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Preface to ”Expanding the Horizons of

Manufacturing: Towards Wide Integration, Smart

Systems and Tools”

Over the last twenty years, most companies and researchers have tended to employ a

company-centric view of the supply chain. From this perspective, the supply chain (SC) is perceived

to consisting of the enterprise as a central entity, potentially together with some peripheral partners—

typically, first-tier suppliers and customers. These views involve integrating production and logistics

planning across the enterprise, value-chain management, global network planning, and investment

appraisal. Research on the “extended” supply chain—where the view is much broader, e.g.,

encompassing the suppliers’ suppliers and the customers’ customers—is far less prevalent. This

is almost certainly due to (i) the relative infancy of the discipline, and the fact that considerable

benefits can be achieved simply using company-centric views of the supply chain; and (ii) a

wariness of supply-chain ”partners” and a lack of data sharing.

The aim of creating this research topic is to a) achieve enterprise-wide modeling and

optimization (EWMO) through the development and application of integrated modeling,

simulation, and optimization methodologies, and b) create computer-aided tools for reliable and

sustainable improvement opportunities within the entire manufacturing network (raw materials,

production plants, distribution, retailers, and customers) and its components. This integrated

approach incorporates information from local basic control and supervisory modules to the

scheduling/planning formulation. This makes it possible to dynamically react to incidents

occurring in network components at the appropriate decision-making level, reducing the amount of

resources required, emitting less waste, and facilitating better responsiveness to the changing market

requirements and operational variations. This reduces the cost, waste, energy consumption, and

environmental impacts, increasing benefits.

Moreover, the increase in globalization has significantly increased the scale and complexity of

current businesses. Businesses have become global networks of multiple business units and functions.

Operational functions include R&D, production networks (continuous, discontinuous, and discrete),

and supply networks. These functions are supported by financial planning and marketing strategy

functions. Furthermore, businesses are also subject to internal and external uncertainties. Internal

uncertainties include the unpredictable success rate of R&D projects; the technological risks involved;

and disruptions to production, such as production failures and unforeseen stoppages. External

uncertainties include the fluctuating cost of raw materials and products (unless they are subject to

monopoly fluctuations in the exchange rate), and uncertainties in market size and demand due to

competition and macroeconomic factors. Businesses control their operations through their decisions

regarding capital expenditure, company finances, growth strategies, and operations. Strategic

decisions on capital spending and planning include the technology used, the choice of R&D projects,

and decisions regarding infrastructure and supply-chain management (SCM). Financial decisions are

made by identifying the assets and liabilities required from the working capital for larger projects and

operations, assessing, and protecting the company from, change risk. Examples of tactical production

decisions include planning activities in plants which run on a discontinuous basis to respond to an

anticipated demand, making decisions about the sources of energy used following market prices, and

increasing production capacity in response to the demand-related pressures.
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The current solutions in the field of process systems engineering (PSE) and operations research

tend to only consider subsets of such decisions, even though a business must act as a cohesive body

in which its various functions are, to a certain extent, coordinated. Therefore, from the perspective of

a company, the overall performance will be suboptimum if strategic and tactical decisions are made

independently, as has been the case to date. However, it is significantly more complex for a company

to make decisions that involve its overall interests than it is to make decisions about specific functions.

This explains why research with integral modeling that reflects the overall operation of companies

is scarce.

The PSE community faces an increasing number of challenges; to address these challenges,

enterprise and SCM remain subjects of significant interest because they offer multiple opportunities.

It is anticipated that further progress in this area will bring a unique opportunity to demonstrate

the potential of the PSE approach to enhance a company’s value. As previously mentioned, one of

the critical components of SCM and EWMO is decision-making coordination and integration at all

levels. Most recent contributions offer models that separately address problems arising in the three

standard supply chain (SC) hierarchical decision levels (i.e., strategic, tactical aggregate planning, and

short-term scheduling).

More recently, integrating new technologies through semantic models in formal knowledge

models allows for the capture and utilization of domain knowledge, human knowledge, and expert

knowledge of comprehensive intelligent management. Otherwise, the development of advanced

technologies and tools, such as cyber-physical systems, the Internet of Things, the Industrial Internet

of Things, Artificial Intelligence, Big Data, Cloud Computing, Blockchain, etc., have directed the

attention of manufacturing enterprises toward intelligent manufacturing systems. This Special Issue

also invites contributions from these advanced areas.

In summary, this Special Issue addresses the following concepts:

• Development of advanced mathematical models and methodologies for the integrated

approach of:

◦ The network design problem, such as the location of the plant, warehouses, and

distribution centers, capacity and technology selection, etc.;
◦ The supply chain planning problem, including distribution planning, inventory control,

and product demand forecasting;
◦ The integration of production, financial and environmental aspects, risk, and

uncertainty.

The expected models will tackle a multi-objective view of achieving the necessary trade-off

between often contradictory benefits in terms of economic and environmental benefits, customer

satisfaction, and increased response to dynamic market changes:

• Development of detailed production scheduling at the plant level for batch, continuous,

and discrete manufacturing for online scheduling implemented in practice under real-time

variations and uncertainty;
• Integration of the tracking system of network dynamics within the holistic decision-making

model (e.g., by enclosing a model predictive control framework), thus facilitating equipment

capacity handling similarly at strategic and operational levels and enabling an adequate

response to incidents for enhanced production sustainability;
• Development of suitable frameworks and algorithms for solving these problems in an efficient

and integrated manner (e.g., surrogate problem decomposition, disjunctive programming, and

potentially, Lagrange decomposition);
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• Development of software prototypes for the implementation of the above methodologies and

algorithms, illustrating their applicability in several real-life industrial case studies involving

typical manufacturing/distribution networks belonging to relevant sectors in the world;
• Development of novel frameworks focusing on the utilization of formal knowledge models,

facilitating new technology implementation, and transactional system integration;
• Further development of smart manufacturing systems for the transformation of manufacturing

enterprises, from traditional to the intellectualized ones;
• Development of Intelligent Systems and Intelligent Agents focused on cooperative work

between human beings and computers, enhancing the capability of human decision making

and problem solving in the process engineering field.

Luis Puigjaner, Antonio Espuña Camarasa, Edrisi Muñoz Mata, and Elisabet Capón Garcı́a

Editors
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This research topic aims at enterprise-wide modeling and optimization (EWMO)
through the development and application of integrated modeling, simulation and optimiza-
tion methodologies, and computer-aided tools for reliable and sustainable improvement
opportunities within the entire manufacturing network (raw materials, production plants,
distribution, retailers, and customers) and its components. Such an integrated approach
incorporates information from the local basic control and supervisory modules into the
scheduling/planning formulation, making it possible to react dynamically to incidents
occurring in the network components at the appropriate decision-making level.

A wide-integrated solution should allow enhanced coordination and cooperation
between network components by avoiding competition, eventually leading to local optima
and inefficiency associated with inconsistent isolated decisions at different levels. Such
a wide-integrated solution approach would provide new structural alternatives, more
effective management policies, more economical design options. Moreover, the solution
obtained can work in practice requiring fewer resources, emitting less waste, and allowing
for better responsiveness to changing market requirements and operational variations, thus
reducing cost, waste, energy consumption, environmental impact, and increased benefits.

More recently, the exploitation of new technology integration, such as through seman-
tic models in formal knowledge models, allows capturing and utilizing domain knowledge,
human knowledge, and expert knowledge towards comprehensive intelligent management.
Otherwise, the development of advanced technologies and tools such as cyber-physical
systems, the Internet of Things, the Industrial Internet of Things, artificial intelligence,
big data, cloud computing, and blockchain, have captured the attention of manufacturing
enterprises toward intelligent manufacturing systems. This Special Issue also calls for
contributions from these advanced areas.

In summary, we look for articles addressing (but not limited to) the following concepts:

• the development of advanced mathematical models and methodologies for the inte-
grated approach;

• the network design problem, such as the location of the plant, warehouses, and
distribution centers, and capacity and technology selection;

• the supply chain planning problem, including distribution planning, inventory control,
and product demand forecasting;

• the integration of production, financial and environmental aspects, risk, and uncertainty.

The expected models will tackle a multi-objective view of achieving the necessary
trade-off between often contradictory benefits in terms of economic, environmental, cus-
tomer satisfaction, and increased response to dynamic market changes:

• the development of detailed production scheduling at the plant level for batch, con-
tinuous and discrete manufacturing for online scheduling implemented in practice
under real-time variations and uncertainty;

Processes 2022, 10, 772. https://doi.org/10.3390/pr10040772 https://www.mdpi.com/journal/processes1
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• the integration of the tracking system of network dynamics within the holistic decision-
making model (e.g., by enclosing a model predictive control framework), thus facili-
tating equipment capacity handling similarly at strategic and operational levels and
enabling adequate response to incidents for enhanced production sustainability;

• the development of suitable frameworks and algorithms for solving these problems in
an efficient and integrated manner (e.g., surrogate problem decomposition, disjunctive
programming, Lagrange decomposition);

• the development of software prototypes for the implementation of the above method-
ologies and algorithms, illustrating their applicability in several real-life industrial case
studies involving typical manufacturing/distribution networks belonging to relevant
sectors in the world;

• the development of novel frameworks focusing on the utilization of formal knowledge
models, facilitating new technologies implementation, and transactional system integration;

• the further development of intelligent manufacturing systems for the transformation
of manufacturing enterprises, from the traditional to the intellectualized;

• the development of intelligent systems and intelligent agents focused on cooperative
work between human beings and computers, enhancing the capability of human
decision-making and problem solutions in the process engineering field.

In the following, you will find selected contributions (original research, reviews,
opinions, and perspectives) regarding this research topic. They bring novel solution
approaches accompanied by rich case studies and examples of practical interest.

1. Original Research

The articles in this Special Issue examine different facets of enterprise-wide model-
ing and optimization through the development and application of integrated modeling,
simulation and optimization methodologies, and computer-aided tools for reliable and
sustainable improvement opportunities within the entire manufacturing network.

The contribution by David Bogle et al. [1] addresses the present and future situation
of the high complexity inherent with batch manufacturing of many products. The intrinsic
flexibility associated with batch manufacturing has been the choice of most pharma prod-
ucts manufacturing. As a result, it is usual to see a battery of batch reactors in the pharma
industry or single batch reactors with high and complex inlet and outlet pipe connections,
some of them unused, because different or new products appear in the industry portfolio.
The net result is increasing the cost of the final product. Instead, this original paper offers
a novel approach: The use of operational envelopes to study the trade-off between the
design and operational flexibility of a tablet manufacturing process. Moreover, using an
alternative adaptive sampling technique will alleviate the significant computational burden
associated with the operational envelopes. Finally, a critical fluidized bed dryer case study
at the heart of the continuous manufacturing of tablets supports the paradigm shift change
to continuous manufacturing.

The paper by M. Ziyan Sheriff et al. [2] also examines the transition from batch to
continuous processes in the pharmaceutical industry. In order to enable the quality-by-
control (QbC) paradigm to move forward, this work developed and presented a moving
horizon estimation-based nonlinear model predictive control (MHE-NMPC) framework
to accomplish the dual requirement of accurate estimation and efficient control. The real-
time implementation feasibility of the developed framework was also discussed, and the
ability of the proposed framework to solve the optimization problem at each time step in a
manner that enabled real-time implementation was highlighted. The practical applicability
of the developed framework was corroborated through two realistic case studies that
incorporated the effects of glidant to better control CQAs such as the tensile strength.
Both examples demonstrated the ability of the framework to achieve reasonable control
performance despite the presence of varying sources and degrees of plant model mismatch.

The work by Zixue Guo et al. [3] proposes an evaluation model that addresses the
problem of fuzziness and randomness in regional logistics decarbonization, assessing its
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development. An evaluation index contemplates three dimensions: low-carbon logistics
environment support, low-carbon logistics strength, and low-carbon logistics potential.
Secondly, the evaluation indexes serve as cloud model variables, and the cloud model
theory determines numerical characteristic values and cloud affiliation degrees. Finally, the
entropy weight method determines the index weights and calculates the comprehensive
determination degree of the research object affiliated with the logistics decarbonization
level. Finally, the Beijing–Tianjin–Hebei region is the example used for empirical evidence,
analyzing the development of logistics decarbonization and its temporal variability in
Beijing, Tianjin, and Hebei provinces and cities. The study results show that the develop-
ment of logistics decarbonization in Beijing, Tianjin, and Hebei Province has improved to
different degrees from 2013–2019, but the development is uneven. Developing to 2019, the
three provinces and cities of Beijing, Tianjin, and Hebei still have significant differences in
terms of the economic environment, logistics industry scale, logistics industry inputs and
outputs, and technical support.

In their article, Vivek Dua et al. [4] aim to introduce a method for designing multi set-
point explicit controllers for nonlinear systems through recent advances in multi-parametric
programming. Multi-parametric programming (mp-P) has received considerable attention
from the process systems engineering community because of its unique ability to aid in
the design of explicit model predictive controllers and thus shift the computational burden
associated with offline control. The authors examine a case of multi-parametric nonlinear
programs (mp-NLPs) that involve both endogenous uncertainties, in the form of left-hand
side parameters (LHS), as well as exogenous uncertainty in the cost coefficient of the
objective function (OFC), and, on the right-hand side of the constraints (RHS), uncertain
parameters on the right-hand side (RHS). In engineering problems, LHS uncertainty arises
from variations in model coefficients, due to parameter estimation errors or model mis-
match; OFC uncertainty arises due to fluctuation in market prices or control penalties while
RHS uncertainty can be due to varying system exogenous factors. The contribution of the
present work is a novel framework for the design of multi set-point explicit controllers for
nonlinear process systems.

As a demarcation of the past, present and future of intelligent systems, a Tri-X In-
telligence (T.I.) model is proposed in this paper by Baicun Wang et al. [5] to state the
mechanism, factors, and connotation of three main entities (conscious humans, physical
objects, and cyber entities), including single-X intelligence, two-X integrated intelligence,
and three-X complex intelligence. Every single entity shows primitive intelligence. Two-
entity integration creates integrated intelligence. Three-entity fusion generates advanced
intelligence. The intelligentization mechanism of artificial systems continuously converts
human intelligence to machine intelligence via different channels and interfaces. With
the increasing use of machine intelligence, humans will gradually play a less significant
role in intelligent systems. However, human intelligence will keep influencing artificial
systems in the form of software/algorithms to drive intelligent systems. Therefore, we
cannot take humans out of the systems given the accelerating development of technology.
The key to success is to adapt humans to new work environments, i.e., not to replace but
to enhance. According to the Tri-X Intelligence (T.I.) model, humans need to think more
about how to collaborate with cyber systems rather than with intelligent systems, a Tri-X
Intel than training operators to work like computers. The proposed Tri-X model (e.g.,
Human-Cyber-Physical-System HCPS) will integrate the intelligence in the complex system
with a combination of human-cyber-physical and machine subsystems.

In addition, Sujeon Baek et al. [6] prepared a testbed for conducting a pick-up operation
using a vacuum gripper with a single suction cup. Using the proposed method, the air
pressure in the Venturi line was automatically monitored in real-time. When a command for
starting suction was provided to the gripper, a sharp decrease in the collected air pressure
signals appeared at approximately 0.5 s. However, the same decline was not observed in
the signal for faulty box surfaces; consequently, the suction action and the corresponding
gripper operation were not performed owing to insufficient contact between the suction
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cup(s) and the contact surface of the object. Using the early detection results derived
from the air pressure signal analysis, a prediction-based process adjustment method for
the pick-up operation was proposed. Through pick-up experiments using the developed
testbed, it was revealed that the z-position of the suction cup significantly affects whether
an object is gripped adequately by the vacuum gripper or not. Therefore, it is possible to
determine a possible error situation in advance (before the failure of the lifting operation)
and provide appropriate feedback control commands so that the target operation is finished
successfully without stopping machine operations.

The process, manufacturing, and service industries face many non-trivial challenges
in a customized market environment, from product conception, design, development, com-
mercialization, and delivery. Thus, industries can benefit by integrating new technologies
into their day-by-day tasks gaining companies profitability. Puigjaner et al. [7] present
an integrated model framework for enterprise process development activities called a
“Comprehensive intelligent management architecture model for integrating new technolo-
gies for services, processes, and manufacturing who strive for finding the most efficient
way towards enterprise and process intelligence.” The model comprises and structures
three critical systems: process, knowledge, and transactional. As a result, analytical tools
belonging to process activities and transactional data systems are guided by a systematic
development framework consolidated with formal knowledge models. Thus, the model im-
proves the interaction among processes lifecycle, analytical models, transactional systems,
and knowledge. Finally, a case study systematically presents an acrylic fiber production
plant applying the proposed model, demonstrating how the three models described in the
methodology work together to systematically achieve the desired technology application
of life cycle assessment. The results conclude that the interaction between the seman-
tics of formal knowledge models and the processes-transactional system development
framework facilitates and simplifies new technology implementation along with enterprise
development activities.

Compared with other fossil fuels, natural gas (N.G.) is considered a sustainable and
potential energy source in the future. Being liquefied, natural gas (LNG) is 600 times
smaller than the gaseous state of N.G., LNG becomes especially attractive if obtained at
a competitive cost. The authors of this article, Liang Zhao et al. [8], show that model-
ing and optimizing the LNG terminals may also reduce energy consumption and GHG
emissions. In this work, the authors propose an operational optimization model of the
LNG terminal to minimize the energy consumption of boil-off gas (BOG) compressors and
low pressure (L.P.) pumps. Finally, an MINLP model determines whether the pumps are
running or on standby, and the number of compressor level chosen as a binary variable.
The model can propose operating strategies for varied flow rates of the send-out speed,
and the ambient temperature can be offered using the model. An actual case study on the
LNG terminal is presented to indicate the effectiveness of the proposed approach. Finally,
the optimization model provides the minimum energy consumption and the correspond-
ing decision variables. The optimized compressor load and recirculation flow rate were
8.44 t/h and 122.58 t/h, respectively. Compared with the previous period, 26.1% of
energy can be saved after optimization. About 16.21% of energy consumption can be
saved annually.

In his challenging article, Heinz A. Preisig [9] presents “Reductionism and splitting
application domain into disciplines and identifying the smallest required model-granules,
termed “basic entity” combined with systematic construction of the basic entities, yields
a systematic approach to process modeling.” They do not aim toward a single modeling
domain, but enabling specific application domains and object inheritances to be addressed.
They start with reductionism and demonstrate how the basic entities depend on the tar-
geted application domain. They use directed graphs to capture process models, and
introduce a new concept, which they call “tokens,” that enables the extension of the context
beyond physical systems. The network representation is hierarchical to capture complex
systems. The interacting basic entities are defined in the leave nodes of the hierarchy,

4



Processes 2022, 10, 772

making the overall model the interacting networks in the leave nodes. Multi-disciplinary
and multi-scale models result in a web of networks. They identify two distinct network
communication ports, namely, ports that exchange tokens and ports that transfer infor-
mation of tokens in accumulators. An ontology captures the structural elements and the
applicable rules and defines the syntax to establish the behavior equations. Linking the
behaviors to the fundamental entities defines the alphabet of a graphical language. They
use this graphic language to represent processes which have proven to be efficient and valu-
able. Then, a set of three examples demonstrates the power of graphical language. Finally,
the Process Modelling framework (ProMo) implements an ontology-centered approach to
process modeling and uses graphic vocabulary to construct process models.

In this article, Ignacio Grossmann et al. [10] address an inventory management problem
for a make-to-order supply chain with inventory holding and-or manufacturing locations at
each node. The lead times between nodes and production capacity limits are heterogeneous
across the network. This study focuses on a single product, a multi-period centralized
system in which a retailer is subject to uncertain stationary consumer demand at each time
period. The authors consider two sales scenarios for unfulfilled demand: backlogging or lost
sales. The daily inventory replenishment requests from immediate suppliers throughout
the network are modeled and optimized using three different approaches: (1) deterministic
linear programming, (2) multi-stage stochastic linear programming, and (3) reinforcement
learning. The performance of the three methods is compared and contrasted in terms of
profit (reward), service level, and inventory profiles throughout the supply chain. The
proposed optimization strategies testing occurs in a stochastic simulation environment
built upon the open-source OR-Gym Python package. The results indicate that stochastic
modeling yields the most significant increase in profit of the three approaches. In contrast,
reinforcement learning creates more balanced inventory policies that would potentially
respond well to network disruptions. Furthermore, deterministic models perform well in
determining dynamic reorder policies comparable to reinforcement learning in terms of
their profitability.

In an inspiring novel article, Zeinab Shahbazi and Yung-Cheol Byun [11] bring the lat-
est developments and experimental results on smart manufacturing. The modern industry,
production, and manufacturing core is developed based on smart manufacturing (S.M.)
systems and digitalization. Smart manufacturing’s practical and meaningful design follows
data, information, and operational technology through the blockchain, edge computing,
and machine learning to develop and facilitate the smart manufacturing system. This pro-
cess’s proposed intelligent manufacturing system considers the integration of blockchain,
edge computing, and machine learning approaches. Edge computing balances the com-
putational workload and similarly provides a timely response for the devices. Blockchain
technology utilizes the data transmission and the manufacturing system’s transactions,
and the machine learning approach provides advanced data analysis for a vast manufac-
turing dataset. Finally, the model solves the problems using a swarm intelligence-based
method regarding intelligent manufacturing systems’ computational environments. The
experimental results present the edge computing mechanism and similarly improve the
processing time of a large number of tasks in the manufacturing system.

Present increasing regulatory demands force the pharmaceutical industry to invest
its available resources carefully. That is especially challenging for small and middle-
sized companies. For example, computer simulation software such as FlexSim allows one
to explore variations in production processes without interrupting the running process.
Claus-Michael Lehr et al. [12] applied a discrete-event simulation to two approved film-
coated tablet production processes in this article. The simulations were performed with
FlexSim (FlexSim Deutschland, Ingenieurbüro für Simulationsdienstleistung Ralf Gruber,
Kirchlengern, Germany). Process visualization required the use of Cmap Tools (Florida
Institute for Human and Machine Cognition, Pensacola FL, USA), and statistical analysis
used MiniTab® (Minitab GmbH, Munich, Germany). The most critical elements identified
during model building were the model logic, operating schedule, and processing times.
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These factors required graphically and statistically verification. In addition, employee
utilization optimization required three different shift systems to be simulated, revealing the
advantages of two-shift and one-and-a-half-shift systems compared to a one-shift system.
Finally, without interrupting any currently running production processes, we found that
changing the shift system could save 50–53% of the campaign duration and 9–14% of the
labor costs. In summary, we demonstrated that FlexSim, mainly used in logistics, can also
be advantageous for modeling and optimizing pharmaceutical production processes.

Tibor Krenicky et al. [13] present a study on the surface quality dependency on the
selected parameters of cuts made in Hardox by abrasive water jet (AWJ). The authors applied
the regression process to measured data and prepared the Ra and Rz roughness parameters
equation. One set of regression equations describes the relationship of Ra and Rz on cutting
parameters—pumping pressure, traverse speed, and abrasive mass flow rate. The second set
of regression equations describes relationships between the declination angle in kerf as the
independent variable and the Ra or the Rz parameters as dependent variables. Finally, the
models can predict cutting variables to predict the surface quality parameters.

The complexity of the automated guided vehicles (AGV) system requires substantial
decision-making and is challenging to solve. The authors Adrian Kampa et al. [14], use
the flexible manufacturing system solution with the associated AGV transport system and
discuss such systems’ design and simulation issues. The initial system design optimization
stage is crucial, and computer simulation enables relatively easy elaboration and testing
of various manufacturing and logistics systems variants. On the other hand, excessive
simplifications may appear applied at the modeling stage, making the simulation not reflect
the production system properly. On the other hand, it is worth noticing that detailed
modeling is very labor-intensive and requires the involvement of experienced specialists.
Therefore, choosing which parameters to use in the modeling process and which metric to
evaluate the model. Finally, to make the simulation more accurate and assess the system’s
productivity, the authors propose using overall equipment effectiveness (OEE) metrics. The
results obtained from the presented simulations show that the OEE metrics may be helpful
in the modeling and productivity evaluation of manufacturing and logistics systems, with
the generalization of overall factory effectiveness (OFE) and overall transport effectiveness
(OTE). The use of OEE factors also allows for comparison of the results obtained from
different manufacturing systems. For example, many of them with OEE scores lower than
45% in the real world and a small number of world-class companies have an OEE value
higher than 85%. Accordingly, the simulation results can also be helpful in analyzing the
costs involved in implementing a given project and at the stage of the in-depth design of
the production system.

The following work addresses the closed-loop stability problem with an application to
refinery preheats trains’ online cleaning schedule stability problem under fouling. Lozano
Santamaría and Sandro Macchietto [15] focus on the sources of instability and ways to miti-
gate it. The various metrics developed to quantify schedule instability for online scheduling
account for distinct aspects, such as changes in task allocation, task sequence, starting time
of the task, and the earlier or later occurrence of such changes in the future scheduling
horizon. Based on the proposed methods, further stability metric variations could be
quickly developed (for example, ways of assigning weights to distinct contributions to a
schedule change). These stability considerations can be practically and, in a rather general
way, introduced in a closed-loop nonlinear model predictive control (NMPC) formulation
of the optimal scheduling and control problem and solved online over a moving horizon,
in terms of penalties in an economic objective or via additional constraints. The above
methods demonstrated to be helpful for the online cleaning scheduling and flow control of
refinery preheat trains, a challenging application with significant economic, safety, and en-
vironmental impact. A demanding industrial case study followed an illustrative, small but
realistic case study. Results show that, of the three alternatives evaluated, the terminal cost
penalty proved to be inefficient in this case. The other two (fixing some predictions horizon
decisions and penalizing schedule changes between consecutive evaluations) improved the
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closed-loop schedule stability against various economic penalties. The results highlight
the importance of including stability considerations in an economically oriented online
scheduling problem to obtain feasible solutions for operators over long operating horizons
without sacrificing the benefits of a reactive system to reject disturbances or take advantage
of them. The application of the metrics developed in this manuscript is not restrictive to
the specific closed-loop NMPC scheduling implementation detailed here. They are helpful
to assess schedule stability in general regardless of how schedules are calculated, only
relying on the existence of two consecutive evaluations or predictions of the schedule
within a common period. The two successive instances may have different control horizons,
scheduling horizons, or update frequency. Lastly, although this work dealt with a specific
application (the optimization of refinery heat exchanger networks subject to fouling), the
formulations and solution approach demonstrated here should apply to important systems,
such as batch and semi-continuous processes.

Mohammed Alkahtani et al. [16] enlighten the management of the man-machine in-
teraction as essential to achieving a competitive advantage among production firms and
specifically more highlighted in the case of processing agricultural products. The authors
design a non-derivative technique to integrate an algebraic approach in the agri-product
based supply chain to optimize the resources and coup with variable demands through a
controllable production rate. The analysis provides a platform for manufacturing managers
to invest in advanced technology in agricultural supply chain management (agri-SCM),
leading to a less rejection production environment for clean manufacturing. The solution
methodology of the proposed model included manufacturing limitations in the integra-
tion of the objective formulations with the developed system. The authors use sensitivity
analysis to evaluate sensitivity for an optimal solution to the value of uncertain parameters,
providing confidence in the model’s resolution. Managerial insights are beneficial to agri-
cultural supply chain management (agri-SCM) for the agri-food processing industry, and
the people with cleaner production and carbon emission prioritized policies. The authors
can extend the research into a three-echelon agri-SCM model by considering the farming
industry and agri-retailer. The fuzzy set theorems can deal with costs, prices, inflation,
and time value uncertain factors. Finally, the authors envisage a feasible conversion of
the deterministic model into probabilistic or stochastic theorems for application in real
scenarios. Overall, the agri-product supply chain requires global development to make
food more secure and accessible.

In the following article, Dejan Gradišar and Miha Glavan [17] consider a manufactur-
ing problem requirement plan. This plan must satisfy the capacity needs and be available
by the work order’s due date. In addition to this, the program must also consider a group
of work orders to produce from the same batch of raw material. In this way, the manu-
facturer can systematically compensate for some undesirable variations in raw material
quality. In day-to-day practice, the plan management makes it challenging to maintain
the plan up-to-date, even in smaller dimensions. As a result, the operator’s decisions
are time-consuming and prone to errors. That results in situations in which the operator
must constantly make plan corrections. Finally, this paper proposes using an extended
bin-packing problem formulation to solve the material planning systematically. Finally,
a fundamental bin-packing problem (BPP) formulation requires an extension to include
constraints such as variable bin and item sizes. For example, one can use time limitations
and only a group of bins to produce one group of items. The suggested solution offers a
tool for supporting the production planner’s decisions. With it, they can determine how
to efficiently cut the raw material to satisfy the planned work orders. Depending on the
situation, the planner can choose between various model formulations. Additionally, they
can optimize the leftover, tardiness, or both. Finally, we demonstrated that the proposed
solution could quickly solve a problem of realistic dimensions to be of use in an indus-
trial application. However, case-specific requirements would first need to be analyzed to
prioritize the importance of leftovers and/or tardiness in real applications.
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Andrzej Paszkiewicz et al. [18] propose a novel approach for integrating the dis-
tributed additive manufacturing process enabling remote designing, selecting appropriate
manufacturing means, and implementing a physical production process and control at all
stages. This approach was possible thanks to the development of an unprecedented frame-
work. The authors integrated distributed and functionally different elements (Informative
Technology (I.T.) and manufacturing), forming a coherent design and manufacturing sys-
tem. Importantly, this framework ensures an increase in production efficiency, shortens
production time, reduces costs, and increases flexibility and accessibility to the latest meth-
ods and design and manufacturing tools. In addition, they presented a mechanism that
facilitates the integration of independent manufacturing environments by considering and
implementing appropriate levels of maturity in the system. The implementation in a natu-
ral production environment, i.e., at Infosoftware Poland, confirms the proposed solution’s
validity. At present, work is in progress to integrate the rapid prototyping laboratory of the
Rzeszów University of Technology. In addition, the automotive and aerospace industries
can widely use the presented platform. In addition, it will facilitate cooperation between
industrial clusters and academic centers to a higher degree and encourage collaboration
between small enterprises and startups. Finally, from the perspective of management, the
technical implementation of the presented framework allows one to adapt to the needs of
globalization and facilitates the integration of distributed resources. Thus, this framework
affects business, logistics, and technological processes. One of the implications of imple-
menting such a framework is the need to develop or adapt existing workflows to the new
heterogeneous and distributed work environment.

2. Review

The review by Marianthi Ierapetritou et al. [19] informs the reader of the latest devel-
opment and application of emerging technologies of Industry 4.0, enabling the realization
of digital twins (D.T.). D.T.s is a crucial development of the close integration of manu-
facturing information and physical resources that raise much attention across industries.
The critical parts of a fully developed D.T. include the physical and virtual components
and the interlinked data communication channels. Following the development of Internet
of Things (IoT) technologies, there are many applications of D.T. in various industries,
but the progress is lagging for pharmaceutical and biopharmaceutical manufacturing.
This review paper summarizes the current state of D.T. in the two application scenarios,
providing insights to stakeholders and highlighting possible challenges and solutions to
implementing a fully integrated D.T. In pharmaceutical manufacturing, building blocks of
a D.T., including process analytical technology (PAT) methods, data management systems,
unit operations, flowsheet models, system analyses methods, and integration approaches,
have all been developed in the last few years, but gaps in PAT accuracy, real-time model
computation, model maintenance capabilities, real-time data communication, as well as
concerns in data security and confidentiality, are preventing the full integration of all the
components. Several insights seem appropriate to solve these challenges. First, developing
new tools such as near-infrared spectroscopy (NIRS) and in-line U.V. spectroscopy, iterative
optimization technologies, and different online adaptive methodologies can help resolve
the existing issues in PAT methods. Second, efficient algorithms and reduced-order model-
ing approaches need further study for process models to reduce simulation time to achieve
real-time computation. Third, adaptive modeling methods with online streaming data will
be under further investigation in model maintenance. Third, to have a fully integrated and
automated D.T., the information flow from the virtual component to the physical plant also
must be established. Moreover, the virtual plant should be able to change system settings
and control the physical plant to help achieve an optimized process within the design space.
Ideally, all these components require appropriate physical and virtual security protocols.
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3. Opinion

In the past few years, pharmaceutical products have evolved toward disease- and
patient-specific therapeutics involving meticulous manufacturing steps. In addition, cell-
based therapeutics and vaccines present high sensitivity to environmental and transport
conditions, complicating supply chain logistics. Increased drug specificity and demand
uncertainty add further complexity to the design and operation of robust manufacturing
processes and distribution networks. As Maria M. Papathanasiou et al. [20] discuss in
their paper, the pharmaceutical industry has taken significant steps toward improving
existing and-or developing novel processes that promise agile, responsive, and repro-
ducible manufacturing. Similarly, distribution networks in the pharmaceutical sector are
undergoing a paradigm shift, exploring the capabilities of decentralized models. Such
developments accompany digital innovation in the pharmaceutical industry that enables
seamless communication between process units, production plants, and distribution nodes.
As discussed earlier, process systems engineering has been at the forefront of allowing
digitalization through the development of computer modeling tools. The latter can assist
with real-time monitoring of critical storage conditions for sensitive pharmaceutical prod-
ucts with short shelf-life, thus increasing drug safety. One of the main challenges hindering
the fast exploitation of Industry 4.0 principles in pharmaceutical manufacturing is a mindset
change. Practitioners should embrace the benefits arising from the realization of Pharma 4.0
towards replacing paper-based systems with cloud-based servers. That will allow significantly
improved agility and productivity in the operations of the pharmaceutical sector.

