of 

the iiýivigation system. 

9A modified 'MMAE algorithm is offered as an alternative solution for the navigation 

system for the SprzngC-T'. 

From the above it is deemed that a contribution to knowledge has been made in the area 

of fuzzy logic based federated Kalman filter with adaptive information feed- 

back, fault tolerant capability analysis of fuzzy logic based cascaded Kalman 

filter, fuzzy logic based MMAE algorithm, adaptive Q and R matrices and their 

performance analysis, navigation sensor modelling and a fault tolerant user in- 

terface. 



Chapter 2 

RELATED RESEARCH AND 

LITERATURE SURVEY 

A comprehensive literature review of autonomous navigation systems which have beeii 

widely adopted by autonomous air and marine vehicles is provided in this chapter. Also the 

details of navigation strategies, navigation sensors and multi-sensor navigation algorithms 

are given. In addition, an in-depth survey of on-going USV projects is carried out in 

this chapter. The features and specifications of different USVs are also summarized and 

compared. 

2.1 Autonomous navigation 

Navigation is the process of accurately determine the position and velocity of a body rel- 

M, ive to a known reference and to plan and execute the manoeuvres necessary to move 

between desired locations (Farrell and Barth 1999). Autonomous navigation means avehi- 

cle can move to a desired destination or along a desired path purposefully ýý-itliout- human 

9 
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intervention. The following capabilities for a vehicle are thus requIred: 

The ability to execute elementary goal achieving actions or reýwhing ýi giveii loc; ttion, - n 

* The ability to react, in real time to unexpected events: 

e The ability to forin plans that pursue specific goals or avoid midesired sitimtions; 

e The ability to adapt to changes in the environment. 

A navigation system constantly evaluates the vehicle's position, anticipates dangerous sit- 

uations well before they arise, and always keeps "ahead of the vellicle" (Farrell and Barth 

1999). Methods of navigation have changed throughout history. each new method has 

enhanced the vehicle's abilitY to complete a voyage safely and expeditiouslY. 

There are four main methods widely used in autonomous navigation, including satellite 

navigation, dead reckoning navigation, inertial navigation and multiple sensor navigation 

system. 

2.1.1 Satellite navigation 

Satellite navigation techniques have the advantage that their signals have Line of Sight 

(LoS) propagation to almost an entire hemisphere of the Earth. Currently, there are three 

satellite navigation systems all over the world: 

NAVigation System with Time And Ranging Global Positioning System (NAVSTAR 

CPS), developed and operated by the USA Department of Defense(DoD), 

e Global Orbiting Navigation Satellite System (GLONASS) operated bY the Russian 

Space Forces: 
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GALILEO developed bY the European Union and the European Space A, -)piwy. 

Among the satellite navigation,, -,, yst ems whi ch have been used in real applications. GPS liýiýs 

matured rapidly since being fully operated in 1995 (Grewal et al. 2000). The GPS conibines 

a network of 24 or more satellites which continuously transmit radio signals. containing it 

variety of data including time and distance data that can be picked up byiiiy GPS 

thereby allowing the user to pinpoint their position anywhere on Earth (Farrell and Bartli 

1999). For most of GPS, the clock is maccuracy which result the GPS accunw. v degrivies, 

over time. Also signals are often reflected off tall buildings before reaching the receiver. The 

signal is delayed therefore information provided is inaccurate. The satellite signal could 

slow down when it passes through inclement weather. As GPS has such disad vai it ages, for 

accurate and fault tolerant navigation system, it still cannot be employed MdependeiAlY. 

More details of GPS technique will be introduced in Section 2.1.6. 

2.1.2 Dead Reckoning (DR) navigation %-. A \ 

east 

north 

Figure 2.1: Ideal two dimensional DR (Farrell and Barth 1999) 

DR navigationwas used by Columbus in 1492 on his voyage of discovery to the New World 

(Bowditch 1995). lt is the process of estimating the vessel I's position when starting from a 
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known position ,, ind moving at a known course ýmd speed (Fiti-rell and Barth 1999). Sj)(, (, d 

and heading information are two basic measurements for this imvigation technique. 

In a modern DR navigation system, electronic sensors are used to measure the bodN-- 

frame velocitY and heading, the navigation-frame velocit,. N- and heading are determined at 

a high rate. Figure 2.1 describes the ideal two dimensional DR navigation systeiii. and Hie 

differential Equations 2.1 gives the details of this approach, 

n(t) Cos (V) (t)) - sin(o(t)) (t) 

(t) 
i L 

sin(ýb(t) cos(w(t))) M 
(2.1) 

Where (n, c) is the north and east position component in a navigation-frame coordinate, 

(u, v) is velocity components in the body-frame coordinate, ý,, is the angle between the 

north axis in navigation- frame and u axis in the body-frame. Matrix T,, 6 shown in Equation 

2.2 is a transformation matrix that converts a vector from the body-frame coordinate to 

the navigation-frame coordinate. 

Tb 
COS(V)(t)) 

0 
n 

sin (ýb (t) 

- sin (V)(t)) 

cos(v)(t))) 

(2.2) 

It should be noted that the DR approach described in Equation 2.1 is in an ideal situation. 

Whilst in real applications, the sensors and various environmental effects will generate 

disturbances ýNvhich act upon a DR navigation system. As a result the actual DR navigation 

systein is described in Figure 2.2, and the equation should be changed to include various 

sý-stcni errors as shown in Equation 2.3: 
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east 

il, 

north 

Figure 2.2: Actual two dimensional DR (Farrell and Barth 1999) 

cos(v)(t)) 

(t) 
iL 

sin(ip(t) 

Where ý= V) + AV); 

v= v+ Av; 

(1 +AS)u +, Au'-' 

sin(iP(t)) 

cos(ý(M) 
JL 

(t) 
i 

13 

('22 

Where A0, Av, Au are the bias terms which assume generated by wind, wave and sensor 

measurement errors. And As is the scale-factor error. 

Assuming ý=0, and Av = -v, Equation 2.3 is simplified to Equation 2.4, 
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n cos(tý, (t) + sln(t., (t) + A(, (t)) ++ 
(2.4) 

Lc 
(t) 

iL sln(, ý',, (t) + AO(t)) COS(V)(t) + All/! 
/, 
(t)) 

JL+ 

Applying Mi. vlor's Theorem and dropping all errors greater than first order, linear error 

differential equations are obtained in Equation 2.5, 

Cos (7p sin(O(t)) u (t) 

L 
(t) 

i 
sin(V)(t)) cos(O(t)) 

JLV 
(t) 

i 
M 

-u(t) sin(V)(t)) U(t) Cos (o(t)) cos(vý(t)) - sin(ýb(t)) 'AS(f) (2.5) 

L U(t) cos(ýb(t)) u(t) sin(V)(t)) sin(ýb(t)) cos(o(t)) Au(t) 

AV (t) 

As Ah =A-h and Ae =e-e, taking the difference of Equation 2.1 and Equation 2.5, 

the linear error differential equation is yielded in Equation 2-6: 

Ah 

Ae 
i 

An 

JLi 

-U(t) sin(v)(t)) 

UM COSMO) 

I 

Aým - 
U(t) COS(7p(t)) Cos (V) (t)) - sin(O(t)) As (t) 

(2-6) 

u(t) sin(V)(t)) sin(7p(t)) Cos (0 (t)) 
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In Equation 2.6, 
AS(t) 

Au (t) 

Av (t) 

IT) 

is considered as various sensing errors which result M growth ?D 

in position errors. The initial position errors 
An 

result in constant positioii off sets 
Ae 

Li for all future time. It is worth noting that the errors in position cannot be detected or 

corrected without additional sensor. 

2.1.3 Inertial navigation 

Since 1960s, an advanced navigation technique known as an inertial navigation system 

(INS), which consists of a sensor package has been in use in aircraft, ships and submarines. 

This type of navigation which is based on Newton's laws of motion relies on knowing 

the initial position, velocity and attitude and thereafter measuring the attitude rates and 

accelerations from the sensors without needing any reference from land or other vehicles 

(Grewal et al. 2000). 

The basic sensors for INS are accelerometers and gyroscopes. The accelerometers provide 

measurements of the vehicle's accelerations along the body-fixed translation axes, and the 

vehicle's position can be calculated easily by using a second order integration with respect 

to time. The gyroscopes measure the rates and angular information of rotation. The 

accuracy of these systems is determined by the sensitivity of their internal components and 

the degree of error introduced over time (Lawrence 1998). The general working process of 

INS is depicted in Figure 2.3. 

The GPS has superior long-term error performance but poor short-term accuracY. It is not 

sufficient for providing position for vehicle navigation sYsteiii, whilst general INS sensors 
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a. ro -,, (, If-cont, ained and provide high frequeiicy m-id continuous information. However. the 

accelerometers and gyroscopes drift can result In significant misalignments between the 

instrument and the Earth referenced fraine degrading INS accuracy over time. Owing to 

their complementary characteristics, INS is often integrated with GPS. With decrea. "! "ino, 

prices in both GPS and INS sensors and processor technologies, this sort, of integrated 

approach has been used for many autonomous navigation systems in robotics, AUVS and 

autonomous airborne vehicles (AAVs) (Kim ct a/. 2002. McGhee et al. 1995, Moore et (11. 

2003). 

Measure the acceleration in the direction of 
namation axes 

Remove the bias and scale 
errors 

Measure the acceleration in the direction 
of vertical axes 

Subtract the gravity 
(Calculate the local aravitv for orecise navlaation) 

Integrate acceleration over a known time to get 
velocity and distance 

Measure the rotation ra: t]e 

From gimbaled motion From gyroscope in a 
in a stabilized platform strapdown system 

Compensate for gyro bias 
and scale errors 

Determine the heading 

Compensate for earth rotation 

Combine the distance and heading 

Update the dead reckoning 

Figure 2-3: INS working process 
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2.1.4 Multi-sensor navigation system 

Advanced technology brings the navigation system into a new era. t1w niodern nw-igAlon 

system gathers information from every available source which is ineasured hY different 

sensors in order to produce more accurate information (Brown ýiiid Hxvýuig 1997). For 

instance, a compass can determine the direction relative to the local magnetic north, and 

the speed log produces accurate information about the speed of the vehicle. Various sensors 

provide their own distinguished outputs to provide a na%, igat, lon solution. Therefore, more 

than one sensor is involved so as to not only determine the navigation states at a certain time 

but also to supply a continuous navigation trajectory. The term, 'multi-sensor navigation 

system', is therefore often used. Such systems are typically operated with multi-sensors 

referenced to a common platform and synchronized to a common t ime base (Brooks and 

lyengar 1998). Each sensor contributes its own stream of data and all the data is optimally 

processed. From the evaluation of this data, the navigation system determines a fix, and 

compares that fix with its pre-determined position. The core technique of a multi-sensor 

navigation strategy is Alulti-Sensor Data Fusion (1VISDF). 

MSDF is an evolving technology that is concerned with the problem of how to fuse data from 

multiple sensors. It has several significant advantages over single source data (Varshney 

1997): 

* MSDF systems produce accurate information by combing readings from several re- 

dundant sensors or different sensors in order to achieve better data interpretation or 

improved decision making; 

* AISDF systems will be more clearly insensitive to sensor failures than a system using 

a single sensor-, 

* A4SDF is low cost algorithm which uses several inexpensive sensors in a syneiýgistic 

manner to provide data that are same or even better than data from nitich more 
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expensive single sensor devices. 

As results of all these advantages. MSDF has been used widely mid successfully in niany 

fields, such as: onboard navigation, object detection, recognition. identification and classi- 

fication, tracking monitoring, and change detection (Shahbazian ct al. 2000. Sliahbazian ct 

al. 1997, Loebis et al. 2003). In particular, it, has been successfidly applied in atitonomotis 

navigation techniques (Luo et al. 2002). 

The sensing process of MSDF generally proceeds in the. following patterns: detection, 

pre-processing, fusion and data interpretation (Brooks and lyengar 1998). The sclieniatIc 

diagram is shown in Figure 2.4. 

Sensor 1 Pre-processing 

Sensoli, Pre-processing 

Sensor 3 10 Pre-processing 

Sensor 4 Pre-processing 

Fusion Interpretation 
I 

Figure 2.4: The schematic diagram of MSDF process 

Every sensor must detect some aspect of the state of its environment. The interaction may, 

for example, involve detecting electromagnetic radiation originating from the environment, 

recording reflection of radiation emitted by the sensor, or direct physical contact with 

obstacles in the environment. 

After detection, pre-processing is necessary. Tasks that are generally part of pre-processing 

include noise reduction, sensor recalibration, de-skewing individual readings and activities 

peculim- to one specific tYpe of sensor. 

When the sensor reading has been pre-processed, it is appropriate to put the datýi in ii 
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specified form. Therefore the readings from several sensors can be fiised into ýi single 

reading. This fused reading will be in the same form as the pre-processed data. 

After the data from various sensors have been fused, it Nvill be interpreted. The process 

of interpretation is task-specific and consists of finding the best fit possible for the (hita 

within the information requirement of the system. 

Among the various estimation algorithms available for MSDF, the Kalman Filter (KF) 

based approach has" been applied successfully to many practical problems, part, icularlY 

in navigation (Welch and Bishop 2004). The KF uses the statistical characteristics of a 

measurement model to determine estimates recursively for the fused data that are optimal 

in a statistical sense. If the system can be described by a linear model and both the systern 

and sensor errors can be modelled as white Gaussian noise, the KF will provide unique 

statistically optimal estimates for the fused data. In addition to eliminate the need for 

storing the entire past observed data, the KF is computationally more efficient than non- 

recursive methods (Kalman 1960). The KF is very powerful in several aspects: it supports 

estimations of past, present, and even future states, and it can do so even when the precise 

nature of the modeled system is unknown. 

KF has been has been used extensively for data fusion. Simone et al. (2000) proposes 

a inulti-scale Kalman filter for the fusion of radar images, acquired by different radars 

operating with different resolutions. Boucher et al. (2001) use KF tracks the features 

through data sequences and estimates 3D position. Amditis et al. (2005) utilise a KF 

based information fusion system in automotive forward collision warning systems. 

More details of KF computation process is introduced in Chapter 5. 
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2.1.5 Hybrid MSDF 

Hybrid NISDF refers to the actual combination of Kalman filtering with other techni(Ities 

such as fuzzy logic, Artificial Neural Networks (ANNs) and Genetic Algorithms (GA,, ") 
(Loebis et al. 2004, Chen and Huang 2001., Liu et al. 2003). All the XISDF approaches need 

exact knowledge about the sensed environment and sensors, however, in real appficMioiis 

only certain information is known about the sensed environment and sensors are rarely 

perfect. With the rapid growth in MSDF techniques, there is scope for the development 

of Kalman filter based MSDF architectures capable of adaptation to changes in the sensed 

environment and to deal with sensor faults. 

In order to deal with complex problems, fuzzy logic based MSDF techniques have become 

the most popular approach. By using fuzzy logic, the uncertainty in sensor readings can be 

directly represented in the fusion process by allowing each proposition to be assigned a real 

number to indicate its degree of truth (Yan et al. 1995). Furthermore, a fuzzy logic based 

adaptive MSDF has the ability to combine information from different classes of variable by 

means of Fuzzy Inference Systems (FISs), so it can solve complex problems using imprecise 

inputs from several different sensors and thereby provide approximate solutions. 

Three fuzzy logic related adaptive MSDF methods are now briefly presented. Loebis et A 

(2004) used a fuzzy logic based adaptation scheme to cope with a divergence problem which 

was caused by insufficient knowledge of a prZorZ filter statistics. Also CA techniques are 

used to choose the fuzzy membership functions for the adaptation scheme. This algorithm 

was proposed as a navigation application for an AUV. 

Prajitno and Alort (2001) produced a fuzzy model based MSDF algorithm which was ap- 

plied in target tracking applications. First the algorithm was used to predict the future 

sensor states to validate the measurement data. Then the valid sensor data was used to 

p, nci-Ae the decision output, and finally a corrector or filter unit provided the final decision 
g 
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on the value of the current statc, based on the current measurement (fused output) and the 

predicted state. 

Whilst Doyle and Harris (1996) introduced ýi neuro-fuzzy KF based MSDF inetho(I which 

was used for real time tracking of obstacles occurring during the flight of a helicopter. Sev- 

eral different sensors were used to estimate the location of obstacles around the helicopter, 

a B-spline trained ANN was implemented to construct the dynamic and observation models 

of the helicopter. A KF was then deploved to perform state estimation. 

2.1.6 Navigation sensors 

In various modern navigation techniques, onboard sensors including GPS, inagnetic coin- 

pass, inclinometer, INS instruments and depth/speed sensors etc. are very important for 

different applications. Among these sensors, the essential sensors are the magnetic compass 

and GPS. 

Compass 

The magnetic compass was developed in China more than seventeen hundred years ago 

works on the basis of Earth magnetic field available everywhere, requiring no environmental 

modification as compared with other positioning senors (Bells 2000). Currently, the most 

commonly used electronic magnetic compass are based on the flux-gate effect, magneto- 

inductive effect or Anisotropic M agneto- Resistive (AMR) effect (Brooke 2005). 

The flux-gate effect emploYs two or more small coils of wire around a core of highlY per- 

ineable magnetic material. The idea of a flux gate effect is that when the core is saturated 

it essentiallY disappears and when it's out of saturation it bends the Earth"s magnetic field 

lines which cross the coil. The magnetic change of the core generate a voltage accord- 
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ing to Fm-w4t. \, *s law (Brooke 2005). This voltage value will decide the compass's heading 

Output. Some flux-gate compass systems, for instance, the KVH CIOO flux-gate compass 

offers modules incorporating both rate gyros that compensate for errors from accelenition. 

as well as inclinometers that provide accurate readings of heading, pitch. and roll (KVH 

Industries, Inc. 2004). 

The magneto-inductive effect sensor simply uses a single winding coil for each axis on ýI 
ferroniagnetic core that changes permeability within the Earth"s field. The sensor's coil 

serves as the inductance element in a L/R relaxation oscillator. The oscillator's freqiieiicy 

is proportional to the field being measured, and a microprocessor outputs the magnetic field 

value which calculates the orientation in the Earth's field. The PNI's TCXI series electronic 

compass are based on the magneto-inductive effect. The TCA42 compass combines a two 

axis inclinometer to measure the tilt and roll. It has simpler design )ATith low operating 

power than flux-gate effect sensor(PNI, Co. 2004). 

The inagneto-resistive effect is based on the resistance of element changes due to magnetic 

field strength. It is highly sensitive and well adapted for low fields. The Honeywell Magneto- 

Resistive (HMR) compass uses three perpendicular sensors and a fluidic tilt sensor to 

provide a tilt-compensated heading (Honeywell International, Inc. 2004). 

The table below shows the comparison of these three electronic compass techniques, 

Table 2.1: comparison of electronic compass techniques 

Flux-gate effect Magneto-inductive effect AMR effect 
Sensibility Low High High 

Power consumption High Low Medium 
Design Complex Simple Complex 

Disturbance tolerance capability Low Low High 



/-IT T. 
)-j CBAPTER2- RELATED RESEARCH AND LITERATURE SI-M-EV 

GPS/DGPS 

Every point on the surfýwe of the Earth is identified by two sets of numbers (-ýtlled coor- 
dinates. These coordinates represent the exact point wlwre ýi line parallel to Hic equator, 
known ts latitude. crosses a line parallel to the polar axis. knowii ýts longitude. The GPS 

technique employs trilateration which is the algorithm of determining position bY measuring 
distances to points at. a known coordinate (Kennedy 2002). 

The GPS includes three major segments: 

o the space segment 

9 the control segment 

o the user segment 

The space segment consists of the GPS satellites. The GPS operational constellation in- 

cludes 24 or more satellites approximatelY positioned in six orbits with 60 degree separation. 

The orbits are nearly circular with 55 degree inclination relative with the equator. The 

radius of the orbits is about 26,600 km. This constellation ensues the user located any- 

where on the surface of the Earth can use more than 4 satellites under a clear view of the 

sky. The satellites broadcast signal contains data which identifies the satellite and provides 

the positioning, timing, ranging data, satellite status and eorrected orbit parameters of the 

satellite. 

The control segment has responsibility for monitoring and maintaining the space segment. 

This includes monitoring the health and status of the satellites and maintaining the satel- 

lites in their proper position and function. The control segment includes one master control 

station, six remote control stations spread around the globe in longitude and four large 

ground antennas. The remote monitor stations keep tracking and gathering code from the 
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satellites and transmit this data, to the master control station where any adjustments or 

updates needed to upload to the satellites viýi ground antennas are corrected. 

