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Abstract 

This thesis proposes a bearing condition monitoring system using acceleration and 

acoustic emission (AE) signals. Bearings are perhaps the most omnipresent machine 

elements and their condition is often critical to the success of an operation or process. 
Consequently, there is a great need for a timely knowledge of the health status of 
bearings. Generally, bearing monitoring is the prediction of the component's health or 

status based on signal detection, processing and classification in order to identify the 

causes of the problem. 

As the monitoring system uses both acceleration and acoustic emission signals, it is 

considered a multi-sensor system. This has the advantage that not only do the two 

sensors provide increased reliability they also permit a larger range of rotating speeds 

to be monitored successfully. When more than one sensor is used, if one fails to work 

properly the other is still able to provide adequate monitoring. Vibration techniques 

are suitable for higher rotating speeds whilst acoustic emission techniques for low 

rotating speeds. 

Vibration techniques investigated in this research concern the use of the continuous 

wavelet transform (CWT), a joint time- and frequency domain method, This gives a 

more accurate representation of the vibration phenomenon than either time-domain 

analysis or frequency- domain analysis. The image processing technique, called 

binarising, is performed to produce binary image from the CWT transformed image in 

order to reduce computational time for classification. The back-propagation neural 

network (BPNN) is used for classification. 

The AE monitoring techniques investigated can be categorised, based on the features 

used, into: 1) the traditional AE parameters of energy, event duration and peak 

amplitude and 2) the statistical parameters estimated from the Weibull distribution of 

the inter-arrival times of AE events in what is called the STL method. 

Traditional AE parameters of peak amplitude, energy and event duration are extracted 

from individual AE events. These events are then ordered, selected and normalised 



before the selected events are displayed in a three-dimensional Cartesian feature space 

in terms of the three AE parameters as axes. The fuzzy C-mean clustering technique 

is used to establish the cluster centres as signatures for different machine conditions. 

A minimum distance classifier is then used to classify incoming AE events into the 

different machine conditions. 

The novel STL method is based on the detection of inter-arrival times of successive 

AE events. These inter-arrival times follow a Weibull distribution. The method 

provides two parameters: STL and L63 that are derived from the estimated Weibull 

parameters of the distribution's shape (y), characteristic life (0) and guaranteed life 

(to). It is found that STL and 43 are related hyperbolically. In addition, the STL 

value is found to be sensitive to bearing wear, the load applied to the bearing and the 

bearing rotating speed. Of the three influencing factors, bearing wear has the 

strongest influence on STL and L63. For the proposed bearing condition monitoring 

system to work, the effects of load and speed on STL need to be compensated. These 

issues are resolved satisfactorily in the project. 
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1 Introduction 

1.1 Need for bearing condition monitoring and diagnosis 
Where there are moving parts on a machine, there are bearings. It is therefore hardly 

surprising to say that bearings are perhaps the most common machine elements. If 

manufacturing plant is to function efficiently, bearings need to be kept in good repair. 
Over the past half century, in manufacturing industry the influence of maintenance on 

a company's ability to make profit has grown immensely (Au, 1990). Partly this is 

because manufacturing plant has become larger and more sophisticated so that 

maintenance work requires specialised hence expensive skilled labour. Partly it is 

because the ever-growing international competition has forced manufacturers to look 

for ways to reduce or eliminate costly equipment downtime. In addition, bearing 

failure often leads to catastrophic failure of the whole equipment, putting at risk the 

health and safety of its operators. 

Maintenance is carried out in order to replace, repair, modify or service some 
identifiable part of manufacturing equipment and intended to ensure that it continues 

to operate to a specified availability for a specified time. In short, the function of 

maintenance is to control plant availability. Steady-state availability, at a simple 
level, can be understood as a measure of the time that equipment is available to do 

useful work (Kelly, 1978) and may be defined in terms of the mean time between 

failure (MTBF) and the mean time to repair (MTTR) as, 

Steady-state availability = MTBF/(MTBF+MTTR) 

As is evident in this formula, availability can be increased by increasing MTBF and 

reducing MTTR. Whilst the maintenance manager can do very little to affect MTBF, 

which is related to the problem of the equipment's own inherent reliability and 

maintainability decided at the equipment design stage, the manager can reduce MTTR 

through corrective and preventive maintenance, and hence improve the equipment's 

availability. 

Corrective maintenance is the maintenance that is carried out when the equipment 

fails or falls below a required level of acceptability, while in operation. This approach 

of allowing failures to happen can be costly particularly for equipment with high 

capital and running cost, as is often the case nowadays (Collacott, 1977; Barron, 
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1996). As mentioned earlier, such incidence of failure can also have other 

consequences relating to the health and safety of operating personnel 

Preventive maintenance is that which is carried out at predetermined intervals with the 

intention to reduce the likelihood of the equipment's condition falling below an 

acceptable condition. Preventive maintenance can be either time-based or condition- 
based (Mellor, 1988; Williams, 1994). Time-based preventive maintenance uses a 
fixed interval derived from historical life-history data of the part being maintained. 
Consequently there is always a risk that the equipment may be `over-maintained', 

introducing faults that arise from the maintenance action itself, or `under-maintained', 

allowing failure to occur before maintenance work is done. Determination of such a 

preventive maintenance programme is a difficult management problem. 

Condition-based maintenance requires the identification and implementation of an 

effective condition monitoring technique that can detect incipient failure (Kelly, 1978; 

Michael, 1979). The more sensitive the technique, the more is the lead time available 
for planning the maintenance work that requires the organisation and direction of 

resources (men, spares and equipment) and information (technical description of 

equipment and maintenance methods). 

There are two different kinds of condition monitoring methods, direct and indirect. In 

the context of bearing monitoring, a direct method typically involves some visual 

inspection for signs of wear on the surfaces of various elements of a given bearing. 

As can be readily understood, this approach is very time-consuming and impractical in 

a manufacturing plant because bearings tend to be rather inaccessible in machines. 

Even if such an approach is possible, it may not be desirable because the mere act of 
dismantling and re-assembling a bearing often induces a problem that requires future 

maintenance effort. 

An indirect method relies on the use of observable signals arising from a bearing 

while in operation. Sensors are used to produce signals containing information on a 

bearing's condition and the quality of the signals is expressed in terms of the signal- 

to-noise ratio. A high signal-to-noise ratio is desired, which is often achieved by 

placing a sensor as close to the given bearing as possible. Successful condition 
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monitoring suggests that there must be changes in the signals being monitored for 

signals that are static bear no information. The basic idea of condition monitoring is 

to identify the changes in the signal between normal and abnormal operating 

conditions and reveal as much information contained in the signal as various signal 

processing techniques allow. 

There are undoubtedly many advantages of proper condition monitoring. Chief 

amongst them are: 

" Preventing unexpected breakdown often with serious operational, health and 

safety and environmental consequences. 

" Reducing unnecessary maintenance work, often the source of maintenance- 

induced faults, and hence lowering the cost of maintenance. 

" Minimising spares holding by being able to predict their requirements in good 

time. 

" Maximising productivity by increasing equipment availability because 

incipient failure can be detected so that there is better work control matching 

resources (men, spares, equipment) to maintenance work load, both predictive 

and corrective. 

It should be mentioned that a bearing's life could be estimated using statistical means 

(Donald, 1957). Statistical bearing life estimation predicts the fatigue life of a bearing 

while operating in normal condition. However, its application is problematic if 

unusual operating conditions such as bearing overload are encountered since 

overloading shortens a bearing's life dramatically. Condition monitoring can 

overcome such problem because it bases its decision for maintenance action on the 

actual condition of the given bearing. Two commonly used techniques for bearing 

condition monitoring are the vibration and acoustic emission (AE) techniques, both 

being the subject of research reported in this thesis. 

The systems approach proposed in this research comprises the multi-sensor data 

fusion methods, which make use of vibration and acoustic emission (AE) sensing 

methods. By employing both methods based on different underlying physical 

principles, a greater dynamic range of operating speed can be covered. The systems 

approach is adopted not only for fault detection, involving early damage 
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identification, but also for fault diagnosis, providing information about the causes of 

machine failures. 

1.2 Aims and objectives 
The main aim of the research is to design, test and evaluate a condition monitoring 

system that uses both vibration (acceleration) and acoustic emission signals for 

monitoring the health of rotating machines operating over a wide speed range and 

subjected to different loading conditions. 

To achieve the aim the following objectives are defined: 

" To carry out a complete literature review of research work on bearing 

condition monitoring and diagnosis and the relevant knowledge and theory to 

enable a deeper understanding of different types of bearing (Chapter 2) and 

vibration and AE techniques (Chapter 3). 

" To adopt a systems approach to design a multi-sensor monitoring system based 

on the concept of multisensor data fusion using the two complementary 

sensing methods: vibration and AE methods and to provide theoretical 

background and strategies of integrating or `fusing' data obtained from sensors 

(Chapter 4). 

" To research into the theory of and develop a novel method, called the Shape- 

to-Life (STL) method, using the Weibull distribution of the inter-arrival times 

of AE events for bearing condition monitoring (Chapter 4). 

" To establish the measurement requirements and then to identify and use the 

corresponding equipment and techniques for sensing, pre-processing and 

analysing signals generated from the bearing; this includes selection of 

transducers and filters for signal acquisition and conditioning (Chapter 5). 

" To implement suitable data fusion techniques on the acoustic emission and 

acceleration signals obtained from two test rigs (high speed light-duty and low 

speed heavy-duty) and to validate the performance effectiveness of the 

monitoring system for a wide dynamic range of rotating speed and load 

conditions (Chapter 6). 

" To use simulated vibration and AE signals to evaluate the relative performance 

between the two joint time- and frequency- domain signal processing 
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techniques, CWT and STFT; and to use simulated AE events to establish the 

reliability and robustness of the STL method to a variable AE detection 

threshold (Chapter 7). 

" To propose a bearing condition monitoring scheme using the STL method, 
formulating guideline for speed and load compensation and for the setting of 
an alarm level for bearing condition monitoring (Chapter 8). 

The objective of taking measurement of AE and vibration signals is not only to 

achieve an effective condition monitoring system for a wide range of speeds but also 

to obtain a quantitative measurement that is highly sensitive to machine faults and 
hence to provide a route to its causes as machine diagnosis. Therefore, experimental 

work is performed for both simulated bearing faults and actual bearing life test. This is 

to permit validation of the proposed system as an effective machine diagnostic 

method. In particular, the bearing life test is to provide realistic bearing faults as 

encountered when a bearing is operated from new to its final failure. Conclusions and 

the validity of the systems approach are presented in Chapter 9, which also includes a 

recommendation for future work, if a fuller understanding and improvement to the 

proposed system are to be achieved. 
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2 Background to bearings and condition monitoring 
In order to fully explore the application of bearing condition monitoring using 

multisensor and data fusion techniques, it is necessary to review the current state of 

the art of bearings. This chapter is divided into six sections. The first section 
introduces the subject of bearings and their types. The second section discusses 

lubrication. The third section gives a definition of bearing life and its estimation. The 

fourth section gives a review of bearing failures and their causes. The fifth section 
introduces maintenance strategies and benefits of its use. The sixth and last section 

provides a classification of condition monitoring techniques. 

2.1 Introduction to bearing and its types 
Whenever there are machines, there are bearings. By definition, a bearing is a device 

that supports a rotating shaft or spindle, which slides relative to a sustaining 

component (Donald, 1957). This relative movement is dictated by the requirements of 

the mechanism of which the bearing is a part. This is where friction occurs, resulting 

in energy loss whenever the machine elements are driven. 

Generally, bearings can be classified into two categories: plain bearings and rolling 

element bearings. The classification is based on the nature of friction mechanism that 

occurs at the contacting interface. 

2.1.1 Plain bearings 
A plain bearing relies on the relative motion between plain surfaces that are either flat 

or cylindrical. Figure 2.1 gives an example of the plain bearing. In order that motion is 

possible with minimum resistance, friction between the two surfaces must be reduced 

as much as possible. This can be achieved by smoothing the two surfaces and by 

introducing a film of lubricant between them. 

Bearing 

Shaft ends 

Figure 2.1 Example of a plain bearing 
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The material of a plain bearing is always softer than that of the shaft or slider it 

supports. This allows the bearing to wear out rather than the shaft or slider. The design 

of plain bearing assemblies is usually such that the bearing material itself can be easily 

replaced. 

In order to achieve satisfactory operation of a plain bearing, maintenance of a correct 
lubricant film is required. Therefore, the bearing surface is grooved to act as reservoirs 

so that constant distribution of lubricant across the bearing surface is maintained. 

2.1.2 Rolling element bearings 

By definition, rolling element bearings, also called rolling bearings, include all forms 

of bearings that utilise the rolling action of balls or rollers to provide minimum 

friction in the constrained motion of one body relative to another. Both ball and roller 
bearings have been used extensively as part of rotating machine elements. Rolling 

bearings are used to permit rotation of a shaft relative to some fixed structure. Some 

rolling bearings permit translation of a fixture in the direction governed by a 

stationary shaft; and a few rolling bearing designs permit a combination of relative 

linear and rotary motion between bodies. 

Rolling elements, either balls or rollers, are held between two raceways as shown in 

Figure 2.2. A soft metal cage or retainer separates the rolling elements and ensures 

that they are evenly spaced. Sliding friction is replaced by rolling friction; the latter 

always produces far lower frictional resistance. 

Outer race/ring 

cage 

Roller bearing 

Inner race/ring 

cage 

Figure 2.2 Examples of rolling element bearings 
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The choice of balls or rollers as the rolling elements depends on the operating 

condition and loads. Ball bearings can operate at higher speeds without overheating. 
They are less expensive for lighter loads, have lower frictional resistance at light loads 

and are available in a wider range of sizes. On the other hand, roller bearings can carry 

heavier loads because of the larger size of rollers, are less expensive for heavier loads 

and more readily tolerate shock pulses and impact loading. 

The variation in the area of contact between balls and rollers gives rise to differences 

in performance. The ball has a small area of contact that approximates to a point 

depending on the loading and hence deformation of the ball and raceway. In contrast, 

the roller has a greater area of contact, which approximates to a line. The difference is 

illustrated in Figure 2.3. The larger area of contact of the roller enables it to carry 

heavier loads and withstand impact better, but causes an increase in the frictional 

resistance at low loads, as contrasted with ball bearings giving lower resistance at low 

loads. However, ball bearings suffer greater deformation at high loads, resulting in a 

much larger frictional resistance than do roller bearings. 

Roller Ball 

Line p Point 

contact contact 

Figure 2.3 Examples of contact points 

2.2 Lubrication 
One of the important considerations for smooth bearing operation is the lubrication. 

Lubrication is used to reduce the friction between two contacting surfaces. Sliding 

friction between the rolling elements on the one hand and the cage and raceways on 

the other are accommodated by the lubricant. In bearing operation, contact loadings 

are high, but the geometry of the bearing is such that hydrodynamic lubrication can be 

achieved during rotation and a thin film of lubricant can be maintained continuously 

(Jeffrey, 1991). 
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Moreover, the lubricant can provide the protection of raceways and rolling elements 

against corrosive pitting and rust. Not only rusting can produce pitting, the oxide itself 

is highly abrasive (Collacott, 1977). The lubricant also protects against contamination 
from water and dirt. The lubricant must additionally be chemically neutral and non- 

corrosive. The lubricant also acts as a heat transfer medium to maintain an even 

temperature throughout the bearing. Typically the choice of lubricant lies between the 

use of grease and oil, which will be discussed in the next sections. 

2.2.1 Grease lubrication 
Most lubricating greases comprise oil compounded with one or more metallic soaps. 

In general, the oil used depends on the viscosity required and the type of soap depends 

on the anticipated temperature of the bearing at operating conditions. During bearing 

operation, oil is gradually released from the grease to lubricate the bearing. The 

metallic soaps are generally made up of lithium, sodium or calcium greases, which 

prevent water from penetrating through mechanical seals without losing their 

lubricating properties. An anti-rust additive can also be included in its formulation in 

order to help inhibit the corrosive activity. Consequently, grease types are classified 

according to the type of soap base used to thicken the oil (Arvid, 1945; Barron, 1996). 

Calcium-base (or lime) 
Calcium-based greases are low in cost and are used for general purposes when bearing 

operating conditions such as running speeds and temperatures are not too high. These 

greases have properties that make them non-soluble in water and prevent water from 

penetrating through seals. However, their uses are limited to applications below 70 

degrees Celsius. 

Sodium-base (soda) 
Sodium-based greases are not water repellent, but can absorb water without losing 

their lubricating properties. Normally, these greases have a high dropping point (see 

below) of 150 degrees Celsius. They can be used for machine elements near a heat 

source. 
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Lithium base 
Lithium greases are resistant to water and also have particular advantages of not easily 

washed out of bearings even by large amount of water. They can tolerate higher 

speeds and temperatures than do lime greases and may operate at temperatures up to 
150 degrees Celsius or even higher, given speeds are not too great. 

2.2.2 Properties of greases 
The properties of greases, being semi-solid rather than pure liquid, can be 

distinguished with the following set of parameters (Jeffrey, 1991): 

Hardness: Since greases are semi-solid then they can be categorised as ranging from 

hard to soft. The level of hardness is obtained from the results of a penetration test. 

Dropping point: This is the temperature where the grease transforms its physical 

property from semi-solid into liquid as may happen to a solid when it reaches its 

melting point. 

Pumpabilfty: The pumpability property is a measure of how well the grease can be 

passed through a system. 

Stability: This property indicates the ability of grease to maintain its characteristics, 

such as its thickness or hardness, with time and operating conditions. 

Water resistance: The water resistance is an important property that determines 

whether or not the grease will dissolve in water. This can help prevent bearings being 

penetrated by water through mechanical seals. 

2.2.3 Oil lubrication 

Even though grease has many advantages, oil lubrication is in many cases more 

convenient and more effective. For example, oil is preferred when the bearing is 

enclosed in a common housing with other components for which oil is essential. An 

example is the enclosed transmission system where operating temperatures or speeds 

are too high for grease and where minimal friction at the point of contact is required 
(Arvid, 1945). 
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To make use of oil in rotating machines, the simplest way is to lubricate a rolling 
element bearing by running it in an oil bath. This method is effective when operating 

at slow to medium speeds. However, the level of oil should not be higher than the 

centre of the rolling element at its lowest point in order to avoid churning of oil. At 

high speeds, it is essential to reduce as much as possible the amount of oil in the 
bearing housing, at the same time maintaining effective lubrication. Drip feed may be 

used for this purpose. When operating at high speeds and heavy loads, pump-fed 

circulation from a central oil reservoir can be used in order to assure that an adequate 

supply of lubricant can be maintained. 

2.2.4 Properties of oils 
The properties of lubricating oils (liquids) can be measured by the following 

parameters (Jeffrey, 1991): 

Viscosity: The viscosity is the most important characteristic, which governs the 

thickness of a fluid and its flowability. This can also be described as resistance to 
flow. Generally when temperature increases, viscosity decreases and vice versa. 

Viscosity index: This is the rate of change of viscosity with temperature. Ideally, it is 

desirable to have constant viscosity over a wide range of temperatures. A high 

viscosity index gives an indication that the oil is more likely to have such a property. 

In contrast, a low viscosity index indicates that the oil tends to thin out when 

temperature increases. 

Oxidation resistance: Since oil comprises hydrocarbon, when it is exposed to 

atmosphere especially at increased temperatures it tends to absorb oxygen. This causes 

chemical changes in the oil, which can worsen its lubricating property. 

Emulsification: This property of being an emulsion, a mixture of water and oil, is 

undesirable because it can degrade the lubricating property. Emulsification is a 

measure of the tendency of oil to mix immediately with water. On the other hand, 

demulsification is a measure of the readiness of oil to be separated from water in an 

emulsion. 
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2.3 Bearing life 
The term `life' can be given as that period of service, terminated by fatigue 

phenomena (Arvid, 1945). The fatigue phenomenon is caused by the cyclic stresses 

produced by rolling surfaces after long periods of running and its onset depends on the 

magnitude of loading under rotation. Fatigue appears initially as a crack and develops 

into a flaked or spalled area on one or the other of the load carrying surfaces. 

2.3.1 Life expectancy 
Life is measured in the number of revolutions of the bearing or in the number of hours 

of operation at a certain speed of rotation. The actual life attained by the individual 

bearings can vary significantly. In a large batch of bearings, the life of the last bearing 

in operation may be 20 to 40 times longer than that of the first failed bearing. 

Since the extent of the influence of the individual factors on the life expectancy is 

unknown, the anticipated life of an individual bearing cannot be predicted. Life 

expectancy (Eschmann, 1958) is therefore a statistical value, which can only be gained 
from a large number of bearings, identical from a statistical point of view. A typical 

life expectancy distribution curve, obtained from extensive time consuming running 

tests with large series of identical bearings, is shown in Figure 2.4. 

It is shown that the shortest actual life attained by all bearings is approximately one- 

tenth of the average life, while the longest actual life is three to four times the average 
life. 
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Figure 2.4 Cumulative distribution curve for the actual life (Eschmann, 1958) 
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2.3.2 The definition of rating life 
Since there is a need for a common fixed value for the calculation of bearing life for 

the permissible percentage of bearing failure, the rating life is then established by 

bearing manufacturers in order to enable consumers to design their installations 

reliably and yet economically. 

The rating life is the standard method of reporting the results of many tests of 
bearings. It represents the life that 90% of the bearings would attain at a rated load. 

The rating life is referred to as the L10 life at the rated load. The rating life, L10, of a 

group of apparently identical ball or roller bearings is defined as the number of 

revolutions (or hours at some given constant speed) that 90% of a group of bearings 

will complete or exceed before the first evidence of fatigue develops. This rating life 

also corresponds to approximately 1/5 of the average life as shown on the cumulative 
distribution curve of Figure 2.4 (Eschmann, 1958). 

2.3.3 Life equation 
To select a bearing from a manufacturer's catalogue, the bearing load carrying 

capacity and bearing geometry need to be taken into account. For a given bearing the 

load carrying capacity is given in terms of the basic dynamic load rating and the basic 

static load rating. 

The basic static load rating, Co, is the load the bearing can withstand without any 

permanent deformation of any component. If this load is exceeded it is likely the 

bearing races will be indented by the rolling elements. Consequently, the operation of 

the bearing would be rather noisy and impact loads on the indented area would 

generate rapid wear and progressive failure of the bearing would occur. 

The basic dynamic load rating, C, is the constant radial load which a bearing can 

endure for 1x106 revolutions. The life of a bearing with basic dynamic load rating C 

with a load P can be computed by (Peter, 1998) 

L=iPIk million revolutions Equation 2.1 

where k=3 for ball bearings and k=3.33 for roller bearings. 
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2.4 Bearing Failures 
A rolling element bearing cannot operate forever. It has a definite life, which is 

determined by the number of rolling contact cycles, and the load applied on the 

raceways by the rolling elements. Bearing failure may occur from a variety of causes 
(Nisbet, 1978). The various types of failure according to causes will be discussed in 

the following section. 

2.4.1 Fatigue 
Unless operating conditions are ideal and the fatigue load limit is not reached, the 

bearing life is limited. The initiation of fatigue appears as a function of the number of 

revolutions performed by the bearing and the magnitude of the load. Fatigue is the 

result of cyclical shear stresses and it appears immediately below the load-carrying 

surface (Eschmann, 1958; Barwell, 1979). This usually occurs in rolling element 
bearings due to the cyclical effect of the rolling elements, and in plain bearings 

subjected to fluctuating load patterns. After a time these stresses cause cracks which 

gradually extend up to the surface. As the rolling elements pass over the crack 
fragments of material break away and this is known as flaking or spalling. The flaking 

progressively increases in extent and eventually makes the bearing unserviceable. 

Flaking 
The phenomenon called flaking initiates by the development of small fatigue cracks in 

the surface of the rings or rolling elements. These cracks cause material fragments to 

break away from the raceways. The first flakes are typically small. However, when the 

bearing is used continuously, the flaked area spreads by the breaking off of more 

material on the surfaces. In the end it may stretch over the entire surface of the loaded 

zone (Arvid, 1945). 

In the first stages flaking looks like a small bruise on the surface as shown in Figure 

2.5. When the rolling elements pass over the flaked area, flaking then develops and 

spreads out over the entire raceway as shown in Figure 2.6. 
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Figure 2.5 Inner ring with initial flaking (Arvid, 1945) 

Figure 2.6 Inner ring with spreader flaking (Arvid, 1945) 

2.4.2 Faulty installation 

The most common fault in installation is excessive internal preloading caused by tight 
fits or thermal expansion. With excessive preload, the contact pressure increases 

resulting in noisier operation and an increase in temperature (Charles, 1998). 

An unbalanced preload can occur when one of the rings is deformed by an improperly 

fitted shaft or housing. This results in stress increase in the two opposite regions and 

shortening the life of the bearing. A bearing not designed to tolerate any tilting of the 

rings may fail prematurely if it is run with an excessive preload or misalignment. In 

this condition, the rolling elements moving round the stationary ring will be constantly 
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constrained to change their speed and direction. This creates friction with the cage and 

raceways, hence overheating. 

Cracks 

Crack formations can be of several kinds. A heavy load of short duration can develop 

a crack. The most common cause is rough treatment when the bearings are being 

mounted or dismounted (Arvid, 1945; Donald, 1957). Excessive forces applied 
directly against the ring may cause fine cracks to form. The tensile stresses arising in 

the rings as a result of excessive drive-up generate cracks when the bearing is put into 

operation. Cracks can also occur when bearings are heated and then mounted on shafts 

manufactured to the wrong tolerance. Such cracks are as shown in Figure 2.7. 

Figure 2.7 Outer ring with cracks (Arvid, 1945) 

2.4.3 Contamination 

Another frequent cause of bearing failure is the ingress of dirt or other foreign matters, 

which often can be abrasive, into the bearing housing or between rolling element and 

raceways (Barwell, 1979; Jeffrey, 1991). Where bearings are lubricated and connected 

to other machine elements such as a gearbox, it is difficult to avoid the admission of 

fine metallic matters from the gearbox. The abrasive particles can generate wear on 

the bearing, whilst metallic particles have a generally similar effect but cause more 

indentation and pitting. 
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Wear 

In general, wear does not occur in ball and roller bearings as a result of their normal 

use. Wear occurs as a result of the ingress of abrasive particles into the bearing, which 

can cause wear of the raceway and flanges as well as of the cage (Nisbet, 1978; SKF, 

1994). Also poor lubrication can cause wear. Vibration in bearings that are not 

running also gives rise to wear. 

Abrasive particles such as grit that has entered the bearing can cause wear of raceway, 

cage and rolling elements. The surfaces become dull according to the coarseness and 

nature of the abrasive particles. These particles gradually increase as material is worn 

away from the running surfaces and cage. When a bearing is rotating, the process of 

wear is accelerated. Finally, the surfaces become worn rendering the bearing 

unserviceable. The wear caused by abrasive particles is as illustrated in Figure 2.8. 

Figure 2.8 Outer ring of a roller bearing worn by abrasive particles (SKF, 1994) 

Indentations 

Indentations occur when foreign particles get into the bearing and are pressed between 

rolling elements and rings (Michael, 1979; SKF, 1994). When the particles are rolled 

into the raceways by the rolling elements, dents will be formed; the particles in 

question are not necessarily hard. Indentation can also occur when the bearing is 

subjected to abnormal loading while stationary. Figure 2.9 illustrates such 

indentations. 
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Figure 2.9 A washer subjected to overloading while stationary (SKF, 1994) 

2.4.4 Defective lubrication 

Lubrication plays a major role in the proper functioning of rolling element bearings. 

Inferior lubricants containing abrasive particles can cause wear and lead to ultimate 

failure (Nisbet, 1978). In this case, lubricants fail to protect the working surface 

because of its inferior lubricating and water resistant characteristics. Applying too 

much grease or oil can also lead to churning and rapid eventual breakdown. By 

contrast, bearings operating with too little grease or oil result in excessive friction, 

hence smearing and seizing. 

Smearing 

Smearing is a special kind of seizing in its early stage. Smearing can develop between 

rolling elements and raceways as a result of relative sliding as opposed to rolling, 

under load with inadequate lubrication (Nisbet, 1978; SKF, 1994). When smearing 

takes place, the material is generally heated to such a high temperature that re- 

hardening takes place. This generates stress concentrations that may lead to cracking 

or flaking. Smearing may also arise when the rolling elements are subjected to severe 

acceleration on their entry into the loaded zone. An example of smearing is shown in 

Figure 2.10. 
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Figure 2.10 Smearing on a roller bearing surface from a spherical roller bearing - 
100 x magnification (SKF, 1994) 

Surface distress 

If an oil film between rolling elements and raceways becomes too thin, the peaks of 

the surface roughness will come into contact with each other, causing small cracks in 

the surfaces (SKF, 1994). The phenomenon is known as surface distress. However, 

this kind of crack is different from fatigue cracks that are first initiated beneath the 

surface leading to flaking. By contrast, the surface distress cracks are microscopically 

small and increase very slowly to such a size that they interfere with the smooth 

running of the bearing. Surface distress is shown in Figure 2.11. 

Figure 2.11 Surface distress in the form of a band encircling on a rolling element 
(SKF, 1994) 
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Insufficient lubricant can also cause wear. Metal to metal contact occurs because it is 

not possible for an oil film with sufficient load carrying capacity to form (Nisbet, 

1978; SKF 1994). This gives the surfaces a mirror-like finish. If the lubricant is totally 

used up, the temperature will rise rapidly and cause the bearing to seize. An example 

of wear caused by inadequate lubrication is shown in Figure 2.12. 

Figure 2.12 Outer ring of a roller bearing worn by inadequate lubrication (SKF, 
1994) 

2.4.5 Corrosion 
Corrosion, especially rust formation, is the enemy of all rolling element bearings. Rust 

formation in bearings is mostly the result of the entrance of water or humidity. When 

water or corrosive agents reach the inside of the bearing in some certain quantities 

such that the lubricant cannot provide protection for the steel surface, this process will 

soon lead to deep seated rust (Nisbet, 1978; SKF, 1994). In addition, moisture will 

also condense from the air inside the bearing due to temperature variations. An 

example of corrosion is shown in Figure 2.13. 
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Figure 2.13 Outer ring with deep seated rust (SKF, 1994) 

2.4.6 Fretting corrosion (False brinelling) 

For a stationary bearing, there is no lubricant between rolling elements and raceways. 

Fretting corrosion also referred to as false brinelling, takes place initially at the edges 

of the contact area between the raceways and rolling elements (Nisbet, 1978; Jeffrey, 

1991; SKF 1994). The absence of a lubricant film gives rise to metal-to-metal contact 

and vibration can lead to relative movements between the rolling elements and the 

rings. As a result of these movements, small particles break away from the surfaces 

leading to the formation of depressions in the raceways as shown in Figure 2.14. 

Figure 2.14 Inner and outer ring of a cylindrical roller bearing exposed to vibration 
(SKF, 1994) 
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2.4.7 Electrical discharge damage 

Electric discharge damage is formed when an electric current passes through a bearing 

such as in electric motors, either by current leakage or by induction effects. If the 

potential drop is more than about 0.5 volt, a spark will occur through the thin lubricant 

film and ultimately damage the bearing components (SKF, 1994). The surface of the 

damage is similar to electric arc welding. The passage of electric current usually leads 

to the formation of fluting in bearing raceways. Rollers are also subjected to fluting, 

while there is only dark discoloration of balls. An example of fluting caused by the 

passage of electric current is shown in Figure 2.15. 

Figure 2.15 Fluting on outer ring caused by electric current (SKF, 1994) 

2-17 



Chapter 2 Background to bearings and condition monitoring Tonphong Kaewkongka 

2.5 Maintenance strategies 
Condition monitoring and diagnosis (Au, 1990) has played a major role in industry as 

an evaluation of the condition and its cause of machines. This can be performed by 

extracting information from machines to indicate operating condition of the machines 

or instruments. Successful condition monitoring will enable them to be operated and 

maintained with safety and economy. 

Traditionally condition monitoring can be referred to as predictive maintenance. In 

industry, the maintenance strategies can be classified in terms of the different 

approaches: breakdown maintenance, regular preventive maintenance and predictive 

maintenance (Collacott, 1977). 

2.5.1 Breakdown maintenance 
Breakdown maintenance is one that allows machines to be run until they fail, and then 

repaired. This is the simplest approach to maintenance and it is very effective where 

the consequence of failure and cost of machine elements are low (Barron, 1996). It 

can also be considered as a default maintenance action because the possibility of 

unpredicted breakdown always exists. 

The drawback is severe when the consequence of failure and the price of machine 

parts are high. Unpredicted failure can alter the production plans and can be costly in 

terms of lost output. However, it may be the only way if the system fails without 

giving any warning of impending failure. 

2.5.2 Regular preventive maintenance 
Regular preventive maintenance is a better strategy compared to breakdown 

maintenance. In this strategy, a machine is stopped for its condition to be checked 

after a predetermined time has been reached. This is an improvement of the 

breakdown maintenance since the regular maintenance decreases the possibility of 

unplanned stoppages (Williams, 1994; Barron, 1996). 

The major disadvantage of regular preventive maintenance is that it still cannot 

prevent unexpected failures that occur in a random fashion. These unplanned failures 
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can interrupt production and maintenance activities. If spare parts are not ready, 

restoration cannot be carried out. 

2.5.3 Predictive maintenance 
Predictive maintenance is the condition-based maintenance. In this strategy preventive 

maintenance is carried out at what may be irregular intervals but they are determined 

by the actual condition of the machine component or system. The main purpose of 

predictive condition monitoring is to give an early warning as a result of knowing that 

a machine component or system has become abnormal (Williams, 1994). 

Successful condition monitoring can provide benefits such as saving on the capital 

costs due to fewer standby systems and service spare parts, operation cost due to 

lower machine downtime or unproductive time and maintenance cost due to less 

unplanned maintenance and more effective plant operation. It also results in the 

increased system availability, which relates to the time that a system is available for 

production, by minimising the time for repair or lost to shutdowns. Hence, it also 
leads to more consistent quality and improvement of the product because of the more 

efficient machine operation that can be achieved. 

The implementation of an effective bearing condition monitoring requires accurate 
and reliable fault detection and diagnosis. As mentioned earlier, only using statistical 

life estimation as preventive maintenance is not sufficient since in the real situation 

variable conditions often occur such as load and speed variations. This can be 

misleading if the actual condition of the bearing is unknown. Therefore, research into, 

and the continuing use of condition monitoring as a maintenance tool has led to the 

development of many fault detection and diagnosis techniques which will be 

discussed in following section. Amongst the various techniques, the most popular 

techniques are vibration and acoustic emission; both will be presented in Chapter 3. 
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2.6 Various techniques for condition monitoring 
2.6.1 Manual inspections 

In manual inspection the maintenance operators use their senses of sight, touch, and 
hearing to make an assessment and interpretation of the operating conditions of 

machine (Michael, 1979). This method requires experience on the part of the operator 

and his constant attendance on the machine. This can simply be carried out by 

dismantling the machine components and looking to check for the obvious defect, 

hearing the unusual sound generated from the machine, touching to check for 

overheating and smelling to investigate burning caused by overheating. Its advantage 
is the simplicity and low cost. 

2.6.2 Temperature monitoring 
Temperature monitoring is available and important for components that generate, 

transfer or store energy such as heat. It involves the use of thermocouples or resistance 

thermometers to perform measurement on bearing temperatures. Thermocouples use 

wires of dissimilar metals such as copper or constantan, which can produce a voltage 

proportional to temperature in the linear range. Resistive devices measure resistance 

changes that occur with changes in temperature (Jeffrey, 1991). 

In the case of bearings, temperatures tend to fluctuate according to load so any preset 

warning levels must take account of normal maximum temperature. The warning level 

should be based on a rise above normal rather than an arbitrary maximum. This 

method can indicate warning of several hours before breakdown occurs and can be 

used to raise an alarm and shut down the machine. 

2.6.3 Spectrographic oil monitoring 
Spectrographic oil monitoring (Barron, 1996) is a very effective method for assessing 

the condition of the oil based on its sample and the components that come into contact 

with it; the sample can be used as a representative of the total contents of the system. 