4. Perspective

The authors of the perspective, Krist V. Gernaey et al. [21], emphasize that despite
the benefits of continuous over-batch bioprocessing, its adoption has lagged, with few
exceptions. However, the batch manufacturing paradigm’s dominance in the industry for
reasons such as “batch processing is familiar and works very well” cannot be sustained in
the long term, given the new biomanufacturing challenges. Moreover, the industry-held
perception of complexity in continuous bioprocessing is becoming obsolete as more and
more new technologies and solutions continually improve the situation. Several academic-
and industry-led consortia are working to improve the perception regarding continuous
bioprocessing by bringing the questions to the correct stakeholders who can address them.
The training provided by these initiatives to the top management of the companies is
playing an essential role in changing the perception and, at the same time, also creating
new scientists and operators that can understand and respond to a new set of operational
challenges. However, wider adoption of continuous bioprocessing will only be possible
if the technical, management, and regulatory gaps are acknowledged. This paper argues
that concerted efforts focusing on technology, management, and regulatory aspects are
abridging them.
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Abstract: Market globalisation, shortened patent lifetimes and the ongoing shift towards personalised
medicines exert unprecedented pressure on the pharmaceutical industry. In the push for continuous
pharmaceutical manufacturing, processes need to be shown to be agile and robust enough to handle
variations with respect to product demands and operating conditions. In this paper we examine the
use of operational envelopes to study the trade-off between the design and operational flexibility of
the fluid bed dryer at the heart of a tablet manufacturing process. The operating flexibility of this
unit is key to the flexibility of the full process and its supply chain. The methodology shows that for
the fluid bed dryer case study there is significant effect on flexibility of the process at different drying
times with the optimal obtained at 700 s. The flexibility is not affected by the change in volumetric
flowrate, but only by the change in temperature. Here the method used a black box model to show
how it could be done without access to the full model equation set, as this often needs to be the case
in commercial settings.

Keywords: pharmaceutical manufacture; uncertainty; operational flexibility; operational envelopes; modeling

1. Introduction

The power of big data, emanating from the process and from customers, is having
a number of effects on manufacturing. With coordinated access to reliable data, a man-
ufacturer can respond more rapidly and efficiently to supply chain demands. However,
with data comes the capability and often the demands from internal and external stake-
holders (customers, shareholders, regulators, neighbours, etc.) for greater transparency of
operations. Industry is going through something of a revolution to realise these aims. It is
known as Smart Manufacturing, Industry 4.0 or Digitalisation because of the capabilities
enabled by greater computing power, smarter algorithms, better measurement, and wider
connectivity. The smart manufacturing revolution is said to have three phases [1,2]:

1. Factory and enterprise integration and plant-wide optimisation,
2. Exploiting manufacturing intelligence,
3. Creating disruptive business models.

For the process industries, all three phases are likely to drive significant change [1–6].
To a considerable extent, the first phase has been well underway for a decade or more,
particularly plant wide optimisation. The exploitation of big data from enhanced process
measurement, as well as using data for demand, supply and the operating environment,
is enabling the second phase which is also to some extent underway. Key enablers are
methods to manage flexibility and uncertainty, responsiveness and agility, robustness
and security, the prediction of mixture properties and function, and new modelling and
mathematics paradigms [2]. The third phase is less clear, but the drivers for personalised
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medicine may affect the pharmaceutical industry more rapidly. Over the last decade
there has been an increasing industrial and research interest in the concept of continuous
pharmaceutical manufacturing (CPM). CPM offers the benefits of better resource utilisation,
reducing energy costs and the potential for operating at processing conditions that would
otherwise be prohibitive within the conventional batch setting [7,8]. A key issue related
to CPM is the systematic identification of the attainable regions, typically referred to as
the design space, in order to employ optimisation for the design and operation of such
processes [9].

Pharmaceutical processes involve a number of features which challenge current mod-
elling and control paradigms. They involve multiple phases: solids, liquids and gases
often with multiple liquid phases; they are typically combinations of batch and continuous
units; and there are tighter regulatory frameworks for their operation than for chemical
processes. Litster and Bogle [10] have highlighted the potential for Smart Manufacturing
in processes for formulated products which is the form of many pharmaceuticals. Formu-
lated products are structured, multiphase products (i.e., granules, tablets, emulsions, and
suspensions) whose performance characteristics—critical quality attributes (CQAs)—are
just as dependent on the product structure as they are on the chemical composition (see
for example [11,12]). To this end, a variety of process systems engineering tools have been
investigated for materialising Quality by Design (QbD) initiatives (see for example [13]).
Diab and Gerogiorgis [14] surveyed recent development for the design space identification
and visualisation for CPM while the same authors have proposed the use of flowsheeting
for technoeconomic assessment for the synthesis and crystallisation of rufinamide [14] and
nevirapine [15]. Recognising the inherent difficulty in accurately deriving first-principles
mechanistic models for CPM units, Boukouvala et al. [8,9] proposed the use of Kriging
data-driven models for the dynamic modelling of unit operations. In their work, dynamic
Kriging models showed the ability to efficiently adapt across transition regimes and out-
performed the accuracy of neural network modelling. Recently, Nagy et al. [16] presented a
dynamic, integrated flowsheet model for the continuous manufacturing of acetylsalicylic
acid which entailed a two-step flow synthesis and crystallisation.

Litster and Bogle [9] outlined the potential challenges and opportunities for Smart
Manufacturing for formulated products. Pressures on healthcare providers is requiring
greater efficiency and less inventory within a more changeable regulatory environment.
Personalised medicine will require much more responsive manufacturing for specific
patient groups. The industry is expected to bring products faster to market, as the recent
pandemic has demonstrated for vaccines. This all requires greater agility and flexibility
within the context of greater uncertainty of demand and of raw materials. This will
need greater use of mature model-based tools—for design, control and supply chain
optimization—to enable the managing of complexity and uncertainty. Many tools are
available but there is a lack of experience and often concern about the fidelity of the models
and their ability to predict with sufficient accuracy. This is exacerbated by the tendency
of optimisers to push operations to the limits of well understood operation. Recently,
Chen et al. [17] surveyed a variety of contributions from the process systems engineering
community and outlined challenges and opportunities for the deployment of digital twins
in pharmaceutical and biopharmaceutical manufacturing.

Uncertainty is caused by a wide range of factors: variability in quality and supply of
raw materials, in customer demand, and in environmental and utility conditions, and in
batch processes the effects of manual operations which is required. The potential impact of
uncertainty on the quality of pharmaceutical products in the context of continuous phar-
maceutical manufacturing has been widely recognized by the FDA [18,19]. Most plants
are over-designed to cope with such uncertainty. When data are available through exten-
sive experimentation, multivariate statistical methods such as PLS (partial least squares
regression) and PCA (principal component analysis) [20,21] as well as Bayesian tools have
been proposed [22]. Nonetheless, investigating the design space of a process through
experimentation comes at very high costs, due to the associated raw material and energy
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utilisation, and is time consuming. To overcome this issue, model-based probabilistic
frameworks have been examined. Laky et al. [23] presented two algorithms for the re-
finement of the flexibility test and index formulations, originally proposed by Swaney
and Grossmann [24]. Kusumo et al. [25] examined the use of a nested sampling strategy
to reduce the computational time required related to Bayesian approaches for the prob-
abilistic characterisation of design space characterisation. In order to ensure operation
within defined ranges it is important to define these regions for complex integrated batch
processing schemes. Samsatli et al. [26] developed a multi-scenario optimisation method
for determining operational envelopes for batch processes. Since formulated products have
a range of critical quality attributes, it is necessary that these envelopes reflect a number
of quality conditions. There has been work to include a more systematic approach to
handling uncertainty: through stochastic methods which use knowledge of the likelihood
of uncertain events or through defining more explicit operational windows where safety
and quality can be guaranteed [27,28]. More recently, in the context of CPM work has
been published on methods of global sensitivity analysis [29], flexibility analysis [23] and
clustering techniques [30]. Finally, the importance of Quality by Control (QbC) has been
highlighted by a number of research groups [31–34]

In this paper we examine the use of the concept of operational envelopes for a part of
the tableting process for continuous pharmaceutical manufacturing, the fluidised bed dryer
which helps control the quality of the tableting process shown in Figure 1. These envelopes
can then be used within a schema for rapidly devising new optimal operating schedules
for changes in the uncertain conditions which affect the ability to achieve a product of
suitable quality. The remainder of the article is organised as follows: in Section 2 the main
methodology is outlined, in Section 3 we apply the method of operating envelopes on a
segmented fluidised bed dryer and finally in Section 4 conclusions are drawn.

T ,V

 

Figure 1. Flowsheet of continuous pharmaceutical process of tableting process (DiPP pilot plant).

2. Methodology

2.1. Description of the Mathematical Model

The dynamic model of the segmented fluidised bed dryer being explored here is
implemented in the gPROMS modelling suite as part of the gPROMS FormulatedProducts®

library [31]. The underlying mathematical formulation is based on the mechanistic model
presented by Burgschweiger et al. [35,36] and model parameters have been validated using
the Diamond Pilot Plant (DiPP) at the University of Sheffield. For the sake of brevity, we
omit the presentation of the full mathematical model and the interested reader is referred to
Burgschweiger and Tsotsas [36]. Regarding the underlying assumptions of this model, we
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summarise them as follows: (i) plug flow in the bubble phase; (ii) the particle-free bubble
phase and the suspension phase within the bed are modelled separately, (iii) mass and heat
transfer between drying gas and bubbles is significant and included in the model; (iv) heat
transfer between the bed wall, particles, suspension gas, environment and bubble gas is
also included.

2.2. Deriving the Operational Envelopes

As described in Samsatli et al. [26] the aim of deriving the operational envelopes of a
process or unit operation is to find the maximum range of uncertain operating policies over
which the design can be guaranteed to meet specific targets. The union of the maximum
range of the uncertainty operating policies is referred to as the “operational envelope”. This
is particularly important for continuous pharmaceutical manufacturing as a multistage
process, since through the use of such decoupled envelopes for each unit operation it can
be ensured that the product specifications can be met if we restrict ourselves within the
operating limits denoted through these envelopes.

The geometry of these envelopes can be arbitrary. However, in this work we employ
hyperrectangular geometry for the sake of computational simplicity. Mathematically, if we
denote by b ∈ [bmin, bmax] the vector of uncertain parameters and their respective limits,
which can be inferred either by expert knowledge or based on past observations, we seek
to maximise the following objective function:

z =
Nb

∏
i=1

bmax
i − bmin

i (1)

where the index i = 1, . . . , Nb is the index of the parameters under investigation. Instead
of this objective function, which is non-convex, Samsatli et al. [26] proposed the use of
a linear counterpart by introducing the difference in the magnitude of the ranges, i.e.,
Δbi = bmax

i − bmin
i ∀i. Following this step, Equation (1) is replaced by the linear Equation (2)

which reflects the scaled perimeter of the envelope.

f =
1

Nb

Nb

∑
i=1

Δbi − Δbmin
i

Δbmax
i − Δbmin

i
(2)

Intuitively, since Equation (2) reflects a scaled perimeter the objective function range
is [0,1] with an value of 0 reflecting the minimal envelope possible, i.e., Δbi

= Δbmin
i ∀i, and

the maximal envelope feasible is obtained at the value of 1 where Δbi
= Δbmax

i ∀i. With this
modification the overall problem that maximises f is given by model (M1).

max
a,bmin,bmax

f = 1
Nb

Nb
∑

i=1

Δbi−Δbmin
i

Δbmax
i −Δbmin

i

Subject to
Φ0
[ .
x0, x0, y0, a0, b0

]
= 0 ∀b ∈

[
bmin, bmax

]
h
( .
x, x, y, a, b

)
= 0 ∀b ∈

[
bmin, bmax

]
, t ∈ (0, τ], τ ∈ b

g
( .
x, x, y, a, b

) ≥ 0 ∀b ∈
[
bmin, bmax

]
, t ∈ (0, τ], τ ∈ b

Δb = bmax − bmin

Δbmin ≤ Δb ≤ Δbmax

(M1)

In model (M1), Φ0 represents the set of initial conditions for the system under
study; h(·) represents the vector of equality constraints which are part of the model, e.g.,
mass/energy balances; g(·) represents the vector of inequality constraints, e.g., product
specifications/resource limitations; x corresponds to differential state variables;

.
x their

derivatives with respect to time (t); y represents algebraic state variables; while a, b repre-
sent time variant and time invariant controls, respectively. Notice that in (M1) the upper
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bound of the time horizon is also allowed to be an “envelope” variable in case one wanted
to investigate suitable bounds, for example for drying times.

Model (M1) is a semi-infinite programming problem since it needs to be solved
for all the possible values of the b vector of variables. To overcome this issue, a two-
step multiscenario optimisation problem is solved in which the envelope variables are
discretised as described in Samsatli et al. [26].

3. Case Study: Segmented Fluidised Bed Dryer

In this section we demonstrate the methodology using the digital model of the con-
tinuous pharmaceutical process of the Diamond Pilot Plant (DiPP) at the University of
Sheffield, shown in Figure 1. The process is a tableting pilot plant at the heart of which is a
fluidised bed dryer (FBD) which is critical to the production of consistent quality product.
The fluidised bed dryer (FBD) fluidises the feed granules to reduce their moisture content.
In the process high-pressure hot air is introduced through a perforated bed of moist solid
granules. The wet solids are lifted from the bottom and when fluidised are suspended in a
stream of air. Heat transfer is accomplished by direct contact between the wet solid and hot
gases. The vaporised liquid is carried away by the gas stream. The temperature and rate
of input gas can be adjusted to save energy by, for example, aiming to shorten the drying
time and manipulate the desired product (pharmaceutical granules) quality subject to a
required range for the moisture content. The FBD is typically divided into a number of
vertical segments.

As the FBD is connected with continuous twin screw granulation, the segmented FBD
will ensure the wet granules in one cell are dried whilst the incoming wet granules flow
into the neighbouring cell. Once the drying process in one cell is finished, the respective
cell is emptied pneumatically and then conveyed to the downstream unit, in this case a
mill. More segments contribute to reducing moisture but consume more time. In this study
we set the FBD equipment to have two segments. Each segment size is 0.035 m3, with
initial charge of 0.1 kg wet air and 0.1 kg granulates (lactose), with a particle density of
750 kg/m2. With these equipment specifications and initial conditions, the drying time is
fixed by setting the volume and mass of the FBD, while temperature and flowrate of input
streams are time-varied operating variables for achieving the moisture content objective.
We implemented a single-factor experiment using gPROMS to investigate the effect of
drying times and the two operational parameters, temperature and flowrate of input gas,
on the envelope size. Using these studies enables us to find a suitable design that consumes
less time and energy but has a bigger operational envelope.

Within a time interval
[
τ0, τf

]
, solid particles flow through cells of the FBD, and air

with a temperature of T(τ) and a rate of V(τ) is continuously fed to the bottom of the FBD.
Through fluidisation of the particles and consequent drying of the particles, the moisture
content Γ(τ) of feed granules is reduced to the goal of a moisture content Γ (which could
be a point or an interval). V is the volumetric flowrate and T is the temperature.

Employing the approach for traditional optimal control, we used the FBD model de-
veloped within gPROMS as a black box model [31], adding end point and path constraints.
We used a black box model in order to show how it could be done without access to the full
model equation set since this often needs to be the case in commercial settings.
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The mathematical formulation is as follows:

min
x,y,T,Vø

f = Γø

Subject to :

Γ(t) = Φ(x(t), y, T(t), V(t), τ), 0 ≤ t ≤ τ

with

End point constraints : Γmin ≤ Γτ ≤ ΓmaxΓτ ≤ Γmax

Path constraints : Tmin ≤ T(t) ≤ Tmax, ∀t ∈ [0, τ]

Vmin ≤ V(t) ≤ Vmax, ∀t ∈ [0, τ],

(M2)

where min and max refer to the upper and lower bounds, respectively, for each operational
variable that is controllable. x and y refer to other model parameters that are uncontrollable.
The drying time τf is a design variable and is fixed.

For each fixed value of the drying time, we applied the methodology shown in
Section 2 to find an optimal operating envelope. We were then able to explore the design
sensitivity by varying the value of the drying time to find a suitable design that consumes
less time and energy but has a bigger operational envelope. The selected design would be
the one that consumes less energy and has more flexibility.

Using the methodology shown in Section 2, to obtain an optimal balance between
design and operational variables, we let b =

[(
Tmin, Tmax), (Vmin, Vmax)], and formulate

the following problem to determine the optimal operating envelope:

max
y,bmin,bmax

f ≡ 1
Nb

Nb
∑

i=1

Δbi−Δbmin
i

Δbmax
i −Δbmin

i

Subject to :

Γ′(τ) = f (x(τ), y, bi, τ), τ0 ≤ τ ≤ τf

Γmin ≤ Γτf ≤ Γmax or Γτf ≤ Γmax

ymin ≤ bi ≤ ymax

Δbi = bmax
i − bmin

i

Δbmin
i ≤ Δbi ≤ Δbmax

i

(M3)

The process modeling tool gPROMS [29] was used to implement and solve the model
to determine the optimal operating envelopes. The gPROMS modeling platform allows
existing models of processes to be converted to the envelope form and optimise their
dynamic operation. The solution steps are briefly illustrated as follows:

Step 1: fix the value of design variable τ, the upper and lower bounds ΔT, ΔV and
Γ, specify the interested range

((
Tmin, Tmax

)(
Vmin, Vmax

))
of the bounded variables,

and let
Tmin ≤ Tmin ≤ T ≤ Tmax ≤ Tmax

Vmin ≤ Vmin ≤ V ≤ Vmax ≤ Vmax
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Step 2: generate NS scenarios, each with a different set of operational variables (T, V).
For scenario k = 1, · · · , Ns, the values are given by:

T[i] = Tmin + p[k]
(
Tmax − Tmin)

V[i] = Vmin + p[k]
(
Vmax − Vmin)

where p[k] are normalized positions. For example, an optimization using two scenarios
(NS = 2), one corresponding to the bottom left and another to the top right of the feasible
region, we specify:

p[1] = (0, 0, . . . , 0), p[2] = (1, 1, . . . , 1)

Step 3: Then we define the objective function, variables and constraints from the FBD
model within gPROMS, and solve the optimization problem to obtain the best values of(

Tmin, Tmax) and
(
Vmin, Vmax).

The algorithms were run on a personal computer with four 3.50 GHz processors and
16.0GB RAM using the Windows 10 operating system. The model and the approach can be
used to optimise the steady-state and/or the dynamic behaviour of a continuous or batch
process; in this case the fluid bed dryer is continuous.

The sampling technique employed in this work was a grid-based quasi-Monte Carlo
sampling by using Sobol’ low discrepancy sequences [37]. They have been shown to provide
good distribution coverage even for fairly small sampling points. The design space was
partitioned into a number of square grids and then within each grid sampling points were
generated to evaluate feasibility. The interested reader is referred to Kucherenko et al. [38]
for an in-depth discussion on the subject. In brief, for a response variable Y(X1, X2, . . . , Xk)
which is a function of a set of input variables X1, X2, . . . Xk a unit hypercube can be defined
over the k-dimensions. Combining unit hypercubes over a grid-partitioned design space
with quasi-random sequences is the most uniform possible solution to secure coverage. This
is due to the fact that quasi-random points are selected from a sequence whilst knowing
the position of the previous points and thus filling gaps between them [38].

We constructed an independent FBD model (M2), to minimise drying time and mois-
ture content, respectively, subject to it being in the interval [10%, 40%]. Next, we took the
following steps:

Step 1: Specify the range of the operating variables:([
Tmin, Tmax

]
= [20 °C, 80 °C],

[
Vmin, Vmax

]
=
[
240 m3/h, 480 m3/h

])
Step 2: Determine the feasible operating range with a drying time of 900 s which

specifies a range of outputs of interest and hence a range of inputs. We uniformly sampled
13 temperatures in the range [20, 80] °C and 25 flow rates in the range [240, 480] m3/h.
Next, we simulated the FBD model to detect the feasible region (i.e., 13 × 25 = 325 points)
that satisfies end point and path constraints. Finally, we found all feasible solutions where
the moisture falls in the range [10%, 40%]. This is shown in Figure 2.

Step 3: Run the optimisation model (M3) with a drying time of 900 s to obtain the
operating envelope for T and V.

(a) When ΔT and ΔV are allowed to vary freely we obtain the optimal operational
envelope as shown in Figure 3 which maximises the area of the rectangle within the
feasible boundary.

(b) When we constrain the variation that T and V can have to the following range
5 ≤ ΔT ≤ 20 °C and 10 ≤ ΔV ≤ 60m3/h, solving (M3) gives the optimal oper-
ational envelope as shown in Figure 4. This maximises the envelope size while also
maintaining the maximal distance to the feasible boundary using model (M3).
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Figure 2. Feasible design range for T and V at a drying time of 900 s.

 
Figure 3. Operational envelope for a drying time of 900 s: f = 0.77.
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Figure 4. Operational envelope for a drying time of 900 s while maintaining the maximal distance to
the feasible boundary: f = 0.325.

The final stage is to explore the trade-off between design and operational flexibility as
measured by the envelope size. The FBD model indicates that the feasible design space
varies with the drying time. Hence, we can select a best drying time by exploring the
envelope size. To do this we used a scenario-based algorithm with 10 candidate drying
times (600–1500 s) and allowed ΔT and ΔV to vary.

From the results shown in Figure 5, we found that the FBD process can obtain the
maximal envelope size with 700 s (as shown Figure 6 where a larger number of sampling
points, i.e., 1000, was used to increase the resolution of the results), which means that this
design has the best flexibility using the chosen operating variables. Figure 5 shows that
there is significant effect on the flexibility of the process at different drying times with the
optimal obtained at 700 s. Interestingly, in this case, the flexibility is not affected by the
change in ΔV but only by the change in temperature, for the specified ranges of uncertainty.
Nonetheless, we should point out that in this work the related nonlinear programming
models were solved with a local and not a global optimisation solver which could explain
some of the irregularities shown in Figure 5 for design options and envelope sizes.

Figure 5. Result of a design selection by trade-off between envelope size and drying time.

19



Processes 2022, 10, 454

 

Figure 6. Operational envelope for a drying time of 700 s.

4. Conclusions

We have presented results for exploring the operational flexibility for a fluid bed
drying unit that is at the heart of formulation processes for tablet manufacture. The
methodology obtains a feasible operating envelope which is then reduced to one that
allows constrained flexibility in two key parameters (T and V) but maintains an optimal
distance from the feasible boundary. Finally, when using this optimal set of conditions, it is
possible to explore the trade-off between the envelope size and a key parameter, the drying
time. We have demonstrated the value of this approach to a process which is known to have
considerable uncertainty and which is key to operational excellence. We aim to broaden the
analysis to embrace all elements of the formulation process to explore operational flexibility
and demonstrate the value of using a model-based optimisation approach to managing
uncertainty in the pharmaceutical industry. It can add to the toolkit of the Quality by Design
approach being brought in to pharmaceutical process development and operations. The
approach seeks to support systematic development processes: in this case to systematically
identify operating flexibility with robustness guarantees subject to model accuracy. Further
work in tandem with experimental pilot plant work is needed to fully validate the approach
within the tight regulatory regime of pharmaceutical manufacture.
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Nomenclature

Symbols Definition

t time variables.
x differential state variables.
.
x derivatives of x with respect to time t.
y algebraic state variables.
a time-varying control and not bounded variables, which present the design decision

variable in process.
b time-varying control and bounded variables, which present the operational

variable in processes.
Δb sizes of the bound variables
Nb number of bounded variables
τ processing time.
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Abstract: The transition from batch to continuous processes in the pharmaceutical industry has been
driven by the potential improvement in process controllability, product quality homogeneity, and
reduction of material inventory. A quality-by-control (QbC) approach has been implemented in a
variety of pharmaceutical product manufacturing modalities to increase product quality through a
three-level hierarchical control structure. In the implementation of the QbC approach it is common
practice to simplify control algorithms by utilizing linearized models with constant model parameters.
Nonlinear model predictive control (NMPC) can effectively deliver control functionality for highly
sensitive variations and nonlinear multiple-input-multiple-output (MIMO) systems, which is essential
for the highly regulated pharmaceutical manufacturing industry. This work focuses on developing
and implementing NMPC in continuous manufacturing of solid dosage forms. To mitigate control
degradation caused by plant-model mismatch, careful monitoring and continuous improvement
strategies are studied. When moving horizon estimation (MHE) is integrated with NMPC, historical
data in the past time window together with real-time data from the sensor network enable state
estimation and accurate tracking of the highly sensitive model parameters. The adaptive model
used in the NMPC strategy can compensate for process uncertainties, further reducing plant-model
mismatch effects. The nonlinear mechanistic model used in both MHE and NMPC can predict the
essential but complex powder properties and provide physical interpretation of abnormal events.
The adaptive NMPC implementation and its real-time control performance analysis and practical
applicability are demonstrated through a series of illustrative examples that highlight the effectiveness
of the proposed approach for different scenarios of plant-model mismatch, while also incorporating
glidant effects.

Keywords: continuous pharmaceutical manufacturing; model predictive control; state estimation;
quality-by-control (QbC); glidant effects; plant-model mismatch

1. Introduction

Pharmaceutical manufacturing processes have traditionally employed the batch op-
eration mode, in which fixed amounts of raw materials are run through different unit
operations to obtain the final drug product. Quality attributes of the final drug product
were originally tested at the end of each batch processing step, where quality control
essentially followed a quality-by-testing approach (QbT) [1], e.g., mixing uniformity is
tested at the conclusion of the blending process. Over the last few years several factors
have driven a shift from batch towards continuous pharmaceutical manufacturing. These
factors include a reduction in the development cost for new medicines, making it both
desirable and feasible to produce smaller annual volumes of targeted solutions for smaller
patient populations, as well as improving product quality, decreasing cycle time, and better
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controlled processing, to name a few popular drivers [2]. An economic analysis provided
by Schaber and co-workers [3] highlights that continuous operation is able to provide
estimated overall savings that can range from 9 to 40%, depending on the drug loading
and process chosen, when compared to traditional batch operation. Additionally, encour-
aged by the regulatory agencies to modernize pharmaceutical manufacturing processes,
academia and industry have invested significant time and resources to study different
aspects required to successfully shift from batch to continuous operation mode. These
efforts were made possible through various collaborations and consortiums [4–6].

In 2012, Gernaey and co-workers [7] identified the design and implementation of
continuous pharmaceutical processes as one of the many issues that remain unresolved.
Advanced process understanding is critical to the implementation of continuous pharma-
ceutical manufacturing applications [8]. To address this requirement, a quality-by-design
(QbD) approach was pursued over the last decade [9]. QbD is a multi-step procedure
that involves: (i) definition of quality target product profiles (QTPPs) and critical qual-
ity attributes (CQAs), (ii) identification of critical material attributes (CMAs) and critical
process parameters (CPPs), (iii) linking of the CMAs and CPPs with the CQAs, (iv) exam-
ination of the design space and required control strategies, (v) validation, scale-up, and
production [10]. While QbT primarily focused on end-stage testing, QbD revolved around
advanced product and process understanding for systematic design of the operating space
using mechanistic models and design of experiments (DoE). However, more recently there
has been a shift towards quality-by-control (QbC), wherein quantitative and predictive
understanding is leveraged for active process control with robust process design and
operation, enabling smart manufacturing [11].

A goal of the QbC approach is real-time process monitoring and management, wherein
advanced process control strategies are utilized to handle disturbances and exceptional
events [11]. Process analytical technology (PAT) methods play a crucial role in monitoring
a variety of CQAs in order to accomplish this [8,9]. Monitoring and control of CQAs
such as tensile strength and tablet porosity are critical as they are linked to dissolution
profiles of the manufactured tablets, which are ultimately linked to patient safety and
treatment efficacy [12–16]. Tablet tensile strength and dissolution profile are affected by
various factors such as particle size, API concentration, and addition of lubricants and
glidant [17,18]. Glidants are added to improve the flowability of the blend. However,
glidants and lubricants are also known to impact other product parameters, such as bulk
density, compactibility, and compressibility. An objective of this work is to incorporate the
impact of the use and control of glidants while assuring that the critical properties, such
as tensile strength of the manufactured tablets, are maintained at desirable levels. In the
context of continuous manufacturing, when a glidant feeder is used, it is important to use
calibrated mechanistic models to handle the variations of glidant concentration. Therefore,
it is essential to explore a variety of different control strategies to address the changes in
CQAs of a tablet that may arise when glidants are used. It is worth noting that even though
these challenges and control strategies are also relevant to lubricants, the development of
mechanistic models and relevant control strategies associated with lubricants is beyond
the scope of this work.

The identification and handling of plant-model mismatch (PMM) is an important com-
ponent of any real-time process monitoring and control approach, and it has been an area
of interest for decades. PMM can arise in the continuous tablet manufacturing process for a
variety of reasons, e.g., the feeder refill step is known to introduce disturbances that affect
CMAs such as the bulk density [19–21]. Since this may result in a deviation in the CQAs,
PMM needs to be monitored and algorithms to mitigate it need to be developed and imple-
mented. In order to monitor PMM, Harris initially presented a minimum variance-based
assessment criterion to assess the condition of the working control loop [22]. This approach
has gained popularity, but it is limited to single-input-single-output (SISO) systems [23].
More recently, data-driven methods that examine autocovariance and solve an optimiza-
tion problem formulated to address the mismatch estimates in MIMO systems have been
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developed. These methods minimize the discrepancy between the autocovariance of the
output and the actual autocovariance of the mean-centered output variable [24–26]. Partial
correlation coefficient (PCC)-based methods to identify PMM have also received attention
in the literature, where PCC is well-suited as it is able to handle cases with high correlation
in the manipulated variables [27,28]. As model re-identification is a critical, and often a
time-consuming step once PMM has been identified, hybrid machine learning approaches
have been proposed in order to aid model selection [28]. While there is great depth in the
literature associated with the identification of PMM, there is limited discussion on practical
approaches that would be applicable to the continuous pharmaceutical manufacturing
industry in terms of management of the PMM [29,30]. CQAs and CMAs need to be tracked
online during plant operation but they may be unmeasurable in practice through existing
PAT sensing methods (e.g., the bulk density within a unit operation); therefore, alternative
solutions are required. This work proposes novel state estimation methods to accurately
track states and model parameters online and, hence, guide operating decisions.

Additionally, most work in the continuous tablet manufacturing domain utilizes linear
model predictive control strategies, often resulting from the linearization of a nonlinear
system, which may not be adequate for some strongly nonlinear processes [31–33]. A liter-
ature review of traditional MPC application for different unit operations in the continuous
pharmaceutical manufacturing industry can be found in [34], including end-to-end in silico
and implementation studies. Since there is limited implementation of nonlinear model
predictive control strategies for the continuous pharmaceutical manufacturing industry, a
main objective of this work is to develop and present a moving horizon estimation-based
nonlinear model predictive control (MHE-NMPC) framework to serve the dual require-
ment of accurate estimation and effective control. Model predictive control strategies are
also advantageous over traditional proportional-integral-derivative (PID)-based control
strategies, as they are able to effectively handle constraints, loop interactions and non-
square control systems that may be encountered in manufacturing of pharmaceutical solid
dosage forms [35–38]. A main practical concern for any developed framework is the need to
ensure that the optimization problem can be solved in real-time, particularly for relatively
quick processes such as those in the continuous pharmaceutical manufacturing industry.
Therefore, an additional objective is to examine and discuss the real-time feasibility of the
developed framework in controlling a rotary tablet press.

It is important to note that once non-conforming quality attributes have been identified,
a long-term goal is the integration of control frameworks similar to the MHE-NMPC struc-
ture with residence time distribution (RTD)-based modeling frameworks that are currently
being developed to guide tablet product diversion in the continuous pharmaceutical man-
ufacturing industry and truly enhance and enable smart manufacturing operations [39,40].

To summarize, the primary objective of this work is to develop and present a moving
horizon estimation-based nonlinear model predictive control (MHE-NMPC) framework to
serve the dual requirement of accurate estimation and effective control, and to demonstrate
its practical applicability by discussing its implementation feasibility in controlling a rotary
tablet press. A secondary objective of this work is to examine different control strategies
that are required when incorporating glidant feeders to further control tablet properties.

The rest of this work is organized as follows. In Section 2, mathematical modeling
and optimization approaches for state estimation and control will be briefly discussed,
along with the proposed monitoring algorithm and its advantages, i.e., the MHE-NMPC
framework to monitor CMAs and CQAs and determine control actions will be presented.
Section 3 will illustrate the robustness of the proposed MHE-NMPC framework with two
examples of application. Specifically, the studies will showcase monitoring and control
of a rotary tablet press in the presence of (i) plant-model mismatch and (ii) uncertainty in
the glidant concentration. Section 4 will provide concluding remarks and directions for
future work.
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2. Material and Methods

2.1. State Estimation

State and parameter estimation methods have been utilized to enhance process mon-
itoring capabilities in a number of industrial applications, ranging from bioreactors to
robotics to continuous pharmaceutical manufacturing [30,41,42]. State and parameter
estimation is a powerful tool in scenarios where process states or model parameters cannot
be directly measured with sensors.

A nonlinear state-space model is defined as follows:

.
x = g(x, u, θ, w) (1)

y = l(x, u, θ, v) (2)

where x, u, θ, and y are the state variable vector, input variable vector, model parameter
vector, and measurement vector, respectively [43]. The process and measurement noise are
denoted by w and v, respectively. A schematic illustration of conventional state estimation
algorithms is presented in Figure 1, where the nonlinear model is initialized based on the
state values at the previous time step (k − 1) in order to obtain a prediction of the states and
model parameters at the current time (k). State measurements are obtained from available
sensors and are utilized to obtain a more accurate estimate of the states and parameter
values by correcting the predictions from the model.

Figure 1. Conventional state estimation algorithm.

A number of alternative algorithms to carry out state estimation have been devel-
oped, e.g., the Kalman filter (KF), extended Kalman filter (EKF), unscented Kalman filter
(UKF), particle filter (PF), and moving horizon estimation (MHE) are among the more
popular approaches [44–47]. While the KF and EKF algorithms are suitable for linear or
approximately linear applications, the UKF, PF, and MHE algorithms are able to handle
processes that are more nonlinear in nature. The KF, EKF, and UKF algorithms also assume
that error distributions are Gaussian in nature, while this assumption does not have to be
satisfied for the PF and MHE algorithms [46]. Unlike the conventional approach illustrated
in Figure 1, MHE utilizes a window, or moving horizon, of previous measurements in
order to estimate the current states and model parameters, often providing improved
performance when compared to the other algorithms. MHE is also capable of handling
measurements collected from sensors at different sampling intervals or frequencies, which
is advantageous for industries that utilize a variety of sensors to track physical attributes,
as is the case in continuous pharmaceutical manufacturing. Therefore, MHE will be the
choice of state estimation algorithm utilized in this work, as it is able to effectively track
plant-model mismatch caused by deviations in model parameters, such as variations in the
bulk density due to uncertainty in upstream unit operations (e.g., refilling of feeders).

