8,630 research outputs found

    Integrating Data Science and Earth Science

    Get PDF
    This open access book presents the results of three years collaboration between earth scientists and data scientist, in developing and applying data science methods for scientific discovery. The book will be highly beneficial for other researchers at senior and graduate level, interested in applying visual data exploration, computational approaches and scientifc workflows

    Data mining and fusion

    No full text

    Models of everywhere revisited: a technological perspective

    Get PDF
    The concept ‘models of everywhere’ was first introduced in the mid 2000s as a means of reasoning about the environmental science of a place, changing the nature of the underlying modelling process, from one in which general model structures are used to one in which modelling becomes a learning process about specific places, in particular capturing the idiosyncrasies of that place. At one level, this is a straightforward concept, but at another it is a rich multi-dimensional conceptual framework involving the following key dimensions: models of everywhere, models of everything and models at all times, being constantly re-evaluated against the most current evidence. This is a compelling approach with the potential to deal with epistemic uncertainties and nonlinearities. However, the approach has, as yet, not been fully utilised or explored. This paper examines the concept of models of everywhere in the light of recent advances in technology. The paper argues that, when first proposed, technology was a limiting factor but now, with advances in areas such as Internet of Things, cloud computing and data analytics, many of the barriers have been alleviated. Consequently, it is timely to look again at the concept of models of everywhere in practical conditions as part of a trans-disciplinary effort to tackle the remaining research questions. The paper concludes by identifying the key elements of a research agenda that should underpin such experimentation and deployment

    Sharing, and reusing quality information of individual digital datasets

    Get PDF
    Open-source science builds on open and free resources that include data, metadata, software, and workflows. Informed decisions on whether and how to (re)use digital datasets are dependent on an understanding about the quality of the underpinning data and relevant information. However, quality information, being difficult to curate and often context specific, is currently not readily available for sharing within and across disciplines. To help address this challenge and promote the creation and (re)use of freely and openly shared information about the quality of individual datasets, members of several groups around the world have undertaken an effort to develop international community guidelines with practical recommendations for the Earth science community, collaborating with international domain experts. The guidelines were inspired by the guiding principles of being findable, accessible, interoperable, and reusable (FAIR). Use of the FAIR dataset quality information guidelines is intended to help stakeholders, such as scientific data centers, digital data repositories, and producers, publishers, stewards and managers of data, to: i) capture, describe, and represent quality information of their datasets in a manner that is consistent with the FAIR Guiding Principles; ii) allow for the maximum discovery, trust, sharing, and reuse of their datasets; and iii) enable international access to and integration of dataset quality information. This article describes the processes that developed the guidelines that are aligned with the FAIR principles, presents a generic quality assessment workflow, describes the guidelines for preparing and disseminating dataset quality information, and outlines a path forward to improve their disciplinary diversity.The development and baseline of the community FAIR-DQI guidelines document would not have been possible without the voluntary and dedicated effort of the domain experts of the International FAIR-DQI Community Guidelines Working Group. We would like to thank all members of the working group for their interest, participation, and contribution.Peer Reviewed"Article signat per 11 autors/es: Ge Peng , Carlo Lacagnina, Robert R. Downs, Anette Ganske, Hampapuram K. Ramapriyan, Ivana IvĂĄnovĂĄ, Lesley Wyborn, Dave Jones, Lucy Bastin, Chung-lin Shie, David F. Moroni"Postprint (published version

    Global Community Guidelines for Documenting, Sharing, and Reusing Quality Information of Individual Digital Datasets

    Get PDF
    Open-source science builds on open and free resources that include data, metadata, software, and workflows. Informed decisions on whether and how to (re)use digital datasets are dependent on an understanding about the quality of the underpinning data and relevant information. However, quality information, being difficult to curate and often context specific, is currently not readily available for sharing within and across disciplines. To help address this challenge and promote the creation and (re)use of freely and openly shared information about the quality of individual datasets, members of several groups around the world have undertaken an effort to develop international community guidelines with practical recommendations for the Earth science community, collaborating with international domain experts. The guidelines were inspired by the guiding principles of being findable, accessible, interoperable, and reusable (FAIR). Use of the FAIR dataset quality information guidelines is intended to help stakeholders, such as scientific data centers, digital data repositories, and producers, publishers, stewards and managers of data, to: i) capture, describe, and represent quality information of their datasets in a manner that is consistent with the FAIR Guiding Principles; ii) allow for the maximum discovery, trust, sharing, and reuse of their datasets; and iii) enable international access to and integration of dataset quality information. This article describes the processes that developed the guidelines that are aligned with the FAIR principles, presents a generic quality assessment workflow, describes the guidelines for preparing and disseminating dataset quality information, and outlines a path forward to improve their disciplinary diversity

    The Challenge of Machine Learning in Space Weather Nowcasting and Forecasting

    Get PDF
    The numerous recent breakthroughs in machine learning (ML) make imperative to carefully ponder how the scientific community can benefit from a technology that, although not necessarily new, is today living its golden age. This Grand Challenge review paper is focused on the present and future role of machine learning in space weather. The purpose is twofold. On one hand, we will discuss previous works that use ML for space weather forecasting, focusing in particular on the few areas that have seen most activity: the forecasting of geomagnetic indices, of relativistic electrons at geosynchronous orbits, of solar flares occurrence, of coronal mass ejection propagation time, and of solar wind speed. On the other hand, this paper serves as a gentle introduction to the field of machine learning tailored to the space weather community and as a pointer to a number of open challenges that we believe the community should undertake in the next decade. The recurring themes throughout the review are the need to shift our forecasting paradigm to a probabilistic approach focused on the reliable assessment of uncertainties, and the combination of physics-based and machine learning approaches, known as gray-box.Comment: under revie
    • 

    corecore