The applications of this method are for machines where remote transducer mounting 

on specimen is difficult to carry out, or perhaps where many moving components are 
too close together such as in compressors, gas turbines, gearboxes and low speed 

equipment. 
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This method requires regular sampling so that trends can be established. Wear will 

produce a slight and steady increase of the metal levels; the sudden increase occurs 

when there is malfunction of components. Typical wear indicators are copper, zinc, 

aluminium, iron, carbon and chromium; contamination indicators include silicon, 

sodium and boron. One of the limitations of this method is that large particles present 
in the oil may lead to misleading results. 

2.6.4 Particle retrieval 
Particle retrieval is used to analyse the wear debris present in the lubricating oil. 
However, instead of measuring the metal level it is more concerned with the physical 

size of the particles. Wear debris can be sampled using magnetic plugs in the system 
downstream of bearings to capture ferrous particles and by using oil filter to collect 

non-ferrous particles. Then a microscope is used to inspect the physical size and shape 

of the debris (Mellor, 1988). 

During the run-in period of machine elements, large quantities of very small particles 

can be expected. In normal operating condition, a smaller quantity of wear would be 

expected which is normally below 25 nanometre in size. A steady increase of particles 
larger than 0.25 mm over three or more samples gives indication that wear occurs at a 

rapid rate and failure may be imminent (Jeffrey, 1991). 

2.6.5 Corrosion monitoring 
Corrosion monitoring can be used in the plant where environment and process fluid 

can lead to corrosion of certain parts, leading to catastrophic breakdown (Williams, 

1994). The corrosion may lead to deterioration in performance of machines and is 

usually a greater problem for structural components than for rotating machines. 

Since corrosion proceeds as an electro-chemical process, the technique for monitoring 

is directed at the identification of the electrical currents set up by the corrosive 

activity. A probe that consists of a thin wire is inserted into the process fluid. As the 

wire corrodes, its cross sectional area reduces and the electrical resistance increases. 

This can be done with a suitable bridge circuit to give a continuous signal related to 

the rate of corrosion (Collacott, 1977; Michael, 1979). 
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3 Review of vibration and AE for bearing monitoring 
Research has previously been carried out into bearing condition monitoring and 
diagnosis using acoustic emission and vibration techniques. In order to obtain a robust 

and reliable system for bearing condition monitoring, an understanding is important of 
how a signal is generated from a source, how the signal is propagated through the 

transducer, what material is used for sensing and its sensitivity and frequency ranges. 
Knowledge of signal transduction for vibration and acoustic emission needs to be 

established as vibration and acoustic emission transducers are the primary devices of 

the monitoring systems. Signal processing techniques that have been used for bearing 

condition monitoring will then be presented in the latter part of this chapter. 

3.1 Introduction to vibration 
With increased global competition in production and the greater pressure on making 
better use of machines, the importance of effective methods for condition monitoring 

and faults detection in machinery became apparent in the 1970s. Vibration monitoring 

has been applied successfully for monitoring rotating machinery. Vibration based 

maintenance is widely accepted as an appropriate maintenance strategy in many 

sectors of industry involving high cost machines or machines that have long 

replacement lead time. Machine vibrations produced by industrial mechanical 

components are key indicators of their health and operating conditions. Many 

continuous process industries have also found vibration monitoring as effective 

solutions to avoid unscheduled operation interruption and minimise maintenance cost. 

Classical machine components monitored included bearings, shafts, gears and drive 

belts for which fault mechanisms such as unbalance, misalignment shaft and defects 

and looseness in bearings can be identified (Wallace, 1970). Given the fact that all 

machines that contain moving components may vibrate, the cyclical excitation forces 

transmitted to adjacent components within machines can give rise to motion 

(vibration). Therefore, the nature and magnitude of the vibrations on a component of 

the machine can give valuable information for its mechanical condition. The 

waveforms of vibration signals from rotating machinery are often recorded and 

analysed by processing the data using various techniques. Each different technique 

gives some information about the condition of the machine. 
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To measure machine vibration, it is important to understand the source of machine 

vibration and its signal characteristics so that meaningful information of the signal can 
be obtained. Therefore, a review of detection of machine vibration and its signal 
processing techniques is given in the next section. 

3.1.1 Source of machine vibration 
All moving components in a machine can produce vibration whose nature and 

magnitude can provide a meaningful signature of its mechanical condition. Vibration 

arises from cyclical forces within the machine. These forces can be caused by the 

configuration of the machine, or by the presence of some defects. Due to the fact that 

no machine structure is infinitely rigid, machine elements move cyclically in 

proportion to these excitation forces. 

Mechanical noise is produced by the action of some vibrating or cyclically impacting 

machine elements causing compression waves to transmit through the surrounding 

materials, which can be solid, liquid, or gas. These compression waves can be 

detected by hearing, when they result in a phenomenon called sound or noise. Both 

can be generated from the same source, and contain valuable information about the 

condition of the machine. The frequencies can vary from a fraction of a Hz up to 

several thousand Hz. 

In rotating machinery, consider a machine incorporating among its many components 

a ball bearing that has a small pit in one of its races. When a rolling element comes 

into contact with the pit, a small force impulse is then generated. For every revolution 

of the moving race, a predictable number of balls will hit the pit, and thus impulses 

will be produced at some known multiple of the shaft running frequency. Over a 

period of time, the race defect will deteriorate and the magnitudes of the impulses will 

increase, thus producing higher levels of vibration. 
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3.1.2 Vibration signal transduction 
To detect vibration, two types of transducers are used: seismic, and proximity 
(Michael, 1979). Seismic transducers produce a signal proportional to the absolute 

motion in space and are capable of detecting the majority of machine defects such as 

unbalance, misalignment, bent shafts, loose components and rubs. In contrast, 
proximity transducers generate a signal proportional to the relative motion between 

the tip of transducer and the point of interest on a vibrating surface. 

A proximity (relative motion) transducer is used for sensing displacement between the 

mounting points, usually the bearing housing, and the point of interest, usually the 

rotating shaft. The transducers work on the principle of eddy current loss related to the 

displacement between the tip of the transducer and the target surface as illustrated in 

Figure 3.1. The coil embedded in the tip of the probe is fed with an A. C. current, 

whose frequency is of the order of 2 MHz, and the eddy current losses are measured 

by a bridge circuit, which can produce a D. C. level proportional to the displacement or 

gap (Broch, 1980, Smith 1989). A significant advantage of proximity transducer is 

that being mounted in a machine casing it is less exposed to hostile and dirty 

environments and consequently less likely to be damaged by knocks. The frequency 

of operation ranges from a fraction of a Hz up to about 1000 Hz. 

Figure 3.1 Example of proximity transducer (Smith, 1989) 
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Seismic transducers generate an output signal proportional to the absolute velocity or 

acceleration relative to a fixed point as illustrated in Figure 3.2. The original type of 

velocity transducer in the form of a spring-mounted coil produces a signal 

proportional to velocity. This type of transducer uses the property that a wire when 

cutting lines of flux in a magnetic field will generate a voltage proportional to the field 

intensity and the velocity of the wire. They are useful for monitoring the unbalance on 

rotating machinery. The frequency response is approximately from 10 Hz to 1000 Hz. 

However, velocity transducers are less sensitive to high frequency vibration compared 
to acceleration transducers also referred to as accelerometers. 

PWOW'^/ $Pring 

sewyk A 

am 

lecwric EMmwil 
ýomprmfon 

Figure 3.2 Example of seismic transducer (Broch, 1980) 

The most widely used seismic transducers are of the acceleration type because of the 

wider frequency range of operation that they afford and their availabilities in a wide 

variety of general-purpose applications. Accelerometers have sensing elements that 

are typically piezoelectric crystals loaded with a small inertia mass and rigidly 

mounted in a casing. The most important part of the accelerometer is its piezoelectric 

element that is generally made from a polarised ferroelectric ceramic. It is capable of 

generating an electric charge directly proportional to strain whenever a load is applied 

to put the piezoelectric element in tension, compression or shear. The voltage output is 

proportional to the acceleration over a wide range of frequency, up to the point where 

the output starts to rise due to the effect of resonance of the inertia mass supported on 

the crystal. The frequency response can vary from 10 Hz to about 30000 Hz. In recent 

years, accelerometers have become available with built-in matching charge amplifiers 
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within accelerometer casings and their sizes are not very much larger than those 

without amplifiers (Charles, 1998). 

Generally, machines of the same type and condition tend to vibrate at constant 

vibration velocity, independent of speed. Similarly acceleration levels tend to increase 

and displacement levels tend to decrease with increasing speed. It is advantageous to 

choose the parameter that gives the flattest frequency spectrum in order to draw out 
the details over most of the dynamic range of the measuring instrumentation. 

Therefore, the choice of the type of sensors depends on the frequencies that are to be 

measured. In summary, displacement, velocity and acceleration measurements are best 

suited to low frequency, mid-range frequency and high frequency applications 

respectively. 

Preamplifiers and filters are also used for signal conditioning. A preamplifier is used 

to increase the voltage or charge level of the signal in order to drive alarms or meters, 

or to match other connecting electronic circuits. A filter used in vibration monitoring 
is an electronic circuit that allows only certain frequency components of the signal to 

pass. High pass and low pass filters reject those frequency components that lie below 

and above some predetermined frequencies respectively. A band-pass filter allows 

only those frequency components within a predefined band to propagate. 

3.1.3 Vibration signal processing 
Overall level monitoring 
Overall level monitoring technique is sometimes called `all pass monitoring'. It is 

used to check the trend of the magnitude of vibration for the general condition of the 

complete machine. Such monitoring needs to be performed from the initial condition 

or the base line of the machine so that its irregular condition can be indicated as a 

changing trend. One drawback is that if a machine fault is not severe or the signal is 

insensitive to the fault, the overall level may not show any significant change. 
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Spectral analysis 
Spectral analysis can be used to diagnose defects that occur in the bearing by 

analysing a vibration signal in terms of its component frequencies. The Fourier 

transform of a function x(t), which represents an analogue signal with finite power, is 

defined as (Randall, 1977), 

F[x(t)]= X (f) =2 
_J 

x(t)e-'Zdt Equation 3.1 

Causes of defects can usually be identified with a narrow-band spectrum analysis in 

which the spectral peaks are compared at the calculated frequencies. Since defects in 

bearing components produce known characteristic vibration frequencies, some of 

which can be expressed as a multiple of the running speed of the machine, 
deterioration of a machine component generates an increase in vibration level at its 

characteristic defect frequencies. These frequencies are dependent on the dimensions 

of the bearing, the number of rolling elements and the speed of rotation (Michael, 

1979); Appendix A lists the formulae for calculating the various bearing frequencies. 

Shock pulse method (SPM) 
The SPM technique (SPM Instrument AB, 1970) relies on the fact that damage, 

contamination and other defects in bearings will cause mechanical impacts. The 

technique works by detecting the development of a mechanical shock wave generated 

by the impact between two masses. At the instant of impact, mechanical contact 

occurs and a compression (shock) wave develops in each mass. The SPM method is 

based on the events occurring in the mass during the extremely short time period after 

the first particles of the colliding bodies come in contact. To observe the shock pulses, 

the vibration signal is passed through a band-pass filter in order to isolate one of the 

resonances. Then the filtered signal is converted into a train of impulses by a pulse 

circuit converter. By observing the increase in the level and rhythm of impulses, it is 

possible to establish whether the bearing element is damaged. 

Kurtosis 
The Kurtosis method (Rogers, 1979; Pachaud, 1997; Shiroishi, 1997) is used to 

analyse the machine condition by monitoring the statistical parameter known as the 

kurtosis, which can be derived from the statistical moments of the probability density 
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function of the recorded signal. Kurtosis is a statistical measure relating to the 
`peakiness' of the distribution of vibration amplitude. Specifically, kurtosis is the 

fourth moment, /4, about the mean E(X) divided by the fourth power of the standard 
deviation a. 

] Kurtosis = 'u4 = 
E[(X - E[X ])4 

Q' E[(X 
-E[X])2]2 

Equation 3.2 

where the symbol E is the expectation operator and X is the vibration amplitude. 
Kurtosis is used as an indicator of defects inducing shocks. A normal bearing has a 

normal distribution function of vibration amplitudes and the corresponding kurtosis 

value is equal to three. As wear develops, the kurtosis value of the vibration amplitude 
distribution grows above 3. 

Cepstrum analysis 
Cepstrum analysis can be used to provide information about frequencies that repeat 

themselves in a frequency spectrum. The cepstrum (Tang, 1991) is calculated by 

finding the inverse Fourier transform of the complex natural logarithm of the power 

spectrum of a signal to increase the significance of lower amplitudes: 

x(z) _ 2z 
f log[X (ei0)}e'°"dw 

_ff 

Equation 3.3 

A cepstrum is used to highlight periodicities in the spectrum, in the same way that the 

spectrum is used to highlight periodicities in the time waveform. The harmonics in the 

spectrum are summed into one single peak in the cepstrum, thus making faults 

identification easier to identify. For example, gear systems tend to generate sidebands 

since gear rotational frequency can modulate the tooth meshing component, producing 

families of sidebands. These appear as spikes in the frequency spectrum, equally 

spaced on each side of the tooth meshing frequency by an amount equal to the gear 

rotation frequency and its multiples. Cepstrum analysis can determine the sideband 

spacing in such situations. 
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Orbit analysis 
To perform an orbital analysis, two proximity transducers are placed around the shaft 
90 degrees apart and the output displays the motion of the centre of a rotating shaft in 

the two mutually perpendicular directions, as shown in Figure 3.3. Orbits are useful in 

the analysis of the shaft vibration in order to reveal machine faults (McCormick, 

1997). The shaft orbit can provide basic amplitude and phase lag information 

indicating wear in a bearing, such as shaft imbalance, misalignment and oil whirl. 
However, since the orbits are constructed in the time domain, they are affected by 

noise and surface roughness, often leading to incorrect monitoring. 

sensor 

shaft 

@ 

sensor 

Figure 3.3 Arrangement of a typical shaft orbital motion 

3.2 Introduction to acoustic emission 
The technology of acoustic emission (AE) has its beginning in 1950 marked by the 

work of Joseph Kaiser. During the decades of the 1950s and 1960s, research into the 

fundamentals of acoustic emission created a huge growth of interest resulting in the 

rapid development of instrumentation for characterisation of AE behaviour in many 

materials (Swindlehurst, 1973). In the 1970s, acoustic emission was more widely 

recognised for its unique capabilities as a non-destructive test (NDT) method for 

monitoring dynamic processes; its use has been steadily growing in various industrial 

sectors. In the 1980s computers provided a fundamental and powerful component for 

both instrumentation and data analysis (Thomas, 1996). 
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The term acoustic emission can be used to refer to both a technique and a 

phenomenon upon which the technique is based. Acoustic emission transducers allow 

the more sensitive detection of sounds of higher frequencies and lower intensities such 

as produced from crack propagation, dislocation motion, fibre debonding in 

composites and some phase changes (Scruby, 1987). Acoustic emission is a natural 

phenomenon of sound generation applied to the spontaneously generated elastic wave 

produced within a material under stress. In other words, if there is a sudden release of 

strain energy within a solid, caused, for example, by the growth of a crack or plastic 

deformation, then some of the energy is dissipated in the form of elastic waves. 

Typically, the proportion of energy depends on the nature of the source such as how 

localised it is and how rapidly the release takes place. 

To be able to use AE as an effective condition monitoring technique, an understanding 

of the AE source is necessary. The different sources of acoustic emission will be 

described in the following section. 

3.2.1 Sources of acoustic emission 
Acoustic emission occurs in the form of transient bursts that correspond to a localised 

micro failure within the body of the material. They are inherently broadband and 

contain frequencies from DC to the MHz region. In addition, source mechanism 

relating to the crack extension and plastic deformation, active in defect growth such as 

fatigues, is of high-frequency stress waves source (Holroyd, 1993). Typically the 

frequencies lie within the range of 20 kHz to 1 MHz. 

In the case of a growing crack, arguably the most important AE source, the formation 

of new crack faces must be accompanied by sudden changes in stress and 

displacement of material in the vicinity of the crack (Scruby, 1987). Varying stresses 

and strains must, by definition, act as sources of stress (elastic) waves as shown in 

Figure 3.4. 
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Figure 3.4 Example of an AE source as crack growth 

Generally, at a microscopic level stress wave activity originates as individual 

randomly occurring transients. These bursts of AE events may occur individually in 

clusters or quasi continuously depending on the type of machine, its running speed 

and severity of machine degradation. The stress wave corresponding to each transient 

burst propagates readily through the metallic structure of most machines creating 

reflections at the boundaries defined by the geometry of the machine structure. 

Ideally a rotating machine operating perfectly would produce no mechanically 

generated high frequency stress waves. Since no machine is perfect and there are 

potentially other sources of activity, this does mean that machinery in very good 

condition can still generate a continuous type of AE signal as in the form of 

overlapping multiple low level bursts. This has the appearance of a signal having a 
low mean level with little or no distinct transient superimposed on it. 

In a bearing, when a rolling element in a bearing encounters a race defect, normally a 

small pit or crack, there will be an impulsive change of load on the system locally and 

a transient burst will propagate, appearing as discrete random transients superimposed 

on the signal. Acoustic emission signals propagate in longitudinal and shear modes 
inside the bearing, and in the Rayleigh mode on the surface of the raceways (Bashir, 

1999). After its propagation from the point of the growing crack, many reflections will 

ensue at the surfaces of the bearing. The signal will probably be highly complex by 

the time it reaches the mounting point of the transducer. In the foregoing, it is 
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assumed that the wave initiated from the crack growth is a bulk wave and then 

converts to a Rayleigh wave, which travels onwards to the measurement point. 

3.2.2 Acoustic emission signal transduction 

In order to capture AE events, a transducer or sensor is required to convert very small 

surface displacement (on the order of picometres) into electrical signals that can be 

amplified and recorded. In principle, an acoustic emission transducer is used to 

transform the mechanical energy in an elastic wave into an electrical voltage signal. 

The operations of most AE transducers depend on the piezoelectric effect. 

Piezoelectric effect is preferred because of its high sensitivity and relative immunity to 

mechanical noise; and the robustness of the sensing element allows its use in many 

industrial applications. 

Most AE transducers (Swindlehurst, 1973) have a sensing element in the form of a 

thin disc of piezoelectric material, normally lead zirconate titanate (PZT) that can 

convert mechanical deformation into corresponding electrical voltage as shown in 

Figure 3.5. This disc is metalised on both sides for electrical contact, and mounted in a 

metal cylinder to provide shielding from electromagnetic interference. When the disc 

is unbacked and undamped or lightly damped it behaves as a resonator for incident 

elastic waves so that the output signal is usually a decaying sinusoid. The chosen 

frequency is dictated by the thickness of the element. Backing the element with an 

attenuating medium such as epoxy, which is normally loaded with tungsten to match 

its impedance, creates a heavily damped transducer with a more broadband response 

(McFadden, 1984). 
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Figure 3.5 Example of a piezoelectric transducer (Swindlehurst, 1973) 
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Typically the useful frequency responses of AE transducers lie in the range of 100 
kHz to 1 MHz. The frequencies are well matched to specimens with thickness lying 
between a few millimetres and a fraction of a metre, since the thickness controls the 
specimen resonance and the dominant Lamb wave frequencies. Therefore, in order to 

select a suitable transducer for an application, it is obviously advantageous to optimise 

sensitivity by matching frequencies. Broadband AE transducers normally comprise a 

piezoelectric element whose natural frequency is above the pass band of interest. 

Hence, to monitor in a range from 100 kHz to 1 MHz, a natural frequency between 1 

and 2 MHz might be selected. Damping such a resonator can give a reasonably flat 

response below the natural frequency (Scruby, 1987). 

To attain high sensitivity, the piezoelectric transducer must be mounted to the 

specimen under observation in such a manner that the acoustic emission energy can 

pass into the transducer with minimum attenuation at the contact surfaces between the 

transducer and specimen. The required intimate mechanical contact can be obtained 

on the flat surface by means of a couplant at the interface. The couplant is any 

material, which helps the propagation of acoustic waves across the interface; in 

contrast, a bond is a couplant which physically holds the transducer to the surface of 

the specimen. Examples of a bond include a thin film of grease, oil, epoxy adhesive 

and non-attenuating fluid. 

One drawback with the use of piezoelectric disc element is that it produces a 
broadband response only for waves incident perpendicular to its surfaces. When 

destructive interference occurs, the output is distorted. The bandwidth is also reduced 

at other orientations. All these can lead to a degradation of performance of the 

transducer. However, these effects are insignificant at lower frequencies unless the 

transducer is very large. 

In practical measurement, a resonant transducer is used so that the sensitivity can be 

improved. There is only a significant gain if the bandwidth of the signal is much less 

than the bandwidth of the noise. When the bandwidth of the AE signal is wide, then 

the gain is insignificant because both the background noise and the signal are 
broadband. Nevertheless, broadband transducers are chosen when waveform analysis 
is desired and prior knowledge of the frequency of interest is unknown. 
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A preamplifier is the first stage in the amplification of the acoustic signals. The 

preamplifier should be low noise, and matched to the transducer response as nearly as 

possible. By far the most common type of filter used in practice is band-pass filtering 

because reducing bandwidth can improve signal-to-noise ratio. Typically, high 

frequency rejection reduces electronic noise. Likewise low frequency rejection assures 

that mechanical vibration, which can be an order of magnitude higher, does not 
interfere with the results. 

3.2.3 Acoustic emission signal processing 
There is a need to interpret the AE signals so that it can be related to the actual 

condition of machine components. Conventional AE parameters (Pollock, 1973), as 

shown in Figure 3.6, can be extracted from the acoustic signal and they are the 

ringdown count, rise time, time of arrival, event duration, energy and peak amplitude. 

XT Peak Ringdown 

Figure 3.6 Examples of traditional AE parameters 

To characterise these parameters and also to eliminate `noise', a threshold is selected 

so that events that rise above the threshold are counted. Evidently, the threshold level 

influences the values of some of these parameters. 
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Ringdown count 
Ringdown count is one of the earliest parameters employed using a discriminator. 

This can be obtained by passing an acoustic emission signal through the discriminator 

that triggers a count whenever the voltage of the signal rises above the predetermined 
threshold value. If the intensity of the signal is high, then the counts will be large. 

Time of arrival 
The time of arrival of an acoustic emission event is the time instant at which the event 
first crosses the predetermined threshold. 

Peak amplitude 

Peak amplitude of a signal may be taken as a measure of the signal's intensity. The 

peak amplitude of an AE event is the maximum excursion of the corresponding 
voltage signal from the zero level. The peak amplitude is independent of the threshold 

setting. This parameter is often used to assess the severity of the AE source. 

Event duration 
Event. duration is dependent on the amplitude threshold. It is the time interval between 

the first and last threshold crossing for an individual event. The signal duration is 

equal to the period of each cycle times the number of counts. 

Energy 

The energy of an AE event is the energy contained in the corresponding voltage signal 

and, strictly speaking, is not the true energy of the event itself. Energy analysis 

procedures involve squaring and integrating the time signal, the signal energy being 

proportional to the area under the ensuing curve. However, the energy, which is 

converted from the sensor, can be related to a sudden release of strain energy from the 

emission source such as crack growth, impact and friction. 

3.3 Previous work on bearing condition monitoring 
Research has previously been carried out into the use of vibration and acoustic 

emission for bearing condition monitoring. And there are a number of monitoring 

methods reported. It is thought beneficial to provide a review of these methods by way 

of comparison in terms of performance and application. Based on the representation 
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of a signal, its analysis can be carried out in one of three domains: time domain, 
frequency domain and joint time- and frequency- domain. 

3.3.1 Time domain analysis 
Early work in this area by Butler (1973) investigated the detection of damaged rolling 
bearings using the shock pulse method to vibration signals. He assumed that when a 
rolling element comes into contact with a damaged area of the raceway or with debris 
in bearing, mechanical shocks are then generated and transmitted through the bearing 

structure. He concluded from the experiments that a shock pulse meter provides 
quantitative and reliable results. This method is efficient but has the disadvantage that 

when there is more than one fault in a machine, the impulse repetition will not 
correspond to one single fault, leading to incorrect diagnosis. 

Yoshioka (1982) described an acoustic emission system for source location. The 

experiment was conducted using an acoustic emission sensor to detect AE signals and 

a magnetic detector as a source locator. The magnetic detector counts the number of 

passing gear teeth in the outer race of the retainer to determine the position of the ball 

in the raceway. The results showed the coincidence between the positions of detected 

AE counts and positions of defects in the raceway that were measured by a tool- 

maker's microscope. 

Comparative studies of various vibration and acoustic emission measurement methods 
(Rogers, 1979; Tandon et al., 1992; Holroyd, 1993; Tandon et al., 1999; Choudhury et 

al, 2000) were given. Measurements were conducted on good new bearings and 
bearings with simulated defects in their elements. Vibration measurements included 

the overall vibration acceleration, envelope-detected acceleration, kurtosis, crest factor 

and shock pulse; acoustic emission measurements included ringdown counts, event 
duration and peak amplitude. The results indicated that, in general, the detection of 
defects at lower speeds is highest with acoustic emission and lowest with the vibration 

shock pulse method. 

Mellor (1988) and Heng et al. (1998) studied rolling element bearing condition 
monitoring using vibration and sound. The crest factor and the distribution of 
moments including kurtosis and skewness were used. In the absence of bearing 
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damage, the high frequency vibration generated from a rolling element bearing is 

random in nature with a corresponding Gaussian or normal amplitude distribution. In 

the presence of damage, the high amplitude impulses generated by the impacts distort 

the shape of the amplitude distribution from being Gaussian. 

Bashir et al. (1999) and Zhang (2000) investigated the release of acoustic emission 

energy during fatigue crack growth. They presented mathematical models to describe 

the acoustic energy associated with a fine crack growth in a bearing in an attempt to 

provide a better description of the failure mechanism. The models predicted that the 

amplitude (in volt) of impulse function is proportional to the corresponding height (in 

metres) of the bearing surface displacement. 

Holroyd (1993), Yoon et al. (1995), James (1995) and Miettinen et al. (2000) carried 

out experiments using acoustic emission for bearing monitoring. They found that AE 

is an effective condition monitoring method for early fault detection in bearings. The 

results showed that the appearance of distinct random transients indicated the 

degradation of bearing condition. As degradation intensified the number of bursts and 

the mean signal level also rose. The dramatic reduction of AE events was achieved 

when pump bearings were re-greased. 

3.3.2 Frequency domain analysis 
McFadden (1984) explored the use of acoustic emission on monitoring bearings at low 

speeds. Experiments were carried out on a test bearing operating at low speed (about 

10 rev/min). He found that AE is sensitive to loading condition: a change in load at 

constant speed results in an increase output of AE signals. He also concluded that the 

non-uniform frequency response characteristics of a typical AE transducer makes it 

less suitable for general purpose monitoring of bearing at high speeds unless 

frequencies are matched. 

Experimental studies for bearing monitoring based on a frequency spectrum (Jun, 

1995; Mechefske, 1995; Liu, 1996; Pineyro et al, 2000) were also conducted. The 

results showed that employing fast Fourier transform (FFT) has the potential of 

revealing information on the sources of failures. The peaks in frequencies define the 

type of fault and the amplitude of the peaks indicates the severity of the fault. 
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Although the frequency spectrum appears to be the best indicators of machine 

conditions, the defect frequency may be close to frequencies excited by other machine 

components leading to incorrect interpretation. 

Qu et al. (1989) proposed the holospectrum technique for rotor surveillance and 
diagnosis. The holospectrum method employed FFT spectra of rotor vibration both in 

horizontal and vertical directions. It can provide information not only about peak 
frequency and magnitude, but also the phase relationships. Figure 3.7 illustrates some 

examples of holospectrum. It is composed of circles, ellipses and lines. A pure circle 
is obtained if the amplitudes between the vertical and horizontal components are equal 

and their phases are 90 or 270 degrees. An ellipse is obtained if there is imbalance in 
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Figure 3.7 Examples of the two-dimensional holospectrum 

the shaft. A line is obtained if the phase lag between two elements of machine is 0 or 

180 degrees and the slope of the line depends on their amplitude proportion. Results 

showed that this method is very sensitive to rotor imbalance or temporary bending of 

shafts. 

Dalpiaz et al. (2000) used cepstrum for fault detection in gear. Since gear vibration 

spectra commonly show sidebands of the meshing frequency, which typically arise 

from the modulation of the tooth meshing frequency by gear rotating frequency, it is 

difficult to quantify the degree of modulation by means of spectral analysis. They used 

cepstrum analysis to identify the periodic structures in spectrum, thus giving a more 

accurate interpretation of the sideband level over the whole spectrum. 

Envelope detection of acoustic emission and vibration signals is also an important 

technique for condition monitoring of rotating machinery. Mellor (1988), Sato et al. 
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(1991) and Geropp (1997) used the signal envelope detection waveforms and 
frequency spectra to identify bearing faults caused by periodic shock impulses that can 
be considered as amplitude modulated signals. Figure 3.8 illustrates the envelope 
detection procedure. The input signals were band-pass filtered and rectified to reduce 

mechanical noise. To extract the carried frequency, the signal was demodulated and 

then passed through a low-pass filter. What remains is the frequency component of the 

signal caused by the repetitive defect frequency. 

Input 
signals 

Band-pass 
filtering 

Precision 
rectifier 

Enveloper 

Low-pass 
filtering 

Figure 3.8 Diagram of signal enveloping process 

Shiroishi et al. (1997) and Li et al. (1999) investigated a defect detection method for 

rolling element bearings. They used a signal processing scheme which was a 

combination of high frequency resonance technique (HFRT) and adaptive line 

enhancer (ALE) techniques as shown in Figure 3.9. The HFRT, similar to envelope 
detection, comprised band-pass filtering to allow only the resonance frequencies to 

pass through and demodulation to provide a demodulated signal in the absence of low 

frequency mechanical noise. The ALE has the effect of increasing the detectability of 

a periodic defect signal by reducing wideband noise of the obtained demodulated 

signal and enhancing the envelope spectrum of the defect signal with clear peaks at 

the harmonics of the characteristic defect frequency. 
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Figure 3.9 HFRT and ALE block diagram 

3.3.3 Joint time- and frequency- domain analysis 
Dalianis et al. (1997), Lee et al. (1997), Stazewski et al. (1997b), and Han (1999) used 

the Wigner-Wille distribution for bearing condition monitoring. The Wigner-Wille 

distribution approach is one of the time-frequency methods. They claimed that this 

method could reveal the type of defect more accurately than the original FFT spectra 
in a gearbox such as tooth-cracking or pitting. Wang (1993) and Oehlmann et al. 

(1997) demonstrated the use of Wigner-Wille distribution that produces a complicated 

time-frequency representation of signals. They also proved that application of the 

Spectrogram (STF 1') for the early detection of damage in gears has some advantages 

over the Wigner distribution because of its simplicity. 

The short time Fourier transform (STET), the simplest method of time-frequency 

analysis, has also been used for rotating machines faults detection (Staszewski et al., 

1997a; Conforto et al., 1999; Safizadeh et al., 2000). STFT can give a clear 

representation of a signal in the time-frequency plane and a simple interpretation of 

the energy variation due to damage. However, it has the drawback that high resolution 

of frequency and time cannot be obtained simultaneously. 
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The discrete wavelet transform (DWT) was used to predict occurrences of defects in 

ball bearings (Mori et al., 1996; Li et al., 1996; Paya 1997; McFadden et al., 1999; 

Shibata et al., 2000). The DWT, a time- and frequency- domain method, is particularly 

potent for detecting subtle time localised changes. Vibration signals from a dented ball 

bearing were experimentally investigated. Impulsive responses occur when a ball rolls 
over the pre-spalling part of the raceway. The results showed that the DWT 

coefficients are a good indication of bearing failure because an increase in the impulse 

causes a corresponding increase in the wavelet coefficients. 

Liu (1999) and Lin (2001) suggested a de-noising method for machine engine fault 

diagnosis. The de-noising technique uses Morlet wavelet transform to remove the 

background noise. The FFT method was then applied to the de-noised signal. The FFT 

spectra of different machine conditions can be distinguished. The results showed that 

this method could help the operator to diagnose the machine condition correctly, even 
if the signal was masked by noise. 

Condition monitoring methods using a continuous wavelet transform (CWT) on 

rotating machines were proposed (Wang, 1993; Dalpiaz et al., 1997; Ypma et al., 

1997; Boulahbal et al., 1999; Wang 2000). In the case of a reciprocating machine, the 

wavelet analysis can reveal how the vibration frequency content varies within the 

machine cycle, thus enabling the transient dynamic phenomena to be clearly detected 

and precisely located. In the gearbox application, the wavelet maps were found to 

display distinctive features in the presence of a cracked tooth. 
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4 Theoretical background of the systems approach 
In this chapter, a case will be made for the adoption of the systems approach for 

bearing condition monitoring. Such an approach is based on the concept of 

multisensor data fusion (Joshi, 1999). The main considerations are that with this 

approach, the ensuing monitoring system must perform better than other monitoring 
systems in terms of its ability to give an early indication of bearing incipient failure 

and of its reliability and robustness. To achieve this, an understanding of the functions 

of sensory data processing, data fusion and interpretation are of importance. This is 

because these functions yield the intelligence in the systems by `fusing' or integrating 

multiple sources of information in the condition monitoring process (Esteban et al., 
1999). 

4.1 Introduction to multisensor integration 
Multisensor integration usually refers to the use of multiple sensors in the system. 
Successful integration requires knowledge of the task to be accomplished and the 

effective representation of that knowledge. The key challenges in multisensor 
integration are multisensor data fusion, multisensor planning and multisensor systems 

architecture (Joshi, 1999). 

Generally speaking, multisensor data fusion is the combination of data from multiple 
transducers from measurements into a coherent internal representation. The reasons 
that multisensor data fusion is employed in the proposed bearing condition monitoring 

are as follows (Hu et al., 1999a; Esteban et al., 1999). 

Accuracy: The results obtained based on a set of sensors are more likely to be 

accurate than those based on a single sensor. Moreover, the use of multisensor can 

reduce the uncertainty of measurements. 

Reliability: Employing multiple sensors increases fault tolerance and improves 

systems reliability. Even if a single sensor fails to operate, another sensor can still 

provide useful information. In contrast, monitoring using a single sensor cannot 

provide any valid data when a fault occurs, if that sensor has failed. 
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Robustness: Multiple sensors based on different physical principles can be utilised to 
improve the effective range of situations in which the system operates, hence enabling 
the system to handle a larger dynamic range of machine operating conditions. In 

addition, using complementary sensors to observe different aspects or characteristics 

can give better inferences of the operating status, which are difficult to make based on 

an individual sensor. 

Timeliness: Multisensor signals can be processed in parallel thus giving faster results 

than monitoring via processing signals in sequence from a set of separate sensors. 

Multisensor planning usually addresses the acquisition of transducer data by deciding 

what data to acquire and how to acquire it. This also involves the choice of 

transducers that are suitable for the measurement, their mounting positions at which a 
high signal-to-noise ratio can be obtained, their preamplifiers and filters that match the 

instruments and operating frequency ranges. 

A sensible multisensor architecture will enable complementary sensors with non- 

overlapping ranges to operate together as a single sensor with greater capability and 

robustness. This is because transducers may fail or operate not at its best if the 

operating range is violated. A flexible multisensor architecture should be able to 

accommodate the changes in the dynamic range of machine operating conditions (Hu 

et al., 1999b). 

In the context of multisensor fusion, this project used both vibration and acoustic 

emission techniques for bearing condition monitoring and diagnosis. The vibration 

technique has been established to have the capability of detecting the different causes 

of bearing failure based on monitoring the bearing's characteristic defect frequencies. 

However, its range of usefulness is limited to about 20 Hz up to 20 kHz. If a bearing 

runs at speeds below the frequency range, then the vibration technique becomes 

powerless. On the other hand, acoustic emission may provide a satisfactory 

monitoring solution for low speed rotation. This is because AE is sensitive to defect 

initiation and growth and is minimally affected by the dynamics of the machine 

structure. 
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Clearly using AE and vibration transducers can cover a much larger speed range of 

rotating machines. Such fusion can increase the reliability and hence robustness of the 

monitoring system as it is more tolerant to faults in sensors. In addition, the results 

obtained are likely to be more accurate as measurement uncertainty is reduced. 