The user segment typically referred to as a GPS receiver can decode the satellite traii, ýiiiis- 

sions to provide the position, velocity and time information to the users. 

Differential GPS, or DGPS, uses position corrections to attain greater accuracy by utilizing 

two GPS receivers. One receiver is located in a reference station whose position is ýi kiiowii 

point. Another receiver is operated as a mobile receiver. Since the precise locatioii of 

the reference station is known, it can compare that position with thesignals from the GPS 

satellites and thus correct satellite pseudo-range to the true range. Therefore this cori-ect ioii 

information can be calculated and transmitted to the mobile receiver in order to remove 

most of the satellite signal error and improve accuracy. 

Methods of differential correction fall into two broad categories: Local Area Differeiitial 

Correction (LADC) and wide area differential correction (WADC). The LADC can be w-- 

complished by: 

e using Frequency Modulated (FM) radio stations; 

e using United States Coast Guard (USCG) beacon signals-, 

e using a user purchased base station. 

N, N, 'ADC corrects the signal by using the same algorithm as with LADC. Also NVADC covers a 

much larger area than LADC by implementing stationary satellites (geo- referenced). These 

sAellites are very similar to television satellites and are not part of the GPS. These geo- 

referenced satellites track all the GPS satellites and broadcast the differential corrections 

to the users (Shearer et al. 2005). 
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2.2 Current USV projects 
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The discussion that iimv follows focuses on a variety of USN's which lmve been successfiffly 

designed and developed during the past few yeýirs. According to t, li(, different, purpose of 

the vehicles, diverse shapes of the vehicle have been designed. different propulsion systems 

implemented and various sensors combined to suppl, y the data for the NGC 

For most of the USVs reviewed in this section, the simplicity of the launcli and recovery 

operation is a common characteristic in USV design. Therefore small or medium size hulls 

are deployed in the current USVs. Today, USVs have been designed with a number of 

different hull types including (Corfield and Young 2006): 

jetski 

9 Rigid Hull Inflatable Boats (RHIB) 

e catamaran 

* custom tri-hulls 

9. patrol craft mono-hulls 

The choice of the type of the hull depends on the desired USV operation requirements 

and its numbers, types and masses of the onboard payload equipment and sensors. The 

flexibility and safety of the manoeuvres are key considerations. Also, cost constraints are 

very important. 

In this section, USVs are reviewed in three main categories: military applications, academic 

research applications and commercial applications. 
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2.2.1 Military applications 

The first military USV application can be traced back to 1588 when eight. unniallned fire 

ships were arranged by Howard and Drake to disrupt the Spanish Arnmda fleet. (Roberts 

and Sutton 2006). During the World War 11, the Canadian NavY tried to develop it torpedo 

USV COMOX to lay smoke during the Normandy invasion. Unfortunately, the COMOX 

was not deployed even though successful tests were completed (Veers and Bertnim 2006). 

After the coordinated terrorist suicide attacks by Islamic extremists on the United State,,, 

at the 11 September 2001, the USA military launched a global anti- terrori sm prograninie 

on December 2001. It is aim to expand the line of defence for preventing terrorism attack, 

as well as strengthening the USA forces anti-terrorism capabilities. FolloNving the spread 

of this programme, more investment has been made in designing and purchasing modern 

vehicles and weapons (Moir6 Inc. 2003). 

The military market has grown significantly faster than predicted. Several modern navies, 

such as, UK, Canada and Germany have started to put a stronger focus on the design of 

USVs. Hence the functions of the USVs are broadly defined as: 

9 navy coastal warfare; 

9 Anti-Submarine Warfare (ASW) surveillance-, 

4P battle space preparation and awareness; 

* battle damage assessment; 

e port and coastal reconnaissance; 

force protection-, 

9 targeting; 

9 amphibious opell area reconnaissance: 
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9 Mine Counter Measures (ý,., ICNI): 

illine sweeping and clearl"g; 

riverine operation and other special force openntiorls: 

e hydrography and oceanography survey etc. 

Owl MK II 

27 

The Ovil MK II USV shown in Figure 2.5 is a high-speed. military surveillance vehicle with 

a low-profile hull for increased stealth and payload. mid operated in a remotely controlled 

mode. It is designed to undertake imilti-missions, inelmling hydrographic survey, optical 

surveillance, data collection and mine detection by utilizing a sonar. 

The Owl MK II is powered by a niodified jetski propulsion system which is capable of 

speeds tip to 45 knots. As a military vehicle, the Owl AIK II is accommodated with 

several surface and subsurface detection sensors, such as, a side scan sonar, visual sensors, 

a iiiao'netonieter and a bathymetry sensor (Hornsby 2005). 
tD -I 

Figure 2.5: OWL Mark II vehicle (Hornsby 2005) 
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The Owl MK II hasseveral outsi andiii(g- capabilities. It can in 20 

water depths to 12 N-Ms: Hie openitor can control the USV and receive excellent video 
information within 10 -NMs. The USV is capable of undertaking eitlier daY tinie or night 

time waterside security missions. 

The Owl MK II USV has been considered for a role in harbour security and has proNided 

potential solutions for a number of technical issues in an USV area incltidiiig long range 

command and control and in theatre launch and recovery. 

Spartan 

Since 2002, the U. S. Na-,, ry has spent. $55 million over 6 years to (1(, x-(, Iol) ýi high speed un- 

manned surface vehicle named Spw-tan which can be operated remotely and atitonoinously. 

The Spartan shown in Figure 2.6 is aII in RHIB integrating with a defence and weapon 

system onboard. It can conduct a wide array of missions including littoral ASNV, mine war- 

fare, torpedo defence and intelligence, surveillance and reconnaissance with an endurance 

of tip to 8 hours (Tiron 2002). 

I 

a 

Figure 2.6: Spartan USV (Tiron 2002) 
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The navigation sYstcm includes a surface search rwlm, which (-ýIjj be used to detect incoming 

threats. An onboard side scan sonar conUcts bottom-mapping and search for tniderwl 

mine threats . 
The communications system is designed to allow the Qatlan to act as a 

node for over-the-horizon communications. 

The significant achievement in Spartan is the development of modular iiiissioii 1)ayload 

which can be simply and rapidly integrated onto the main Spai-tan platform to meet the 

requirements for the various roles that are contemplated. 

The SpaT-tan operated successfully during the Iraq war. 

Protector 

The Protector is a9 in RHIB developed by BAE Systems North America and Rafael 

Armament Development Authority Ltd., Israel. The Protector as shown in Figure 2.7 

features a single Diesel engine which drives water jets that propel the boat to speeds of 40 

knots. The onboard navigation system includes a radar, a GPS, a INS with gyro and a 

mounted video camera. This camera allows for day and night operation and has a forward- 

looking infrared laser range finder capability to detect and track targets in the near vicinity 

- The Protector is armed with a Raphael stabilized mini-Typhoon weapon system and a 

variety of stabilized cameras. (BAE Systems, North America 2003). 

The Protector is described as new generation USV which is highly autonomous and linked 

with a highly effective command and control system from land-based or mother ship sta- 

tions. The comnium cations unit maintains a constant link between Protector and the 

control station. Jam resistant communication technology is implemented on the Protector 

to allow it to send secured digital video and telemeti-Y to the command centre (point- 

to-point) through a downlink channel. Command data can be transmitted in an uplink 

channel, which is maintained even in the most hostile electromagnetic en-vii-onments. 
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Figure 2.7: Rrotcctor USV (BAE Systems, North America 2003) 

Shallow Water Influence Mine Sweeping (SWIMS) 

SWIMS system was designed to support MCA/l operations during the Iraq lXar in 2003. 0 

It is a self-contained system designed to perform high-speed mine sweeping inissions using 

inultiple USVs in a shallow water environment. Existing Combat Support Boats (CSBs) 

operated by the British Army were selected as the vehicle which could be converted into 

USVs. These USVs are used to tow mine sweeping equipment. Currently, 12 USVs are 

involved in the SWIMS system. 

The SWIMS control system was accomplished by National Instrument (NI) equipments 

With a LabViiew user interface and a custom control console. Ultra High Frequency (UHF) 
ZD 

data link is utilised to transmit the onboard sensor information, such as, GPS and compass 

etc to the main control station. 

7T -i in The SWIMS sN stem operates ahead of a main mine hunting sý stem Ný *tli*ii a9 kin ranue. 

It provided protection for the main hunting vehicle and undertook simultaneous sweeping 

7r- 

and searching operations. It, is 111,01ily maneuverable in shallow waters and capable of 
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running at speeds of up to 40 knots (Corfield and Young 2006). 

Other military USVs 

ii 

Besides the USVs discussed above, several other inilitny USVs lias been developed to meet 
the requirement of the fast growing USV market. 

Seastar and SSC San DZego USV 

In Figure 2.8, two similar USV design Scastai- (left) and SSC San Dicgo (right) are pre. - 

sented. 

-low 

Figure 2.8: Scastar (left) (Aeronautics Defense systems Ltd. 2003) and SSC San Dicyo 
(right) (SPAWAR Systems Center San Diego 2002) USVs 

The USA Aeronautics Inc. developed the Seastar USV that is a versatile platform for 

various missions even in hazardous sea conditions. The command and control station can 

be located on any marine, aerial and ground vehicles. 

Whilst the Robotics Group at the US Space and Naval Warfare Systems Center in San 

Diego have developed an USV called SSC San Diego. It is designed as a test-bed for rapid 

protot), ping and testing of new concepts. 

The SSC San Diego has a, Alan Portable Robotics System (AIPRS), Kalmaii filter and 
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waypoint navio-ation system. The USV can download tlj(ý ýý-,, tvpo-jjt "Ifoi ition before a -in<- 

mission. and an operator can stop, pause or resume the inission at any time. In order to 

provide full autonorný,, Collision Avoidance S ystem (CAS) using, radar and machine vision 

technologies are being developed (Ebken ct al. 2005). 

Sea Fox and Robosk?, 

The Sea Fox is a 16 foot aluminum RHIB manufactured by Northwhid Marine Inc., USA. 

Whereas RoboTek Engineering produced a small size USV called Roboski which has a 

similar style to Sea Fox. They are both depicted in Figure 2.9. 

Figure 2.9: Sea Fox (left) (Autonomous Flight Systems Laboratory, University of Wash- 

ington 2005) and Roboski (right) (RoboTek Engineering Inc. 2004) USVs 

They are designed as ship deployable, high speed low cost expendable small size USVs 

that contained a mast mounted at the rear of the vehicle. Stabilized cameras and a laptop 

remote control prograin are implemented in these USVs. 

Stingray and Basil 

In Figure 2.10, the Basil (left) and StIngray (right) USVs are shown. They liave both 

adopted a sinall size mono-litill with a mast carrying a con-inimilcatlon aerlal. 

The Basil is a low speed USV that can operate on a long operating time scale. While 
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Figure 2.10: Basil (left) (Veers and Bertram 2006) and Shnymy (right) (Elbit, Systems 
2005) USVs 

the Shngmy is capable of undertaking day or night missions in rentote. control or with 

pre-programmed waypoint navigation. 

-v_ 
Features 

According to the review of current military USVs, the following features can besiminiarized: 

* high speed (tip to 45 knots) -, 

e small/inedium size of the vehicle, usually in RHIB, 

9 safe, reliable, simple launch and recovery; 

9 usually remote operate from the control console; 

e precise navigation system including video cameras-, 

o strong communication capability to extend the range that the USV can operate-, 

o usually have night inission and stealth ca, pability; 

onboard weapoii and sensor systems depending upon the applications. 

RELATED RESEARCH AND LITERATURE SURVEV 
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2.2.2 Academic research applications 

\, Vorldwide, academic research groups in engineering and oceanography are becoming more 

interested in the USV area. As a result, several USVs have, been designed and applied in 

scientific missions. 

Measuring Dolphin 

Since 1998, USV Measuring Dolphin was developed within the German cooperation project 

MESSIN. Mcasurtng Dolphffi is an unmanned and independently operated catamaran hav- 

ing beeii designed as a carrier for multiple measuring devices. It can be applied in the 

field of oceanography, water ecology and hydrology in shallow waters combined with a higli 

precision positioning and navigation system (Majohr et al. 2000). 

Measuring Dolphin is a Small WAterplane Twin Hull (SWATH) catamaran using a hybrid 

power supply. An Energy Management System (EMS) was designed to check the power 

condition. When insufficient power is found, the EMS will switch off the unimportant 

equipment or reduce the driving speed to guarantee a secure return. A hierarchical structure 

was designed in order to achieve a fault tolerant performance. A mission can be carried 

out in either a remote control mode or a fully autonomous mode. 

In order to develop a navigation system with high precision, high reliability and high 

availability, the Measuring Dolpffin integrates several sensors to collect the navigational 

data, such as, heading, speed and depth. The most important one is the DGPS. A DGPS 

receiver incorporates the correctional data via a Very High Frequency (VHF) radio system 

from its reference station and receives the correctional data from the DGPS reference station 

via a High FrequencY (HF) beacon receiver. A smooth course behaviour is obtained bY an 

electronic compass which supported bY a ya, w rate gyro, vehicle speed is measured by an 
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echo sounder speed log. For a simple check of the vehicle's speed Condition. all 1111peller-log 

and a newly developed electroinaguetic loo, are used. Any anti-collisimi mimoeuvre iS hased 

on I iydro- acoustic depth mnsors which are used to determine exactlY the depth ()f'tli(, water 

and to recognize obstacles allead regarding their distance and bearing (Majohr and Buch 

2006). 

Delfim and Caravela 2000 

Over the past few years, Dynamical Systems and Ocean Robotics (DSOR. ) Lihoratory 

at Institute for Systems and Robotics (ISR) of the Instituto Superior T(cinco (IST) has 

focused on designing the uninamied marme vehicles aiid then- NGC systems. Devclopmeiit 

work has led to the construction of the Dclfiin and Caravela 2000 slioNvii in Figure 2.11 

and Figure 2.12 respectively. 

Dclfim is a small catamaran (3.5 in long and 2.0 ni wide) equipped with onboard resident 

systems for NGC, as well as for mission control. Dcýfirn is an electric propelled vehicle 

i 

Figure 2.11: Dclftm, vehicle (DYnamical SYstenis and Ocean Robotics (DSOR) LaboratorY 

2000) 
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which caii manoeuvre autonomously and perform precise path following while carrying otit 

automatic marine data acquisition and transmission to a remote control centre on a slippol-t. 

vessel or on shore (Pascoal et al. 2006). 

An attitude reference unit, a Doppler Velocity Log (DVL). and a high precision DGPS hm-e 

been integrated into its navigation system to provide accurate navigational inforiiiiition. 
The position of the vehicle can be observed from the DGPS with a mobile segment onboard, 
heading and tilt angles are provided by the attitude reference unit, ý,, (, Iocit. y is obtained bY 

the DVL. The vehicle has a similar wing shaped central structure as Measurtny Dolphi'n 

that carries all acoustic transducers and is lowered during operations at sea. 

A new navigation strategy has been reported by Pascoal and Oliveira (2003) which uses 

simple kinematics relationships. The vehicle"s velocity and position caii be estimated bY 

implementing multi-rate time-varying complementary filters based on motion sensor data. 

Figure 2.12 shows the Caravela 2000 USV which was designed as a low cost autonomous 

vehicle which is able to perform a large number of oceanographic missions without any 

support. It has a 10 m long yacht shaped hull, under the keel a 'torpedo' shaped structure 

is employed to house the sensors and other equipment. It is a long range autonomous 

research vessel currently being planned with a range of operation at least 2000 NMs with 

an average speed of 5 knots and with a duration period of two to three weeks. (Dynamical 

Systems and Ocean Robotics (DSOR) Laboratory 2000). 

Ca, ravela 2000 will operate in either autonomous or remotely controlled mode. To realize 

the precise navigation, the system includes GPS/DGPS, DVL, gyrocompass, heave, pitch 

and roll sensors. The sensor data can be sent to land or any sea platform via a remote Radio 

FrequencY (RF)/satellite communication link. This link can also transmit commands to 

the vehicle in order to re-direct the mission. In case of complete communication link failure, 

the vessel will adopt a pre-programmed plan to return to ýi point near its base (Pascoal et 



Clu AJAPTER, 2. RELATED RESEARCH AND LITERATURE SURV'EY 3-17 

--+- 

- 

Figure 2.12: Caravela 2000 vehicle (Dynamical Systems and Ocean Robotic,,,, (DSOR) 
Laboratory 2000) 

al. 2006). 

SEa Surface Autonomous MOdular unit (SESAMO) 

SESAMO depleted in Figure 2.13 was developed by Robotlab of ltýdy aii(I it, is an electric 

propelled autonomous catamaran for data acquisition and sampling for biological, chemical 

and physical investigations on the air-sea interface. Two propellers are powered by two 

electrical thrusters and the steering of the vehicle is based on the differential propeller 

revolution rate (Caccia ct al. 2005). 

The navigation system of the vessel is combined with a GPS, an azinitith gyrotrac which 

is used to compute the true north given the measured magnetic north and GPS supplied 

geographic coordinates. A video camera is fitted in the vehicle to supply the real time 

image of the operating environment and a weather station sensor is utillsed to provide 

wind speed, direction and the air temperature just above the sea surface. Auto-heading 

and LoS guidance algorithms with a Proportional Derivative (PD) controller have been 

successfully employed in SESAMO (Caccia et al. 2005). 

SESA. A1IO can operate in fully atitononious, tele-operated and Internet based tele-opei-Med 

modes. This allows the operator to control and observe the vessel not onlY from a support 
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LAN, antoru-ja 

Figure 2.13: SESAXIO platform (Caccia et al. 2005) 

,. ý6 

vessel through a radio wireless Local Area Network (LAN) within 550 in range, but, also 

from their laboratories via the Internet. 

From Artemts to AutoCat 

Since 1993 the Massachusetts Institute of Technology (MIT) Autonomous Vehicles Labo- 

ratory began to develop USVs, Artemis being the first craft to be designed. The vehicle is 

primarily designed to generate bathymetric maps (MIT AUV Lab 2000). 

A digital fluxgate compass, a depth sounder and a DGPS are used to provide navigation 

information. A simple dead reckoning algorithm uses the vehicle's heading and speed to 

estimate the vehicle's position between GPS update, and each new GPS position fix re- 

initialize the dead reckoning algorithm. A Kalman filter was implemented to propagate 

vehicle's speed based on GPS position updates (Vaneck 1997). 

Since 1998 a series of mechanical, power and propulsion improvements have been made 

to the vehicle, the USV being renamed AutoCat (shmvn in Figure 2.14). The changes 

RELATED RESEARCH A. ý\D LITERATURES( -filk -F-) - 
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emhanced the. vehic-le's reliability and ina, noeuvral)ilit, -( 11 -ýhmLiv 0 ol. 2000). Now AutoGit 

is fitted with precise navigation systems and a novel instrument, nained h1no-h-frequencY sub- 
bottom profiler. The vehicle cannot, only undertake sub-bottoin profiler surve-vs but also 

operate as a link bet, Nveen AUVs and ships or shore laboratories. 

Figure 2.14: AutoCat vehicle (MIT AUV Lab 2000) 

U- 
reatures 

In academic research applications, USVs are often used as a testbed for intelligent NGC 

systems, the features of these vehicles include: 

e normally in catainaran hulls (high stability and reasonable payload capability); 

e medium/low speed, normally around 5 knots; 

0 low cost; 

9 operate either in remote or fully autonomous mode; 

o onboard intergrated NGC systern. 
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2.2.3 Commercial applications 

Following the USV developments in militarN, and ý)cadernic research. in( 1 i lustrial or((, aniza- 
tions realized the significant growing inarket in this and then tli(,. N- began to develop 

user friendly USVs. 

MIMIR 

QinetiQ Ltd. in the UK has a wide experience of designing and operating uninaimed 

vehicles. In 2001, QinetiQ began to develop the MIMIR system, which uses multiple low 

cost USVs to accomplish networked mobile control through the land based command centre 

via wireless communication. The MIMIR EVI is one of the USVs in the MIMIR system, 
it was designed to investigate the USVs search and survey capabilities in shallow waters 
(Corfield and Young 2006). 

MIMIR EVI has a tri-hull design with a dedicated sensor pod that can be lowered through 

the water column during an operation. It is powered by a 9hp single cylinder Diesel engine 

and can endure more than 8 hours continuous performance at speeds of 3 to 4 knots. The 

navigation subsystem uses a DGPS and a fluxgate compass as the primary sensors. A sonar 

and a video camera are also used to provide real time information. Sonar image data and 

camera video data can be passed to the operator console in the mobile command centre via 

commercial telecommunications technology. The MIMIR mobile command centre is based 

on a con-imercial four wheel drive vehicle which is fitted with the PC-based command 

segment of the Mission Management System (MMS), data post-processing capabilities, a 

wireless communic at ions system and commercial data telecommunic at ions systems. System 

operators monitor and control the vehicle from the command centre (Corfield 2002). 

