2,245 research outputs found

    Applying Artificial Neural Network to Optimize the Performance of the Compressor Station: A Case Study

    Get PDF
    This paper presents the implementation of a reprogrammable PLC system as a monitoring control tool in the actual operating environment of a compressor station. A neural network is used to recognize the temperature pattern and to predict the temperature on the compressor station. A cooling system is installed for the optimization purpose of the observed system. The research was conducted in three stages in real working conditions within the production hall. The difference in temperatures with and without the added cooling system is shown. There are gaps in this research that represent opportunities for future development, therefore recommendations for further research are given

    HOME ENERGY MANAGEMENT SYSTEM FOR DEMAND RESPONSE PURPOSES

    Get PDF
    The growing demand for electricity has led to increasing efforts to generate and satisfy the rising demand. This led to suppliers attempting to reduce consumption with the help of the users. Requests to shift unnecessary loads off the peak hours, using other sources of generators to supply the grid while offering incentives to the users have made a significant effect. Furthermore, automated solutions were implemented with the help of Home Energy Management Systems (HEMS) where the user can remotely manage household loads to reduce consumption or cost. Demand Response (DR) is the process of reducing power consumption in a response to demand signals generated by the utility based on many factors such as the Time of Use (ToU) prices. Automated HEMS use load scheduling techniques to control house appliances in response to DR signals. Scheduling can be purely user-dependent or fully automated with minimum effort from the user. This thesis presents a HEMS which automatically schedules appliances around the house to reduce the cost to the minimum. The main contributions in this thesis are the house controller model which models a variety of thermal loads in addition to two shiftable loads, and the optimizer which schedules the loads to reduce the cost depending on the DR signals. The controllers focus on the thermal loads since they have the biggest effect on the electricity bill, they also consider many factors ignored in similar models such as the physical properties of the room/medium, the outer temperatures, the comfort levels of the users, and the occupancy of the house during scheduling. The DR signal was the hourly electricity price; normally higher during the peak hours. Another main part of the thesis was studying multiple optimization algorithms and utilizing them to get the optimum scheduling. Results showed a maximum of 44% cost reduction using different metaheuristic optimization algorithms and different price and occupancy schemes

    The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    Get PDF
    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed

    Generative Adversarial Networks Selection Approach for Extremely Imbalanced Fault Diagnosis of Reciprocating Machinery

    Get PDF
    At present, countless approaches to fault diagnosis in reciprocating machines have been proposed, all considering that the available machinery dataset is in equal proportions for all conditions. However, when the application is closer to reality, the problem of data imbalance is increasingly evident. In this paper, we propose a method for the creation of diagnoses that consider an extreme imbalance in the available data. Our approach first processes the vibration signals of the machine using a wavelet packet transform-based feature-extraction stage. Then, improved generative models are obtained with a dissimilarity-based model selection to artificially balance the dataset. Finally, a Random Forest classifier is created to address the diagnostic task. This methodology provides a considerable improvement with 99% of data imbalance over other approaches reported in the literature, showing performance similar to that obtained with a balanced set of data.National Natural Science Foundation of China, under Grant 51605406National Natural Science Foundation of China under Grant 7180104

    Advanced Warehouse Energy Storage System Control Using Deep Supervised and Reinforcement Learning

    Get PDF
    The world is undergoing a shift from fossil fuels to renewable energy sources due to the threat of global warming, which has led to a substantial increase in complex buildingintegrated energy systems. These systems increasingly feature local renewable energy production and energy storage systems that require intelligent control algorithms. Traditional approaches, such as rule-based algorithms, are dependent upon timeconsuming human expert design and maintenance to control the energy systems efficiently. Although machine learning has gained increasing amounts of research attention in recent years, its application to energy cost optimization in warehouses still remains in a relatively early stage. Suggested newer approaches are often too complex to implement efficiently, very computationally expensive, or lacking in performance. This Ph.D. thesis explores, designs, and verifies the use of deep learning and reinforcement learning approaches to solve the bottleneck of human expert resource dependency with respect to efficient control of complex building-integrated energy systems. A technologically advanced smart warehouse for food storage and distribution is utilized as acase study. The warehouse has a commercially available Intelligent Energy ManagementSystem (IEMS).publishedVersio