The importance of monitoring powder feeder dosing in continuous pharmaceutical
manufacturing is investigated in great detail by Destro and co-workers [29], wherein an
MHE-based state estimation approach is implemented to reconcile mass measurements
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that are available from loss-in-weight (LIW) feeders with downstream measurements that
are available from a PAT instrument and, thereby, to obtain practically continuous mea-
surements as opposed to sampled measurements provided from the PAT instrument. The
authors also demonstrate that the MHE approach is superior to one that utilizes statistical
filters instead of the state estimator. Similarly, robust estimators were incorporated within
the MHE skeleton of a feeding-blending system to handle dynamic systems with gross
errors [30]. While the results presented in both case studies are promising, neither discusses
or elaborates on the importance of their integration with efficient control strategies. To
the knowledge of the authors, there has been no work in the continuous pharmaceutical
manufacturing domain that has examined the integration of state estimation strategies
with efficient control strategies, and therefore, this will be the central focus of this work, as
discussed in the following sections.

2.2. Model Predictive Control (MPC)—Linear and Nonlinear

Model predictive control methods have been employed by various industries over
the past few decades [48–52]. MPC relies on the dynamic model of the process. This
model can either be linear or linearized models obtained through system identification,
as in the case of the linear implementation of MPC, or be nonlinear and derived using
first principles or semi-empirically (using a hybrid model), as in the case of NMPC [53].
Both MPC algorithms utilize a finite time horizon to optimize the control input at the
current time iteration, while keeping future time iterations in mind. This ability makes
MPC predictive in nature due to its ability to anticipate future events and take control
actions accordingly, which is not possible using traditional PID controllers [54].

While nonlinear model predictive control (NMPC) methods have been utilized by
some industries, to the knowledge of the authors their implementation has not been
explored extensively for continuous pharmaceutical manufacturing of solid dosage forms,
cf. [31–33], where linear or hybrid implementations of MPC are utilized. Since processes
in the continuous pharmaceutical manufacturing industry are known to be nonlinear in
nature, it is therefore desirable to develop and implement an NMPC approach.

It should also be noted that these predictive control strategies are particularly advan-
tageous for cases of non-square systems, i.e., where the number of manipulated variables
exceeds the number of the controlled variables, since these methods are able to effectively
manage nonlinear relationships [35–37]. These cases cannot be straightforwardly handled
using traditional PID control strategies [38].

The following section will present the developed MHE-NMPC framework that seeks
to accomplish the dual requirement of accurate estimation and efficient control. Since
real-time implementation feasibility is an area of interest, a discussion on the practical
applicability of the framework developed will also be presented.

2.3. Moving Horizon Estimation-Based Nonlinear Model Predictive Control (MHE-NMPC)
Framework

The algorithm proposed in this work seeks to combine the effective estimation capa-
bilities of MHE with the control abilities of NMPC, through the MHE-NMPC framework
illustrated in Figure 2. Real-time measurements of output variables (y) and input variables
(u) are first collected to monitor the process. Since disturbances, either known or unknown,
can always exist in a real plant, mismatches may arise between the sensor measurements
and model values. As elaborated previously, the goal of state estimation is to obtain a ‘true
state’ value by utilizing the information from both measurements and process models. The
‘true state’ can be either measurable, e.g., API concentration at the blender exit using NIR
sensors [55–57], or unmeasured, e.g., powder holdup in the blender. Through the updating
of uncertain model parameters, which have changes due to upstream disturbances, MHE
enables the handling of plant-model mismatch, thus allowing the controller to receive
estimated output variables (ŷ) with less uncertainty. The NMPC control algorithm then
minimizes the error between setpoints

(
ysp
)

and estimated output variables (ŷ) by de-
ciding the optimal control move (u) for the process to reach both setpoint tracking and
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disturbance rejection, i.e., the control objectives, while updating the model parameter (θ̂k)
and median of the error distribution in the past time window (ζ).

Figure 2. Adaptive control framework of MHE-NMPC.

A schematic illustration of the MHE-NMPC framework at time t = k is shown in
Figure 3, with Npast measurements available in the past window and Np estimations in the
prediction window. The MHE is then formulated as follows:

min
θ̂k

J =
k

∑
t=k−Npast

(εt)
TWE εt + (θ̂k − θ̂k−1)

TWθ(θ̂k − θ̂k−1) (3a)

subject to
x̂k−Npast+j+1 = f (x̂k−Npast+j, uk−Npast+j, θ̂k) (3b)

ŷk−Npast+j = h(x̂k−Npast+j) (3c)

εk−Npast+j = yk−Npast+j − ŷk−Npast+j (3d)

x̂k−Npast+j+1 ∈ X, εk−Npast+j ∈ Ωε, θ̂k ∈ Ωθ (3e)

j = 0, 1, . . . , Npast (3f)

where θ̂k are estimated uncertain parameters, which are bounded in the compact set Ωθ . In
the above formulation, yt and ut are measurements of output variables and input variables
at time t, respectively; ŷt and x̂t are estimated output and state values, respectively; εt
are output disturbances, which are bounded in the compact set Ωε; and WE and Wθ are
the weighting matrices. After the MHE optimization problem is solved at time t = k, the
estimated state x̂k−Npast+1|t=k is chosen as the initial state value of next time step t = k + 1,
i.e., x̂k−Npast+1|t=k+1 = x̂k−Npast+1|t=k [58].

While an error distribution of output variables yt − ŷt in the past time window can
be obtained from Equation (3d), a single point estimate of the output ŷt is of most interest
in many applications, instead of the whole error distribution [59]. When no probabilistic
process models are used, it is easier to use a single point estimate of the output ŷt to
visualize and control process dynamics. In this study, the median of the error distribution
in the past time window is used to represent output disturbances ζk at time t = k, i.e.,

ζk = median
{

εk−Npast+j

}
, for j = 0, 1, . . . , Npast (4)

Therefore, with estimated states x̂k, output disturbances ζk, and updated uncertain
optimal parameters θ̂k, the NMPC framework at time t = k is given by:
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min
Δut

J =
k+Np

∑
t=k

(ŷt − ysp)
T Wy

(
ŷt − ysp

)
+

k+Nc−1

∑
t=k

(ΔuT
t WΔuΔut) (5a)

subject to

x̂k+j+1 = f (x̂k+j,
ˆ
uk+j, θ̂k) (5b)

ŷk+j = h
(

x̂k+j

)
+ ζk (5c)

Δuk+j =
ˆ
uk+j+1 − ˆ

uk+j (5d)

x̂k+j ∈ X,
ˆ
uk+j ∈ U, Δuk+j ∈ ΩΔu (5e)

j = 0, 1, . . . , Np − 1 (5f)

where Nc is the length of the control time window, and ysp are the setpoints of the output
variables. Wy and WΔu are the weighting matrices. Control movements Δu are constrained
in the compact set ΩΔu. The control window Nc is usually smaller than the prediction
window Np and has to be chosen considering a compromise between computational burden
and stability requirements. Control movements Δuk+j in control window Nc vary according
to results of optimization, but those beyond the control window are zero, i.e., Δuk+Nc =

Δuk+Nc+1 = · · · = Δuk+Np−1 = 0, which implies that
ˆ
uk+Nc =

ˆ
uk+Nc+1 = · · · = ˆ

uk+Np . In

other words, while the predicted ŷk+j can still be calculated using Δuk+j and
ˆ
uk+j in the

prediction window Np, only Δuk+j in control window Nc is considered in the objective
function. It should be noted that models of estimated output variables ŷt are different in
Equations (3c) and (5c). In the future time window, output disturbances ζk are added to
the model of the process, allowing zero steady-state offset in controlled output variables
y [59,60]. A schematic illustration of MHE-NMPC is provided in Figure 3, where at each
iteration, the MHE is utilized to obtain a more accurate representation of the true state of
the process and plant-model mismatch, and the NMPC is utilized to find the optimal first
move for each input variable u. This framework thus allows for both accurate estimation
and efficient control.

Figure 3. Illustration of MHE-NMPC coupling at each time interval.
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2.4. Implementation of a Real-Time Feasible MHE-NMPC Framework

The MHE-NMPC framework is implemented in MATLAB (MathWorks R2018a) and
the MATLAB built-in fmincon function is used to solve the optimization problem in each
iteration. The computation is performed on a 64-bit ASUS VivoBook with Intel® Core™
i7-8550U @1.80 GHz processor and 8GB of total memory. In all simulated results, the time
unit for each step is 1 s, the past time window

(
Npast

)
used in MHE is 30 time units, and

the NMPC is tuned with prediction time window
(

Np
)

chosen to be 60 time units and
control time window (Nc) to be 10 time units. Sensor measurements are also assumed to
be available at 1 s intervals. It should be noted that the average computation time for each
iteration is 0.7 s, indicating that the optimization problem can be solved and implemented
in real time. These results demonstrate the feasibility of the proposed framework, and its
ability to achieve real-time process control.

The following section will explore the applicability of the developed MHE-NMPC
framework to track plant-model mismatch and to efficiently control a key process unit
operation in the continuous manufacturing line of solid dosage forms, i.e., the rotary
tablet press.

3. Examples of Application to Continuous Direct Compression

The applicability of the developed MHE-NMPC framework will be demonstrated
through two case studies. The first case study will highlight the importance of monitoring
model parameters in real time and how this is enabled via state estimation, as opposed
to the use of fixed model parameters. Different degrees of plant-model mismatch will be
used. The second case study will present the applicability of the framework in the practical
scenario of having uncertainty in the glidant feeding conditions.

Both case studies will focus primarily on the tablet press unit operation of the direct
compression line. A hierarchical implementation of the three-level quality-by-control (QbC)
framework of control systems for the continuous direct compression line is illustrated in
Figure 4, whose unit operations are comprised of feeders, blenders, and the tablet press.
For this line, Level 0 control is generally implemented through programmable logic control
(PLC) systems built into the unit operation equipment in order to control CPPs. Level 1
control relies on PAT tools to monitor and control CQAs and can encompass multiple unit
operations designed to reduce the impact of disturbances that may propagate downstream.
Level 1 control supervises the Level 0 control, typically accomplished through SISO control
loops which aim to maintain desired setpoints for the CQAs. A distributed control system
(DCS) is employed to integrate process equipment such as the feeders and tablet press
and any instrumentation that measures material properties. More advanced approaches
are applied at Level 2 and use mathematical models such as MHE for validating process
measurements, with the ability to predict the effects of disturbances and changes in the
CPPs on the CQAs. Additional functionalities provided at Level 2 can include NMPC, a
quality management system (QMS), and real-time optimization (RTO).
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Figure 4. A 3-level hierarchical implementation of control systems for the continuous direct compression process (modified
from source: [11]).

3.1. Tablet Press Model

The rotary tablet press and the lubricant/glidant feeder are key unit operations, where
the latter is used to reduce frictional loses and facilitate powder flow during die filling
and formation of solid tablets via mechanical compression. Therefore, models for glidant
effects in die filling and compression processes will be used to monitor and control the
porosity and tensile strength of tablets. Specifically, these mechanistic models capture the
effects of glidant concentration and mixing conditions [61,62].

The weight of a convex tablet, W, formed using Natoli D-type tooling with shallow
cup depth can be computed as follows:

W = ρbVf ill

(
1 − ξ1

nT
nF

+ ξ2
Hf ill

D

)
(6)

where D, Vf ill , Hf ill , ρb, nT , and nF, refer to the diameter of the die, volume of the die
cavity, dosing position, bulk density of the powder, turret speed, and feed frame speed,
respectively [62]. In Equation (6), ξ1 and ξ2 are model parameters to be estimated from
experimental data. The bulk density depends on glidant concentration and mixing con-
ditions, but its dependency is beyond the scope of this work. For the D-type tooling, the
volume of the die cavity is given by:

Vf ill =
πD2Hf ill

4
+

πh
(

3D2

4 + h2
)

6
(7)

where h is the cup depth. The tablet production rate,
.

mtablet, is given by:

.
mtablet = WnT Nstation (8)
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where Nstation is the number of turret stations available. For a blend composed of MCC
(Avicel PH200), APAP (acetaminophen) and silica experimental evidence suggests that
both pre-compression and main compression forces do not show a dependency on glidant
conditions [62]. The pre-compression force (PCF) is then computed as follows [63]:

Fpc =
πD2

4b

[
ρpc − ρc

ρpc(a − 1) + ρc

]
(9)

where parameters a and b are Kawakita constants [63], which represent the maximum
degree of compression and the reciprocal of the pressure applied to attain this degree of
compression, respectively. In Equation (9), ρc and ρpc refer to the critical density and the
pre-compression relative density, respectively. The pre-compression relative density is
computed as follows:

ρpc =
W

Vpcρt
(10)

and

Vpc =
πD2Hpc

4
+

πh
(

3D2

4 + h2
)

3
(11)

where ρt and Hpc refer to the true density of the powder and the pre-compression thickness,
respectively. Similarly, the main compression force (Fpunch) is computed as follows:

Fpunch =
πD2

4b

[
ρin−die − ρc

ρin−die(a − 1) + ρc

]
(12)

with the in-die relative density ρin−die given by:

ρin−die =
W

Vin−dieρt
(13)

and

Vin−die =
πD2Hin−die

4
+

πh
(

3D2

4 + h2
)

3
(14)

where Hin−die refers to the main compression thickness. The tablet density, or out-of-die
relative density of the tablet, ρtablet, is then obtained utilizing the elastic recovery, ερ, of the
tablet as follows:

ρtablet =
(
1 − ερ

)
ρin−die (15)

The elastic recovery model is not sensitive to the glidant mixing conditions [61,62],
and it is governed by:

ερ = ε0
ρin−die − ρc,ε

1 − ρc,ε
(16)

where ε0 and ρc,ε are the in-die elastic recovery at full compaction and the relative density
at which tablets do not exhibit elastic recovery, respectively [64]. The tensile strength σt
exhibits dependency on glidant conditions and it is computed as follows

σt = σ0

[
1 −
(

1 − ρtablet

1 − ρc,σt

)
e(ρ

tablet−ρc,σt )

]
(17)

where σ0 is the tensile strength at zero porosity and ρc,σt is the critical relative density at
which tablets do not exhibit any the tensile strength, i.e., the relative density at which a
tablet starts forming [17]. It bears emphasis that these parameters are functions of glidant
conditions, specifically:
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ρc,σt =
ρc,0 − ρc,∞

1 + Cσ
+ ρc,∞ (18)

σ0 =
σ0,φ

1 + Cσ
(19)

Cσ =
cb1

l γb2

b3
(20)

where ρc,0, ρc,∞, σ0,φ, b1, b2, and b3 are model parameters estimated from experimental data.
In Equation (20), cl and γ are the glidant concentration and total shear imparted to the
blend, respectively. For simplicity, the total shear strain is represented by an equivalent
mixing time, which, in turn, is estimated as follows

γ = γ0 +
m f ,h
.

mtablet
(21)

where γ0 and m f ,h are a total shear strain base line, expressed in term of mixing time, and
the mass hold up in the feed-frame and hopper, respectively. Specifically, for the purpose
of these case studies, the model parameter γ0 is the glidant mixing time used in the rotary
Tote blender when the blend was prepared. A 5L rotary Tote blender was employed. The
mean residence time in the feed-frame, i.e.,

m f ,h
.

mtablet
, is used to estimate the additional shear,

or mixing time, imparted inside the tablet press.
The dependency of the bulk density on the glidant concentration, cl , can be incorpo-

rated through the following equation [62]:

ρb = ρb,∞ − ρb,∞ − ρb,0

1 + Cρ
(22)

where ρb,∞ and ρb,0 represent the bulk densities when the shear strain imparted is infinite
and zero, respectively. Cρ is a lumped parameter that defines the glidant mixing conditions
computed as follows [62]:

Cρ =
cr1

l (γ + γ0)
r2

r3
(23)

where γ and γ0 are the shear imparted to the powder during mixing and the initial shear
strain imparted prior to mixing, respectively. r1, r2, and r3 are fitting parameters.

A Natoli NP-400 tablet press and SOTAX AT4 tablet tester were used in this work to
fabricate tablets and gather experimental data under steady-state conditions. The experi-
mental data were then used to carry out parameter fitting using the fmincon function in
MATLAB to obtain realistic model parameters values that could be used for the simulations
presented in case studies 1 and 2, which are summarized in Table 1.

Table 1. Summary of model parameters for case studies 1 and 2.

Case Study 1 Case Study 2

Purpose
Assess Control Performance in the Presence of

Different Levels of PMM
Assess Control Performance When Uncertainty

in Glidant Concentration Is Present

Assumption Glidant Concentration Can Be Manipulated Glidant Concentration Needs to Be Estimated

Model Parameters No PMM Mild PMM High PMM Nominal Operation

ξ1 0.036 0.036 0.036 0.036

ξ2 0.030 0.030 0.050 0.030

ρb (g/cm3) 0.365 0.390 0.410 0.365

ρc 0.265 0.290 0.230 0.265

Kawakita: a 0.80 0.77 0.84 0.80
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Table 1. Cont.

Case Study 1 Case Study 2

Purpose
Assess Control Performance in the Presence of

Different Levels of PMM
Assess Control Performance When Uncertainty

in Glidant Concentration Is Present

Assumption Glidant Concentration Can Be Manipulated Glidant Concentration Needs to Be Estimated

Model Parameters No PMM Mild PMM High PMM Nominal Operation

Kawakita: 1/b (MPa) 10.26 10.26 8.55 10.26

ρt (g/cm3) 1.53 1.53 1.51 1.53

ε0 0.08 0.08 0.08 0.08

ρc,ε 0.57 0.57 0.57 0.57

σ0 (MPa) 11.67 11.67 11.67 11.67

ρ0 0.57 0.57 0.57 0.57

ρ∞ 0.61 0.61 0.61 0.61

b1 0.31 0.31 0.31 0.31

b2 0.38 0.38 0.38 0.38

b3 8.40 8.40 8.40 8.40

ρb,∞ (g/cm3)

N/A

0.450

ρb,0 (g/cm3) 0.330

r1 0.361

r2 1.394

r3 23.326

3.2. Case Study 1: Monitoring and Control of the Rotary Tablet Press in the Presence of
Plant-Model Mismatch

Monitoring powder bulk density in the tablet press is of critical importance, as it
affects the tablet properties [12]. Sources of variability can be introduced during any of
the unit operations upstream, e.g., in the feeder unit operations during refill, as the feeder
switches from gravimetric mode to volumetric mode, leading to either increases in bulk
density due to compression or decreases in bulk density due to aeration [19–21].

For this case study, a four-by-five system was employed as it would enable the incorpo-
ration of an extra manipulated input for added control benefits, i.e., glidant concentration.
It is assumed that the direct compression line has the ability to utilize the glidant con-
centration as a manipulated variable through changes in the glidant flowrate. In practice
this would be implemented in the hierarchical three-level QbC framework, by using a
level-one PID control, that would use the glidant concentration measurement and adjust
the glidant flowrate to follow the concentration setpoint set by the level-two NMPC. In this
case the four-by-five non-square level-e control system is comprised of controlled variables
consisting of the tablet weight, pre-compression force, production rate, and tensile strength
and manipulated variables consisting of the dosing position, pre-compression thickness,
main compression thickness, turret speed, and glidant concentration. It is assumed that
measurements for the tablet weight, pre-compression force, main compression force, and
production rate are all available every second [61]. In this simulation, it should be noted
that the main compression force was not a directly controlled variable with specified set
points. This is because the tensile strength could not be maintained while simultaneously
fixing the main compression force. Given the objective to maintain the tensile strength at
desired levels due to its link to patient safety, the tensile strength was chosen over the main
compression force as a controlled variable. Since measurements of the main compression
force are available, they were utilized in the MHE framework only for the purpose of
parameter estimation. As maintaining the CQAs is important, and since the tensile strength
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measurements are not available in real time, a soft sensor based on Equation (17) is utilized
in order to track this particular state in real time. In practice, the SOTAX AT4 tablet tester
can be utilized in order to obtain measurements of the tensile strength. However, since the
diametrical compression test is destructive, tensile strength measurements are available at
a lower frequency than one of the PAT sensors, which in turn also drives the need for a
soft sensor.

A summary of the controlled variables, manipulated variables, measured variables,
and uncertain model parameter is provided in Table 2. In order to examine the performance
of the MHE-NMPC framework under PMM, three different scenarios will be examined,
namely: nominal operation (no PMM), operation with mild PMM, and operation with high
PMM. A summary of model parameters for each scenario is provided in Table 1, where the
MHE-NMPC tuning parameters are those described in detail in Section 2.4. Mild PMM
is simulated by introducing mismatch to three model parameters: ρb, ρc and Kawakita
parameter a. High PMM is simulated by introducing mismatch to six model parameters:
ξ2, ρb, ρc, Kawakita parameters a and b, and ρt. In this simulation, the ‘model’ and ‘plant’
share the same equations detailed in Section 3.1. Different parameter values were assigned
to the ‘model’ and ‘plant’ in order to simulate mismatch. Additionally, sensor measurement
noise in the plant was simulated by adding normally distributed error with zero mean and
variance analogous to the variability of a real sensor. This variability was obtained from
historical plant data.

Table 2. Summary of variables and uncertain model parameters for case study 1.

Controlled variables Tablet weight, pre-compression force, production rate, tensile strength

Manipulated
variables

Dosing position, pre-compression thickness, main compression
thickness, turret speed, silica concentration

Measured variables
Tablet weight, pre-compression force, main compression force,
production rate

Uncertain model
parameters

Bulk density, critical density, a: maximum degree of compression

For all three scenarios, three model parameters are tracked, i.e., ρb, ρc and Kawakita
parameter a. The bulk density was monitored due to its influence on a number of other
model parameters and states, while the relative critical density and Kawakita parameter a
are both known to influence the compression forces, making them critical parameters that
also need to be tracked in real time.

Simulation results of the process outputs for all three scenarios are presented in
Figure 5a–c, respectively. The MHE-NMPC framework is utilized for all simulations and
includes open-loop control from 0–100 s (indicated by red shading in all plots), state
estimation using MHE and open loop control from 100–200 s (indicated by yellow shading
in all plots), and implementation of the MHE-NMPC framework from 200 s until the end
of the simulation (indicated by gray shading in all plots). Setpoint changes are introduced
for the tablet weight from 210 mg to 240 mg at 400 s, for the pre-compression force from
0.3 kN to 0.6 kN at 600 s, for the production rate from 6.9 kg/h to 8 kg/h at 800 s, and for
the tensile strength from 4.2 MPa to 6 MPa at 600 s, respectively.
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Figure 5. Controlled variables for case study 1 under scenarios with (a) no PMM, (b) mild PMM, and
(c) high PMM.

For the scenario where there is no PMM, accurate setpoint tracking can be achieved
for all states (see Figure 5a). This is also true for the case where there is mild PMM (see
Figure 5b). This is primarily enabled due to the ability of the MHE-NMPC framework to
accurately track variations in the uncertain model parameters in real time as illustrated
in Figure 6b, allowing the impact of PMM to be effectively managed. In the case where
there is high PMM (see Figure 5c), fairly accurate setpoint tracking can still be achieved
despite there being mismatch in more parameters than those being tracked. This is also
observed from the parameter estimation results in Figure 6c, although there is a slight offset
in the model parameters being tracked to compensate for the variation in the additional
model parameters that are not being tracked. The corresponding plots of the manipulated
variables for all three scenarios are presented in Figure 7.
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Figure 6. Parameter estimation of model parameters for case study 1 under scenario with (a) no PMM, (b) mild PMM, and
(c) high PMM.

Control performance metrics are required in order to assess the performance of the
development framework and accurately assess the impact of PMM for each scenario.
Beyond the typical controller performance metric, i.e., integral of absolute error (IAE),
some additional metrics are used to quantify the control performance in each scenario,
which include the duration-to-reject (D2R) and magnitude to product (M2P) [65]. These
metrics are able to quantify control performance in a manner that is more relevant for the
continuous pharmaceutical industry. D2R is the duration of time that the process requires
to smooth out the process disturbance or to reach a new set point for the CQA/CPP. M2P
describes the maximum deviation in the CQA/CPP from the target setpoint. Larger values
of all these performance metrics indicate worse or degraded control performance. The IAE
values are calculated from t = 300 s to t = 1000 s. A summary of the control performance
metrics is provided in Table 3.

When mild PMM exists, the control performance of the MHE-NMPC framework is
comparable to the scenario without PMM, implying that the framework is able to suffi-
ciently handle the PMM. However, when there is excessive PMM in multiple parameters as
in the scenario with high PMM, significantly higher values of IAE and M2P are obtained,
particularly in the tensile strength. This can be attributed to the fact that there was mis-
match in more model parameters than those being tracked for this particular simulation, as
can be noted from Table 1, resulting in an offset in the estimates of the model parameters
to compensate for the added uncertainty (see Figure 6c). It should also be noted that
the setpoints for the tablet weight and production rate track reasonably well, even in the
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presence of high PMM as demonstrated by the comparable IAE values for both states.
However, since the tensile strength is an important CQA that is linked to the dissolution
profile of the tablets, once high PMM begins to cause an offset in the tensile strength, it can
serve as an indicator for the requirement to carry out model re-identification. This case
study was able to demonstrate the strength of the MHE-NMPC framework in its ability to
handle PMM in multiple model parameters.

Figure 7. Manipulated variables for case study 1 under scenarios with (a) no PMM, (b) mild PMM,
and (c) high PMM.
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Table 3. Control performance of the MHE-NMPC framework for case study 1 under different levels
of PMM.

Controlled Variables Performance Metrics No PMM Mild PMM High PMM

Tablet Weight

IAE 6.83 7.00 7.05

M2P (%) 3.31 3.19 3.61

D2R (s) 76 78 74

Tensile Strength

IAE 9.95 10.18 39.07

M2P (%) 5.25 5.23 10.46

D2R (s) 82 81 90

Production Rate IAE 8.84 8.26 8.41

3.3. Case Study 2: Monitoring and Control of the Rotary Tablet Press in the Presence of
Uncertainty in the Glidant Concentration

This scenario aims to explore a more practical concern with regards to the incorpo-
ration of the glidant feeder in the control scheme. In practice in some applications, it
might not be possible to accurately control the concentration of the glidant in the direct
compression process, due to the low concentrations used and, thus, the small feeding rates
needed. Uncertainty in the glidant concentration is important, as it leads to variations in
the bulk density upstream of the rotary tablet press. Therefore, accurate monitoring and
control of these variations is required.

Since the glidant concentration can no longer be treated as a manipulated input for
this scenario, the original system is revised to form a four-by-four MIMO system with
the controlled variables consisting of the tablet weight, pre-compression force, production
rate, and tensile strength. The manipulated variables consist of the dosing position, pre-
compression thickness, main compression thickness, and turret speed. Once again it
is assumed that only measurements for the tablet weight, pre-compression force, main
compression force, and production rate are available every second. As tensile strength
measurements are not available in real time, a soft sensor based on Equation (17) is once
again utilized for this particular state. The concentration of silica is then assumed to be
an uncertain parameter. A summary of the controlled variables, manipulated variables,
measured variables, and uncertain model parameters is provided in Table 4. A summary of
the model parameters was provided in Table 1, where the MHE-NMPC tuning parameters
are those detailed in Section 2.4.

Table 4. Summary of variables and uncertain model parameters for case study 2.

Controlled variables Tablet weight, pre-compression force, production rate, tensile strength

Manipulated
variables

Dosing position, pre-compression thickness, main compression
thickness, turret speed

Measured variables
Tablet weight, pre-compression force, main compression force,
production rate

Uncertain model
parameters

Silica concentration

For this particular case study, mismatch is introduced through positive and negative
step changes in the silica concentration from its nominal value of 0.2% to 0.35% between
300 and 700 s and from 0.2% to 0.05% between 1100 and 1500 s, respectively. Step changes
in either direction are introduced in order to examine if and how the direction of the
mismatch affects the control performance. Simulation results of the process outputs for
open loop control, closed loop control using only NMPC control, and closed loop estimation
and control using the proposed MHE-NMPC framework are presented in Figure 8a–c,
respectively. The simulation for the NMPC framework includes open loop control from 0
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to 200 s, with a closed loop NMPC strategy implemented from 200 s until the end of the
simulation. The simulation for the MHE-NMPC framework includes open loop control
from 0 to 100 s, state estimation using MHE and open loop control from 100 to 200 s, and
implementation of the MHE-NMPC framework from 200 s until the end of the simulation.

Figure 8. Controlled variables for case study 2 under scenarios using (a) open loop control, (b) only NMPC, and
(c) MHE-NMPC.

Figure 8a demonstrates failure of the open loop control to maintain the controlled
variables at their setpoints and, thus, the need to implement effective control strategies. Due
to the disturbance terms utilized in the NMPC framework, offset free control is achieved
for three of the four controlled variables when only NMPC is employed, as illustrated in
Figure 8b. However, since real-time measurements are unavailable for the tensile strength,
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a soft sensor is employed. Since the soft sensor does not incorporate a disturbance term,
an offset can be observed between the soft sensor values and the set point due to the
mismatch caused by the assumption of fixed model parameters in the NMPC framework.
In contrast, as illustrated in Figure 8c the MHE-NMPC framework is able to achieve offset
free control for all four states, including the tensile strength. This is attributed to the ability
of the MHE-NMPC framework to provide (i) real-time and accurate estimation of uncertain
model parameters, enabled by MHE, and (ii) efficient control, enabled by NMPC.

Figure 9 shows results for the uncertain model parameter estimation, i.e., the esti-
mation of silica concentration. These results demonstrate the ability of the MHE-NMPC
framework to accurately track variations in silica concentration. It should be noted that
the sluggish behavior at higher concentrations of silica is due to the nonlinear effect silica
has on the process. Since in practice the true value of the concentration of silica might
be unknown, this case study demonstrates the advantage of utilizing the MHE-NMPC
framework to achieve accurate estimation of both measurable and unmeasurable states
and parameters, such as the concentration of silica, while executing realistic and effective
control strategies.

Figure 9. Parameter estimation for case study 2 under scenarios using (a) open loop control, (b) only NMPC, and
(c) MHE-NMPC.

Figure 10 shows the manipulated variables for the different control strategies studied
in this section. All changes in the manipulated variables presented in these results are
realistic in nature and can be achieved during normal operation of the tablet press. It
should be noted that the variations in the manipulated variables are larger in the case
where only NMPC is utilized (see Figure 10b) compared to the case where the MHE-NMPC
framework is utilized (see Figure 10c). This may be attributed to a less effective linear
output disturbance model implemented in the NMPC framework, when compared to
the MHE-NMPC framework that also carries out parameter updating incorporating more
directly nonlinear effects of the PMM in the scheme.

This case study was able to demonstrate the ability of the MHE-NMPC framework
to track and manage fluctuations in the glidant concentration, often caused by upstream
disturbances, thereby providing an efficient solution to a common process upset faced
when operating the rotary tablet press.
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Figure 10. Manipulated variables for case study 2 under scenarios using (a) open loop control, (b) only NMPC, and
(c) MHE-NMPC.

4. Conclusions

The continuous pharmaceutical manufacturing industry is in need of improved real-
time process monitoring and management strategies that, specifically, are able to effectively
identify and handle plant-model mismatch (PMM). In order to enable the quality-by-
control (QbC) paradigm to move forward, this work developed and presented a moving
horizon estimation-based nonlinear model predictive control (MHE-NMPC) framework
to accomplish the dual requirement of accurate estimation and efficient control. Real-
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time implementation feasibility of the developed framework was also discussed, and the
ability of the proposed framework to solve the optimization problem at each time step in a
manner that enabled real-time implementation was highlighted. The practical applicability
of the developed framework was corroborated through two realistic case studies that
incorporated the effects of glidant to better control CQAs such as the tensile strength.
Both examples demonstrated the ability of the framework to achieve reasonable control
performance despite the presence of varying sources and degrees of PMM.

Future work includes further demonstration of the practical applicability of the pro-
posed MHE-NMPC framework utilizing the rotary tablet press at Purdue University,
including the application of the framework to the entire direct compression line. While
a soft sensor was utilized in this work to track the tensile strength, in practice, due to
low-frequency measurement availability from the SOTAX AT4 tablet tester, sensor fusion
methods might be required to integrate and efficiently utilize all available plant data. This
improved strategy would also require additional studies to determine how frequently to
collect measurement data from the SOTAX AT4 tablet tester, due to the destructive nature
of the testing method.
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Abstract: To solve the problem of fuzziness and randomness in regional logistics decarbonization
evaluation and accurately assess regional logistics decarbonization development, an evaluation
model of regional logistics decarbonization development is established. First, the evaluation index of
regional logistics decarbonization development is constructed from three dimensions: low-carbon
logistics environment support, low-carbon logistics strength and low-carbon logistics potential. Sec-
ond, the evaluation indexes are used as cloud model variables, and the cloud numerical characteristic
values and cloud affiliation degrees are determined according to the cloud model theory. The entropy
weight method is used to determine the index weights, and the comprehensive determination degree
of the research object affiliated to the logistics decarbonization level is calculated comprehensively.
Finally, Beijing-Tianjin-Hebei region is used as an example for empirical evidence, analyzing the
development logistics decarbonization and its and temporal variability in Beijing, Tianjin and Hebei
provinces and cities. The results of the study show that the development logistics decarbonization in
Beijing, Tianjin and Hebei Province has been improved to different degrees during 2013–2019, but
the development is uneven. Developing to 2019, the three provinces and cities of Beijing, Tianjin and
Hebei still have significant differences in terms of economic environment, logistics industry scale,
logistics industry inputs and outputs, and technical support.