When the AIIAIIR EVI is driven to an operation area, over an agreed transit path, then a 
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pre-programined automatic survey pattern is implemented to accomplisli tlie , -, urvev in's- 

sion. The vehicle cýin also halt within a small area to undertake Nvýo(, r , ýinipling or otlier 

measurements. Upon completion of missions, AIIMIR EVI can either be reprogrammed Z-D 

with another mission or proceed to a designated nominal recovery point,. 

Kan-Chan 

In order to gather sufficient quality data about global warming and Nve;, ither pattern changes, 

Kan-Chan shown in Figure 2.15 was designed by the Yamaha Motor Co. to perform ýi rno- 

bile data gathering mission in the Pacific Ocean. It is the world's first unnianned ocean 

atmosphere observation boat which can collect data in great extensions of the ocean over 

long periods (700 hours). In order to realize the long duration of operM, ion. Kan-Chan is 

fitted with AC and DC generators powered by a Diesel engine plus a wind turbine gener- 

ator. The atmospheric observation instruments and water testing instruments are located 

at the bow and midships respectively (YAMAHA Motor Co., Ltd 2003). 

The vehicle navigation system consists of a CPS positioning system, a speed log, a compass, 

a wind direction and speed gauges. The system receives waypoint information from the 

control unit, and controls the rudder by comparIng the waypolnt informatlon with the 

current position as read by the GPS. The waypoint is always defined as a circle with a 

radius of 50 m, once the vehicle is within the circular area of the waypoint, the motor 

will stop running and the vehicle starts to drift. As soon as the vehicle's position outside 

the waypoint circle, the motor will start automatically and run towards the next waypoint 

(Enderle et al. 2004). 
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Figure 2.15: Kan-Chan USV (YAMAHA Motor Co., Lt, d 2003) 

Search and Rescue Portable, Air-Launchable (SARPAL) 

42 

A long established need has existed for searching and resciiiiig victims M the wm, cr M all 

weather and sea states. ISE has addressed this lack by employing an wit-miommis rescue 

vehicle SARPAL that will lessen human casualties. 

Figure 2.16: SARPAL USV (ISE group of companies 2000) 

SARPAL was initially developed by the Department of National Defense Canada for the 

purpose of search and rescue. It. is a remotely-operated, air-droppable. Diesel-powered 

I aninar Diesel which marine vehicle. The SARPAL is a RHIB configuring with 2 cylinder Y, 

can continuously operate 24 hours. Uniquely the SARPAL is launched by a CC-130 aircraft 

over the crisis site and operated froin the aircraft using command, control and live video. 
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The onboard mission package includes GPS navigation. %IHF communication. video and 

self- propuls ion, all of which are remotely operated froni the aircraft. Realtinie video ýii-e 

transferred to the control console over a single channel froin four onboard cameras. The 

fore cameras are used for searching for victims. and w, video f*(, (, (Il)ack for niýmiiall. v steering 

the vehicle from the aircraft. The aft camera monitors the aft periphery of the \-ehicle 

and victims as they embark the vehicle using the recovery ramp, wIffle the interior canient 

allows for monitoring the condition of the recovered survivors. Also waypohit, navi. -ýilioii 

algorithm is used for defining search patterns or rendezvous points for recovery (ISE group 

of companies 2000). 

-0- 
Features 

In summary commercial USVs have the following common characteristics: 

e flexible control modules for the user required missions; 

e easy to be reconfigured to meet a user's unique requirements; 

o friendly user interface-, 

9 easy maintained; 

e usually in remote control. 

2.3 USV, AUV and AAV coordinate network applica- 

tions 

Great ýichievements have been made in the various AUV. USV and AA'V projects separately. 

while recentIN, researchers set the goal of fulfilling coordinated operation of AUV, USV and 
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AAV in order to establish a fast direct, com mun I cation link between these autonomous 
vehicles and undertake a variety of missions in multiple dimensions. Effective employment 
of these autonomous vehicles can ineet ýi critical need in military. ýwii(I(, mic ; IiI(l 
commercial applications. 

GPS 
satellite. 

RPLAN communication 

AAV 91T 

'\ 
Control 

Sea surface centre 

command/control 

Communication link 
------------ GPS signal 

AUV 

Figure 2.17: Pictorial view of a coordinate operation of AUV, AAV and USV 

An obvious limitation to the use of USVs by themselves in the marine environment is the 

limited field of view of the theatre of operations. For instance, LoS are often obstructed 

by other vehicles, in the water. These shortcomings are readily overcome if the USVs are 

supported by an AAV that can act as communication relay as well as providing clear view in 

the sky over the interest area. In a similar manner, an USV can also serve as communication 

relay for an AUV, in addition the USV can survey in the shallow water where the AUV 

cannot access. The USVs can reduce the cost of expensive navigation sensors for AUV 

by acquiring position update information from an USV through a RF uplink system. The 

remote control console can transinit /receive command or data to the vehicles via a RF/LAN 

link. The general structure of this coordinated system can be seen from Figure 2.1'1. The 

cooperating systein of AUV, USV and AAV must be relatively inexpensive, fault, tolerant 

as well as simple to operate. 
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Autonomous Advanced System Integration for Managing the coordinated op- 

eration of robotic Ocean Vehicles (ASIMOV) 

In DSOR, AUV Infanteand USV Delfim (discussed in Section 2.2.2) demonstrated sound 

autonomous capabilities. In order to expand the operating coordination, the ASTMOV 

project was proposed with the aim to move individual operation to more autonomous 

group operation, whilst ensuring a fast reliable communication link between the two vehicles 
(Pascoal et al. 2000). 

As discussed in Section 2.2.2, the Delfim is equipped with a DGPS receiver, an Ultra 

Short BaseLine (USBL) unit ,a radio link, and a high data rate coniniunications link 

with the Infante AUV that is optimized for a vertical channel. The Infante's navigation 

system is integrated by an attitude reference unit, a DVL and a set of free floating buoys 

equipped with DGPS. These buoys receive acoustic emissions from the Infante and compute 

the Infante's position underwater. The computed Infante position is then transmitted 

to the Delfim. Thus, by properly manoeuvring the Delfim to remain in the vicinity of 

a vertical line along the Infante, a fast communications channel can be established to 

transmit navigational data from the USV to the AUV, and scientific data from the AUV to 

the USV. A space stabilized sonar with associate transducer elements is installed to realize 

collision avoidance and bubble detection (Dynamical Systems and Ocean Robotics (DSOR) 

Laboratory 2000). 

Mapping of Marine Habitats of the Azores using Robotic Ocean Vehicle (MAROV) 

The University of the Azores developed a similar project as ASIMOV, called MAROV. 

The key scientific contribution of this project is to generate a set of detailed maps in the 

Azores with the objective of deriving guidelines for EU habitats directive management in 

the future (The University of Azores 2001). 

Autonomous Ocean Sampling Network (A OSN) 
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AOSN was designed by the MIT AUV laboratory. and one of the i important results was the 
development of acoustic modems for sub-sea communication with AUN-s. Utilizing GPS 

navigation and RF/satellite communications the surface vehicles in such a network will 
act as a link to the underwater vehicles and allow the entire systeiii to be monitored or 
controlled from ship or shore stations (MIT AUV Lab 2000). 

FENRIR 

The FENRIR project developed by the QinetiQ Ltd. utilised a set of small USVs ýý, -hich 
focused on contributing to the network enabled operation in a broad range of roles and 

scenarios, particularly in warfare (Corfield and Young 2006). 

AAV 

A number of AAVs, such as Eagle Eye from USCG have achieved significant performances in 

completing various missions over the sky. While, at present they have not been successfully 

applied in cooperation with AUVs and USVs. It believed to be a essential and crucial 

feature for undertaking multi-demission missions in the future. 

2.4 Concluding remarks 

In this chapter, autonomous navigation systems and main types of autonomous navigation 

methods have been reviewed. Also a survey has been conducted for a number of on-going 

USV projects. The features of these USVs are compared in Appendix B Table B. I. 

For safe operation, a hierarchical structure as shown in Figure 2.18 is often adopted bY 

most of the on-going USVs - It is normally be divided into two levels: the lower level 

includes steering, engine control and payload operation, and the higher level includes NGC 
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s. vstem. reactive planning and tactical planning. 

dance and Navigation Control 

Steering II Engine control ayload 

Tactical 

Figure 2.18: USV operation hierarchical structure 
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The lower level is designed to support and supply data for the higher level, whilst the higher 

level focuses on manoeuvring the vehicle towards the target and making reýicti\-(, decision 

when the vehicle experiencing onboard faults or environmental change. Once the higher 

level failed in operation, the vehicle can guarantee a safe return to the base via remote 

control. 

USVs will play increasing roles in the fi-iture, so the improvements in the autonomous 

capabilities are crucial to their future development. Of particular importance is the abilitY 

of these systems to adapt intelligently in sensor fault situations. As the motion sensors 

play a vital role in the vehicle, it is inevitable that the sensors will experience faults, and 

their onboard sensing systems should indicate such changes. The onboard systems must 

be capable of recognizing the changes and adapting the navigation strategy accordingly 

without the human interventions. 

From the review, it has been shown that multi-sensor navigation systems are successfully 

employed by most current USVs. USV guidance systems usually use heading and waypoint 

based guidance algorithms which has been successfully applied on AUVs (Naeem et al. 

2004). According to the different purpose of the vehicles, different navigation sensors me 

combined to realize robust and accurate navigation. For a high precision positioning and 

navigation systein, GPS/DGPS is normally employed supplemented by compass. motion 

and speed sensors. For a long range data transformation vesscl. effective RF/Nvireless LAN 
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or satellite coin rymn i (- ation link are utilised. For high speed military USN's. sido scan sonar 

and visual sensors are iiecessary. High resolution video cameras are usual1v iised to allow 

remote control to take place. 

USVs normally operate in open water Nvith little environment knowledýge, therefore the risk 

of collision with other vessels or obstructions could be high and the conseqiieiices is serious. 

Most of the current USVs employ onboard video cameras to moiiitor the traffic oii tli(, 

water, the operate control console will send the USV appropriate steering command \vIiile 

collision is detected. 

Research has focused on the design of autonomous CAS during the last two d(, ca(l(,, -,, (Tan 

et al. 2004). High resolution visual, infrared, sonar or radar sensors mv implemented to 

detect the collision in advance. Consequently, the CAS will replan the mission in order to 

avoid obstructions. At present, CASs have been successfully applied in AUVs, nevertheless, 

as the expensive sensors are needed currently there are only a feý,, - USVs that utilise CASs. 

Whilst Section 2.3 briefly introduces the unmanned vehicle network operations, It is consid- 

ered there is an increasing need for onboard autonomy that can facilitate the employment 

of multiple cooperative unmanned vehicles. In the near and medium term, it is likelY 

that enhanced performances and benefits will arise from coordinated operation unmanned 

vehicles. 

A comprehensive survey has been conducted in this chapter. The next chapter elaborates 

on the hardware and software development of the SpTinger including the design of a user 

interface. 



Chapter 3 

THE SPRINGER UNMANNED 

SURFACE VEHICLE 

SprMger is being developed as an autonomous catamaran in order to conduct environmental 

and geographical surveys in shallow waters. An equally important secondary role envisaged 

for Springer is as a platform for research and student to test their own onboard systems. 

Therefore user-friendly interfaces, effective Data AcQuisition (DAQ) systems as well as easY 

maintained hardware are highlighted in this chapter. Also details regarding the onboard 

electrical components, navigation sensors, controller as well as an environmental sensor are 

given. 
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3.1 Sprznger hardware and sensor suite 

Hardware setup 

. 50 

The Sj)T7TI. qCT' USV was designed as a INIedium ýN`Aterplaiie Twin Hull (NIWATH) vessel 

which is versatile in terms of mission profile and payload. The catainaran type of the 

hull ensures high stability and a reasonable payload capability. It, is approximately 4 in 

long and 2.3 in wide with a displacement of 0.6 tonnes. Each hull is divided into three 

watertight compartments. The NGC system is carried in two watertight Peli cases and 

secured in a bay area between the crossbeams. This facilitate,,; the quick substitution of 

systems on shore or at sea. The batteries which are used to provide Ow power for the 

propulsion system and onboard electronics are carried w1thIii the hulls and are accessed by 

a watertight hatch. In order to prevent any catastrophe resulting froin -, in ingress of water, 

leak sensors are utilised within the inotor housings. If a, breach is detected the onboard 

computer immediately issues a warning to the user and/or stops the motors in order to 

minimize damage to the onboard electronics (Naeeni. et al. 2006). 

Figure 3.1: The Springer 
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A inast, is installed to carry the GPS and wireless antennaus. The xvireless antenna is used 

as a ineans of communication between the vessel and its user and is intended to be utilized 

for remote monitoring purpose, intervention in the case of errat, ic, behaviour and to alter 

the mission paraineters. The Sprilnycr is shown in Figure 3.1 and the arrangement inside 

hulls is depicted in Figure 3.2. NVInIst.. the Pell case layouts are presented in Figure 3.3. 

Wireless router Wire le route r 
Inna antenna GPS antenna antenna 

'r 

Panel (Connectors, kill switches, AC/DC 
Ca ble s tra nsfe r between the Iefi Cables transfer between the left hull and power) 

t he night h ull the right hull 
Serial/ Ethernet Beam Battery charging terminals 

connection Peli case Inverter Encoder 

battery battery A 

battery battery FII 
Forward 

Power 
I 
cables 

Controller 

Depth/ speed sensor Motor 

Figure 3.2: Side view of the Spr?, *n. qci- 

0 

a 

Figure 3-3: Peli case layouts 

The Spi-inger propulsion system consists of two propellers powered by a set of 24V 741bs 

Mimi Kota Riptide transoin mounted saltwater trolling inotors. Steering of the vessel is 
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based on differentia I propeller revolution rates. 

In order to maintain the tempera t tire inside the Pell cases, an effective but, economical 
cooling system based oil heat sinks were installed as depicted in Figure 3.4. This is vital 
for the onboard sensors otherwise the heat generated by the onboard computers gradually 
builds up to a level which could go well outside the operating temperature of the sensors. 
Ali experiment was carried out with and without the heat sinks in the Pell cases and it N,,,, as 
found that the heat sinks facilitated the regulation of temperature within the cases. 

Figure 3.4: Cooling system based oil heat sinks is installed to regulate the temperature 
within the Pell cases 

Almost all of the sensors are placed within the Peli cases with the exception of the depth 

and speed sensors which are located at the bottom of the hulls. They are connected into 

the Peli case via a E85001 interface box (Raymarine, Ltd. 2001 a, Raymarine, Ltd. 2001 b). 

Therefore speed and depth sensors' SEATALK output can be translated into serial digital 

output. The depth sensor is shown in Figure 3.5 whilst the speed sensor is located at the 

bottoin of the other hull. 

Within the rear section of the hulls, the motor controller, radio control sý, stenis and AC 

power source for the onboard computers are located. These are mounted on custom made 

plates which are simple to install and replace as depicted in Figure 3.6. 

The link from the onboard electronics to the Pell cases is created through front panels, 

show, ii in Figure 3.7 NvInch are especially designed to accommodate various connectors, cable 

Ht-;: it -, ink 
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Figure 3.5: Depth sensor at the bottom of the hull 

Figure 3.6: AC power source and other components are installed on a custom-made plate 

placed within the rear section of each litill 
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glands, isolators and emergency kill switches. The pirpose of the Isolmors is to separate 
the batteries terminals frorn the electronics circultry NvIii1st, being recharged. Whereas the 

emergency kill switches are installed on both panels mid Ire maimally operated. 

Figure 3.7: One of the front panels showing the connectors, powerswitch and an emer((-, -(, iicY 
Switch 

3.1.2 Navigation sensor suite 

In Springer, the integrated sensor suite combines a GPS, three different types of compass, 

a speed log and a depth sensor. All of these sensors are interfaced to a PC via a NI-PCI 

8430/8 (RS232) serial connector. Each of the sensors can output NMEA's 0183 standard 

sentences. The navigation sensor suite is shown in a block diagram form in Figure 3.8. The 

specifications of three compasses are summarized in Table 3.1. 

cD 

'-HMR 3000 
-TCM 

2- (. 
-KVH 

C106 
-- 

Figure 3.8: Springei- sensor suite 
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Table 3.1: Specifications of each compass 
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TCI\12 HNIR 3000 1\1\-H CIOO 
Dimension (min) 73.5x5O. 8x32.75 114. Ox46. Ox28. O -14.9x3O. 5x25.0 
Weight (oz) 1.6 0.75 
Baudrate 300-38400 300-9600 1200-38400 
Supply Voltage (VDc) +5 +12 +5 
Current (mA) 15-20 < 40 35 
Frequency (Hz) -ý 10 10 10 
Temperature (CO) -20- 70 -40- 65 -20- 70 
Tilt range (degree) ±50 ±80 ±40 
Output Digital NMEA 0183 Digital NMEA 0183 DjigitA NMEA0183 

/Analogue /Analogue /Analogue 

Three different compasses, TCN42, KVH C100 and HMR 3000, are employed in the navi- 

gation system of the Springer. TCA42 compass are based on the magneto-hiductive effect. 

It combines a two axis inclinometer to measure the tilt and roll. (PNI, Co. 2004). 

KVH CIOO is a flux-gate compass which offers modules incorporating both rate gyros that 

compensate for errors from acceleration, as well as inclinometers that provide accurate 

readings of heading, pitch, and roll (KVH Industries, Inc. 2004). 

HMR 3000 use AMR effect, it includes three perpendicular sensors and a fluidic tilt sensor 

to provide a tilt- compensated heading (Honeywell International, Inc. 2004). 

The TCM2 compass has simple design with low operating power, however it is very sensi- 

tive to the electrical and environmental disturbances. The flux-gate compass KVH CIOO 

can output accurate heading while it has more power consumption. Among these three 

compasses, the HMR 3000 is the most accurate compass with disturbance resistant capa- 

bility. 

Sensor strings 

All the sensors data, strings output in a specified forni. The strings normally include the 
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string head, main body of' the string as well as check suni at the end. The detýills of the 

main parameters of the strings are introduce In Appendix C. 

3.1.3 Controller 

To control the speed of the propulsion motors and hence the speed of the vessel, a two clian- 

nel RoboteQ's AX2850 is installed in the vehicle. The AX2850 is a highly configurable, 

microcomputer-based, dual channel digital speed or position controller with built-in high 

power drivers. The controller is designed to interface directly to high power DC motors 

in computer controlled or remote controlled mobile robotics and automated vehicle opera- 

tions. The AX2850 controller can accept speed or position commands in a variety of 

such as pulse-width based control from a standard radio control receiver, analogue voltage 

commands, or RS-232 commands from a microcontroller or wireless modem. For Springer, 

the commands to the controller are sent using the serial port communication from the 

onboard guidance and control PC (Naeem et al. 2006). 

The controller's two channels can be operated independently or can be combined to set 

the forward/reverse direction and steering of the vehicle by coordinating the motion on 

each side of the vehicle. In the speed control mode, the AX2850 can operate in open loop 

or closed loop. In closed loop operation, actual speed measurements from tachometers or 

optical encoders are used to verify that the motor is rotating at the desired speed and 

direction and to adjust the power to the motors accordingly (Roboteq 2005). 

3.1.4 Environmental monitoring sensor 

The primary plirpose of Sprmyer is to undertake pollutant tracking and to carrY out 

environmental and hydrographic surveys. Hence the need for an environmental monitoring 
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unit is of pariiiiount importance. A YSI 6600 environmental moiiit, ol-ilig sy, ýt(, jjj was thils 

procured which can be installed in a foil suspended between the litills. The YSI 6600 

is a niulti-parameter. water quality measurement and data collection systeni. It, is mainly 

intended for use in research., assessment and regulatory compliaiwe appli(, ýjt, joijs. it consists 

of asonde which is a torpedo-shaped water quality monitoring dex-icc that, is placed in the 

water to gather water quality data. The YSI 6600 sonde has multiple probes where each 

probe has one or more sensors that read water quality data. The specifications of the YSI 

6600 sonde is provided in Table 3.2 below. This device can openite in fresh, sea or polluted 

water up to a depth of 200 m. A 384 kilobytes onboard memory can store approximately 

150,000 individual parameter readings. A computer interface using RS-232 can also be 

established which allows importing data directly into a digital computer (YSI 2005). 