In the proposed systems approach, the vibration technique refers to the joint time- and 
frequency- domain analysis that will reveal the characteristic signatures of different 

bearing operating condition. The acoustic emission technique employs the detected 

AE parameters in the traditional Euclidean distance classification, and the raw AE 

time signals will be characterised using a novel technique producing a parameter 
known as the shape-to-life (STL) value. The schematic diagram of the proposed 

approach is shown in Figure 4.1. Their theoretical backgrounds and details of the 

techniques are given in the following sections. 
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Figure 4.1 The schematic diagram of the proposed systems approach for bearing 

condition monitoring and diagnosis 
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4.2 Vibration analysis 
4.2.1 Basic concept 
The original idea of the proposed method was developed from the assumption that the 

conventional methods using either time or frequency domain technique are incapable 

of revealing the transient events which occur in the real environment. In bearing 

application, if there is a defect, it will produce such transient events. Typical features 

of the time signal are the RMS value, peak value, crest factor, kurtosis and the shape, 

size and orientation of a bearing locus derived from orbital analysis. These features, 

once established to be related to the defect being monitored, often yield satisfactory 

results. However, if the signal generation mechanism is complex, time-domain 

methods are often not refined enough. 

Frequency domain methods work best when the signals being monitored are periodic 

in nature, as is the case for vibration on a rotating shaft supported in bearings. Since a 

bearing defect produces a signal that is periodic at the characteristic defect frequency, 

frequency-domain analysis appears to be a suitable tool for condition monitoring. 

Examples of the frequency-domain techniques include spectrum analysis, cepstrum 

analysis, high frequency resonance technique (HFRT) and holospectrum. Among 

them, spectrum analysis seems to be the most common and dominates the fault 

diagnosis scene. 

The main limitation of spectrum analysis is that although a local transient will 

contribute towards the overall frequency spectrum, its location on the time axis is lost. 

There is no way of knowing whether a particular frequency component exists 

throughout the life of the time signal or during just one or a few selected periods. 

Unfortunately, many monitoring situations demand knowledge of not just the 

frequency composition of a transient but also its time of occurrence. For instance, 

when a rolling element passes a localized defect in a bearing, it generates a transient in 

the measured signal, as does the contact of a damaged tooth with other teeth in a 

gearbox. A machine with rapidly varying speed is another example of transient events. 

For these reasons, techniques that retain both time and frequency perspectives are 

preferable. 

4-5 



Chapter 4 Theoretical background of the systems approach Tonphong Kaewkongka 

When a rolling element runs over a localised defect, it produces a transient shock 

pulse, repeating itself periodically in the vibration signal because of the continuous 

rotation. To extract those transient events from the signal, the Short Time Fourier 

Transform (SIFT) and Continuous Wavelet Transform (CWT) techniques are 

considered. These two techniques are used to produce a three dimensional surface plot 

with the time, frequency (or scale for CWT) and magnitude as the x, y and z axes, if 

the magnitude on the z axis is converted into a corresponding colour, the 3-D plot then 

becomes a 2-D colour-coded image, and its pattern represents a signature for a 

particular bearing operating condition. Correlation matching is then used as a tool to 

classify the bearing condition. Figure 4.2 shows the processing sequence in the 

proposed bearing condition monitoring scheme using vibration. 

FEATURE EXTRACTION I CLASSIFICATION I 
I I II 

Short-Time Fourier Colour I I 
Transform or coded I iI 

Continuous image I 
Database 

Wavelet Transform I I 
I 

I I I 
I 
I 

I 
I 

II 
II 

I I 
I 

II 
II 

I 
I I II 

I 
I I I 

I I 
I 

II 
II 

I 
I I II 

Classifier 
Short-Time Fourier Colour I 

Transform or coded I 
Continuous image I 

Wavelet Transform I j 

I II 

----------------------- 
-- ----------- 

Figure 4.2 The block diagram using vibration in the proposed bearing condition 
monitoring 

4.2.2 Short-Time Fourier transform 
The Fourier transform of a signal x(t) is defined as (Randall, 1977) 

F[x(t)]= X (f) j x(t)e-i2'ft dt Equation 4.1 
2, -- 

For Equation 4.1 to be valid, the signal x(t) being transformed must be stationary, 

which means that its amplitude distribution does not depend on absolute time. In 

other words, the moments of the distribution -mean, variance, and so on - are 

stationary. A signal with localized events is clearly not stationary. 
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To overcome this difficulty, the signal is divided into segments such that within each 

segment the stationary property is approximately true and so Equation 4.1 can be 

applied. The Short-Time Fourier Transform (STFT), also known as the Windowed 

Fourier transform (WFT), does exactly that. STFT uses a constant-width time 

window, and the segment of the signal exposed is transformed into the frequency 

domain (Safizadeh et al, 2000). As the window slides to a new position along the time 

axis, the Fourier transform is again computed. This is repeated until the whole 

duration of the signal is covered. Mathematically, STFT can be expressed as a 

function of the frequency w and the position b along the time axis; thus, 

F(w, b) =1 ff (r)g(z-b)e-'a`dz Equation 4.2 
2yr 

This is the Fourier transform of the function f(t) windowed by the function g(t) for all 
b. A disadvantage of this method is that the time and frequency resolutions are 

constant as determined by the constant size of the window used and the fixed number 

of points of the signal exposed by window. Consequently, when the signal has a wide 

frequency bandwidth, STFT cannot give the high resolutions for frequency and time 

simultaneously. 

The function F(w, b) in Equation 4.2 is depicted as a two-dimensional colour-coded 

map where the x-axis denotes b, which, for a time signal, is time itself, and the y-axis 

denotes w, the frequency. The colour at a point (w, b) represents F(w, b). 

4.2.3 Continuous wavelet transform 
The Continuous wavelet transform (CWT) converts a time signal f(t) into the joint 

time- and scale- domain (Rioul, 1991). Unlike the discrete wavelet transform (DWT), 

the CWT can operate at every scale, from that of the original signal up to some chosen 

maximum scale. In addition, the CWT is also continuous in terms of translation of the 

analysing wavelet in that it is shifted smoothly over the whole time axis of the 

analysed signal. CWT, therefore, converts a one-dimensional time signal into a two- 

dimensional pictorial image with time and scale as its orthogonal axes. In this respect, 

the end product of CWT is comparable to that of STFT where the axes involved are 
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related to time and frequency. Frequency and scale are the two parameters that are 
inversely related: the greater the frequency, the smaller is the scale. 

The basis function used is a mother wavelet, i#(t), analogous to the sine or cosine 

function used in Fourier Transform. CWT is defined by (Gaul et al, 1997; Suzuki et al, 
1996) 

F, (a, b) =1 ff (t)'FI t-b Idt Equation 4.3 ý_.. laj 

The quantity in Equation 4.3 

%ya. 
b(t)- _ 2'I 

tab 

Equation 4.4 

is the wavelet function. In the present study, a commonly used orthogonal set of 

wavelets created by Ingrid Daubechies, db4 (Daubechies, 1990) was chosen and a 

typical db4 wavelet is shown in Figure 4.3. While the choice is somewhat arbitrary, it 

is noted that the db4 wavelet bears some resemblance to acceleration signals observed 

from vibrating mechanical structures. 

In the wavelet function of Equation 4.4, the position variable b is the translation 

parameter, same as b in the STFT definition, Equation 4.2. Whereas STFT uses a 

frequency variable co, CWT involves a scale variable a. Scaling is a primary 

characteristic of wavelet analysis. The mother wavelet function rp((t) in Equation 4.3, 

besides being a basis function, also plays the role of a window function, equivalent to 

g(t) in Equation 4.2. The scale variable a is loosely the reciprocal of the frequency 

variable w, changing a controls the frequency band. Variable b controls the size of the 

window. It is therefore possible to adjust the resolutions of time and scale (frequency) 

independently by changing b and a. 

The function F, v, (a, b) in Equation 4.3 is depicted as a two-dimensional colour-coded 

map where the x-axis denotes b, which, for a time signal, is time itself, and the y-axis 

denotes a, the scale. The colour at a point (a, b) represents Fy, (a, b). 
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Figure 4.3 The db4 wavelet function 

4.2.4 Image processing 
Image processing is performed using the method of thresholding or binarising 

(Gonzales, 1993). It is applied to the grey scale CWT image to convert the colour of 

each pixel into either black or white. A binary image has the obvious advantage that 

when classification using either correlation matching or neural network is done, the 

computational time will be much shortened, as multiplication involving a0 or 1 is 

much easier to perform. 

4.2.5 Correlation matching 
Correlation matching is used for pattern recognition in the proposed method. The two- 

dimensional transformed images obtained from either STFT or CWT are used to 

compute the similarity coefficient between the reference and test images. The method 

works as follows. 

Given an image f(x, y) of size M by N pixels and a reference image w(x, y) of size JxK 

pixels, one starts by placing the geometric centre of the reference image w(x, y) on the 

pixel on the top-left corner of the image f(x, y) and then compute the correlation 

coefficient based on the pixels that overlap between the two images. One then shifts 

the geometric centre of w(x, y) one pixel to the right along the first row of f(x, y) at 

which another correlation coefficient is calculated. Each pixel in the first row is 

visited in this fashion; and when the first row is completed, other rows are visited in 

turn until the whole image f(x, y) is covered. The result is an MxN correlation 
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coefficient matrix. The correlation coefficient in row s and column t of the matrix is 

given by (Gonzales, 1993). 

EE[f(x, y)-. f(X, Y)j[w(x-s, y-t)-w} 
y(s, t) =x '' 

1/2 Equation 4.5 

l if (x, Y)-f (x, Y)J Y-y- [. (X-s, Y-t)-w? 
J lxY XY 

where s=0,1,2,..., M-1, t=0,1,2,.., N-1, w= the average value of pixels in w(x, y) 

(computed only once), and f(x, y) = the average value of f(x, y) in the region 

coincident with the w(x, y). Furthermore, it should be noted that the summation is 

taken over the image coordinates common to both f and w. Figure 4.4 illustrates the 

procedure. The correlation coefficient y(s, t) is in the range of -1 to 1. 

For perfect match correlation, 

f(x, y)=w(x, y), = y(s, t)=1 

, perfect mismatch correlation 

(X, y) # w(x, Y), = y(s, t) = -1 

and for less than perfect correlation, 

I> y(s, t) > -1 

N 

5 

M 

Figure 4.4 Correlation matching of f(x, y) and w(x, y) at point (s, t) 
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4.2.6 Back-propagation neural network 
The back-propagation neural network (BPNN) (Zhang et al, 1996; Paya et al, 1997; 

Subrahmanyam, 1997; Vyas, 2001) is used as a tool for classification of machine 

operating conditions. The BPNN architecture is shown in Figure 4.5. The network has 

an input layer, a hidden layer and an output layer. The extracted feature values of the 

signals provide the inputs to the neural network; and the output nodes represent the 

machine operating conditions. 

Ii11 
Input layer 

Hidden layers 

Output layer 

Figure 4.5 Back-propagation neural network architecture 

Through a process of trial and error based on minimizing the mean square error 

(MSE), the choice of number of nodes and hidden layers are arbitrary and depend on 

the user. The value NET appearing at a node in a layer is computed by summing the 

products of all inputs leading to that node with their corresponding weights plus a 

bias. This value then forms the argument of a transfer function f that produces an 

output for the node. In vector notation, given the input vector X,, the weight vector 

W;, and the bias vector O, the output is given by 

n 
OUT =f (NET) =f (Y- X rW; + 0, ) Equation 4.6 

i 

The transfer function f is the commonly used sigmoid function defined as 

f_ I 
l+e (-NET) 

Equation 4.7 
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The sigmoid function acts as an output gate that can be open (0) or closed (1). The 

computing process as described is schematically shown in Figure 4.6. 

Bias (6; ) 

Xl 
ýWý 

XZ W2 

Wn 

Xn 
/ 

Figure 4.6 Schematic process of BPNN 

The back-propagation algorithm is used to obtain the correct weights and biases in a 

training process. A set of training data with known outputs is fed into the network. 

The weights are initially set to random values; the biases are fixed at unity. The input 

data are presented to the network; outputs are calculated and compared with the 

desired outputs. The normalized mean square error (MSE) is then calculated and 

propagated back to adjust the weights on the neural connection. This process is 

repeated for a large number of epochs until the error is relatively low and acceptable, 

when the network is considered to have classified the test set correctly. 

4.3 Acoustic emission analysis 
4.3.1 Basic concept 
Acoustic emission (AE) is a non-destructive testing technique, which is used for 

detecting plastic deformation, defect growth in metals and composites (Holroyd, 

1993). It is based upon the detection of high frequency stress wave (structure borne 

sounds) that are naturally generated by the failure of materials at microscopic level. In 

addition to AE sources of crack extension and plastic deformation that are active in 

defect growth, AE can also be generated from other source mechanisms such as 

impact, friction, rubbing and cavitation. For bearings, sources of acoustic emission 

might stem from mechanical looseness (impacts), inadequate lubrication (friction and 

impacts), overloading (friction and impacts), fatigue failure (crack growth and 

friction) and wear of surfaces (friction, rubbing and impacts). 
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Previous research (McFadden et al., 1984; Tandon et al., 1992; Yoon et al., 1995; 

James et al., 1995) has demonstrated that acoustic emission is an effective tool for 

early detection of damage due to metallic contact. Consequently AE monitoring is 

superior to vibration monitoring in that the former can detect subsurface crack growth 

whereas the latter can at best detect only after a defect has emerged on the surface of a 

structure. 

In this research, acoustic emission is used in two different ways: one traditional and 

established whilst the other novel. In the first way, traditional AE parameters such as 

peak amplitude, event duration and AE energy are classified using the technique 

called fuzzy c-mean clustering. This technique extracts the Euclidean centre from each 

cluster (corresponding to a particular machine operating condition) and uses the 

minimum distance classifier to decide to which cluster, and hence the operating 

condition, the AE event should belong. The novel way, developed in this study, 

involves the creation of a distribution of inter-arrival times of AE events and 

calculation of the shape-to-life (STL) value from the distribution. This STL value is 

used as the signature of the machine operating condition. 

4.4 Bearing condition monitoring with traditional AE parameters 

An AE event is characterised using parameters such as ring-down count, rise time, 

event duration, energy and peak amplitude. A threshold is used in order to eliminate 

`noise' and only events that rise above the threshold are counted. Evidently, the 

threshold level affects the value of some of these parameters. A typical example is the 

event duration. By definition, it is the time that the envelope of an AE event is above 

the threshold. When the threshold level is high, the event duration will be shorter. 

As was discussed in section 3.2.3, the peak amplitude of an AE event is the maximum 

excursion of the corresponding voltage signal from the zero level. The energy of an 

AE event is the energy contained in the corresponding voltage signal and, strictly 

speaking, is not the true energy of the event itself. Energy corresponds to the 

integration of voltage squared over time. 
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The objectives of the reported work are: 
I. To represent AE events from different machine operating conditions in terms of 

their event duration, peak amplitude and energy as a point in a three-dimensional 

space; 

2. To establish the centres of the clusters for the four conditions in this three- 
dimensional space using the fuzzy c-mean clustering technique; and 
3. To classify an AE event from an unknown condition by computing the minimum 
Euclidean distance of this event from the respective centres. 

The methodology for machine condition monitoring and recognition is as shown 

schematically in Figure 4.7. 

Data pre- II Fuzzy -c mean 

processing clustering technique 

AE parameter 

Preamplifier Minimum 

AE sensor 
distance 

0 classifier 

Figure 4.7 Fuzzy c-mean clustering on traditional AE parameters for machine 
condition monitoring 

4.4.1 Pre-processing of data 

For each condition, recordings of the captured AE parameters of event duration, peak 

amplitude and energy were made. These recordings were then divided into two sets. 
The first set served as the reference generated from the training exercise whereas the 

second set provided the test samples for validating the classifier obtained from the 

training process. 
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Both the training sets and the testing sets were processed as follows: 

1. Sort the events in each set in the descending order of event duration. 
2. Discard the first ten AE events in the sorted list as they may contain outliers, 

which if included, would distort the characteristics the AE events in a sub-set. 
3. Select the next five AE events from the remaining list for subsequent 

clustering analysis. 
4. Normalise each feature in a unit vector. 

The new data sets are now much shorter, and the corresponding parameters of event 
duration, peak amplitude, and energy will be further analysed using the fuzzy c-mean 

clustering technique. 

4.4.2 Fuzzy c-mean clustering technique 
Fuzzy c-mean is an iterative technique for data clustering. The user decides on the 

number of clusters that a data set is to be separated into, initialises a proximity matrix 

and defines an error threshold for the stop condition of the iteration (Liu, 1996; Ross, 

1995; Mechefske, 1998). In this study, the implementation of fuzzy C-mean was 

achieved using a MATLAB program. The source code is given in Appendix Cl. 

The proximity matrix contains membership values of an individual AE event that it 

does or does not belong to a particular machine condition. Initial values assigned to 

this matrix are arbitrary and binary logic values are generally used. Thus full 

membership is represented by 1 whereas non-membership by 0. 

The first iteration generates estimated locations of the cluster centres and a refined 

proximity matrix in which the membership values become fuzzified, which mean that 

they now have values between 0 and 1. With successive iterations, the estimate for the 

cluster centre's locations will be more and more accurate and the proximity matrix 

will be updated. The iteration will stop when the change in the norm of the proximity 

matrix from its previous iteration becomes less than the designated error threshold. 

The cluster centres returned from the last iteration are taken to be the `best' estimates. 
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Specifically, the fuzzy -c mean algorithm consists of the following steps (Ross, 

1995): 

1. Fix the number of c-cluster centres and a threshold E for the stop condition in step 
4. Initialise the proximity matrix UDO). 

2. Update the c-cluster centres 
{v, r) } according to the current proximity matrix, using 

MI. 
-k=1 

ßik Xkj 
Vij = 

n m' 
-k=l 

Pik 
Equation 4.8 

where Uik is the membership of the k`h data point in the ith class, and m' is the 

weighting parameter (the arbitrary value of m'= 2 was used). 

3. Update the proximity matrix for the rth iteration, or' according to previous cluster 
centres, using 

r 

kr+1) _ 
dtk Equation 4.9 

i=1 d j, 'E) 

where dik = 
Ej (xkj -v1 )2f !Z is the distance measured. 

4. If the objective function, as defined below, is less than the threshold E, then stop; 

else, go to step 2. 

IIU(r+l) 
_U(r)II <e otherwise set r= r+1 Equation 4.10 
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4.4.3 Minimum distance classification 
A minimum distance classifier (Tou, 1974) was used to determine the class of 

machine condition to which a particular AE event belongs. It works by computing the 
Euclidean distances of the characteristic features from the centres of the clusters for 

the different machine operating conditions. The AE event is considered to belong to 

the cluster whose centre is closest. In other words, the distance is defined as an index 

of similarity so that minimum distance is equivalent to maximum similarity. For 

example, if the four centres have co-ordinates (X11, Yi2,43) where i=1,2,3,4, and 

the AE event (X1, Y2, Z3) as shown in Figure 4.8, the minimum Euclidean distance is 

then 

D= mint (X;, 
- X, )2 + (Y,. 

Z -K 
)2 + (Z; 

3 - Z3 )2 J Equation 4.11 

The minimum-distance classifier was used, because it readily allows an AE event of 

an operating condition to be added into the system. New clusters can be readily added 

to existing ones without affecting the current clusters. The source code is given in 

Appendix C2. 

Y 
(X31, Y32, Z33) 

i 
i 

(X41, Y42,243) 
i' i 

i 
i 

' 01, 

i `ý 
'ý(XI, Y2, Z3) 

x 

X21, Y22, Z23) 

X11+Y12, Z, 3) 

Z 

Figure 4.8 Minimum distance classification 
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4.5 Shape-to-life (STL) method 
4.5.1 Inter-arrival times 

Figure 4.9 show an AE signal consisting of seven AE events. Dedicated AE 

measuring instruments - for example, the AET5500 - capture each event that goes 

above a predefined threshold and extract various AE parameters together with a time 

stamp of the event. The time difference between two consecutive AE events is called 

the inter-arrival time between them. A high-speed data acquisition system - for 

example, the LABVIEW on PC - captures the whole time signal, Figure 4.9, and the 

inter-arrival time, as indicated in the diagram, can be easily computed from the 

discrete-time signal file using, for example, a MATLAB program. 

The collection of inter-arrival times forms a distribution, which, as suggested in this 

thesis, is a form of Weibull distribution. As can be seen in the next section, the inter- 

arrival times of AE events should follow a Weibull distribution because AE events 

can be regarded as `failures' on a microscopic scale. 

Amplitude 
(volts) 
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Figure 4.9 Inter-arrival times of successive AE events 
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4.5.2 Model of inter-arrival times of AE events 
The Weibull distribution has been used in reliability engineering to model times to 

failure (O'Connor, 1991; Gertsbakh, 1989; Elsayed, 1996; John et al., 2000). Its 

usefulness lies in the simplicity that a single probability density function can be made 

to represent the time of failure arising from different modes of failure (running-in, 

random and wear-out). Since an instance of AE can be considered a kind of failure on 

a microscopic scale, the Weibull distribution is most likely to be suitable also for 

representing the probability of inter-arrival of AE events at a sensor. In this sense, the 

inter-arrival time is equivalent to time to failure. The justification for using the 

Weibull distribution is set out in this section. 

The cumulative probability, F(t), of inter-arrival times of AE events must, by virtue of 

its definition, increase monotonically with the time interval t, starting with a 

probability value of zero at time t=0 and approaching unity as time t tends to infinity. 

The form of this curve, known as the cumulative probability curve, for mathematical 

convenience, is represented by an exponential function as 

F(t) =1- e-m(" Equation 4.12 

Equation 4.12 is graphed in Figure 4.10, where it can be seen that 4(t), a function of 

time t, determines the precise form of the curve. 

F(t) 

I 

oal time, t 
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When AE event occurs, it occupies a finite time interval during which the occurrence 

of yet another event cannot be distinguished with an AE measuring instrument. 

Therefore, the inter-arrival time that can be measured of the subsequent AE cannot be 

shorter than the event duration of the current one. In effect, this means that a 

subsequent detectable event cannot occur in a time less than the event duration of the 
current one. In the context of cumulative probability F(t), its value has to be zero 
below some threshold time to, known as the guaranteed life. 

The function O(t), which defines the precise form of the cumulative probability F(t), 

should be non-dimensional because it is an exponent of the constant e in Equation 

4.12. 

Taking account all of the foregoing considerations, it is reasonable to suggest that $(t) 

take the form 

t" )y 
0(t) = 

(t - 
B) 

where to = the guaranteed life 

0= the characteristic life, and 

y= the shape parameter. 

Thus, the inter-arrival times has the cumulative distribution function (cdf) given by 

_t 
to 

B 
F (t) -I -e 

Y 

for t>to Equation 4.13 

and the corresponding probability density function (pdf) of 

y_1 t tp r 

4.14 fit) =Y `t _ t° 
" eý-ý B for f t> ° Equation 

er 

It is noted that Equation 4.13 and 4.14 are, indeed, the respective of cdf and pdf of the 

Weibull distribution. In these equations, (t - to) denotes the `quiet' zone, which marks 
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the period after one AE event has dropped below the threshold and before the 

occurrence of the next. 

The parameter 0 is referred to as the characteristic life in the Weibull distribution 

when used to describe the probability of time to failure in reliability work. This term is 

appropriate if, as mentioned before, an AE occurrence is regarded as a microscopic 

failure, which has been accepted to be the case. Characteristic life is therefore the 

characteristic AE inter-arrival time in this context. If the quiet zone (t - to) is as long as 

the characteristic life 0, then at the inter-arrival time of t= to + 0, the cumulative 

probability has the value of 

F(t� + 0) =1-e(-') = 0.63 

In other words, if a hundred inter-arrival times were collected, 63 would have a value 

less than to + 0. 

The shape factor, y, in Equation 4.13 and 4.14 is used to express the various patterns 

of the inter-arrival time distribution, some of which are shown in Figure 4.11. For y 

=1, f(t) becomes an exponential probability density function. When y=2, the density 

function is known as a Rayleigh distribution. When y=3.43, the density function 

becomes a normal distribution. 

Weibull distribution with different shape factor 
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Figure 4.11 Weibull distribution with different shape factors 
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4.5.3 Definition of STL and L63 
Once a collection of inter-arrival times of an AE signal is formed, a Weibull 

distribution is then fitted to it and the Weibull parameters, shape (y) and characteristic 

life (9) and guaranteed life (to), can be estimated. Note that y, being the exponent in 

Equation 4.13, is non-dimensional, 0 and to have the dimension of time and hence the 

unit seconds. 

The STL is defined to be the ratio of shape to characteristic life. In symbols, it is 

STL Equation 4.15 

It is obvious that STL has the unit of s"t. 

L3 denotes the time duration within which 63% of the inter-arrival times of the 
distribution lies. As explained at the end of Section 4.5.2, the duration is 

L63 =tO +0 Equation 4.16 

4.5.4 Weibull parameters estimation 
To estimate the Weibull parameters; the shortest duration (to), the shape (y) and 

characteristic life (B ) parameters of inter-arrival times that follow Weibull 

distribution, the method of least squares which operates on the cumulative distribution 

function (cdf) is used. This is because of the problem with using a pdf for parameter 

estimation is that the pdf is seldom smooth. Only when the sample size is very large 

then the pdf will give the appearance of a smooth curve. The cdf overcomes this 

problem. The Weibull cdf, as given in Equation 4.13 has a far simpler mathematical 

form than its pdf, Equation 4.14. Furthermore, the complement of the Weibull cdf, 

known as the cumulative reliability probability, in the field of Reliability Engineering 

(Karl, 1975; Elsayed, 1996), has an even simpler form, as 

t_ra r 

Rt =e 
_`B"ý 

fort> Equation 4.17 

The method of least squares works on the principle of minimising an objective 

function defined as the sum of squares of the deviations between the cdf and R(t) of 
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Equation 4.18 where guesses of the three parameters are initial made. Through a 

procedure of varying the three parameters' values, the objective function is reduced to 

a preset small value (s). The objective function in this case is 

n-1 Y2 

Rj - exp - 
t"w°` - r° 

<_ e Equation 4.18 
j=o 

The program for implementing this algorithm is written in MATHCAD; its listing is 

given in Appendix C5. 

4-23 



Chapter 5 Experimental design and measurement of the systems approach Tonphong Kaewkongka 

5 Experimental design and measurement of the systems approach 
This chapter describes the measurement system and test rigs used in the research into 

bearing condition monitoring and diagnosis on rotating machines operating under a 

variety of conditions including variations of speeds and loads, different types of 

simulated bearing defects and ultimately the natural wear and damage of bearings 

arising from fatigue failure. Discussion will be presented in three stages. Firstly, there 

will be the consideration of the experimental design that gives consistent and reliable 

results. Secondly, the issue of choice of suitable measurement instruments will be 

explored in the context of extracting meaningful information from the measurement 

process. Finally, the design of two test rigs, representative of rotating machines, will 

be presented; data obtained from running these test rigs will be used to validate the 

proposed condition monitoring and diagnostic approach. 

5.1 Experimental design 
The purpose of the design of the experiment is mainly to investigate the capability and 

limitation of the proposed systems approach. Therefore, the criterion for the 

experimental design is based on how effective the multisensor data fusion approach 

will establish the relationship between of the machine bearing operating conditions 

and the relevant information extracted from the sensors - acoustic emission and 

vibration. 

The diagram showing the multisensor measurement system is given in Figure 5.1. In 

this system, signals from both transducers are pre-amplified and filtered in order to 

increase the gain signal-to-noise ratio before being passed through to the final data 

processing units. 

The preamplifier and filter need to be chosen according to the range of frequency of 

interest and to fulfil the impedance matching requirement of measurement electronic 

circuitry so that a high signal-to-noise ratio can be achieved. 
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AE sensor Vibration sensor 
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PC for data storage 
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Data acquisition 
systems 

Using LABVIEW 

Figure 5.1 Schematic diagram of the experimental design and measurement of 
systems approach 
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5.2 Measurement equipment 
Performing monitoring requires: 1) sensing devices or transducers that are capable of 

acquiring useful information, preamplifiers and filters; 2) test rigs that are capable of 
delivering various controlled machine operating conditions and 3) data acquisition 

systems that are capable of recording all relevant information in order for it to be 

post-processed in subsequent analysis. 

5.2.1 Accelerometer 

To measure vibration, an accelerometer, PCB 333A12 shear mode, was used to 

measure the radial vibration at the bearing. PCB 333A12 has the sensitivity of 952 

mV/g considered relatively high when compared to industrial accelerometers whose 

values are typically between 10 and 100 mV/g. The reason for choosing the high 

sensitivity accelerometer is that it can provide a higher signal-to-noise ratio thus 

giving a better discrimination of background noise. The frequency range of PCB 

333A12 is between 1 to 3000 Hz; the operating temperature ranges from -50 to 82 

degrees Celsius. 

The accelerometer was mechanically fastened to the bearing housing by means of a 

threaded stud. Such coupling with the accelerometer mounted to a very smooth 

surface, generally yields the highest mechanical resonant frequency and, therefore, the 

broadest usable frequency range (Michael, 1979). The position of the accelerometer 

mounting was chosen to be at the top of the bearing housing since the housing has the 

lowest dynamic stiffness in this direction. 

5.2.2 Accelerometer preamplifier 

A filter (KEMO model) with a built-in amplifier is used to process the signals, which 

are then sampled into a PC. The preamplifier module is used to increase the gain of 

the voltage signal. The filter module is an electronic circuit, which allows only certain 

frequency components of the signal to propagate. High pass and low pass filters reject 

those frequency components, which lie, respectively, below and above some 

predetermined frequencies. 
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5.2.3 AE transducer 
A wide band transducer (model WD, PAC) was chosen for AE measurement because 

of the large dynamic frequency range of the measured signal. The operating frequency 

range of the transducer is from 100 kHz up to about 1 MHz. From the manufacturer's 

calibration curve, the sensitivity against frequency is relatively smooth and flat over 

this range so that the transducer can provide a constant output signal throughout the 

operating frequency. The sensor is enclosed in a stainless steel case and the ceramic 

sensing disc is coated to minimise EMI interference. Its operating temperature ranges 
from -45 to 80 degrees Celsius. Because of the wide frequency range, wide band 

transducers produce signals that permit meaningful frequency analysis. 

Silicon-gel is used as a couplant, which ideally forms a thin layer connecting the 

transducer to the coupling surface. The couplant fills any gaps caused by surface 

roughness and eliminates air voids to ensure good acoustic transmission. Before 

mounting the AE transducer, the surface of specimen needs to be clean and flat so that 

it facilitates maximum couplant adhesion as uniform coupling results in a greater 

sensitivity to AE signals. The sensor is positioned on a flat and smooth surface 

machined on the top of the bearing housing. 

5.2.4 AE preamplifier 
The AE signal detected by the piezoelectric element in the sensor needs to be 

amplified before transmission to the measurement circuitry. A preamplifier is 

connected, via a short cable close to the transducer and it provides a suitable gain and 

high cable drive capability. A preamplifier (model 2100/PA 60) is used with a gain of 

60 dB, and its built-in band pass filter set at 100 kHz -1 MHz. The band-pass filter 

operates as a frequency window that eliminates the frequency components lying 

outside the window. The 2100/PA preamplifier's output is limited to 10 V (peak to 

peak); the connection to a signal cable is via a lemo type connector. 

5.2.5 AET 5500 data acquisition system 
AET 5500 is a general purpose instrument that can monitor AE events generated from 

any AE source. AET 5500 can be configured from one to eight active channels for 

monitoring and processing acoustic emission parameters such as ringdown counts, 

events, event duration, peak amplitude, rise time, voltage level (RMS) and AE energy. 
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These AE parameters can be stored in a PC to permit further data analysis at a later 

time. Signal processing in AET 5500 is performed by a 16-bit processor mainframe. 

When the amplified and buffered signals reach the mainframe, it may again amplify 

the signal (post amplification) before processing, depending on the signal 

characteristics that need to be monitored and the signal strength. The AET system 

allows a user to adjust the threshold at a fixed or automated (floating) level. The 

automatic (floating) threshold allows the threshold level to increase and decrease in 

response to changing levels of background noise such that the recording of only 

significant AE events can be assured. 

The system also provides time duration information of the AE events produced when 

the threshold is crossed. The clock that determines the time duration is a unit that 

counts the pulses of a time base signal. After the signal is processed, it is sent to the 

intelligent graphics terminal (IGT) where a user can view a graphical representation 

or statistical table of the desired acoustic emission data. 

5.2.6 Data acquisition system 
The data acquisition system is based upon a Pentium PC with a1 GHz - CPU speed 

which is fitted with a high performance National Instruments NI 6110 data acquisition 

card. The NI 6110 card comprises four 12-bit input resolution channels, 

simultaneously sampled analogue-to-digital (A/D) input channels with scalable input 

limits and adjustable sampling rates up to 5M samples/s, both controllable by 

software. 

Typically the detected signals from both AE and vibration sensors were recorded on 

the data acquisition card simultaneously with different sampling frequencies, for 

example, sampling at 2000 Hz from the accelerometer and at 3 MHz from the 

acoustic emission sensor. Then the signal is converted into a digital format that can be 

stored in the PC so that it can be further processed and analysed. 

The software used was LABVIEW (version 5.1). This is a graphical programming 

software package that enables the creation of a measurement program for data 

acquisition system. The virtual measurement program provides a graphical interface 
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for a user to define and control the data acquisition process to operate at various 

sampling rates and durations of recording. 

5.2.7 Hall effect sensor 
A Hall effect sensor is used on the first test rig (description in Section 5.3) to 

determine the speed of the rotating shaft. The Hall effect sensor can produce a 

convenient external trigger for delimiting the acceleration or AE signals to correspond 

to a cycle of rotation. The sensor produces a pulse every time a piece of ferrite 

material, or the like, passes in front of the sensor. The sensor is mounted next to the 

drive end bearing housing. The duration between two successive pulses gives the 

cycle time of rotation of the shaft and its reciprocal is the shaft rotating speed. 

Increase the speed of rotation and the period between pulses decreases. Likewise, 

decrease the speed of rotation and the period increases. 

5.2.8 Photo detector sensor 
A Photo sensor is used to give a rotation reference signal for the second test rig 

(description in section 5.4). The sensor produces a pulse every time the light ray 

emitted from a light source (LED) that is reflected back to photo detector. A reflective 

tape is attached to the rotating shaft to provide a shiny surface for the light reflection. 

The photo sensor is mounted to point at the side of the rotating mechanical coupling. 

The signal from the sensor is also used as a trigger to start the simultaneous collection 

of data when there is more than one channel involved. 

5.2.9 RMS circuitry 
A raw AE signal, being of high frequency, demands a high sampling rate for its 

faithful capture. In many instances, there is no need to study the raw signal. One 

common form of a converted AE signals is its rms, which has the characteristic that 

the broad outline of the original signal is still retained. More importantly, the rms 

equivalent, being of a much lower frequency, can be captured into a data acquisition 

system with a much lower sampling rate, thus taking up much less memory for data 

storage. A RMS circuitry was built for this purpose. Its role can be considered as 

providing a level based signal processing which involves the generation of a DC 

coupled dynamic signal related to the magnitude of the amplified and filtered AC 
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signal from the transducer. In this study, a time constant of 100 milliseconds was 

chosen as the averaging time to determine the information content of the signal. 

5.3 Test rig for multi-faults at high rotating speed 
A first test rig was designed and built in order to produce multi-fault operating 

conditions from rotodynamic machinery. From now on this test rig will be referred to 

as a high-speed light duty test rig. Examples of multi-faults are: 1) the out-of balance 

forces condition can be generated using various masses at different eccentricities 

attached on rotating disc, 2) the misalignment condition can be simulated by adjusting 

the spindle from one moving bearing literally from the other, and 3) the defective 

bearing can be artificially generated using an electric discharge pen. 

The design of the test rig incorporates a rotating shaft supported at two points: a deep 

groove ball bearing at the drive end and a tapered bore bearing at the non-drive end. A 

sketch of the test rig is illustrated in Figure 5.2. The shaft is manufactured from steel 

with a diameter and length of 20 mm and 300 mm respectively. The two bearings are 

a FAG 20205K. T. C3 which is a self-aligning single-row taper-bore roller bearing and 

a FAG 6304 2ZR. C3 which is a deep grove ball bearing. They are mounted in bearing 

housings which in turn were attached to a base plate. 