Keywords: regional logistics; low-carbon economy; cloud model; comprehensive evaluation; Beijing-
Tianjin-Hebei region

1. Introduction

China has entered a new stage of high-quality development; the people’s demand
for ecological environment is getting higher and higher, and the importance and urgency
of promoting green development has become more and more prominent. In 2020, Gen-
eral Secretary Xi Jinping solemnly declared to the world at the United Nations General
Assembly that China’ s carbon dioxide emissions will peak by 2030 and strive to achieve
carbon neutrality by 2060. As a high-end service industry, logistics has the characteristics
of high energy consumption and high emission. The development path of logistics must
follow low-carbon development, focusing on green logistics, low-carbon logistics and
intelligent informatization. With the rise of the low-carbon revolution and the official
advocation of green environment at the Copenhagen environment conference, low-carbon
logistics has become the focus of academic research at home and abroad. The research of
low-carbon logistics focuses on four aspects: carbon emission accounting, carbon emission
driver identification, low-carbon logistics capability measurement and low-carbon logistics
development strategy. In carbon emission accounting of logistics process, Butner K, Dada
A, Piecyk M I adopt the method of carbon emission measurement based on whole life cycle
and design the analytical of carbon emission measurement including structural factors and
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commercial factors [1–3]. Wang LP and Liu Y calculated the carbon emission from energy
data of Chinese provinces from 1997–2004 and 2007–2013 [4,5]. Concerning identifying
drivers of carbon emissions in the logistics industry, Timilsina and others studied on the
growth of carbon emissions in the transport in selected Asian countries from 1980 to 2005 [6].
Lei Yang takes Shenzhen port as an example and measures the carbon emission in the port
comprehensive logistics system [7]. Yang YW, Li FG, Men D et.al explore the driving causes
of carbon emission growth by using LMDI model decomposition analysis [8–10]. In the
low carbon logistics capability, Jessica Wehner takes an interactive approach to capacity
utilization to contribute to sustainable freight transport and logistics [11]. The Chinese
scholars mainly focus on the fuzzy comprehensive evaluation method, entropy weight
TOPSIS model, DEA evaluation model, and Malmquist model static measurement methods
to evaluate [12–15]. In the development strategy of low-carbon logistics, relevant scholars
analyze the current situation and problems of low-carbon logistics development from differ-
ent perspectives and put forward suggestions to promote the development of low-carbon
logistics [16–20]. At present, scholars have conducted fewer studies related to the low-
carbon development of regional logistics. Ma YY used data envelopment analysis to study
the total factor productivity of China’s logistics industry under low-carbon constraints [21].
Xie F and Gao FF analyzed the low carbonization of China’s logistics industry and related
industries by constructing an index system for the coordinated development of logistics
industry and low carbon economy and using a coordinated development model [22,23]. Yu
Q analyzed the logistics efficiency and its influencing factors in 30 provinces and cities, as
well as the eastern, central and western regions of China based on the DEA-Tobit two-stage
method [24]. Song Lina used a combined model of principal component analysis and
data envelopment analysis to evaluate the regional low-carbon logistics performance of
provinces along the Silk Road Economic Belt in China [25]. Wang X, taking Anhui Province
as an example, explored the mechanism of the low-carbon development of regional logis-
tics using the theoretical analysis framework of “development dynamics-measurement
criteria-acting subject” [26].

To solve the fuzzy and stochastic problems in the process of low carbonization evalua-
tion of regional logistics, the fuzzy and stochastic properties were converted into a definite
value by the cloud generator, which broke the limitation of qualitative and quantitative
research and made the evaluation more hierarchical [27].

2. Theoretical Basis

2.1. Entropy Weighting Method

Entropy is a measure of the disorder degree of a system. According to defined entropy,
we can use the size of entropy to judge the discreteness degree of an index. The smaller the
entropy value is, the greater the influence of the index on the comprehensive evaluation
(i.e., the weight). Therefore, information entropy is a tool that can be used to objectively
empower multiple signs to provide the basis for a comprehensive evaluation:

1. Standardized processing of data: assume that m evaluation objects, n evaluation
signals, get the original evaluation, X =

(
Xij
)

m×n, make

Uij =

⎧⎪⎪⎨
⎪⎪⎩

Xij−min
i

Xij

max
i

Xij−min
i

Xij
, Negative indicators

max
i

Xij−Xij

max
i

Xij−min
i

Xij
, Positive Indicators

(1)

where Xij denotes the j indicator of the i evaluator in a given locality, Uij it is the
standardized data.

2. Calculation of weights for each indicator:

Pij =
Uij

m
∑

i=1
Uij

(2)

48



Processes 2021, 9, 2273

3. Calculation of entropy for each indicator:

ej = − 1
ln m

m

∑
i=1

Pij ln Pij (3)

4. Determination of weights for each indicator:

wj =
1 − ej

n − n
∑

j=1
ej

(4)

2.2. Cloud Models
2.2.1. The Cloud Models

Li DY and others are the basis of cloud computing, reasoning, and control, and it is a
model for the transformation of uncertainty between qualitative concepts and quantitative
descriptions [27–29]. It is widely used in risk assessment, data mining, and performance
evaluation and so on [30–33]. Let O be a quantitative set represented by a numerical value.
I is a qualitative concept in O space. If the quantitative value x ∈ O and x is a stochastic
implementation in the qualitative concept I, the determinacy of x to I: μ(x) ∈ [0, 1], It is a
stochastic number with a tendency to stability:

μ : O → [0, 1], ∀x ∈ O, x → μ(x)

Then the distribution of x in the set is called the cloud model, with each x being a
cloud drop.

2.2.2. Numerical Characteristics of Clouds

Cloud models represent the primitive-language values in natural language, and the
three numeric features of cloud models—Ex (expectation), En (entropy), and He (supers
entropy)—represent the numerical characteristics of language values, thus achieving the
goal of integrating the fuzziness and randomness of objects studied. Among them, Ex is
the expectation of cloud droplet distribution in the domain. It is the central value of cloud
droplet in a given set space distribution. En indicates the uncertainty measure of qualitative
concept, which reflects the dispersion degree of cloud droplet, which is determined by
the ambiguity and randomness of qualitative concept. He is a measure of the fuzziness
of entropy, the size of which indirectly reflects the thickness of cloud droplets and the
fuzziness and randomness of entropy [34–36].

2.2.3. Cloud Generator

The mutual transformation between qualitative concept and quantitative data in cloud
model needs to be realized by cloud generator. Typically, a cloud generator includes a
forward cloud generator, a reverse cloud generator and a conditional cloud generator.

Forward Cloud Generator: A mapping from a qualitative concept to a quantitative
value, a process by which cloud droplets are generated from the numerical eigenvalues of
a cloud model, as shown in Figure 1.

Figure 1. Positive cloud generator.

In Figure 1, CG means the forward cloud generator, xi is the cloud droplet, and μi is
its affiliation degree.
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Reverse Cloud Generator: Mapping from quantitative values to directed ideas, that
is, converting exact data into the suitable qualitative language (Ex, En, He), as shown in
Figure 2.

Figure 2. Inverse cloud generator.

In Figure 2, CG−1 notes a reverse cloud generator, xi is the cloud droplet, and μi is its
affiliation degree.

X Conditional Cloud Generator: In the numerical domain space of a given set, the
three digital eigenvalues of the known cloud, Ex,En,He, and contain a specified condition
x = x0, this is called Conditional Cloud Generator. As shown in Figure 3.

Figure 3. Conditional cloud generator.

2.3. Carbon Emission Measurement

At present, there is no uniform standard for carbon emission measurement in the
world. This paper adopts the more extensive estimation method of IPCC, also known as the
IPCC inventory coefficient method. This method is based on the final energy consumption,
and considering the waste gas emitted during the logistics process includes not only carbon
dioxide, but also carbon monoxide, hydrocarbons, etc. In this paper, the carbon emission
of the logistics industry is estimated by energy consumption. This is done by multiplying
the various energy consumption of the logistics industry by their respective standard coal
coefficient and then by their respective carbon emission factors to arrive at the total carbon
emissions for a given year in the region:

C = ∑
i

Ci = ∑
i

δiθiEi (5)

Of which: Ci means carbon emissions from type i energy sources, Ei denotes con-
sumption of type i energy sources, θi marks coefficient of fractional standard coal for type
i energy sources, δi stands for carbon emission factors for type i energy sources, and θiEi
denotes amount of fractional standard coal for type i energy sources.

3. Regional Logistics Decarbonization Development Evaluation Model Construction

3.1. Evaluation Index System for Low-Carbon Development of Regional Logistics

Low-carbonization of regional logistics means building a regional logistics system
which is based on low-carbon economy and green logistics and supports the concept of
“sustainable development” and“carbon emissions”. It meets the regional economic and po-
litical development and has a supporting system of logistics information and organization
and operation, while possessing the characteristics of green, balanced and efficient. Related
scholars have different focuses and starting points for the research on the level of regional
logistics decarbonization, such as Lai, Ma Shihua et al. from the logistics system [37,38],
and Daugherty and Wang Ming from the level of enterprises [39,40] to define the low
carbon logistics capacity. This paper argues that the level of logistics at the regional level is
essentially a kind of competitiveness, which should not only focus on the current existing
strengths, but also on the potential for future development, and should pay attention to
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both its own capacity building and the influence of the growth environment. According to
the China Logistics Development Report 2019–2020 and the Low Carbon Logistics Develop-
ment Guidelines, the low-carbon logistics development focuses on the following subjects:
railway freight transport, low-carbon automobile transport, logistics rationalization, com-
mon distribution, recycling of waste facilities, green packaging, industrial waste disposal
and information e-commerce. According to the quantitative nature of the action guide and
the availability of data, following the principles of systematism, scientificity and application
of the selection of indicators, this paper summarizes three first-level indicators to evaluate
the level of regional logistics decarbonization. Low-carbon logistics environmental support
is an external factor that affects the level of regional low-carbon logistics capacity, which is
influenced by the economic and policy environment. Low-carbon logistics environmen-
tal support is to evaluate the existing competitiveness of regional logistics low-carbon
development, mainly in terms of infrastructure construction, logistics industry scale and
logistics industry efficiency. The potential of low-carbon logistics is the sustainable driving
force for the decarbonization of regional logistics, which includes the potential of regional
logistics in terms of input, output and demand, and is mainly measured by the growth rate
indicator. The specific indicators are shown in Table 1.

Table 1. Regional Logistics Decarbonization Evaluation Index System.

Target Layer
First Level Indicator

Layer
Secondary

Indicator Layer
Three-Level Indicator Layer

Evaluation of regional
logistics decarbonization

development X

Low carbon logistics
environment support

force X1

Economic
environment

Gross regional product per capita X1,1
Fiscal revenue per capita X1,2

Total retail sales of social goods per capitaX1,3

Policy
environment

The part of local financial expenses on
environmental protection to total expenses X1,4

Logistics industry as a proportion of fixed
investment X1,5

Low carbon logistics
strength X2

Logistics
infrastructure

Road Density X2,1
Rail Density X2,2

Logistics industry
scale

Logistics operations per head X2,3
E-commerce sales per capita X2,4
Increase in logistics per capitaX2,5

The proportion of logistics employees in the
workforce X2,6

Cargo turnover per capita X2,7

Logistics industry
efficiency

Contribution of logistics industry to GDP X2,8
Value added of logistics industry per logistics

employee X2,9
Carbon emissions per unit of added value in the

logistics industry X2,10

Low carbon logistics
potential X3

Logistics industry
input

Growth rate of new fixed asset investment in
logistics industry X3,1

Logistics workforce growth rate X3,2

Logistics output Value added growth rate of logistics industry X3,3

Logistics industry
demand GDP per capita growth rateX3,4

Technical support Technology Market Turnover Growth RateX3,5
R&D expenditure growth rate X3,6
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3.2. Construction of Evaluation Model
3.2.1. Defining the Object and Domain of Cloud Model Evaluation

The evaluation object is established as the regional logistics decarbonization eval-
uation, showed by X. According to the regional logistics index evaluation index sys-
tem constructed in Table 1, the factor domain of the criterion layer is determined as
X = {X1, X2, X3}, and the index layer domains are X1 = {X1,1, X1,2, · · · , X1,5}, X2 =
{X2,1, X2,2, · · · , X2,10} and X3 = {X3,1, X3,2, · · · , X3,7}.

3.2.2. Settle the Evaluation Level of Each Indicator

For each index evaluation level domain A, to more clearly represent the average
level of the research object and the degree of distinction, the general number of lev-
els p is an odd number not greater than 7. Therefore, this paper divides each evalu-
ation index into 5 levels according to the relevant literature and index characteristics:
T = {low, lower, general, higher, high}.

3.2.3. Decide the Cloud Numerical Eigenvalues of Each Evaluation Index and Cloud
Model Map

Factor evaluation is carried out between the various hierarchical domains correspond-
ing to each evaluation indicator, and the fuzzy relationship matrix is obtained by generating
cloud numerical eigenvalues through a forward cloud generator. Let the upper and lower
critical values of the rank Tk(k = 1, 2, · · · , p) corresponding to the evaluation indicator
j(j = 1, 2, · · · , 21) be [Gmin, Gmax]. The normal cloud model for the rank k corresponding
to the evaluation indicator j is

Ex = (Gmin + Gmax)/2 (6)

The critical value is the transition value of two adjacent levels, which belong to the
two corresponding levels at the same time, so the affiliation of the two levels is equal:

exp

[
− (Gmax − Gmin)

2

8(En)
2

]
= 0.5 (7)

En =
Gmax − Gmin

2.355
(8)

The super entropy He reflects the thickness of the cloud layer, which is a measure of
the uncertainty of entropy, and the final value is determined by repeated trials according to
the magnitude of entropy. According to the obtained fuzzy relationship matrix, MATLAB
programming is applied to obtain the cloud model map corresponding to each metric.

3.2.4. Determine the Affiliation of Each Evaluation Index

Using X conditional cloud generator, we calculate the affiliation degree of each index
corresponding to different levels, form the corresponding cloud model affiliation matrix.
Select the largest affiliation degree as the evaluation level of the index. The corresponding
cloud affiliation degree is

vjk = exp

{
− (x0 − Ex)2

2(En′)2

}
(9)

where En′ is a normal random number with En as the expected value and He2 as the
variance, i.e., En′ ∼N(En, He2). The affiliation matrix is denoted as V = (Vjk)n×p and Vjk

denotes the affiliation of the k th rank of the j th evaluation index, and in order to optimize
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the evaluation accuracy, the average of different affiliations under the repeated N times
conditional cloud generator is used, i.e.,

Vjk =
1
N

N

∑
q=1

vq
jk (10)

3.2.5. Entropy Weighting Method to Assign the Index Weights

According to the calculation steps of the entropy weighting method mentioned in
2.1 above, the weighting values of each indicator are determined in conjunction with the
regional logistics low carbon development evaluation index system.

3.2.6. Determine the Comprehensive Evaluation Level of Regional Logistics
Decarbonization Development

In this paper, the comprehensive determination degree of regional logistics decar-
bonization development level is obtained according to the following formula.

Cik = wjVi
jk(i = 1, 2, · · · , m) (11)

where Vi
jk is the affiliation degree of an region in year i and wj is the weight of the index.

According to the principle of maximum degree of certainty, the level where the maximum
degree of certainty is selected is the final comprehensive evaluation level of regional
logistics decarbonization development.

4. Empirical Analysis and Pathway Study

As a pioneer area of green and low-carbon development in China, the development
of low-carbon logistics in Beijing, Tianjin and Hebei can play a typical demonstration
and promotion role in the country. Beijing, Tianjin and Hebei have significantly different
logistics capabilities due to their regional characteristics and differences in economic and
political levels, and it is urgent to establish a mechanism for the collaborative development
of low-carbon logistics in the region. Therefore, this paper takes Beijing, Tianjin and Hebei
as an example to evaluate the development of low-carbon logistics in each region, find out
the differences between them, and then discover the main factors affecting the development
of low-carbon logistics in each city, so as to provide theoretical support for the development
of low-carbon logistics.

4.1. Data Sources and Carbon Emission Measurement in Beijing, Tianjin and Hebei
4.1.1. Data Sources

This paper analyzes the data of Beijing-Tianjin-Hebei region from 2013 to 2019 as
samples, and the relevant raw data are obtained from the annual data of National Bureau
of Statistics by province, China Economic Statistical Yearbook and China Energy Statistical Year-
book.

4.1.2. Carbon Emission Measurement in Beijing, Tianjin and Hebei

According to the relevant data of China Energy Statistical Yearbook, the logistics
industry in Beijing, Tianjin and Hebei mainly consumes 11 types of energy, including raw
coal, gasoline, kerosene, diesel, fuel oil, liquefied petroleum gas, natural gas, liquefied
natural gas, heat, electricity and other energy sources; among them, the carbon emission
coefficients of liquefied natural gas, heat and other energy sources have not been found for
the time being, and the consumption of these three types of energy sources accounts for a
small part. The carbon emission coefficients of LNG, heat and other energy sources are not
available, and these three types of energy sources account for little consumption, so their
carbon emissions are not counted. Due to limited space, the raw data are shown in Table 2,
taking the Beijing area as an example.
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Table 2. Energy consumption by region in Beijing.

Energy Name 2013 2014 2015 2016 2017 2018 2019

Raw Coal (million tons) 15.86 16.03 12.30 7.97 3.22 0.94 0.41
Gasoline (million tons) 45.40 46.45 44.65 41.62 42.41 42.57 49.74
Kerosene (million tons) 476.51 507.07 543.78 593.66 643.31 690.47 697.17

Diesel (million tons) 124.28 126.56 118.00 109.92 106.98 110.11 99.81
Fuel Oil (million tons) 1.59 1.88 1.79 1.49 1.50 0.08 0.27

Liquefied Petroleum Gas (million tons) 0.35 0.32 0.38 0.28 1.17 1.55 17.41
Natural Gas (billion kilowatt hours) 2.35 3.17 2.11 1.99 1.80 3.72 3.42

Power (billion kilowatt hours) 44.64 45.02 47.31 50.61 53.29 582.03 57.98

According to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, the
reference coefficients for the conversion of standard coal and carbon emission coefficients
for various energy sources are shown in Table 3.

Table 3. Reference factors for the conversion of standard coal and carbon emission factors for various energy sources.

Energy Name
Discount Factor

for Standard Coal
Unit

Carbon Emission
Factor

Unit

Raw Coal 0.7143 million tons of standard
coal/million tons 0.7559 Tonnes of carbon/tonne of

standard coal

Gasoline 1.4714 million tons of standard
coal/million tons 0.5538 Tonnes of carbon/tonne of

standard coal

Kerosene 1.4714 million tons of standard
coal/million tons 0.5714 Tonnes of carbon/tonne of

standard coal

Diesel 1.4571 million tons of standard
coal/million tons 0.5821 Tonnes of carbon/tonne of

standard coal

Fuel Oil 1.4286 million tons of standard
coal/million tons 0.6185 Tonnes of carbon/tonne of

standard coal
Liquefied

Petroleum Gas 1.7143 million tons of standard
coal/million tons 0.5042 Tonnes of carbon/tonne of

standard coal

Natural Gas 13.3 million tons of standard
coal/billion cubic meters 0.4483 Tonnes of carbon/tonne of

standard coal

Power 1.229 million tons of standard
coal/billion kilowatt hours 2.2132 Tonnes of carbon/tonne of

standard coal

Substitute the data into Equation (5) for calculation to get the carbon emissions of each
region from 2013–2019, which are divided by the unit value added of logistics industry as
the raw data of carbon emissions per unit value added of indicator logistics industry and
show the calculation results in Table 4.

Table 4. Carbon emissions from Beijing, Tianjin and Hebei regions.

Region 2013 2014 2015 2016 2017 2018 2019

Beijing 688.7401 723.4680 743.4722 781.6607 825.9406 2315.8326 904.9456
Tianjin 283.6145 302.9090 326.6324 339.6521 350.2898 362.5607 377.9557
Hebei 724.9221 699.0801 519.9094 791.0719 762.9008 809.7153 1003.4259

4.2. Evaluation of the Low Carbon Development of Logistics in Beijing, Tianjin and Hebei
4.2.1. Selection of Indicator Samples

According to the index system constructed in Table 1, select the relevant statistics of
Beijing, Tianjin and Hebei to analysis, and the following table takes the raw data of Beijing
as an example, as shown in Table 5.
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Table 5. Raw data of each indicator in Beijing.

Indicators 2013 2014 2015 2016 2017 2018 2019

X1,1 9.9927 10.6533 11.4137 12.4442 13.7646 15.3695 16.4555
X1,2 1.7310 1.8714 2.1759 2.3384 2.5015 2.6861 2.7006
X1,3 4.1948 4.4786 4.7619 5.0645 5.3318 6.6956 6.9934
X1,4 0.0331 0.0472 0.0529 0.0567 0.0672 0.0535 0.0417
X1,5 0.0966 0.1117 0.0960 0.0965 0.1359 0.1601 0.1389
X2,1 1.3207 1.3314 1.3336 1.3422 1.3544 1.3562 1.3629
X2,2 0.0778 0.0783 0.0783 0.0709 0.0770 0.0770 0.0833
X2,3 0.4023 0.4821 0.6281 0.5686 0.7341 1.1534 1.6162
X2,4 3.6093 4.2612 4.8934 5.5397 8.4610 8.4114 10.7873
X2,5 0.3171 0.3368 0.3408 0.3639 0.4150 0.4716 0.4693
X2,6 0.0798 0.0796 0.0772 0.0735 0.0710 0.0735 0.0746
X2,7 0.4970 0.4817 0.4152 0.3799 0.4415 0.4801 0.5058
X2,8 0.0317 0.0316 0.0299 0.0292 0.0302 0.0307 0.0285
X2,9 11.3277 12.0399 12.3300 13.5876 15.6153 16.8754 17.1322
X2,10 −1.0271 −0.9982 −1.0050 −0.9884 −0.9167 −2.2796 −0.8953
X3,1 −0.0568 0.1692 −0.0691 0.0653 0.4825 0.1130 −0.1540
X3,2 0.0242 0.0169 −0.0033 −0.0300 −0.0086 0.0433 −0.0199
X3,3 0.0552 0.0808 0.0207 0.0689 0.1394 0.1275 −0.0050
X3,4 0.0854 0.0638 0.0669 0.0859 0.1050 0.1126 0.0749
X3,5 0.1599 0.1001 0.1010 0.1410 0.1385 0.1050 0.1487
X3,6 0.0796 0.0959 0.0453 0.0441 0.0559 0.0183 0.0408

Note: To ease the subsequent ranking, the data related to the negative item is added with a negative sign to make
it a positive indicator.

4.2.2. Determine the Level of Each Evaluation Index

In this study, the domain was divided into five evaluation levels, and the maximum
and minimum values of the indicator data of 31 provinces were taken as the range of
evaluation factors, and then the range was reasonably divided into five levels to determine
the upper and lower critical values [Gmin, Gmax] of each level, and the results are shown in
Table 6.

Table 6. Classification of the evaluation level of each indicator.

Grade Low Lower General Higher High

X1,1 (0, 3) (3, 6) (6, 9) (9, 13) (13, 17)
X1,2 (0, 0.6) (0.6, 1.2) (1.2, 1.8) (1.8, 2.4) (2.4, 3)
X1,3 (0, 1) (1, 2) (2, 4) (4, 6) (6, 8)
X1,4 (0, 0.02) (0.02, 0.03) (0.03, 0.05) (0.05, 0.06) (0.06, 0.07)
X1,5 (0, 0.02) (0.02, 0.05) (0.05, 0.1) (0.1, 0.15) (0.15, 0.2)
X2,1 (0, 0.4) (0.4, 0.8) (0.8, 1.2) (1.2, 1.6) (1.6, 2)
X2,2 (0, 0.02) (0.02, 0.04) (0.04, 0.06) (0.06, 0.08) (0.08, 0.1)
X2,3 (0, 0.3) (0.3, 0.6) (0.6, 0.9) (0.9, 1.3) (1.3, 1.7)
X2,4 (0, 1) (1, 3) (3, 5) (5, 8) (8, 11)
X2,5 (0, 0.12) (0.12, 0.24) (0.24, 0.36) (0.36, 0.48) (0.48, 0.6)
X2,6 (0, 0.02) (0.02, 0.04) (0.04, 0.06) (0.06, 0.08) (0.08, 0.1)
X2,7 (0, 1) (1, 3) (3, 5) (5, 7) (7, 13)
X2,8 (0, 0.02) (0.02, 0.04) (0.04, 0.06) (0.06, 0.08) (0.08, 0.1)
X2,9 (0, 25) (25, 50) (50, 75) (75, 100) (100, 110)
X2,10 (−2.5, −1.5) (−1.5, −1) (−1, −0.6) (−0.6, −0.3) (−0.3, 0)
X3,1 (−1, 0) (0, 0.1) (0.1, 0.3) (0.3, 0.4) (0.5, 0.6)
X3,2 (−1, 0) (0, 0.05) (0.05, 0.1) (0.1, 0.15) (0.15, 0.2)
X3,3 (−1, 0) (0, 0.05) (0.05, 0.1) (0.1, 0.15) (0.15, 0.2)
X3,4 (−1, 0) (0, 0.05) (0.05, 0.1) (0.1, 0.15) (0.15, 0.2)
X3,5 (−1, 0) (0, 0.5) (0.5, 1) (1, 2) (2, 3)
X3,6 (−1, 0) (0, 0.05) (0.05, 0.1) (0.1, 0.15) (0.15, 0.2)
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4.2.3. Determine the Cloud Digital Characteristic Value of Each Evaluation Index and
Cloud Model Map

According to the ranking of each indicator in Table 6, the upper and lower critical
values [Gmin, Gmax] were substituted into Equations (6)–(8) to obtain the numerical char-
acteristic values of the cloud model for each indicator, as shown in Table 7. The number
of cloud drops per cloud was set to 3000, and the cloud model plots for each evaluation
metric were derived by plotting the normal cloud model with MATLAB software. The
cloud model diagrams for each of the five evaluation indicators included under the level of
low carbon logistics environmental support are shown in Figures 4–8, for example. The
horizontal coordinates represent the range of values of the evaluation factors, the vertical
coordinates represent the corresponding affiliation degrees, and the curves from left to
right represent the clouds represented by the evaluation levels of “low”, “low”, “average”,
“high”, and “high”.

Table 7. Numerical feature values of each indicator cloud model.

Grade Low Lower General Higher High

X1,1 (1.5, 1.2739, 0.2) (4.5, 1.2739, 0.2) (7.5, 1.2739, 0.2) (11, 1.6985, 0.3) (15, 1.6985, 0.3)
X1,2 (0.3, 0.2548, 0.05) (0.9, 0.2548, 0.05) (1.5, 0.2548, 0.05) (2.1, 0.2548, 0.05) (2.7, 0.2548, 0.05)
X1,3 (0.5, 0.4246, 0.1) (1.5, 0.4246, 0.1) (3, 0.8493, 0.15) (5, 0.8493, 0.15) (7, 0.8493, 0.15)
X1,4 (0.01, 0.0085, 0.0015) (0.025, 0.0042, 0.001) (0.04, 0.0085, 0.0015) (0.055, 0.0042, 0.001) (0.065, 0.0042, 0.001)
X1,5 (0.01, 0.0085, 0.0015) (0.035, 0.0127, 0.002) (0.075, 0.0212, 0.003) (0.125, 0.0212, 0.003) (0.175, 0.0212, 0.003)
X2,1 (0.2, 0.1699, 0.03) (0.6, 0.1699, 0.03) (1, 0.1699, 0.03) (1.4, 0.1699, 0.03) (1.8, 0.1699, 0.03)
X2,2 (0.01, 0.0085, 0.0015) (0.03, 0.0085, 0.0015) (0.05, 0.0085, 0.0015) (0.07, 0.0085, 0.0015) (0.09, 0.0085, 0.0015)
X2,3 (0.15, 0.1274, 0.02) (0.45, 0.1274, 0.02) (0.75, 0.1274, 0.02) (1.1, 0.1699, 0.03) (1.5, 0.1699, 0.03)
X2,4 (0.5, 0.4246, 0.1) (2, 0.8493, 0.15) (4, 0.8493, 0.15) (6.5, 1.2739, 0.2) (9.5, 1.2739, 0.2)
X2,5 (0.06, 0.0510, 0.01) (0.18, 0.0510, 0.01) (0.3, 0.0510, 0.01) (0.42, 0.0510, 0.01) (0.54, 0.0510, 0.01)
X2,6 (0.01, 0.0085, 0.0015) (0.03, 0.0085, 0.0015) (0.05, 0.0085, 0.0015) (0.07, 0.0085, 0.0015) (0.09, 0.0085, 0.0015)
X2,7 (0.5, 0.4246, 0.1) (2, 0.8493, 0.15) (4, 0.8493, 0.15) (6, 0.8493, 0.15) (10, 2.5478, 0.4)
X2,8 (0.01, 0.0085, 0.0015) (0.03, 0085, 0.0015) (0.05, 0.0085, 0.0015) (0.07, 0.0085, 0.0015) (0.09, 0.0085, 0.0015)
X2,9 (12.5, 10.6157, 1.8) (37.5, 10.6157, 1.8) (62.5, 10.6157, 1.8) (87.5, 10.6157, 1.8) (105, 4.2463, 0.7)
X2,10 (−2, 0.4246, 0.1) (−1.25, 0.2123, 0.03) (−0.8, 0.1699, 0.03) (−0.45, 0.1274, 0.02) (−0.15, 0.1274, 0.02)
X3,1 (−0.5, 0.4246, 0.1) (0.05, 0.0425, 0.01) (0.2, 0.0850, 0.015) (0.35, 0.0425, 0.01) (0.55, 0.0425, 0.01)
X3,2 (−0.5, 0.4246, 0.1) (0.025, 0.0212, 0.003) (0.075, 0.0212, 0.003) (0.125, 0.0212, 0.003) (0.175, 0.0212, 0.003)
X3,3 (−0.5, 0.4246, 0.1) (0.025, 0.0212, 0.003) (0.075, 0.0212, 0.003) (0.125, 0.0212, 0.003) (0.175, 0.0212, 0.003)
X3,4 (−0.5, 0.4246, 0.1) (0.025, 0.0212, 0.003) (0.075, 0.0212, 0.003) (0.125, 0.0212, 0.003) (0.175, 0.0212, 0.003)
X3,5 (−0.5, 0.4246, 0.1) (0.25, 0.2123, 0.03) (0.75, 0.2123, 0.03) (1.5, 0.4246, 0.1) (2.5, 0.4246, 0.1)
X3,6 (−0.5, 0.4246, 0.1) (0.025, 0.0212, 0.003) (0.075, 0.0212, 0.003) (0.125, 0.0212, 0.003) (0.175, 0.0212, 0.003)

Figure 4. Per capita gross regional product cloud model.
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Figure 5. Per capita fiscal revenue cloud model.

Figure 6. Retail sales of social goods per capita.

Figure 7. Cloud model of total expenditure ratio of per capita financial environmental protection
expenditure.
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Figure 8. Logistics industry as a percentage of fixed asset investment cloud model.

4.2.4. Calculate the Affiliation Degree of Each Index

After getting the cloud model of each evaluation index in the regional logistics low
carbonization evaluation index system, we use the X conditional cloud generator of the
cloud model by MATLAB programming and take N = 3000 to get the affiliation degree of
different levels corresponding to each evaluation index of the province. According to the
principle of maximum affiliation degree, select the level corresponding to the maximum
of the affiliation degree as the index level, taking Beijing in 2013 as an example, show the
results in Table 8.

Table 8. Indicator affiliation with Beijing 2013 as an example.

Grade Low Lower General Higher High Grade

X1,1 0.0000 0.0006 0.1504 0.8250 0.0222 Higher
X1,2 0.0000 0.0122 0.6359 0.3419 0.0034 General
X1,3 0.0000 0.0000 0.3626 0.6251 0.0095 Higher
X1,4 0.0360 0.1714 0.7032 0.0002 0.0000 General
X1,5 0.0000 0.0001 0.5851 0.4010 0.0027 General
X2,1 0.0000 0.0009 0.1732 0.8858 0.0276 Higher
X2,2 0.0000 0.0000 0.0104 0.6376 0.3473 Higher
X2,3 0.1492 0.9276 0.0324 0.0013 0.0000 Lower
X2,4 0.0000 0.1711 0.8907 0.0850 0.0002 General
X2,5 0.0001 0.0411 0.9385 0.1421 0.0009 General
X2,6 0.0000 0.0000 0.0060 0.4999 0.4717 Higher
X2,7 1.0000 0.2158 0.0013 0.0000 0.0028 low
X2,8 0.0501 0.9780 0.1101 0.0005 0.0000 Higher
X2,9 0.9933 0.0598 0.0002 0.0000 0.0000 low
X2,10 0.0888 0.5643 0.3939 0.0003 0.0000 Higher
X3,1 0.5553 0.0633 0.0191 0.0000 0.0000 low
X3,2 0.4427 0.9992 0.0651 0.0001 0.0000 Higher
X3,3 0.4102 0.3580 0.6335 0.0079 0.0000 General
X3,4 0.3705 0.0239 0.8801 0.1793 0.0006 General
X3,5 0.2948 0.9096 0.0285 0.0179 0.0001 Higher
X3,6 0.3812 0.0439 0.9752 0.1069 0.0003 General
C 0.2233 0.2623 0.3704 0.2311 0.0322 General

4.2.5. Entropy Weighting Method to Determine the Weights

Based on the entropy weighting method to calculate the weight of each index in
the system, substitute the data of each index into the Equations (1)–(4) by MATLAB
programming to calculate the weight of each index, and the results are shown in Table 9.

58



Processes 2021, 9, 2273

Table 9. Standardization of raw data for each indicator in Beijing.

Indicators 2013 2014 2015 2016 2017 2018 2019 Weights

X1,1 0.0000 0.1022 0.2199 0.3793 0.5836 0.8320 1.0000 0.0513
X1,2 0.0000 0.1448 0.4588 0.6264 0.7947 0.9850 1.0000 0.0394
X1,3 0.0000 0.1014 0.2026 0.3108 0.4063 0.8936 1.0000 0.0572
X1,4 0.0000 0.4135 0.5806 0.6921 1.0000 0.5982 0.2522 0.0333
X1,5 0.0094 0.2449 0.0000 0.0078 0.6225 1.0000 0.6693 0.0886
X2,1 0.0000 0.2536 0.3057 0.5095 0.7986 0.8412 1.0000 0.0376
X2,2 0.5565 0.5968 0.5968 0.0000 0.4919 0.4919 1.0000 0.0270
X2,3 0.0000 0.0657 0.1860 0.1370 0.2733 0.6187 1.0000 0.0714
X2,4 0.0000 0.0908 0.1789 0.2689 0.6759 0.6690 1.0000 0.0566
X2,5 0.0000 0.1275 0.1534 0.3029 0.6337 1.0000 0.9851 0.0574
X2,6 1.0000 0.9773 0.7045 0.2841 0.0000 0.2841 0.4091 0.0399
X2,7 0.9301 0.8086 0.2804 0.0000 0.4893 0.7959 1.0000 0.0320
X2,8 1.0000 0.9688 0.4375 0.2188 0.5313 0.6875 0.0000 0.0366
X2,9 0.0000 0.1227 0.1727 0.3893 0.7387 0.9558 1.0000 0.0535
X2,10 0.9048 0.9257 0.9208 0.9327 0.9845 0.0000 1.0000 0.0221
X3,1 0.1527 0.5078 0.1334 0.3445 1.0000 0.4195 0.0000 0.0526
X3,2 0.7394 0.6398 0.3643 0.0000 0.2920 1.0000 0.1378 0.0450
X3,3 0.4169 0.5942 0.1780 0.5118 1.0000 0.9176 0.0000 0.0388
X3,4 0.4426 0.0000 0.0635 0.4529 0.8443 1.0000 0.2275 0.0547
X3,5 1.0000 0.0000 0.0151 0.6839 0.6421 0.0819 0.8127 0.0668
X3,6 0.7899 1.0000 0.3479 0.3325 0.4845 0.0000 0.2899 0.0380

4.2.6. Determine the Comprehensive Evaluation Level of Regional Logistics Index

First, the weights and affiliation degrees of each evaluation index are substituted
into Equation (11) to obtain the comprehensive determination degree and evaluation
grade, for example, the determination degree of each evaluation grade in Beijing in 2013 is
C = (0.2204, 0.2689 , 0.3709 , 0.2260 , 0.0315 ). Second, according to the principle of maxi-
mum determination degree, select the evaluation grade with the maximum determination
degree as the final comprehensive evaluation result, as shown in Tables 10–12. Finally, the
Beijing-Tianjin-Hebei regional logistics decarbonization development grade from 2013 to
2019 do the comparison, as shown in Figure 9.