Table 3.2: The YS1 6600 environmental monitoring unit specifications 

YSI 6600 Sonde 
Available Sensors Temperature, conductivity, dissolved oxygen, pH, 

ORP, Ammonium nitrate, chloride, 
depth (shallow, medium, deep, shallow vented), 
turbidity, chlorophyll and rhodamine WT. 

Weight (kg) 3.18 
Operating Temperature (C') -5-45 
Operating Depth (in) 0- 200 
Interface RS-232, SDI-12 
Power 8 C-size alkaline batteries or external 12VDC 
Battery Life Approximately 90 days at 20 C' at 15 minute logging 

intervals 

Whilst this sensor suite is yet to be integrated into the Sprtnger USV, it has included for 

inforniation and completion. 

3.1.5 Other hardware 

Besides all the measurement sensors, the SpHnger is equipped with three onboard PCs 

running Windows XP. They are contained in the two Peli cases with an serial/ethernet link 
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connecting them together. These machines can be termed as DAQ PC, navigation PC mi(I 0 
the control PC. The DAQ PC runs LabView whilst the navigation and control PCs use 

ý\ IaI lab software. 

The DAQ PC acquires all the data of the sensors and transmit,,,,, them oN-(, i- t1w serial/(ýt her- 

iiet, cable to the navigation and control PCs by concatenating the desi I ýI ilia 'red ( at in one Stri ZD 
The transmit rate from the DAQ PC is 5Hz, the actual sampling rate can be specified hY 

the user to tune the navigation and controller parameters. The navigation PC proNides 

estimates of the states of the vehicle by combining data using a NISDF technique. The (-on- 

troller PC issues commands directly to the speed controller wlilch produces a differential 

thrust (if needed) in order to steer the vehicle on the desired course. 

3.2 Springer user interface 

A user interface is created in DAQ PC to monitor sensor readings and to alter the mission 

parameters if required. This user interface is accessible on a remote laptop through the 

wireless connection. A schematic diagram is shown in Figure 3.9. 

There are three main blocks in the user interface. The first block is the DAQ system with 

data logging capability, this block is an essential requirement for the user interface. The 

second block is for pre-processing, whilst the third block is for data transmitting/ receiving 

to/from NGC PC. 

3.2.1 DAQ system 

In a multiple sensor system, the DAQ program becomes the crucial issue. The Sp7-itigcr 

gathers data in parallel from several sensors via a NI DAQ card which contains 8 serial 
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Figure 3.9: SPT"I'TlqCT- user interface structure diagrain 

ports. The sensor data is then logged separately as text files on the DAQ PC. The Labview 

program receives the data from the compasses at 5H. -, whilst the GPS and depth/speed 

sensors are running at IH. -. Therefore the DAQ program will repeat the previous GPS and 

depth/speed data until a new measurement is available. Besides the nornial data acquisi- 

tion, the DAQ system will contintiously check the sentence head and specified characters in 

the sensor strings. If the sensor gives a wrong output the previously sentence will be used 

to replace the wrong sentence. 

3.2.2 Sensor raw data pre-processing 

As discussed in Section 2.1.6, the TCA/12 compass use the magileto-inductive effect tech- 

nique, this type of compass is very sensitive to electrical disturbances. Therefore, the TCN12 

output, is a noisy measurement when operating inside the Pell case where several electrical 

conliectors/equipment are running. A simple low pass filter Nvas designed to minimize these 

(list, ii i-ban ces. In order to test, the performance of this low pass filter, raw M. 112 data and 
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TCM2 fused data were collected while the vehicle was still. In Figure 3.10. the result , hows ý73 

the low pass filter effectively reduced the disturbances. 

65.5 
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7: 3 
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63.5 

14 

I 

63 

Raw TCM2 compass output 
+ TCM2 compass output after low pass filter 

62.51 
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Time (samples) 

Figure 3.10: TCM2 out, ptit with low pass filter 

In order to reduce the transmitting sentence length, the sentence head and check sum are 

reduced to a simple character. For instance, the 'GPRA/IC' is replaced by 'G'. 

3.2.3 Data transmitting/ receiving 

When the sensor data has been pre-processed, the information from the sensor will be 

combined into one transmitting sentence 

ininiediately in the following form. 

This sentence will be sent to the NGC PC 

rX k HAJR3000 data& TCA, 12 data k7 1,, NH CIOO data k7 GPS data clýý deptli/speed data 

desired heading angle & na-vilga, ti ineter k- NIPC parameter k- LQG parameter k ion para 

file naine indicator k- counter k- ) 

, rX is operating mode prefix which Nvill be used to call the different program in NGC PC. 
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For instaiwe. '1-0' is used when the vehicle runs out of space or the data collected is ýissiinwd 

to be sufficient enough for further analYsis. 'rl' is used when the control systein wishes 

clmnge the heading. Currently, 15 run types have been designed. the details of whicli mv 

given in Chapter 7. 

desired heading angle, navigation parameter, NIPC parameter and LQG parameter are wc(l 

to time the navigation and control program parameters by the user, 

file name indicator is used to save the data in different files, otherwise the clatýi will be 

rewri en, 

counter is use to record the iteration number of the program, 

) is the checksum of this sentence, 

& is used to separate different data. 

The user interface program can also receive the data from NGC PC which allow the user to 

observe the control program. Therefore the user can stop the vehicle if an error is received 

from the NGC PC. 

3.3 Concluding remarks 

This chapter has detailed the hardware, sensors and user interface required to automate 

the SprZ*nger USV. The hardware has been designed in order to allow for easy access to 

the various systems on shore or in the water. In addition the electrical propulsion sYsteiii 

eradicates any Diesel pollution. 

The user interface is aimed to provide a convenient, interaction tool for users to observe 
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and modify the NGC program. 

Having given a detailed description of Springer, the next chapter will start to discuss the 

sensor modelling process. 



Chapter 4 

SENSOR MODELLING 

System modelling is one of the most important issues for a multiple sensor n avigat loll 

system. A good model should be simple enougli to be implementable. whilst, at the scinic 
time, still represent the physical situation with a reasonable degree of accuracy. 

There are mainly two categories of modelling methods: first principle and System Iden- 

tification (SI) (Aris 1995). First principle methods implement a solution to the physical 

governing equations that expresses the relevant dynamics of the plant (Gershenfeld 1998). 

Whereas with Sl data is collected through experimentation and which then correlated with 

a suitable mathematical expression that representing the plant dynamics (Ljung 1999). 

The first principle approach offers a significant advantage in that it enables early testing 

of a system and a thorough exploration of design options. The SI approach, however, of- 

fers confidence in the accuracy of the model, and possibly provides a more efficient model 

building process. 

This Chapter describes the mathematical models employed in the computer simulation 

studies herein in order to acquire deeper insights and to cviluate the suitability of the 

proposed algorithms in MSDF- 

63 



CHAPTER 4. SENSOR MODELLING 

4.1 GPS modelling 

64 

Assume a GPS receiver is mounted at a moving vehicle. therefore the state equation for 

the position and velocity of the vehicle are approximately: 

X(t + At) = x(t) + X(t)At +I a(f 
) (Af)2 

2 

-ý(t + At) = x(t) + a(t)At (4.1) 

As the acceleration is an unknown parameter, it can be treated as a random (list urban ce - 

N (0, aa) (A. 2) 
,a 

The measurement of the GPS observer can be expressed as Equation 4.3 

+ At) = X(t + At) + V(t + At) (4-3) 

where 

N(O, 072) (4.4) 
v 

Consequently, the above equations can be rewritten as Equation 4.5: 

At 
k1k+ 

01 

I (At)4 I (At)3 
42 

(7 
2 (4.5) QA- =a I (, At)3 (At)2 

L2 
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(72 

05 

(4-6) 

The measurement frequency is 1Hz, and assume the measurement error is less than 100io. 

therefore, 

At 2' 21 and 072 =' 2500 a I/ 

4.2 Magnetic compass modelling 

Magnetic compasses play a vital role in the navigation system for Springer, consequently, 

to obtain accurate compass models is of utmost importance for the whole MSDF process. 

On the other hand, a magnetic compass is a very sensitive and complex sensor, therefore SI 

is chosen to derive a model which can replicate the sensor behaviour as closely as possible. 

SI offers an alternate route to model a sensor. This approach is quite useful for providing 

reliable and accurate models in a short time using input/output experimental data. It 

consists of the following steps: 

e data collection; 

9 characterization-, 

9 identification/estimation; 

o validation. 

The first and most importýuit step is to collect the inplit/output data of the system to be 
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identified. The choice of input signal is crucial in SI. Psuedo-Randoin Binar. v Sequence 
(PRBS) input, multiple level input and step input are always chosen as the input signals. 
Whereas for the magnetic compasses, as the compasses cannot, achieve instant correspond- 
ing output to the PRBS signal, PRBS is not suitable for deriving the conipass models. 
Therefore a inultiple input signal is used here to identify the sYstem models. 

The second step is characterization which aims to define the structure of the sYsteni to 

be identified. This includes selection of a suitable model structure. e. g. A uto- Regressive 

with eXogenous variable (ARX), Auto-Regressive Moving-Average ýN-ith eXogenous variable 
(ARMAX), and error type selection. If there is significant amount of noise in the data then 

it could be modelled separately by specifying an appropriate model type. A generic input- 

output linear model for a single output system can be written as (LJung 1999): 

nu 

A(q-')y(k) Bi(q-')ui(k - nni) + C(q-')e(k) (4.7) 

where u and y are the input and output respectively, and ui represents the ith input. A, Bj 

and C are polynomial in the delay operator q-', nni denotes the time delay in the system 

and e is the disturbance. All the above mentioned models can be obtained from the generic 

model structure by substituting the appropriate values of the polynomials. 

The third step is identification/estimation, which involves determining the numerical values 

of the structure parameters, which minimize the error between the system to be identified 

and its model. Common estimate methods are least squares. instrumental variable, maxi- 

mum likelihood and prediction error models. A common criterion used in most optimization 
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methods is the quadratic error function ulven I)v t-j . 
(Ljung 1999): 

I- 
(A. ) 

_ Y)2 min J=-y 
AT 

where y- is the predicted output from the model, y denotes the actual output,, N represents 

the number of data points and F contains the coefficient to be estimated in ýi given model 

structure. 

The final step is model validation which consists of relating the systein to the identified 

model in time or frequency domain to instil confidence in the obtained model. Residual 

analysis and cross validation tests are always employed for model validation. Residuals E 

are defined as the difference between the model output and the measured output,. For ýi 

perfect model, the residuals should reduce to an uncorrelated sequence c with zero nican 

and finite variance. Correction based tests are employed to verify if 

e(t)=E(t) (4.9) 

This is achieved by verifying if the correction functions are within the confidence intervals, 

i. e. 

0,, (n) = E[E(k - n)E(n)] = 6(n) 

0,,, (n) = E[u(k - n)E(n)] =0 

(4.10) 

(4.11) 

where 0, and Ou, represents the autocorrelation of residuals and cross correlation of resid- 

uals and input respectively. u is the excitation signal to the system and 6 is the dirac delta 
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function defined as: 

0 
S(k) = 

1 

ifý, - :ý0: 

if k 

(j 

(4i2) 

if the cross correlation test in Equation 4.11 is not verified. this means that there i,,, some- 

thing in the residuals which is originating from the input and has not been properlY taken 

care of by the model and thus the model needs further tuning. 

e(k) 

Figure 4.1: The overall SI structure 

The above mentioned features of SI are symbolically indicated in Figure 4.1 where d(t) is 

the external noise or disturbance to the plant. SI theory is well established and the reader 

is referred to Ljung (1999) for a comprehensive treatment. 
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4.2.1 Sl for the compasses 

69 

The compass SI experiments Nvere carried out many times, one of the experiniental results 

are presented here to shmv the whole process. 

The magnetic compasses were installed inside a Peli case, a multiple level input signal was 

given as the excitation signal. The outputs of the three compasses were recorded and ýirc 

shown in Figure 4.2. 
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Figure 4.2: Data collection for Sl 

ARMAX model was selected for the sensor models because it has more flexibility iii the 
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handling of disturbance modeling than other models. 

The General structure of an ARMAX model is expressed in Equation 4.13: 

A (q -') x (k + n) =:: + 

The prediction error model method is being used to estimate the system niodel. As a result, 

the compass models are shown as follow: 

TCM2 

A(q) =I-0.2796q-1 - 0.6971q- 2 

B(q) = 0.4364q-1 - 0.407q -2 

C(q) =I+0.1334q-1 

HMR 

A(q) =I-0.978q-1 - 0.0204q -2 

B(q) = 0.03386q-1 + 0.03549q -2 

C(q) =I+0.1392q-1 

KVH CIOO 

A(q) =I-0.4783q-1 - 0.5124q -2 

B(q) = 0.5504q-1 - 0.541lq -2 

C(q) =I+0.1068q-1 
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The ARMAX model,, -, identified above can be simplified as ý, tmespace inodels: 

TCX12 state space model: 

Xk+1 
0.2796 0.6971 

Xk + 0.4364 0] Ilk+ (4.14) 
10 

L 

Zk : ---- 

I101 

Xk + 1" (4.15) 

HMR state space model: 

0.978 0.0204 
Xk +10.03886 0] Uk +W 

0 

Zk -I101 Xk + 1" (4.17) 

KVH CIOO state space model: 

lk+l 
0.4783 0.5124 

Xr k+10.5504 0] Uk +W (4.18) 
10 

L 

Zk : ý-- 

I101 
Xk + Ij (4.19) 
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wlwr(,,, c and v are random variables. 

Wk - N(O, Qk) 

uk- N(O, Rk) (4.20) 

4.3 Model validation 

The Sl approach is a black box modelling technique meaning that no physical quantities 

are directly involved in this process in contrast to first principle modelling. All that is of 

interest is the cause and effect phenomena and then identifying the black box in betweeii, 

that can produce the measured system output as closely as possible for the same input. 

Some insight can be gained into systems behaviour by analysising the estimated model. 

Various techniques were employed to measure the model quality and its capability to predict 

accurately the measured response. Correlation tests are performed here to validate if all 

the sensor dynamics have been captured. The result of the correlation tests of the three 

compasses are presented in Figure 4.3 to Figure 4.5. A cross validation test is carried out 

on the TCM2 compass, the result is shown in Figure 4.6. 

The auto correlation and cross correction of the residuals for each compass are within the 

confidence bands indicating that the extracted models fit well with the measured data and 

thus are deemed adequate for further analysis. The cross validation result for the TCN42 

compass denotes that the measured and simulated outputs are in harmony, i. e. the model 

output is closely following the measure response. 
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Figure 4.3: Correlation test for TCM2 compass model (a) Auto correlation of residuals and 
(b)Cross correction of residuals and the input 
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Figure 4.4: Correlation test for HMR 3000 compass model (a)Autocorrelation of residuals 
and (b)Cross correction of residuals and the input 
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Figure 4.5: Correlation test for KVH CIOO compass model (a)Autocorrelation of residuals 
and (b)Cross correction of residuals and the input 
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Figure 4.6: Cross validation test for the TCM2 compass 



CHAPTEJ? 4. SENSOR MODELLING 

4.4 Concluding remarks 

Mathematical modelling is very important in design of a AISDF systenL Details vith 

regards to modelling of a GPS and three magnetic compasses have been presented in this 

Chapter. Two different practical ways are elaborated. The GPS inodel was derived based 

on the first principle inethod and knowledge gained from the experiment. An alternative 

method using SI was implemented to produce three compass models Imsed on input/output 

data. The results were analysised and validated. Moreover. all the compýisscs have a build 

in stabilized filter in order to reduce cross-coupling effects generated from the pitch and 

roll axes. The cross-coupling effects therefore assumed to be small and, as a result, are 

ignored here for simplicity. 

This chapter completes the sensor modelling, whilst in the forthcoming Chapter, a novel 

fuzzy logic based MSDF technique will be described and simulation results will be pre- 

sented. 



Chapter 5 

MULTI-SENSOR DATA FUSION 

Multiple Sensor Data Fusion (MSDF) refers to the acquisition, processing and syiwi-gyistic 

combination of data from several redundant sensors or different sensors in order to achieve 

better data interpretation or improved decision making (Varsliney 1997). In this chapter, 

a fuzzy logic adaptive technique is used to adjust the measurement noise covariance matrix 

(R) in Kalman filter to fit the actual statistics of the noise profile pýesent in the inconi- 

ing sensor measured data using a covariance matching method. Whilst, the process noise 

covariance (Q) matrixin a Federated Kalman Filter (FKF) is tuned by an adaptive infor- 

mation sharing strategy. This strategy enables the more accurate sensors to make larger 

contribution to the global estimation. 

Simulations are carried out using various fuzzy logic cascaded Kalman filter algorithms 

under different sensor fault situations. 

76 
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5.1 Kalman filter 

In 1960, R. E. Kalman introduced a recursive solution to the discrete-data linear hlterm- 

problem which is now known as the Kalman filter. The I\alrnan filter is a set, of mathe- 

matical equations that provides an efficient computational (recursive) means to estiniate 

the state of a proces, in a way that minimizes the mean of the squared error (Mch and 

Bishop 2004). 

The computation process of the Kalman filter can be divided into a time update process 

and a measurement update process. The time update process projects the current state 

estimate ahead in time. Whilst the measurement update adjusts the projected estimate by 

an actual measurement at that time. 

Considering the following system described in Equation 5.1: 

Zk --: = 
HkXk + 1"k (5.1) 

where xC R' is a state vector, Hc R"' is a matrix of the state space model, and vC R' 

is the measurement white noise of the state space model. 

The state vector satisfies a linear discrete time state transition, it is defined in Equation 

5.2: 

'-6k+l "' 4)kXk+GkUk + Wk (5.2) 

q) (, Rnxm is the systern state space model, GE Rmxq is the control model, uC Rq 

is a known control input, and u) (E Rm is the input noise. 
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In Equation 5.3 to 5.5. matrix Q and nmtrix R are defined as the proce,, is nolse cox-m-1,11,, 

and the measurement noise covm-iance respectively, where 

Qk if k: 
E[WkW. 

j 
I =: (5-3) 

0 if ý4 k: 

E[vkv'] 
Rk if k; 

J (5.4) 

0 if 3 :ýk; 

E[ Wk I'1jT1 = 0, for all k and i. (5-5) 

It is assumed the system of Equation 5.2 starts from an initial state xO, which is a Gaussian 

random vector with mean and covariance by Equation 5.6: 

E[xo] =: ýo 

0][Xo _ io]TI =p Ef [xo 0 (5.6) 

The time update process is presented in Equations 5.7 and 5-8: 

Xk+l (Iýkyk+ GkUk (5.7) 

(JýT (5-8) Pý+j (I)kPk k+ Qk 
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The measurement update process is shown in Equations 5-9 to 5.11: 

Kk 
- Pý-H T [Hk Pý HT+ Rkl-l kk 

Ik k1 +Kk [Zk-Hk. i-A. ] 

Pk = [I - KkHk]Pý-l [I 
- 

KkHk ]T + Iý-kRkK T 
k 

(5-9) 

(5.10) 

(5.11) 

The measurement update equations incorporate a new observation into the prZori estimate 

from the time update equations to obtain an improved posteriori estimate. In the time 

and measurement update equations, -ý4 
is an estimate of the system state vector Xr k, h-k 

I is the Kalman gain and Pk is the covariance matrix of the state estimation error. The 

'super minus' in the equation reminds the reader that it is a pnort estimate before the 

measurement. The 'super plus' denotes the estimate after the measurement update. 

5.2 Cascaded Kalman filter 

In the literature, three main Kalman filter based MSDF architectures are suggested (Gao 

and Abousalem 1993): Centralized Kalman Filter (CKF), Decentralized Kalman Filter 

(DKF) and Federated Kalman Filter (FKF). All the systems have their own advantages 

and disadvantages. 
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5.2.1 Centralised Kalman filter 
llý)' () 

A CKF based MSDF system is shown in Figure 5.1. It con-initiniemes and processes all 

measured sensor data in a cenq, ýAl site using simple KF computation techni(Ities. Tlie 

advantage of this method is that it involves minimal information loss. however, it (-an 

result in a high computational load. In addition the CKF is not robust enough when there 

is spurious data in any of the sensors. 

