Plant safety is the most important concern of chemical industries. Process faults can cause economic loses as well as human and environmental damages. Most of the operational faults are normally considered in the process design phase by applying methodologies such as Hazard and Operability Analysis (HAZOP). However, it should be expected that failures may occur in an operating plant. For this reason, it is of paramount importance that plant operators can promptly detect and diagnose such faults in order to take the appropriate corrective actions. In addition, preventive maintenance needs to be considered in order to increase plant safety.
Fault diagnosis has been faced with both analytic and data-based models and using several techniques and algorithms. However, there is not yet a general fault diagnosis framework that joins detection and diagnosis of faults, either registered or non-registered in records. Even more, less efforts have been focused to automate and implement the reported approaches in real practice.
According to this background, this thesis proposes a general framework for data-driven Fault Detection and Diagnosis (FDD), applicable and susceptible to be automated in any industrial scenario in order to hold the plant safety. Thus, the main requirement for constructing this system is the existence of historical process data. In this sense, promising methods imported from the Machine Learning field are introduced as fault diagnosis methods. The learning algorithms, used as diagnosis methods, have proved to be capable to diagnose not only the modeled faults, but also novel faults. Furthermore, Risk-Based Maintenance (RBM) techniques, widely used in petrochemical industry, are proposed to be applied as part of the preventive maintenance in all industry sectors. The proposed FDD system together with an appropriate preventive maintenance program would represent a potential plant safety program to be implemented.
Thus, chapter one presents a general introduction to the thesis topic, as well as the motivation and scope. Then, chapter two reviews the state of the art of the related fields. Fault detection and diagnosis methods found in literature are reviewed. In this sense a taxonomy that joins both Artificial Intelligence (AI) and Process Systems Engineering (PSE) classifications is proposed. The fault diagnosis assessment with performance indices is also reviewed. Moreover, it is exposed the state of the art corresponding to Risk Analysis (RA) as a tool for taking corrective actions to faults and the Maintenance Management for the preventive actions. Finally, the benchmark case studies against which FDD research is commonly validated are examined in this chapter.
The second part of the thesis, integrated by chapters three to six, addresses the methods applied during the research work. Chapter three deals with the data pre-processing, chapter four with the feature processing stage and chapter five with the
diagnosis algorithms. On the other hand, chapter six introduces the Risk-Based Maintenance techniques for addressing the plant preventive maintenance. The third part includes chapter seven, which constitutes the core of the thesis. In this chapter the proposed general FD system is outlined, divided in three steps: diagnosis model construction, model validation and on-line application. This scheme includes a fault detection module and an Anomaly Detection (AD) methodology for the detection of novel faults. Furthermore, several approaches are derived from this general scheme for continuous and batch processes. The fourth part of the thesis presents the validation of the approaches. Specifically, chapter eight presents the validation of the proposed approaches in continuous processes and chapter nine the validation of batch process approaches. Chapter ten raises the AD methodology in real scaled batch processes. First, the methodology is applied to a lab heat exchanger and then it is applied to a Photo-Fenton pilot plant, which corroborates its potential and success in real practice. Finally, the fifth part, including chapter eleven, is dedicated to stress the final conclusions and the main contributions of the thesis. Also, the scientific production achieved during the research period is listed and prospects on further work are envisaged.La seguridad de planta es el problema más inquietante para las industrias químicas. Un fallo en planta puede causar pérdidas económicas y daños humanos y al medio ambiente. La mayoría de los fallos operacionales son previstos en la etapa de diseño de un proceso mediante la aplicación de técnicas de Análisis de Riesgos y de Operabilidad (HAZOP). Sin embargo, existe la probabilidad de que pueda originarse un fallo en una planta en operación. Por esta razón, es de suma importancia que una planta pueda detectar y diagnosticar fallos en el proceso y tomar las medidas correctoras adecuadas para mitigar los efectos del fallo y evitar lamentables consecuencias. Es entonces también importante el mantenimiento preventivo para aumentar la seguridad y prevenir la ocurrencia de fallos.