D. C motor 

FAG 20205 
K. T. C3 FAG 6304 

Rotatin discs 2ZR. C3 
EF Pulley belt 

E1o drive system 
4 

300 mm 

-0 500 mm 

Figure 5.2 Sketch of the high-speed light duty test rig 
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The non-drive end incorporates a tapered bored bearing fitted using an adapter sleeve. 
The bearing used at the non-drive end is a barrel roller bearing (FAG 20205K. T. C3). 

The reasons for using barrel roller bearing are because it is suitable for applications 

where high radial load carrying capacity and the compensation of misalignment are 

required. Barrel roller bearings of the basic design are available either with cylindrical 

or with tapered bore. The bearings with cylindrical bore have normal radial clearance, 

those with tapered bore an increased radial clearance (C3). 

The plummer block is used at the non-drive end, resulting in a quick release 

mechanism for the tapered bore bearing in order to facilitate a comparison between a 

new bearing and a defect-simulated bearing. An adapter sleeve is also used for 

fastening the tapered bore bearing on the shaft. This facilitates the shafts to be 

machined to larger tolerances than would be the case if the bearing is seated directly 

on the shaft. The bearing rests against a shaft shoulder; the tapered sleeve is pushed 

into the bearing bore until the radial clearance is reduced to the required amount. 

The drive end housing is manufactured from steel. This is to accommodate a single 

row deep. grove ball bearing (FAG 6304 2ZR. C3). The single row deep grove ball 

bearing is chosen because it can accommodate radial and thrust loads for rotating 

machines at high speed. Sealed deep grove ball bearing is maintenance free. However, 

its self-aligning capability of deep grove ball bearing is somewhat limited, thus a 

well-aligned bearing seat is required. Misalignment impairs the smooth running of the 

balls, inducing additional stress in the bearing and consequently reducing the bearing 

service life. 

The shaft is driven by a D. C motor via a pulley belt drive system at the drive end. The 

driven pulley is made from aluminium bar to incorporate with a5 mm pin hole V-belt. 

The spindle is driven by the D. C motor running at 20 rev/sec. The motor delivers a 

constant torque at all speeds. The shaft is designed to withstand dynamic loading 

effects from centrifugal forces arising from rotating unbalance masses. 

Four identical rotating discs are manufactured from aluminium to generate out-of- 

balance conditions. To secure a disc onto the shaft, a grub screw is used which presses 
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a brass insert onto the shaft that reduces the risk of imprinting the shaft, thus being 

able to slide and rotate a disc along the length of the shaft. 

The base plate is manufactured from aluminium of dimension 500 mm x 500 mm x 10 

mm. Four circular struts are fitted with rubber at the bottom of each comer of the bed 

to isolate the mechanical vibration induced by the test rig from the workbench. 

An accelerometer (PCB 333A12) and an AE sensor (WD1000) are mounted on a non- 
drive end at the top of bearing housing. A Hall effect sensor is used to determine the 

speed of the rotating shaft and also give a reference rotation signal. 

The test rigs provides facilities to produce the four machine operating conditions 

characterised by: 

1. The rotating shaft dynamically balanced (referred to as ̀ balance shaft'), 
2. The rotating shaft dynamically unbalanced in one plane to the extent of 65 x 

10-5 kg. m at mid-span of the shaft (referred to as `unbalanced shaft'), 

3. The shaft with misalignment achieved from moving one bearing laterally by 1 

mm relative to the other (referred to as ̀ misaligned shaft') and 
4. The roller bearing seeded with a defect on the outer raceway of 1 mm diameter 

produced with an electric discharge pen (referred to as `defective bearing'). 
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5.4 Test rig for a bearing life test and loading variation at low speed 
A second test rig was designed intended for different loading conditions and built in 

order to evaluate the proposed monitoring scheme. From now on this test rig will be 

referred to as a low-speed heavy duty test rig. The test rig was originally borrowed 

from Corus; it was used in this research to study the effect of variation of loading 

conditions on AE and vibration at slow rotating speed. The original rig was then 

modified such that a radial load could be applied to the rotating shaft using hydraulics 

and the speed of the shaft can be lowered still further using an inverter and motor 

controller. A sketch of the low-speed heavy duty test rig is shown in Figure 5.3. 

i 
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E 
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Coupling SKF 
E 22207 R 

Coupling 

T 

SKF 2206 SKF 1206 

- 
ETN9 E 

4 1160 mm 

Figure 5.3 Sketch of the low-speed heavy duty test rig 

The design of the test rig comprises a rotating shaft supported at three points: a 
double-row self-aligned ball bearing at the drive end, a spherical roller bearing at the 

applied load position near the non-drive end and a single row self-aligned ball bearing 

at the non-drive end. The shaft is manufactured from steel of 35 mm diameter. The 

three bearings are a SKF 2206 ETN9 which is the double-row self-aligned ball 

bearing, a SKF 22207 E which is a spherical roller bearing and a SKF 1206 E which is 

a single row self-aligned ball bearing. They are mounted in bearing housings that in 

turn were attached to a base plate. 

A three-phase A. C motor (model ABB AA082001ASA) is chosen to replace the 

original motor so that adjustable speed and high torque can be achieved. The motor is 

foot-mounted onto the base plate. The connection of the three-stator phase windings 
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of the motor is delta (A) so that this would accept a three-phase input voltage range of 

220-240 Volts for a 50 Hz supply frequency. The power of the motor is rated at 0.55 

kW (or 0.75 hp). 

An inverter (or A. C motor speed controllers) is used to enable the 3-phase induction 

motor to have its speed varied. The inverter (model Allen-Bradley Range: B 161 

Series) is used to provide adjustable speeds by means of voltage deviation. Its 

analogue speed control is of range 0-10 Volts or 4-20 mA. The selected inverter has 

its application power range at 0.75 kW. It can be set up and operated using the integral 

keypad. The shaft is driven by a controllable inverter running at 0.23 rev/sec. 

A worm wheel reduction gear (model Ondrives: PP60-100) is used to replace the 

original gearbox in order to decrease speed of the shaft by an A. C motor. The gear can 

produce a reduction ratio of 100: 1 from the motor shaft rotation speed. This also gives 

sufficient driving torque at low speed to overcome the high radial load. The flexible 

mechanical couplings are used on both input and output shafts of the reduction 

gearbox to incorporate with the drive shaft from electric motor and the rotating shaft. 

They are drilled to fix with keyways on both shafts. 

The base plate is manufactured from steel of 400 mm x 1160 mm x2 mm. At the 

bottom, the two U-shape steels are mounted to the bed in order to prevent the plate 
from deformation by an excessive load. 

Figure 5.4 illustrates the modified loading system. The applied radial load is intended 

to cause accelerated fatigue failure on the bearing. The hydraulics system comprises a 

hydraulic cylinder, hydraulic hand pump, high-pressure hydraulic hose (1 metre), 

gauge mounting block and hydraulic pressure gauge. The reason for using hydraulics 

system are that it can provide enough radial force to accelerate a bearing life and its 

simplicity in designing the corporate components as a frame shape over shaft to 

enable the applied force radially downwards onto the non drive end of the shaft. The 

technical drawings of the modified loading system are given in Appendix B. 
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Applied load 

999 
Supported 

frame 

Figure 5.4 Sketch of the modified hydraulic loading system 

hose 

In order to design the hydraulic loading system, the following criteria are considered. 
The applied radially force provided by a low height hydraulic cylinder, Figure 5.5. 

The used low height hydraulic cylinder (model RS200-8775) combines a minimum 

closed height with maximum stroke of 10 mm to provide a short lifting force in very 

confined work area. 

38 mm Diameter of area 
of contact 

Hydraulic 

cylinder 

Figure 5.5 Sketch of a hydraulic cylinder 

The area of contact of hydraulic cylinder is calculated from its radius 

A= z-'` 

A=1134.11(mm2) 

Equation 5.1 

Equation 5.2 

5-12 

Pressure gauge 

Hydraulic hand 
pump 



Chapter 5 Experimental design and measurement of the systems approach Tonphong Kaewkongka 

The maximum working pressure from the hydraulic hand pump is 700 bars. Therefore, 

the maximum applied force can be calculated from 

F=P. A Equation 5.3 

3 

F= 700x100x 10, (N / mm 2 )xA Equation 5.4 
106 

F= 70(N 1 mm 2 )xl 134.11(mm 2) Equation 5.5 

F= 79387.7N = 8100kg Equation 5.6 

The vibration and AE are measured in the vertical direction on the bearing housing 

with the respective PCB 333A 12 accelerometer and a wideband acoustic transducer. A 

photo detector sensor is used to determine the speed of the rotating shaft and also give 

a reference rotation signal. The test rig is run under the following conditions: 

1. the rotating shaft dynamically balanced with no external load, 

2. the rotating shaft dynamically balanced with stepwise increasing loads up to 

300 bars applied radially downwards to the non drive end of the shaft. 

When a bearing is subjected to radial load over a long period, fatigue failure will 

develop due to the cyclical stress; such failures are common in industry. 
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5.5 Conclusion 
The measurement system and test rigs used in this research have been discussed. To 

design a multisensor measurement system, both AE and accelerometer were used to 

perform such the task in the sense that utilising the two transducers will enable 

complementary for their non-overlapping ranges so that they can operate together as a 

single sensor with greater fault detection capability. The selections of measurement 

equipments are of importance in order to obtain meaningful signals or information 

from the two transducers such as a high signal-to-noise ratio and impedance matching, 

leading to a successful condition monitoring. Finally, the details of the design of two 

test rigs, so called a high-speed light duty and a low-speed heavy duty test rigs, are 

given. The high-speed rig, which can provide four different machine operating 

conditions: artificial fault simulations, was run at 20 rev/sec. By contrast, the low- 

speed rig was operates at 0.23 rev/sec. This rig was used to provide a validation of a 

bearing service life test when it was subjected to radially overload forces. 
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6 Experimental results of the systems approach 
This chapter describes experiments on condition monitoring using vibration and 

acoustic emission signals conducted on two test rigs: high-speed light duty and low- 

speed heavy duty. The purpose is to establish the suitability of the monitoring methods 

for a range of machine conditions. The presentation of this chapter is in four parts. 

Firstly, vibration condition monitoring on the high-speed light duty test rig using joint 

time- and frequency- domain analysis is discussed. Secondly, AE condition 

monitoring using the fuzzy c-mean clustering technique on the high-speed light duty 

test rig is given. Thirdly, AE data provided by Corus, Middlesborough, for clean and 

contaminated lubricant bearing conditions are classified using the fuzzy c-mean 

clustering technique. Finally, the inter-arrival times between AE events obtained from 

experiments conducted on both test rigs are studied in terms of the shape of 

distribution modelled as the Weibull distribution with the corresponding shape, 

guaranteed and characteristic lives estimates; this leads to a novel method of condition 

monitoring using the ratio of shape to life parameters (STL) and L63 as indicators of 

bearing condition. 

6.1 Vibration condition monitoring using CWT and BPNN 

The aim of this experiment is to investigate the applicability of continuous wavelet 

transform (CWT) on vibration signals for condition monitoring of high speed rotating 

machine. As demonstrated in Section 4.2.1, CWT, a joint time and frequency domain 

technique, is capable of revealing hidden transients that occur when rolling elements 

come into contact with a defect. The approach adopted was to transform the vibration 

signals into colour coded images with CWT for different machine conditions and to 

perform classification using a back-propagation neural network (BPNN). 

6.1.1 Vibration experimental set up 
The high-speed light duty test rig was used to validate the proposed approach. It was 

set to run at 20 rev/sec. The test bearing was a FAG 20205K. T. C3 self- aligning single 

row taper-bore bearing. The vertical radial vibration at the bearing was measured 

using a PCB 333A12 accelerometer, located on top of the non-drive end housing. The 

acceleration signals were first low-pass filtered at 1 kHz for anti-aliasing and then 

sampled into a PC with the Labview data acquisition software. The sampling rate used 

in the experiments was 2,000 samples/second. 
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6.1.2 Vibration experimental results 
Vibration measurements were obtained from four different machine conditions as 

presented in Section 5.3. For each condition, twenty signals were collected and then 

divided into two equal sets of ten each. The first set was used for training the neural 

network while the second set for testing. The four different machine conditions are: 

(a) balanced shaft, (b) unbalanced shaft, (c) misaligned shaft and (d) defective 

bearing. Samples of these raw time domain signals are as shown in Figure 6.1. 

�5 

E 

-5 
J Time(s) 

0 10 

0 
E 

-10 
0 

5 
V 
'n 0 
E 

-5 L 

_0 5 C) 

0 
E 

-5 

0.5 

0.5 

Time(s) 

Time (s) 

1 

01 

Time (s) 

Figure 6.1 Acceleration signals from four machine conditions: (a) balanced shaft, (b) 

unbalanced shaft, (c) misaligned shaft and (d) defective bearing 

The coefficients Fy(a, b) in the CWT method were calculated in the manner as 

described in Section 4.2.3. They were then displayed as a grey-scale map with the 

vertical and horizontal axes denoting respectively the scale a and position b, the latter 

being equivalent to time t, as shown in Figure 6.2 for the four different conditions. 

Although there is general similarity between them, subtle differences are clearly 

visible. 
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The CWT grey-scale maps were then `binarised' using thresholding. The selected 

threshold value in this experiment was 128, which is half of the range of grey scale 

values (0-255). With this threshold, the intensity of each pixel was converted into 

either black or white, thus producing a binary two-toned image. Such an image has the 

obvious advantage that when classification using neural networks is done, the 

computation time will be much shorter, as multiplication involving a0 or 1 is much 

easier to perform. 

Figure 6.3 (a) and (b) show a sample image before and after binarising. The binarised 

CWT image of a signal would be used for the training and testing sessions of the 

neural network. 

Figure 6.2 CWT transformed images of (a) balanced shaft, (b) unbalanced shaft, (c) 
misaligned shaft and (d) defective bearing 
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vqw qrjp 

(b) 
Figure 6.3 Examples of (a) an original image and (b) its binary image 

A back-propagation neural network (BPNN), with the architecture as shown in Figure 

6.4 was used to classify machine conditions. The network has an input layer, two 

hidden layers and an output layer. The values of the pixels composing the CWT 

binary image was used as inputs to the neural network in both training and testing. 

Since the image consisted of 64 scales and 250 time intervals, thus giving a resolution 

of 64x250 = 16000 pixels, the number of input nodes is also 16000. The output layer 

comprised 4 nodes, representing the four machine conditions of balanced, unbalanced 

and misaligned shafts, and defective bearing. Through a process of trial and error 

based on minimizing the mean square error (MSE), the choice of 12 nodes in the first 

hidden layer and 18 nodes in the second hidden layer were considered optimal. 

Input from a binarised CWT image comprises 16000 values 
4aaa It a 

Input layer 

Hidden layers 1 

Hidden layers 2 

Output layer 

Figure 6.4 Back-propagation neural network architecture for (a) balanced shaft, (b) 
unbalanced shaft, (c) misaligned shaft and (d) defective bearing 
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Both the training set and testing sets comprised 40 signals made up of 10 signals from 

each of the four machine conditions. After the BPNN had been trained using the 

training set to recognise the four machine conditions correctly, it was then tested 

against the testing set. The test results are tabulated in Table 6.1 where each row 

shows the values produced at the respective four output nodes of the neural network, 
Figure 6.4. These values, ranging from about 0 to 1, represent the likelihood that the 

test condition belongs to one of machine conditions. For example, the first test signal 

obtained from a `balanced' condition, producing the first row of numerical values in 

Table 6.1, was classified as `defective bearing'. This is evidently incorrect and so 
labelled as `W' (for wrong) in the last column. Had the classification been correct, the 

label would be `R' (for right). 

It can be seen from the last column of Table 6.1 that the test signals have been 

classified correctly 36 out of 40 times, with a recognition rate of 90%. `Binarising' or 

thresholding gives the benefit of noise removal and reduced computational effort as 

mentioned earlier. However, it is obvious that the threshold level influences greatly 

the recognition rate: if the level is pushed to the extremes, 0 or 255, the corresponding 

binarised CWT image will turn out to be completely white or black. 
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Table 6.1 Classification results from BPNN 

Values from output nodes of BPNN 

Test set a) Balanced 
shaft 

(b) Unbalanced 
shaft 

(c) Misaligned 
shaft 

(d) Defective 
bearing 

Classification 
result 

0.22 -0.01 0 0.79 W 
0.94 0 0 0.06 R 
0.36 0.19 0 0.34 R 
0.92 -0.08 0 0.23 R 

Balanced 0.98 0 0 0.03 R 
shaft 0.96 0.03 0.03 -0.03 R 

0.86 -0.02 0 0.18 R 
0.73 0 0 0.27 R 
0.2 -0.01 0 0.81 W 

0.98 0.05 0.01 -0.02 R 
0.04 0.35 0.22 0.26 R 
0.04 1 0 -0.04 R 

-0.12 0.84 0 0.45 R 
0.01 0.89 0 0.08 R 

Unbalanced -0.01 0.97 0 0.04 R 
shaft -0.01 0.19 0.29 0.47 W 

0 1.01 0 -0.01 R 

-0.08 0.92 0.01 0.18 R 
0.1 0.7 0.04 0.09 R 

-0.01 1.05 0 -0.05 R 
0 0 0.99 0 R 
0 0 1 0 R 

0.01 0.07 0.95 0.12 R 
0 0.02 1 -0.02 R 

Misaligned 0 0 1 0.01 R 
shaft 0.01 -0.03 0.95 0.05 R 

0 0 1 0 R 
0 0 0.99 0 R 
0 0 0.99 0 R 
0 0.04 1 -0.04 R 

-0.01 0.08 0.33 0.51 R 
0.02 0.01 0 0.94 R 

-0.08 -0.1 0.1 1.1 R 
0.3 0.34 -0.02 0.3 W 

Defective -0.02 0.13 0.26 0.6 R 
bearing -0.05 0 0.42 0.67 R 

0.24 -0.02 0 0.78 R 

-0.09 0.32 0.29 0.52 R 
0 -0.05 0.44 0.64 R 

0.38 -0.1 -0.02 0.88 R 

Note: R= classified correctly, W= misclassified 
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6.2 AE condition monitoring using fuzzy c-mean clustering 
This section describes the application of the fuzzy c-mean clustering technique on AE 

for machine condition monitoring. AE signals were measured from the high-speed 

light duty test rig and AE parameters were then extracted and used as characteristic 
features of the machine condition. In this experiment, the same four machine 

conditions were investigated. The fuzzy c-mean clustering technique works by first 

identifying the centres of clusters in the AE feature space for the four machine 

conditions based on the data from a training set. Then during testing, the point 

corresponding to the test condition in the feature space will have its distances 

calculated from the established cluster centres; the point is then assigned to the nearest 

cluster. 

6.2.1 AE experimental set up 
Experiments were conducted on the high-speed light duty test rig running at 20 

rev/sec. The test bearing was a self-aligned single-row roller bearing (FAG 

20205K. T. C3). The test rig provided four machine conditions corresponding to (a) 

balanced shaft, (b) unbalanced shaft, (c) misaligned shaft and (d) defective bearing. 

The details of the set up were given in Section 5.3. 

An acoustic emission transducer of the wideband type from Physical Acoustic 

Corporation (PAC) was mounted on the non-drive end bearing housing with a silicone 

gel couplant. The AE signal from the transducer was amplified 60 dB and band-pass 

filtered - 100kHz to 1 MHz - with a PAC preamplifier before entering the AET5500 (a 

micro-processor based system from Acoustic Emission Technology Corp. ) for 

converting the signal into AE parameters. 

As discussed in Section 3.2.3, the correct selection of a threshold is important in order 

to obtain a high signal-to-noise ratio. In this experiment, a floating threshold was 

chosen because such a threshold, floating just above the background noise level, 

eliminates much of the background noise. 

6.2.2 AE experimental results 
For each condition, twelve recordings each of about 30-second duration were made 

and they captured the AE parameters of event duration, peak amplitude and energy. 
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These recordings were then divided into two sets of 3 and 9 each. The first set served 

as the reference generated for the training exercise whereas the second set provided 

the test samples for validating the classifier obtained from the training process. Then 

the AE parameters were pre-processed using the four steps as described in Section 

4.4.1 and summarised here. They are: (1) sorting AE events in descending order of the 

AE event duration, (2) discarding the first ten events as outliers, (3) selecting the next 

five AE events from the remaining list and (4) normalising the feature vector of each 

event into a unit vector. As is evident from the procedure described, the number of 

feature vectors used is only 5 and so the whole computation process is made very fast. 

Since the AE parameters of event duration, peak amplitude and AE energy were used, 

each feature vector had only three elements. The clusters could therefore be displayed 

in three-dimensional graphs, as Figures 6.5 and 6.6. Figure 6.5 shows the AE events, 

15 of each condition or 60 in total, for the four different machine conditions from the 

training sets. Figure 6.6 shows the same AE events but this time with clusters 

identified and their centres computed. 

- -- r 

" -r 
r_ I 

__ __-- 

-"- ý 
-" 

1 --r 
ý _ 

0.8 
1 __-r 

_---- 
r'ý- 1 

_ " ýý 

1I 

___- 
r-- 

Q) 
II 

-I -- 
_- 

r-" II 
-II `' I 

C 
I 

1 

Q 
. 

__-- 
- 

r'- 

E 
Cli 

. 
0.4 

------r-- 
1 ý- 

CO 

-- IL 1 - 

0.5 0.6 0.8 
- 0.4 

0.2 00 
Energy Event duration 

Figure 6.5 AE events for the four different machine conditions from the training sets 
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Clustering of balanced, unbalanced, misaligned and defective bearing 
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Figure 6.6 Established cluster centres using training data set from four different 
operating conditions 

Figure 6.7 shows the results from the test set. They comprised the pre-processed 45 

AE events in total for each four different conditions. A minimum distance classifier 

was then used for classification. It works by calculating the Euclidean distances of the 

AE event (expressed as a point in the three-dimensional space of event duration, peak 

amplitude and energy) from the centres of the established clusters for the four 

machine conditions, Figure 6.6. The AE event under test is considered to belong to the 

cluster whose centre is closest. In other words, maximum similarity corresponds to 

minimum distance. 
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Figure 6.7 Three-dimensional graph of the pre-processed AE events from a test set 

Classification results of 36 recordings (9 recordings x4 conditions) from the test 

samples of all four types of machine conditions are given in Table 6.2. It shows the 

output values from the minimum distance classifier. The events were classified 

correctly 35 times out of 36, a recognition rate of 97 percent. The only error occurs 

when the unbalanced shaft condition was misclassified as that due to a defective 

bearing. 

It can also be noted that the normal machine condition of `balanced shaft' is very 

distinctive from the other three abnormal conditions, as their distance values 

(highlighted in the `balanced shaft' column, Table 6.2) are all very small in 

comparison with others. In other words, this approach has very little risk of raising a 

false alarm. 

Tonphong Kaewkongka 

Results of the pre-processed AE from the test set 
Balanced shaft 
Misaligned shaft 
Unbalanced shaft 

--- * Defective bearing 
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Table 6.2 Minimum distance classification results 
Balanced Unbalanced Misaligned Defective 

Bearing conditions shaft shaft shaft bearing 
Testing set #1 
Balanced shaft 1.47 807.90 507.80 1162.30 
Unbalanced shaft 670.60 136.28 164.10 490.60 
Misaligned shaft 478.60 328.40 28.07 682.74 
Defective bearing 861.81 55.13 355.41 299.32 
Testing set #2 
Balanced shaft 4.34 810.90 510.81 1165.30 
Unbalanced shaft 821.35 15.16 314.90 339.80 
Misaligned shaft 516.47 290.31 10.52 644.71 
Defective bearing 1003.8 197.11 497.41 157.34 
Testing set #3 
Balanced shaft 28.28 778.76 478.58 1133.20 
Unbalanced shaft 839.19 32.51 332.83 321.93 
Misaligned shaft 468.16 338.71 38.41 693.09 
Defective bearing 1002.30 195.59 495.80 158.90 
Testing set #4 
Balanced shaft 5.70 802.85 502.82 1157.30 
Unbalanced shaft 841.6 35.47 335.11 319.61 
Misaligned shaft 400.91 405.84 105.69 760.26 
Defective bearing 1038.90 232.27 532.50 122.20 
Testing set #5 
Balanced shaft 70.65 736.04 435.92 1090.50 
Unbalanced shaft 773.04 33.84 266.61 388.11 
Misaligned shaft 421.84 384.97 84.73 739.38 
Defective bearing 1031.20 224.54 524.80 129.90 
Testing set #6 
Balanced shaft 15.98 790.71 490.61 1145.10 

Unbalanced shaft 761.76 44.95 255.50 399.37 
Misaligned shaft 372.86 433.85 133.77 788.28 
Defective bearing 1028.20 221.56 521.71 133.04 
Testing set #7 
Balanced shaft 40.24 766.44 466.34 1120.90 
Unbalanced shaft 868.07 61.40 361.74 293.05 
Misaligned shaft 391.57 415.12 115.40 769.55 
Defective bearing 1222.80 416.14 716.40 61.70 

Testing set #8 
Balanced shaft 4.28 804.99 504.82 1159.40 
Unbalanced shaft 1046.90 240.23 540.50 114.21 
Misaligned shaft 461.38 345.31 45.76 699.74 
Defective bearing 1108.10 301.40 601.72 53.21 
Testing set #9 
Balanced shaft 2.77 809.05 508.92 1163.50 
Unbalanced shaft 905.94 9929 399.50 255.20 
Misaligned shaft 477.31 329.39 29,99 683.82 
Defective bearing 1081.20 274.57 574.80 79.90 
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6.3 AE condition monitoring of bearing lubrication 
One of the most important aspects of smooth bearing operation is the assurance that a 
film of lubricant such as grease is always present between bearing surfaces, so that 
friction and surface wear can be minimised. Contaminated grease or the lack of 
lubricant may lead to ineffective bearing operating or eventual breakdown of a 
machine. Therefore, it is also important to be able to monitor reliably the condition of 
lubrication. The proposed method of applying the fuzzy c-mean clustering technique 
to the pre-processed AE (as discussed in Section 4.4.2) was validated for lubricant 

condition monitoring at low operating speed. 

The main purpose of this study was to categorise two bearing lubrication conditions: 

clean grease and contaminated grease. The source of contamination is the slag from 

the steel making process. Experiments were performed on a main bearing at Corus, 

Middlesborough. Attached to the bearing, the AE sensors captured elastic waves 

generated in the material which was subjected to stress or friction as is the case when 

a rolling element comes into contact with wear debris. 

6.3.1 Experimental set up for lubrication condition monitoring 
The equipment used for processing the AE signals was a LOCAN AT acoustic 

emission system. The AE transducers were R151 with an integral preamplifier and the 

transducers had a resonant frequency of 150 kHz and a measurement range of 60 - 
600 kHz. The transducers were attached to the bearing using magnetic clamps with 

silicone grease as couplant between the transducer and the bearing housing. The 

bearing was FAG 515518K and the lubricating grease was of the Molub Alloy type. 

The bearing was run at the rotating speed of 0.5 rev/min. 

6.3.2 Experimental results for lubrication condition monitoring 
At each lubrication condition, twelve recordings, each of 30-second duration, were 
taken. These were then split into two groups of 4 and 8 recordings. The first group 

would be used for training; the second group for testing. Following the procedure in 

Section 4.4.1, only five AE events in each recording were selected, each event 

specified in terms of its event duration, energy and peak amplitude. 

6-12 



Chapter 6 Experimental results of the systems approach Tonphong Kaewkongka 

The fuzzy c-mean clustering technique was used for classification implemented by 

means of a MATLAB program. Its source code is given in Appendix C1. 

The classification results are shown as a three-dimensional graph in Figure 6.8. It can 
be seen that the test results of 40 AE events (or 8 recordings with 5 AE events in each) 

were all classified correctly, a 100% recognition rate. 

Clustering of clean grease and contaminated grease 
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Figure 6.8 Classification results after applying the fuzzy c-mean clustering technique 
with AE events displayed in terms of the three AE parameters as axes of the three- 

dimensional graph. 
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6.4 AE condition monitoring using the STL method 
An investigation of a novel method, shape-to-life (STL) ratio, was carried out on the 

two test rigs. The aim was to explore the use of STL over a range of rotation speeds 
from 20 rev/sec down to 0.23 rev/sec. Employing the two test rigs, the high-speed 

light duty and the low-speed heavy duty, can provide a larger range of operating 

conditions for loading and speed variations. The sensitivity, reliability and robustness 

of the STL method can be established from this investigation. Presentation in this 

section was divided into four parts. Firstly, the STL method was applied to four 

different machine conditions created on the high-speed light-duty test rig with a view 

to evaluate its discriminatory power. Secondly, the effect of bearing loading on STL 

and L63 was investigated using the low-speed heavy-duty test rig. Thirdly, progressive 
bearing wear was studied on the low-speed heavy-duty test rig to determine its effect 

on STL and L63. Finally, the effect of speed variation on STL and L63 was determined 

on the low-speed heavy-duty test rig and an empirical equation was provided to 

facilitate comparison of STL's across different speeds. 

6.4.1 Four faulty conditions on the high-speed light duty rig 
The main purpose of the experiments was to study the performance of the STL 

method when applied to different conditions of machines operating at high speed. 

Four machine conditions were examined: a balanced shaft, a misaligned shaft, an 

unbalanced shaft and a defective bearing. For each condition, inter-arrival times of 

successive AE events were extracted and a distribution was formed. As proved in 

Section 4.5.2, this is a Weibull distribution characterised by three parameters, the 

guaranteed life to, characteristic life 8 and shape y. to is the threshold time 

corresponding to the shortest AE event duration plus the `dead' zone specified to 

separate the end of one event from the next. In this work, L63, being the sum of to and 

0, is used because L63 denotes the time at which 63% of the inter-arrival times of AE 

events will have occurred and hence is more meaningful than 0. The STL is a ratio of 

the shape parameter to characteristic life, that is, y/9, as was explained in Section 

4.5.3. The values of the three Weibull parameters of a distribution were then 

estimated using the method of parameters estimation as explained in Section 4.5.4. 
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6.4.1.1 Experimental set up for the STL method 
Experiments were conducted on the high-speed light duty test rig, running at 20 

rev/sec. Details of the set up are as described in Section 6.2.1. For each machine 

condition, ten recordings each of about 30-second duration were made at one-hour 
intervals. Each recording captured the times of arrival of successive AE events. The 

inter-arrival times of successive AE events were then determined from the times of 

arrival of successive AE events as noted in Section 4.5.2. 

6.4.1.2 Experimental results for the STL method 
Given a Weibull distribution from each recording, the Weibull parameters of life (0), 

shape (y) and guaranteed life to were estimated. Using L63 =0+ to, 43 was then 

calculated. The estimated parameters for the four different machine conditions are 

shown in Table 6.3. 

The shape parameter (y) from Weibull distribution describes the pattern of inter- 

arrival times of AE events produced from microscopic failure. All four different 

machine conditions return a value of around 1 for the shape parameter, suggestive of a 

random failure pattern. 

As 1.63 indicates the time below which 63% of the inter-arrival times will fall, the 

shorter the 1-63 interval, the more active the AE emission, and hence the greater the 

number of microscopic failure within a given time period. As can be seen from Figure 

6.10, the balanced condition gives 43 = 0.25 second approximately. In contrast, the 

defective bearing condition gives 1.63 = 0.02 second approximately, being the lowest 

of all conditions. This means that when the test rig was operating under the defective 

bearing condition, the AE rate was the highest compared to other conditions, having 

63% of the AE inter-arrival times within 0.02 second. 
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Table 6.3 STL and 43 values from high-speed light duty test rig at different machine 
conditions 

Condition Time hr Life s Shape ts STL s'' L63(s) 
1 0.209 ( 1.165 0.000 5.574 0.209 

0.249 0.805 0.006 3.232 0.255 
0.238 1.193 0.008 5.012 0.246 

41 0.222 1.162 0.009 5.234 0.231 
Balanced 0.255 1.200 -0.008 4.705 0.246 

shaft 0.198 1.119 -0.004 5.651 0.193 
0.230 1.220 -0.009 5.304 0.2201 
0.238 1.460( -0.013 6.134 0.225 
0.210 1.136( -0.013 5.409 0.197 

1 0.202 1.178 -0.005 5.831 0.196 

1 0.063 1.787 0.001 28.3651 0.064 
0.069 1.375 0.005 19.927 0.074 
0.066 2.269 -0.006 34.378 0.059 
0.059 1.550 0.0081 26.271 0.0671 

Unbalanced 0.064 1.505 0.004 23.515 0.068 
shaft 0.055 1.709 0.009 31.072 0.064 

0.056 1.832 0.006 32.714 0.062 
0.061 1.486 0.006 24.360 0.067 
0.061 1.496 0.009 24.524 0.070 

1 0.058 1.647 0.010 28.396 0.068 

1 0.108 1.237 0.009 11.453 0.117 
0.090 1.258 0.010 13.977 0.100 
0.106 1.002 0.010 9.452 0.116 
0.118 1.048 0.009 8.8814 0.127 

Misaligned 0.118 1.031 0.010 8.737 0.128 
shaft 0.136 0.990 0.010 7.279 0.146 

0.115 1.061 0.008 9.2261 0.123 
0.127 1.026 0.009 8.078 0.136 
0.111 0.988 0.009 8.900 0.120 

1 0.098 1.144 0.009 11.673 0.107 

1 0.01401 0.978 0.005 69.8571 0.019 
0.012 0.772 0.007 64.333 0.019 
0.014 1.033 0.005 73.785 0.019 
0.012 0.72201 0.00751 60.166 0.019 

Defective 0.009 0.716 0.007 73.2481 0.017 
bearing 0.009 0.767 0.007 79.325 0.017 

0.013 0.945 0.00 72.692 0.019 
0.010 0.814 0.00741 81.40001 0.017 

0.009 0.638 0.007 69.189 0.0171 
1 0.013 0.839 0.006 64.538 0.019 
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Results of STL value from all four different 
bearing conditions 
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Figure 6.9 Progression of STL with time from high-speed light duty test rig at four 
different machine conditions 
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Figure 6.10 STL versus L6; values from high-speed light duty test rig at four 
different machine conditions 
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The STL values from all four machine conditions are plotted against the time of 

operation in Figure 6.9. As can be seen from the graph, the values of STL for each 

machine condition remained more or less constant throughout the whole period of the 

ten recordings. This may be due to the fact that the machine conditions did not change 
in that period of time or that the STL values were not sensitive to changes in machine 

conditions. 

The means and standard deviations of STL values for the four machine conditions are 
tabulated in Table 6.4. It can be seen that their means are different with the defective 

bearing having the highest STL of 70.8 s-' compared with 5.2 s"1 for the balanced 

shaft, a ratio of 13.6 to 1. Considering the fact that the defective bearing had a mere 1 

mm indentation on the outer race, the difference is all the more remarkable. It can 

also be seen that the unbalanced shaft gives an STL of 27.4 s-1, which is more than 5 

times as large as that for the balanced shaft. The misaligned shaft gave a mean STL of 
9.8 s-t, which is just under 1.9 times the value of the balanced shaft. 

Table 6.4 STL results from four different machine conditions 

C diti STL value (s'1) on on Mean S. D 
(a) Balanced 5.2091 0.8041 
(b) Unbalanced 27.3527 4.4974 
(c) Misaligned 9.7662 2.0065 
(d) Defective 70.8537 6.6757 
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6.4.2 Loading effects on the STL on the low-speed heavy duty rig 
Experiments were carried out on the low-speed heavy duty test rig in order to 
determine the sensitivity of the STL value to the levels of load acting on the bearing. 

In many applications, bearings experience load variation, leading to failure of the 
bearing if a safe load is exceeded. The load was increased from an figure that a 
bearing can sustain until over the specified safe load as recommended by the 

manufacturer. The STL values were calculated from the Weibull distribution of the 
inter-arrival times of AE events and then correlated to each loading condition. 

6.4.2.1 Experimental set up for loading effects on the STL 
The configuration of the test rig was given in Section 5.4. The shaft was driven at 4.7 

rev/sec. SKF 2206 ETN9 was chosen for the test because it can sustain static load up 

to 6700 N (59.23 bar). Loads were varied in steps from 0,40,60 to 80 bars. A high 

capacity hydraulic ram was used for exerting a variable radial load on the bearing. 
For each loading condition, ten recordings, each of 30-second duration, were made at 
hourly intervals. 