Sensor] 

Sensor 2 

Estimation 
Sensor 3 

Sensor ni -*I Global filter 

Figure 5.1: Centralized Kalman Filtering (CKF) 
(Gao and Abousalem 1993) 

5.2.2 Decentralised Kalman filter 

In Figure 5.2, a DKF based MSDF system is shown, it is a two stage data processing tech- 

nique which divides the standard Kalman filter into local filters and a master filter. Firstly, 

the local filters process their own data in parallel to yield the best possible local estimates, 

then the master filter fuses the local estimates to generate the best global solution, so that 

the data computation is efficient. Since the individual and global estimates for the state 

vector can be compared, decentralization leads to easy fault detection and isolation. 

In a standard Kalman filter, all the measurements are always input directly to ýi single 
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filter. kN"hilst in DKE N sensor measurements are processed by N local Nalman filters in 

parallel to Nlield the best possible local estimations. and then, a, master filter ýw-(, -(, pts the N 

local filters" output to generate the global estimation. 

Figure 5.2: Decentralized Kalman Filtering (DKF) 
(Gao and Abousalem 1993) 

The computation sequence of a DKF is described as follows. 

In the local Kalman filters: 

::::: (I)i(k)- i( 
Gi(k) Ui (k) (5.12) 

p- - 11) p+ (DT (5.13) 
i(k+l) - i(k) i(k) i(k) + Qi(k) 

invert to get P- I 
i(k+l) 

TT+ Ri(k)]- (5.14) Ki (k) -ý'ý(k)Hiz M+ 
[Hi 

(k)T)jýk)Hi (k) 

: ý+ (5-15) 
,i (k) =:: Xi (k) 

+Kt (k) 
[ Zi (k) - Hi (k) ýý i (k) 

I 
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pt - 1, 
i (k) :: - - 

Jý'i (k)Hi (k) 
I 
-1ý 

[I 

mvert to get P. + -1 where i (k) 

In the master filter: 

]T Ki(k)Ri(k)K T 
i (k) 

x (k+l) (1ý(k)i+(k)+G(k) U (k) 

4)T P(-k 
+ 1) -- 4) (k) P(+k) 

(k) +Q (k) 

invert to get P (k+l) 

P+ 
(k) 

Pýk) 

and then invert to get Ptk (k) 

N 

N 

= P+ i+ pF (k) (k) 
I Ck) 

5.2.3 Federated Kalman filter 

1ý 9 

(5-16) 

(5-17) 

(5.18) 

(5.19) 

(5.20) 

A FKF based MSDF system is shown in Figure 5.3 which differs from the DKF bY employing 

information feedback. It combines local estimates in the master filter in order to yield the 

global optimal estimate and then includes feedback information from the master filter to the 
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local filters in given proportions. The challenge in the design of a FNF is to detern-iiiie the 

feedback factor values in order to achieve higher fault tolerance and efficient computatioil. 

Reference 
sensor 00.1/90) 

Prediction 

f- 
Local filter I 

S so en 

_r: 

l: 
]-ý 

11,8(2) 

Sensor 2 Local filter 21 

/#(77) Update 

Sen-sor n-ý--ýýLoca: l fi 11ter n 

Master filter 

Global 
estimation 

Figure 5.3: Federated Kalman Filtering (FKF) 
(Gao and Abousalem 1993) 

First of all, the global information is divided as: 

Qi(k) 

P+ + 
i(k) = (111(3i)pý(k) 

(I/Oi)x + 
f (k) 

In the local Kalman filters: 

f 

where 1 11 N, subject to 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

(5.2,5) 
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. I' 
-- -- 'I) i (k) i'+ Gi 

(k) U? (k) i(k+l) 7ý i(k) 

4)T p- 4ý k)P+ i(k) + Qi(k) i(k+l) - i( i (k) 

T Hii 
( iT( + Ri (k) 

Iýt(k) ý'(k) +A (k) "ý 7(k) Hi k) 

x i (k) i (k) 
+Ki (k) 

[ Zi (k) -Hi(k)'ýi(k)l 

p+ ]T I? T 
i (k) = [I 

- Ki (k) Hi (k) I Pzýkl) [I - Ki (k)Hi (k) +Ki (k) i(k) Ki 
(k) 

where i ::: -- I,,, *, N 

invert to get P+ i (k) 

For the master filter: 

XAI(k+l) - 4)M(k)-'ý+M(k)+ Gm(k)UM(k) 

--':: (DM(k)PL(k) (DT Pýl 
(k + 1) 

+ 
M(k) + QM(k) 

invert to get PXI(k+l) 

N 

P+ -1 -1 - -1 PAW 
(k) f (k) 

(ý 4 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

(5-30) 

(5.31) 

(5.32) 

(5-33) 
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invert to get P+ 

P+ +ýP+ (5.3 4) f(k) J, Al(k) i (k) i(k) Xi (k) 
i=l 

5.3 Fuzzy logic adaptive Kalman filter 

As discussed in Section 2.1.5, since it has the capability to deal with complex problems, 

Fuzzy Logic Adaptive Kalman Filter (FLA-KF) techniques ha,,, e, become a, poptilar ap- 

proach. 

5.3.1 Fuzzy logic based adaptive Kalman filter 

A significant difficulty in designing a Kalman filter can often be traced to incomplete a 

prWrZ knowledge of the matrix Q and matrix R. These matrices are often initially estimated 

from experience or are even unknown. However, it has been shown that insufficient prioT-i 

knowledge can reduce the precision of estimation, or even can lead to divergence (Welch 

and Bishop 2004). 

The adaptation here is in the sense of adaptively tuning the measurement noise covariance 

matrix to fit the actual statistic of the noise profiles present in the incoming measured data. 

The adaptation is based on a technique known as covariance matching (Mebra 1970). 

At ýt sainple time k, the innovation In7lk is the difference betweeii the real measurement zk 

and estimated value "ýk from the filter. 
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The actual covariance is defined as an appropriation of the I"Ilk sample through averaging b 

inside a moving estimation window of size 11 (Molmined and Schwarz 1999). and it has 

the follo%ving form: 

CInnk E 

(5.35) 

where jo =k- AI +I is the first sample inside the window, Al is chosen empiricallY to 

give some statistical smoothing (Escamilla-Ambrosio and Mort 2003). Experiments I)Y the 

author have shown that a good size for the moving window is 15. 

The theoretical covariance of the innovation sequence is defined in Equation 5.36: 

Hp-HT kkýk +Rk (5-36) 

If a discrepancy is found between the actual covariance and theoretical covariance, then 

a FIS produces adjustments for the diagonal elements of Rk based on the size of this 

discrepancy. The discrepancy is defined in Equation 5.37 by a variable called the degree of 

mismatch (DoAIA. ): 

DoMk Sk 
- 

OInnk (5-37) 

If the actual covariance is greater than its theoretical value, the value of Rk should be 

decreased. If the actual covariance is less than its theoretical value, the value of Rk should 

be increased. So that three fuzzy rules can be generated as shown Table 5.1: 
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Table 5.1: Fuzzy rules for FLA-KF 

If DoMk. Then Rk 

>0 DECREASE 
<0 INCREASE 

0 IVIAINTAIN 

Therefore.. the adjustment can be applied to Rk : 

Rk= Rk-l+, ARk (5-38) 

Hence, a Single Input Single Output (SISO) FIS is produced to adjust the elen-ient 'n 

Rk. FIS can be implemented considering three fuzzy sets for DoA, Ik.: N=Negative, Z=Zero 

and P=Positive. For ARk, also three fuzzy sets are specified: I=Increase, M=Xlaintain 

and D=Decrease. The membership functions are shown in Figure 5.4. The shape of the 

membership function should be representative of the variable. In order to determine t1w 

shape of the fuzzy logic membership, several simulations were carried out to observe the 

DoMk values and adjust the corresponding Rk. Therefore the shape of the membership 

functions having been derived heuristically. 

DoMk 

-2.0 
0 2.0 

(a) DoAlk 

AR, 

-0.35 -0.1 0 0.1 0.35 

(b)ARk 

Figure 5.4: Membership functions for DoMk and ARk 
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5.3.2 An adaptive determination method for the information feed- 

back factors 

The information feedback factors (0j) in the FKF represent the unitary portion of estinia- 

tion information from the local KF in the total fusion estimation. The higher the value of 

Oj, the larger the contribution made from the local filter to the master filter at, the next, 

sampling time (k + I). In order to make the FKF adaptive with the estimation accuracies, 

an adaptive method is presented here to change the feedback factors on-line according to 

the corresponding eigenvalues of a matrix P. The eigenvalues of the matrix P in the KF 

equation represent the covariance of their corresponding state vectors (Xu et al. 2006a). 

In the FKF, the covariance matrix of the ith local filter Pi can be decomposed as: 

P. LAiL' (5.39) 

where Ai = diag(Ail, Ai2, 
--- 

AN) 
i 

Ail ' AiNare the eigenvalues of Pi, and L is the corre- 

sponding eigenvectors matrix. 

Herein, PjIPj is used to replace Pi to perform the eigenvalue decomposition. 

PTf// P =LAi(L ii 

where Aý = diag(A'I, Ai2l Aln), Yj = A2_ 
1 21 N 

2iit Z3 

(5.40) 

As a result its information feedback factor values are given by: 
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trAi 
trA' + trAl ++ trA' + trA' 12nm 

5.4 Fuzzy logic observer 

,, ý 9 

(5.41) 

In order to monitor the process of the FLA-KF, a Fuzzy Logic Observer (FLO) is imple- 

mented on-line. It uses linguistic rules to identify the quality of the fuzzy logic process. It 

was employed here as it allows the user to adjust the fuzzy logic membership functions if 

needed. This FLO assigns a weight of confidence to the FLA-KF vvith a number on the 

interval of [0,1] (Xu et al. 2006b). I DoMkj and ARk are employed as two inputs for the 

FLO with labels: sinall, medium and large. The output of FLO, fý- c [0,1], is the weight of 

confidence for each FLA-KF. Three fuzzy singletons are defined for the output and labelled 

as: good, normal and poor. 

From the FLA-KF performances, the heuristic fuzzy rules for the FLO is summarized as: 

- FLA-KF is in a Good situation-, IF jDoMkj is Small OR Rk is Small THEN fk 2' 1 

* IF jDoMkj is Large OR Rk is large THEN fk 0 FLA-KF is in a Poor situation; 

9 Otherwise, FLA-KF is in a Normal situation. 

The FLO membership functions are shown in Figure 5.5 and fuzzy rules are given in Table 

5.2. The shape and result of the membership functions were derived heuristically. 
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IDoMj Rk 

u TO 
(b)ARk 

Figure 5.5: FLO Membership functions for IDoAIk I and ARk 

Table 5.2: Fuzzy rules for FLO 

IDoMkl ARk 
Small Medium Large 

Small Good Good Normal 
Medium Good Normal Poor 

Large Normal Poor Poor 

5.5 Fault tolerant design 

90 

It has been proven that multiple motion sensors play a vital role in autonomous navigation 

(Luo et al. 2002). In real situations there is always the possibility of sensor failure, therefore, 

to realise reliable and robust navigation for SpHnger, fault detection and isolation are major 

concerns. 

At aii, y time, a sensor may stop sending information under three kinds of sensor fault: 

transient, persistent or permanent (Escamilla- Ambrosio and Mort 2004). In this paper 

these three types of fault are defined as: 

* Transient fault: the fault lasts on the sensor for I sampling time and then recovers 

to the normal operating condition. 

e Persistent fault: the fault lasts on the sensor for a few sampling periods and then 

recovers to the normal operating condition. 

(a) IDoMk I 
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9 Permanent fault: the fault, remains on the sensor until theseiisor Is Isolated physicallY. 

In ýin y of the above cwýes. the navigation system must immediatelv identify the fa, iled sensor 

and act in such a wý, iy that data from the failed sensor will not corrupt. the global estimates. 
This action can be to isolate the sensor from the list of active sensors. 

Based on the above discussion, a modified Fuzzy Logic Adaptive Federated Nalman Filwi- 

(FLA-FKF) based TMSDF architecture is proposed in Figure 5.6 to realise fault tolerant 

multi-sensor navigation for Sphnger. 

Figure 5.6: A4SDF strategy with fault tolerant feature 

A simple checking process is added before the FLA-FKF to ensure that the sensor data is 

functioning continuously. The system will check the NIVIEA sentence's header, checksum 

and specific characters. If the sensor's output does not have a complete sentence, the sYsteni 
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will recognize this output, as a fault. If the sensor gives a fault, output tllýln ý; sampling 

times, which is approximately I second, the systein Nvill use the previous ineasurenients 

instead of the current one. If the sensor continues giving the fault output, (us(, previoll'S 

values) for more than 10 seconds, the pr(ýgram will not request output from this sellsor 

immediately. This mechanism can improve the computation efficiency when the s. ystein is 

working under a large and complex sensor network. 

At the same time, a GPS output is requested by the system at IOH-. The GPS inforniatioll 

cannot only provide location of the vehicle but also guarantee successful operation (, %vii if 

all of the compasses have faults. 

After checking, the successful sensors' datum will be processed by the FLA-FKF MSDF 

algorithm. The local Kalman filters progress each sensor's data in parallel to yield the best 

estimations, according to the difference between the actual value and theoretical value of 

covariance. Fuzzy logic is then implemented to adjust the R matrix in order to decrease the 

fault sensor influence. Finally, a master Kalman filter fuses the local outputs to generate 

the global estimation. During this fusion process the feedback factors are determined 

depending on the accuracy of the local Kalman filter estimation. 

5.6 Simulation results 

In order to produce a more accurate heading angle for Springer, FLA-CKF, FLA-DKF and 

FLA-FKF algorithms were investigated. Three magnetic compasses, TCM2, KVH CIOO 

and HMR 3000, were used in the simulation. Details of these compasses can be seen from 

Section 3.1.2. Transient, persistent and permanent faults were simulated on the TCM2 and 

HAIR 3000 compasses to test the algorithms' fault tolerant capability. Similar results were 

acIdeved when the faults occurred on the KVH CIOO compass. Owing to the similaritY of 

the results, in the interest of brevity, herein onlIv the unstable compass TCM2 and most 
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accunite coinp&ss MIR 3000 are presented. The results are compared based on the Root 

1\, Iean Square Error (RIUSE) of the heading angle. MATLAB code was developed and used 

to simulate and test the proposed algorithms. 

The experiirnents were carried out in the laboratory. Three compasses and a GPS, an 

Inertial Measurement Unit (IMU) were mounted on a trolley. The real position data ývere 

collected from an IMU and a GPS, the mean value of the measurements are used for real 

posi ion. 

Recalling the compass models from Section 4.2.1, the initial values for Q and R matrix are 

given below, other initial parameters are chosen as 0. 

0.1 0 
QTCA12 QHMR::::::::::: ý QC100 

0 0.1 
L 

RTCM2 
22 

0 

0 

22 

0.7 
RHMR 

0 
L 

Rcloo 
1.5' 

0 

0 

0.7 2 

0 

1.5 2 

(5.42) 

(5.43) 

(5.44) 

(5.45) 
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5.6.1 Fuzzy logic based MSDF algorithm with transient faults on 

the TCM2 compass 

In this section, FLA-CKF. FLA-DKF and FLA-FKF are employed for the three collipasse, ", 

of SpT-Znger. In order to compare the robustness of each algorlthm, trýln, '-'lent, fault. s Nvere 
introduced to the TCM2 compass at, 100,200,300 and 400 samples. 

FLA-CKF 

Using the fuzzy logic algorithm discussed in Section 5.3.1, a FLA-CKF fuses the three com- 

pass measurements and a global estimation was consequently achieved. The performance 

is shown in Figure 5.7, the sensor faults have not been effectively reduced in the ovendl 

fusion result, apparently, this algorithm is not robust when sensor transient fault, situations 

prevail. 
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Figure 5.7: FLA-CKF performance with transient faults on the TCX12 
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Figure 5.8 presents the results for the FLA-DKF. the thive compass nieýtsiiivnicnts are 

fused locally before the master fusion procedure. The result demonstrates tliM FLA-DKF 

can reduce the sensor transient faults and output fault tolerant fusion result. 
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Figure 5.8: FLA-DKF performance with transient faults on the TCM2 

FLA-FKF with fixed feedback factors 

The performance of a FLA-FKF is presented in Figure 5.9, in which the sensor's accuracy 

decides the feedback factors in the FKF. After experiments, the most accurate compass 

was found to be the HMR 3000 and was given a 0.5 feedback factor. Whilst for KVH CIOO 

and TCM2 the feedback factors were 0.35 and 0.15 respectively. The global estimation 

accuracY of this algorithm is higher than the FLA-DKF algorithm. 
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Figure 5.9: FLA-FKF with fixed feedback factors under transient faults on the TCM2 

FLA-FKF with adaptive feedback factors 

In Figure 5.10 the results for the FLA-FKF, which include the adaptive feedback factors, 

are presented. The feedback factor values are shown in Figure 5.11. Compared with 

previous simulation results, this algorithm outputs the best fusion result under transient 

sensor faults. The information feedback factors were tuned continuously according to the 

accuracies of each local Kalman filters. 

In this section, with transient faults on the TCM2 compass, FLA-CKF, FLA-DKF and 

FLA-FKF are employed to fuse the sensor measurements. In Figure 5.7, the FLA-CKF 

algorithm was implemented with transient faults in the TCM2 compass. When the transient 

faults occurred in the TCM2, the KVH C100 and HMR 3000 compasses operated under 

normal conditions. The result shows that the FLA-CKF cannot minimize the transient 

fault disturbances effectively. Therefore the FLA-CKF is not suitable for a fault tolerant 

inulti-sensor navigation system. FLA-DKF and FLA-FKF "vith fixed feedback algorithm 

ciiii reduce the sensor faults, however the FLA-FKF algorithm with adaptive feedback can 
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effectivelv improve the fusion accuracY. 
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5.6.2 Fuzzy logic based MSDF algorithms with persistent faults 

on the TCM2 compass 

Four persistent faults are simulated on the TCM2 compass at times 100.200,300 and 400 

samples respectively. Fixed values are given with a duration of 10 samples. 

As the FLA-CKF was not robust enough to tolerate transient faults in Section 5.6.1, in 

this section only FLA-DKF and FLA-FKF algorithms will be implemented under persistent 

sensor fault conditions. 

FLA-DKF 

The performance of the FLA-DKF under a persistent fault condition is presented in Figure 

5.12. The persistent faults are effectively reduced in local filters, therefore the global fusion 

accuracy has not been largely disturbed by the sensor faults. 

FLA-FKF with fixed feedback factors 

Results for the FLA-FKF with fixed feedback factors (same as in Section 5.6.1) running 

with a persistent sensor fault are shown in Figure 5.13. The persistent faults are reduced 

and the overall fusion errors are smaller than FLA-DKF. 
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Figure 5.12: FLA-DKF under persistent faults on the TCM2 
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FLA-FKF with adaptive feedback factors 
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The performance of the FLA-FKF with adaptive feedback is shown in Figure 5.14, where 

the feedback factors for the FLA-FKF are shown in Figure 5.15. Similar with the transient, 

fault situations, FLA-FKF with adaptive feedback approach gives the best fusion accuracY, 

and the information feedback factors are adaptive according to the local filters" output. 
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Figure 5.14: FLA-FKF with adaptive feedback factors under persistent faults on the TCM2 

Figure 5.8 and Figure 5.12 present the performance of the FLA-DKF with the transient 

and persistent faults in the TCM2 respectively. The results demonstrate that the FLA- 

DKF can output a stable global estimation. In comparing fusion accuracy, the FLA-DKF 

reduced the heading RMSE (from 201 to 500 samples) to 0.8520 degree, which is nearly Z 
3 

that of the FLA-CKF. For the FLA-DKF with persistent faults in the TCM2, the heading 

RMSE(from 201 to 500 samples) increases to 0.9230 degree. The reason for the increase in 

error is that the persistent faults were simulated on the TCM2 for 10 samples, while the 

transient faults last on the TCM2 only for I sample each time. 

Figure 5.9 and Figure 5.13 show the performances of the fixed feedback FLA-FKF algo- 

rithin, NNhere the feedback factors were distributed according to the sensors' stability. This 
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approach gives a higher fusion accuracY compared with the FLA-DKF. 
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Whereas, in Figure 5.10 and Figure 5.14, the FLA-FKF with an adaptive feedback algo- 

rithni produced the most accurate and robust perforniance under transient and persistent 

fault situations. The inforination feedback factors shown in Figure 5.11 and Figure 5.15 

were tuned continually according to the accuracies of each local Kalman filter. The feedback 

factors play a vital role in improving the NISDF robustness and accuracy. 