Table 10. Evaluation Results of Logistics Decarbonization Development in Beijing from 2013–2019.

Grade Low Lower General Higher High Evaluation Results

2013 0.2204 0.2689 0.3709 0.2260 0.0315 Genera
2014 0.2011 0.2365 0.3887 0.2838 0.0347 Genera
2015 0.2199 0.2262 0.2756 0.3306 0.0398 Higher
2016 0.2052 0.2422 0.2594 0.3657 0.0530 Higher
2017 0.1812 0.1463 0.2054 0.3581 0.1863 Higher
2018 0.2093 0.1874 0.1329 0.3762 0.2357 Higher
2019 0.2202 0.1678 0.1777 0.1642 0.2708 High

Table 11. Evaluation Results of Logistics Decarbonization Development in Tianjin 2013–2019.

Grade Low Lower General Higher High Evaluation Results

2013 0.2440 0.3131 0.2515 0.2546 0.0808 Lower
2014 0.2166 0.3202 0.2887 0.2628 0.0486 Lower
2015 0.1852 0.3268 0.2735 0.2599 0.0594 Lower
2016 0.2378 0.3301 0.2310 0.2435 0.0656 Lower
2017 0.1437 0.3075 0.3556 0.2153 0.0661 General
2018 0.1284 0.3849 0.3815 0.1642 0.0623 Lower
2019 0.0741 0.2191 0.3531 0.2450 0.1517 General
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Table 12. Evaluation Results of Logistics Decarbonization Development in Hebei Province from 2013
to 2019.

Grade Low Lower General Higher High Evaluation Results

2013 0.2859 0.2655 0.2323 0.1925 0.1081 Low
2014 0.3137 0.3102 0.2573 0.1368 0.0664 Low
2015 0.2849 0.3590 0.2781 0.1271 0.0834 Lower
2016 0.2826 0.2778 0.3544 0.1294 0.0526 General
2017 0.2692 0.2677 0.3071 0.1574 0.1307 General
2018 0.1639 0.3536 0.3213 0.1601 0.1493 Lower
2019 0.1619 0.2760 0.3480 0.2277 0.1552 General

Figure 9. 2013–2019 Beijing-Tianjin-Hebei Regional Logistics Decarbonization Development Grade
Comparison.

From the time dimension of the comprehensive evaluation results, the overall develop-
ment of logistics decarbonization in the Beijing-Tianjin-Hebei region from 2013 to 2019 is on
an upward trend, with all three regions showing different degrees of improvement. Among
them, the development of logistics decarbonization in Beijing develops from average level
to high-level, that in Tianjin develops from lower level to average level, and that in Hebei
develops from low-level to average level; relatively speaking, the development in Tianjin
is slow, which is not in line with its economic level. From the spatial dimension of the
comprehensive evaluation results, the development of logistics low-carbon within the
Beijing-Tianjin-Hebei region is not balanced, the specific performance is Beijing � Tianjin
� Hebei. There has been a level difference in the development of logistics decarbonization
within the Beijing-Tianjin-Hebei region between 2013 and 2019, and the development
to 2019, Beijing is at a high-level of development nationwide, while Tianjin and Hebei
Province are still at an average level of development, which is two levels away from Beijing
in the same region.

4.3. Determination of Influencing Factors and Suggestions for Countermeasures
4.3.1. Determination of Influencing Factors

According to the development trend of each index and the horizontal comparison
with the three provinces and cities in Beijing, Tianjin and Hebei, the shortcomings of each
region in the development of logistics low carbonization are identified, and the main factors
affecting the development of logistics low carbonization in the city are found, so as to
provide theoretical support for the development of logistics low carbonization. Due to
space limitations, the evaluation grade of each indicator is displayed in Beijing region as
an example, as shown in Table 13; meanwhile, the evaluation grade of each indicator in
Beijing, Tianjin and Hebei in 2019 is compared, as shown in Figure 10.
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Table 13. Evaluation level of each indicator in Beijing region for example.

Indicators 2013 2014 2015 2016 2017 2018 2019

X1,1 Higher Higher Higher Higher High High High
X1,2 General Higher Higher Higher High High High
X1,3 Higher Higher Higher Higher Higher High High
X1,4 General General Higher Higher High Higher General
X1,5 General General General General General General General
X2,1 Higher Higher Higher Higher Higher Higher Higher
X2,2 Higher Higher Higher Higher Higher Higher High
X2,3 Lower Lower General Lower General Higher High
X2,4 General General General Higher High High High
X2,5 General General General Higher Higher Higher Higher
X2,6 Higher Higher Higher Higher Higher Higher Higher
X2,7 Low Low Low Low Low Low Low
X2,8 Lower Lower Lower Lower Lower Lower Lower
X2,9 Low Low Low Low Low Low Low
X2,10 Lower General Lower General General Low General
X3,1 Low General Low Lower High General Low
X3,2 Lower Lower Low Low Low Lower Low
X3,3 General General Lower General Higher Higher Low
X3,4 General General General General Higher Higher General
X3,5 Lower Lower Lower Lower Lower Lower Lower
X3,6 General General Lower Lower General Lower Lower
C General General Higher Higher Higher Higher High

Figure 10. 2019 Beijing-Tianjin-Hebei comparison of evaluation ratings for each indicator.

From the evaluation grade of each indicator in Beijing, Tianjin and Hebei provinces
and cities, the five indicators of per capita cargo turnover, the contribution rate of logistics
industry to GDP, the part of logistics personnel in the workforce, the growth rate of logistics
personnel and the growth rate of technical market turnover in Beijing are below the national
average level all year, and the development is slow. By 2019, the efficiency of logistics
industry, logistics industry input, logistics industry output and technical support are the
indicators under the four secondary indicators are still below the national average level,
and the shortcomings are more obvious. Tianjin region has been at a low or lower level
nationally in the five indicators of per capita e-commerce sales, per capita cargo turnover,
growth rate of new fixed asset investment in logistics industry, growth rate of technology
market turnover, and growth rate of R&D funding during 2013–2019, and the development
has been neglected, a large gap between the levels of the indicators under the low-carbon
logistics environment support power and Beijing. Hebei Province has the most obvious
gap in low-carbon logistics environment support power relative to neighboring Beijing
and Tianjin, mainly in the form of per capita fiscal revenue per year at a low national level,
per capita gross regional product and per capita total retail sales of social goods per year
at a low-level. In addition, the three indicators of per capita e-commerce sales, per capita
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turnover of goods and growth rate of technology market turnover in 2019 are still at a low
or lower level nationwide.

As can be seen from Figure 10, the development of each indicator in Beijing, Tianjin
and Hebei provinces and cities is still in an unbalanced state by 2019, with the biggest
difference between Beijing and the other two provinces and cities, as shown because the
evaluation levels of each indicator under the two secondary indicators of economic en-
vironment and logistics infrastructure are higher than those of Tianjin and Hebei, while
the levels of each indicator in logistics industry efficiency and logistics industry input and
output are significantly lower than those of the other two provinces and cities; Tianjin is
generally higher than Hebei in the four secondary indicators of economic environment,
policy environment, logistics infrastructure, and logistics industry scale, but not higher
than Hebei in the indicators of low carbon logistics potential. Thus, it seems that although
the three provinces and cities in Beijing, Tianjin and Hebei have made breakthroughs in co-
operation, they still lack synergy in the development of low-carbon logistics due to the large
differences in administrative division, consciousness and economic development level.

4.3.2. Suggestions for Countermeasures to the Low-Carbon Development of Logistics in
Beijing-Tianjin-Hebei Region

(1) From the shortcomings of the development of low-carbon logistics in Beijing, Tianjin
and Hebei in recent years, Beijing needs to strengthen two aspects of low-carbon
logistics strength and low-carbon logistics potential, especially the three modules
of logistics industry efficiency, logistics industry input and demand, and technical
support. Tianjin should start with a balanced approach to logistics industry efficiency,
input, output, demand and technical support in order to improve the overall low-
carbon development of logistics. Hebei Province should strengthen the development
of logistics economy, improve the practice base of logistics enterprises, promote
industrial clusters and create a logistics ecological chain while improving economic
strength, so as to enhance the level of logistics low carbonization in all aspects.

(2) Strengthen the division of labor and cooperation between Beijing, Tianjin and Hebei
in logistics. In the 13th Five-Year Plan, Beijing, Tianjin and Hebei are planned as a
whole region, and the respective positions of the three provinces and cities have been
clarified. In this context, the logistics industry synergy among the three provinces
and cities should optimize the logistics network and divide the work according to the
characteristics of each region. Beijing gives full play to the advantages of science and
technology and innovates the development of logistics industry while improving the
consumer-oriented end logistics system. Tianjin focuses on building a port logistics
base in the context of the linkage of three ports. Compare with Beijing and Tianjin,
Hebei Province is rich in resources, so it should undertake the transfer of Beijing-
Tianjin trade logistics and build Hebei into an important base for modern trade
logistics in the country.

(3) The government increases the policy support for developing low-carbon logistics.
The development of low-carbon logistics in Beijing, Tianjin and Hebei needs the
cooperation and joint planning of the three regions, and government departments
should give support and guidance in policies, such as encouraging the development of
ecological logistics industry chain, providing relevant enterprises with corresponding
technical support or improving the reasonableness of taxation and financing policy
preferences, etc. In addition, while developing regional logistics and economy at high-
speed, we should actively promote the idea of green logistics, change the traditional
concept of consumers, advocate low-carbon consumption and raise the low-carbon
awareness of the logistics industry.

(4) Improve the level of informatization of low-carbon logistics in Beijing, Tianjin and
Hebei. Informatization is an important feature of modern logistics and an effective
way to achieve low carbon regional logistics. In the process of integrated development
and communication, Beijing, Tianjin and Hebei provinces and cities should break the
information silos, establish and improve the logistics information exchange platform,
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and share and freely exchange logistics information so as to connect the information
of each node of the supply chain and give full play to the advantages of regional
informatization, to reduce logistics costs and improve logistics efficiency.

5. Conclusions

(1) Twenty-one indicators are selected from the three dimensions of low-carbon logistics
environment support, low-carbon logistics strength and low-carbon logistics potential
to establish the regional logistics low-carbonization development evaluation index
system. Combined with the cloud model and entropy weight method to build the
index evaluation model, which solves the problem of fuzziness and randomness in
the process of regional logistics low-carbonization development evaluation.

(2) The evaluation model of regional logistics decarbonization development can show
the development changes of each region in spatial and temporal dimensions and
also solve the problem of horizontal comparison between different regions, giving
quantitative results of different regions and different times. Then, according to the
quantitative results, can discover the shortcomings of regional logistics decarboniza-
tion development and provide theoretical support for the further development of
regional logistics.

(3) The entropy weight-cloud model method uses the characteristic indicators that can
reflect the complex relationship between multiple factors to derive the corresponding
evaluation level. It makes the evaluation results more intuitive and accurate through
the cloud diagram and calculation of evaluation level. At the same time, it provides
reference for the shortcomings of regional logistics decarbonization development,
which is of positive significance to enhance the development of regional logistics
decarbonization.

(4) The development of regional logistics decarbonization is a complex and continuously
changing process, and future research can further improve the evaluation index
system, optimize the evaluation model, and enhance the accuracy and applicability
of the evaluation model.
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Abstract: In this article, we introduce a novel framework for the design of multi set-point nonlinear
explicit controllers for process systems engineering problems where the set-points are treated as
uncertain parameters simultaneously with the initial state of the dynamical system at each sampling
instance. To this end, an algorithm for a special class of multi-parametric nonlinear programming
problems with uncertain parameters on the right-hand side of the constraints and the cost coeffi-
cients of the objective function is presented. The algorithm is based on computed algebra methods
for symbolic manipulation that enable an analytical solution of the optimality conditions of the
underlying multi-parametric nonlinear program. A notable property of the presented algorithm
is the computation of exact, in general nonconvex, critical regions that results in potentially great
computational savings through a reduction in the number of convex approximate critical regions.

Keywords: multi-parametric programming; explicit MPC; enterprise-wide optimisation; set-point
tracking; algebraic geometry

1. Introduction

High-fidelity and computationally efficient optimisation models are key for profitable
decision making in process industries and have been the focus of extensive research over
the years [1]. In recent years, the need for exploiting and explicitly considering interdepen-
dencies throughout the different layers of decision making has been underpinned by the
enterprise-wide optimisation (EWO) concept [2]. Stemming from the progressively volatile
and competitive market conditions, it is imperative for process industries to operate with
agility in order to maximise their profitability [3]. EWO is aiming at increased profitability
and resilience in process operations through the integration and simultaneous optimisation
of existing information streams. Nonetheless, it comes at a considerable cost. Because of
the multiple scales considered, EWO leads to computational challenges, thus preventing
practitioners from harnessing the potential benefits such wide integration has to offer.
Particularly, incorporating control considerations in an EWO fashion results in (mixed
integer) nonconvex problems which are hard to solve.

By the same token, control considerations are ubiquitous in EWO problems. Figure 1
showcases how real-time optimisation and production scheduling exchange information
with the layer of APC because of their interdependent decisions.

Real-time optimisation is concerned with the manipulation of systems’ dynamics in
order to achieve optimised profitability and operations. On the other hand, production
scheduling determines the optimal allocation of resources for the completion of competing
tasks. As indicated by Figure 1, both RTO and process scheduling exchange information
with the layer of APC so as to achieve optimal dynamic operations. To this end, the research
community has proposed different methods for their integration.

A common shortfall when focusing on integrating RTO and APC is that two different
models are employed for the optimisation of the same system. Typically, a locally linear
model of the initial nonlinear dynamics is used at the APC because of the need for fast
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solution rates while RTO considers the original nonlinear model. This leads subsequently
to issues related to suboptimal trajectories and non-reachable states [4].

Figure 1. Interaction of APC with different layers of decision making in process industries.

Darby et al. [5], through their literature review regarding the integration of RTO
and MPC, suggested that for a successful integration, common issues such as model
mismatch among the layers of RTO and APC should be eliminated. Nonetheless, in real
industrial processes, model degradation and other factors can result in model mismatch, so
the consideration of parameter estimation and data reconciliation functionalities is needed
to integrate RTO and MPC, as indicated by Figure 2.

Figure 2. Interaction between advanced process control and real-time optimisation.

The interaction between real-time optimisation and model predictive control can be
categorised broadly into three classes: (i) dynamic RTO (d-RTO), (ii) static RTO (s-RTO)
and (iii) economic model predictive control (e-MPC). Both s-RTO and d-RTO are two-
layer schemes where reference trajectories are passed to the layer of APC in the form of
set-points [6]. While under the static real-time optimisation paradigm, the optimisation
problem is solved at specific instances whenever new data become available or when steady
state is achieved, in the d-RTO paradigm, the system’s transient behaviour is explicitly
considered, thus resulting in dynamic optimisation problems. e-MPC [7] refers to single-
layer strategies which are incorporated into the control structure economic considerations.
In that spirit, De Souza et al. [8] proposed the inclusion of the gradient of the economic
objective function into the MPC objective as a single-layer strategy. Considering uncertain
systems, Chachuat et al. [9] examined alternative model adaptation strategies.
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This article is motivated by the abovementioned issues and aims at introducing a
method for designing multi set-point explicit controllers for nonlinear systems through
recent advances in multi-parametric programming. Multi-parametric programming (mp-P)
has received considerable attention from the process systems engineering community
because of its unique ability to aid in the design of explicit model predictive controllers
and thus shift the computational burden associated with offline control [10]. We examine a
case of multi-parametric nonlinear programs (mp-NLPs) that involve both endogenous
uncertainty, in the form of left-hand side parameters (LHS), as well as exogenous uncer-
tainty in the cost coefficient of the objective function (OFC), and, on the right-hand side of
the constraints (RHS), uncertain parameters on the right-hand side (RHS). In engineering
problems, LHS uncertainty arises from variations in model coefficients, due to parameter
estimation errors or model mismatch; OFC uncertainty arises due to fluctuation in market
prices or control penalties while RHS uncertainty can be due to varying system exogenous
factors. The contribution of the present work is a novel framework for the design of multi
set-point explicit controllers for nonlinear process systems.

The remainder of the article is organised as follows: in Section 2, an overview of the
field of multi-parametric programming and explicit MPC is given, and then, in Section 3,
the proposed algorithm is detailed and a framework for multi set-point explicit controllers
is introduced. In Section 4, two case studies are examined so as to illustrate the main
computational steps of the proposed methodology and, lastly, in Section 5, concluding
remarks are made.

2. Background

2.1. Multi-Parametric Programming

Overall, multi-parametric programming problems are concerned with the effect of
parametric perturbations on the optimal solution of an optimisation problem. Consider the
following optimisation problem:

z(θ) = min
x∈Rnx

f (x, θ)

subject to : g(x, θ) ≤ 0
θ ∈ Rnθ

(1)

where θ stands for the vector of uncertain parameters, which is nθ-dimensional, x is the
nx-dimensional vector of continuous decision variables, g(x, θ) is the vector of inequality
constraints and f is the objective function as a mapping Rnx×nθ → R, both of which are
assumed to be C2 (twice continuously differentiable). Problem (1) is a multi-parametric
program and its solution results in the partition of the parametric Rnθ -space into a number
of regions, also know as critical regions (CRs). Within each CR, the optimal solution and
the objective value are given as functions of the uncertain parameters, i.e., x(θ) and z(θ), re-
spectively. Even though mp-P has been studied quite actively, the class of multi-parametric
nonlinear programming problems remains one of the most challenging ones [11,12]. De-
pending on the convexity of the nonlinear functions that form Problem (1), different
solution techniques have been proposed in the literature to date.

Advances in the algorithms and theory of parametric nonlinear programs (p-NLPs)
date back to the early works of Fiacco [13] and Bank et al. [14]. More specifically, in the
books of Bank et al. [14] and Fiacco [13], a collection of the early research works for para-
metric NLPs can be found and invaluable theoretical foundations for some classes of
convex p-NLPs with perturbations in the OFC and the right-hand side of the constraints are
provided. Even though the term “parametric nonlinear optimisation/programming” was
widely established from the aforementioned works, the early works on numerical stability
analysis of NLPs by [15,16] and the work of Robinson [17,18] on generalised equations
provided a significant way of studying the effect of parametric variations on the optimal
solution of p-NLPs. Kyparisis [19] studied the uniqueness and differentiability of solutions
of parametric nonlinear complementarity problems while in Ralph and Dempe [20], the
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directional derivatives of parametric nonlinear programs were used to characterise their
explicit solution. However, the first algorithm for the multi-parametric case of convex
NLPs was due to Dua and Pistikopoulos [21]. The authors, based on the findings about the
convexity properties of the parametric value function (z(θ)), devised an iterative procedure
in which the integer variables were fixed by the solution of a primal mixed integer non-
linear program (MINLP) and the resulting mp-NLP was then transformed into an mp-LP
following the outer approximation idea. Because of the value function’s convexity property,
the maximum error of the approximation occurs at the vertices of the CRs and if the error is
greater than the prespecified tolerance, the CR is partitioned again; otherwise, integer and
parametric cuts are implemented and then the algorithm iterates until the primal MINLP
is infeasible. The same algorithm was revisited by Acevedo and Salgueiro [22], where the
authors proposed heuristics to improve its computational efficiency while quadratic ap-
proximations were studied by Johansen [23] and Domínguez and Pistikopoulos [24]. An ap-
proximate algorithm for the solution of convex mp-NLPs was proposed by Johansen [25],
who proposed the consecutive subdivision of the parametric space in hyper-rectangles and
the interpolation of the parametric solution through the solution of 2nθ NLPs at each step.
Further approaches involve the geometric vertex search by Narciso [26] and sub-gradient
methods by Leverenz et al. [27]. For the nonconvex cases, Dua et al. [28] developed suitable
parametric under/overestimators which were then incorporated into a spatial branch and
bound routine for the global optimisation of the nonconvex problem within ε−tolerance.
For a more thorough discussion on the algorithms that have been proposed for the solution
of mp-NLPs, the interested reader is directed to the review of Domínguez et al. [29] while
Hale [30], in her doctoral thesis, also offers a thorough discussion on several classes of para-
metric optimisation. Fotiou et al. [31,32] initially studied the polynomial multi-parametric
programming problem with application to control, however, their approach did not include
the definition of final nonconvex CRs, while the mixed integer polynomial case was studied
by Charitopoulos and Dua [33] and a procedure for the computation of exact nonconvex
CRs was presented. Despite the aforementioned research effort, mp-NLP problems remain
one of the most difficult to tackle and, as illustrated in Table 1, all the aforementioned
algorithms can handle uncertain parameters only on the right-hand side (RHS) of the
constraints. Recently, Pappas et al. [34], by generalising the basic sensitivity theorem of
Fiacco [13], devised an algorithm for the exact solution of multi-parametric quadratically
constrained quadratic programs.

Table 1. Summary of multi-parametric nonlinear programmming algorithms.

mp-NLP Solution Techniques RHS LHS OFC Comments

Dua and Pistikopoulos [21] � - - Convex
Johansen [23] � - - Convex

Acevedo and Salgueiro [22] � - - Convex
Johansen [25] � - - Convex
Dua et al. [28] � - - Nonconvex

Fotiou et al. [31] � - - Polynomial
Narciso [26] � - - Convex

Domínguez and Pistikopoulos [24] � - - Convex
Charitopoulos and Dua [33] � - - Polynomial

Pappas et al. [34] � - - QCQPs

Among the wide range of appplications that multi-parametric programming has been
applied to, the invention of explicit model predictive control (mp-MPC) is undoubtedly the
most dominant area where mp-P has had the biggest impact [10,12,35]. The main concept
of mp-MPC is that instead of solving the optimisation problems related to standard MPC
at each sampling instance, the state of the system is treated as an uncertain parameter and
an mp-P can be solved offline to derive the explicit control solution once and for all [10,36].

The general formulation of mp-MPC for discrete time systems is shown by (2):
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(mp − MPC)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ(x(tk)) = min
u

PH−1
∑

i=0
L(xt, ut) + E(xN)

subject to: xt|t=0 = x(tk)

xt+1 = f (xt,ut) t = 0, 1, . . . , PH − 1
yt+1 = h(xt,ut) t = 0, 1, . . . , PH − 1
Axt ≤ α t = 0, 1, . . . , PH

Byt ≤ β t = 0, 1, . . . , PH

Cut ≤ γ t = 0, 1, . . . , PH

(2)

where xt, ut, zt are the state, control input and system output vectors, respectively, at every
sampling point, t, and are nx, nu, ny-dimensional. A, B, C are matrices of appropriate
dimensions and α, β, γ vectors of pertinent dimensions which represent inequality con-
straints for the state, output and control inputs while L: Rnx+nu → R is a stage cost and
E : Rnx → R is a terminal cost function. The repetitive solution of Problem (2) provides
the optimal cost Φ(x(tk)) and the optimisation vector, i.e., the sequence of optimal control
inputs u∗ =

[
u∗

1, u∗
2, . . . , u∗

PH−1

]
over the finite prediction horizon PH . Compared to the

conventional model predictive control fashion, in which an optimisation problem is solved
at each sampling point, through the mp-MPC notion, the explicit control law is calculated
offline once and for all. The solution of the resulting mp-P problem results in the optimal
control inputs as explicit functions of the (uncertain) parameters, i.e., the state of the system
at each sampling instance, along with the corresponding CRs, as shown by Equation (3).

u∗ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ν1(x(tk)) i f x(tk) ∈ CR1

ν2(x(tk)) i f x(tk) ∈ CR2
...

...
νω(x(tk)) i f x(tk) ∈ CRω

(3)

For the case of MPC for linear systems, instead of solving a quadratic program at each
sampling instance, the explicit MPC requires the offline solution of an mp-QP while online,
so only simple function evaluations are required [10,37,38]. This concept is also known as
online via offline optimisation and it is shown in Figure 3.

Figure 3. Online via offline optimisation framework [10,39].
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Even though mp-MPC is the niche area of mp-P, designing mp-MPCs of nonlinear
systems for set-point tracking is still a computationally strenuous task as one has to design
an mp-MPC for each set-point based on the algorithms that exist in the literature to date [40].
Next, we review two mathematical techniques that will enable the development of novel
multi set-point explicit controllers though the algorithm we propose in the present work.

2.2. Computer Algebra
2.2.1. Gröbner Bases Theory

The idea of the present work is to devise an algorithm for the solution of mp-NLPs
from an analytical and not numerical perspective, and the reason is two-fold. Firstly,
for the case that we are interested in, i.e., mp-NLPs with combined uncertainty on the
RHS and OFC, no theoretical foundations exist for the computation of the explicit solution
like the basic sensitivity theorem of Fiacco [13] which serves as the basis of the numerical
mp-P approaches. Secondly, because of the nonconvex nature of the parametric problem,
the numerical solution would require global optimisation techniques similar to the ones
presented in Dua et al. [28] and would lead to an explosion in the number of convex
approximate CRs.

Gröbner bases theory was introduced by the doctoral research of Bruno Buchberger [41]
as a method of analytically solving systems of multivariate polynomial equations. In brief,
Gröbner bases and the Buchberger algorithm can be considered as the polynomial counter-
part of Gaussian elimination for the case of nonlinear systems. Before formally defining
what a Gröbner basis is, it would be useful to define some preliminary concepts.

Definition 1. Power products
Let R be any field and let R[x1, . . . , xn] be the ring of polynomials in n-indeterminates.

Any polynomial can be described as a sum of terms of the form: αxβ1
1 · · · xβn

n with α ∈ R and
βi ∈ N, i = 1, . . . , n and the term xβ1

1 · · · xβn
n is called a power product.

Definition 2. Term order
A term order is defined with regard to a set of power products (Tn) and imposes a total order <

on the set in compliance with the conditions below:

1. 1 < xβ for all xβ ∈ Tn

2. If xα < xβ → xαxγ < xβxγ, for all xγ ∈ Tn

A number of alternative power product orderings exist but the most commonly
employed is the the lexicographic one due to its computational efficiency [42]. Lastly,
the notion of ideals is crucial within the Gröbner bases theory.

Definition 3. Ideals
Let R be a field and R[x1, x2, . . . , xn] be a ring over the field of n-variate polynomials. Let a

finite subset of the field, G = {g1, g2, . . . , gt}, then an ideal I can be generated by G as follows:

I = {
n

∑
i=1

uigi| ui ∈ R[x1, x2, . . . , xn], gi ∈ R, ∀i

For problems that accept analytical solutions, their existence is guaranteed by the
Hilbert basis theorem [43], which also guarantees that algorithms used to compute Gröbner
bases can terminate in a finite number of steps.

Definition 4. Gröbner basis [41]
A set of non-zero polynomials G = {g1, . . . , gt}, contained in an ideal I, is called a Gröbner

basis for I if and only if for all g ∈ I, such that g = 0, there exists i ∈ {1, . . . , t} such that lp(gi)
divides lp(g), where lp(· ) stands for the leading power product of a polynomial function.
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For the calculation of Gröbner bases, apart from Buchberger’s algorithm, Faugère has
presented algorithms F4 [44] and F5 [45] as two variants of another algorithm. They exploit
concepts from linear algebra and represent polynomials using matrix forms, thus enabling
successive truncated Gröbner bases to be created. Lastly, software implementations of
different algorithms that compute Gröbner bases computations can be found in freely
available CAS such as Singular, SymPy and SageMath as well as commercial tools like
Maple and Mathematica.

2.2.2. Cylindrical Algebraic Decomposition (CAD)

The notion of cylindrical algebraic decomposition was presented by Collins in 1975 [46]
in an effort to solve the problem of quantifier elimination over real closed fields. In this
article, as will be shown later on, CADs are used for computing nonconvex regions in the
space of parameters. Thus, we provide the following definitions for ease of exposition in
the algorithmic steps that we detail later on in the manuscript.

Definition 5. Semi-Algebraic Sets [43].

Let R[x1, x2, . . . , xn] indicate the ring of polynomials in n-indeterminates with real
coefficients. If, for example, a subset S of Rn can be developed by a finite number of
applications of the complementation, union and intersection operations, it is called semi-
algebraic and can have the following form:

{x ∈ Rn| g(x) ≤ 0}, where g ∈ R[X]

Definition 6. Standard atomic formula
A formula that includes a functional relation over a polynomial ring in either of the ways

shown below is called a standard atomic formula:

g(x) = 0, g(x) = 0, g(x) < 0, g(x) > 0, g(x) ≤ 0, g(x) ≥ 0

Proposition 1 ([43]). Semi-algebraic sets of Rn can be written as a finite union of semi-algebraic
sets of the form:

{x ∈ R
nX | g1(x) = . . . = gω(x) = 0, gω+1(x) > 0, . . . , gt(x) > 0}

where g1 . . . , gω, gω+1, . . . , gt are in g ∈ R[X].

The proof of the proposition can be found in the book of Bochnak et al. [43].
Using the definitions and propositions given above, in summary, one can use CAD

routines to compute the solution to polynomial inequalities. In the process of computations,
one partitions the related space over finite cells and qualifies whether or not standard atomic
formulas hold. A comprehensive exposition on the solution of polynomial inequalities
using CAD is given at the book of Jirstrand [47].

3. Algorithms and MPC

3.1. Multi Set-Point Explicit Controller via Multi-Parametric Programming

In the context of multi-parametric model predictive control, the state of the system
at each sampling point is treated as an uncertain parameter and as a result an mp-P with
RHS uncertainty arises [10,37,38,40]. Its solution results in the explicit control law, i.e., the
control decisions as explicit functions of the system’s initial conditions at a sampling
instance along with the related CRs.

In many applications, however, particularly those related to continuous manufactur-
ing, there is a great need for fast calculations in order to communicate decisions between
the different layers of decision making in an effective manner. For instance, set-point
tracking goals for APC are, most of the time, passed down from either the functionality of
process scheduling or RTO [39,48]. In these cases, it becomes obvious that explicit MPC
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can provide a significant advantage in computational time by treating the set-points or
estimated model inputs as uncertain parameters. One way to design such explicit con-
trollers, assuming the existence of the nu set-point, is to solve nu mp-P problems and thus
design nu mp-MPCs. Another way, which has not been investigated in the literature, is
to consider the set-points and/or model inputs as uncertain parameters and thus derive
a multi set-point explicit MPC. Conceptually, by doing so, we would design a layered
controller as given by Figure 4.

Conventionally, when mp-MPC is employed for set-point tracking of nonlinear sys-
tems, one would have to compute a different mp-MPC for each of those set-points as well as
account for any time delay in the offline solution of the related mp-P should a new set-point
arise. Stringent market regulations and an increasingly volatile market environment lead
process industries to constantly optimise their operations and give rise to new set-points
from a control perspective which in turn hinder the deployment of mp-MPC. As illus-
trated by Figure 4, in this article, by considering the set-points as uncertain parameters
which lie within prespecified bounds, we overcome the abovementioned drawback of
explicit MPC since, by solving one mp-NLP, we can design a “multi set-point” mp-MPC
for nonlinear systems.

Figure 4. Concept of a multi set-point mp-MPC setting where instead of separate explicit controllers
one designs a universal explicit MPC for all the set-points.

The design problem of a multi set-point mp-MPC can be formulated as in (4).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Υ(x(tk), xsp) = min
u

PH−1
∑

t=0
L(xt, ut, xsp) + E(xN , xsp)

subject to: xt|t=0 = x(tk)

xt+1 = f (xt,ut) t = 0, 1, . . . , PH − 1
yt+1 = h(xt,ut) t = 0, 1, . . . , PH − 1
Axt ≤ α t = 0, 1, . . . , PH

Byt ≤ β t = 0, 1, . . . , PH

Cut ≤ γ t = 0, 1, . . . , PH

xsp ∈ R
nsp

(4)

The notation adopted is the same as in the previous section, aside from the following:
we treat the set-points together with the initial state of the system as uncertain parameters,
thus resulting in a problem with simultaneous variations on the RHS and OFC. As indicated
by (4), we consider both the initial states (x(tk)) and the various set-points (xsp) as uncertain
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parameters. Notice that within an EWO framework, the deployment of such universal
controllers is of great importance since they allow for rapid communication between the
layer of control with RTO and scheduling. For instance, when integrating scheduling with
control, the changeover times as well as the production rates are immediate results of the
dynamic decisions made through the control system. In the next section, an algorithm for
the design of such “multi set-point” explicit MPC is presented.

3.2. Solution Algorithm for Analytical mp-NLPs with Global Uncertainty

Here, we present an algorithm that can solve multi-parametric nonlinear programs
with non transcendental nonlinear terms, i.e., nonlinear terms that have closed-form
solutions. The proposed method can be seen as a generalisation of the our previous work
on the solution of multi-parametric mixed integer polynomial programs [33] as well as
the algorithm of Fotiou et al. [32] for multi-parametric polynomial programs. However,
both of these methods were employed only for instances that the uncertainty is present on
the right-hand side of the constraints and the latter does not compute the critical regions
associated with each explicit solution.

The main idea of the algorithm proposed herein can be explained as follows: given a
multi-parametric nonlinear program with analytical terms, or terms that can be expressed
in a nontranscendental fashion, derive the first order KKT conditions and compute its
solution using Gröbner bases by treating the uncertain parameters as symbols. The output
of this step is a collection of candidate solutions which are explicit in θ and encompass:
global and local optima as well as infeasible solutions. For these solutions, examine their
dual and primal feasibility along with a constraint qualification so as to remove infeasible
candidate solutions. Lastly, in order to report only the globally optimal solutions, perform
a comparison procedure [33].