The AET 5500 was used to provide the time of arrival of each AE event. A wideband 
AE transducer (UT1000) was fixed to the non-drive end housing, Figure 6.11. An 

AECU2100 preamplifier with a 60 dB gain and band-pass filter at 100k - 1MHz was 

chosen. An automatic threshold was set at 0.1 Volt with a 2.51 post-amplified gain. 
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AE transducer 
(UT 1000) 

int 
nousing 

Figure 6.11 Schematic diagram showing the mounting position of an AE transducer 
(UT 1000) 

6.4.2.2 Experimental results for loading effects on the STL 
Estimated Weibull parameters, characteristic life (0 ), shape (y) and guaranteed life 

(to) together with L63 and STL were calculated for the ten recordings obtained from 

each of the four levels of loads -0 bar, 40 bars, 60 bars and 80 bars The results are 

shown in Table 6.5. The shape parameter obtained from the different loading 

conditions is around 1, which suggests an uniformly random pattern of inter-arrival 

time distribution. In contrast, the values of the life parameter were a function of the 

applied load. With no load, the life value, from 0.6 to 0.9 second, was the highest 

compared with the other loading conditions. With the load at 40 bars, the life values 

were in the range of 0.3 to 0.4 second, resulting in a slight increase in the STL value. 

With the load at 60 bars, just above the manufacturer's recommended loading limit of 

59 bars, the life values decreased to the range of 0.17 to 0.2 second. When the bearing 

was loaded at 80 bars, an obvious overload, the shortest life values, from 0.084 to 

0.122 second, were observed, resulting in the highest STL values. 

Figure 6.12 shows the progression over a 10-hour period of the STL values under the 

four different levels of load. It is clear that the STL values increased with increasing 

loading -a pattern observed for all columns of points taken at any given time in 

Figure 6.12. It is also clear that for the loading of 80 bars, the STL curve showed an 

increasing trend with time whereas the other curves at lower loads remained more or 
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less level. The increasing trend at the 80 bar load seems to suggest progression of 
bearing wear and the horizontal trend at other loads indicates a static wear state. 

Table 6.5 Estimated Weibull parameters and STL and L63 value at different loads on 
the low speed heavy duty test rig 
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Figure 6.12 Progression of STL with time from all different loading conditions on 
low-speed heavy duty test rig 

Figure 6.13 shows the relationship between the STL and L63 at different loads. The 

graph reveals that the higher the load the shorter is the L63 value and the greater the 

STL value. Not surprisingly, as the load increased the AE events, as an indication of 

microscopic failure, occurred more frequently, resulting in a shorter L63. Since STL = 

y/6 where y, the shape parameter was observed to be close to unity and 0, the 

characteristic life, is not much different in value from L63, the graph of STL versus L63 

is close to a hyperbolic curve, Figure 6.13. 

Figure 6.14 shows the progression of STL with times (1-hourly interval) under 

incremental loading conditions, Table 6.5. It is clear that the STL values are more or 

less constant when the bearing was subjected under the basic dynamic load rating 

(recommended load), 59.23 bars. The mean and standard deviation of STL of bearing 

operated under basic load rating is 2.3031 s-I and 0.7554 s-1 respectively. 
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Results of STL vs L63 for different loading conditions on 
low speed heavy duty test rig 
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Figure 6.13 STL versus L63 values under incremental loading conditions on low 
speed heavy duty test rig 
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Figure 6.14 Progression of STL with time under incremental loading conditions 
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Table 6.6 shows the means and standard deviations of the STL values obtained for the 
four different loads over the 10-hour period. It is noted that the mean increases with 
increasing load and that the standard deviations for the loads of 0 bar, 40 bars and 60 

bars are rather small, being 0.32 s"', 0.46 s"' and 0.51 s" the corresponding means. 
For the load of 80 bars, strictly speaking the standard deviation of 3.27 s-' has very 
little meaning because of the increasing trend of the STL. 

Table 6.6 Means and standard deviations under incremental loading conditions 
Loading STL va lues' 

conditions Mean S. D 
No load 1.673487 0.329566 
40 bars 2.932846 0.463816 
60 bars 5.784175 0.518696 
80 bars 13.73186 3.279382 
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6.4.3 Progressive bearing wear on the low-speed heavy duty rig 
An accelerated bearing life test was carried out in order to establish whether the STL 

method is sensitive even for low speed bearings experiencing progressive wear. The 

life of a bearing was shortened by subjecting it to a radial load higher than 

recommended by the manufacturer. This is to facilitate observation of the different 

stages of bearing wear leading to functional failure within a shorter time scale. The 

radial load was produced by a hydraulic ram with the accompanying hydraulic circuit 

that gives an accurate pressure to the ram. For comparison, the root-mean-square 

value of the acceleration obtained from the bearing was also produced. All tests were 

performed on the low-speed heavy duty test rig. 

6.4.3.1 Experimental set up for progressive bearing wear 
The low-speed heavy duty test was run at 0.23 rev/sec. The bearing under test was an 

SKF 1206E, which is a self-aligned ball bearing with a maximum load capacity of 

about 137 bars. AE signals were captured using the WD (wideband) transducer 

mounted on the top of the non-drive end bearing housing. These signals were 

amplified with a 60 dB gain and filtered with a 100 kHz - 450 kHz band-pass filter. 

The sampling rate was 1 MHz. An accelerometer (PCB 333A12) was used to measure 

vibration. It was located next to the AE transducer on the non-drive end housing. The 

acceleration signals were amplified by 60 dB and filtered using the KEMO filter set to 

operate as a 1000 Hz low-pass filter. The conditioned signals were then acquired into 

a PC using the LAB VIEW program with a sampling rate of 2000 Hz. Figure 6.15 

illustrates the positions of the two transducers. 
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Accelerometer AE transducer 
PCB 333A12 (WD) 
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Figure 6.15 Schematic diagram of the mounting positions of the AE transducer and 
the accelerometer 

Measurements started with no radial load applied to the test bearing and the load then 

was increased at 50-bar steps up to 300 bars. From the loads of 0 to 250 bar, each 

loading condition was maintained for about 2 hours, thus taking about 12 hours to 

reach the end of the 250 bars test. Then the load was increased to 300 bars and 

maintained until the test bearing failed. 

6.4.3.2 Experimental results for progressive bearing wear 
Tables 6.7 and 6.8 show the computed results from the AE and acceleration signals 

respectively. It can be seen from the two tables that when a test bearing was run under 

the load of 200 bars, which is more than the design load capacity (137 bars), the STL 

values increase abruptly whereas the VRMS remains unchanged. 

The total time taken for the test bearing to fail was about 126 hours. This is in good 

agreement with the expected service life of an SKF 1206E calculated as follows 

(Eschmann, 1958; Peter, 1998). 

Basic dynamic load rating, C= 15600 N 

L= (C/P)k million revolutions 

where L is the service life of a bearing, C is the basic dynamic load rating, P (300 

bars) is the applied radial load and k, the index, is taken to be 3 for a ball bearing. 
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L= 106 x (15600 NI 34023.3 N)3 revolutions 
L=0.096 x 106 revolutions 

L= (0.096 x 106)/(13.8 rev/min x 60) hours 
L= 107.10 hours (compared with 126 hours in practice) 
This agreement is all the more remarkable if it is recognised that the 126 hours to 

failure includes 12 hours during which the applied load was less than 300 bars. 

Figures 6.17 and 6.18 show the respective trend plots of the STL and VRMS against 

time. The curve in Figure 6.17 suggests that the STL values increased when the 

bearing was overloaded, and with the load maintained indefinitely (300 bar load from 

the 12`h to the 120`h hour), the STL increased with progressive bearing wear until the 

final failure. At the 300 bar load, the STL started with a value of 18.9 and increased 

monotonically to 59.4 when it failed, representing just over a three-fold increase. Over 

this period of time L63, as shown in Figure 6.19, fell from 0.0546 second down to 

0.0177 second, the latter being just under a third of the former. Given that STL = y/A, 

y is approximately unity and 0=L. 63 - to where to is small compared to 1453, it is to be 

expected that the increase in STL and the decrease in L63 over the same period of 

loading are in inverse proportion to each other. Like Figure 6.13, this is yet another 

demonstration of the hyperbolic relation that exists between STL and L63. In general, 

it can be asserted that if 7 is approximately unity and to is small compared to L63, the 

hyperbolic relationship between STL and L63 holds. 

In contrast, the VRMS value of the acceleration signal in Figure 6.18 does not show any 

change either with the load or with the progression of bearing wear. It only rose after 

the bearing had failed. 

Figure 6.20 shows a graph of the STL against L63 for all levels of load applied 

sequentially to the bearing during the accelerated life test. Like Figure 6.10 and 6.13, 

the hyperbolic relationship between STL and L63 is once again demonstrated in Figure 

6.20. 

At the point of failure, not only did the bearing seize up but the shaft also broke at a 

plane next to the bearing as shown in Figure 6.16. The shaft failure was characteristic 
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of fatigue failure caused by the repeated action of a cyclical shear stress created by the 

radially downward load applied to the shaft. 

As the shaft broke, the bearing ceased to rotate and hence the number of AE events 

dropped. Consequently L63 increased, bringing down the value of STL. 

On the other hand, the VRMS of the acceleration signal increased after the shaft broke 

because the ensuing vibration on the drive-end bearing grew so large that it shook the 

base-plate of the whole test rig. Although the accelerometer was attached to the non- 

drive end bearing housing, the vibration on the base plate was transmitted to this 

bearing housing and was picked up by the accelerometer. 
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Table 6.7 STL and L. 63 from progressive bearing wear on the low-speed heavy duty 
test rig 

Load bars Time hr Life s Shape s STL s" Ls 
0 0 0.534 1.104 0.000 2.0674 0.534 
0 1 0.274 0.937 0.0001 3.419 0.2741 

50 2 0.867 1.089 -0.0051 1.2561 0.861 
50 3 0.892 1.1900 1 -0.0720 1 1.3341 0.820 
100 4 0.457 0.948 -0.046 2.074 0.411 
100 5 0.324 0.774 -0.002 2.388 0.321 
150 6 0.454 1.085 -0.033 2.389 0.421 
150 7 0.322 1.062 -0.017 3.2981 0.305 
200 8 0.064 1.199 -0.002 18.734 0.0611 
200 9 0.065 0.999 0.0001 15.369 0.0651 
250 10 0.040 0.895 0.0001 22.375 0.0401 
250 11 0.036 0.952 -0.000 26.444 0.035 
300 12 0.056 1.057 -0.001 18.875 0.054 
300 24 0.042 1.055 0.0001 25.119 0.0421 
300 36 0.043 1.013 -0.001 23.5581 0.042 
300 48 0.042 1.019 -0.000 24.261 0.041 
300 60 0.039 1.086 -0.001 27.846 0.0374 
300 72 0.035 1.067 -0.0021 30.485 0.032 
300 84 0.032 0.998 -0.000 31.187 0.031 

300 96 0.026 0.987 -0.000 37.961 0.0251 
300 108 0.023 1.107 -0.001 48.130 0.021 
300 120 0.019 1.129 -0.001 59.4211 0.017 

00 Damaged 132 0.098 0.876 -0.003 8.938 0.094 
300 Damaged 138 0.143 1.024 -0.009 7.160g 

_ 
0.133 

300 Damaged 144 0.140 0.891 -0.001 6.364 0.138 
300 Damaged 150 0.125 1.157 -0.007 9.256 0.117 
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Table 6.8 Vps of acceleration signals from progressive bearing wear on the low- 
speed heavy duty test rig 

Load (bars) Time (hr) VRMS (V) 

0 0 0.557 
0 1 0.483 

50 2 0.436 
50 3 0.427 
100 4 0.475 
100 5 0.449 
150 6 0.415 
150 7 0.415 
200 8 0.418 
200 9 0.419 
250 10 0.435 
250 11 0.386 
300 12 0.408 
300 24 0.350 
300 36 0.425 
300 48 0.427 
300 60 0.400 
300 72 0.385 
300 84 0.395 
300 96 0.394 
300 108 0.415 
300 120 0.406 

300 (Damaged) 132 2.998 
300 (Damaged) 138 2.911 
300 (Damaged) 144 2.914 
300 Dama ed 150 2.927 
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Figure 6.17 Progression of STL with time from the bearing life test on low-speed 
heavy duty test rig 
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Progression of STL with time under incremental 

loading conditions, Table 6.7 
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Figure 6.21 Progression of STL with time under incremental loading conditions from 
bearing life test 

Figure 6.21 shows the progression of STL with time under incremental loading 

conditions from bearing life test, Table 6.7. It is obvious that with the applied load 

within basic load rating the STL values are more or less level. The mean and standard 

deviation of STL within basic dynamic load rating are 2.0901 and 0.7905 respectively. 

Like Figure 6.14, the constant trend of progressive STL, when bearing was subjected 

under basic dynamic load rating as shown in Figure 6.21, remained. It should be noted 

that the results shown in Figure 6.14 and 6.21 were obtained from different bearings in 

terms of their load carrying capacity. Therefore, it is worthwhile considering the test 

of significance (Moroney, 1951) for STL obtained from the two different bearings 

running under recommended load. 

Denoting the STL from SKF 2206 ETN9 (Figure 6.14) by subscript 1 and the STL 

from SKF 1206 E (Figure 6.21) the subscript 2, then 

N1=20, µl = 2.3031, ai = 0.7554, and ßiz = 0.5706 

N2=6,92 = 2.0901, a2 = 0.7905, and 622 = 0.6248 
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where N= sample size, 

µ= sample mean 

ß= standard deviation (S. D), and 
62= variance 

The difference between the sample mean is µl-µ2 = 0.213 s"' 

and the corresponding variance of the difference is 

Var(µt-µ2) =o 2/Nj + ß22/N2 = 0.1326 

from which the standard error of the difference is 

Std. Error of Diff. = 0.3642 

since it is the square root of the variance of the difference. 

The observed difference between the sample mean of STL, 0.213 s', is not 

significant, being 0.213/0.3642 = 0.58 times its standard error. 
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6.4.4 Effects of speed variations on the low-speed heavy duty test rig 
The aim of this series of experiments was to investigate the effect of speed variations 

on the STL value on the low-speed heavy duty test rig. For an AE-producing defect 

on, for example, the inner race of a bearing, as the shaft rotating speed doubles, the 

rolling elements in a bearing go twice as fast and so the intervals between the 

successive AE events become halved. This will affect the STL as well as the L63. The 

experiments were performed on a good bearing without load in order to eliminate the 

effects of load and progressive bearing wear on the STL value. 

6.4.4.1 Experimental set up for speed variation effects 
The low-speed heavy duty test rig was used with the same configuration as that 

presented in Section 5.4. The test bearing was a SKF 1206E. The rotating speed was 

varied using an inverter in steps from 9.46,14.2 to 28.4 rev/min. At each speed, ten 

recordings, about 30-second each, of the AE signal were made. A wideband AE 

acoustic transducer (WD) was fixed, using silicon-gel, to the top of the non-drive end 
housing. An AECIJ2100 preamplifier with a 60 dB gain and a band-pass filter at 100k 

- 450kHz were chosen. The sampling rate used to capture the AE signal into a PC was 
1MHz. 

6.4.4.2 Experimental results for speed variation effects 
Weibull parameters were estimated from the distribution of the AE inter-arrival times 

for the three different speeds and are as shown in Table 6.9. The values of the shape 

parameter for all speeds are around 1. However, the life values are a function of the 

rotating speed. At 9.46 rev/min, the life values are higher than those obtained from 

faster speeds, resulting in the smallest STL value of around 2. When the speed is 

increased to 14.2 rev/min, the life value becomes smaller and the STL rises to around 

6. As expected, the STL value from the bearing running at 28.4 rev/min yields the 

maximum value of around 16. 

Figure. 6.22 illustrates the relationship between the STL and L63 values for all three 

speeds. It is obvious that at the low speed the L63 values are greater and have a wider 

spread. At the higher speed, the L63 becomes smaller and tends to spread less. Figure 
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6.23 shows the empirical equation that fits the data points in Figure 6.22. The 

equations is 

STL = 0.6031L63-1.1843 Equation 6.1 

It is noted that the exponent for 1.63 is -1.1843. Had it been -1, then the true hyperbolic 

relationship between STL and L63 could have been claimed. 

Table 6.9 STL, 1,63 and estimated Weibull parameters with speed variations 
Condition File no. Life (s) Shape s STL s s 

1 0.0900 0.9460 -0.0030 10.5111 0.0870 
2 0.0900 1.0140 -0.0043 11.2667 0.0857 
3 0.0980 1.0750 -0.0056 10.9694 0.0924 
4 0.0790 1.1850 -0.0077 15.0000 0.0713 

28.4 5 0.0800 0.9440 0.0002 11.8000 0.0802 
RPM 6 0.0760 1.2360 -0.0081 16.2632 0.0679 

7 0.0740 0.9610 -0.0050 12.9865 0.0690 
8 0.0770 1.0350 -0.0063 13.4416 0.0707 
9 0.0640 0.8870 -0.0031 13.8594 0.0609 

10 0.0810 0.8370 -0.0016 10.3333 0.0794 

1 0.1340 1.0610 0.0012 7.9179 0.1352 
2 0.1390 0.9740 0.0001 7.0072 0.1391 
3 0.1410 1.0170 0.0009 7.2128 0.1419 
4 0.1790 1.0270 -0.0084 5.7374 0.1706 

14.2 5 0.1520 0.9490 0.0001 6.2434 0.1521 
RPM 6 0.1710 0.8220 0.0022 4.8070 0.1732 

7 0.1400 0.8590 0.0001 6.1357 0.1401 
8 0.1160 0.7780 0.0002 6.7069 0.1162 
9 0.1160 0.7040 0.0110 6.0690 0.1270 

10 0.1510 1.0040 -0.0038 6.6490 0.1472 

1 0.2710 0.8690 -0.0026 3.2066 0.2684 
2 0.2610 1.0470 -0.0055 4.0115 0.2555 
3 0.2590 0.8810 -0.0011 3.4015 0.2579 

4 0.3030 0.8870 -0.0008 2.9274 0.3022 
9.46 5 0.2800 0.6280 -0.0020 2.2429 0.2780 
RPM 6 0.2670 0.6920 -0.0029 2.5918 0.2641 

7 0.2820 0.6120 -0.0020 2.1702 0.2800 
8 0.3220 0.6150 -0.0078 1.9099 0.3142 
9 0.2750 0.7230 -0.0049 2.6291 0.2701 

10 0.2260 0.6480 -0.0021 2.8673 0.2239 
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STL and L43 value from heavy duty test rig running at different 
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Figure 6.22 STL versus L63 values from bearing running at different speeds 
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6.4.4.3 Simulation study of speed variation 
This section sets out to prove the hypothesis that the rotating speed and inter-arrival 

time between AE events are inversely proportional to each other. Once this is proven, 

the STL's of a bearing rotating at two different speeds can be compared. 

Consider the bearing in Figure 6.24, where a defect is located on the outer race. An 

AE event is produced whenever a rolling element passes over the defect, giving an AE 

signal (top right-hand diagram). If the rotating speed is now halved, the frequency of 
AE events is doubled (middle right-hand diagram). If the rotating speed is reduced to 

a third, the frequency is trebled (bottom right-hand diagram). 

I 

Inter-arrival times xl 

Inter-arrival times x3 

Figure 6.24 Examples of inter-arrival times and its multiplications 

From the experiments described in Section 6.4.4.2, it was noted that the STL and L63 

values are approximately inversely related. If the inter-arrival times of AE events 

obtained at a particular speed are chosen and their intervals doubled, the resulting 

Weibull distribution will produce its corresponding shape parameter, guaranteed and 

characteristic lives. From these, the STL and L63 can be computed using Equations 

4.15 and 4.16 in Section 4.5. 
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Similarly, values of STL and L63 can be obtained for the case of trebling the inter- 

arrival time intervals. If these pairs of STL and L63 are then plotted on the graph of 
Figure 6.22 alongside the results of the speed variation experiments, and if they fit in 

well with each other, then it can be concluded that doubling the speed is equivalent to 
halving the inter-arrival time. In other words, speed and inter-arrival time are 
inversely related. 

There is a simple relationship in the Weibull distribution between one set of inter- 

arrival times and the new set created from doubling those in the original set. It is that 
both distributions have exactly the same value for the shape parameter y; but the 

guaranteed life to and characteristic life 0 will have values twice as large as before the 

time dilation. 

That this is the case is not hard to prove. Consider the cumulative distribution 
function of Weibull distribution, 

F(t)L-(tBr, JYJ 

The doubling of inter-arrival times t can be regarded as a change in the time unit with 

the new unit being half of the old one. Clearly, changing the unit of measurement of a 

variate should not affect the shape of the variate's distribution. 

A simulation study was conducted in which the inter-arrival times of AE events at the 

speed of 28.4 rev/min were chosen to be the reference set from which the time dilation 

was carried out. The inter-arrival times are stretched to twice and three times their 

original lengths. If the hypothesis is true, then the two stages of stretching are 

equivalent to the respective rotating speeds of 14.2 rev/min and 9.46 rev/min. 

Table 6.10 shows the Weibull parameters obtained from the simulation experiments, 

each resulting in a data file. These parameters were estimated from the distributions 

of inter-arrival times at the three simulated speeds. It is noted that the shape 

parameter, y, has a value that remains the same for data from the same file irrespective 

of the simulated speed. For example, File 1 gives y=0.9460 across all three speeds. 
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It is also noted that the guaranteed life to and characteristic life 0 increase in ratio to 

the dilation of the inter-arrival time. 

Figure 6.25 is a graphical depiction of the results shown in Table 6.10. Figure 6.26 is 

similar to Figure 6.25 but in addition, it shows a curve fitted to the data points. The 
formula for this curve is given as 

STL = 0.9584L63-0'9948 Equation 6.2 

Note that the exponent of I, 63 is very close to -1, thus suggesting a strong hyperbolic 

relationship between STL and 43- 
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Table 6.10 Simulated results of STL and 43 on speed variation conditions 

Inter-arrival 
time spacin m 

File 
number 

Estimated Weibull 
parameters STL(s'') La(s) 

g 
Life s Shape I to (a) 

1 0.0900 0.9460 -0.0030 10.5111 0.0871 
2 0.0900 1.0140 -0.0043 11.2667 0.0857 
3 0.0980 1.0750 -0.0056 10.9694 0.0924 
4 0.0790 1.1850 -0.0077 15.0000 0.0714 

At 28 4 RPM 5 0.0800 0.9440 0.0002 11.8000 0.0802 
. 6 0.0760 1.2360 -0.0082 16.2632 0.0679 

7 0.0740 0.9610 -0.0050 12.9865 0.0690 
8 0.0770 1.0350 -0.0064 13.4416 0.0707 
9 0.0640 0.8870 -0.0031 13.8594 0.0609 

10 0.0810 0.8370 -0.0016 10.3333 0.0795 

1 0.1800 0.9460 -0.0059 5.2556 0.1741 
2 0.1810 1.0140 -0.0086 5.6022 0.1724 
3 0.1960 1.0750 -0.0110 5.4847 0.1850 
4 0.1570 1.1850 -0.0150 7.5478 0.1420 

At 28.4 RPM 5 0.1600 0.9440 0.0003 5.9000 0.1603 
x2 6 0.1530 1.2360 -0.0160 8.0784 0.1370 

7 0.1470 0.9610 -0.0100 6.5374 0.1370 
8 0.1540 1.0350 -0.0130 6.7208 0.1410 
9 0.1270 0.8870 -0.0062 6.9843 0.1208 

10 0.1620 0.8370 -0.0031 5.1667 0.1589 

1 0.2690 0.9460 -0.0089 3.5167 0.2601 
2 0.2710 1.0140 -0.0130 3.7417 0.2580 
3 0.2940 1.0750 -0.0170 3.6565 0.2770 
4 0.2360 1.1850 -0.0230 5.0212 0.2130 

At 28.4 RPM 5 0.2400 0.9430 0.0005 3.9292 0.2405 
x3 6 0.2290 1.2360 -0.0240 5.3974 0.2050 

7 0.2210 0.9610 -0.0150 4.3484 0.2060 
8 0.2310 1.0350 -0.0190 4.4805 0.2120 
9 0.1910 0.8870 -0.0093 4.6440 

- - 
0.1817 

10 0.2430 0.8370 -0.0047 4 3.44 4T 0.2383 
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Superimposed simulation and experiment results of STL 
and L63 values for different speed conditions 
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Figure 6.27 Curve of STL as a function of L63 for data from simulated inter-arrival 
time spacing and speed variation experiments. 

The verification of the hypothesis that the rotating speed and inter-arrival time 

between AE events are inversely proportional to each other is given in Figure 6.27. 

Both sets of data, from speed variation experiments and from inter-arrival time 

dilation, are shown on the same graph. It is clear that both sets are indistinguishable 

from each other. The curve fitted to these data points is 

STL = 0.7371L63-1'1044 Equation 6.3 

It is noted that the exponent of L63 is -1.1044 as compared with -1, the true 

hyperbolic relation. Equation 6.3 provides the means for comparing STL's across 

different speeds. 
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7 Simulation studies 

Tonphong Kaewkongka 

Bearing condition monitoring relies on detection and processing of signals generated 
from sources of failure such as defects or crack growth or lubrication starvation in a 
bearing. The characteristics of the sources, such as its location, and the mechanism by 

which vibration and acoustic emission are produced are generally unknown. It is often 
desirable to have a repeatable and well characterised vibration or AE source in order 
to examine the effectiveness of the methods researched. The methods used are: (1) 
joint time- and frequency- domain analysis on vibration, and (2) the novel STL 

method on AE. It is also desirable to evaluate the fault prediction capability of the 

condition monitoring system as a whole. What are required are a simulated 

acceleration and an acoustic emission source, which are of interest and should be as 

repeatable as possible. These allow the measurement of sensitivity, reliability and 

robustness of the proposed multisensor system. 

This chapter is divided into two parts. Firstly, the use of simulated vibration sources 

(producing acceleration signals) for evaluating the relative performance of the joint 

time- and frequency- domain analysis methods. The performance concerns the ability 

to discriminate between different types of signal that have transient features in them. 

Two joint time- and frequency- domain techniques, the Short Time Fourier Transform 

(STET) and the Continuous Wavelet Transform (CWT), were studied. Secondly, the 

sensitivity, reliability and robustness of the STL method were assessed in respect of 

the variable AE detection level threshold. The AE events were produced by simulation 

using the real statistical distributions of AE amplitudes and inter-arrival times of AE 

events, which were obtained from experiments conducted on the heavy-duty test rig. 

All simulated signals, acceleration and AE, were generated by means of MATLAB 

programs. 

7.1 Simulation study in the joint time- and frequency- domain 

When a rolling element comes into contact with a localised defect, it generates a 

transient signal. While a time-domain method can give accurate time information on 

the state of the signal, it does not provide the frequency information. On the other 

hand, a frequency-domain method does not give the time information. It would be 

most desirable if methods were available that would supply both time and frequency 

information of a signal and they are said to operate in both the time and frequency 
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domains. This section presents a comparative study of two such methods, the Short- 
time Fourier Transform (STFT) and the Continuous Wavelet Transform (CWT). 

The signals to which these two methods would be applied were generated artificially. 
There are four signals with characteristics given as follows: 

1) Type 1 (Figure 7.1a) -A damped sinusoidal wave of a single frequency; 
2) Type 2 (Figure 7.2a) -A high frequency damped sinusoidal wave followed by 

a low frequency sine wave; 
3) Type 3 (Figure 7.3a) - Two damped sinusoidal waves of different frequencies 

added together; and 

4) Type 4 (Figure 7.4a) - Periodic sinusoidal pulses with sharp rising edges. 
It is noted that all four types were corrupted with random noise in other to make them 
look realistic. 

A reference set of signals was created by first generating seven instances of each type 

and then taking the average. This results in a clearer signal for each type. A test set 

was also created comprising three instances of each type but no averaging. The 

MATLAB codes for generating these signals are presented in Appendix C3. 

Signals in the reference and test sets were transformed using STFT and CWT as 

explained in Section 4.2.2 and 4.2.3 respectively. The results were shown as two- 
dimensional colour-coded images: Figures 7.1b, 7.2b, 7.3b and 7.4b are from the 
STFT transformation, and Figures 7.1c, 7.2c, 7.3c and 7.4c from the CWT. 

By comparing a test image with the corresponding reference image using the method 

of correlation matching (Section 4.2.5), it is possible to measure the degree of 

similarity between the two images. Correlation matching produces an output, the 

correlation coefficient, ranging from +1 to -1. +1 means a perfect match in 

appearance as well as colour tone. -1 means a perfect match in appearance but the 

colour tones are completely opposite, like a photograph and its negative. 0 suggests 

the two images are completely dissimilar. 

The results of the comparison are tabulated in Table 7.1 where the groups of three 

values refer to the correlation coefficients obtained from comparing the reference 
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signal with each of the three test signals in each type. It is noted that, in each case, 

correct matching has been achieved as the highest correlation coefficients always 

appear in the expected row. 
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Table 7.1 Correlation matching results of STET and CWT images 
Correlation of STIFT Correlation of CWT 

Test image (Type 1) Correlation coefficient 
Test image (Type 1) 

Correlation coefficient No. 1 No. 2 No. 3 

ý 

No. 1 No. 2 No. 3 
Correlation coefficient 

Test image (Type 1) 
No. 1 No. 2 No. 3 

Type 1 0.832 0.8211 0.8347 
Reference Type 2 0.1376 0.1613 0.1753 

image Type 3 0.5188 0.525 0.545 

Type 4 0.3578 0.3578 0.343 

Correlation coeffi i t 
Test image (Type 2) 

en c 1 No. 1 No. 2 No. 3 
Type 1 0.2431 0.2974 0.3129 

Reference Type 2 0.7124 0.6723 0.6562 
image Type 3 0.303 0.3328 0.3475 

Type 4 0.3636 0.3636 0.3346 

Correlation coeffi ient 
Test image (Type 3) 

c No. 1 No. 2 No. 3 

Type 1 0.5004 0.5298 0.512 

Reference Type 2 0.1838 0.2176 0.1674 
image Type 3 0.8053 0.7932 0.7819 

Type 4 0.4588 0,4588 0.4515 

Correlatio ffi i t 
Test image (Type 4) 

n coe c en No. 1 No. 2 No. 3 
Type 1 0.3423 0.3628 0.3485 

Reference Type 2 0.3232 0.3086 0.2373 
image Type 3 0.4127 0.4645 0.4413 

Type 40 . 9057 0.9057 0.9199 

Type 1 0.9041 F1 0.8715 

Reference Type 2 -0.0889 -0.0498 -0.0797 
image Type 3 0.2964 0.2678 0.3092 

Type 4 0.1157 0.1046 0.1208 

ffi l ti i t C 
Test Image (Type 2) 

orre c en a on coe No. 1 No. 2 No. 3 

Type 1 -0.0927 1-0.0479 1-0.098 

Reference Type 2 0.9909 0.9891 0.9903 
image Type 3 -0.0825 -0.0469 -0.1264 

Type 4 0.2166 0.2099 0.2327 

i l t ffi t 
Test Image (Type 3) 

en ion coe c Corre a No. 1 No. 2 No. 3 
Type 1 0.3469 0.3008 0.2279 

Reference Type 2 -0.1413 -0.1047 -0.1233 
image Type 3 0.9739 0.9453 0.9761 

Type 4 0.2718 0.2607 0.2805 

ff i t 
Test image (Type 4) 

en Correlation coe ic No. 1 No. 2 No. 3 
Type 1 0.2449 0.1292 0.0206 

Reference Type 2 0,1432 0.1481 0.1626 
image Type 3 0.26 0.3313 0.3112 

Type 4 0.975 0.9738 0.9756 

It is noted that in both cases there is correct recognition for each type of signal. 

However, if the values of the correlation coefficients are examined, the CWT method 

returns consistently a higher set of values than does the STFT method; in addition, 

there is better discrimination amongst the different types of signals for the CWT 

method too. 

The superiority of the CWT method is somewhat expected in view of its higher 

resolutions across the scale and time, as mentioned in Section 4.2.3. CWT is 

particularly good at detecting discontinuity in the signal, as is evident by comparing, 

for example, Figures TO and 7.4c, where, in the latter, the abrupt rise in the signal is 

clearly indicated on the CWT image. 
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7.2 Simulation study for the shape-to-life (STL) method 
The STL method is based on the ability of a monitoring system to detect acoustic 

emission events. The detection is governed by a threshold primarily designed to 

eliminate background noise. When the signal of an AE event crosses the threshold, the 

event is said to have been detected. The higher the threshold, the fewer the AE events 

captured, and vice versa. In real application, background noise from one machine may 

be different from the other because their speed, load and other conditions are not the 

same. It is therefore important to ask: How susceptible is the STL method to the 

choice of threshold? This is an issue of reliability and robustness of the method. If 

the method is greatly influenced by the threshold level, not unless some compensation 
is provided, the usefulness of the method will be severely curtailed. To answer this 

question, simulation tests were carried out. 

Simulated AE events were produced which had inter-arrival times following a 

Weibull distribution. From the results of the bearing life test performed on the low- 

speed heavy-duty test rig, Table 6.7, three characteristic life values, 0.5 s, 0.05 s and 

0.025 s were chosen and referred to as `good', `warning' and `faulty' conditions in 

Table 7.2. The guaranteed life to, being rather small compared to the characteristic 

life, was taken to be zero in the simulation. 

Since the shape parameter in Table 6.7 has a value of around 1 for all conditions of the 

bearing, this value was chosen in the simulation. Knowing the shape parameter and 

the characteristic life, one can then estimate the STL's for the three conditions, as 

highlighted in the third column of Table 7.2. 

Table 7.2 Source simulated signals using different Weibull parameters 

Weibull distribution 
STL value 

Signal Bearing 
(Shape-to-life) Life Shape 

Patterns conditions (S-) parameter parameter 

(s) 

Type 1 Good 0.5 1 

Type 2 Warning 0.05 1 

Type 3 Faulty 0.025 1 

7-8 



Chapter 7 Simulation studies Tonphong Kaewkongka 

The amplitude of an AE event, being approximately a damped sinusoidal wave and 
hence a narrow band process, follows a Gaussian distribution with zero mean. 
According to Newland (1993a), the peak amplitude of this signal has a Rayleigh 

distribution whose probability density function (pdf) is given by 

2 
a 

azp2 

P (a) 
ze '0<a<oo Equation7.1 

QY 

where a= the threshold, and 

ßY = the standard deviation of AE signal amplitude. 

Pp(a) Low density for small 

Figure 7.5 Rayleigh distribution of peaks (Newland, 1993a) 

Figure 7.5 is a graphical representation of Equation 7.1. Note that the area to the right 

of the vertical line a= al gives the probability that the peak value exceeds a,. It is also 

clear from Figure 7.5 that the majority of peaks have about the magnitude of ßy. 

An array of twenty inter-arrival times for each of the three conditions was generated 

using the Weibull parameters as given in Table 7.2. The MATLAB program for doing 

this is in Appendix C4. In a similar manner, arrays of peak amplitudes that follow the 

Rayleigh distribution, Equation 7.1, were generated for the three conditions with the 

MATLAB program, Appendix C4. The standard deviation, ay, of the AE signal 

amplitude was taken to be unity. This is equivalent to expressing the signal 
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amplitudes in terms of their standard deviation and so the results of the simulations 
study can be readily applied to all signals with different gains. 

Figures 7.6,7.7 and 7.8 show the peak amplitudes, following the Rayleigh 
distribution, erected at such time instants that their inter-arrival times follow the 
Weibull distribution as explained earlier. These diagrams do not represent the true AE 

signals or events. But they show the features based on which the inter-arrival times 

were extracted. As the threshold level is raised, the number of detectable events 

represented by the peak amplitudes above the threshold is reduced. 

The `good', `warning' and `faulty' condition, STL values were computed for each of 

the twenty simulated signals for a particular threshold. There were four threshold 

settings, as a percentage of the amplitude standard deviation: 0%, 20%, 30% and 40%. 

According to Newland (1993b), the probability that the peak value exceeds a 

threshold a is given by 

P(Peak > a) = e-aZ/2ay2 Equation 7.2 

By virtue of Equation 7.2, a 0% threshold gives a probability of 1, meaning that all 

events are counted. For thresholds that are 20%, 30% and 40% of the amplitude 

standard deviation, the probabilities are respectively 0.980,0.956 and 0.923. Thus, at 

the 40% threshold, just under 8% of the events will go undetected. This is unlikely to 

happen in practice if the threshold is set properly. 