5.6.3 Fuzzy logic based MSDF algorithms with a permanent fault 

on the TCM2 compass 

III this section, a permanent fa-ult Is simulated on the TCX12 compass froin 300 samples 

with an output of zero. 
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The FLA-DKF was used to estimate the yaw angle when a permanent sensor fault existed 

in the TCN12 coinpass. Simulation results are sho-ývn in Figure 5.16. Unlike transient, 

and persistent faults, permanent fault will last on the sensor until the sensor is isolated 

physically, therefore the disturbance to the global estimation accuracy could be large. Using 

FLA-DKF, the fault, is not been reduced in the local filter. consequently, the overall fusion 

accunicY is decreased. 
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Figure 5.16: FLA-DKF under a permanent fault on the TCM2 

FLA-FKF with fixed feedback factors 

Also for the permanent fault situation, the FLA-FKF algorithm performance wit'll fixed 

feedback factors (same as in Section 5.6.1) is presented In Figure 5.17. The permanent 

fault, is reduced in local KF, therefore the overall fusion accuracy is better than FLA-DKF. 
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Figure 5.17: FLA-FKF with fixed feedback factors under a permanent fault on the TCX12 

FLA-FKF with adaptive feedback factors 

The FLA-FKF algorithm with adaptive feedback was applied to the compasses, whilst 

operating under a permanent sensor fault condition in the TCM2 compass. The simulation 

results are presented in Figure 5.18 and the adaptive feedback factors are shown in Figure 

5.19. Using this approach, the permanent fault is effectively reduced and global estimation 

error is decreased. 

A permanent fault rarely occurs under normal operating condition, however it brings serious 

problems to a navigation system if such an event takes place. In Section 5.6.3, a permanent 

fault is simulated on the TCM2 to verify the fault tolerance capabilities of the algorithms. 

From Figure 5.16 to Figure 5.19, the FLA-DKF and FLA-FKF algorithms were employed 

under a permanent fault condition in the TCX12. Comparing with the FLA-DKF, the fixed 

feedback FLA-FKF gave more accurate global estimations. In the FLA-DKF. three local 

fuzzy logic Kalman filters were treated evenly in the master filter, also there is no infor- 

-200 
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mation feedback from I he master filter to the local filters, so AN-lien Ihe permanent fault 

disturbances cannot be recovered in local Kalman filters. these disturbances consequently 

decrease the global estimation accuracy. While in the fixed feedimck FL. A-FKF. the feed- 

back factor for the faultY sensor TCN, 12 is lower than the most accurate 11MR 3000 sensor. 

The HMR 3000 made more contribution than the TC. M2 to Hie global estillimioll, hence 

the permanent fault disturbances was therefore reduced. 

In Figure 5.17, the FLA-FKF algorithm with the adaptive feedback algorithm was iin-csti- 

gated with a permanent fault situation in the TCM2. A comparison of the different algo- 

rithms' heading RMSE values substantiates that the adaptive feedback FLA-FKF ýipproach 

provides the best result under this fault condition. This improvement. in fusion accurac, y 

and fault tolerance is related to the use of the adaptive information shmv stratego-Y in the 

FLA-FKF. 

5.6.4 Fuzzy logic based MSDF algorithms with transient faults 

on the HMR 3000 compass 

As a comparison, the most accurate and stable sensor HMR 3000 is simulated with tran- 

sient, persistent and permanent faults. From Figure 5.20 to Figure 5.31 a similar conclusion 

can be reached, however the global estimation accuracy will be reduced and errors will be 

amplified in the global estimation. The RMSE result is shown in Table 5.4. 

FLA-DKF 

In Figure 5.20, FLA-DKF is implemented under transient faults on the HAIR 3000 compass. 

The transient faults are reduced in local filter and global estimation error is reduced. 
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Figure 5.20: FLA-DKF performance with transient faults on the MIR 3000 compass 

FLA-FKF with fixed feedback factors 

Figure 5.21 presents the simulation result of FLA-FKF with a fixed feedback factor algo- 

rithm under transient faults on the HMR 3000 compass. Comparing with Figure 5.20, the 

FLA-FKF with fixed feedback algorithm output more accurate fusion results than FLA- 

DKF. 

FLA-FKF with adaptive feedback factors 

FLA-FKF with an adaptive feedback factor algorithm is employed, the simulation result 

and feedback factors are shown in Figure 5.22 and Figure 5.23 respectively. This approach 

presents the best fusion results and it can effectively reduce the fault disturbances bY 

employing adaptive information feedback factors. 
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Figure 5.21: FLA-FKF performance with fixed feedback factors under transient faults on 
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Figure 5.23: Information feedback factors (3j)under transient faults on the HNIR 3000 

5.6.5 Fuzzy logic based MSDF algorithms with persistent faults 

on the HMR 3000 compass 

FLA-DKF 

The siniulation result shown in Figure 5.24 presents the FLA-DKF algorithm performance 

under persistent faults on the HMR 3000 compass. The persistent faults a re generally 

reduced by local fuzzy logic KF. 

FLA-FKF with fixed feedback factors 

Results for the FLA-FKF with fixed feedback factors (same as in Section 5.6-1) running 

NýAh transient sensor faults on the HAM 3000 compass are shown in Figure 5.25. The fault 

-F. disturbances are reduced and a better fusion accuracy is achieved than FLA-Dl\. 
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Figure 5.24: FLA-DKF performance under persistent faults on the HMR 3000 compass 
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In Figure 5.26, FLA-FKF with an adaptive feedback algorithm is implemented, the feedback 

factors are shown in Figure 5.27. Similar as the simulation above, this approach generate 

the best fault tolerant and most accurate fusion results. 
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Figure 5.26: FLA-FKF performance with adaptive feedback factors under persistent faults 

on the HMR 3000 compass 
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Figure 5.27: Information feedback factors (A)under persistent, faults on the HMB 3000 

5.6.6 Fuzzy logic based MSDF algorithms with a permanent fault 

on the HMR 3000 compass 

FLA-DKF 

A permanent fault occurred at the MIR 3000 compass, the FLA-DKF is employed to 

test the fault tolerant capabilities, the result is shown in Figure 5.28. From the result, 

apparently, the local filter cannot minimize the permanent fault and the overall fusion 

accuracy is reduced. 

FLA-FKF with fixed feedback factors 

Also under the permanent situation, the FLA-FKF with fixed feedback factors (same as 11, 

Section 5.6.1) performance is presented in Figure 5.29. The permanent fault disturbance 

is generally reduced. The overall fusion accuracy is better than FLA-DKF. 
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Figure 5.28: FLA-DKF performance with a permanent fault on the HN4R 3000 compass 
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Figure 5.29: FLA-FKF performance with fixed feedback factors under a permanent fault 
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Finallv. the FLA-FKF with an adaptive feedback factor performance is shown in Figure 

5.30, the adaptive feedback factors are shown in Figure 5.31. Again. this approach output 

the inost accurate fusion result under a permanent fault on the HMR 3000 compass. Tll(, 

adaptive feedback factors play a vital role in improving the fusion accuracy. 
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Figure 5.30: FLA-FKF performance with adaptive feedback factors under a permanent 
fault on the HMR 3000 compass 
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Figure 5.31: Information feedback factors (f3j)under a pernialient fault, on the HNIB. 3000 

5.7 GPS fusion simulation results 

In Figure 5.6, apart of the main FLA-FKF structure, a reference sensor GPS is also in- 

cluded. It is used to provide real time vehicle position including longitude, latitude as well 

as the vehicle heading and speed. Also it can be used as an indi,., idual navigation system if 

all of the compasses have permanent faults. This can be done by changing the parameters 

via user interface. 

The CPS outputs the vehicle's real time longitude and latitude in degrees, however, when 

the vehicle undertake surveying tasks, in order to provide the information of the distances 

from the vehicle to the waypoints, the degree of the Longitude and Latitude components 

needs to be changed to meters by the following rules(Loebis 2005). 

One degree of Latitude= 111 Km and 

One minute of Longitude= 1855 x cos(Latitudc) m 
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Figure 5.32: GPS fusion result 

11. ) 

A GPS niodel has been derived at Section 4.1, a fuzzy logic based standard Kalman filter 

is implemented to the onboard GPS, the fusion results are shown in Figure 5.32. 

5.8 Concluding remarks 

In this chapter, various cascaded Kalman filter strategies integrating fuzzy logic have been 

presented for use in the SpTtngeT- vehicle. 

Various fault situations where is shown in Section 5.6 are simulated, the RMSE values of 

the NISDF headings are recorded in Table 5.3 and 5.4. 
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Table 5.3: RXISE (degree) comparison under the TC-N12 compass faults 

Transient faults on Persistent faults on Permanent fault on 
Algorithms the TCM2 compass the TCN12 compass the TCM2 compass 

0-200 201-500 0-200 201-500 0-200 201-500 
samples samples samples samples samples samples 

FLA- CKF 4.1499 
FLA- DKF 4.5582 
FLA- FKF with 
fixed feedback 4.3143 
FLA- FKF with 
adap tive feedback 5.3025 

1.8280 
0.8520 3.9290 0.9230 3.4214 2.5131 

0.8395 4.1782 0.8500 3.7206 1.7765 

0.7930 5.1014 0.8150 5.2004 1.2452 

Table 5.4: RMSE (degree) comparison under the HMR 3000 compass faults 

Transient faults on Persistent faults on Permanent fault on 

Algorithms the HMR 3000 the HMR 3000 the HMR 3000 

compass compass compass 

0-200 201-500 0-200 201-500 0-200 201-500 

samples samples samples samples samples samples 

FLA-DKF 3.9032 
FLA-FKF with 
fixed feedback 6.5207 
FLA-FKF with 
adaptive feedback 6.0720 

1.6400 4.1052 1.8770 3.6152 4.6253 

1.2036 6.5230 1.5396 5.6830 3.5010 

0.9870 5.2196 1.1631 5.2274 1.9414 
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5.8.1 Discussion 

In USVs, navigation sensors operate under unpredictable conditions. A, ý, a Consequence. 

transient and persistent faults are always a possibility in a multi-sensor navigation svstcm 

which can lead the system to instability. Thus the , -,. N-st, eni needs i fault tolerant MSDF 

algorithm to overcome such problems. 

In order to achieve an accurate data analysis, the RNISE values were calculated froin I 

to 200 samples and 201 to 500 samples separatel. y. Therefore the RMSE value of the fir. st 

200 samples can be used to analysis initial parameter tuning speed. Whereas the RNISE 

value of the last 300 samples can indicate the fault tolerant capabilities. In the výirious 

simulations above, the heading and relevant parameters choose 0 as the initial x-ýibw. The 

MSDF algorithms need to tune the parameters to the corresponding state, consequently 

instability results always occurred at the first 200 samples. From the RAISE results slioNvii in 

Table 5.3 and 5.4, at the first 200 samples, the FLA-DKF gives a more accurate result than 
-4-. both FLA-FKF algorithms, whilst the FLA-FKF with the fixed feedback factor approach 

outputs better results than the adaptive feedback FLA-FKF approach. 

It is worth noting that initially the adaptive feedback factors were very oscillatory at the 

beginning of the simulation and then settled down in approximately 20 samples. The 

feedback factors were in a self adaptive process, where they attempt to find suitable values 

instead of the current values. This self adaptive process took place not only at the beginning 

of the simulation but also when the local fuzzy logic Kalman filters gave unsatisfactory 

values to the master filter. Also from the results of the feedback factors, it is found that 

they did not start to tune the values at 100,200,300 and 400 samples. The reason for 

this is that the self-tuning strategy changed the feedback factor values after the local ftizz. y 

logic Kalman filter process. Thus, the fault disturbances were modified by the fuzzy logic 

stratego )-Iv. 
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5.8.2 Q and R matrices analysis 

II 
llý 

According to the simulation results and discussion above. mving to an outstanding fault 

tolerant capabilities, FLA-FKF with adaptive feedback algorit. lini 1, sselecte(l as the onboard 

navigation systei-ri forSpYinger. 

For a MSDF system design, an accurate model and adaptive R and Q matrices are crucial 

to improve the system fault tolerant capabilities. Consequently. the R and Q inatrices of 

the FLA-FKF are analysised here. 

An inappropriate value of the Q matrix can result in the Kahiian filter becoming unstable 

or divergent. An propriate Q matrix enables the Kalman gain (K) to rapidly settle down to 

steady state values (Grewal and Andrew 2001), therefore the fusion result can be ýiccurate 

and efficient to reduce the noise/fault measurement. 

In the FLA-FKF algorithm, the Q matrix is tuned according to the information feedback 

factors. From the simulation results and RIVISE values from Table 5.3 and 5.4, the overall 

fusion accuracy is improved by employing adaptive information feedback. The adaptive 

information feedback allows the Q matrix to find in suitable values by utilising the eigen- 

values. The value of the Q matrix under a permeant fault on the TCM2 is presented in 

Figure 5.33, the adaptive process is similar with the information feedback factors (0j). 

The fuzzy logic adaptive strategy introduced in Section 5.3 allows the R matrix to be 

adaptive according to the difference of the the value of the theoratical innovation covariance 

and the practical innovation covariance. For a FLA-FKF under a permanent fault on the 

TCA12, the adaptive R niatrix values are shown in Figure 5.34. 

In order to verifv that the fuzzy logic strategy has been effectivelv improve the MSDF 

fusion accuracv. now, the FKF with adaptive feedback factor strateggy (NN-ithout fuzzýý logic) 
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Figure 5.33: Adaptive Q matrix of a FLA-FKF with a perinanent, fault on the T012 
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Figure 5.34: AR of a FLA-FKF with a permanent fault, on the TC-M2 
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is implemented on the sensors ývitli a permanent fault on the TC. ý12. 
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Figure 5.35: FKF with adaptive feedback factor under a permanent fault on the TCM2 

From the simulation above, apparently, the fuzzy logic and information feedback strategy 

are both important in improving the fusion accuracy. In Figure 5.36, both fuzzy logic 

and information feedback strategy are not involved, clearly, the overall fusion accuracy are 

reduced considerably, and cannot tolerate the permanent fault occurred on the TCM2. 

In Table 5.5, the RMSE of various FLA-FKF situations are compared. The fusion accuracy 

of the FKF (without fuzzy logic and adaptive feedback) is dramatically reduced. According 

to the analysis and RMSE values, the fuzzy logic adaptive strategy is the most important 

technique in the proposed FLA-FKF. The adaptive information feedback algorithm can 

also reduce the disturbances from the sensor fault, and it can significantly improve the 

overall fusion accuracy when it works together with fuzzy logic. 
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Figure 5.36: FKF without fuzzy logic and adaptive information feedback with a permanent 
fault on the TCM2 

Table 5.5: FLA-FKF RMSE (degree) comparison under a permanent fault on the TCM2 

compass 

Algorithms RMSE 
0-200 samples 201-500 samples 

FLA-FKF with adaptive feedback factors 5.2004 1.2452 

adaptive Q and adaptive R 
FLA-FKF with fixed feedback factors 3.7206 1.7765 

fixed Q and adaptive R 
FKF with adaptive feedback factors 5.796 9.0460 

adaptive Q and fixed R 
FKF with fixed feedback factors 6.7'174 14-6510 

fixed Q and fixed R 
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5.8.3 Concluding remarks 

122 

In this chapter, three types of cascaded FLA-KF were exanuned under different sensor 
fault situations. An adaptive determination method Nvw, proposed to improve the fault 

tolerant capability for the FLA-FKF. In addition a FLO was designed to ýussess the fuzzY 

logic performance. 

Comparing these FLA-KF algorithms, they are all seem to have their advantýq-, )cs and 
disadvantages. 

The FLA-CKF is a very straightforward method with one level fusion process, however, it, 
does not recover transient faults very well. In addition it has a heavy computation load. 

Whereas, the FLA-DKF and FLA-FKF are both t, Nvo level fusion methods and fuzzy logic 

has been implemented on both of these levels to adapt the R matrix. From the perfor- 

mances, it appears that the FLA-DKF is more adequate to give an accurate global estima- 

tion, nevertheless, its fault tolerance capability is not as good as the FLA-FKF. However, 

the FLA-DKF has the advantage of a higher computation efficiency. 

The FLA-FKF has been featured, and its potential for fault detection and recovery has been 

demonstrated through simulation. The adaptive information feedback factors improve the 

robustness of this algorithm. Thus the FLA-FKF is more suitable for the fault detection 

and recovery purposes. 

The FLA-FKF algorithm with adaptive feedback factors will be implemented in the Springer 

vehicle. This algorithm combines in a synergetic way all the advantages that the various 

iipplied techniques offer. Fuzzy logic based Kalman filter improves the individual local 

IN. alnian filter estimation by tuning the R matrix. Also the FLO provides an interface 

for the user to monitor the on-line tuning process. The FKF architecture offers enhmced 
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capability to deal with imprecise sensor measurement. In addition, the adaptive feedback 

factors can strengthen the estimation accuracy according to the performance of the sensor 

subsystem. 

This chapter concentrates on the design of a fault tolerant MSDF in the next chapter, a 

novel fuzzy logic based MMAE is developed for Sprtnger navigation system. 



Chapter 6 

MULTIPLE MODEL ADAPTIVE 

ESTIMATION 

In Kalman filter design, there are usually large uncertainties in some parameters because 

of inadequate prZor knowledge about the process. Or some parameters might be expected 

to vary slowly with time, however, the nature of the change is not predictable. Therefore, 

ýIultiple Model Adaptive Estimation (MMAE) technique was proposed by Magill (1965) 

after Kalman's original paper. In the following years, MMAE has been widely adopted 

and modified, and it is recognized as a feasible approach in a number of applications, such 

as, precision geodesy, fault classification, target tracking, ballistic missile interceptlon etc. 

(Brown and Hwang 1984, Girgis and Brown 1985, Blair and Bar-shalon 1996, Shima et al. 

2002). 

In this Chapter, a modified MMAE algorithm combined with a FLA-CKF is implemented 

on the multiple sensors to achieve an accurate and adaptive heading for Springer. Simula- 

tion results are presented to verify the algorithm's robustness by varying the measurement, 

I tivelv. ilol,,, (, coN-m-lance (R) and the process noise covariance (Q) respec 

124 
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6.1 Preliminary 

In general. a INIAIAE algorithm can be shown diagrammatically in Figure 6.1. Tlie MMAE 

algorithm employs a bank of parallel Kalman filters, termed ýus elementary filters. Eacli 

elementary filters is based on a hypothesized parameter vector. (I(I), (1(2). - a(11), where 

a(Z) is the constant parameter vector for the z th elemental filters. The elemental filters act 

upon a measurement vector z to derive a state estimate ýýj, a residual vector ri which is 

the difference between the measurements and the filter's prediction of the measiii-enients, 

and a residual covariance Si. 

xn 

Figure 6.1: MMAE algorithm 
(Hanlon and Maybeck 1998) 

The residuals are used by the hypothesis algorithm as a relative indication of how close 

each of the filter's models is to the true model. The smaller the residual the closer the filter 

model matches the true model. 

The hypothesis algorithm computes the conditional probabilities (pi) for each of the ele- 

mental filters. These probabilities are then used to weight the individual elemental Kalman 

filter stak, estimM, es (. i-i) to produce an optimal estimate for the true ,, tates 

NVIien the MMAE algorithin is used for system failure identification, each of the elemental 
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Kahnýin filters models a different failure situation. The residuals of each Kalinan filter 

specil'y how close that filter's model is to the actual failure condition. The hypothesis 

o1gorithin is therefore an estimate of the current failure status of the s. vsteni (0). 

Comparing with the standard Kalman filter, the JAINIAE Is generally able to determine 

the correct parameter values more accurately. In addition, bv running multiple eleitiental 

filters in parallel, the residual information at each update is used to identify the systeni 

parameters or system failures and offer an adaptive solution while a systeiii failure occurs. 

On the other hand, the MMAE algorithm produces the state estimates using multiple 

elemental filters, particularly if a large number of filter states are needed to capture, the 

nature of the system dynamics. The computation, therefore, can be intensive. In order 

to improve the computation efficiency, several algorithms, such as, 'moving bank', 'filter 

simwning' have been proposed (Vasquez and Maybeck 2004, Fisher and Maybeck 2002. Li 

and Bar-shalon 2000). The research carried out here assumes that efficient computational 

power exists, so methods to increase computational efficiency are not emphasized. 