    Expanding the Horizons of Manufacturing: Towards Wide Integration, Smart Systems and Tools

    Get PDF
    This research topic aims at enterprise-wide modeling and optimization (EWMO) through the development and application of integrated modeling, simulation and optimization methodologies, and computer-aided tools for reliable and sustainable improvement opportunities within the entire manufacturing network (raw materials, production plants, distribution, retailers, and customers) and its components. This integrated approach incorporates information from the local primary control and supervisory modules into the scheduling/planning formulation. That makes it possible to dynamically react to incidents that occur in the network components at the appropriate decision-making level, requiring fewer resources, emitting less waste, and allowing for better responsiveness in changing market requirements and operational variations, reducing cost, waste, energy consumption and environmental impact, and increasing the benefits. More recently, the exploitation of new technology integration, such as through semantic models in formal knowledge models, allows for the capture and utilization of domain knowledge, human knowledge, and expert knowledge toward comprehensive intelligent management. Otherwise, the development of advanced technologies and tools, such as cyber-physical systems, the Internet of Things, the Industrial Internet of Things, Artificial Intelligence, Big Data, Cloud Computing, Blockchain, etc., have captured the attention of manufacturing enterprises toward intelligent manufacturing systems

    Futuristic Air Compressor System Design and Operation by Using Artificial Intelligence

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)The compressed air system is widely used throughout the industry. Air compressors are one of the most costly systems to operate in industrial plants in terms of energy consumption. Therefore, it becomes one of the primary targets when it comes to electrical energy and load management practices. Load forecasting is the first step in developing energy management systems both on the supply and user side. A comprehensive literature review has been conducted, and there was a need to study if predicting compressed air system’s load is a possibility. System’s load profile will be valuable to the industry practitioners as well as related software providers in developing better practice and tools for load management and look-ahead scheduling programs. Feed forward neural networks (FFNN) and long short-term memory (LSTM) techniques have been used to perform 15 minutes ahead prediction. Three cases of different sizes and control methods have been studied. The results proved the possibility of the forecast. In this study two control methods have been developed by using the prediction. The first control method is designed for variable speed driven air compressors. The goal was to decrease the maximum electrical load for the air compressor by using the system's full operational capabilities and the air receiver tank. This goal has been achieved by optimizing the system operation and developing a practical control method. The results can be used to decrease the maximum electrical load consumed by the system as well as assuring the sufficient air for the users during the peak compressed air demand by users. This method can also prevent backup or secondary systems from running during the peak compressed air demand which can result in more energy and demand savings. Load management plays a pivotal role and developing maximum load reduction methods by users can result in more sustainability as well as the cost reduction for developing sustainable energy production sources. The last part of this research is concentrated on reducing the energy consumed by load/unload controlled air compressors. Two novel control methods have been introduced. One method uses the prediction as input, and the other one doesn't require prediction. Both of them resulted in energy consumption reduction by increasing the off period with the same compressed air output or in other words without sacrificing the required compressed air needed for production.2019-12-0

    Project scheduling under uncertainty using fuzzy modelling and solving techniques

    Get PDF
    In the real world, projects are subject to numerous uncertainties at different levels of planning. Fuzzy project scheduling is one of the approaches that deal with uncertainties in project scheduling problem. In this paper, we provide a new technique that keeps uncertainty at all steps of the modelling and solving procedure by considering a fuzzy modelling of the workload inspired from the fuzzy/possibilistic approach. Based on this modelling, two project scheduling techniques, Resource Constrained Scheduling and Resource Leveling, are considered and generalized to handle fuzzy parameters. We refer to these problems as the Fuzzy Resource Constrained Project Scheduling Problem (FRCPSP) and the Fuzzy Resource Leveling Problem (FRLP). A Greedy Algorithm and a Genetic Algorithm are provided to solve FRCPSP and FRLP respectively, and are applied to civil helicopter maintenance within the framework of a French industrial project called Helimaintenance
    corecore