Results of the STL values, as a function of the threshold settings of 20%, 30% and 

40%, computed for the respective good, warning and faulty conditions are shown in 

Tables 7.3,7.4 and 7.5. The life and shape values from which the STL values are 

calculated are also included. 
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Figure 7.8 Example of simulated signal for faulty condition (life = 0.025, shape = 1) 

Table 7.3 STL from simulated signals of GOOD condition with different threshold 
values 

Threshold @ 20% Threshold @ 30% Threshold @ 40% 
Life s Shape STL s' Life (s) Shape STL (s-) I Life (s) Shape STL s'' 

0.7351 0.948 1.290 0.7351 0.948 1.2902 0.7351 0.948 1.290 
0.570 1.280 2.244 0.591 1.2914 2.18 0.5916 1.291 2.18 
0.472 1.198 2.536 0.472 1.198 2.536 0.5035 1.313 2.609 

0.39 1.015 2.558 0.397 1.0159 2.553 0.501 0.99 1.985 
0.506 1.278 2.521 0.506 1.2782 2.521 0.5069 1.2782 2.521 
0.542 1.059 1.953 0.7011 1.050 1.4971 0.701 1.050 1.4971 
0.625 1.101 1.760 0.680 1.056 1.5522 0.680 1.056 1.552 
0.334 0.996 2.9821 0.3342 0.996 2.9821 0.3342 0.996 2.9821 
0.530 1.293 2.4399 0.5302 1.293 2.4399 0.5302 1.293 2.439 

0.41 1.010 2.4241 0.395 1.2062 3.049 0.395 1.206 3.049 
0.635 1.13 1.791 0.635 1.139 1.791 0.635 1.139 1.791 
0.617 0.964 1.5631 0.637 0.988 1.550 0.649 0.943 1.452 
0.5201 0.9251 1.778 0.530 1.0049 1.894 0.530 1.0049 1.894 
0.470 1.1711 2.490 0.4921 1.2329 2.505 0.53 1.188 2.230 
0.546 1.253 2.292 0.546 1.253 2.292 0.5741 1.094 1.906 
0.3644 0.987 2.710 0.364 0.987 2.710 0.364 0.987 2.710 

0.36 0.997 2.710 0.36 0.997 2.710 0.36 0.997 2.710 
0.602 1.059 1.7591 0.667 1.247 1.869 0.713 1.389 1.947 

0.53 1.173 2.181 0.53 1.173 2.181 0.549 1.18 2.153 

0.468 0.9801 2.0901 0.4802 0.93 1.945 0.503 0.888 1.763 
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Table 7.4 STL from simulated signals of WARNING condition with different 
threshold values 

Threshold @ 20% Threshold 0 30% Threshold 0 40% 
Life s Shape STL s' Life s Shape STL Life (a) I Shape STL (a") I 

0.047 0.934 19.70 0.0474 0.965 20.379 0.0 0.9821 19.656 
0.054 1.058 19.2894 0.054 1.058 19.2894 1 0.051 1.0869 1 20.92 
0.046 0.956 20.616 0.046 0.956 20.616 0.056 0.894 15.80 
0.040 1.029 25.570 0,0403 1 1.029 25.570 0.05 1.034 19.516 
0.0411 1.066 25.954 0.041 1.0761 25.6644 0.041 1.0761 25.6644 
0.046 1.036 22.103 0.044 1.063 23.786 0.044 1.063 23.786 
0.057 0.9451 16.496 0.0573 1 0.9451 16.4964 0.057 0.9451 16.4964 
0.053 1.1856 1 22.0191 0.0538 1 1.185 22.0191 0.062 1.1791 18.738 
0.057 0.944 16.452 0.057 0.94 16.452 0.061 0.9181 14.92-54 
0.041 1.191 28.75 0.0414 1.191 28.75 0.0414 1.191 28.75 
0.039 1.06 26.868 0.039 1.06 26.868 0.039 1.06 26.868 
0.052 1.193 22.730 0.052 1.193 22.730 0.052 1.193 22.730 

__q. _05881 
0.952 16.194 0.05 0.994 16.858 0.05 0.994 16.858 

0.044 0.954 21.2 0.052 0.895 16.923 0.052 0.895 16.923 
0.052 0.949 18.074 0.052 0.949 18.074 0.052 0.949 18.074 
0.042 1.11 26.35 0.042 1.11 26.35 0.042 1.11 26.35 
0.056 1.018 18.104 0.071 0.919 12.78 0.071 0.919 12.78 
0.047 1.071 22.431 0.047 1.071 22.431 0.047 1.071 22.431 
0.048 1.111 22.821 0.048 1.111 22.821 0.048 1.111 22.821 
0.056 1.070 18.8821 0.056 1.070 18.8821 0.05671 1.070 18.8821 

Table 7.5 STL from simulated signals of FAULTY condition with different threshold 
values 

Threshold 0 20% Threshold 0 30% Threshold 0 40% 
Life (s) Shape STL s' Life s Sha STL s Life (s) I Sha e STL s' 

0.021 0.9901 45.264 0.025 38.433 0.022 0.986 43.9011 
0.02 1.002 34.544 0.02 

j 

34.544 0.02 1.002 34.544 
0.0221 1.0032 45.451 0.041 19.443 0.038 0.855 21.977 

0.019 1.041 53.28 0.019 53.28 0.028 0.92 32.3941 
0.027 0.9877 36.248 0.027 0.987 36.248 0.027 1.001 36.345 

0.021 1.0644 49.057 0.021 1.064 49.057 0.021 1.064 49.057 
0.025 1.02 39.774 0.028 0.993 35.0971 0.0321 1.006 31.321 
0.022 0.953 41.7781 0.022 0.953 41.7781 0.022 0.953 41.7781 

0.027 1.013 36.431 0.027 1.013 36.431 0.019 1.161 58.953 
0.02 1.007 38.719 0.02 1.007 38.719 0.02 1.007 38.71921 

0.023 0.9244 38.742 0.026 0.888 33.2401 0.026 0.888 33.2401 
0.0271 1.112 41.132 0.0271 1.112 41.132 0.030 1.098 35.936 

0.0261 0.898 34.44 0.0261 0.898 34.44 0.0261 0.898 34.44 
0.024 1.112 44.583 0.025 1.127 43.54 0.025 1.127 43.54 

0.021 1.08 49-5754 0.021 1.092 51.310 0.021 1.092 51.310 

0.023 1.0411 43.842 0.023 1.0411 43.842 0.023 1.0411 43.842 
0.0221 1.003 45.446 0.0221 1.003 45.4464 0.0221 1.003 45.441 
0.02A 1.088 47.272 0.02 1.088 47.272 0.03 0.964 27.581 

0.025 1.114 43.722 0.025 1.114 43.722 0.025 1.114 43.722 

0.024 1.016 41.8581 0.024 1.016 41.8581 0.024 1.016 41.8581 
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Table 7.6 Statistics of STL values of all conditions with different threshold values 
STL (Mean) s' STL (S. D) s" 

Good Warning Fault Good Warning Faulty 
Threshold 020% 2.20403 1.534 42.5586 0.44239 0.51060 0.51526 
Threshold 030% 2.202A 1- 21.1882 4 3.727281 4.23734 4.36968 
hreshold 040% 2.13359 20.4500 9.4958 5.16805 7.60180 01 8.60492 

Table 7.6 gives the means and standard deviations of the STL values. It is noted that 

despite the threshold having an effect on the means STL, it is far smaller than that due 

to the bearing conditions. Consider the possibility of misdiagnosis. There are two 

cases of interest: 1) Missed detection - mistaking `faulty' for `warning'; and 2) False 

alarm - mistaking `warning' for `faulty'. Whilst under certain situations, one case 

may be preferred to the other as being the lesser of the two evils, the evaluation, 

presented below, of the probability that such cases do happen does not make any 

distinction between them. 

An inspection of Table 7.6 shows that the two cases that can cause problem of 

misdiagnosis are the warning STL of 21.5342 and the faulty STL of 39.49584, as 

circled in the table. A test of significance is performed based on the procedure 

detailed by Moroney (1951). Denoting the faulty condition at the 40% threshold by 

the subscript 1 and the warning condition at the 20% threshold the subscript 2, then 

N1=20, µ, = 39.4958, ß, = 8.6049, and a12 = 74.0446 

N2=20, µ2 = 21.5342, a2 = 0.5106, and a22 = 0.2607 

where N= sample size, 

µ= sample mean 

ß= standard deviation (S. D), and 

o-2= variance 

The difference between the sample mean is µt-92 = 17.9616 

and the corresponding variance of the difference is 

Var(µi-µ2) = Qi2/Ni + a22/N2 = 3.7152 
from which the standard error of the difference is 

Std. Error of Diff. = 1.9275 

since it is the square root of the variance of the difference. 
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The observed difference between the sample mean of STL, 17.9616, is highly 

significant, being 17.9616/1.9275 = 9.32 times its standard error and so the probability 

of misdiagnosis (mistaking warning for faulty and vice versa) is very remote indeed. 

Figure 7.9 shows a bar graph of the mean STL values with their associated error bars 

of ±1S. D for all three conditions with different threshold settings. It can be seen that, 

as the threshold setting increases, the mean STL falls slightly. The reason is that as 

the threshold is raised, due to the fact that some events are missed, the inter-arrival 

times on average become longer. This in turn means that the characteristic life has 

become longer, resulting in a smaller STL (STL = shape parameter/characteristic life) 

since the value of the shape parameter remains roughly at unity. 
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Figure 7.9 Bar plots of mean STL showing ±1 SD error bars at different threshold 
values 
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In conclusion from this simulation study, the ability of the STL method to 
discriminate between the warning and faulty condition is not affected by the choice of 

threshold settings up to 40% of the standard deviation of the amplitude of AE signals. 
The 40% threshold represents just under 8% of the AE events not being detected, an 

unlikely situation if the threshold is set judiciously. 
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8 Proposed monitoring scheme using the STL method 
Section 6.4 has shown that there are three factors that can affect the values of STL and 
43: 

1.. Speed 

2. Load 

3. Wear 
In order to use the STL method for condition monitoring of bearings, an important 

question is how the effects of speed and load can be compensated. This chapter 

attempts to answer this question. 

8.1 Establishing the initial STL value for a good bearing 
With a new bearing, the initial values for the STL and L63 are obtained. These will 

serve as a reference for monitoring the bearing condition because, from experiments, 

it has been established that as the bearing wears progressively, it causes the: 

1. STL to increase; and 
2. L63 to decrease 

such that they follow a hyperbolic relation (Figure 6.20). 

8.2 Speed compensation for STL and L63 
When the rotating speed of a bearing changes, both STL and 43 will change (Figure 

6.23). In particular, as shown in Section 6.4.4,1,63 is inversely proportional to rotating 

speed. For example, if the rotating speed is doubled, its corresponding L63 is halved. 

Using Equation (6.3), 

STL = 0.7371L 
63-' .' 

044 

a new value for STL can be produced, adjusted to a reference rotating speed. The 

reference speed chosen can be any speed but logically it is the typical running speed 

for the bearing in question. 
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8.3 Load compensation for STL and L63 
The effect of a greater bearing load is to increase the STL and decrease the L63. This 

can be seen from Figure 6.13 and the part of the curve in Figure 6.20 with values of 
STL less than about 25 s"1. If the load acting on the bearing is measurable, then 

adjustment to STL and L63 can be made in the same way as speed compensation is 

made using the fact that STL and 43 are hyperbolically related. However, more often 
than not, knowledge of bearing load is not as easy to gain as of speed and so a 
different method has to be found. 

8.4 Setting of STL threshold for bearing condition alert 
The choice of STL threshold level is governed by past experience of the same or 

similar bearings and by the criticality of the process in which the bearing is a 

component. The more critical the process, the lower the threshold should be set. 

It has been observed that bearing loading below the bearing's load carrying capacity 

produces a rather small STL value, typically not more than 8 s"1. The bearing that 

produces Figure 6.14 has a load carrying capacity of 59 bars and the bearing in Figure 

6.21 a capacity of 137 bars. This low value of 8 s'', compared to the range of increase 

in STL of (59-19) = 40 s'1 due to the effect of bearing wear alone for the bearing 

subjected to a constant load of 300 bars (Figure 6.17), is only a fifth. Another piece of 

evidence can be found from Figure 6.10 and Table 6.4 for a bearing running under no 

load. In this case, the ratio of STL of balanced shaft to defective bearing is 5.2: 70.9 = 

1: 13.6. It is remembered that a defective bearing condition means a 1-mm diameter 

small indentation produced with an electric-arc scriber. It therefore seems to suggest 

that lower bearing loading makes the STL value even more sensitive to bearing wear. 

In summary, bearing wear exerts a much stronger influence on STL than does the load 

as long as the latter is kept below the bearing's recommended load carrying capacity. 

Since it is not good practice to drive a bearing beyond its recommended load and 

hence this situation will seldom be encountered on a properly designed machine or 

process, load compensation for STL and L can often be safely ignored. 
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From the examples given above for the two extremes of loading conditions - at 300 
bars which is way above the bearing's load carrying capacity and at 0 bar, a guideline 

on setting an alarm threshold for STL can be formulated. The rule is that the alarm 
level should be set no higher than five times the initial STL value of the bearing. 

Evidently, this is a somewhat conservative recommendation and it should be reviewed 

and updated in light of further experimental results obtained from the field. 
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9 Conclusions and future work 
9.1 Validity of systems approach 

Tonphong Kaewkongka 

A systems approach has been adopted in the development of a condition monitoring 
system for rotating machines. For various operating conditions of changing loads and 
speeds, the particular cases studied are defined as follows: 

1. balanced rotating shaft; 
2. unbalanced rotating shaft; 
3. misalignment of bearing supports; and 
4. artificial and natural wear on bearings 

The monitoring system consists of two complementary sensing methods: vibration and 
acoustic emission (AE). Employing both methods based on the different physical 
principles, the dynamic range of shaft rotating speeds in monitoring can be increased 

significantly. In addition, a multi-sensor system increases fault tolerance and hence its 

reliability. This is because if one sensor fails to operate or perform at its best, the 

other can still provide useful information. 

Figure 9.1 provides a summary of the proposed multi-sensor system for bearing 

condition monitoring in block diagram form. This diagram is similar to the one as 

shown in Figure 4.1, but additional information on the implementation and the success 

rates obtained from experiments are included. The following sections describe the 
flow of the block diagram. 

9.1.1 Vibration monitoring using CWT and BPNN 

Vibration monitoring has been proven to be an effective technique for monitoring 

rotating machines running at high speed by various researchers. The Continuous 

Wavelet Transform (CWT), joint time- and frequency- domain, has been used 

successfully in this research to provide a greater discrimination than the short time 
Fourier Transform (STFT) between good (balanced), unbalanced, misaligned and 
defective bearing conditions. This work is based on the transformation of an 

acceleration signal using CWT into a three-dimensional image map, which consists of 

time, frequency (scale) and signal intensity axes. Then classification of the various 

conditions is performed using a back-propagation neural network (BPNN). Results 

show that this method is effective, gaining a recognition rate of 90 %l for detection 

and diagnosis of the different failures that may occur in rotating machines running at 
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the high speed of 20 rev/sec. However, if the machine operates at low speed, 

vibrations generated can barely be detected resulting in a poor signal-to-noise ratio, 
thus making the signal difficult to be interpreted. 

Multi-sensor bearing 
monitoring system 

Low speed 
(down to 0.23 rev/sec) 

AE 
monitoring 

Shape-to-life 
(STL) value 

- -------- ------ -----i 

Obtaining 
distribution of 
inter-arrival 

times of 
successive AE 
events from 
machine for 

about 30 seconds 

'- -------- -------- ----' 

--'----- -------- ---- i 

Trend of STL 
values indicates 

the machine 
condition 

------------------- ----= 

Traditional AE 
parameters 

Finding centres in 
3D space of 

different machine 
conditions from 
collected AE 

parameters from 
machine for 

about 30 seconds a 

--------- ---- 

---------- -------- ----- 

Minimum 
Euclidean 

distance indicates 
maximum 

similarity with a 
recognition rate of 

97% 

-------------------- ---- - 

High speed 
(up to 20 rev/sec) 

Vibration 
monitoring 

Joint time- and 
frequency- domain 

- -------- --- --- ------ 
Converting of 

vibration signals 
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Vibration can also be significantly influenced by the dynamics of machine structure 

and it tends to be more easily detected when it is close to or at the resonant 
frequencies of the structure. 

On the other hand, the usefulness of an AE technique extends well into low rotating 
speed. The technique essentially strives to detect material deformation arising from 

crack initiation and growth or from the friction process, all being independent of the 

machine structure dynamics because of the different operating frequencies. 

Two AE methods have been explored in detail in this research: 1) the fuzzy c-mean 

clustering technique applied to traditional AE parameters, and 2) the STL method. 

9.1.2 AE monitoring using fuzzy C-mean 
Three traditional AE parameters, peak amplitude, AE event duration and energy, have 

been demonstrated to be effective in the fuzzy c-mean clustering technique as 
signatures for different machine operating conditions. The fuzzy c-mean is used to 

provide a centre of a cluster corresponding to each machine condition. Then the 

minimum distance classifier is performed to calculate the Euclidean distance between 

the unknown and the centre of each machine condition, thus making it possible to 

assign the unknown to the nearest cluster. The four different machine conditions are 

the balanced shaft, the unbalanced shaft, the misaligned shaft and the defective 

bearing at the high rotating speed of 20 rev/sec. The results show that centres from all 

conditions are distinctively clustered (Figure 6.6) with a recognition rate of 97 %. 

Moreover, the technique has also demonstrated its capability to discriminate the 

different bearing lubrication conditions. In this case, AE parameters were collected, at 

Corus, Middlesborough, on bearings running at 0.5 rev/min with two types of grease, 

clean and contaminated. Results show that both lubrication conditions have been 

classified correctly using the fuzzy-c mean technique (Figure 6.8). 

9.1.3 AE monitoring using the novel STL method 
An innovative method, known as the STL method, has been developed in this project 

for monitoring the condition of rotating machines. It is based on the statistical 

modelling of inter-arrival times of AE events with the Weibull distribution. Once the 
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collection of inter-arrival times is made, the STL can then be calculated as the ratio 
between the estimated shape and characteristic life parameters (Equation 4.15) which 
follows Weibull distribution. The trend of STL can be used to indicate machine status 

as progressive bearing wear leading to its eventual failure. 

The STL method was studied thoroughly via experimental and simulation work. 
Experiments were conducted in order to verify the method in terms of its sensitivity 

and discrimination capability on different machine conditions such as rotating speed 

and loading. 

At the high speed of 20 rev/sec, the STL method can clearly differentiate between the 
four different machine conditions: balanced, unbalanced, misaligned and defective 

bearing. The `balanced' condition yields the minimum STL values, whilst the other 

conditions give greater STL values (Figure 6.9). 

At the lower speed of 4.7 rev/sec, the STL values were measured over time when the 

bearing was subjected to stepwise loading increments from below the recommended 
bearing load to overload (with a high capacity hydraulic ram). The STL values 

obtained at normal load were at minimum and remained constant with time; whereas 

at overload the STL values started at a higher level and increased monotonically with 

time (Figure 6.12). 

A bearing life test was performed at the low speed of 0.23 rev/sec. The bearing was 

run from new to failure. After the initial part of the test under normal bearing loading, 

the test was accelerated by intentionally subjecting the bearing to a load of 300 bars, 

above the recommended 137 bars. The results show that the AE method using the 

STL is far superior to the vibration method using the VRMS of acceleration. The STL 

values are far more sensitive to progressive wear as well as imminent bearing failure 

than does the acceleration VRMS (Figure 6.17 and Figure 6.18). 

The rotating speed and inter-arrival time are related by the empirical Equation 6.3, as 

repeated below: 

STL = 0.7371L13-''10" 
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9.2 Summary of findings 
9.2.1 Recognition of a visualisation of mechanical vibration 
Condition monitoring of bearing conditions via visualisation of mechanical vibration 
using transformed CWT image has been explored in this study (Section 6.1.2). 
Binarising, an image processing technique, was employed to convert the colour-map 
image into a black and white image, with the advantage that computational effort for 

classification becomes much simpler. An artificial back-propagation neural network 
(BPNN) was used as machine classifier. The results show that the proposed technique 
is able to distinguish different machine conditions with a recognition rate of 90 % 
(Table 6.1). 

9.2.2 Discrimination capability of CWT and STFT images 
From the simulation study in joint time- and frequency- domain (Section 7.1), it has 

been shown that using Continuous Wavelet Transform (CWT) images for 

classification is superior to Short Time Fourier Transform (STFT) images in its higher 

correlation coefficient and discrimination capability (Table 7.1). This is because CWT 
images have higher resolutions across the scale and time axes (Section 4.2.3). 

9.2.3 Utilising the trigger for acquiring vibration signal 
The main problem with bearing condition monitoring using visualisation of vibration 
signal is that two transformed images cannot be compared unless both signals start at 
the same position in the time domain. To overcome this problem, it is important to 

assure that all signal recordings start at the same before they are converted into image 

maps. The trigger, produced by a proximity sensor, was used to facilitate all vibration 

signals to be acquired at the same shaft rotating reference point. 

9.2.4 Traditional AE parameters for machine classification 
Three traditional AE parameters: AE event duration, peak amplitude and energy have 

been found to be effective signatures for representing different machine conditions: 
balanced, unbalanced, misaligned and defective bearing (Section 6.2.1). The fuzzy C- 

mean was applied to the three AE traditional parameters, resulting in representing 
centre clusters as for machine classification (Figure 6.6). 
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9.2.5 Lubrication conditions and traditional AE parameters 
From the experiment (Section 6.3.1), the relationship between the three traditional AE 

parameters and lubrication conditions has been found as shown in Figure 6.8. It is 

concluded that the two lubrication conditions - clean grease and contaminated grease - 
can be clearly distinguished from each other. 

9.2.6 Novel STL method for bearing condition monitoring 
The STL and L63 values have been explored in this project and demonstrated as 

sensitive condition monitoring AE parameters. The STL method is based on the 

modelling of inter-arrival times of AE events with Weibull distribution. The STL is 

defined as the ratio of two estimated Weibull parameters, shape to characteristic life 

(Equation 4.15). The I, 63 can be defined as the summation of the estimated guaranteed 
life and characteristic life (Equation 4.16). 

9.2.7 Effect of load on STL 
For the two different bearings studied in the experiment, it has been found that the 

STL values remain more or less level if the bearing is subjected to the applied load 

within basic dynamic load rating. When the applied load becomes greater, the STL is 

increased whilst the L63 is decreased as can be seen in Figure 6.13 and the part of the 

curve in Figure 6.20. 

9.2.8 Effect of speed on STL 
The change in speed of rotating machines has been found to affect the STL values. 

This is because the rotating speeds and inter-arrival times are approximately inversely 

related. The relationship between speed variations and STL values are as shown in 

Figure 6.23. The effect of speed variations on STL can be compensated using the 

hyperbolic relationship between STL and 43 (Section 9.2.10). 

9.2.9 Effect of wear on STL 
Similar to load and speed, STL has been found to be influenced by wear. From 

simulated bearing wear test (Section 6.4.1.2), a mere 1 mm indentation on the outer 

race bearing yields an STL value 13.6 times that from a good bearing (Figure 6.9). 

From natural progressive bearing wear test (Section 6.4.3.2), it is clear that the 

progression of wear results in a monotonically increasing trend of STL. When the 
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bearing failed to operate, the STL was increased to about 30 times the value for the 

initial bearing condition (Figure 6.17). In order to set the threshold for STL as bearing 

condition alert, the choice of threshold level is governed by the rule that the alarm 
level should be set no higher than five times the initial STL value of the bearing 

(Section 8.4). 

9.2.10 Hyperbolic relationship between STL and L63 
It has been found from both simulation and empirical study that the rotating speed and 
inter-arrival time between AE events are inversely proportional to each other, 

resulting in the hyperbolic relationship between STL and 43 (Figure 6.27). This 

hyperbolic curve provides the basis for adjusting STL and L63 for speed compensation 

(Section 8.2) and load compensation (Section 8.3) 

9.2.11 Effect of threshold for AE detection on STL 
From simulation study of STL (Section 7.2), the STL method is insensitive to the 

variation of threshold values, which lie in the range from 20 %, 30 % and 40 % of the 

signal amplitude standard deviation. The probability of misdiagnosis was calculated 

using the test of significance (Table 7.6). The result shows that the probability of 

misdiagnosis is very remote indeed. 

9.2.12 Limitation of VRs from vibration for low speed bearing monitoring 
As can be seen from the progressive bearing wear test (Section 6.4.3), the traditional 

vibration VRMS has been found to be insensitive to a bearing's incipient failure at the 

low speed of 0.23 rev/sec. The level of VRMS only rose after the bearing had failed to 

operate (Figure 6.18), which is rather pointless for condition monitoring. 

9.2.13 Cyclical shear stress causing shaft failure 
From the progressive bearing wear test (Section 6.4.3), it was seen that when the 

bearing had seized up, the shaft broke at the plane next to the bearing (Figure 6.16). 

The shaft failure has the characteristic of fatigue failure. This fatigue failure is a result 

of the cyclical shear stress created by the excessive radially downward-acting load 

applied to the shaft using the hydraulic ram. 
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9.3 Recommendation for future work 
The work on bearing condition monitoring and diagnosis based on AE and vibration 
techniques as an attempt for systems approach has been demonstrated throughout this 
thesis. Experimental and simulation work has been carried out and the results show 
the effectiveness of the system in fault detection and identification. The thesis has 

addressed all major issues concerning the creation of a monitoring system using both 

acceleration and AE signals. However, there are still some related questions that 

should be investigated before a truly robust monitoring system can be built. 

9.3.1 Failure types 
The types of abnormal conditions for rotodynamic machines investigated are rather 
limited. Not only can bearings be found on such machines, gearboxes are also a very 

common component. Gearbox problems, including cracked or missing gear teeth, 

should be a useful area of study. In order to add new failure types into an artificial 
neural network or a minimum distance classifier, there is need for training data. 

9.3.2 Utilisation of other traditional AE parameters 
The current work on traditional AE parameters concerns four different bearing 

conditions: balanced (normal), unbalanced, misaligned and defective bearing. In this 

case, it is found that the three AE parameters of event duration, peak amplitude and 
AE energy are good discriminatory features. However, when other failure types are 

considered, it is likely that other traditional AE parameters (such as rise time and 

ringdown count) may be more appropriate. Consequently further investigation should 
be conducted to explore the possibility. 

9.3.3 Natural progressive bearing wear test with realistic load using STL 
In the interest of time, the progressive bearing wear test was an accelerated test in that 

the applied load was set intentionally high. However, natural bearing wear test under 

realistic loading conditions should be performed. This will establish more accurately 

the STL warning threshold level. 
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9.3.4 Automatic threshold setting for AE detection 
The STL method is based on the detection of AE events during the machine operation. 
In real applications, the huge variety of rotating machines with vastly different 

operating conditions poses a great challenge to the setting of AE detection threshold, 

made even more difficult by the presence of the ubiquitous background noise. Whilst 

the simulation study (Section 7.2) has answered the fundamental question from a 
theoretical viewpoint, it is prudent to verify this by empirical study. . 

9.3.5 Implementation of STL method as portable device 

The implementation of STL method as a portable device, which can be used in 
industry, should be developed in the future. This is because in industry, there are 

needs for condition monitoring devices, which are mobile on the shop floor. With 

today's digital signal processing technology, it is possible to develop such a device 

using the principle of the STL method. 
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Bearing characteristic defect frequencies 
Characteristic defect frequencies are effectively the roller passing frequencies for 

defect on different locations of a bearing. Roller passing frequencies can be calculated 
from the geometry and speed of a bearing (Collacott, 1977; Charles, 1998). Figure Al 

illustrates a cross sectional view of a ball bearing in which the inner race, a ball and 

the outer are shown. The ball-passing frequencies can be calculated as the equations 

shown below. 

B 
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Rolling element 

PD 

Figure A-1 Cross-sectional view of a rolling element bearing 
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where for = characteristic defect frequency for defect at outer race 
fir = characteristic defect frequency for defect at inner race 
fro = characteristic defect frequency for defect at rolling element 
fc = characteristic defect frequency for defect at cage 
N= rotational speed (rev/min) 

BD = rolling element diameter 

PD = bearing pitch diameter 

ß= contact angle between raceway and rolling element (degree) 

n= number of rolling elements 
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no Description Dimension Material uantit 
Su rted frame 50x50x 192.5 AL 2 

% 

Cover frame 50x 192 AL 1 
in s x92x82 AL 1 

Hydraulic supported fixture 90x90x10 AL 1 

Pro'ect name: Modified hydraulic loading system 
B: Ton hon Kaewkongka Supervisor: Dr YH Joe Au 
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Computer Programs 
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Cl: MATLAB source code for fuzzy C-mean clustering technique C-2 

C2: MATLAB source code for minimum distance classification C-3 

C3: MATLAB source code for simulated signal for comparison 
between CWT and STFT C-4 

C4: MATLAB source code for simulated signal for different inter-arrival 

times of successive AE events followed Weibull distribution C-5 

C5: MATHCAD source code for 3-parameters estimation 

of Weibull distribution C-6 
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Cl: MATLAB source code for fuzzy C-mean clustering technique 

clear all 
clc 
load data. dat 
fcmdata = data; 

figure, plot3(fcmdata(:, 1), fcmdata(:, 2), fcmdata(:, 3), '. ', 'MarkerSize', 15) 
xlabel('Event duration') 
ylabe] ('Energy') 
zlabel('Peak amplitude') 
figure 

[center, U, obj_fcn] = fcm(fcmdata, 4); 
maxU = max(U); 
index! = find(U(1, maxU); 
index2 = find(U(2, maxU); 
index3 = find(U(3, maxU); 
index4 = find(U(4, maxU); 
line(fcmdata(index1,1), fcmdata(index1,2), fcmdata(index1,3), 'linestyle',... 
'none', 'marker', 'o', 'color', 'g'); 
line(fcmdata(index2, I), fcmdata(index2,2), fcmdata(index2,3), 'linestyle',... 
'none', 'marker', 'x', 'color', 'r'); 
line(fcmdata(index3,1), fcmdata(index3,2), fcmdata(index3,3), 'Iinestyle',... 
'none', 'marker', '+'; color', 'm'); 
line(fcmdata(index4,1), fcmdata(index4,2), fcmdata(index4,3), 'linestyle',... 
'none', 'marker', '*', 'color', 'b'); 

hold on 
legend('Balanced shaft', 'Misaligned shaft', 'Unbalanced shaft', 'Defective bearing', 4); 

title('Clustering of balanced, unbalanced, misaligned and defective bearing'); 

xlabel('Event duration') 
ylabel('Energy') 
zlabel('Peak amplitude') 
plot3(center(1,1), center(1,2), center(1,3), 'kx', 'markersize', 15, 'Li neW idth', 2) 

plot3(center(2,1), center(2,2), center(2,3), 'ko', 'markersize', 15, 'LineWidth', 2) 

plot3(center(3,1), center(3,2), center(3,3), 'ks', 'markersize', 15, 'Li neWidth', 2) 

plot3 (center(4,1), center(4,2), center(4,3), 'kd', 'markersize', 15, 'Line Width', 2) 
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C2: MATLAB source code for minimum distance classification 

Minimum distance classification 
% -- > Calculating Euclidean distance 
% For user: 
% --> vary test# as a testing set 
% --> vary ref(#,.. ) as its condition 
% when ref(1, n) Balanced 
% ref(2, n) Misaligned 
% ref(3, n) Unbalanced 
% ref(4, n) Defective bearing 

for i=1: 4, 
forj = 1: 4, 

result(i, j)=O; 
end 

end 

fori = 1: 4, 
forj = 1: 4, 

result(i, j) = sgrt((test(j, 1)-ref(i, 1))^2+(test(j, 2)-ref(i, 2))^2+(test(j, 3)-ref(i, 3))^2); 

j= j+l; 
end 
i= i+l; 

end 

out = result' 

for i=1: 4, 
forj = 1: 4, 

out2(i, j) = out(i, j)/max(out(:, j)); 
j=j+1; 

end 
i=i+1; 

end 
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C3: MATLAB source code for simulated signal for comparison between CWT 
and STFT 

The source codes of the four types of waveform created in Matlab are shown below: 
Type 1 Waveform: 
t=1: 1: 350; 
s= sin(100. *linspace(O, pi, 350)) + 0.2*randn(1,350); 
x= exp(-0.01 *t); 
Y (s. *x); 
Signal = [zeros(1,50) y]; 
figure, plot(Signal); 

Type 2 Waveform: 
t=1: 1: 350; 
s= sin(200. *Iinspace(0, pi, 350)) + 0.2*randn(1,350); 
x= exp(-0.02*t); 
y= (s. *x); 
s2 = 0.2. *sin(10. *linspace(O, pi, 250)) + 0.08*rand(1,250); 
s3 = 0.15. *sin(5. *linspace(O, pi, 250))+ 0.05*randn(1,250); 
s_=s2+ s3; 
ss = [zeros(1,150) s_]; 
Sig = [zeros(1,50) y]; 
Signal = Sig + ss; 
figure, plot(Signal); 

Type 3 Waveform: 
t=1: 1: 350; 
x= exp(-0.01 *t); 
sl = 0.8. *sin(30. *linspace(0, pi, 350)) + 0.2*randn(1,350); 
s2 = 0.5. *sin(50. *Iinspace(0, pi, 350))+ 0.2*randn(1,350); 
s_ = sl+s2; 
s= (X. *s_); 
ss = [zeros(1,50) s]; 
Signal = ss; 
figure, plot(Signal); 

Type 4 Waveform: 
t1=1: 1: 100; 
sl = sin(5. *Iinspace(0, pi, 100)) + 0.2*randn(1,100); 
xl = exp(-0.06*t1); 
yl = 1.2*(sl. *xl); 
s2 = sin(8. *linspace(O, pi, 150)) + 0.2*randn(1,150); 
t2 = 1: 1: 150; 
x2 = exp(-0.09*t2); 
y2 = 1.2*(s2. *x2); 
s= [zeros(1,50) yl zeros(1,100) y2]; 
figure, plot(s); 
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C4: MATLAB source code for simulated signal for different inter-arrival times 

of successive AE events followed Weibull distribution 

clear all; 

% Generating different times of arrival followed Weibull distribution 

% Define parameters: shape and characteristic life 

shape = 1; 

life = 0.5 

% Good condition -> life = 0.5 
% Warning condition -> life = 0.05 
% Faulty condition -> life = 0.025 

in = weibmd(life, shape, [1 50]); 
in2 = sort(in)'; 
in3 = cumsum(in2); 
t_in = cumsum(in)'; 
t =linspace(0, in3(length(in3)), 1000); 
delta = t(2)-t(1); 
t_start = t_in; 

for i=1: 100; 
temp(i) = 0; 

end 

N =length(t_start); 
M =length(t); 
tl = linspace(O, in3(length(in3))/100,1000); 

% Generating distribution of peak follows Rayleigh distribution 
% with standard deviation =1 

sigma_y = 1; 
a= raylmd(sigma_y, 1, N); 
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C5: MATHCAD source code for 3-parameters estimation of Weibull distribution 

TC := input file 

N: = rows(TC) N= 149 

Ne: =TC(N_I), I Ne= 149 

TO) 

Ne 

R: =1-F 

The graphs of F and R are plotted below as: 

i :=0.. rows (TC) -1 

Iv 

dolooo 

F; 

"0" 0.5 
R; 

000 

J). omr- 0 

, o. oi, 

`ýý 
ý 

0.2 0.4 0.6 U. ä 
(TC(O))i 

R(t)=exp 
-to 

JI [-(1 lß 

n 

where 1 is the scale parameter and (3 the shape parameter. 

rl :=30 :=1 to :=0 

1.2 
J. 2, 
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ß2 
rows(TC) -I 

(TCýOýý. 
- to 

R- exp 0 
ýl 

j=o 

R= Minerr (ll to) 

to 

ii = 0.209 0=1.165 

t: =0,0.1.. 3.5 

R; 
XXX 0.5 
Rel(t) 

t-to 
Rel(t) := ex - 

j, 1 

Tl 
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Abstract 
This paper describes a novel method, Figure 1, of 

rotodynamic machine condition monitoring and 
recognition using wavelet and neural network. Since in 
the real machinery environment, there can be transients or 
abrupt changes in the measured signal, traditional 
analyses in either time- or frequency-domain are not 
always suitable for revealing machine faults. The 
proposed approach is to utilise the joint time-frequency 
domain method by applying wavelet transform to the 
measured signal. The transformed signals are represented 
as grey-scale images, simplified to binary images, which 
may contain characteristic features relating to the various 
types of faults. The act of binarising the image has the 
effect of removing the broadband noise from the signal 
before the final stage of classification is performed using 
a back-propagation neural network. 