6.2 Theory development 

Recalling Equation 5.1 and 5.2, for MMAE, there are n elementary Kalman filters: 

Zk(n) = Hk (n) 
-"r- k (n) + 1"k (n) (6.1) 

Xk+I (R) 41) k(n) -Xk 
(R)+ Gk(n)U k(n)+ Wk(n) (6.2) 
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The residual of the E-. ýilman filter c, -m be calculated as: 

I'k (n) Zk (n)- Hk(n)i(71)ý k (6.3) 

The i-(,,,,, idtial covariance is defined in Equation 5.36 as- 

Sk(n) = Hk(rt)Pk(n)-Hk'(Ti) + Rk(fl) (6.4) 

Herein, Z* is defined as a growing length measurement history vector consisting of all k 

measurement vectors from ZO to Zk-I 
. Let a represent an uncertain parameter which (-ýin 

affect any model matrices in the system model of Equation 6.2. 

A goal of N/INIAE is to find the joint conditional Probability Density Function (PDF) for the 

state and a conditioned on the entire measurement history Z*, this process is represented k 

in Equation 6.5: 

(ýJa = aZ* = Zk) falZ* (OIZZ = Zk) fXk7OlZk (ý! GlZk fXklOiZk* 
kk 

Zk) 

fl f2 

where ý and Zk are variables representing the state vector and measurement history. 

(6-5) 

Consider the first density fI of equation6.5, this density is conditioned on a particular 

realization of a, and it is analogous to the standard conditional density used in a Kalman 

filter for state estimation. 

The second density f2 in Equation 6.5 can be expressed as: 

a= oz, Z* (alz*- = 4-1) 
-, 

= Zk-1)falZ*_, 
k1 fZ-ja, Zk-1 

Wkk 
k (6-6) 

Z, * ý 
«1 1 zk*- = ZJ 

j(alZZ_, = Zk-1)dce Z k (ýJa= al Zk-1 k-1)falZZ- k 1 
fZ* ja, k 

Zk-1 k 
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The priori density for (i can be defined by Equation 6.7: 

, 
fao ((0 - Epo(l? )6(ce - a(n)) 

n=l 

The hypothesis conditional probability Pk(n) is expressed in equatioil6.8. wll(, i-(, a= a(ri) 

with a realized measurement historY ZA.. 

In, .0 Pk(70 =-- in b[a = a(n) 
lZk = Zkl 

Substituting Equation 6.7 and Equation6.8 into Equation6.5 yields: 

Pk(n) = 

fZ-la, 
Zk-1 (zýJa = a(n), ZZ-1 = Zk-1)Pk-1(1ý) 

, 
(, zý. jo = a( -), Z*-, = Zk-1)falZ*-11)1�-1(. , ') fZZ1a, 

Zk- 3 k- 1 
kk 

(6.8) 

(6.9) 

where the prior conditional proba, bilities, pk- I (J)is used to weight the conditional densities 

of the current measurements, assuming each hypothesis, and then normalizes it over the 

complete set of such numerator terms. 

In equation6.9, 
fZ* 

la, Zk- 1 
(Zkla 

= a(n), Zý-, 
k 

and Hwang 1997): 

fZ- 
a, Zk 

-1 
(Z'kja 

= a(n), Zk*-, = Zk-1) 
k 

Zk-1) can be calculate in Equation 6.10 (Brown 

I 

expf - rý 
T 

(n) Sk- 1 (n) r- (n) (6-10) 
1121S- /2 k 

(2rl) k 
(n)JIT, 2 



CHAPTER 6. MULTIPLE MODEL ADAPTIVE ESTIAIATIO,, \- I-)! ) 

'Flwi-efore the optinial state estimation can be represented as: 

EXkIZ* = Zkj 
kk 

k= Zk)da]dý ý11 fxk, 
(IIZ'(ýl GIZ* 

k 

ýlf f-k, 
alZ* (ýJa = al Z* = 

Zk). f,, 
z 

(o I ZZ Zk)da]< kkk 

N 
y (6-11) ýlj f1k, 

alZ* (ýJa = a, Zk = Zk) - a(n))da]< k 
_, 

Pk(li)6(0 
n=l 

C)C, N 

-00 

ý[E fXkla, 
Z* (ýJa a(71), Zý Zk)Pk(n)]< k 

I- 

n=l 
N 0, 

If 

00 

UXk1a, 
Z* (ýJa a(n), Zý Zk)]Pk(II) 

k 

0 

n=l 

In Equation 6.11, the term inside the square brackets refer to the optimal state estimate 

conditioned upon a given parameter value a(n) and the realized measurement history ZA.. 

Therefore, this equation can be rewrite as: 

N 

k ý4(n)Pk (n) 
n=l 

(6.12) 

Equation6.12 shows that the final state estimate is the weighted sum of the elemental 

filter state estimates, weighted by the probability that the parameter for that particular 

elemental filter is the correct parameter. 
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The covarimice update for the M'MAE can be derived by Equation 6.1,, J. 

Eflxý- 

00 

1: k XA 

k+ 

+ 
A 

: 
41 1ý 

J . 
+ITIZ* 

= Zk)j 
'k k 

j. +]T 
lz* k 

fA 
fx 

k, (I ýý 
(ý 

-aI 
Zp, ýý Zk) da dý 

, 
i: +IT 

a, Z* (ýJa = oz, Z*= Zk)falZ*((tlZ* 
k 

JA 
fxk, 

kkkk 

N 
iff (ýJa = a(n). Zk 

k 
fxk1a, Z* Zk)Pk(n)< k 

n=l 

i+][ý 
_ ýi+]T a(n). Z* -r (ýJa pk(n) k 

fxkla, 
Z* k k 

n=I -oo 

oc) N0 

- 
EPk(n)t ýýT fTkla, Z* 

(ýJa - a(n), Z* = Zk)9 

n=I C, 0 

k 
fxk-ja, 

Z* (ýJa a(n), Z* = Zk)9 
kk 

ja 7--: a(n), Z* - Zk)9 k 
+fXk, 

ja, Z* 

>O : ý+ 
ý, kk fXkla, Z*(ýla=a(n), Z*=Zk)dýl + 

1-00 
kk 

c EPk(n)1 ýýT fXkla, Z* (ýJa = a(n), Z* = Zk)9 
N '0 

n=I 
C>o 

kýT 
fXkla, 

Z, * (ýJa = a(n), Zk* 
k- k= Zk)dý 

[100 ýT fXkla, 
Z* (ýJa = a(n), Zk* = Zk)9]i+ 

7' 

-, 30 
k, k 

-+T T 
kk= 

Zk)dýl +xk Xk fXkla, Z* (ýJa = a(n), Z* 

N 00 

ZPk(n)t ýýr fxkla, 
Z* (ela = a(n), Z* = Zk)9 

n=l 

1-oo 

kk 

ý, 
+T + i+ý 

: ý+i+T(n) 
kk 

N 

Pk(n)fPk(n) + [. ý+ (n) - (n) Ekkkk 

n=l 

Zk)<1 

ZA)do< 
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(6.13) 
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6.3 Modified MMAE design 

A modified MMAE algorithin which is combined with a, FLA-CKF is designed in this 

section and shown in Figure 6.2. 

E 

llý 
cn 

Figure 6.2: AIMAE algorithni for Springer 

For Spi-Inger, the three onboard compasses are employed to provide the vehicle heading. 
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In Figure 6.2, sensor A refers to the TCA12 compass, sensor B represents the H-MR3000 

coinpýLss. and sensor C is the KVH C100 compass. The standard IAE algorithm is 

employed by each con-ilms., s to derive its mvit heading estimate : i-, 1-,, and 1-, respectively. 

The AINIAE is a complex system with high computation load. in order to reduce the overall 

complexity, simple FLA-CKF is selected as the master fusion technique ill this proposed 

technique. The estimated headings are combined and fused by a FLA-CKF to produce an 

accurate and adaptive heading for Springer. 

For each MMAE algorithm, the number of elemental filters was set to o=3. The niea- 

surement noise covariance, (Rk(n)), or process noise covarlance, (Qk(n)), are considered to 

be varied in different elemental filters. In this situation, three measurement noise covari- 

ance matrices or process noise covariance are hypothesized in three elemental filters. The 

MMAE determines which elemental filters contain the more accurate Rk(O) or Qk (71) 
- 

6.4 Simulation results 

Simulation studies were performed on the three compasses in order to test the NIMAE 

algorithm. The models produced in Section 4.2 are recalled here. 

In order to verify the robustness of the MMAE algorithm, a set of simulated noise shown 

in Figure 6.3 is added to the sensor measurements. The noise characteristic is generally 

increased over time, therefore the probabilities of each elemental filter will change over 

time. 

As a result, the simulated measurement outputs and real headings are presented in Figure 

6.4 

The process of each MAJAE is nov, - described step by step: 
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9 Assuming the prior distribution of a is uniform and all the weight fiwtorýý arc c(Itial 
initially. 

9 The initial prior state estiniate,. ýýO, is set equal to 0. 

9 At k=0 the elemental filters receive the first measurement so Equation 6-10 cým 
be rewritten as: 

I1 -2 fZ- Ju, Zo 
(--k Ia=a (n), Zo* = Zo) = expf -- -0 1 

0 (2H)I/2 1 Sý (n) 11 /2 " Sý (11) 

Once fZ I a, Zo 
(--Ik ja = a(n), Zo* -- Zo) has been deterinined for each elemental filter, 0 

Equation 6.9 is employed to calculate the weighting factors. As a result, the updated 

state estimates i, ý+ (n) can be derived by each elemental filter. 0 

9 Each of the elemental filter estimates and their error covariance is then projected 

ahead to k=I, and the hypothesis algorithm compute the probability for each a. 

e Finally, the weight factors for k=I can be determined in equation6.9. This recursive 

process can be performed ad infiniturn. 

Three MMAE algorithms are run in parallel in order to derive the adaptive heading for 

each compass. At the same time, a FLA-CKF (see Chapter 5 for details) takes the state 

estimates from each MMAE algorithm as input to derive the final heading angle. 

6.4.1 Varying Rk(n) scenario 

Recalling the sensor models produced in Section 4.2, three values for the Rk(n) 'vvev, arbi- 

trarilv chosen based on: 
Rk(l)= Rk, Rk(2) = 2.5Rk and RA-(3) = 5&, where Rk= djag(2 2) 
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The simulated sensor ineasuremeilt MI(I iiwi, (, ýI. sed oV(111 

correspondingly increased from Rk to 5RA,, also the correspoiidiio- pr(, I)ýjj)-I-t-e, 

over time. 

The conditional probabilities p(n) of the TCA12 elemental filters are depi in Fipire 6.5. icted J t-) 
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Figure 6.5: The elemental filter probabilities (TCM2 with varying Rk(n) matrices) 

Eventually a final heading output is produced, and individual sensor heading estimates and 

overall vehicle heading residuals are shown in Figure 6.6: 



CHAPTER 6. AJULTIPLE MODEL ADAPME ESIl-Al-ATIO-'\' 136 

-a - (D U11 

ý5) estimated position a) 
7ý -50- measured position 
3: -- real position 
>1 100 

- cli :E 
-150. 0 50 100 150 200 250 300 

-loo Z: 

- 150 
u 50 100 150 200 250 

0 

3: 
co -50- 

-100 - 

- 150, 
0 50 100 150 200 250 

100 

co 100 
>1 

-? nn, 0 50 100 150 200 
Time(samples) 

300 

250 

Figure 6.6: MMAE with varying Rk(i? ) algorithm fusion result 

6.4.2 Varying Qk(n) scenario 

300 

Using the same ARMAX model produced in Section 4.2, three values for the Qk(n) were 

arbitrarily chosen based on: 

QA- (1) ---- : Qk, Qk(2) = 2Qk and Qk(3) = 3.5Qk, where Qk= dIag(O. 102) 

The simulated sensor measurement errors are increased over time, therefore Qk values 

are correspondingly increased from Qk to 3-5Qk, also the corresponding probabilities will 

change over time. 

The elemental filter probabilities are shown in Figure 6.7, Whereas the final fusion heading 

and three compass AIMAE outputs are depicted in Figure 6.8. 

In order to compare the fusion accuracy, FLA-FKF with adaptive feedback algorithm which 

proposed in Chapter 5 is implemented here. The RNISE are compared in Table 6.1, the 

aiialvsis of the simulation and RIVISE results will be presented in the next section. 
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Figure 6.9: The FLA-FKF with adaptive feedback algorithm fusion result 

Table 6.1: RMSE comparison of MMAE and FLA-FKF algorithm 

Algorithms RMSE 
0-100 samples 201-300 samples 

I 
FLA-FKF with adaptive feedback factors 9.1795 1.4573 
MMAE with varying R 34-6330 4.5320 
MMAE with varying Q 38.1396 6.0460 
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6.4.3 Discussion 

The simulation and RMSE results shown above attenipt to the proposed MMAE 

algorithm*s accuracy and robustness. The Rk(n) and Qk(II) matrices vary with dIfferelit, 

elemental filters separately. and very similar results are achieved. 

The elemental filters' probabilities results are presented in Figure 6.5 and Figure 6.7 respec- 

tively. The measurement noise has smaller values at the beginning, therefore the probability 

for the first elemental filter (Rk(I) 
= Rk)is approximately equal to 1. Wheii the residual 

values increase over time, the probability for the second elemental filter (RA. (I) = 2.5Rk ) 

becomes larger. For the third elemental filter (Rk(I) 
= 5Rk), the probabIlItN- is also in- 

creased. Similar situation also occurs on the NIAIAE with vwýying Qý-(i? ) matrix. This 

tuning process of the probabilities for elemental filters assures that the NINJAE algorithm 

output the best state estiniates by utilising optimal weighting factors. 

The fusion results shown in Figure 6.6 and Figure 6.8 presents the overall heading residuals, 

as well as the individual MMAE estimates for each compass. The overall fusion result 

accuracy is compared with the AISDF algorithm presented in Chapter 5, the RXISE results 

are shown in Table 6.1. However, for MMAE, as the initial state is 0 which has a big 

difference with the first measurement. Therefore the overall yaw errors is about 4 times 

of FLA-FKF at the first 100 samples. As a comparison, the FLA-FKF can quickly adapt 

with the sensor measurement from the initial state (equals 0). Apparently, the FLA-FKF 

has faster speed in tuning the initial parameters than MMAE. 

Comparing the RMSE values from 101 to 300, the RMSE value of FLA-FKF is 1.4573, 

whilst the RMSE of AIAIAE with varying R algorithm is reduced to 4.5320 and BMSE 

of AINIAE Avith %, arying Q algorithm is 6.0460. ApparentlY, FLA-FKF produced a more 

accurate result than NIXIAE, the INIMAE can also reduce the sensor noise but. the overall 

accuric. v is not as good as FLA-FIIII. F. 
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6.5 Concluding remarks 

In this chapter, alternative MMAE fusion algorithnis are presented. The standard MMAE 

techniques were introduced and a modified MMAE combined FLA-CKF algorithin is pro- 

vided. Three elemental filters are implemented for each compass in order to test the 

algorithm's robustness. Also, an overall heading is provided to compare with the FLA- 

FKF. The proposed MMAE algorithm has the potential to be utillsed as i fault tolentio 

ii, -wigation system by increasing the number of elemental filters. Nevertheless the more 

elemental filters will increase the computation load. An investigation to determine tlie 

optimal number of the elemental filters for the NINIAE is recommended for the furture 

research . 



Chapter 7 

EXPERIMENTATION WITH THE 

SPRINGER USV 

The ultimate step in a navigation system design is to evaluate its performance in a real 
time environment, as well as its cooperation performance with the onboard guidance and 

control system. This chapter concentrates on real time experiments onboard the Springer 

USV, and results and analysis of the recorded data. 

As the the fuzzy logic based MSDF algorithm which is presented in Chapter 5 presents 

robust simulation results, it has been selected as the onboard navigation system. Therefore, 

the MMAE algorithm developed in Chapter 6 has not been tested experimentally. To the 

author's knowledge this is the first successful application of using a FLA-FKF with an 

adaptive information feedback algorithm for an onboard navigation system. Therefore this 

thesis makes an extremely novel and useful contribution to navigation systein design in 

general. 
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7.1 Experiments introduction 

Introduction 

The primary aim of this research is to develop an intelligent navigation systeiii which caii 

implemented on the SprMger in real time. Also the SprZnger is envisaged as ýI testbed for 

other research groups to test their NGC system. Hence the navigation system sliotild be 

flexible enough to accommodate various requirements set by the user, for insOnce. the user 

could change navigation parameters via user interface. 

It has been observed that most of the on-going USVs can only operate in remote control 

mode, the operation of the vehicle relies on the sensor/video feedback to the control comý, ()I(,, 

theii the command is sent to the vehicle by an operator. Therefore the onboard iiavigation 

system does not cooperate with the control system. Currently in the literature, there are 

only few USVs that can operate in a fully autonomous mode (Pascoal et al. 2000, Dynamical 

Systems and Ocean Robotics (DSOR) Laboratory 2000, Majohr and Buch 2006), however 

the real time experimentation results are focused on the performance of the control system. 

Consequently, there is a distinct lack of results and analysis relating to onboard navigation 

systems. 

7.1.2 Experiment setup 

In Chapter 3, onboard sensors, user interface, data transmitting/receiving are introduced. 

Herein more details of the experiment setup are presented. 

mentioned in Section 3.2.3, the DAQ PC collects all the sensor data and transmit's 

the diitýi in a form of a string to the navigation PC. In addition to the sensor (Litýi. the 

(Lita. the string provides the information on the run type, the file name of the recorded 
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(lesired heading, navigation parameters, controller parameters. 
, and it cowiter which allows 

-NIATLAB 
data, to be synchronized with the Lal)VieýN, data. The run types. XGC Imi, ameters 

ýts well as the file name can be altered during a mission. 

The run type 'A' dictates a mission to be executed followed I)v the string and some other 

parameters to be used by the controller. Currently. 15 irun types have been designed for 

the NGC program, the details are shown in Table7.1- The user can easily add their own 

run type by modifying the user interface. 

Table 7.1: The details of the run type designed for NGC sYstem 

Run type Operation 

rO Stop the vehicle and wait for a valid coinniand 
rl Change reference heading as the specified value from the user interface 

r2 Alter the LQG controller parameters 
r3 Alter the MPC controller parameters 
1-4 Alter the navigation strategy parameters 
r5 Change the acceptance range for waypoints 
r6-rI4 Operate different navigation and control progranis as specified 

It worth noting that the 'rO' run type is used when the user wants to stop the motors. 

It is also used when the user needs to change the run type. For example, the vehicle is 

running in 'r8' which utilizes a fuzzy logic MPC control strategy. When the user would like 

to change the parameters of the MPC controller, the user has to input 'rO' before 'i-T, this 

strategy enables the NGC system has enough time to alter the programs. 

7.2 Experiment results 

Now- the results of the application of FLA-FKF are presented. All of the experinients were 

cm-ried out. m, the Roadford Reservoir in north Devon, UK. A heading reference guidance Z-3 0 

law is employed in the guidance ,, ystem, whereas the AIPC strateg --v is used to control the 

\vliicle. more inforniation of the AIPC algorithin can be found in Appendix D. 
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During the experimentation. one of the compass 1\. \-H C100 olitpllt, s 

performince. therefore. it, was isolated as i) permanent fault. ('(), I(q1t ly. t1le I-eslllt 

shown here is fused by the TCM2 and HIUR, 3000 compasses onIv. 

Two sets of trial were set up to test the proposed navig-ation strategy. the sensm- models 

(1(, i-ived in Chapter 4 were applied here. The initial values of the Q mid I? matrices were 

chosen as follows: 
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7.2.1 FLA-FKF with adaptive feedback factors 

The proposed FLA-FKF algoritlim witli adaptive feedback wýis applied oil S/wilv-r. the 

TCM2 and HMR 3000 compass measurements and estimated heading are shown n Flglll-(, 
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7.1, the corresponding information factors are shown in Figure 7.2. The vehicle heading 

result processed by the MPC controller is shown in Figure 7.3. 
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Figure 7.1: Experimental heading output using FLA-FKF with adaptive feedback factors 
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Figure 7.2: Information feedback factors (0j) 

The vehicle reached the desired the course after the 400 samples, the fused heading can 

effectively reduced the small random noise. Consequently a stable estimation is achieved. 

The corresponding information factors were initially chosen as 0.5 for each sensor, as the 

HMR 3000 compass is stable and accurate sensor. The feedback factors for the HMR 

3000 finally were chosen as 0.68 according to its performance. Consequently, the HMR 



(--.,! HiLAPTER 7. EXPERIMENTATIONWITH THE SPRINGER USV 

320 

290 
_0 
0) 

280 

270 

240 

310 

300 

-- 
�- 

- 
_-\_. 