Problem (1) details a general formulation of multi-parametric programs. The case that
f and/or g are analytically nonlinear and the uncertain parameters are in the OFCs along
with the RHS and LHS of the constraints is used.

Deriving the 1st order KKT conditions of Problem (1) returns a system of equations
that is square and is given by Equations (5) and (6).

∇x L(x, θ) = 0 (5)

λTg (x, θ) = 0 (6)

L(x, θ) is the Lagrangian function of Problem (1), ∇x is the nabla operator with re-
spect to the decision variables and λ are the Lagrange multipliers corresponding to the
constraints. Because of the assumption that the nonlinearities have an analytical solution,
Gröbner bases can be employed for the solution of the square system of equations because
of its elimination property. Even though a tailored implementation of one of the already
existing algorithms for computing Gröbner bases may be advantageous from a computa-
tional standpoint, it is beyond the scope of the present work and thus Mathematica 10 was
employed as the computer algebra software in which the calculations were performed.

By solving the system of Equations (5) and (6), a number of candidate solution sets
are returned. Note that although the original optimisation problem involves nx variables,
in the current step, the variables for which we compute the explicit solution are nx + ng.
The candidate solutions include the Lagrange multipliers together with the optimisation
variables as explicit functions of the uncertain parameters, i.e., λ(θ) and x(θ), respectively.

Definition 7. Candidate solutions [49]
A solution of the Problem (1) is said to be candidate if it satisfies the system of Equations (5) and (6)

along with a constraint qualification, e.g., linear independence constraint qualification [15].

In this part of the algorithm, due to strict complementary slackness, the collection of
candidate solutions indicates the active and inactive constraints for each solution. Until this
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step, the set of solutions computed may be infeasible, local or global optima. By evaluating
the primal and dual feasibility of the candidate solutions, the infeasible solutions can be
rejected, i.e., Equations (7) and (8).

g(θ) ≤ 0 =⇒ f easibility conditions (7)

λ(θ) ≥ 0 =⇒ optimality conditions (8)

Conditions (7) and (8) are evaluated by substituting the explicit expressions of the op-
timisation variables and they form a collection of parametric constraints. If for a candidate
solution there exists a subset of the initial parametric space such that the aforementioned
inequalities are satisfied, then this region is called the CR of the candidate feasible solution;
otherwise, the candidate solution is infeasible and thus removed from further consideration.
Note that the evaluation performed at this step, from a computer algebra perspective, is
equivalent to computation of the corresponding CAD.

Definition 8. Critical region [39,49]
A critical region (CR) is a partition of the parametric space where Conditions (7) and (8) are

satisfied for a specific candidate solution. A critical region is characterised by a set of inactive/active
constraints and can be discontinuous or nonconvex.

In Algorithm 1, the pseudo-code of the presented method is given. The comparison
procedure is outlined in [33].

3.3. Illustrative Example

The proposed methodology will be motivated through the following modified exam-
ple by Domínguez et al. [29].

min
x1,x2

x + 2x2
1 − 5x1 + x2

2 − 3θ1x2 − 6

Subject to:

2x1 + x2 ≤ 2.4 − θ2 (9)

0.5θ3x1 + x2 ≤ 1.5

x1 ≥ 0, x2 ≥ 0

0 ≤ θ1 ≤ 6, 0 ≤ θ2 ≤ 4, 0 ≤ θ3 ≤ 2

In the beginning, the first order KKT conditions of (9) are formulated and we derive
the square system of Equations (10) and (14)

∇xL(x, λ, θ) = 0 (10)

λ1(2x1 + x2 − 2.5 + θ2) = 0 (11)

λ2(0.5θ3x1 + x2 − 1.5) = 0 (12)

λ3(−x1) = 0 (13)

λ4(−x2) = 0 (14)

where L(x, λ, θ) is the Langangian of Problem (9). Equations (10) and (14) can be analytically
solved through symbolic computations which return the dual and primal variables as
functions of the uncertain parameters, i.e., λ(θ) and x(θ). Systems (10)–(14) are solved in
0.006 s and, as shown in Table A1, fifteen candidate solutions are computed.

The primal and dual feasibility of the candidate solutions is examined by computing
the CAD of the related disjunctions. If the result of this step is “False” the solution violates
feasibility (in either the primal or dual sense), otherwise, a collection of explicit inequalities
is returned which characterises the candidate solution’s CR. The CAD computations of this
example take 5.33 s and nine of them are nonempty. Despite the fact that nine candidate
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solutions are primal and dual feasible, their global optimality is not guaranteed given
the nonconvex nature of the problem. To this effect, for those regions, a new set of CAD
computations is performed so as to identify overlaps.

Algorithm 1: mp-NLP under global uncertainty
Input: f , g, x, θ
Output: x(θ), CRs

1 Formulate 1st order KKT conditions of mp-NLP
2 Solve the 1st order KKT conditions of mp-NLP using Gröbner Bases
3 TEMP ← solutions, i.e., x(θ), λ(θ), z(θ)
4 if TEMP = ∅ then
5 mp-NLP is infeasible.

6 else
7 for ( i ∈ range(1, . . . , Length[TEMP]) ) {
8 Evaluate with a first order constraint qualification, e.g. Linear

Independence Constraint Qualification (LICQ)
9 Evaluate with primal and dual feasibility conditions (Cylindrical

Algebraic Decomposition computation):
10 CR = {∃ θ such that [λi(θ) ≥ 0] ∧ [gi(θ) ≤ 0]}
11 if CR = ∅ then Candidate solution i is infeasible and discard from TEMP.
12 else
13 Candidate solution i is feasible and append CRi to TEMP.

14 i+=1

15 for ( (k, j) ∈ range(1, . . . , Length[TEMP]) ∧ k = j ) {
16 Identify if any overlapping CRs exist (Cylindrical Algebraic

Decomposition computation):
17 CRint = {θ|CRk ∧ CRj}
18 if CRint = ∅ then The two CRs are not overlapping
19 else
20 Follow the comparison procedure from Charitopoulos et al. (2016) so

as to remove the overlaps

21 Collect the final non-overlapping CRs and the corresponding explicit solutions,
i.e., x(θ)

It was found that CR10 and CR11 were overlapping, as shown by Figure 5, where the
overlap (CRint) is shown as the dark partition in between the two CRs.

For the elimination of the resulting overlap, the comparison procedure is invoked and
the logic disjunction, as illustrated below, is used for the CAD, as shown by
Equations (15) and (16).

∃θ| {θ1, θ2, θ3} ∈ CRint ∧ zCR10(θ) ≤ zCR11(θ) (15)

or

∃θ| {θ1, θ2, θ3} ∈ CRint ∧ zCR10(θ) ≥ zCR11(θ) (16)

where zCRi(θ) denotes the optimal explicit value within CRi. The result of this step is
partitioning of the parametric space where each explicit solution is the globally optimal.
In this case, CR10 was shown to be dominant within the common parametric space and thus
the overlap was subtracted from CR11. The algorithm terminates once no more overlapping
critical regions are identified. In Table 2, an overview of the explicit solutions is presented,
while in Figure 6, the final critical regions are shown. Practically, one would consult the
CR column of Table 2 to identify based on the uncertain parameter values where the
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uncertainty is realised, i.e., CR1 or CR2, and then the optimal cost can be computed by
evaluating the corresponding expression from the “Explicit solution” column.

Figure 5. Instance of overlap between CRs.

Figure 6. Visualition of the critical regions for motivating example.
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Table 2. Optimal explicit solutions of motivating example.

CRs Explicit Solution

CR1 =

⎧⎪⎨
⎪⎩

2.667 ≤ θ1 ≤ 4.
0 ≤ θ2 ≤ 1

10
3θ1−3 ≤ θ3 ≤ 2

z1(θ) = −3.75 − 4.5θ1

CR2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.666667
√

19 − 18θ1 + θ2 ≥ 3.8333
0 ≤ θ1 ≤ 2.005302497 · 10−16

1.5θ1 + θ2 ≤ 0.927401
0 ≤ θ3 ≤ 2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3.2118·10−8
√

8.186 × 1015 − 7.7552 × 1015θ1 + θ2 ≥ 3.8333
0 ≤ θ1 ≤ 0.8333
θ2 ≤ 2.5
0 ≤ θ3 ≤ 2

z2(θ) =0.015625(5 − 2θ2)
3 + 0.125(5 − 2θ2)

2

−1.25(5 − 2θ2)− 6

4. Case Studies

Here, we examine two case studies from process systems and their corresponding
explicit controllers are designed. The computatonal experiments were performed on a
workstation with 24 GB RAM, a 3.80 GHz processor and a Windows 10 64-bit operating
system. For the symbolic calculation, the computer algebra system that was employed was
Mathematica 10.2.

4.1. Multiple-Input Multiple-Output Non-Isothermal CSTR

We examine a non-isothermal MIMO multi-product CSTR where the decomposition
reaction A →R happens under the kinetic law: −ℛb = krCb. Additional details on the
design and kinetics can be found in Camacho and Alba [50] and the data used for this
case study can be found in Table 3. The system has two control inputs: the liquid (Fl)
and coolant (Fc) flow rates, whereas the system’s states are the temperature of the liquid
(Tl) and the concentration of the decomposition product (Cb). Using the mass and energy
balances, the dynamic model of the system is derived as given by Equations (17) and (18).

d(VlCb)

dt
= Vlkr(Ca0 − Cb)− FlCb (17)

d(VlρlCplTl)

dt
= FlρlCplTl0 − FlρlCplTl + FcρcCpc(Tc0 − Tc) + Vlkr(Ca0 − Cb)H (18)

Table 3. Data of the multiple-input multiple-output CSTR case study.

kr reaction constant 26 1
h

Vl tank volume 24 L
ρl liquid density 800 kg

m3

ρc coolant density 1000 kg
m3

Cpl specific heat of liquid 3 kJ
kg·K

Cpc specific heat of coolant 4.19 kJ
kg·K

Tl0 entering liquid temperature 283 K
Tc0 inlet coolant temperature 273 K
Tc outlet coolant temperature 303 K
Ca0 initial concentration of the reactant 4 mol

L

Firstly, the systems (17) and (18) are transformed into an algebraic one in order to
design the explicit controllers. Using the forward Euler method, the MPC problem of the
discretised system is shown by Equations (19) and (20).
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min
u

J(θ) =
PH

∑
t=0

∥∥∥x(t)− xre f

∥∥∥
2

(19)

Subject to:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cbt+1 = Cbt +
he(kr(Ca0−Cbt )−Flt Cbt )

Vl
, 0 ≤ t ≤ PH − 1

Tlt+1 = Tlt + he
Flt ρlCpl Tl0−Flt ρlCpl Tlt+Fct ρcCpc(Tc0−Tc)+Vl kr(Ca0−Cbt )

Vl ρlCpl

0.8 ≤ Cbt ≤ 3.5, 0 ≤ t ≤ PH

280 ≤ Tlt ≤ 400, 0 ≤ t ≤ PH

0 ≤ Fct ≤ 1000, 0 ≤ t ≤ PH

0 ≤ Flt ≤ 2000, 0 ≤ t ≤ PH

Cbt|t=0
= θ1, Tlt|t=0

= θ2

Cre f
b = θ3, Tre f

l = θ4,

(20)

By employing the presented solution algorithm for mp-NLPs, the related KKT system
is solved analytically using Gröbner bases. It takes 0.76 s to compute 29 candidate solutions
explicit in θ1, θ2 and a collection is shown in Table 4.

Table 4. Collection of candidate solutions of MIMO mp-MPC.

Candidate Solution Fc Fl

1 0 0
2 2000 −0.2011θ1 − 38.178θ2 − 0.00796θ4 + 10807.5
3 23376(θ1−0.714579)

θ1
− 0.2011(θ2

1+2219.4θ1θ2−628088.θ1−1585.96θ2+448827)
θ1

4 23376.θ1−24000.θ3+2496.
θ1

−0.201θ1
2−446.32θ1θ2+126307θ1+458.23θ2θ3−47.66θ2−129680θ3+13486.7

θ1

As mentioned in the previous section, the proposed algorithm can facilitate both
continuous as well as discrete set-points for the solution of the resulting problem. For the
MIMO case study, we consider 8 different set-points for which the explicit control law is
derived. In Table A2, we outline the explicit solutions for the different set-points while the
optimal partition of the uncertainty space is shown in Figure 7.

Figure 7. Critical regions for the mp-MPC controller for the MIMO CSTR.

We validate the performance of the explicit multi set-point controller by examining the
transition between two steady states. We benchmark the controller’s predictions against
the globally optimal solution as computed using the BARON 14.4 solver. In Figure 8, the
control and state evolution can be seen.
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(a) [Cb, Tl ] = f (t) (b) [Fc, Fl ] = f (t)

Figure 8. Comparative graphs of the control performance of the mp-MPC vs. NLMPC for case study 1.

4.2. Isothermal Polymerisation CSTR

Next, we examine the design of a multi set-point controller for the grade transition
problem with polymerisation CSTRs. The model nonlinearities involve bilinear terms
and square roots. The free radical polymerisation reaction happens in a CSTR that oper-
ates isothermally at 335 K, where methyl methacrylate (MMA) is produced [51,52]. The
mathematical model is given by Equations (21) and (25). The system has 4 state variables,
i.e., the concentrations of the monomer (Cm) and the initiator (Cl), the dead chains’ molar
concentration (D0) and the dead chains’ mass concentration (Dl). The control input is the
flow rate of the initiator (Fl) and one output, i.e., the molecular weight of the polymer
produced (y). In the multiple steady states, different polymeric grades can be produced
corresponding to alternative molecular weights. We provide the notation for this system in
Table 5 and model parameter values can be found in Table 6.

dCm

dt
= −(kp + k f m)

√
2 f ∗klCl

kTd + kTc
Cm +

F(Cmin − Cm)

V
(21)

dCl
dt

=
FlClin − FCl

V
− klCl (22)

dD0

dt
= (0.5kTc + kTd)

2 f ∗klCl
kTd + kTc

Cm + k f m

√
2 f ∗klCl

kTd + kTc
Cm − FD0

V
(23)

dDl
dt

= Mm(kp + k f m)

√
2 f ∗klCl

kTd + kTc
Cm − FDl

V
(24)

y =
Dl
D0

(25)

Table 5. MMA CSTR notation.

Cm (kmol/m3) state: monomer concentration
Cl (kmol/m3) state: initiator concentration
D0 (kmol/m3) state: molar concentration of dead chains

Dl (kg/m3) state: mass concentration of dead chains
Fl (m3/h) control: initiator flow rate

y = Dl/D0 output: molecular weight
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Table 6. Model parameters for the MMA polymerisation reactor.

F = 10.0 m3/h monomer flow rate
V = 10.0 m3 reactor volume

f ∗ = 0.58 initiator efficiency
kp = 2.50 × 106 m3

kmol·h propagation rate constant

kTd = 1.09 × 1011 m3

kmol·h termination by disproportionation
rate constant

kTc = 1.33 × 1010 m3

kmol·h termination by coupling
rate constant

Clin
= 8.00 kmol/m3 inlet initiator concentration

Cmin = 6.00 kmol/m3 inlet monomer concentration
k f m = 2.45 × 103 m3

kmol·h chain transfer to monomer rate constant
kl = 1.02 × 10−1h−1 initiation rate constant

Mm = 100.12 kg/kmol molecular weight of monomer

The model nonlinearities are not transcedental and, thus, the presented method for
the design of the multi set-point mp-MPC can be used. This polymerisation system has
been examined intensively by the research community and it has been noted that online
computation of its optimal control law can be challenging due to numerical instabilities
arising because of scaling issues [52]. As a trade-off between computational complexity
and stability of the integration scheme, we employ the forward Euler method with a step
size of h = 36 s.

Following the proposed method, the globally optimal solutions are computed, whereas
employing off-the-self global optimisation solvers for online implementation leads to
extensive computational times. In Table 7, the results using the BARON 14.4 solver in
GAMS with different prediction horizons are given.

Table 7. Computational effort for varying prediction horizons using BARON 14.4 [53].

Prediction Horizon CPU (s)

1 603
2 1906
5 3600 †

10 3600 †

20 3600 †

† Reached time limit.

In this case study, eight uncertain parameters were considered, one for each state
and set-point. In Table 8, we provide a mapping of the uncertain parameters of the
control problem. Whilst having the set-point as continuous, uncertain parameters increase
the computational complexity of the mp-P and one could argue that in the context of
systems integration where the APC receives data by the real-time optimisation functionality,
the same set-points may not always be realised. In such cases, following conventional
mp-MPC frameworks, the explicit laws would have to be recomputed from the beginning
(mp-P solution and implementation of the explicit solutions, possibly in a microchip),
whereas, following the proposed framework, if the bounds of the set-points remain within
the prespecified ranges, then the same multilayer controller can be readily used.
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Table 8. MMA CSTR uncertain parameters.

Parameter Range Notation

θ1 ∈ [0, 5] Cm|t=0
θ2 ∈ [0, 0.5] Cl|t=0
θ3 ∈ [0, 0.05] D0|t=0
θ4 ∈ [0, 300] Dl|t=0
θ5 ∈ [0, 5] Set-points for Cm
θ6 ∈ [0, 0.5] Set-points for Cl
θ7 ∈ [0, 0.05] Set-points for D0
θ8 ∈ [0, 300] Set-points for Dl

The resulting mp-NLP involves one optimisation variable, eight uncertain parameters
and ten constraints when a prediction horizon of unity is considered. Overall, we seek
analytical solutions to eleven variables, i.e., the Lagrange multipliers and the optimisation
variables. The solution of the mp-NLP returns five candidate solutions, as shown in
Table A3.

Substituting the explicit expressions into the constraints, the feasible region is projected
into the uncertainty space. Candidate solutions that satisfy primal/dual feasibility are
considered for the next step of the algorithm; otherwise, they are discarded as infeasible.
For instance, the 6th candidate solution violates dual feasibility as any value of θ6 would
result in negative λ8.

Subsequently, the explicit inequalities for the remaining solutions are examined.
The intersection of the feasible regions defined by the parametric inequalities defines
the critical regions of the candidate solution. Because of the nonconvex nature of the
problem, it is likely that explicit solutions may be valid in the same uncertainty space,
thus overlapping. In order to compute only the global explicit solutions, we employ the
comparison procedure. Three overlapping solutions were identified. An example of the
inequalities defining the overlap between CR1, CR2 is shown by Equation (26).

CRint := CR1 ∩ CR2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ θ3 ≤ 0.05

0 ≤ θ4 ≤ 300

0 ≤ θ5 ≤ 5

0 ≤ θ7 ≤ 0.05

⎧⎪⎪⎨
⎪⎪⎩

4.9899 ≤ θ1 ≤ 5

1617.74 + 40280.2
θ2

1
≤ 16144.7

θ1
+ θ2

θ2 ≤ 1.48197
θ2

1

0 ≤ θ4 ≤ 300

θ2 + 0.00242674 = 1.01114θ6

0 ≤ θ2 ≤ 0.199802

0 ≤ θ1 ≤ 2.72345

(26)

For illustration purposes, the mathematical definition of CR2 is given by Equation (A1)
in the Appendix A. Due to the extensive set of inequalities defining the rest of the CRs, we
do not detail them in the manuscript for the sake of space.

After the algorithm’s convergence and with the optimal explicit solutions reported,
the performance of the multi set-point mp-MPC’s explicit control law is compared to that
of conventional MPC. The solution of the online MPC is found by implementing the related
NLP in GAMS and solving it to global optimality using BARON 14.4. As can be seen
in Figure 9, the state and control evolution of the system are in perfect agreement when
the two schemes are compared, thus highlighting the accuracy and correctness of the
proposed framework while in Figure 10 the stability of the resulting control policy can be
envisaged.
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(a) y = f (t)

(b) Fl = f (t)

Figure 9. Plots comparing the control solutions computed by the proposed method (mp-MPC) and
online NLMPC for the polymerisation CSTR.

Figure 10. Graph of the control cost function vs. time for the polymerisation CSTR.

We assess the performance of the controller for set-point tracking between two
set-points. At the beginning, we assume the CSTR to be operated at a steady state of
y = 15,000 kg

kmol and then controlled towards y = 45,000 kg
kmol where it is regulated for nine

hours to produce a specific polymer grade. Next, the controller steers the system to
the next set-point (y = 19,250 kg

kmol ), in which steady state another polymer is produced.
The performance of the set-point tracking can be seen in Figure 11.

Finally, with respect to the scalability of the proposed method, a number of systems
and prediction horizon settings were examined and, as shown in Table 9, for the current
state of the art in computer algebra software, only small- to medium-scale systems can be
efficiently facilitated.
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Figure 11. Set-point tracking performance of the polymerisation reactor case study.

Table 9. Computational statistics of the proposed method for different case studies.

Case Study Problem Statistics Uncertainty CPU (s)

nx ng nθ

SISO CSTR (PH = 1) 1 2 2 OFC, RHS 1.32
SISO CSTR (PH = 2) 2 4 2 OFC, RHS 65.8
SISO CSTR (PH = 2) 3 6 2 OFC, RHS 4652
MMA CSTR (PH = 1) 1 10 8 OFC, RHS 1.86
MMA CSTR (PH = 1) 1 10 9 OFC, RHS, LHS 4.86
MMA CSTR (PH = 2) 2 20 8 OFC, RHS Memory limit
MIMO CSTR (PH = 1) 2 8 4 OFC, RHS 2.76
MIMO CSTR (PH = 2) 4 16 4 OFC, RHS 192.75
MIMO CSTR (PH = 3) 6 24 4 OFC, RHS 5929

5. Conclusions

We have presented a computer algebra-based algorithm for the analytical solution
of mp-NLPs that involve uncertain parameters on the RHS and OFC as well as the LHS
of the constraints. In the first step, Gröbner bases are used for symbolically expressing
the optimisation variables and the Lagrange multipliers as functions of the uncertain
parameters. Next, by computing cylindrical algebraic decompositions, the globally optimal
CRs are defined. Building upon the proposed algorithm, we introduce a framework for
the design of multi set-point explicit MPC for nonlinear systems. The proposed technique
expands the scope of mp-MPCs, as we illustrate that it is feasible to design a single “multi-
layer” controller for capturing set-point tracking problems and potentially new model
parameter estimations. Ongoing research focuses on the latter and how current progress in
algebraic geometry can alleviate the related computational burden and allow for solutions
of large-scale studies. Specifically, the application of machine learning techniques for faster
evaluations of standard atomic formulas and thus reductions in the computational expense
of CAD calculations is a promising direction.
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Nomenclature

APC Advanced Process Control
CAD Cylindrical Algebraic Decomposition
CAS Computer Algebra Software
CR Critical Region
CSTR Continuous Stirred Tank Reactor
e-MPC Economic Model Predictive Control
EWO Enterprise Wide Optimisation
KKT Karush–Kuhn–Tucker
LHS Left-hand Side
MIMO Multiple Input Multiple Output
MINLP Mixed Integer Nonlinear Program
MMA Methyl Methacrylate
mp-(NL)P Multi-parametric (Nonlinear) Program
NLMPC Nonlinear Model Predictive Control
OFC Objective Function Coefficient
RHS Right-hand Side
(s/d)-RTO (Static/Dynamic) Real-time Optimisation

Appendix A

Table A1. Candidate solutions of motivating example.

x1 x2 λ1

1 -2.12 0 0
2 -2.12 1.5θ1 0
3 0 1.5 0
4 0 0.5(5 − 2θ2) 3θ1 + 2θ2 − 5
5 0 0 0
6 0 1.5θ1 0
7 0.786 0 0
8 0.786 1.5θ1 0
9 −0.577

√−6θ1 − 4θ2 + 27 − 2 0.5
(
2.309

√−6θ1 − 4θ2 + 27 − 2θ2 + 13
)

0.333
(−6.9282

√−6θ1 − 4θ2 + 27 + 9θ1 + 6θ2 − 39
)

10 0.333
(
1.732

√−6θ1 − 4θ2 + 27 − 6
)

0.166
(−6.928

√−6θ1 − 4θ2 + 27 − 6θ2 + 39
)

2.309
√−6θ1 − 4θ2 + 27 + 3θ1 + 2θ2 − 13

.

.

.

.

.

.

.

.

.

.

.

.
14 0.0833

(
−
√

θ4
3 − 72θ1θ3 + 16θ2

3 + 72θ3 + 304 − θ2
3 − 8

)
0.0416

(
θ3
√

θ4
3 − 72θ1θ3 + 16θ2

3 + 72θ3 + 304 + θ3 + 8θ3 + 36
)

0

15 0.0833
(√

θ4
3 − 72θ1θ3 + 16θ2

3 + 72θ3 + 304 − θ2
3 − 8

)
0.0416

(
−θ3

√
θ4
3 − 72θ1θ3 + 16θ2

3 + 72θ3 + 304 + θ3 + 8θ3 + 36
)

0

λ2 λ3 λ4
1 0 0 −3θ1
2 0 0 0
3 3(θ1 − 1) 0.5(3θ1θ3 − 3θ3 − 10) 0
4 0 6θ1 + 4θ2 − 15 0
5 0 −5 −3θ1
6 0 −5 0
7 0 0 −3θ1
8 0 0 0
9 0 0 0
10 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

14 0.0833(−θ3
√

θ4
3 − 72θ1θ3 + 16θ2

3 + 72θ3 + 304 + 36θ1 − θ3
3 − 8θ3 −

36)
0 0

15 0.0833(θ3
√

θ4
3 − 72θ1θ3 + 16θ2

3 + 72θ3 + 304 + 36θ1 − θ3
3 − 8θ3 − 36) 0 0

Table A2. Final CRs and explicit solutions for PH = 1 of the MIMO CSTR for two of the set-points.

Set-Point Explicit Solution

(θ3 = 1, θ4 = 290)

∧

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(θ1, θ2) ∈ CRsp1
1

⎧⎨
⎩

Fc(t=0) = 0

Fl(t=0) = 0.00796θ2-0.2011θ1 − 0.00796θ4 + 0.8044

(θ1, θ2) ∈ CRsp1
2

⎧⎨
⎩

Fc(t=0) = 2000

Fl(t=0) = 10807.5 − 0.2011θ1 − 38.178θ1 − 0.00796θ4

(θ1, θ2) ∈ CRsp1
3

⎧⎪⎨
⎪⎩

Fc(t=0) =
23376(θ1−3.487)

θ1
Fl(t=0) = 0

(θ1, θ2) ∈ CRsp1
4

⎧⎪⎪⎨
⎪⎪⎩

Fc(t=0) =
23376θ2

1+θ1(−3.495·1010θ2−24000θ3+9.889·1012)+θ2×109(1.38θ2−1.38θ4−251)+3.913×1011θ4−3.95×1013

θ2
1+3.318×109θ2

2−1.878×1012θ2+2.658×1014

Fl(t=0) = 0

(θ1, θ2) ∈ CRsp1
5

⎧⎪⎪⎨
⎪⎪⎩

Fc(t=0) =
23376θ1−24000θ3+2496

θ1

Fl(t=0) =
−0.2011θ2

1+θ1(−446.31θ2−0.00796θ4+126309)+θ2(458.24θ3−47.66)−129680θ3+13486.7
θ1

(θ3 = 1.6, θ4 = 325)

∧

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(θ1, θ2) ∈ CRsp2
1

⎧⎨
⎩

Fc(t=0) = 2000

Fl(t=0) = 10807.5 − 0.2011θ1 − 38.178θ1 − 0.00796θ4

(θ1, θ2) ∈ CRsp2
2

⎧⎪⎨
⎪⎩

Fc(t=0) =
23376(θ1−3.487)

θ1
Fl(t=0) = 0
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Table A3. Candidate solutions for MMA CSTR problem.

Fl λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

1 125θ6 − 124 0 0 0 0 0 0 0 0 0 0

2 0.4 −0.0158237θ2 +
0.016θ6 − 0.0000512 0 0 0 0 0 0 0 0 0

3 0 0 0.0158237θ2 − 0.016θ6 0 0 0 0 0 0 0 0
4 −124θ2 0 0 0 −2θ6 0 0 0 0 0 0
5 62.5 − 124θ2 0 0 0 0 0 0 0 2θ6 − 1 0 0

CR2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ θ3
0 ≤ θ4
0 ≤ θ5 ≤ 5
0.0032 + 0.988θ2 ≤ θ6
θ6 ≤ 0.5
0 ≤ θ7 ≤ 0.05
0 ≤ θ8 ≤ 300

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1 = 1.87695

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎨
⎪⎩

0.42 ≤ θ2 ≤ 0.5
0.00113θ2 + 0.0000457

√
θ2 + θ3 ≤ 0.05

4.6722
√

θ2 + θ4 ≤ 303.03

⎧⎪⎨
⎪⎩

0 ≤ θ2 ≤ 0.42
θ3 ≤ 0.05
θ4 ≤ 300

0.0000243
√

θ1
2θ2 + 0.00113θ2 + θ3 ≤ 0.050

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
θ4 + 2.489

√
θ2θ1 ≤ 303.03

θ2 ≤ 0.5

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎨
⎩

1.48
θ2
1

< θ2

1.72 < θ1 < 1.877

{
1.87695 ≤ θ1 ≤ 5

0.0002319θ2
1 + 0.446 < 8.8528·10−16

√
6.864 × 1022θ4

1 + 2.645 × 1026θ2
1 + θ2⎧⎪⎪⎨

⎪⎪⎩
0 ≤ θ1 ≤ 1.72

0.0002319θ2
1 + 0.446 < 8.8528·10−16

√
6.864 × 1022θ4

1 + 2.645 × 1026θ2
1 + θ2

θ4 ≤ 300⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1.72 < θ1
0.0002319θ2

1 + 0.446 < 8.8528·10−16
√

6.864 × 1022θ4
1 + 2.645 × 1026θ2

1 + θ2
θ2 ≤ 1.48

θ2
1

θ3≤0.05

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8.8528 · 10−16
√

6.864 × 1022θ4
1 + 2.64509 × 1026θ2

1 + θ2 ≤ 0.0002319θ2
1 + 0.446

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1.877 < θ1 ≤ 5
θ2 > 1.48

θ2
1

θ4 + 2.489
√

θ2θ1 ≤ 303.03

{
0 ≤ θ1 < 1.879
θ4 ≤ 300

θ2 ≤ 1.48
θ2
1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{
1.87 < θ1 ≤ 4.989
θ4 ≤ 300⎧⎪⎨
⎪⎩

θ1 > 4.989
40280.2−16144.7θ1

θ2
1

+ 1617.74 ≤ θ2

(A1)
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Abstract: The evolution and application of intelligence have been discussed from perspectives of life,
control theory and artificial intelligence. However, there has been no consensus on understanding
the evolution of intelligence. In this study, we propose a Tri-X Intelligence (TI) model, aimed at
providing a comprehensive perspective to understand complex intelligence and the implementation
of intelligent systems. In this work, the essence and evolution of intelligent systems (or system
intelligentization) are analyzed and discussed from multiple perspectives and at different stages
(Type I, Type II and Type III), based on a Tri-X Intelligence model. Elemental intelligence based
on scientific effects (e.g., conscious humans, cyber entities and physical objects) is at the primitive
level of intelligence (Type I). Integrated intelligence formed by two-element integration (e.g., human-
cyber systems and cyber-physical systems) is at the normal level of intelligence (Type II). Complex
intelligence formed by ternary-interaction (e.g., a human-cyber-physical system) is at the dynamic
level of intelligence (Type III). Representative cases are analyzed to deepen the understanding of
intelligent systems and their future implementation, such as in intelligent manufacturing. This work
provides a systematic scheme, and technical supports, to understand and develop intelligent systems.

Keywords: Tri-X Intelligence; cyber-physical systems; human-cyber systems; intelligent systems;
intelligent manufacturing

1. Introduction

In recent decades, intelligence has been a hot topic in various areas including human
science, biology, computer and information science and social science [1]. Intelligence is
well defined for its capabilities of perception and cognition, as well as its wide application
of all living systems to natural laws [2–4]. This broad definition maximizes coverage of a
variety of intelligent phenomena. The common definition of intelligence is to realize and
maximize the value of the function of artificial systems according to human desires by
natural laws, to be activated upon a human’s request. Intelligence represents the system’s
responsiveness to environmental changes through an autonomous decision-making process,
which enables the system to react using proper actions at the proper time in the proper way
to achieve the objectives. Norbert Wiener published his book “Cybernetics: control and
communication in the animal and the machine” in 1948 [5]. Wiener tried to analyze the
difference between humans and machines. He stated that the special abilities of humans
are in recognizing and adapting to the environment changes. In his opinion, artificial
systems and living systems share a similar logic, in which the human is a control and
communication system as is a machine. In his book, “cybernetics” is a concept with special
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meaning, including control, feedback, communication and interaction. It is a process
followed by a series of procedures, including constant acquisition of condition changes,
reaction, and continuous optimization. It is an autonomous process that an intelligent entity
adapts to by control algorithms, unifying recognition, decision, and feedback to handle
environmental uncertainties. The word “cyber” is closely related to cybernetics; automatic
control systems in both machines and living things. Compared to human intelligence,
the characteristics of machine intelligence can be interpreted as data circulation rather
than human movement, machine computing rather than human brainpower, automated
machining rather than manual operation. Driven by complex business processes, limited
time windows and surge labor costs, the value of the above three characteristics is increased
by an order of magnitude [6]. For example, the concept of intelligent manufacturing was
proposed to liberate humans from tasks that can be done by machines. Much evidence
indicates that machines can perform better in certain tasks compared to humans [4,7].

The level of system intelligence is measured by the ability for decision-making. For ex-
ample, a higher level indicates more situations that a system can handle. Five basic features,
including state recognition, real-time analysis, autonomous decision-making, accurate exe-
cution and promotion through learning, indicate the level of system intelligence [8]. As an
extension of Wiener’s idea, we designed five features to measure the intelligence of a phys-
ical entity, a consciousness of humans, and a cyber entity for determining their intelligence
levels. According to the five features, Hu et.al [8] classified the intelligent systems into
three levels including primitive level (Type I), normal level (Type II), and dynamic level
(Type III), as shown in Figure 1. A system with state recognition, real-time analysis, and
accurate execution is classified as a primitive-intelligent system. An advanced intelligent
system has additional features regarding autonomous decision-making. A system with all
five features is an open-intelligent system, also known as a system with a complete level
of intelligence.

 
Figure 1. Three levels of intelligence in intelligent systems.