I. Introduction 
With ever growing competition in industry, the need to 

automate machine condition monitoring has become more 
and more acute. A reliable condition monitoring system 
will significantly reduce failure and unplanned 
maintenance, and hence the huge attendant cost due to 
machine downtime. Often, the system is used with an 
operator who assists in the interpretation of the machine 
signals for early failure detection and fault diagnosis. 

Nowadays there are two basic methods available for 
bearing maintenance: statistical bearing life estimation, 
and bearing condition monitoring and diagnostics [1]. 
Statistical bearing life estimation predicts the fatigue life 
of a bearing. However, its application has many 
limitations. Since unusual operating conditions can 
severely decrease a bearing's life, bearing life estimates 
become unreliable leading to unexpected breakdown. On 
the other hand, bearing condition and diagnostics can be a 
very reliable method because it gives up-to-date 
information about the condition of a bearing. The more 
popular techniques used for bearing condition monitoring 
are vibration and acoustic emission analyses. 

This paper is organized as follows. After the 
introduction in Section 1, time-domain and frequency- 
domain methods are briefly reviewed in Section 2, 
followed by a description of the methodology of the 
proposed method in Section 3. The experiments are 
presented in Section 4 with results and discussions in 
Section 5; finally, conclusions are given in Section 6. 

Feature 
Wavelet extraction 

Transform using 3-D 
Transformed 

image 

output 

sensor 
Bearing 
condition 

database 

Figure 1 The proposed condition monitoring of rotodynamic 
machinery block diagram. 

2. Previous Work 
Currently, there are many conventional methods for 

identifying and diagnosing bearing faults. Based on the 
representation of a signal during its processing, a method can 
be referred to as time-domain or frequency-domain. 

Time domain methods are usually sensitive to impulsive 

oscillations. Characteristics arising from the defects being 

monitored, also known as features, of the raw time signal can 
be extracted from a machine. Typical features are the r. m. s. 
value, peak value [2], crest factor, kurtosis [3] and the shape, 
size and orientation of a bearing locus derived from orbital 
analysis. These features, once established to be related to the 
defect being monitored, often yield satisfactory results. 
However, if the signal generation mechanism is complex, time- 
domain methods are often not refined enough. 

Frequency domain methods assume that the signal being 

analyzed have components that are periodic. Thus, a defect 

produces a periodic signal at the characteristic defect 
frequency. Examples of frequency-domain methods include 

spectrum analysis, cepstrum analysis, high frequency 

resonance technique (HFRT) [4] and holospectrum [5]. 
Among them, spectrum analysis seems to. dominate the fault 
diagnosis scene. The main limitation of spectrum analysis is 
that although a local transient will contribute towards the 

overall frequency spectrum, its location on the time axis is lost. 
There is no way of knowing whether a particular frequency 

component exists throughout the life of the time signal or 
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Figure 2 Acceleration signals from the three bearing conditions 

during just one or a few selected periods. Unfortunately, 
many monitoring situations demand knowledge of not just 
the frequency composition of a transient but also its time 
of occurrence. When a rolling element passes a localized 
defect in a bearing, it generates a transient in the 
measured signal, as does the contact of a damaged tooth 
with other teeth in a gearbox. A machine with rapidly 
varying speed is another example of transient events. 

Continuous Wavelet Transform (CWT), a joint time- 
and frequency-domain technique, is proposed in this 
paper. CWT is capable of indicating abrupt changes in 
machine conditions [6]. In addition, it can give a better 
representation of the signal than conventional methods, 
providing fuller information on the machine operating 
condition. CWT is used here to produce a 3-D image 
from the measured signal. Features are then extracted from the image to be used as inputs to a back propagation 
neural network, a tool for assessing the discriminatory 
power of CWT. 

3. Methodology 
The proposed method of machine bearing faults 

recognition, Figure 1, using continuous wavelet transform 
and back propagation neural network consists of three 
steps. 

Step I Applying continuous wavelet transform 
Continuous wavelet transform of a time-signal f(t) is 

defined by [71 

F, (a, b) =1 
if 

(t)'YI t-b ! dt 

The quantity Wab W=I qx(t 
b) 

given in the 

definition is referred to as the wavelet function. The 
position variable b shifts the wavelet function along the 
time axis t of Rt) while the scale variable a expands or 
compresses the wavelet function Y' b(t). Compared to 
Fourier transform, the scale variable a is equivalent to the 

function and the time-signal f(t) at the scale a and 
position b of 'gab(t). 

Figure 2 shows the acceleration signals obtained from the three 
machine conditions: normal bearing, unbalanced bearing and 
misaligned bearing. CWT was applied to these signals to 
calculate the coefficients F, (a, b), which were then displayed 
as a grey-scale map with the vertical and horizontal axes 
denoting the scale a and position b, which is equivalent to time 
t, as shown in Figure 3 for the three different conditions. 
Although there is general similarity between them, subtle 
differences are still noticeable. 

300 350 400 

(a) 

DTh (b) 

(c) 
Figure 3 Transformed images of (a) normal, (b) 
unbalanced and (c) misaligned bearing 

Step 2 Preprocessing 
Image preprocessing was performed using the method of 

thresholding or binarising [8]. It was applied to the grey-scale 
CWT image to convert the colour of each pixel into either 
black or white. A binary image has the obvious advantage that 

when classification using neural networks is done, the 
computation time will be much shortened, as multiplication 
involving a0 or 1 is much easier to perform. Figures 4a and 
4b show a sample image before and after binarising. 
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(b) 
Figure 4 The original image (a) and its 

binary image (b) 

Step 3 Classifying 
The back propagation neural network [9], with the 

architecture as shown in Figure 5, was used to classify bearing faults. The network has an input layer, a hidden 
layer and an output layer. The values of the pixels 
composing the CWT binary image provided the inputs to 
the neural network; and 3 nodes, representing the bearing 
conditions of normal, unbalanced and misaligned, were 
available as outputs. Through a process of trial and error based on minimizing the mean square error (MSE), the 
choice of 5 nodes in the hidden layer was determined to 
be optimal. 

A 

Figure 5 BPNN architecture 

Input layer 

idden layer 

tputlayer 

The value NET appearing at a node in a layer is computed by summing the products of all inputs leading to that node 
with their corresponding weights plus a bias. This value 
then forms the argument of a transfer function f that 
produces an output for the node. In vector notation, given 
the input vector X;, the weight vector W,, and the bias 
vector 0,, the output is given by 

OUT = f(NET)= f(f X; W; +O ) 
i 

The transfer function f used is the commonly used 
sigmoid function defined as 

1 f __ l+e(-NET) 

The sigmoid function acts as an output gate that can be opened 
(0) or closed (1). The computing process as described is 
schematically shown in Figure 6. 

Bias (A; ) 

xi -Wi 

X2 W2 I Y- I-1-i f 

wn Sigmoid 
Xn function 

Figure 6 Schematic process of BPNN 

The back propagation algorithm is used to obtain the 
correct weights and biases in a training process. A set of 
training data with known outputs is fed into the network. The 
weights are initially set to random values; the biases are fixed 
at unity. The input data are presented to the network; outputs 
are calculated and compared with the desired outputs. The 
normalized mean square error (MSE) is then calculated and 
propagated back to adjust the weights on the neural 
connection. This process is repeated for a large number of 
epochs until the error is relatively low and acceptable which 
allows the network to classify the test set correctly. 

4. Experimental verification of the proposed method 

Experiments were conducted on a rotodynamic test rig, 
Figure 7, consisting of a rotating shaft driven by a DC motor at 
20 rev/sec. The shaft, supported in two bearings, carried 4 
discs with attachable masses in order to produce rotating 
unbalance. The two bearings were an FAG 20205K. T. C3 self- 
aligning single row taper-bore bearing and an FAG 6304 ball 
bearing. Radial vibration at the two bearings was measured 
using PCB 333A12 accelerometers, one on top of the non- 

a44 

Figure 7 Test rig set-up 
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drive end housing while the other on top of the drive-end 
housing labeled as #1 and #2 respectively in Figure 7. The 
acceleration signals, having been low-pass filtered at 1 
kHz for anti-aliasing, were sampled into a Schlumberger 
FFf analyser. 

Measurements were obtained from three different 
machine conditions: normal, unbalanced and misaligned. For each condition, five signals were collected which 
were divided into two sets of three and two signals 
respectively. The first set was used for training the neural 
network while the second set was used for testing it. As mentioned in Step 2, it was the binarised CWT 
image of a signal that was being used in either training or 
testing. The image consisted of 64 scales and 252 time 
intervals giving a resolution of 64x252=16128 pixels. 

S. Results and discussion 
Table 1 shows the correlation results obtained using 

the two signals from each of the three test sets. It should be noted that a good match returns a correlation 
coefficient of around 1 while a poor match returns a value 
of around 0. 

Table 1 Correlation coefficient results 
Bearing 
condition Training sets 

Test sets Normal Unbalanced Misaligned 

Normal 0.97402 0.02054 0.01047 
0.98377 0.01019 0.01108 

Unbalanced 0.02120 0.97891 0.00314 

-0.00087 1.00059 0.00029 
Misali ned 

0.49346 -0.03897 0.61209 
g 0.11262 -0.07624 1.00747 

With the threshold value set at 0.5, it can be seen from 
Table 1 that perfect recognition has been achieved in 
every case. 

6. Conclusion 
The experiments indicated that continuous wavelet 

transform of acceleration signals from three different 
rotodynamic machine conditions - normal, unbalanced 
and misaligned - produced distinct correlation coefficient 
images that could be discriminated using the back 
propagation neural network. The image used was a 
simplified binarised image in which each pixel assumed a 
value of either 0 or 1. This allows faster computation in 
the neural network. The neural network had as many 
inputs as there were pixels of the image, that is, 16128 
pixels. It had one hidden layer with five nodes and three 
outputs corresponding to the three discriminating 
conditions of normal, unbalanced and misaligned. The 
recognition rate achieved with the limited test sets was 
100%. 

Wavelet transform has the main advantage that it 
provides information of the signal on scale (frequency) as 

well as on time, compared to Fourier transform where only 
frequency information is available. Wavelet transform is 
therefore most suited to analyzing signals that are not 
stationary, a situation often encountered in condition 
monitoring. 
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Abstract - This paper describes a novel method of rotodynamic 
machine condition monitoring using a wavelet transform and a 
neural network A continuous wavelet transform is applied to the 
signals collected from accelerometer. The transformed images are then extracted as unique characteristic features relating to the 
various types of machine conditions. In the experiment, four types 
of machine operating conditions have been investigated: a balanced shat an unbalanced shalt, a misaligned shaft and a defective bearing. The back propagation neural network (BPNN) 
is used as a tool to evaluate the performance of the proposed 
method. The experimental results result in a recognition rate of 90 
percent. 

_e words - Wavelet transform, neural network, rotodynamic 
machinery. 

representation of a signal during its processing, a method can 
be referred to as time-domain or frequency-domain. 

Time domain methods are usually sensitive to impulsive 

oscillations. Characteristics arising from the defects being 

monitored, also known as features, of the raw time signal can 
be extracted from a machine. Typical features are the r. m. s. 
value, peak value [21, crest factor, kurtosis [3] and the shape, 
size and orientation of a bearing locus derived from orbital 
analysis. These features, once established to be related to the 
defect being monitored, often yield satisfactory results. 
However, if the signal generation mechanism is complex, 
time-domain methods are often not refined enough. 

I. INTRODUCTION 

With ever growing competition in industry, the need for 
machine condition monitoring has become more important. 
A reliable condition monitoring system will significantly 
reduce failure and unplanned maintenance, and hence the 
huge attendant cost due to machine downtime. Often, the 
system is used with an operator who assists in the 
interpretation of the machine signals for early failure 
detection and fault diagnosis. 

Nowadays there are two kinds of methods available for 
bearing maintenance: statistical bearing life estimation and 
bearing condition monitoring and diagnostics [1]. Statistical 
bearing life estimation predicts the fatigue life of a bearing. 
However, its application has many limitations, since unusual 
operating conditions can severely decrease a bearing's life. 
Bearing life estimates become unreliable leading to 
unexpected breakdown. On the other hand, bearing condition 
and diagnostics can be a very reliable method because it gives 
up-to-date information about the condition of a bearing. The 
more popular techniques used for bearing condition 
monitoring are vibration and acoustic emission analyses. 

II. PREVIOUS WORK 

Currently, there are many conventional methods for 
identifying and diagnosing bearing faults. Based on the 

Frequency domain methods assume that the signal being 

analyzed has components that are periodic. Thus, a defect 

produces a periodic signal at the characteristic defect 
frequency. Examples of the frequency-domain methods 
include spectrum analysis, cepstrum analysis, high frequency 

resonance technique (HFRT) [4] and holospectrum [5]. 
Among them, spectrum analysis seems to dominate the fault 
diagnosis scene. The main limitation of spectrum analysis is 
that although a local transient will contribute towards the 
overall frequency spectrum, its location on the time axis is 
lost. There is no way of knowing whether a particular 
frequency component exists throughout the life of the time 
signal or during just one or a few selected periods. 
Unfortunately, many monitoring situations demand 
knowledge of not just the frequency composition of a 
transient but also its time of occurrence. For instance, when a 
rolling element passes a localized defect in a bearing, it 

generates a transient in the measured signal, as does the 

contact of a damaged tooth with other teeth in a gearbox. A 

machine with rapidly varying speed is another example of 
transient events. 

The continuous wavelet transform (CWT), a joint time- and 
frequency-domain technique, is proposed in this paper. CWT 

is capable of indicating abrupt changes in machine conditions 
[6]. In addition, it can give a better representation of the 

signal than conventional methods, providing fuller 
information on the machine operating condition. CWT is 

used here to produce a 3-D image from the measured signal. 
Features are then extracted from the image to be used as 
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inputs to a back propagation neural network, the tool used for 
assessing the discriminatory power of CWT. 

Feature 

extraction 
Wavelet 

using 3-D 
Transform transformed 

image 
output 

sensor 

condition 

Fig. 1. The proposed condition monitoring of 
rotodynamic machinery block diagram. 

III. METHODOLOGY 

The proposed method of machine bearing faults recognition 
(Fig. 1), using continuous wavelet transform and back- 
propagation neural network consists of three steps. 

Step 1 Applying continuous wavelet transform 

Continuous wavelet transform of a time-signal f(t) is defined 
by [7] 

Fý (a, b) _ ff (t)`+`(t ab)dt (1) 

The quantity w e(t) _ IF t=6' given in the definition is 
aa 

referred to as the wavelet function. The position variable b 
shifts the wavelet function along the time axis t off(I) while 
the scale variable a expands or compresses the wavelet 
function Y'a. b(t). Compared to Fourier transform, the scale 
variable a is equivalent to the inverse of the frequency. The 
definition also suggests that Ft, (a, b) is the correlation 
coefficient between the wavelet function 'I-,,, b(t) and the time- 
signal f(t) at the scale a and position b of Y' b(t). 

The continuous wavelet transform was applied to the 
acceleration signals from the four machine conditions: (a) 
balanced shaft, (b) unbalanced shaft, (c) misaligned shaft and 
(d) defective bearing. Samples of these signal are as shown in 
Fig. 2. CWT was applied to these signals to calculate the 
coefficients F�(a, b), which were then displayed as a grey- 
scale map with the vertical and horizontal axes denoting 
respectively the scale a and position b, which is equivalent to 
time t, as shown in Fig. 3 for the four different conditions. 

Although there is general similarity between them, subtle 
differences are clearly visible. 
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Fig. 2. Acceleration signals from the four bearing 
conditions 

Step 2 Preprocessing 

Image preprocessing was performed using the method of 
thresholding or binarising [8]. It was applied to the grey- 
scale CWT image to convert the colour of each pixel into 

either black or white. 

Fig. 3. Transformed images of (a) Balanced shaft, 
(b) Unbalanced shaft, (c) Misaligned shaft 
and (d) Defective bearing 
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(a) 

(h) 
Fig. 4. The original image (a) and its binary image (b) 

A binary image has the obvious advantage that when 
classification using neural networks is done, the computation 
time will be much shorter, as multiplication involving a0 or 1 
is much easier to perform. Fig. 4a and 4b show a sample 
image before and after binarising. 

Step 3 Classifying 

The back-propagation neural network (BPNN) [9], with the 
architecture as shown in Fig. 5, was used to classify bearing 
faults. The network has an input layer, a hidden layer and an 
output layer. The values of the pixels composing the CWT 
binary image provided the inputs to the neural network; and 4 
nodes, representing the bearing conditions of normal, 
unbalanced, misaligned and defective bearing were available 
as outputs. 

Through a process of trial and error based on minimizing the 
mean square error (MSE), the choice of 12 nodes in the first 
hidden layer and 18 nodes in the second hidden layer were 
determined to be optimal. 

aii444 

Fig. 5. BPNN architecture 
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The value NET appearing at a node in a layer is computed by 

summing the products of all inputs leading to that node with 
their corresponding weights plus a bias. This value then 
forms the argument of a transfer function f that produces an 
output for the node. In vector notation, given the input vector 
X;, the weight vector W, and the bias vector 8,,, the output is 

given by 

OUT = f(NET)= f(Y- X; W; +0, ) (2) 

The transfer function f is the commonly used sigmoid 
function defined as 

f 
1+eý NET) 

ý3ý 

The sigmoid function acts as an output gate that can be 

opened (0) or closed (1). The computing process as described 
is schematically shown in Fig. 6. 

The Back-propagation algorithm is used to obtain the correct 
weights and biases in a training process. A set of training data 

with known outputs is fed into the network. The weights are 
initially set to random values; the biases are fixed at unity. 
The input data are presented to the network; outputs are 
calculated and compared with the desired outputs. The 

normalized mean square error (MSE) is then calculated and 
propagated back to adjust the weights on the neural 
connection. This process is repeated for a large number of 
epochs until the error is relatively low and acceptable, which 
allows the network to classify the test set correctly. 

IV. EXPERIMENTAL VERIFICATION OF THE 
PROPOSED METHOD 

Experiments were conducted on a rotodynamic test rig, Fig. 

7, consisting of a rotating shaft driven by a DC motor at 20 

rev/sec. The shaft, supported in two bearings, carried 4 discs 

with attachable masses in order to produce rotating 

unbalance. The two bearings were a FAG 20205K. T. C3 self- 

Fig. 6. Schematic process of BPNN 

I19i 
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aligning single row taper-bore bearing and an FAG 6304 ball 
bearing. Radial vibration at the two bearings was measured 
using two PCB 333A12 accelerometers, one on top of the 
non-drive end housing while the other on top of the drive-end 
housing labeled as #1 and #2 respectively in Fig. 7. The 
acceleration signals, having been low-pass filtered at 1 kHz 
for anti-aliasing, were sampled into a Labview data 
acquisition system. 

Measurements were obtained from four different machine 
conditions: balanced shaft, unbalanced shaft, misaligned shaft 
and defective bearing. For each condition, twenty signals 
were collected which were divided into two equal sets of ten 
each. The first set was used for training the neural network 
while the second set was used for testing it. 

As mentioned in Step 2, it was the binarised CWT image of a 
signal that was being used in training and testing. The image 
consisted of 64 scales and 250 time intervals giving a 
resolution of 64x250=16000 pixels. 

V. RESULTS AND DISCUSSION 

Classification results of 40 events from the accelerometer 
signals of all four types of machine conditions are given in 
Table I. It shows the output value from the back propagation 
neural network after the network has been trained. For the 
similar pattern, the output value is around unity, rather than 
zero. In contrast, for a poor match, the value returned is 
around zero. 

To examine the results, the maximum output is used to 
identify the bearing condition. The symbols in the second 
column from the left indicate the following: 

Table I 
Correlation coefficient results 

Bearing 
conditions 

Training sets 

Test sets 
Balance 

shaft 
Unbalanced 

shaft 
Misaligned 

shaft 
Defective 
bearing 

W 0.2 2 -0.01 0.00 0.79 

R 0.9 4 0.00 0.00 0.06 

R 0.36 0.19 0.00 0.34 

R 0.92 -0.08 0.00 0.23 

R 0.98 0.00 0.00 0.03 
Balance shaft 

R 0.96 0.03 0.03 -0.03 
R 0.86 -0.02 0.00 0.18 

R 0.73 0.00 0.00 0.27 

W 0.20 -0.01 0.00 0.81 

R 0.98 0.05 0.01 -0.02 
R 0.04 0.35 0.22 0.26 

R 0.04 1.00 0.00 -0.04 
R -0.12 0.84 0.00 0.45 

R 0.01 0.89 0.00 0.08 

Unbalanced R -0.01 0.97 0.00 0.04 

shaft w -0.01 0.19 0.29 0.47 

R 0.00 1.01 0.00 -0.01 

R -0.08 0.92 0.01 0.18 

R 0.1 0.70 0.04 0.09 

R -0.01 1.05 0.00 -0.05 
R 0.00 0.00 0.99 0.00 

R 0.00 0.00 1.00 0.00 

R 0.01 0.07 0.95 0.12 

R 0.00 0.02 1.00 -0.02 

Misaligned R 0.00 0.00 1.00 0.01 

shaft R 0.01 -0.03 0.95 0.05 

R 0.00 0.00 1.00 0.00 

R 0.00 0.00 0.99 0.00 

R 0.00 0.00 0.99 0.00 

R 0.00 0.04 1.00 -0.04 
R -0.01 0.08 0.33 0.51 

R 0.02 0.01 0.00 0.94 

R -0.08 -0.10 
0.10 1.10 

W 0.30 0.34 -0.02 0.30 

Defective R -0.02 0.13 0.26 0.60 

bearing R -0.05 0.00 0.42 0.67 

R 0.24 -0.02 0.00 0.78 

R -0.09 0.32 0.29 0.52 

R 0.00 -0.05 0.44 0.64 

R 0.38 -0.10 -0.02 0.88 

R= classified correctly 
W= misclassified 

Fig. 7. Test rig set-up 
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The signals were classified correctly 36 times out of 40 with a 
recognition rate of 90 percent. However, due to the fact that 
an intensity pixel being less than the threshold value had to be 
omitted, this brought down the recognition rate. Therefore, if 
an extracted image consists of many light intensity pixels, it 
may not find enough significant intensity pixels to represent 
the characteristic features efficiently. In other words, the 
shape of the extracted image is distorted by the lack of pixels 
which contain the unique pattern for each bearing condition. 
Therefore, this may lead to incorrect results. 

VI. CONCLUSIONS 

Condition monitoring of rotodynamic machinery has been 
investigated by using the continuous wavelet transformed 
image as a characteristic feature of each signal condition and 
the back propagation neural network as a classification tool. 
Results are summarised below: 

1) A major contribution of this work is the introduction of a 
new feature extraction method and feature representation for 
condition monitoring using continuous wavelet transform. 
Image processing techniques have been employed to remove 
the broadband noise from the signal before the final stage of 
classification is performed using a back-propagation neural 
network. 

2) The wavelet transform has the main advantage that it 
provides information of the signal on scale (frequency) as 
well as on time. The transformed image therefore contains 
information in both time and frequency which enhances the 
ability to discriminate properly between the four types of 
bearing condition. 

3) The classification error is due to the omission of some 
pixels by binarising and it is dependent on the threshold 
value. It is believed that if the setting of the threshold level is 
optimised, a possible higher recognition rate would be 
achieved. 
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ABSTRACT 

This paper describes a method of bearing condition monitoring using the fuzzy c-mean clustering 
technique applied to the pre-processed acoustic emission parameters. Acoustic emission (AE) events 
were detected by a piezoelectric transducer mounted on the bearing housing of a test rig. AB 
parameters were extracted from the events and used as characteristic features to represent a machine 
operating condition. In this experiment, four machine conditions that may happen to a rotodynamic 
machine were investigated and they corresponded to (a) a balanced shaft, (b) an unbalanced shaft, (c) 
a shaft with misaligned supportive bearings and (d) a shaft running in a defective bearing. During 
training, the fuzzy c-mean clustering technique was applied to establish the centres of the four 
clusters. For testing, a minimum distance classifier was used to classify an AE event from an 
unknown condition into one of the four conditions. The recognition rate was 97.22 percent. 

KEYWORDS 

Acoustic emission, condition monitoring, fuzzy c-mean clustering technique, minimum distance 
classifier, rotodynamic machinery. 

INTRODUCTION 

Rolling element bearings are perhaps the most ubiquitous machine elements in engineering as they 
can be found in almost all-rotating machines. With ever growing competition in industry, these 
bearings are considered critical components because any malfunction, if not detected in time, leads to 
catastrophic failure and hence losses due to machine downtime and other forms of damage. It is 
evident that a reliable condition monitoring system is highly desirable so that it will reduce the cost of 
these consequences and enhance the overall equipment effectiveness. 

Basically there are two approaches to bearing maintenance: (1) statistical bearing life estimation and 
(2) bearing condition monitoring and diagnostics [1]. Statistical bearing life estimation predicts the 
fatigue life of a bearing. However, its application has limitations, since unusual operating conditions 
often occur and can severely decrease a bearing's life. In this situation, estimating a bearing's life 
based on standard operating conditions is unrealistic. The other approach - bearing condition and 
diagnostics - can be more reliable because it gives up-to-date information about the condition of a 
bearing. The more popular condition monitoring techniques for bearings are based on vibration and 
acoustic emission analyses. 
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Previous research [2,3,4] has demonstrated that AE monitoring is superior to vibration monitoring in 
that the former can detect subsurface crack growth whereas the latter can at best detect a defect only 
when it emerges on the surface of a structure. 

Acoustic emission (AE) is a natural phenomenon of sound generation in a material under stress. If the 
material is subjected to stress, a sudden release of strain energy takes place in the form of elastic 
wave. Each release of energy results in an AE event which often lasts no longer than a millisecond. 
A rotation bearing can produce AE events each time a surface defect comes into contact with other 
elements. These AE events are high-frequency transients with frequency components typically in the 
range from 100 kHz to 1 MHz. 

An AE event is characterized using parameters such as ring-down count, rise time, event duration, 
energy and peak amplitude. A threshold is used in order to eliminate ̀ noise' and only events that rise 
above the threshold are counted. Evidently, the threshold level affects the value of some of these 
parameters. A typical example is the event duration. By definition, it is the time that the envelope of 
an AE event is above the threshold. When the threshold level is high, the time will be shorter. 

The peak amplitude of an AE event is the maximum excursion of the corresponding voltage signal 
from the zero level. The energy of an AE event is the energy contained in the corresponding voltage 
signal and, strictly speaking, is not the true energy of the event itself. Energy is calculated using the 
formula 

T 

Energy « 
fV2(t)dt (1) 
0 

The objectives of the reported work are: 

1. To represent the AE events from the four different machine operating conditions (detailed below) 
in terms of their event duration, peak amplitude and energy in a three-dimensional space; 

2. To establish the centres of the clusters for the four conditions in this three-dimensional space 
using the fuzzy c-mean clustering technique; and 

3. To classify an AE event from an unknown condition by computing the minimum Euclidean 
distance of this event from the respective centres. 

APPARATUS AND EXPERIMENTS 

Experiments were conducted on a rotodynamic test rig consisting of a rotating shaft driven by a DC 

motor at 20 rev/sec. The two bearings were a FAG 20205K. T. C3 which is a self-aligning single-row 
taper-bore roller bearing and a FAG 6304 ball bearing. They were mounted in bearing housings 

which in turn were attached to a base plate. The test rig provides facilities to produce the four 

machine operating conditions characterised by: 
a) the rotating shaft dynamically balanced (referred to as 'balanced shaft'), 
b) the rotating shaft dynamically unbalanced in one plane to the extent of 65x10-5 kg. m at mid-span 

of the shaft (referred to as ̀ unbalanced shaft'), 
c) the shaft with misalignment achieved from moving one bearing laterally by 1 mm relative to the 

other (referred to as ̀ misaligned shaft') and 
d) the roller bearing seeded with a defect on the outer raceway of lmm diameter produced with an 

electric discharge pen (referred to as ̀ defective bearing'). 

The methodology for machine condition monitoring and recognition is as shown schematically in 

Figure 1. 
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Figure 1: The methodology for machine condition monitoring and recognition. 

Acoustic emission instrumentation 

Acoustic emission was measured with a microprocessor-based system AET5500 from Acoustic 
Emission Technology Corp. (AET), USA. A wide band transducer (of model WD, PAC) was 
attached to the side of the roller bearing housing via a silicone-gel couplant. The AE signal from the 
transducer was amplified to 60 dB and bandpass filtered - 100kHz to 1 MHz - with a PAC 
preamplifier before entering the AET5500 for AE parameter extraction. 

The threshold level on the AET5500 was chosen to be 1V (floating). With a floating threshold, it can 

adjust itself automatically such that background noise is excluded. The peak amplitude of the AE 

event was expressed in dB with 0 dB corresponding to 1 mV at the preamplifier output. 

Pre-processing of data 

For each condition, twelve recordings each of about 30-second duration were made and they captured 
the AE parameters of event duration, peak amplitude and energy. These recordings were then 
divided into two sets of 3 and 9 each. The first set served as the reference generated from the training 

exercise whereas the second set provided the test samples for validating the classifier obtained from 

the training process. 

Both the training sets and the testing sets were processed as follows: 
1. Sort the AE events in each set in the descending order of the event duration. 
2. Discard the first ten AE events in the sorted list as they may contain outliers which, if included, 

would distort the characteristics the AE events in a sub-set 
3. Select the next five AE events from the remaining list for the subsequent clustering analysis. 
4. Normalise each feature in a unit vector. 

Fuzzy c-mean clustering 

Fuzzy c-mean is an iterative technique for data clustering. The user decides on the number of 

clusters that a data set is to be separated into, initialises a proximity matrix and defines an error 
threshold for the stop condition of the iteration [5]. 

The five AE events partitioned from the sorted list can be displayed as points on a three-dimensional 

graph using the event duration, peak amplitude and energy as the three orthogonal axes. As there are 
four different conditions, it is expected that there will be four clusters taking up different regions in 

the three-dimensional space. 
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The proximity matrix contains the membership values of an individual AE event that it does or does 
not belong to a particular machine condition. The initial values assigned to this matrix is arbitrary 
and binary logic values are generally used. Thus full membership is represented by 1 whereas non- 
membership by 0. As there are four different machine conditions and five AE events, the proximity 
matrix is a 4-by-20 matrix. 

The first iteration generates the estimated locations of the cluster centres and a refined proximity 
matrix in which the membership values become fuzzified, that is they now have values between 0 and 
1. With each subsequent iteration, the estimate for the cluster centre locations will be more and more 
accurate and the proximity matrix will be updated. The iteration will stop when the change in the 
norm of the proximity matrix from its previous iteration becomes less than the designated error 
threshold. The cluster centres returned from the last iteration are taken to be the 'best' estimates. 

Specifically, the fuzzy -c mean algorithm consists of the following step [5]: 
1. Fix the number of c-cluster centres and a threshold e for the stop condition in step 4. Initialise 

the proximity matrix UDO). 
2. Update the c-cluster centres 

{vi') } 
according to the current proximity matrix, using 

Ek=1 Pk' xkJ 
iý =nm. 

Y-k=I ßik 

where Uik is the membership of the kth data point in the ith class, and m' is the weighting 

parameter (the arbitrary value of m' =2 was used). 
Update the proximity matrix for the r`s iteration, U r) according to previous cluster centres, using 

2/(m =t) -1 

(r+1) 
_ 

dik( V 

Ak 
iL_"1 d(r) (3) 

where d_t (Xký - výý )2 /2 
is the distance measured. 

4. If the objective function, as defined below, is less than the threshold s, then stop; else, go to step 
2. 

JIU (r+l) 
_U(r) 

If I: 
e otherwise set r= r+1 

(4) 

The results that emerge from the application of the fuzzy c-mean clustering technique are shown as 
three-dimensional graphs in Figures 2 and 3. Figure 2 shows the AE events, 20 in total, for the four 

different machine conditions from the training sets. Figure 3 shows the same AE events but this time 

with clusters identified and their centres computed. 
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Figure 2: AE events for the four different machine conditions from the training sets 
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Minimum distance classification 

A minimum distance classifier [6] was used to determine the machine condition to which a particular 
AE event belongs. It works by computing the Euclidean distances of the AE event (expressed as a 
point in the three-dimensional space of event duration, peak amplitude and energy) from the centres 
of the clusters for the four machine conditions. The AE event is considered to belong to the cluster 
whose centre is closest. In other words, the distance is defined as an index of similarity so that the 
minimum distance is equivalent to the maximum similarity. 

Thus if the four centres have co-ordinates (xi1, xi2, xi3) where i=1,2,3,4, and the AE event 
(yl, }2, y3), the minimum Euclidean distance is then 

D= minýx� -Y1ý2+( 2 -Y2ý2+ixj3 -Y2ý2) (5) 

RESULTS AND DISCUSSION 

Classification results of 36 AE events from the test samples of all four types of machine conditions 
are given in Table 1. It shows the output values from the minimum distance classifier using Eq(5). 
The events were classified correctly 35 times out of 36, a recognition rate of 97.22 percent. The only 
error occurs when the unbalanced shaft condition was misclassified as that due to a defective bearing 
(55.139 in row 4, column 2). 

It can also be noted that the normal machine condition of `balanced shaft' is very distinctive from the 

other three abnormal conditions, as their distance values are all very small in comparison with others. 
For example, in the column headed ̀Balanced shaft', the first value in each sub-section always turns 

out to be significantly smaller than the rest. This means that using this approach there is very little 

risk of raising a false alarm. 

CONCLUSION 

The methodology described in this paper has been shown to work well for discriminating the four 

different operating conditions on the rotodynamic test rig. The recognition rate achieved was 97.22 

percent. In addition, the probability of misclassifying a good balanced shaft condition is extremely 
low. 

The method involves sorting the AE events according to event duration, identifying clusters and 
locating their centres in the three-dimensional space of event duration, peak amplitude and energy 
using the fuzzy c-mean technique, and classifying using a Euclidean minimum distance classifier. 

Overall, the method has the advantage that it is simple and efficient to implement and can be readily 

adapted to include other abnormal operating conditions as may be identified on a rotodynamic 
machine. 
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TABLE 1 
MINIMUM DISTANCE CLASSIFICATION RESULTS 

Bearing conditions Balanced shaft Unbalanced shaft Misaligned shaft Defective bearing 
Testing set #1 
Balanced shaft 1.4701 807.9 507.8 1162.3 
Unbalanced shaft 670.6 136.28 164.1 490.6 
Misaligned shaft 478.6 328.4 28.076 682.74 
Defective bearing 861.81 55.139 355.41 299.32 
Testing set #2 
Balanced shaft 4.3499 810.9 510.81 1165.3 
Unbalanced shaft 821.35 15.163 314.9 339.8 
Misaligned shaft 516.47 290.31 10.529 644.71 
Defective bearing 1003.8 197.11 497.41 157.34 
Testing set #3 
Balanced shaft 28.284 778.76 478.58 1133.2 
Unbalanced shaft 839.19 32.51 332.83 321.93 
Misaligned shaft 468.16 338.71 38.416 693.09 
Defective bearing 1002.3 195.59 495.8 158.9 
Testing set #4 
Balanced shaft 5.7054 802.85 502.82 1157.3 
Unbalanced shaft 841.6 35.472 335.11 319.61 
Misaligned shaft 400.91 405.84 105.69 760.26 
Defective bearing 1038.9 232.27 532.5 122.2 
Testing set #5 
Balanced shaft 70,657 736.04 435.92 1090.5 
Unbalanced shaft 773.04 33.841 266.61 388.11 
Misaligned shaft 421.84 384.97 84.738 739.38 
Defective bearing 1031.2 224.54 524.8 129.9 
Testing set #6 
Balanced shaft 15.982 790.71 490.61 1145.1 
Unbalanced shaft 761.76 44.958 255.5 399.37 
Misaligned shaft 372.86 433.85 133.77 788.28 
Defective bearing 1028.2 221.56 521.71 133.04 

Testing set #7 
Balanced shaft 40.244 766.44 466.34 1120.9 
Unbalanced shaft 868.07 61.403 361.74 293.05 
Misaligned shaft 391.57 415.12 115.4 769.55 
Defective bearing 1222.8 416.14 716.4 61.706 

Testing set #8 
Balanced shaft 4.2853 804.99 504.82 1159.4 
Unbalanced shaft 1046.9 240.23 540.5 114.21 
Misaligned shaft 461.38 345.31 45.768 699.74 
Defective bearing 1108.1 301.4 601.72 53,219 

Testing set #9 
Balanced shaft 2.7767 809.05 508.92 1163.5 

Unbalanced shaft 905.94 99.297 399.5 255.2 

Misaligned shaft 477.31 329.39 29.992 683.82 

Defective bearing 1081.2 274.57 574.8 79.909 
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Executive summary 

This paper describes the application of acoustic emission (AE) for bearing condition 

monitoring using pre-processed AE parameters and fuzzy c-mean clustering to establish 

characteristic features relating to each bearing condition. In the experiments, four types 

of bearing operating conditions were examined: a balanced shaft, an unbalanced shaft, a 

misaligned shaft and a defective bearing. A minimum distance classifier is then used as a 

tool to classify bearing operating conditions. The results are very promising with a 

recognition rate of 97 %. 