___-- ----'-- --. 
-- 

-- -- '-- 
I- 

'-- 
" 

-- 
- 

I ---- -- �- 
-� 

260 

250 

50 100 150 200 250 300 
Time(seconds) 

146 

Figure 70 The vehicle heading output by utilising NIPC controller (Courtesy of Dr. 
Naeern) 

3000 compass performs more contributions to the global estimation. The NIPC controller 

received the fused heading results from the navigation system continuously, therefore the 

vehicle heading reached the desired heading within I minute. The CPS position is presented 

in Figure 7.4. 

Because the unstable performance form the compass KVH CIOO, the experiments shown 

above were conducted by utilising two sensors only. The recorded KVH C100 data is 

employed in the following simulation as a noisy sensor measurement. The simulation result 

is shown in Figure 7.5 as a comparison with the result shown in Figure 7.1 

In Figure 7.5, there was not significant difference between the experimental result shown in 

Figure 7.1 which use two sensors only. As the KVH CIOO is unstable (sometimes outputing 

a garbage sentence), it is better to ignore this sensor for the following experiments. 
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7.2.2 FKF with adaptive feedback factors 

148 

Now the result of adaptive feedback FKF running without fuzzy logic are shown in Fig- 

ure 7.6. The model and value of Q and R matrix are identical ýts that in the previous 

experiment. 
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Figure 7.6: Experimental heading output using FKF with adaptive feedback factors 

During this experiment, the FKF is running without tuning the R matrix, where as the Q 

matrix is adapt according to the values of information feedback factors. There are some 

difference between the estimated heading between the sensor output, this different could 

be generated from the environmental disturbances, such as wind and wave. The algorithm 

without the fuzzy logic also reduce the robustness of this navigation strategy. 
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7.3 Concluding remarks 

Simulation results can provide a, good insight during the process of the navigation strategy 

development. however the true potential cmi only be judged through experimentations. In 

this chapter, the results of the FLA-FKF strategy have been revealed. It is showii that, 

the proposed algorithm is capable of producing outstanding results under unpredictable 

environment circumstances. Comparing with FKF without fuzzy logic, the FLA-Fl".. F 

presents more accurate fusion results. However, real time experiments and simulation 

presented in Chapter 5 are carried out in different situations, therefore the experiment 

results cannot compared against simulated results. 

The prevailing weather conditions were severe with a force six to force eight wind, and os 

a result, the overall accuracy of the fused results were found to be reduced but, , N, -as still of 

an acceptable level. 

After the analysis of the experimental results, summary, conclusions and recommendations 

for further research will be presented in the next Chapter. 



Chapter 8 

SUMMARY, CONCLUSIONS AND 

FUTURE WORK 

In this final chapter, the overall research objectives is revisited. A brief summary of each 

chapters followed by a conclusions drawn with respect to what was anticipated and what 

has been achieved in terms of the aim and objectives of the research programme. Lastly, 

recommendations for future research are provided that could stimulate further research 

projects in this field of study. 

8.1 Objectives of the research revisited 

The aim and objectives of the overall project, as defined in Chapter I are reproduced here 

for ease of reference. 

4p Criticall. v review current autonomous navigation techniques. 

Survev cut-i-ent USV projects and anaIN-sis the features of different applications. 

150 
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9 Develop a friendly user interface which can allow the user ýwces. s an onboard NGC 

system remotely. Also design a practicable communication manner between the NGC 

system for real time trials. 

9 Design a novel fault tolerant fuzzy logic based MSDF s. ysteiii for Sprmyei- ýu, an 

onboard navigation systern. 

9 Design a multi-model adaptive estimation (MMAE) algorithm ýis an alteruative mi%- 

igation solution. 

9 Evaluate the proposed navigation strategy performances in simulations for various 

sceriarlos. 

9 Employ a simulated navigation strategy in the full scale trials, and evaluate t1w 

experimental performance results. 

8.2 Summary 

In Section 8.1, the objectives of this research was revisited. Therefore a summary is given 

here according to these objectives. 

USV research and development is on the verge of reaching maturity yet applications are 

very few. The cost associated with USV development particularly of the power requirement, 

onboard sensors and communication system have imposed a significant constraint on their 

development. The aim of this project as defined in Chapter I was to design and develop a 

low cost USV with an electric propulsion system that would be responsible of undertaking 

multiple surveys and pollution tracking in shallow waters. To satisfy such requirements, 

the vehicle needed a robust and effective NGC system onboard which could accommodate 

different environment condition. In particular, a fault tolerant navigation sYstem plays a 

vital role in any NGC sYstem. 



rl UI 
CTLAPTER 8. SUMMARY, CONCLUSIONS AND FUTURE IVORK 152 

Chapter 2 pi-mides comprehensive background material on autonomous navigatioii strate- 

gies. Satellite mivigation utilizing GPS/DGPS has been wi 11n naviga- idely applied in moder t-) 
tion system. Dead reckoning as a traditional navigation strateguy has been developed with 

the advanced technology where electronic, magnetic sensors are involved. ENS is a relevýiiit 

new process., however the cost of an IMU has limited the growth of this technique. RecentlY. 

multiple sensor navigation has been widely used with respect to its flexibility along with 

low cost sensors that can be manipulated together in order to achieve a robust and fault 

tolerant system. Especially, an enhanced performance can be accomplished when Al tech- 

niques are included. Apart of the navigation strategies reviewed, several on-going USVs 

for military, scientific research and commercial applications are introduced and compared 

respectively. 

The SprMger has been proposed as the first USV for research purpose in the UK. The 

Springe, r hardware configuration was detailed in Chapter 3. The Chapter demonstrated 

the overall physical structure and electrical installation of SpHnger. A low pass filter is 

implemented on the TCM2 compass in order to reduce the noise of the sensor. The onboard 

NGC system communication between the Peli cases and user, the onboard navigation sensor 

suite, as well as the user interface were briefly explicated. The user interface allowed the 

user to monitor and modify the NGC program in a flexible way over a long distance. 

There is no doubt, sensor modelling is a key factor in designing a Kalamn filter. Sensor 

models are investigated in Chapter 4 by using first principle and SI techniques. Experiments 

have been carried out to obtain data sets whereby SI techniques were suggested and applied 

to derive the models for the onboard compasses. Multiple level signals are given to the 

compasses as the input, Sl techniques were used to derive the ARMAX model for each 

compass. The evaluation results show that the models are suitable to be employed in a 

Kalman filter. 

With the knowledge of the sensor models, two distinct multiple sensor strategies combining 



CHAPTER 8. SUJALAIARYI. CONCLETSIONS AND FUTURE IVORK 1.53 

fuzzy logic technique were developed. The first strategy was presented in Chapter 5. it 

a fuzzy logic NISDF using a cascaded Kalman filter structure. FLA-CKF, FLA-DKF and 

FLA-FKF strategies were examined under various sensor fault scenarios. The sin-itilation 

results show that the FLA-FKF with adaptive information feedback method has the best, 

fault tolerant capabilities among other proposed algorithms. 

Another multiple sensor navigation strategy is presented in Chapter 6 by using NIMAE and 

fuzzy logic. MMAE is renowned as an effective way in estimating the state for the systein 

using a bank of elemental Kalman filters. The same fuzzy logic rules and membership 

functions are implemented in a FLA-CKF. Three elemental Kalman filters are utilised, 

different values are chosen for Q or R matrices for each elemental filter. The simulated 

results shown the weight of each elemental filters are changed all over the time according 

to the result of a hypothesis algoritlim. This result indicate how close each of the filter"s 

models is to the true model. The simulated fusion accuracy is comparable with the NISDF 

strategy, however the drawback of this system is the high computation load generated by 

each elemental Kalman filters. 

Finally in Chapter 7, the MSDF algorithm developed in Chapter 5 was implemented on 

Spnnger. This is considered one of the principle novelties of this research where a fuzzy 

logic strategy is employed for optimization purposes in a MSDF system. Also it is the first 

time a fuzzy logic based MSDF navigation system has been applied on an USV. Moreover, 

the implementation of a MSDF navigation algorithm in Springer USV was imperative to 

gauge its robustness and cooperating activities with the guidance and control system. The 

experiments were carried out with the wind and wave disturbances. The experimental 

results presented show a remarkable performance, and the effective interactive cooperation 

with the guidance and control system. However the overall accuracy was reduced according 

to the environment reasons. 
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8.3 Conclusions 

Most, of the current military and commercial USVs can only operated in remote control 

mode exception of a few USVs developed for scientific research purposes. The militai-Y USVs 

feature with high speed and. various surveillance capAilities. NN"hilst for the commercial 

USVs, a friendly user interface and easy maintenance are the main concern. The Sprznger 

USV was designed to be a mobile, rapidly sampling, remotely operated sensor platform 

which can undertake various hydrological surveys. Therefore, the design of a fault tolerant 

NGC system became a research focus for the Spnnger project. 

The thesis focuses on the investigation of the IVISDF method utilizing fuzzy logic and CKF 

techniques to provide enhanced accuracy of navigation information for Sphngen To the 

author*s knowledge, this hybrid algorithni of its kind to be applied on an USV and is 

thus considered as the major contribution in relation to autonomous navigation system 

design and USV techniques. All the contributions of the work presented in this thesis are 

summarized in Section 1.4. 

A FLA-FKF with adaptive information feedback algorithm was selected as an onboard 

navigation system because of its remarkable robustness and fault tolerant capabilities. In 

this FLA-FKF approach, the requirement to have complete a yriori knowledge of the filter 

statistic, represented by the Q and R matrices, are relaxed. 

The fuzzy logic strategy employed adapt the R matrix according to the difference between 

the value of the theoratical innovation covariance and the practical innovation covariance. 

A moving window is used to capture the practical innovation. The size of this window is 

determined empirically in such a way so that it is large enough to capture the dynamic of 

slowlY vai-Ying covariance values or small enough to capture the dynamic of fast varying 

cox-ýirlance values. 
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The adaptive information feedback method tune the Q matrix according to the value of t7) 
the information feedback factors. This adaptive feedback fýwtor method enables the more 

accurate sensor make more contribution to the global estimation. 

The simulation results shown in Chapter 5 was demonstrated that in cýises where sensor 

data is very poor or ambiguous, this FLA-FKF method can effectively combine sensor 

information and produce a more accurate heading than other proposed methods. It should 

be noted that this algorithm is highly implementable in real time. This is because it, 

can reduce the sensor fault situations by using simple check process before the FLA-FKF 

algorithm. This algorithm allows the user to add more sensors or isolate sensors without 

stoping the program. This algorithm also employs a reference sensor, therefore the program 

can still output navigation information even when all of the compasses having serious faults. 

An alternative navigation strategy was proposed in Chapter 6 by using MMAE. This 

method is suitable for fault detection and classification. The various elemental models 

can be used to express the different sensor fault situation. Consequently, the sensor fault 

can be detected and disturbances can be effectively reduced. At the moment only 3 elemen- 

tal filters are employed for each compass, therefore the overall heading accuracy is not as 

good as FLA-FKF. However it does provide another solution for fault tolerant navigation 

system. 

It is important to note that the computation techniques set forth in this study were devel- 

oped for an USV. However they are not restrictive and can effortlessly be applied to other 

autonomous vehicles either in the land and aerospace domains. Also the hybrid MSDF 

technique can also be applied in any system equipped with multiple sensors by modifying 

the system models. 
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8.4 Recommendations for future work 

A number of achievements have been made throughout the course of this thesis. Nleverthe- 

less, scientific research is an ongoing process and clearly there are several topics for future 

research involving Spnnger USV. A list of the recommended follow ups based oii this work 

are provided below. 

8.4.1 Further experiments and research on the MMAE 

The most obvious and important work to be conducted is to carry out further experiments 

involving the MMAE algorithm which have not yet been tested on Springer. Furthermore, 

for the MMAE, more elemental filters are recommended in order to improve the overall 

fusion accuracy. As a result, a higher computation load will be generated. Therefore to 

find an optimal number of the elemental filters for the MMAE is recommended. 

In the literature, several algorithms were proposed in order to improve the computation 

efficiency (Li and Bar-shalon 2000, Fisher and Maybeck 2002, Vasquez and Maybeck 2004). 

For this particular research, a new approach in this field is recompounded. 

8.4.2 Consideration of disturbances from pitch and roll 

The generic USV is a three Degree Of Freedom (DOF) system , where pitch and roll 

movement generate disturbances to the yaw output. However, in this thesis, the pitch and 

roll signals are only used to generate a warning for the user when the limitations are reached 

(±45'). The cross-coupling effect from pitch and roll signals were ignored in extracting the 

sensor linear mathematical models. For further research, three DOF data are recommended 

to estimate a nonlinear model for the sensors using SI. An Extended Kalman Filter (EKF) 
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can be used to develop a XISDF system. 

8.4.3 Collision avoidance system for Springer 
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During the last two decades, CAS has been designed for various vehicles including ROV, 

AUV, AAV etc. A comprehensive review has been provided by Tan (2004). An intelligent 

CAS has been designed for an AUV by Tan (2006), and Larson et. al designed a CAS for 

an USV (2006). As the Springer will be operated in open water with little environment 

knowledge, therefore the risk of collision with other vessels or obstructions could be high 

and consequence serious. A vision (eg. sonar, onboard camera etc. ) based CAS should be 

designed and implemented for safe operation. 

8.4.4 Multi-vehicle navigation system 

In Section 2.3, several multi-vehicle coordinate network applications were reviewed in de- 

tail. From the literature, a network operation will expand the USV operation form two 

dimension to multiple dimensions. For instance, an AUV can undertake various tasks un- 

derwater, however its positioning signal is very low, therefore an USV can provide the 

information to the AUV via communication link. Consequently, in order to realize the 

multiple dimension, synchronize operation, a hierarchical structure navigation system and 

powerful communication system are required. 
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Appendix B 

USV feature comparisons 

The features of various on-going USVs are compared in Table B. 1. 
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Appendix C 

Sensor strings 

Each sensor output is in a specified form. The strings normally include the t lie string head, 

main body of the string as well as check sum at the end. 

GPS 

An archetypal GPS sentence is shown below starting with a GPRMC that provides varlotis 
information including time, position, velocity and magnetic variation etc. 

$GPRMC, 235959, A, 5041.9364, N)00413.9804, W, 002.4,021.7,170806,004.0, W*69 

. 
$GPRAIC is the sentence head, 

235959 is UTC time in hhmmss, 

A indicates the GPS information is valid, 

5041.9364 refers latitude in ddmm. mmmm, N is latitude hemisphere (N or S). 

00413.9804 is longitude in dddmm. mmnim, It' is longitude hemisphere (E or W). 

002.4 represents speed over ground in knots, 

021.7 gives course over ground in degree, 

2 27 
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170806 is UTC (bae in (Idniiiiyy. 

004.0 is magnetic variation, 11- is magnetic variatlon d1rectlon (E or 

*69 is the clieck sum for this string. 

TCM2 

A typical TCI\/12 output string is given by 

$C63.5P2. IR3.3*29 

$ marks the beginning of string, 

C63.5 represent the heading angle with respect to the magnetic North in degree and it, 

ranges from 0' to 360', 

P2.1 provides the pitch angle in the limit of ±20', 

R3.3 is the roll angle in degree and saturates at ±20', 

*29 is the check sum for this string. 

HMR3000 

A standard output of HMR3000 is 

$PTNTHPR, 85.9, N, -0.9, N, 0.8, N*2C 

$PTNTHPR is the sentence head, 

85.9 is the true heading angle ranges from 0' to 360', 

-0.9 is the pitch angle in the limit of ±45', 

0.8 is the roll angle in the limit of ±45', 

N indicates the sensor operate in normal situation. 

*2C is the check sum for the string. 

KVH CIOO 
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A typical KVH C100 output string is givel, 

$HCHDT, 271.8, T*2C 

$HCHDT is the standard lead in indicating that the mossage is true heading angle. C') ýD 
271.8, T provides the compass true heading to the tenth of a (legive. 

*2E is the check sum for the string. 

Depth and speed sensor 

Depth and speed sensors output several different strings 

beginning of strings, 11 means integrated instrumentation, 

For the depth sensor, the informatimi is given by 

r 

$IIDBT, 8.3, f, 2.53, M, I . 38, F* 14 

DBT refers depth below transducer, 

8.3, f is the water depth in feet, 

2.53, M represents the water depth in meters, 

1.38, F is the water depth in Fathoms, 

* 14 is the check sum for the string. 

$IIMTW, 16.0, C*14 

MTW indicates the water temperature, 

16.0, C is 16C', 

* 14 is the check sum for the string. 

22 

In the strings, '$' inarks the 

For the speed sensor, the information is provided bY 
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$IIVHNý! ý, 005, T, 008,. ý1,0.00. N, 0.00, K*55 

VHIV refers vessel speed and heading relative to the water. 

005. T is the true heading angle in degree, 

OO8.. AI provides magnetic heading angle in degree, 

0.00, N indicates the speed of vessel relative to the water in knots, 

0.00, K is the travel distance in kilometers. 



Appendix D 

Model predictive control 

Model predictive control (NIPC) is widely adopted in indtistrY as an ineaiis to de; ii 
with large multi-variable constrained control problems (Qin 2000). The nilin iden of MPC 

is to choose the control action by repeatedly solving on line an optinial colitrol problein 
(Morari and Lee 1997). This alms at minimizing a performance criterioli a future 

horizon, possibly subject to constraints on the manipulated inputs and otit, I)iits, \ý-Iieiv the 

future behavior is computed according to a model of the plant. 

A GA-MPC algorithm was first proposed by Duwaish and Naeeni (2001) for clientical 

processes identified as Hammerstein and Wiener models. This was later modified and 

implemented in the Hammerhead AUV in real time (Naeem et al. 2005) which provided 

adequate results even in the presence of modelling uncertainty. The GA based coiitroller 

uses the process model to search for the control moves, which satisfy the process constraints 

and optimizes a cost function (Wall 2000). The cost function to be inininiised here is given 

by Equation D. I: 

231 
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HP H, Hp 

,J C-(k + OT Tc(A, - + /) +T DAo(k + 

subject to; 

< u(k + i) < u" 

Aul Au(k + i) < /\u" (D. 2) 

where the superscripts 1 and u represents the lower and tipper bounds Is 
the weight on the prediction error, 

C(k) = VA') - W(O (D.. ')) 

where co(k) is the reference or the desired setpoint. D and 11" are weights on the climige 

in the input Au and magnitude of the input u respectively. Adjusting the input weightiii, -, ) 

matrices could add damping to the closed loop control system. The following steps describe 

the operation of the GA based MPC algorithm (Naeem ct al. 2005). At time step /, -- 

* Evaluate process outputs using the process model. 

9 Use GA search to find the optimal control moves which optimize the cost ftnictimi 

and satisfy process constraints. This can be accomplished as follows. 

- generate a set of randoin possible control moves. The control moves or popula- 

tion consists of real values which is reasonable iii a reid world ei-iviromimit. 

- find the corresponding process outputs for all 1)()s,,, ible control inoves using the 

process model. 
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- evaltiate the fitness of each soh-aion ming the cost functiAl and the plocess 
constraints. The fitness function used here is giveri b-v: 

ftII, c "5, s - (D. 4) I+ 

where J is the cost function given by Equation D. l. 

- apply the genetic operators (selection. crossover and nwhitIon) to produce iiew 

generation of possible solutions. Roulette wheel and single point cn)ssovei- is 

used for parents selection and mating respectively. 

- repeat until predened number of generations is reached and thtis the optimal 

control moves are determined. 

* Apply the optimal control moves to the second step to the process. 

9 Repeat the first step to the third step for time k+1. 

D. I Constraints formulation 

Constraints represent limitations on different physical quantities involved in a process. For 

instance, the input or output of a certain process is restricted beyond a specified value 

due to economical or environmental reasons or the input cannot be changed abruptl. y due 

to the hardware dynamics. One of the most powerful and distinguishing features of 

is its ability to handle constraints in a natural way during the controller design at everY 

sample time. Generally, two types of constraints are considered in controller design. Soft 

constraints are employed in the cost function as a penalt, Y factor and caii be violated to fulfil 

some other criteria. On the other hand, hard constraints represent linlitilt ions oii 

actuators and cannot be violated. Herein, onlY hard constraints iire pLice(l on the input 

variables in order to determine t, he suitAility of the controller. In this caý, (,. since the. 
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population in a GA represents the input variable. therefore, constraints m-c iiiil)leiiieiit(, (l 

bY generating random initial population in the desired range i. e.. 

11,1 u<u 11 (D. 5) 

GA-I\, IPC has been successfully applied on the Sp7-myer for real time experii-imits. M()iv 

details of the MPC design can be found at Naeein et al. (2006). 