La diagnosis de fallos ha sido abordada tanto con modelos analíticos como con modelos basados en datos y usando varios tipos de técnicas y algoritmos. Sin embargo, hasta ahora no existe la propuesta de un sistema general de seguridad en planta que combine detección y diagnosis de fallos ya sea registrados o no registrados anteriormente. Menos aún se han reportado metodologías que puedan ser automatizadas e implementadas en la práctica real.
Con la finalidad de abordar el problema de la seguridad en plantas químicas, esta tesis propone un sistema general para la detección y diagnosis de fallos capaz de implementarse de forma automatizada en cualquier industria. El principal requerimiento para la construcción de este sistema es la existencia de datos históricos de planta sin previo filtrado. En este sentido, diferentes métodos basados en datos son aplicados como métodos de diagnosis de fallos, principalmente aquellos importados del campo de “Aprendizaje Automático”. Estas técnicas de aprendizaje han resultado ser capaces de detectar y diagnosticar no sólo los fallos modelados o “aprendidos”, sino también nuevos fallos no incluidos en los modelos de diagnosis. Aunado a esto, algunas técnicas de mantenimiento basadas en riesgo (RBM) que son ampliamente usadas en la industria petroquímica, son también propuestas para su aplicación en el resto de sectores industriales como parte del mantenimiento preventivo. En conclusión, se propone implementar en un futuro no lejano un programa general de seguridad de planta que incluya el sistema de detección y diagnosis de fallos propuesto junto con un adecuado programa de mantenimiento preventivo.
Desglosando el contenido de la tesis, el capítulo uno presenta una introducción general al tema de esta tesis, así como también la motivación generada para su desarrollo y el alcance delimitado. El capítulo dos expone el estado del arte de las áreas relacionadas al tema de tesis. De esta forma, los métodos de detección y diagnosis de fallos encontrados en la literatura son examinados en este capítulo. Asimismo, se propone una
taxonomía de los métodos de diagnosis que unifica las clasificaciones propuestas en el área de Inteligencia Artificial y de Ingeniería de procesos. En consecuencia, se examina también la evaluación del performance de los métodos de diagnosis en la literatura. Además, en este capítulo se revisa y reporta el estado del arte correspondiente al “Análisis de Riesgos” y a la “Gestión del Mantenimiento” como técnicas complementarias para la toma de medidas correctoras y preventivas. Por último se abordan los casos de estudio considerados como puntos de referencia en el campo de investigación para la aplicación del sistema propuesto. La tercera parte incluye el capítulo siete, el cual constituye el corazón de la tesis. En este capítulo se presenta el esquema o sistema general de diagnosis de fallos propuesto. El sistema es dividido en tres partes: construcción de los modelos de diagnosis, validación de los modelos y aplicación on-line. Además incluye un modulo de detección de fallos previo a la diagnosis y una metodología de detección de anomalías para la detección de nuevos fallos. Por último, de este sistema se desglosan varias metodologías para procesos continuos y por lote. La cuarta parte de esta tesis presenta la validación de las metodologías propuestas. Específicamente, el capítulo ocho presenta la validación de las metodologías propuestas para su aplicación en procesos continuos y el capítulo nueve presenta la validación de las metodologías correspondientes a los procesos por lote. El capítulo diez valida la metodología de detección de anomalías en procesos por lote reales. Primero es aplicada a un intercambiador de calor escala laboratorio y después su aplicación es escalada a un proceso Foto-Fenton de planta piloto, lo cual corrobora el potencial y éxito de la metodología en la práctica real. Finalmente, la quinta parte de esta tesis, compuesta por el capítulo once, es dedicada a presentar y reafirmar las conclusiones finales y las principales contribuciones de la tesis. Además, se plantean las líneas de investigación futuras y se lista el trabajo desarrollado y presentado durante el periodo de investigación