Introduction 

Rolling element bearings are omnipresent in almost all kind of rotating machines. Its 

condition monitoring has obtained considerable attention for many years because majority 

of problems in rotating machines are caused by faulty bearings. A reliable condition 

monitoring system will significantly reduce failure and unplanned maintenance, and 

hence the huge attendant cost due to machine downtime. Often, the system is used with 

an operator who assists in the interpretation of the machine signals for early failure 

detection and fault diagnosis. 

Nowadays there are two kinds of methods available for bearing maintenance: statistical 

bearing life estimation and bearing condition monitoring and diagnostics'. Statistical 

bearing life estimation predicts the fatigue life of a bearing. However, its application has 
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many limitations, since unusual operating conditions can severely decrease a bearing's 

life. Bearing life estimates become unreliable leading to unexpected breakdown. On the 

other hand, bearing condition and diagnostics can be a very reliable method because it 

gives up-to-date information about the condition of a bearing. The more popular 

techniques used for bearing condition monitoring are vibration and acoustic emission 

analyses. 

The popular bearing condition monitoring approaches generally are vibration and acoustic 

emission (AE) techniques. The vibration techniques are practically useful only when the 

abnormal condition of structures developed. The latter one, acoustic emission techniques, 

are claimed to be superior to the former because it is an effective tool for early detection 

of damages due to metallic contact or wear action2. 

Acoustic emission is a natural phenomenon of sound generation applied to the 

spontaneously generated elastic wave produced within a material under stress3. Plastic 

deformation and growth cracks are the primary sources of acoustic emission in metals. 

The acoustic signal can be detected by a piezoelectric sensor, which converts the 

mechanical energy carried by the elastic wave into an electrical signal. 

In the case of rotating element bearing, when a defective roller surface comes into contact 

with other elements, it can then produce AE event because of the release of strain energy 

picked up by a piezoelectric transducer. 

Conventional AE parameters extracted from acoustic signal are ring-down count, rise 

time, event duration, energy and peak amplitude. To characterise those parameters and 

also to eliminate `noise', a threshold is selected and only events that rise above the 
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threshold are counted. Apparently, the threshold level affects the value of some of these 

parameters. A typical example is the event duration. By definition, it is the time that the 

envelope of an AE event is above the threshold. When the threshold level is high, the 

time will be shorter. 

The peak amplitude of an AE event is the maximum arising of the corresponding voltage 

signal from the zero level. The energy of an AE event is the energy contained in the 

corresponding voltage signal and, strictly speaking, is not the true energy of the event 

itself. 

Experimental setup 

The experimental setup consisted of rotodynamic test rig which can produce multi fault 

operating conditions. The spindle is driven by a variable speed motor running at 20 

rev/sec. The two bearings were a FAG 20205K. T. C3 which is a self-aligning single-row 

taper-bore roller bearing and a FAG 6304 ball bearing. They were mounted in bearing 

housings which in turn were attached to a base plate. The test rig provides facilities to 

produce the four machine operating conditions characterised by: 

1. the rotating shaft dynamically balanced (referred to as `balanced shaft'), 

2. the rotating shaft dynamically unbalanced in one plane to the extent of 65x10"5 kg. m 

at mid-span of the shaft (referred to as `unbalanced shaft'), 

3. the shaft with misalignment achieved from moving one bearing laterally by 1 mm 

relative to the other (referred to as `misaligned shaft') and 

4. the roller bearing seeded with a defect on the outer raceway of lmm diameter 

produced with an electric discharge pen (referred to as `defective bearing'). 
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Figure 1 illustrates a systematic diagram of the proposed bearing condition monitoring 

technique. 

Preamplifier Pre- 
AET processing 
5500 of data 

Motor 
CAE 

sensor 

Spindle L --- v Bearing Minimum Fuzzy c-mean 
housing distance clustering 

classifier 

Figure 1 AE monitoring systematic diagram. 

Acoustic monitoring system 

The acoustic emission transducer, wide band transducer from Physical Acoustic 

Corporation (PAC) is mounted on the bearing housing with a silicone gel couplant. The 

AE signal from the transducer was amplified to 60 dB and bandpass filtered - 100kHz to 

1 MHz - with a PAC preamplifier before entering an AET5500. The micro-processor 

based system AET5500, from Acoustic Emission Technology Corp. (AET), USA, is used 

to process the acoustic signal into AE parameters. 

As described earlier, the selection of threshold is important in order to obtain the high 

signal-to-noise ratio. In this experiment, the floating threshold of IV is chosen because, 

with floating threshold, it can adjust the level of threshold to eliminate the background 

noise. 

Pre-processing of data 

For each condition, twelve recordings each of about 30-second duration were made and 

they captured the AE parameters of event duration, peak amplitude and energy. These 
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recordings were then divided into two sets of 3 and 9 each. The first set served as the 

reference generated from the training exercise whereas the second set provided the test 

samples for validating the classifier obtained from the training process. 

Both the training sets and the testing sets were processed as follows: 

1. Sort the AE events in each set in the descending order of the event duration. 

2. Discard the first ten AE events in the sorted list as they may contain outliers which, if 

included, would distort the characteristics the AE events in a sub-set. 

3. Select the next ten AE events from the remaining list for the subsequent clustering 

analysis. 

4. Normalise each feature in a unit vector. 

The new data sets are now much shorter, and the corresponding parameters of event 

duration, peak amplitude, and energy will be further analysed using the fuzzy c-mean 

clustering technique. 

Fuzzy c-mean clustering technique 

Fuzzy c-mean is an iterative technique for clustering analysis and classification. The user 

decides on the number of clusters that the data set is to be separated into, sets up an initial 

proximity matrix according to some rule and defines an error threshold for the stop 

condition of the iteration. The first iteration will generate the estimated locations of the 

cluster centres and a refined proximity matrix. With subsequent iterations, the estimates 

of the cluster centre locations will be more and more accurate and the proximity matrix 

will be updated. The iteration will stop when the change in the norm of the proximity 

matrix from its previous iteration becomes less than the designated error threshold. The 

cluster centres returned from the last iteration are taken to be the `best' estimates. 
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The results that emerge from the application of the fuzzy c-mean clustering technique are 

shown as three-dimensional graphs in Figures 2 and 3. Figure 2 shows the AE events, 20 

in total, for the four different machine conditions from the training sets. Figure 3 shows 

the same AE events but this time with clusters identified and their centres computed. 
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Figure 2 AE events for the four different machine conditions from the training sets. 
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Figure 3 Established cluster centres using training data set from four different 
operating conditions. 
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Minimum distance classification 

A minimum distance classifier [5] was used to determine the machine operating condition 

to which a particular AE event belongs. It works by computing the Euclidean distances 

of the AE event (expressed as a point in the three-dimensional space of event duration, 

peak amplitude and energy) from the centres of the clusters for the four machine 

conditions. The AE event is considered to belong to the cluster whose centre is nearest. 

In other words, the distance is defined as an index of similarity so that the minimum 

distance is equivalent to the maximum similarity. 

Results and discussions 

Classification results of 36 AE events from the test samples of all four types of machine 

conditions are given in Table 1. It shows the output values from the minimum distance 

classifier. The events were classified correctly 35 times out of 36, a recognition rate of 97 

percent. The only error occurs when the unbalanced shaft condition was misclassified as 

that due to a defective bearing. 

It can also be noted that the normal machine condition of `balanced shaft' is very 

distinctive from the other three abnormal conditions, as their distance values are all very 

small in comparison with others. In other words, this approach has very little risk of 

raising a false alarm. 
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Table 1 Minimum distance classification results 

Bearing conditions 
Balanced Unbalanced Misaligned Defective 

shaft shaft shaft bearing 
Testing set #1 
Balanced shaft 1.47 807.90 507.80 1162.30 
Unbalanced shaft 670.60 136.28 164.10 490.60 
Misaligned shaft 478.60 328.40 28.07 682.74 
Defective bearing 861.81 55.13 355.41 299.32 
Testing set #2 
Balanced shaft 4.34 810.90 510.81 1165.30 
Unbalanced shaft 821.35 15.16 314.90 339.80 
Misaligned shaft 516.47 290.31 10.52 644.71 
Defective bearing 1003.8 197.11 497.41 157.34 
Testing set #3 
Balanced shaft 28.28 778.76 478.58 1133.20 
Unbalanced shaft 839.19 32.51 332.83 321.93 
Misaligned shaft 468.16 338.71 38.41 693.09 
Defective bearing 1002.30 195.59 495.80 158.90 
Testing set #4 
Balanced shaft 5.70 802.85 502.82 1157.30 
Unbalanced shaft 841.6 35.47 335.11 319.61 
Misaligned shaft 400.91 405.84 105.69 760.26 
Defective bearing 1038.90 232.27 532.50 122.20 
Testing set #5 
Balanced shaft 70.65 736.04 435.92 1090.50 
Unbalanced shaft 773.04 33.84 266.61 388.11 
Misaligned shaft 421.84 384.97 84.73 739.38 
Defective bearing 1031.20 224.54 524.80 129.90 
Testing set #6 
Balanced shaft 15.98 790.71 490.61 1145.10 
Unbalanced shaft 761.76 44.95 255.50 399.37 
Misaligned shaft 372.86 433.85 133.77 788.28 
Defective bearing 1028.20 221.56 521.71 133.04 
Testing set #7 
Balanced shaft 40.24 766.44 466.34 1120.90 
Unbalanced shaft 868.07 61.40 361.74 293.05 

Misaligned shaft 391.57 415.12 115.40 769.55 
Defective bearing 1222.80 416.14 716.40 61.70 

Testing set #8 
Balanced shaft 4.28 804.99 504.82 1159.40 
Unbalanced shaft 1046.90 240.23 540.50 114.21 

Misaligned shaft 461.38 345.31 45.76 699.74 
Defective bearing 1108.10 301.40 601.72 53.21 
Testing set #9 
Balanced shaft 2.77 809.05 508.92 1163.50 
Unbalanced shaft 905.94 99.29 399.50 255.20 
Misaligned shaft 477.31 329.39 29.99 683.82 
Defective bearing 1091.20 274.57 574.80 79.90 
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Conclusions 

The high sensitivity of the acoustic emission measurement has been shown to work well 

for discriminating the four different operating conditions on the rotodynamic test rig. The 

recognition rate achieved was 97 percent. In addition, the probability of misclassifying a 

good balanced shaft condition is extremely low. 

The method involves sorting the AE events according to event duration, identifying 

clusters and locating their centres in the three-dimensional space of event duration, peak 

amplitude and energy using the fuzzy c-mean technique, and classifying using a 

Euclidean minimum distance classifier. 

In summary, the method has the advantage that it is simple and efficient to implement and 

can be readily adapted to include other abnormal operating conditions as may be 

identified on a rotodynamic machine. 
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Abstract 
One of the most important aspects of bearing operation is to assure that a film of 
lubricant such as grease will be introduced between bearing surfaces, so that friction 
and surface wear can be minimised. Contaminated grease or the lack of lubricant 
may lead to an ineffective bearing operating condition or indeed malfunction of the 
machinery. Therefore, there is a significant need for reliable and robust condition 
monitoring of bearings in order to avoid the unexpected breakdown. This paper 
describes a novel method for bearing condition monitoring at low speed using 
acoustic emission (AE) and a fuzzy c-mean clustering technique. The experimental 
results produce a recognition rate of approaching 100 percent. 

The work is being undertaken as part of a INTErSECT Faraday Partnership Flagship 
Research Project (AESAD, 1998-2002) [1,2,3,4,5]. The objective of this study has 
been to categorise two bearing lubrication operating conditions according to 
lubrication conditions: clean grease and contaminated grease which is slag from the 
steel making process. The experiments were performed on a bearing running at 
speed of 0.5 revolution per minute at Corus. The bearing was instrumented with AE 
sensors in order to capture an elastic wave generated producing an acoustic wave 
by the material when to subjected stress or friction as is the case when a rolling 
element comes into contact with wear debris. 

The equipment that used for the bearing Acoustic emission trials is PAC Ltd., 
LOCAN AT acoustic emission system. The AE transducers are R151 integral 
preamplifier type with a resonant frequency of 150kHz and a range of 60 - 600 kHz. 
The transducers are attached to the bearing using magnetic clamps and silicone 
grease is used for the couplant between the transducer and the bearing housing. 
The bearing is FAG 515518K and the lubricating grease is Molub Alloy type. 

Conventional AE parameters, such as 'event duration', 'peak amplitude' and 'energy' 
were extracted from the raw AE signal by a threshold level method. 'Event duration' 
is the time duration between the first crossing point of the signal which rises above 
the threshold and the last crossing point when the signal has fallen below the 
threshold. 'Peak amplitude' is the maximum level of the signal compared to the 
ground reference. 'Energy' is related to the area of the signal in time envelope. 

To recognise the bearing operating conditions, feature extraction has been 
performed on the AE parameters by using a data processing method, which 
produced a set of characteristic features for the bearing running condition. The data 
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processing method included sorting and normalising of the AE parameters. The 
proposed method for bearing lubrication monitoring is shown in Figure 1. 

Fuzzy c-mean was then used for signal classification [6]. The process starts with a 
user deciding on the number of clusters that the data-set is to be separated into, and 
then sets up an initial proximity matrix according to some rule and defines an error 
threshold for the stop condition of the iteration. The first iteration will generate the 
estimated locations of the cluster centres and a refined proximity matrix. With 
subsequent iterations, the estimates of the cluster centre locations will be more and 
more accurate and the proximity matrix will be updated. The cluster centres returned 
from the last iteration are taken to be the `best' estimates of the location of the two 
separated clusters for the different lubrication conditions. The results that emerge 
from the application of the fuzzy c-mean clustering technique are shown as a three- 
dimensional graph in Figure 2. 

Work is currently being undertaken to try and apply these advanced techniques to 
the main bearing of the British Airways London Eye to provide long-term condition 
monitoring for the purpose of preventative maintenance. 
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Abstract 
Rolling-element bearings can be found on almost all 

rotating machines and their failure is one of the major 
causes of machine breakdown. This paper provides a 
review on joint time-frequency domain analysis. Since in 
the real machine monitoring environment, the monitored 
signal, such as from vibration measurement, can be 
transient events with abrupt changes in the waveform, 
traditional analyses conducted solely in either the time or 
frequency domain are not capbable of revealing the 
occurrence of bearing faults. An approach is to utilise 
joint time-frequency domain method by applying the 
wavelet transform to the measured signal. The 
transformed signals are represented as 3-D images which 
may contain unique characteristic features relating to the 
various types of bearing faults. The simulation is 
performed to compare the performance between STIFT 
and WT for signal classification. The broadband noise, by 
virtue of its low correlation with the main signal, is then 
removed from the image before the final stage of 
classification is performed. Classification is, in essence, 
pattern recognition of the refined image. The correlation 
matching is then applied to the transformed images for 
classification. This diagnostic process will discriminate 
between different bearing defects and also provide a 
quantitative measure of the defect size. 

I. Introduction 
Bearings can be found on almost all machines. Their 

failure invariably has production consequences and 
sometimes even health and safety consequences. A 
reliable condition monitoring system is therefore highly 
desirable for it will alleviate the cost of these 
consequences and enhance the overall equipment 
effectiveness. 

For bearing maintenance, two methods have been 
used, namely the statistical bearing life estimation and the 
bearing condition monitoring and diagnostics [1]. The 
first method relies on a model of the bearing survival 
probability in terms of the dynamic load rating and the 
equivalent load to give a prediction of the fatigue life of a 
bearing. However, since operating conditions can vary 
significantly from one machine to another, the prediction 
based on the assumption of normal duty on a bearing can 
be in serious error. The second method, in theory, is 
superior to the first if the signals monitored have useful 
features that can reliably indicate a potential failure well 
ahead of the occurrence of the corresponding functional 
failure. Signals that have been studied for bearing 
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Figure 1 The proposed bearing condition monitoring block diagram. 

condition monitoring include vibration and acoustic emission. 
When a bearing is damaged, the defect may occur on the 

rolling element, inner race or outer race. The signal generated 
from a defective bearing contains information not just about 
the defect but also about other factors such as the location of 
the defect relative to the loaded zone of the bearing and other 
mechanical noise sources that are present in the machine. The 
difficulty lies in being able to identify correctly the key 
elements in the monitored signal that are related to the defect. 

2. Previous Work 
Bearing monitoring methods can be categorized based on 

the domain of the signal in which the analysis takes place. 
Thus, monitoring methods can be regarded as time-domain or 
frequency-domain. 

Time-domain methods are usually sensitive to impulsive 

oscillations. Examples of features that have been successfully 
extracted and used for monitoring purposes are the rms value, 
peak value [2], crest factor and kurtosis [3]. These features can 
produce satisfactory results when the time signal contains 
predominantly the frequency bands that are sensitive to the 
defect. However, if the machine dynamics is complex 
generating correspondingly complex signals, these time- 
domain methods may become ineffective. 

Frequency-domain methods work best when the signals 
being monitored are periodic in nature, as is the case for 

vibration on a rotating shaft supported in bearings. Since a 
bearing defect produces a signal that is periodic at the 
characteristic defect frequency, frequency-domain analysis 
appears to be a suitable tool for condition monitoring. 
Examples of frequency-domain techniques include the spectral 
analysis, cepstrum analysis, high frequency resonance 
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technique (HFRT) [4] and holospectrum [5]. Among 
them, spectral analysis using Fourier Transform seems to 
be the most common and dominate the fault diagnostics. 

A major disadvantage of Fourier Transform used in 
spectral analysis is that the frequency information 
provided is an average over the whole length of the 
analyzed signal. Thus, if there is a localized event at 
some point in time of the signal, it will appear in the 
Fourier transform as a frequency component but its 
location on the time axis is lost. On the other hand, 
although time-domain methods can reveal the time of 
occurrence of a local event, they do not provide any frequency information of the event. 

Examples of localized events in condition monitoring 
abound. When a rolling element passes over a localized 
defect in a bearing, it generates a transient oscillation in 
the measured signal, so does the contact of a damaged 
tooth with other teeth in the gearbox. A machine with 
rapidly varying speed is another example of transient 
events. 

In this paper, a comparative study was reported on two 
joint time- and frequency-domain techniques, namely the 
Short Time Fourier Transform (STFT) and the 
Continuous Wavelet Transform (CWT). They were 
assessed in terms of their relative ability to discriminate 
between different types of signals that had transient 
features in them. These signals were generated artificially 
in Matlab so that their features could be well defined. The 
better method arising from this assessment was then used for a condition-monitoring test on a bearing that had an 
outer race defect. The assessment procedure adopted for 
both tests was based on the principle of correlation 
matching. 

3. Theoretical background 
Figure 1 shows a block diagram of the proposed 

condition monitoring procedure. Both the reference 
signal and the test signal are first filtered to remove noise 
and then processed by either STFT or CWT to produce 
colour-coded two-dimensional images. For STFT, the 
image has a horizontal axis representing time and a 
vertical axis representing frequency whilst the colour at a 
point in the image represents the intensity of the 
frequency component (see, for example, Figure 4b). For 
CWT, the horizontal and vertical axis denote the time and 
the scale respectively whilst the colour at a particular 
combination of time and scale denotes the correlation of 
the signal with the mother wavelet at that combination. 

Images from the reference and test signals are then 
compared using the method of correlation matching to 
determine the degree of similarity between them. 
Whether an STFT image is superior to the corresponding 
CWT image for a given signal in their relative ability to 
discriminate depends on the values of the correlation 
coefficients obtained from correlation matching. 

3.1 Short-Time Fourier transform 
The Fourier transform of a signal x(t) is defined as 

F[x(t)] =X (f) _- f x(t)e_J2'fidt (1) 
2, r -- 

For Equation (1) to be valid, the signal x(t) being transformed 
must be stationary, which means that its amplitude distribution 
does not depend on absolute time. In other words, the 
moments of the distribution - for example, mean, variance, and 
so on - are stationary. A signal with localized events is clearly 
not stationary. 

To overcome this difficulty, the signal is divided into 
segments such that within each segment the stationarity 
property is approximately true and so Equation (1) can be 
applied. The Short-Time Fourier Transform (STFT), also 
known as the Windowed Fourier transform (WFT), does 
exactly that [7]. STFT uses a constant-width time window, 
and the segment of the signal exposed is transformed into the 
frequency domain. As the window slides to a new position 
along the time axis, the Fourier transform is again computed. 
This is repeated until the whole duration of the signal is 
covered. Mathematically, STFT can be expressed as a function 

of the frequency Co and the position b along the time axis; thus, 

F(w, b) =1 
1f(r)g(a-b)e-10 

dr (2) 

This is the Fourier transform of the function f(t) windowed by 
the function g(t) for all b. A disadvantage of this method is that 
the time and frequency resolutions are constant as determined 
by the constant size of the window used and the fixed number 
of points of the signal exposed by window. Consequently, 
when the signal has a wide frequency bandwidth, STFT cannot 
give the high resolutions for frequency and time 
simultaneously. 

The function F((u, b) in Equation (2) is depicted as a two- 
dimensional colour-coded map where the x-axis denote b, 

which, for a time signal, is time itself, and the y-axis denotes w 

, the frequency. The colour at a point (w, b) represents F(a, 
b). 

3.2 Wavelet transform 
Continuous wavelet transform (CWT) converts a time 

signal f(t) into the time- and scale- domain. The basis 
function used is a mother wavelet, tar(t), analogous to the sine 
or cosine function used in Fourier Transform. CWT is defined 
by [8,9] 

F, (a, b) =- 
_If 

(t)`FI tb Idt (3) 
a N/a 

The quantity in Equation (3) 

_ 
(ý ý ') (4) Ta. b(t) --Yl 

is the wavelet function. The position variable b is the 
translation parameter, same as b in the STFT definition, 
Equation (2). Whereas STFT uses a frequency variable o, 
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CWT involves a scale variable a. Scaling is a primary 
characteristic of wavelet analysis. The mother wavelet 
function tp((t) in Equation (3), besides being a basis 
function, also plays the role of a window function, 
equivalent to g(t) in Equation (3). The scale variable a is 
loosely the reciprocal of the frequency variable CO; 
changing a controls the frequency band. Variable b 
controls the size of the window. It is therefore possible to 
adjust the resolutions of time and scale (frequency) 
independently by changing a and b. 

The function F,. (a, b) in Equation (2) is depicted as a 
two-dimensional colour-coded map where the x-axis 
denote b, which, for a time signal, is time itself, and the y- 
axis denotes b, the scale. The colour at a point (a, b) 
represents F, (a, b). 

3.3 Correlation matching 
Correlation matching is used for pattern recognition in 

the proposed method. The two-dimensional transformed 
images obtained from either STFf or CWT is used to 
compute the similarity coefficient between the reference 
and test images. The method works as follows. 

Given an image f(x, y) of size M by N pixels and a 
reference image w(x, y) of size JxK pixels, one starts by 
placing the geometric centre of the reference image 
w(x, y) on the pixel on the top-left corner of the image 
f(x, y) and then compute the correlation coefficient based 
on the pixels that overlap between the two images. One 
then shifts the geometric centre of w(x, y) one pixel to the 
right along the first row of f(x, y) at which another 
correlation coefficient is calculated. Each pixel in the first 
row is visited in this fashion; and when the first row is 
completed, other rows are visited in turn until the whole 
image f(x, y) is covered. The result is an MxN 
correlation coefficient matrix. The correlation coefficient 
in row s and column t of the matrix is given by [10] 

EEIf(x, y)-7(x, y)J[w(x-s, y-1)-w] 
( ý2 

1/2 Ix 

6 (x, Y)-. %(x, Y)J EElw(x-s, Y-t)-;? 

y JJ 
where 

s=0,1,2,..., M-1, t=0,1,2,.., N-l, W=is the average value 
of pixels in w(x, y) (computed only once), and 7(x, y) = 
the average value of f(x, y) in the region coincident with 
the w(x, y). Furthermore, it should be noted that the 
summation is taken over the image coordinates common 
to both f and w. 

Figure 2 illustrates the procedure. The correlation 
coefficient y(s, t) is in the range of -1 to 1. For perfect 
correlation, 

f (x, y) = w(x, 
. 
Y), ' Y(S, r) =1 

and for imperfect correlation, 

S 

M 

N 

w x-:, y-t) 

-------- ------- (s, ý 

(X, Y) 

Figure 2 Correlation matching of f(x, y) 
and w(x, v) at point (s, t). 

4. Simulation study 
To determine the relative efficiency of discrimination 

between STFT and CWT, the procedure of Figure 1 was 
adopted. Both the reference and test signals are transformed 
by the same technique - either STFf or CWT; the images are 
then compared using correlation matching producing a 
correlation value between -1 and +1. 

Four artificial signals with characteristic wave shapes were 
generated in Matlab using the following formulae: 

Type 1 waveform 

y(t) = e-°. °" sin(1207a) 
(6) 

Type 2 waveform 

y(t) =e -0,021 sin(2407a) + sin(207a) + sin(1O)V)(7) 
Type 3 waveform 

y(t) = e-°-°'r [sin(5079) + sin(30m)) (8) 

Type 4 waveform 

y(t) = e-0'061 sin(207a) + e-0'09t sin(10t) (9) 

The signals thus generated were intentionally corrupted 
with noise that followed a normal distribution (produced using 
the Matlab function, 0.2*randn) to make the signals look more 
realistic. They are shown as in Figures 3a, 4a, 5a and 6a. 

There is a distinction between a reference signal and a test 
signal. A reference signal of a particular type was produced 
from an average of seven instances of the signal of that type 
whereas a test signal is merely one single instance. 

STFT was applied to the reference and test signals for each 
of the four signal types and a correlation coefficient matrix 
then computed from the corresponding pair of two-dimensional 
colour-coded maps shown as Figures 3b, 4b, 5b and 6b. The 

maximum value was then taken from the entries in the 
correlation coefficient matrix and would be used to indicate the 
extent of similarity between the reference and test signals. 
Three test signals were used for the comparison and the results 
are shown in Table 1. It is noted that in each case, correct 
matching has been achieved as the highest correlation 
coefficients always appear in the expected row. 

I >_ y(s, t) >_ -1 
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Figure 3 Source simulated signals and its STFT and CWT 
images of signal Type 1 

1.5 

1 

0.5 

GE 
0 

"0.5 

_1 

Signal type 2r 

(3b) 

(3c) 

(4a) 

Time 
0 50 100 150 200 250 300 350 400 

J 1 OIL fir., dI , 
ýy 

ý W 
ý ýý1M46fvn 

t ý 
:4 

ýý 

200 -ý"ý, ý., cä+Fýii1MlW. 
Time 

100 150 200 250 300 350 400 

CWT image of signal Type 2 

20 
N 

v 
40 

Mr W 

) 

U 

I i 

M 

A 60 Time 
50 100 it)u -ui) _LIU sul) J''II 100 

(4h) 

Oc ) 
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images of signal Type 2 



International Journal of COMADEM 2002 

1.5 

1 

0.5 

0 

-0.5 

0 50 100 150 200 250 300 350 

.7 rT I" , ai rypn q 

- Time 
400 

50 

100 

150 
Am""». 

a,....,. _.... 
a, 

N ..., W 

200`., 

.. 

-----'-------- 
Time 

... 100 150 200 250 300 350 400 

CWT image of signal Type 3 

20 c ei: 
40 
60 Mme 
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images of signal Type 3 
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Tablel Correlation matching results of STFT images 

Correlation coefficient 
Test image (Type 1) 

No. 1 No. 2 No. 3 
Type 1 0.832 0.8211 0.8347 

Reference 
lType2 

0.1376 
10.1613 

0.1753 
image Type 3 0.5188 0.525 0.545 

Type 4 0.3578 10.3578 0.343 

Correlation coefficient 
Test image (Type 2) 

No. 1 No. 2 No. 3 
Type 1 0.2431 0.2974 0.3129 

Reference Type 2 0.7124 0.6723 0.6562 
image Type 3 0.303 0.3328 0.3475 

Type 4 0.3636 0.3636 0.3346 

Correlation coefficient 
Test image (Type 3) 

No. 1 No. 2 No. 3 
Type 1 0.5004 0.5298 0.512 

Reference Type 2 0.1838 0.2176 0.1674 
image Type 3 0.8053 0.7932 0.7819 

Type 4 0.4588 0.4588 0.4515 

Correlation coefficient 
Test image (Type 4) 

No. 1 No. 2 No. 3 
Type 1 0.3423 0.3628 0.3485 

Reference Type 2 0.3232 0.3086 0.2373 
image Type 3 0.4127 0.4645 0.4413 

Type 4 0.9057 0.9057 0.9199 

time and scale (obtained by dilation parameter). Figure 
5 compares both transformed images obtained from the 
same source of simulated signal. 

Correlation coefficient is then computed by applying 
correlation matching to reference and test image. This can 
give the similarity between two images in order to classify 
test image into its category. The highest correlation 
coefficient is used to identify the class of test signal in 
which belong to. The results of correlation coefficient of 
STET images and WT images are shown in table I and 2 
respectively. 

To examine how 3-D images are classified, there are 
three sets of unknown (test) signals and reference signals. 
The correlation coefficient value of the test signal of 
either STFT or WT gives highest correlation value for all 
unknown signal in its class which it belong to. Therefore, 
the recognition rate of the source simulated signal is 100 
percent. However, discrimination capability of using 
STET image is poorer than using STFT image, whilst the 
correlation coefficient of WT image gives the higher 
dissimilarity than the other classes. In addition, the W"I 
image can also reflect the discontinuity characteristic oll 
the signal. 

Table2 Correlation matching results of CWT images 

T 1 
Test image 

ype No. 1 No. 2 No. 3 

Type 1 0.9041 0.9074 0.8715 

Reference Type 2 -0.0889 -0.0498 -0.0797 
image Type 3 0.2964 0.2678 0.3092 

Type 4 0.1157 0.1046 0.1208 

T 2 
Test image 

ype No. 1 No. 2 No. 3 
Type 1 -0.0927 -0.0479 -0.098 

Reference Type 2 0.9909 0.9891 0.9903 
image Type 3 -0.0825 -0.0469 -0.1264 

Type 4 0.2166 0.2099 0.2327 

T 3 
Test image 

ype No. 1 No. 2 No. 3 

Type 1 0.3469 0.3008 0.2279 

Reference Type 2 -0.1413 -0.1047 -0.1233 
image Type 3 0.9739 0.9453 0.9761 

Type 4 0.2718 0.2607 0.2805 

4 
Test image 

Type No. 1 No. 2 No. 3 

Type 1 0.2449 0.1292 0.0206 

Reference Type 2 0.1432 0.1481 0.1626 

image h 
e3 0.26 0.3313 0.3112 

Type 4 0.975 0.9738 6 0.975 

5. Experimental application of the proposed method 
After verifying the program by using computer simulated 

source signal, the actual vibration signals from a bearing test 
rig is performed. The application of the WT image that appears 
to be superior to STFT is then utilised in order to classify 
bearing faults. The experimental setup consists of a spindle 
driven by a DC motor. The rotation speed can be controlled by 

using potentiometer to control the speed of the motor. The 
electric motor provided 20Hz rotation for the bearing shaft. 
The test was performed in a laboratory using the test setup 
shown in Figure 7. 

Figure 7 Test rig set-up 
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A rotating shaft is supported by two bearings. Tapered 
bored FAG 20205K. T. C3 (self-aligning single row) and 
ball FAG 6304 bearings were used in this study. Vibration 
signals were measured in the radial direction by using 
PCB 333A12 accelerometer. One is placed on the top of 
the non-drive end housing, another one is mounted on the 
drive-end housing labeled #1 and #2 respectively. The 
sensor data is digitised with a National Instrument with 3 
channels. The output signals of the sensors were low-pass 
filtered at 1 kHz for anti-aliasing before sampling. The 
sampling rate used in the experiments was 2,000 
samples/second. 

6. Results and discussion 
Measurements were obtained from two kinds of 

machine conditions: normal bearing and a defected 
bearing. In order to accelerate a defect progress, an 
artificial defect is generated by scratching an outer 
raceway of bearing with an electrical discharge machine. 
Since it is impossible to access the inner race of the 
bearing. Figure 8 shows the signal measured on normal 
and defected bearing. 

-1 
-2 

i -1 
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Figure 8 The signal measured from normal and 
outer race defective bearing. 

In the experiment, the signals are collected separately 
as reference and test (unknown) sets. Selection of 
appropriate images is important in the proposed method of 
signal classification. To represent a range of the signals, 7 
waveforms were selected for each class. Then, a reference 
signal can be obtained from averaging the entire signal of 
reference set. The 3-D reference image is obtained by 
applying Wavelet transform. The test set consists of three 
unknown vibration signals. To achieve 3-D image of test 
signal, this can be performed similarly as reference set. 

Figure 9 shows the 16000 pixels used for the correlation 
matching classification. The image consists of 64 pixels in 
frequency scale and 250 pixels in time scale. 

('WT im. -I of nnrmnl hnnrinn 

Figure 9 The 3-D WT image obtained from normal 
and defected bearing signal. 

The classification is performed by using the 3-D image as 
characteristic feature of the signal. The correlation coefficient 
results of normal bearing which are computed by using 
equation (5) are shown in table 3. 

Table 3 Correlation coefficient results 
Condition Test image 

of 
reference Condition No. 1 No. 2 No. 3 

image 

Normal 0.4660 0.8710 0.7204 
Normal 
bearing 

Defected -0.3619 -0.2655 -0.1806 

Normal -0.3427 -0.3642 -0.4186 
Defective 
bearing 

Defected 0.6655 0.3160 0.3102 

From the results, the recognition is promising as it can be seen 
by using highest correlation value obtained from WT image to 
identify its machine condition. Intuitively, another set which 
has lower correlation coefficient is belonged to defected 
bearing category. However, the correlation coefficient results 
achieved by real signals are less than the one obtained from 

source simulated signals. This may caused by the wide band 

noise spread over the measured signal. Therefore, it results the 

change of the shape of the 3-D image. Nevertheless, even the 
distortion of the 3-D image does exist, the characteristic 
feature of the signal is significant enough for signal 
classification. 

-3' II 
0 500 1000 1500 2000 
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7. Conclusion 
In order to classify the machine condition, there are 

many conventional methods yet proven to reveal neither 
transient event nor simultaneous representation of time 
and frequency domain. Therefore, joint time and 
frequency domain analysis is investigated in this study. 
Short-time Fourier transform and Wavelet transform is 
effective method of time-frequency analysis and powerful 
tool for machine condition monitoring. Image processing 
technique has been employed to classify the vibration 
signature of the bearing failure. The correlation matching 
is applied to the transformed image and similarity 
coefficient is then computed. 

From the simulation result, it has been shown that 
using WT images for classification is superior to STFT 
images in its higher correlation coefficient and 
discrimination capability. Therefore, WT image is used as 
characteristic features for machine condition 
classification. Experimental application from a machine 
bearing shows that the proposed method can be used 
successfully to detect a bearing failure. 
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