Intelligence has been discussed from the perspectives of life, control theory, artificial
intelligence and industrial applications [1,5,9–11]. In dynamic systems, humans may not
perform as well as robots in repeated tasks, but they are able to adapt to change, and can
often invent out-of-the-box solutions. However, there is no consensus on the evolution of
intelligence with the incorporation of human intelligence and its importance. Even though
the human’s role and full integration in these systems is often overlooked, the human
is an indispensable component in the intelligent systems, especially for supervising and
enforcing the intelligence of machines. To address this research gap, the Tri-X Intelligence
(TI) model is proposed to systematically analyze the intelligence of humans, the physical
world, the cyber world and their interactions. The proposed model consists of three
intelligent elements: conscious humans, physical objects and cyber entities (Figure 2). In
Figure 2, physical objects include natural substances and artificial systems based on physical
materials. Conscious humans can be defined as biological systems with brainpower and
awareness. A Cyber system is an advanced digital logic system in a computer with network
facilities to drive the software and hardware.
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Figure 2. The Tri-X Intelligence (TI) model.

The goal and application area of this work focus on the industrial field including
intelligent manufacturing, intelligent energy and intelligent transportation. The rest of
the paper is organized as follows. In Sections 2–4, elemental intelligence, integrated
intelligence and complex intelligence are discussed based on the hierarchy provided by an
HCPS (human–cyber–physical systems) model. In Section 5, representative examples of
HCPS are presented in detail. In Section 6, we conclude this work and summarize future
research directions.

2. Elemental Intelligence Based on Scientific Effects

2.1. Physical Object

A physical object is one of the original intelligent systems or the zero-generation of
intelligent systems. Taking the natural ecosystem as examples, a rock, tree, mountain, water,
and even the planet, can recognize outside information, exchange materials/energy, and
operate according to natural laws through scientific phenomenon or effect. Intelligence of
a physical object can be shown in a scientific manner through geometry, physics, chemistry
or biology. The interaction results from different materials following natural laws. The
intelligence of a physical object is consistent with primitive intelligence, as shown in
Figure 3. An old example of physical intelligence is the steam engine invented in the first
industrial revolution [12].

Figure 3. Physical object intelligence (Type I).

In recent years, the advancement of physical object intelligence in the form of intelli-
gent/smart materials has drawn increasing attention. For example, intelligent fibers can
recognize changes in the outside environment and inner states and respond to them in a
certain manner [13]. Intelligent skin is made of super-thin (nanometer) film polyimide and
monocrystalline silicon, which is equipped with tactile sensors to detect changes in temper-
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ature, humidity, pressure and transformation [14]. These intelligent materials are produced
following interdisciplinary physical laws. Interactions among physical entities are very
common in the industry. A variety of physical objects constitute many manufacturing
facilities and products, which realize their functions via physical object intelligence. The
intelligence of physical objects is often constant over time and relies on other intelligence
for continuous improvement and dynamic innovation.

2.2. Conscious Humans

The living intelligence of human is attained from the continuous recognition of nature.
It is a type of inherent intelligence developed during evolution. Conscious humans rec-
ognize outside information using sense organs and react to outside stimulation through
subconscious actions, unconscious actions, or conscious actions that are recognized and
controlled by the brain, as shown in Figure 4. For example, humans react immediately
when touching extra-hot, frozen, or sharp objects. More importantly, humans learn how to
make decisions based on past experiences [15]. Interactions among humans are common
in society and determine the basic contents of human lives. Interactions and cooperation
among humans create groups, domains and relationships. More importantly, emotional
intelligence, also known as emotional quotient (EQ), is the ability of humans to recognize
their own emotions and those of others, to discern between different feelings. and to label
them appropriately. Emotional information helps to guide thinking and behavior and to
manage emotions in order to adapt to various environments or achieve goals [16]. However,
there are many known and well-documented human cognitive biases that plague human
intelligence and the ability to reason consistently, to make decisions based on evidence,
and to make accurate predictions of the future [16]. Other disadvantages of human labor
include behavioral differences, forgetting information, mistakes and errors [17].

Figure 4. Human intelligence (Type I).

2.3. Cyber Entity

A cyber entity consists of software, hardware and a network that enables digital
intelligence or computation intelligence on machines, as shown in Figure 5. For example,
computers take inputs through the keyboard, mouse and camera. Autonomous decisions
are enabled by the processor unit which is designed to analyze the signal, voice and image
in real-time. Computers can execute commands following exact rules, including data
storage, image capture and camera angle adaption. Initially, the computer was used for
simple calculation and data storage. In the intelligent age, computers have become smarter
with the capacity for communication, self-learning and super-computing. Moreover, knowl-
edge systems can be obtained from collaborative learning from interactions among cyber
entities [18–20]. However, cyber-entity intelligence (or called machine intelligence) has no
setting for creativity, playfulness, fun or curiosity, which are the source of many inventions
and breakthroughs [15].
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Figure 5. Cyber entity intelligence (Type I).

Today, physical object intelligence commonly exists in areas including new materials,
super materials and intelligent materials. Cyber entity intelligence benefits from the devel-
opment of algorithms and computation capacity. Artificial intelligence with learning ability
is growing rapidly and is becoming comparable to human intelligence [21–26]. In summary,
due to their own advantages and shortcomings, physical entity intelligence, conscious
human intelligence and cyber entity intelligence should be integrated and synergetic in
high-level intelligent systems. We seek to confirm that machine intelligence can interact and
fuse with other types of intelligence, leading to a more advanced and complex intelligence.

3. Integrated Intelligence Formed by Two-Elements Integration

3.1. Human-Physical System (HPS) Intelligence

Humans can not only design physical objects through physical and mental work but
can also generate knowledge in this process. Meanwhile, humans can use the acquired
knowledge to create new physical products. In other words, development history is a
process of recognizing, exploiting and changing physical objects, as shown in Figure 6.
For example, colored pottery encompasses knowledge from hundreds of years ago. The
knowledge in the brain and the product is implicit, which is different from explicit knowl-
edge, such as an image or text. Benefiting from the development of explicit knowledge,
the physical machine has become increasingly advanced to replace parts aspects of human
labor. However, the development of implicit and explicit knowledge HPS is limited due to
the restriction of knowledge carriers. The interaction mode with HPS is the typical mode
of “human in the loop”. Human and physical machines are the main system elements that
keep improving HPS during evolution.

Figure 6. HPS intelligence (Type II).

3.2. Human-Cyber System (HCS) Intelligence

One goal of developing intelligent systems is to increase the interaction of efficiency
between humans and cyber systems (e.g., computers) in the form of human-cyber systems
(HCS). There are various interaction methods in HCS, such as programmable software [27],
brain-computer interfaces [28], and inserted chips [29] between human and cyber systems.
Software is a method to transform human intelligence into machine intelligence. Explicit
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knowledge is the main source of machine intelligence. The software intermediary interprets
the humans’ implicit knowledge into explicit knowledge to equip the cyber entity with
reasoning ability. The brain-computer interface is a method that extracts brain awareness to
control the physical entity via a cyber system. Related technologies have been investigated
including communications from brain to machine, from machine to brain, and from brain
to brain. An inserted chip is an intrusive connection method. In the future, with the
development of super chips, it is possible to realize an interbrain network through inserted
super chips. Action recognition is an indirect method to obtain human awareness through
various sensors. The language, facial expression, gestures and other information of human
awareness can be converted into digital information in cyber entity systems [30]. Taking
WeChat as an example [31], recognition and software intermediary tools have been de-
signed to convert screen touch actions into texts to be sent to people via cyber technologies.
Interactions between humans and cyber entities to realize HCS intelligence are shown in
Figure 7. Although many scientists have focused on brain science, the thinking mechanism
of the mind is still unclear [32]. Interactions between human awareness and cyber entities
still involve interpreting implicit knowledge to explicit knowledge in order to strengthen
digital intelligence. This is a process to convert human intelligence to machine intelligence
for more powerful knowledge-based tools.

 

Figure 7. HCS intelligence (Type II).

3.3. Cyber-Physical System (CPS) Intelligence

Interactions between physical objects and cyber entities result in a cyber-physical
system (CPS), which is a milestone to promote the development of intelligent systems.
CPS was proposed by Helen Gill [33,34] and was introduced into industry by Germany to
support Industry 4.0 initiatives [35]. CPS models not only the interaction between physical
objects and cyber entities but also a scheme that converts human intelligence to machine
intelligence in artificial systems. However, the influence of human intelligence will never
disappear and keeps influencing the artificial systems via software and knowledge engines,
as shown in Figure 8.

Figure 8. CPS intelligence (Type II).
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For instance, CPS is the core technology of smart manufacturing (or intelligent man-
ufacturing) [36]. The reference framework (RAMI 4.0) of CPS proposed by Germany
Industry 4.0 consists of a physical layer, integration layer, communication layer, informa-
tion layer and a function layer, in which the core is the digital technology and network
technology [37]. RAMI 4.0 elaborates the concept of an administration shell that is an
intermediate software platform including a communication layer, information layer and a
function layer. The administration shell is a cyber system to support CPS, which can be
applied to a physical object to constitute a CPS. Software is the crucial carrier of a cyber
system, which defines new rules and stores knowledge within the restriction of hardware.
Human intelligence and artificial intelligence define the majority of reasoning and judging
rules in software. The information of physical entities flows into the digital space to create
the cyber system. In turn, the cyber system participates in the activities of physical objects
through software, which is called the digital twin [38,39]. In the future, more and more
physical objects will fuse with digital entities, and more and more digital entities will be
adopted to test and control physical objects.

4. Complex Intelligence Formed by Ternary-Interaction

Interactions within physical objects, conscious humans and cyber entities cocreate
complex intelligent systems, called the intelligence of system-of-systems (SoS). The different
focuses of the components create different applications, as shown in Figure 9. Most of
the scenarios in Industry 3.0 and 4.0 have resulted from the fusion of physical objects,
conscious humans and cyber entities, in design, production and service [40].

Figure 9. HCPS intelligence (Type III).

An advanced case of ternary-fusion HCPS intelligence is the self-driving automo-
bile [41]. In practice, there are many self-driving automobiles that can handle most of the
situations under supervision. Moreover, the 100% self-driving automobile has already
been developed at the lab level. Here, AI takes over the driving position of the human
operator and operates the self-driving system based on data analytics of the environment
and human behavior. This type of intelligent system can not only practice the intelligent
circle including recognition, analysis, decision, execution, but is also equipped with learn-
ing ability. Human-machine hybrid intelligence is an advanced form of human-machine
intelligence. A typical case is Alpha AI software developed by Psibernetix, which can
beat American pilots in simulation environments [42]. The chance of making mistakes
will increase when a pilot is in control of a supersonic aircraft at 12,000 m and a speed of
over 1200 km per hour. However, Alpha AI can increase error tolerance through tactical
plan optimization in a dynamic environment. The responsiveness of Alpha AI is 250 times
faster than that of a pilot. Alpha AI can be controlled by language commands. The most
significant aspect of Alpha AI is that it can learn from other Alpha AI data installed in
different places and in different versions to enhance its own performance. Another ex-
ample is human-robot collaboration [43]. Human-robot collaboration can release human
workers from heavy tasks if effective communication channels between humans and robots
are established [44]. With the help of sensor technologies, gesture identification, gesture
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tracking and gesture classification, human-robot collaboration allows human workers and
robots to work together in a shared manufacturing environment.

In summary, the single entity (conscious human, physical object or cyber entity)
shows primitive intelligence (Type I) at the unit level. A two-entity integrated system
may create normal-level intelligence (Type II) at a system level. Three-entity fusion can
generate dynamic-level intelligence (Type III) at the SoS level. Therefore, when considering
development from primitive intelligence, intelligentization has evolved over more than
200 years. The development of intelligence will be accelerated in the future resulting in
hybrid intelligence and swarm intelligence.

5. Implementation and Applications of Intelligent Systems

Physical systems with primitive intelligence are the oldest intelligent systems; how-
ever, their control is limited [6] and the corresponding technologies are easy to e generalize.
In the Wiener era [5], electricity was adopted for sensing information and driving motors
and machinery, which broke through the obstacle between information and the physical
entity to increase technology commonality. Due to technology limitations, only simple
objects described by differential equations could be controlled in that era. With the develop-
ment of computational technologies, digital/cyber intelligence has been applied to control
more complex objects. In the following section, the implementation and applications of
intelligent artificial systems are analyzed based on the evolution and development of
system elements.

An artificial system is a set of elements with interaction and interconnection to realize
specific functions in the forms of machine, product, workpiece and plants. Its components
can be described as four basic subsystems, as shown in Figure 10: power unit, control
unit, transmission unit and actuator unit. The executive device (actuator unit) is used for
executing actions, the power device for producing and converting energy, the transmission
device for transmitting energy and the control device for adjusting the operating parameters
of subsystems to allow executive devices to react accurately. In the past decades, industrial
evolution occurred with technological developments in artificial systems. The emergence
of new machines, new tools and facilities created continuously improving productivity.
The four basic components are also evolving constantly. For example, the executive device
is updated by introducing new structures and new materials (e.g., intelligent fiber and
super materials).

 

Figure 10. Four basic subsystems of artificial systems.

In recent decades, the control unit in artificial systems has evolved fastest compared
to other components in artificial systems. The latest advance in control devices is related to
cyber systems. The core technology of control devices has evolved through a mechanical
→ electromechanical → digital → software → cloud route. The continuous introduction
of new technologies into control systems finally achieves CPS, as shown in Figure 11.
The evolution of the control device is consistent with the fusion and integration of the
administration shell and the physical facility in RAMI 4.0, which is how CPS is constructed.

There are many scenarios driving the development of intelligent systems (e.g., intel-
ligent manufacturing) [45]. Nowadays, intelligent manufacturing is evolving into a new
state based on next-generation artificial intelligence. This can be termed new-generation
intelligent manufacturing (NGIM) [4]. Traditionally, artificial intelligence has been defined
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as a branch of computer science to simulate the thinking processes and intelligent actions
of humans. However, new-generation artificial intelligence extends traditional digital intel-
ligence to big-data intelligence, crowd intelligence and human-machine hybrid intelligence.
These new-generation AI technologies have greater content and can be applied in more
domains. For example, big-data intelligence originated from the operation information of
cyber systems under the close collaboration among three entities, which cannot be pro-
cessed by humans, to reveal the mode and inner laws [46]. Crowd intelligence is generated
among different entities, and it is hard to determine which one is the controller, and which
one is controlled [9].

 

Figure 11. The evolution of control system to CPS.

6. Conclusions

As a demarcation of the past, present and future of intelligent systems, a Tri-X Intelli-
gence (TI) model is proposed in this paper to state the mechanism, factors and connotation
of three main entities (conscious humans, physical objects, and cyber entities) including
single-X intelligence, two-X integrated intelligence and three-X complex intelligence. Every
single entity shows primitive intelligence. Two-entity integration creates integrated intelli-
gence. Three-entity fusion generates advanced intelligence. The intelligentization mecha-
nism of artificial systems continuously converts human intelligence to machine intelligence
via different channels and interfaces. With the increasing use of machine intelligence,
humans will gradually play a less significant role in intelligent systems. However, human
intelligence will keep influencing artificial systems in the form of software/algorithms to
drive intelligent systems. Therefore, we cannot take humans out of the systems given the
accelerating development of technology. The key to success is to adapt humans to new
work environments, i.e., not to replace but to enhance. According to the Tri-X Intelligence
(TI) model, humans need to think more about how to collaborate with cyber systems rather
than training operators to work like computers.

The proposed Tri-X model (e.g., HCPS) will integrate the intelligence in a the complex
system with a combination of human-cyber-physical and machine subsystems. In future
research, modeling intelligence in experiments or simulations is critical. Different cognitive
architectures, such as LIDA of Stan Franklin, ACT-R of CMU, SOAR from the University of
Michigan, Subsumption Architecture of the MIT AI lab, or BDI (belief, desire and intention)
provide structure to create intelligent actions. Different methodologies like neural networks,
genetic algorithms, simulated annealing, the Monte Carlo method and swarm intelligence
are approaches to create actions that could result in intelligent behavior. The ultimate
goal of HCPS, or Tri-X modelling and implementation, is to achieve effective and efficient
symbioses among humans, cyber systems and physical systems.
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Abstract: In manufacturing systems, pick-up operations by vacuum grippers may fail owing to
manufacturing errors in an object’s surface that are within the allowable tolerance limits. In such
situations, manual interference is required to resume system operation, which results in considerable
loss of time as well as economic losses. Although vacuum grippers have many advantages and are
widely used in the industry, it is highly difficult to directly monitor the current machine status and
provide appropriate recovery feedback for stable operation. Therefore, this paper proposes a method
to detect the success or failure of a suction operation in advance by analyzing the amount of outlet air
pressure in the Venturi line. This was achieved by installing an air pressure sensor on the Venturi line
to predict whether the current suction action will be successful. Through empirical experiments, it
was found that downward movements in the z-axis of the vacuum gripper can easily rectify a faulty
gripper suction operation. Real-time monitoring results verified that predictive process adjustment
of the pick-up operation can be performed by modifying the z-position of the vacuum gripper.

Keywords: real-time monitoring; fault detection; predictive process adjustment; vacuum gripper;
sensor data

1. Introduction

1.1. Theoretical Background

In industrial production, as manufacturing systems have become more complicated,
the concept of operations and maintenance (O&M) has become important in preventing
unforeseen faults and errors and for smooth operations [1,2]. Lin et al. (2021) found
that O&M investments are continuously increasing in the power plant industry owing
to concerns regarding the safe and reliable operation of power plants [3]. Accordingly,
the authors investigated the major influencing factors in the O&M of power plants by
constructing a fishbone diagram and analyzing the gray correlation between the derived
factors. In addition, O&M is relevant not only to physical products or systems but to
cyber systems as well. In this regard, Furumoto et al. (2020) discussed how to assess and
prevent cyber risks to achieve reliable ship operation [4]. In manufacturing processes, the
prevention of unknown and sudden faults in real time is critical [5,6].

Grippers play an important role in an industrial manufacturing system [7–9]. They
can be classified into two types: mechanical type and vacuum type. Mechanical grippers
are also known as robotic grippers [10]. As their shape and operating mode mimic human
hands and fingers, they are usually used for performing complex or delicate operations.
For example, Vedhagiri et al. (2019) proposed a mechanical gripper with five fingers
in order to handle objects with complex shapes, such as a coin, cosmetic cream, and
fruit [11]. A mechanical gripper with three fingers has also been proposed to conduct
micromanipulation [12]. The authors [12] applied a piezoceramic transducer for effectively
handling objects as small as 10 to 800 μm, such as glass hollow microspheres and iron
spheres.
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On the other hand, vacuum grippers utilize suction cup(s), air pipe(s), and Venturi
line(s) to handle objects, and they require an external air compressor to supply compressed
air, as illustrated in Figure 1. In particular, a discrete manufacturing process is typically
performed by several common operations using vacuum grippers, and the grippers are
widely used for lifting, transporting, and inspections [13–15] as they are simple, inexpensive
to install, easy to operate with fragile objects, and can handle various types of object
shapes [16,17].

Figure 1. Illustration of a vacuum gripper system (composed with a suction cup and the connected
Venturi line).

For example, a vacuum gripper with four suction cups placed in a two by two arrange-
ment has been proposed for handling heavy objects with complex shapes [18]. Amend et al.
(2012) developed a positive pressure gripper that uses a balloon instead of a suction cup
and can handle objects of various shapes [10]. Since this universal gripper can utilize both
positive and negative pressure, it showed good performance in gripping objects of different
size, shape, weight, and fragility. Reinforcement materials such as magnetorheological
elastomers have also been utilized in suction cups of vacuum gripper systems to increase
their performance [19]. As can be deduced from the above, vacuum grippers with one or
more suction cups are frequently used to handle different types of objects. For example,
Nakamoto et al. (2018) validated that a vacuum gripper can handle objects of 40 different
shapes, sizes, and materials without requiring any changes in the gripper system setup [20].

As above mentioned, several studies have focused on how to effectively use a vacuum
gripper and how to prevent a faulty gripper operation in advance. Operational parameters
that affect a manufacturing process are usually categorized into machine parameters and
product parameters. Whereas product parameters pertain to the production of the han-
dled object in the process (such as the three-dimensional lengths of the object), machine
parameters are related to the motion control of the installed actuators (for example, the
speed of actuator movement). In general, for the effective execution of manufacturing
processes, appropriate machine parameters are usually analyzed, instead of product pa-
rameters, because product parameters are already optimized before being fed into the
manufacturing system. For example, Wang et al. reported that the type of pipe material
and operating temperature can determine the suction power during gripper operation [21].
The authors [21] also investigated the effects of cup size and length of suction time on
the gripping operation. According to another study [22], the performance of the gripping
operation can depend on the shape of suction cups (universal, flat, or deep). In addition,
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considerable research has been performed on the effects of machine parameters, including
suction cup size [23,24], number of cups [25], and initial applied pressure, on the suction
operation [26].

However, these investigated machine parameters are usually “design variables” that
are determined in the design phase of the product life cycle; thus, they cannot be easily
modified later during production. In other words, it is difficult to adjust these parameters
during each gripping operation in real time. Therefore, many studies have alternatively
focused on approaches to detect defects in objects, such as dents or ripped sections on
the objects, before the gripping operation because the prior detection of defects enables
an error-free operation. For box-lifting operations, ultrasonic sensor signals have been
utilized to identify the relative curvature of box surfaces [27]. Similarly, convolutional
neural network models based on sensor signals have been proposed to classify normal
and defective box surfaces [27]. Moreover, surface cleanliness has also been found to be
important in the effective use of grippers [28]. The authors determined that the suction
performance when using vacuum grippers can be determined by the number and size
of contaminants on target surfaces. Since the condition of objects being handled cannot
always be changed during production operations, the only feasible solution is to remove the
defective objects in advance. In other words, it is still difficult to adjust certain conditions
or parameters for recovering a fault state.

Therefore, this paper proposes a real-time predictive process adjustment method for
pick-up operations using vacuum grippers. To this end, a pick-up operations testbed
equipped with a two-way data monitoring and process parameter control module was
developed. To analyze sensor signals in terms of faulty operation detection, a sensing
module was devised by installing an air pressure sensor inside the Venturi line of a vacuum
gripper, and the significant features that can help distinguish between normal and faulty
gripper operation before the completion of the current pick-up operation or start of the next
operation were characterized. Finally, an experiment to determine whether it is possible to
recover faulty states by adjusting relevant process parameter(s) was performed.

The remainder of this paper is organized as follows: In Section 2, the developed system
configuration to acquire appropriate sensor signals and provide feedback commands to the
controller is explained in terms of hardware and software. In addition, air pressure sensor
signals to obtain meaningful features that can help detect faulty operations in advance are
analyzed. The experimental results are summarized in Section 3. The concept of predictive
process adjustment in the pick-up operation of a vacuum gripper by controlling a related
control parameter is also demonstrated. Lastly, in Section 4, the study is summarized and
the scope for future work discussed.

1.2. Literature Review on Fault Detection Methods

Fault detection and diagnosis (FDD) approaches based on traditional statistical process
control charts as well as advanced data mining techniques have been employed in various
manufacturing applications [5,29–32]. As summarized in Table 1, statistical chart-based
FDD approaches provide a satisfactory detection performance when sensor signals are only
collected during the normal operation of a system, and the corresponding measurements
are concentrated in one or several clusters. Principal component analysis (PCA) is a popular
example of a fault diagnosis method based on traditional statistical process control charts
where multivariate analog sensor signals are simultaneously collected from a manufac-
turing process [33–35]. This method reduces the dimensionality of original historical data
according to eigenvectors decomposed via singular value decomposition [33]. Kim et al.
(2020) employed PCA to derive a residual control chart to monitor the current system
status [36]. Since highly correlated and dimensional sensor signals were fed as input data,
the authors were able to extract hidden but meaningful features by combining traditional
PCA with functional PCA. Since traditional PCA deals with linear relationships in the
given multivariate dataset and functional PCA contains non-linear eigenfunctions and can
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handle highly correlated multivariate sensor signals, the derived features were used as
indicators of process control charts; this yielded a superior fault detection performance.

Table 1. Classification of fault detection and diagnosis (FDD) approaches.

Statistical Chart Data Mining

Usage of fault state data Unsupervised learning Supervised learning
Mathematical model Yes No

Gradient relationship between
measurements and

system operation states
Yes Not necessary

Popular decision criteria Distance from
the normal states

Similarity to the known signal
behaviors during fault states

By contrast, data-mining-based FDD approaches are usually utilized when the sensor
signals are excessively scattered regardless of the system operation state (normal or fault).
Due to this characteristic, it is not easy to develop a robust representative mathemati-
cal model for quantifying the state of the system. That is, advanced machine learning
techniques have been frequently applied when the collected sensor signals do not have
distinguishable features between the normal and faulty system states [37]. In order to detect
unknown faulty statuses more accurately, pattern classification with discrete state vectors
(DSVs) was improved based on a similarity analysis [38]. Since previous DSV-based fault
detection methods showed good performance when every DSV is discernible based on
training data, the authors used Naïve Bayes approximation and the Brier score to evaluate
unknown DSVs in terms of fault detection power. Based on the proposed technique, the
faulty operation of a vehicle engine could be detected more precisely.

As the above approaches explained, most O&M studies have focused on offline fault
diagnosis [5,35,36]. Online fault detection is usually performed by comparing the current
operation state and the offline fault detection model, and consequently, it gives the user
alarm when the current state is considered as a fault state (or, a fault state will occur in
near future. For effective manufacturing operations, corrective recovery action(s) should
be manually performed by operators to prevent the detected faults. For example, for
the effective operation of an automated storage and retrieval system (ASRS), Internet-
of-things-based controllers and sensors were installed [31]. Depending on the current
system status determined by analyzing real-time vibration signals, the controller changes
the relevant process parameter (i.e., motor speed in transporters) and, consequently, the
ASRS can automatically maintain a failure-free status. In this regard, O&M approaches
have evolved from corrective maintenance, through preventive maintenance and condition-
based monitoring, to predictive maintenance [6,39]; however, it is still not easy to combine
real-time fault detection/prediction and automatic process adjustment.

2. Materials and Methods

2.1. Materials: System Configuration for Monitoring Pick-Up Operations in Real Time

To identify the key machine parameters and test the predictive process adjustment
with the corresponding characteristics, a testbed that performs a pick-up operation using a
vacuum gripper [27], as depicted in Figure 2 was constructed. Furthermore, the monitoring
and control modules were upgraded, as shown in Figure 2b. The detailed information of
the system configuration is summarized in Table 2.
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Figure 2. Testbed for performing the pick-up operation and monitoring the amount of applied air
pressure during each operation cycle: (a) front view; (b) top view; (c) closed view for a suction cup.

Table 2. Summary of testbed configuration.

Unit Function

Air compressor Supply compressed air
Air pressure sensor Measure air pressure during operation
Air pressure gauge Measure an initially applied amount of air pressure

Vacuum switch Detect success/failure of suction
Four-axis robot arm Move vacuum gripper

Vacuum gripper with a suction cup
and single solenoid

directional control valve (DCV)
Conduct suction operation

Arduino-based controller Collect signals and send them to the PC
PC-based controller Control the robot arm and Arduino-based controller

The outlet air pressure was considered as an indicator to identify the current pick-up
operation (i.e., suction operation) in real time, instead of the inlet air pressure, which is most
commonly measured. Among various machine parameters, the outlet air pressure is the
most appropriate variable because it changes depending on whether the suction is turned
on or not. In a vacuum gripper, compressed air is supplied from an air compressor to the
suction cup through a Venturi line. The Venturi line is designed to increase airflow speed
by changing the size of the air pipe [40]. When the compressed air moves from the entrance
to the exit of a Venturi line, a partial vacuum state occurs at the jet nozzle (an additional
narrow vertical air pipe between the entrance and exit of the Venturi line). Regardless of
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whether a partial vacuum state was created, it was assumed that the magnitude of the
outlet air pressure changed.

For predictive process adjustment according to real-time operation monitoring, the
control modules and the corresponding control software were upgraded, as shown in
Figure 3. Due to the upgrade, it was not only possible to acquire sensor signals in real time
but also to simultaneously change machine parameters, such as the x-, y-, and z-positions
corresponding to the suction start, during the operation. The workflow is as follows:

1. Make sure every module is turned on and connected to the PC-based controller via
Ethernet communication.

2. Send a pick-up operation message to move the robot arm and start the suction
operation.

3. When the suction is started by the PC-based controller, analog sensor signals (outlet
air pressure) are simultaneously acquired in real time and can be monitored through
the developed control software.

4. After performing the given pick-up operation (regardless of the operation success),
the acquired sensor signals are exported as a spreadsheet per operation.

Figure 3. Software to control the testbed, collect sensor signals in real time, and send feedback
control messages.

2.2. Methods

Predictive process adjustment is a representative approach in predictive maintenance.
The concept of this approach is to automatically perform appropriate feedback actions,
which are determined by detecting and diagnosing the current system status or predicting
an upcoming fault status through real-time monitoring [31]. Therefore, in this paper, early
fault detection and recovery actions are proposed in order to conduct predictive process
adjustment in real time, as illustrated in Figure 4.
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Figure 4. Framework of the predictive process adjustment method based on real-time data acquisition
and feedback control.

First, the relevant measurements are acquired from the testbed when a vacuum gripper
performs a pick-up operation according to the controller’s command. During the training
phase, the time-series sensor signals for every cycle are accumulated in a history dataset,
which is employed to generate a fault detection model. To develop a fault detection
model that can identify an unknown and sudden fault situation in advance, a detection
threshold should be determined. Since sensor signals were already collected, it is possible
to construct fault detection model using several fault detection/prediction approaches,
from conventional statistical models to pattern extraction-based deep learning models.
In this study, the simplest statistical-based fault detection model was employed using
Equation (1) [41]:

Detection threshold =
=
X +

3
d2
√

n
× (R), (1)

where
=
X is (approximately) the mean of the sensor signals a short duration after the suction

command is given to an actuator in normal operation; R is the mean of the differences of
maximum and minimum measurements in the same dataset, which is used for calculating
=
X; and d2 is a constant value chosen by the number of sensor measurements (i.e., n).

For a statistical process control approach, the detection threshold is computed accord-
ing to the X-chart. The X-chart is one of the control charts that is used for identifying
whether measurements in the current batch are under the statistical control or not. It
can be categorized as unsupervised learning, as history datasets collected during normal

operations are used to develop a detection model, such as those based on
=
X and R com-

putation. The X-chart was utilized in this study because the time-series sensor signals
collected during one pick-operation operation are considered as a dataset in one batch. In
this regard, a series of sensor signals is collected for a short duration after the suction starts
(during one operation cycle) in order to assume that the collected measurements are under
identical conditions.

In common process control chart models [41], the upper and lower control limits are
applied together to determine the statistical outliers. However, in this study, the direction of
the failure status was clearly determined (e.g., a higher value indicates a failure of vacuum
generation, and hence, an operation failure); therefore, only the upper control limit was
used as the detection threshold. Using the derived detection threshold, the failure status of
the pick-up operation was detected when the following condition is not satisfied:

xi ≤ α × Detection threshold, (2)
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where xi is the current sensor value and α is the predefined confidence interval.
If a fault is detected during real-time monitoring based on the above detection model,

the appropriate resolution strategy is consequently developed. In this study, the machine
parameter was carefully controlled in order to overcome situations with faults.

3. Experimental Results

3.1. Result: Early Fault Detection for Pick-Up Operation

Using the testbed described in Section 2, a pick-up experiment was conducted to
determine the characteristics of the collected sensor signals depending on the success or
failure of the suction operation. The target operation was to lift rectangular boxes using one
suction cup. To generate two different states (i.e., success and failure to lift), the following
two different types of boxes were used, as shown in Figure 5:

• Box type I: Normal box with a surface that is sufficiently flat to be picked up with
conventional vacuum grippers and judged to be acceptable based on product quality
inspection.

• Box type II: Box that appears normal in the product quality inspection but is not
flat enough to be picked up using a conventional vacuum gripper (“box type II”
hereinafter) owing to a slight concave curvature in its contact surface, resulting in a
faulty pick-up operation.

Figure 5. Target objects: (a) two samples of box type I; (b) two samples of box type II. (They do not
show any significant difference in 2D images).
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Both types of box cover, box type I and II, are considered as normal quality in product
quality inspection phase. Although box type II should be used in the manufacturing process
from the viewpoint of product quality, because of its very negligible concave on the contact
surface, it results in a faulty pick-up operation. Importantly, even if the manufacturer
attempts to install a system to remove box type II from the production line, it is highly
difficult to distinguish between the two types using the naked eye or a 2D camera, as
depicted in Figure 5.

The lifting operation was conducted 20 times for each box type, and the corresponding
sensor signals were collected, as illustrated in Figure 6. The generated historical data were
recorded with the corresponding timestamps. The duration was approximately 10 s, and
the analog signals were recorded at a sampling rate of approximately 10 Hz. In addition,
missing or noisy data in the collected raw signals were filtered using adjacent measurements.

Figure 6a describes the pressure signals of the airflow in the Venturi channel for every
lifting iteration. Before starting the suction operation using the vacuum gripper, it was
ensured that the initial pressure of the airflow in the Venturi line was almost identical to
the original air pressure provided by the air service unit and air compressor. After starting
the suction operation (before lifting the object), it can be observed in Figure 6a that the
monitored air pressure decreased continuously (at approximately 5.6 to 6.0 s). When the
suction was sufficiently succeeded, the decreased pressure was constantly maintained
during the rest of the pick-up operation, until moving to the destination position, and the
decreased level was identical in the 20 repetitions. Although certain fluctuations in the
inlet pressure can be observed during the pick-up operation, the decrease in pressure was
mostly constant until the suction operation was terminated. Signal collection automatically
stopped after the robotic arm was moved with the vacuum gripper to the destination
position and the vacuum switch was turned off to release the object.

Figure 6. Cont.
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Figure 6. Measured air pressure over time: (a) successful lift for box type I; (b) failed lift for box
type II.

For box type II, the gripper failed to pick-up the box in all repetitions, as listed in
Table 3, even though the conditions were kept identical to those for box type I. As depicted
in Figure 6b, the air pressure starts to decrease when the suction operation starts, but
the level of decrease is different from that for box type I. As a result of the negligible
concave curvature on the contact surface, it is not possible to generate sufficient suction,
and the amount of outlet air pressure cannot decrease sufficiently for a successful gripper
operation. In Figure 6b, the sensor signal for Trial 1 is slightly different from those for the
other 19 trials; this is due to an inadvertent early manual control suction start command by
the operator.

Table 3. Pick-up operation results.

Box Types Operation Success Rate

Box type I 100%
Box type II 0%

In conventional operations with a vacuum gripper, a vacuum switch determines
whether the suction operation was successful after the pick-up operation has been con-
ducted. In other words, although the vacuum switch does not indicate that a sufficient
vacuum has been successfully generated, the gripper (and the connected robotic arm)
moves to the next position regardless of the completion of the current pick-up operation.
However, upon using the information derived from this study, extraneous movements or
operations without the target object can be prevented.

In summary, the process can be summarized as follows:

1. Start the suction operation and measure the amount of outlet air pressure in real time.
2. Check the decrease during approximately short time period (i.e., 5.6 to 6.0 s), which

corresponds to suction start.

3.1. If there is a sufficient decrease in air pressure, then conduct the next step (usually,
move the gripper to the next position).
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3.2. If the air pressure does not decrease to the desired level, then conduct the predictive
process adjustment until the object is lifted by the gripper.

3.2. Discussion: Conducting Appropriate Recovery Actions

After predicting the outcome of a pick-up operation (as already described in Section 3.1),
it is necessary to identify which control parameter(s) can result in a failed pick-up operation.
There are several control parameters whose value changes during the gripper operation,
such as the initial applied pressure, length of suction time, and suction position [26,27]. In
this study, the vertical position of the vacuum gripper at the suction start (hereafter called as
the “z-position”) was selected as the control parameter for the predictive process adjustment
for the pick-up operation. The z-position is illustrated in Figure 7: it represents the bottom
position of the suction cup attached on a vacuum gripper. In the case of more than one
suction cup, the same z-position is recommended for all suction cups.

Figure 7. Suction cup positions for predictive process adjustment: (a) axis information for suction
cup control; (b) diagram for the 0.0 mm z-position; (c) diagram for the −0.5 mm z-position.

Experiments were conducted to investigate the effect of the z-position on the pick-up
operation, as summarized in Table 4. The pick-up operation consisted of the following
consecutive steps: movement to the suction location, suction start, upward movement,
movement to the destination, and suction finish.
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Table 4. Experimental setup to determine effect of z-position on the pick-up operation.

Dependent variable Amount of outlet air pressure
at approximately 5.6 to 6.0 s

Independent variable Z-position with four levels (0.0, −1.0, −1.5,
and −0.0 mm)

Number of repetitions 10 times for each condition

Once the command was sent to the vacuum gripper, the sensor signals were collected
in the form of a time series from step 2 to step 3. A total of 40 time-series datasets were
recorded. Using mean values corresponding to approximately 5.6 to 6.0 s for each time-
series dataset, a one-way analysis of variance (ANOVA) was conducted to determine the
statistical effects of the dependent variable on the independent variable. ANOVA is a
typical statistical test to determine the source of measurement differences, that is, whether
the differences result from variance between groups (levels) or from variance within groups
corresponding to independent variables [42]. It can be treated as the extended version
of the t-test for more than three groups corresponding to an independent variable. This
statistical test is prevalently employed to determine the effects of controllable parameters
on the output [43–45].

The results are summarized in Table 5, where the z-position shows a significant
difference in the pick-up operation (p-value < 0.05). As can be observed from Table 6, the
success ratio of the operation increased from 0% to 100% as the vertical position at the
suction start lowered. Specifically, the suction cup failed in nine trials except in the case of
Trial 5 (–1.0 mm), whereas it failed in only three trials for box type II (i.e., Trials 1, 2, and 6)
with the z-position at –1.5 mm. Finally, when the z-position was set as –2.0 mm, the gripper
succeeded in picking the target up in every trial. Clearly, the outlet air pressure decreased
by more (approximately 200 to 300 V) than the decrease in the cases of operation failures
(approximately 600 to 700 V), and the outlet air pressure was continuously maintained
until step 3, as depicted in Figure 8.

Table 5. ANOVA results of the effect of the z-position on the pick-up operation of the gripper.

Source SS df MS F p-Value

Between groups 1,777,360 1 1,777,360 1284 <0.000
Within groups 52,616 38 1385

Total 1,829,976 39
* SS: sum of squares, df: degree of freedom, MS: mean squares.

Table 6. Experimental results of the predictive process adjustment by controlling the z-position of
suction start with box type II.

Z-Position Operation Success Rate

0.0 mm 0%
−1.0 mm 10%
−1.5 mm 70%
−2.0 mm 100%
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Figure 8. Collected air pressure signals depending on the z-position (during pick-up operation with
box type II): z-position is set as (a) −1 mm; (b) −1.5 mm; and (c) −2.0 mm.
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In summary, the predictive process adjustment with real-time operation monitoring
can be conducted as follows:

1. Start the suction operation and measure the amount of outlet air pressure in real time.
2. Check the decrease during approximately a short time period (i.e., 5.6 to 6.0 s), which

corresponds to suction start.

3.1. If the air pressure decreases sufficiently, then perform the next step (usually, move the
gripper to the next position).

3.2. If a suction step is considered a failure (i.e., air pressure does not decrease to the
predefined UCL), move the z-axis downward until the air pressure falls to the UCL.

However, as the z-position is further lowered, the probability of defects on the contact
surface increases. A vacuum gripper that lowers excessively may result in a dent or a hole,
and consequently, the object will be considered to be defective right before the pick-up
operation. Therefore, it is essential to determine the appropriate z-position that does not
cause any damage to the surface of the object while maximizing the success rate of the
pick-up operation.

4. Conclusions

In this paper, a testbed for conducting a pick-up operation using a vacuum gripper
with a single suction cup was prepared. Using the proposed method, the air pressure in
the Venturi line was automatically monitored in real time. When a command for starting
suction was provided to the gripper, a sharp decrease in the collected air pressure signals
appeared at approximately 0.5 s. However, the same decrease was not observed in the
signal for faulty box surfaces; consequently, the suction action and the corresponding
gripper operation were not performed owing to insufficient contact between suction cup(s)
and the contact surface of the object. Using the early detection results derived from the air
pressure signal analysis, a prediction-based process adjustment method for the pick-up
operation was proposed. Through pick-up experiments using the developed testbed, it
was revealed that the z-position of the suction cup significantly affects whether an object
is properly gripped by the vacuum gripper or not. Therefore, it is possible to determine
a possible error situation in advance (before failure of the lifting operation) and provide
appropriate feedback control commands so that the target operation is finished successfully
without stopping machine operations.

However, for stable operation and generalization, it is necessary to conduct further
research on the following: (i) identifying the appropriate depth for the z-position that
does not generate any defects on a contact surface but maximizes the rate of success of
the pick-up operation; (ii) generalizing the results for different materials, sizes, weights,
or shapes of handled objects and various configurations of vacuum grippers; and (iii)
combining the machine-status monitoring result and product defect detection result to
improve the productivity and product quality of an industrial production system.
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Abstract: Process, manufacturing, and service industries currently face a large number of non-trivial
challenges ranging from product conception, going through design, development, commercialization,
and delivering in a customized market’s environment. Thus, industries can benefit by integrating
new technologies in their day-by-day tasks gaining profitability. This work presents a model for
enterprise process development activities called the wide intelligent management architecture model
to integrate new technologies for services, processes, and manufacturing companies who strive to
find the most efficient way towards enterprise and process intelligence. The model comprises and
structures three critical systems: process system, knowledge system, and transactional system. As a
result, analytical tools belonging to process activities and transactional data system are guided by a
systematic development framework consolidated with formal knowledge models. Thus, the model
improves the interaction among processes lifecycle, analytical models, transactional system, and
knowledge. Finally, a case study is presented where an acrylic fiber production plant applies the
proposed model, demonstrating how the three models described in the methodology work together
to reach the desired technology application life cycle assessment systematically. Results allow
us to conclude that the interaction between the semantics of formal knowledge models and the
processes-transactional system development framework facilitates and simplifies new technology
implementation along with enterprise development activities.

Keywords: enterprise process architecture; new technologies integration; process intelligence

1. Introduction

Our civilization faces acute and critical challenges, such as climate change, safe drink-
ing water availability, food scarcity, and secure energy supplies, which endanger current
and future generations. Therefore, society and industry need to shape their activities based
on sustainable principles and to efficiently adopt the rapidly evolving new technologies
which can potentially handle the challenges mentioned above. Precisely, this work focuses
on the integration of new technologies in the decision-making of process and manufactur-
ing industries. Thus, the proposed methodology applies to the workflow of any productive
sector or area where decision-making plays a crucial role.

As for the process and manufacturing industries, complex decision-making lurks at
all enterprise levels and the whole product lifecycle, ranging from product conception,
design, development, production, commercialization, and delivery. The need to consider
highly complex scenarios results in involved and non-trivial decision-making. However,
the advent of new technologies supports the successful development and systematization
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of new structures and frameworks for reaching informed, reasonable, and wise decisions.
Therefore, this work aims to integrate new technologies systematically in the decision-
making workflow of the process and manufacturing industries. Therefore, this work
presents a framework for developing process and product-related activities. Thus, the pro-
posed model allows to unveiling the most efficient way towards integrating enterprise
decision support systems and process intelligence into actual enterprise processes.

As discussed in Section 1.1 Decision making in the enterprise, companies have recently
adopted decision support systems to handle the complexity of decision-making. However,
such systems only tackle part of the complete enterprise structure, and it is necessary to un-
derstand the whole picture to reach sensible solutions, as pointed out in Section 1.2 Enterprise
Integration. Therefore, this work combines Knowledge management (Section 1.3) and Data
management (Section 1.4) to propose a framework for reaching integration of different
systems and efficiently apply new technological solutions for decision-making.

1.1. Decision-Making in the Enterprise

Process and manufacturing industries can be regarded as highly involved systems
consisting of multiple business and process units. The organization of the different temporal
and geographical scales in such units, as well as the other enterprise decision levels, is
crucial to understand and analyze their behavior. The key objectives are to gain economic
efficiency, market position, product quality, flexibility, or reliability [1]. Recently, indicators
related to sustainability and environmental impact have also been included as drivers
for decision-making. The basis for solving an enterprise system problem and further
implement any action is the actual system representation in a model, which captures the
observer’s relevant features. Such a model is the basis for decision-making, which is a
highly challenging task in these industries due to their inherent complexity.

Therefore, companies have devoted efforts to reach better decisions during the last
decades. Indeed, they have invested a large number of resources in exploiting information
systems, developing models, and using data to improve decisions. Decision support
systems (DSS) are responsible for managing the necessary data and information that
allow making decisions. Thus, those systems aim to integrate data transactions with
analytical models supporting the decision-making activity at different organizational levels.
The work in [2] defines DSS as aiding computer systems at the management level of an
organization that combines data with advanced analytical models. The work in [3] presents
four components for supporting classic DSS. The components comprise (i) a sophisticated
database for accessing internal and external data, (ii) an analytical model system for
accessing modeling functions, (iii) a graphical user interface for allowing the interaction
of humans and the models to make decisions, and (iv) an optimization-engine based
on mathematic algorithms or intuition/knowledge. Traditionally, DSS focus on a single
enterprise unit and lack the vision of the boundaries. Thus, DSS rely heavily on rigid
data and model structures, and they are difficult to adapt to include new algorithms and
technologies.

1.2. Enterprise Integration

Current trends in the process industry outline the importance of being agile and fully
integrated to improve decision-making at all scales in the company. Indeed, integration
comprises the whole organizational activities from operation to planning and strategic,
which differ in physical and temporal scope, but are directly related to each other as deci-
sions made at one level directly affect others. Therefore, companies pursuing integration
among different decision levels in the production management environment report sub-
stantial economic benefits [4,5]. Therefore, to coordinate and integrate information and
decisions among the various functions are crucial for improving global performance.

The use of Standards is the primary conducted method for enterprise integration labor.
Groups, commities, and societies have developed those standards in different geopolitical

120



Processes 2021, 9, 600

areas where they are of application. Next, the use of some standards serves as well as a
brief introduction of their content.

First, the European Committee for Standardization (CEN) and the European Com-
mittee for Electrotechnical Standardization (CENELEC) provide standards to characterize,
guide, and rule SMEs’ activities [6]. CEN standards comprise European Standards (E.N.s),
drafts standards (prENs), Technical Specifications (CEN TSs), sDocuments (HDs), Technical
Specifications (TSs), Technical Reports (TRs), and CEN Workshop Agreements (CWAs).
Finally, CEN work is coordinate with the International Organization for Standardization
(ISO) and the International Electrotechnical Commission (IEC).

Next, the National Institute of Standards and Technology (NIST) creates the Integrated
Definition Methods (IDEF). IDEF comprises a standard fir function modeling (IDEF 0),
Information Modelling (IDEF 1), Data Modelling (IDEF 1X), Process Modelling (IDEF 3),
Object-Oriented Design (IDEF 4), and Ontology Description (IDEF 5) currently maintained
by the Knowledge-Based Systems, INC. (KBSI) [7]. The standards were funding and
are now in use by the United States Air Force and United States Department of Defense
agencies. Moreover, many organizations for business process capturing and improvement.

Following, the International Electrotechnical Commission (IEC) develops the Inter-
national Standards and Conformity Assessment covering areas such as industrial control
programming standards (IEC 61131-3) or field devise integration (IEC 61804-2). The stan-
dards aim at allowing interoperability, efficiency, the safety of electrical, electronic, and
information systems [8].

The International Organization for Standardization (ISO) standards are well-known
and widely used standards, covering management systems, quality management, informa-
tion security management, etc. [9]. Thus, criteria for integration comprises the Enterprise
Modeling and Architecture (ISO TEC184 SC5 WG1), Electronic Business Extensible Markup
Language (ISO 15000), and the Asset Management System (ISO 55003), among others.

Manufacturing Execution Systems Association (MESA) presents a set of best manage-
ment practices and information technology aiming to improve business. MESA focuses
on asset performance management, lean manufacturing, product lifecycle management,
manufacturing performance metrics, quality, regulatory compliance, and return to invest-
ment [10].

Next, Machinery Information Management Open Systems Alliance (MIMOSA) as-
sociation presents the Open Standards for Physical Asset management for information
management (I.M.), and information technologies (I.T.) applied to manufacturing envi-
ronments [11]. MIMOSA standards recently focus on enabling digital twins, big data,
industrial internet of things, and analytics specifications.

The Object Management Group (OMG) is dedicated to developing technological stan-
dards for enterprise integration and distributed broad-interoperability [12]. The OMG
comprises the following standards: Business Process Model and Notation (BPMN), Com-
mon Object Request Broker Architecture (CORBA), Common Warehouse Metamodel
(CWM), Data-Distribution Service for Real-Time Systems (DDS), Unified Modeling Lan-
guage (UML), and the Model Driving Architecture (MDA) applied to software visual
design, execution, and support.

Next, the Process Industry Practices (PIP) consortium collaborates to define common
industry standards and best practices focused on design, maintenance, and procurement
activities [13]. Besides, PIP practices facilitate knowledge capturing of process control,
mechanical, data management, and Piping and Instrumentation Diagrams.

A key element of integration directly points to enterprise models: computational appli-
cations within organizations aiming to represent processes, activities, resources, or physical
phenomena. These models are essential for driving design, analysis, management, and prog-
nosis in enterprise functions. Nevertheless, the spread of these models confronts several
issues in practice. First of all, the independent creation of systems supporting functions
at the enterprise during past years, resulting in heterogeneous enterprise models; that is,
the so-called correspondence problem. Different enterprise models refer to the same con-

121



Processes 2021, 9, 600

cept, for example, an activity, each model will probably apply other names, following the
example activity, operation, or task. Therefore, most of the time, interpreting agents are
necessary to allow communication among those enterprise functions. However, no matter
how rational the idea of renaming the concepts is, organizational barriers usually impede
it. Furthermore, these representations lack an adequate specification of what the model
objects mean; they lack the terminology’s actual semantic definition. Instead, concepts are
poorly defined, and their interpretations overlap, leading to inconsistent understandings
and uses of the knowledge. Finally, the cost of designing, building, and maintaining a
model of the enterprise is high. Each model tends to be unique to the enterprise, and objects
are enterprise-specific.

Therefore, some efforts have addressed the issues mentioned above using model
standardization. On the other hand, the American National Standards Institute (ANSI),
developed the Instrumentation, Systems and Automation Society (ISA) standards, known
as ANSI/ISA standards for automation and control within the enterprise [14] with wide
recognition for process integration. Figure 1 presents the main integration aspects of these
standards.

Figure 1. Instrumentation, Systems and Automation Society ISA-95 integration of information
schema.

On the other hand, the Purdue reference model provides an “environment” for dis-
crete parts manufacturing and stands for the basis for the other models [15]. In this case,
certain activities are identified as directly related to shop floor production and organized
in a six-level hierarchical model as depicted in Figure 2. Specific applications may require
more or fewer than six levels, but six was deemed sufficient for identifying where integra-
tion standards are needed. The following list shows the name of each level and gives its
primary responsibility.

• Level 6 Enterprise: Corporate Management (External Influences)
• Level 5 Facility: Planning Production
• Level 4 Section: Material/Resource Supervision
• Level 3 Cell: Coordinate Multiple Machines
• Level 2 Station: Command Machine Sequences
• Level 1 Equipment: Activate Sequences of Motion (Plant Machinery and Equipment)
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Figure 2. The Purdue Enterprise Reference Architecture (PERA).

These activities apply to manual operations, automated operations, or a mixture of
the two at any level. It is worth mentioning the accessible subdivision of the six tasks into
control enforcement, systems coordination and reporting, and reliability assurance. In the
context of any large industrial plant or an entire industrial company based on one location,
the tasks would take place at each level of the hierarchy.

Thus, the Common Information Model (CIM) reference model stands for a reference for
computer-integrated manufacturing. It consists of a detailed collection of generic informa-
tion management and automatic control tasks and their necessary functional requirements
for a manufacturing plant. Nevertheless, the CIM reference model scope is limited to
the integrated information management and automation system elements. As a result,
the company’s management, including planning function, financial, purchasing, research,
development, engineering, and marketing and sales are all treated as external influences.

The adoption of standard models is the basis for the integration of enterprise processes.
Thus, decision-making heavily relies on both the process models and the technologies
which tackle the problem. Therefore, this work considers the systematization of data and
knowledge management to reach integration in decision-making.

1.3. Knowledge Management

The development of better practices, strategies, and policies is highly related to
how organizations use experiences and ideas from customers, suppliers, and employees.
Thus, capturing, storing, sharing, and applying knowledge enables the construction of
organization intelligence and intellectual assets. Two types of knowledge sources can be
generally defined: tangible and intangible. On the one hand, intangible assets are related
to skills, expertise, and human resources knowledge. On the other hand, tangible assets are
related to data, information, historical records found on databases of customers, suppliers,
and employees of the organization [16].

The bases of knowledge management tools can include distributed databases, ontologies,
or network maps. This work focuses on formal domain ontologies development as the
primary technology for knowledge management. Besides, the use of terms Semantic Web or
Web 3.0 can be used to refer to this technology. Ontologies and logic serve as conceptual
graphs for knowledge representation in constructing computable models within a specific
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domain [17]. Additionally, ontologies are defined as formal structures facilitating acquiring,
maintaining, accessing, sharing, and reusing information [18,19]. Over the last decades,
the Semantic Web pursued theoretical bases for developing knowledge-based applications
software: One can communicate

• a shared and common understanding of a domain among people and across applica-
tion systems and

• an explicit conceptualization that describes the semantics of the data.

Finally, knowledge management systems benefit from ontologies that semantically
enrich information and precisely define the meaning of various information artifacts.

1.3.1. Bloom’s Cognition Taxonomy

Bloom’s Taxonomy is a framework that presents how educational objectives can guide
and structure educational goals. This framework’s latest work is entitled A Taxonomy for
Teaching, Learning, and Assessment defining the cognitive processes related to knowledge [20],
shown in Figure 3. The framework considers six major categories, with subactivities for
better understanding, as follows:

• Remember: Recognizing, Recalling.
• Understand: Interpreting, Exemplifying, Classifying, Summarizing, Inferring, Com-

paring, Explaining.
• Apply: Executing, Implementing.
• Analyze: Differentiating, Organizing, Attributing.
• Evaluate: Checking, Critiquing.
• Create: Generating, Planning, Producing.

Figure 3. Bloom’s taxonomy by Vanderbilt University Center for Teaching.

Finally, the framework defines four types of knowledge used in cognition:

• Factual Knowledge
Knowledge of terminology
Knowledge of specific details & elements

• Conceptual Knowledge
Knowledge of classifications and categories
Knowledge of principles and generalizations
Knowledge of theories, models, and structures

• Procedural Knowledge
Knowledge of subject-specific skills and algorithms
Knowledge of subject-specific techniques and methods
Knowledge of criteria for determining when to use appropriate procedures
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• Metacognitive Knowledge
Strategic Knowledge
Knowledge about cognitive tasks (appropriate contextual and conditional knowledge)
Self-knowledge

1.4. Transactional System and Data Management

The performance of enterprise processing activities highly depends on the transac-
tional system’s capacity and how well the data is managing.

1.4.1. Transactional System

A transactional system comprises multiple operations that collect, store, modify,
and retrieve data transactions within an enterprise. These systems must support a high
number of concurrent users and transaction types along the time. Besides, enterprise
data are identified by their purpose and type, comprising transactional, analytical, and
master data. First, transactional data support the daily operations of an organization.
Transactional data refer to data created or modified by the operational systems, such as
time, place, number, date, price, payment methods, etc. Next, define analytical data as
numerical measurements that support activities, such as decision-making, reporting, query,
or analysis. Thus, analytical data are stored and structured as numerical values in some
dimensional models. Finally, master data represent the key business entities, involving
creating a single view of the data in a master file or master record. Master data comprise
data about sites, inventory, levels, demand, products, batches, etc.

1.4.2. Data Management

Enterprise data management aims to govern business data by retrieving, standardiz-
ing, storing, integrating, structuring, and disseminating requested data. The transactional
system supports data management by enhancing data transaction features for control,
analysis, and decision-making. Thus, data management’s essential feature comprises com-
municating all data from different data sources (sensors) and fragmented control systems
with all enterprise applications, processes, and entities that require it. Another critical
aspect of data management is to store and make data available when needed securely.

2. Materials and Methods

New technologies can accomplish their implementation life cycle with a robust base
supported by the proposed architecture, named Wide Intelligence Management Architec-
ture. This presented architecture offers three central systems comprising development
activities: process, knowledge, and transactional systems, shown in Table 1. First, the process
system model introduces seven development activities systematically ordered towards a
formalized process maturity process. Thus, the activities range from process definition.
The main aspects of how enterprise processes perform are process intelligence, where hu-
man and environmental behavior is taken into account to enrich development activities.
Next, the knowledge system model aims to strengthen the integration by formalized
knowledge from three main perspectives: the domain area, the expertise area (functional
activities), and the experience area, enhancing expertise knowledge with success and fail-
ure cases. Finally, the third model is related to the transactional data system. This model
comprises four main areas: data definition, data improvement, data standardization,
and data feeding.
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Table 1. Overall Intelligence Management Architecture for technology integration through process activities.

Process Model Knowledge Model Transactional Model

L1 Process Definition Conceptual Definition
Current process matter Chemical principles

Physics principles
Mechanics principles

Data definition
Data collection

L2 Improvement Improvement
Benchmarking Good manufacturing practices

Standard operational procedures
Data refining
Database

L3 Standardization Standardization
Tear levels definition
world-class process

Process standards
Quality standards
Data standards
Security standards

Data metrics
Data language
Structured data

L4 Optimization Procedural Integration & Feeding
Better performance
Key process variables
Key process parameters

Analytic algorithms knowledge
Analytical methods knowledge

Data to parameters
Data to sets
Planning systems

L5 Automation Expertise
Fixed parameters
Fixed variables
Key indicators
Set values ranges

Good & bad habits algorithms Fixed data collection
Fixed data structuring

L6 Digitalization
Virtual twin processes
New process scenarios

Knowledge-based scenarios Virtual feeding

L7 Intelligence Metacognitive Dynamics
Problem characterization
Problem classification
Intelligent systems
Intelligent agents
Autonomous decision-making

Model knowledge characterization
Model knowledge classification
Knowledge reasoning
Knowledge creation

Automated data collection
Automated data structuring
Intelligent database

2.1. Process System Model

The Modular Process Reference Model aims to define a coherent and structured man-
ner of process evolution to integrate new technologies and business activities. The reference
model comprises seven modules defined by the use of analytical tools and data linked to
enterprise activities, represented in Figure 4.

Figure 4. Maturity echelons of the process system model.
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2.1.1. Process Definition

This module provides a set of activities aiming to assess enterprise processes perfor-
mance and to support systematic formalization. On the one hand, this module verifies
“if” and measures “how much”, existing formalized process follows the current enterprise
activities, named as verification phase. Otherwise, this methodology aims to define, design,
and standardize enterprise processes, called a definition phase. Thus, a process design
phase takes place, considering the followed validation and verification phases. The steps
mentioned above (verification and definition) must apply to the enterprise transactional
system parallel with the processes.

2.1.2. Process Improvement

The process improvement module makes an exhaustive study of current processes to
perform a re-design phase. This re-design phase considers new tendencies on standards,
methods, and technologies. Moreover, good manufacturing practices (GMPs) and stan-
dard operating procedures (SOPs) are of paramount importance in the improvement task.
Moreover, at the same time, a transactional data system must pass through a re-design
phase to support the process improvements realized. Finally, updates and documen-
tation regarding enterprise processes, resources, and data improvements must follow
(Focus on management).

2.1.3. Process Standardization

This module performs research over standards and models strongly related to main
enterprise processes to consider future implementation. Finally, as exposed in the previous
module, data and structures from the transactional system are correctly standardized.

2.1.4. Process Optimization

The process optimization module comprises processes by using different rigorous
and non-rigorous method approaches for optimization. The process optimization phase
aims to provide necessary data and information due to fundamental calculations based on
engineering approaches to decide on specific objectives and goals within processes. Thus,
as the first step, knowledge, data, and information on processes and systems are crucial
to understanding the problem. The development of model design occurs by defining
an objective or multi-objective function, a single or multiple purposes, and single or
multiple scenarios as a convenience. Finally, WIMa’s optimization solutions are enriched
by semantics, mathematical, and process semantics model, allowing easier integration
within the enterprise.

2.1.5. Process Automation

The process automation module comprises applications such as business process
automation (BPA), digital automation (DA), and robotic process automation (RPA). First,
BPA makes use of advanced technologies to reduce human intervention in processing
tasks across the enterprise. Thus, BPA aims to enhance efficiency by automating (initialize,
execute, and complete) the whole or some parts of a complicated process. Next, DA takes
the BPA system, aiming to digitalize and improve processes automation, thus meeting
the market dynamics customer environment. Finally, software agents carry out RPA,
thus pointing to mimic human actions within digital systems to optimize business processes
by using artificial intelligence agents.

2.1.6. Process Digitalization

The digitalization module creates a digital integration of all the systems found in
business processes. Digitalization encompasses process simulation, industrial augmented
reality, predictive systems, proactive systems, industrial internet of things, expert sys-
tems, and process virtual twins. Finally, WiiMa’s solutions facilitate the digitalization
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technologies development due to the semantic structure that supports easy access to raw
or structured data and processes’ formal knowledge.

2.1.7. Process Intelligence

This module aims to understand human behavior principles by reasoning for de-
veloping programs for problem solutions by machines, using artificially intelligent tools,
computational intelligence systems, and formal knowledge models. One of the first tasks
is to manage structured knowledge, which can facilitate and empower the system’s un-
derstanding. Furthermore, this module is directly affected by the transactional system’s
efficiency, which considers the collection, structuring, and data communication.

2.2. Data System Model

The transactional system architecture set up data management activity. We have de-
scribed data management comprising five main activities: data system definition, data sys-
tem improvement, data standardization, data integration and feeding, and data system
dynamics, as shown in Figure 5.

Figure 5. Maturity echelons of the data system model.

2.2.1. Definition

This activity takes into account the process definition (link) to create the data model.
The data model establishes the relationship between the process model and the data gen-
erated by signals sources, such as process equipment, environment sensors, suppliers,
or customers. Even more, transaction data protocols are defined, and the supported physi-
cal architecture must be capable of carrying those protocols. Finally, the data management
plan is set, providing guidelines and procedures for enhancing security, compliance, quality,
efficiency, and access.

2.2.2. Improvement

The data improvement activity refines the relationship between data signals and
process models, and explains missing and necessary data. The data system requirements
reside in process improvement activity. One can then calculate required data by making
analytical computations, adding new technologies, or adding other sensors.

2.2.3. Standardization

The data standardization activity is the process of setting data systems into standard
formats. It comprises the selection of common data language, structure, engineering met-
rics, and time/space Scales. Besides, data conciliation is a crucial task of data integration.
Finally, the four language categories data structure comprises data definition language,
data query language, data manipulation language, and transaction control language,
in compliance with a processes database system.
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2.2.4. Integration and Feeding

Data integration and feeding aim to link and integrate the transactional system and
analytical systems or models. On the one hand, integration connects data among devices
with analytical models, devices with devices, and analytical models with analytical models.
On the other hand, data feeding is in charge to structure, send, and deliver data. Thus,
integration and feeding tasks focus on support optimization based on decision-making and
process action execution that maximize the business’s benefit. Besides, material resource
planning, distribution requirement planning, or enterprise resource planning systems,
as part of the analytical procedure, are setting up if required. As a result, the definition
of data-to-parameters and data-to-sets is established, required by transactional models.
Finally, at some point, this task considers the feed and integration of virtual systems.

2.2.5. Dynamics

The data system model’s last task replaces fixed data parameters and selected data
sets by a mechanism for data collecting and structuring. Usually, these mechanisms refer
to algorithms, which can become intelligent agents. Finally, the dynamics can enhance
the database system, reaching intelligent databases. Intelligent databases are in constant
change adapting to the dynamics of process systems and other business features.

2.3. Knowledge System Model

The knowledge system model organizes how the cognition process evolves, focusing
on knowledge management. This cognition process integrates and adapts Bloom’s taxon-
omy types of knowledge (Section 1.3.1) and ontologies, applied to computational systems.
Thus, the resulting model comprises four main modules: conceptual, procedural, expertise,
and metacognitive, as shown in Figure 6. Finally, the knowledge model system acts as an
integrator between the process and data system models.

Figure 6. Maturity echelons of the knowledge system model.

2.3.1. Conceptual

The conceptual knowledge aims to develop a formal domain ontology. The on-
tology considers domain terminology, elements, categories, principles, and generaliza-
tions, which can consider chemical, physics, and mechanics phenomena. All those do-
main information is retrieved from standards, books, handbooks, etc., derived from
Sections 2.1.1 and 2.2.1. Additionally, information gathering can consider good manufac-
turing practices and standard operating procedures derived from Section 2.1.2. Thus,
the ontology models those elements in the form of classes (elements involved in the domain
area), data-properties (data from specifications and sensors), classes-properties (the relation
among elements), axioms (assumptions on behavior), and rules (restrictions on behavior).
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2.3.2. Procedural

Procedural knowledge focuses on the interaction that processes and humans have
through analytical methods and tools, usually from procedural models, to perform the
processing activity. Thus, the primary sources of information are techniques, methods,
theories, models, structures, and procedural recipes (general, site, master, and control
recipes). Besides, previous knowledge is stored and well identified within the data system.
Finally, procedures, analytical models, and analytical tools translate to computational
algorithms for the reasoning task.

2.3.3. Expertise

Knowledge expertise aims to collect and manage the criteria that determine the best
use of analytics or procedures. This criterion is based on learning on good habits and how
to replicate them. Besides, it is built on learning over bad habits and how to avoid them.
Finally, expertise knowledge considers creating multiple scenarios to account for the power
of knowledge about relations and behavior in the domain based on the conceptual and
procedural knowledge activities.

2.3.4. Metacognitive

Metacognitive knowledge aims to go beyond current understanding. The current
knowledge system is the one in charge of this metacognitive process. The metacognitive’s
main comprises the characterization, classification, reasoning, and creation of knowledge
to enhance and reach process intelligence.

Finally, Figure 7 represents the interaction among three system models. Thus, the pro-
cess system model drives the diagonal’s general maturing process, reaching from process
definition to process intelligence. Next, the X-axis represents how the data system model
supports the process and matures, starting from data definition to data dynamics. Last,
the Y-axis shows the knowledge system model developing, which interacts with the other
two system models and allows an intelligent technological implementation, reaching from
conceptual knowledge to metacognitive knowledge.

Figure 7. Maturity model system integration: Wide Intelligence Management Architecture’s process, data, and knowledge.

3. Results

This section presents the application of the methodology previously described in a
process manufacturing case study.
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3.1. Case Study

This case study aims to illustrate the WIMa framework’s application for the lifecycle
assessment (LCA) of an acrylic fiber production plant. The objective is to demonstrate
how the three models described in Section 2 work together to reach the desired technology
application (in this case, LCA). Life cycle assessment requires a correctly defined process
and consistent data to provide sensible results. Furthermore, this is a meaningful example
to understand the framework at the process definition level (Section 2.1.1).

The acrylic fibers polymerization process considered in this work is presented initially
in [21]. Acrylic fibers’ production takes 14 stages in a batch production plant, represented
in Figure 8, which involves different material and energetic resources. Two alternative
production processes are assessed: acrylic fiber A uses acetone as a solvent in the polymer-
ization, and acrylic fiber B uses benzene. This case study describes the process and data
definition required to perform a life cycle assessment according to the WIMa procedure.
Still, the actual evaluation is beyond the scope of this contribution. For further details
regarding the life cycle assessment, please refer to the work in [21].

Figure 8. Flowsheet for acrylic fibers’ production process (it contains 14 recipe elements, divided into eight recipe unit
procedures and six recipe operations).

First of all, define the requirements and objective of the case study. Thus, suppose that
“Polymer A.C.” wants to develop a high-level decision model agent based on optimization
approaches. Besides, they want to standardize their processes to maintain relations with
their industrial partners. These requirements comprise the performance of certain levels
presented in Table 1:

1. Level one (L1) regarding process definition, conceptual knowledge (process principles,
process standards, and data standards), and data definition.

2. Level three (L3) regarding process standardization and data standardization.
3. Level four (L4) regarding process optimization, procedural knowledge, and integra-

tion and feeding data.
4. Level seven (L7) regarding process intelligence, metacognitive knowledge, and data

dynamics.

Next, present every activity performance in detail structured in each three main
models: process model, data model, and knowledge model.

3.1.1. Process Model of Polymer Plant

L1. Process definition: Process definition tackles the formalization of the polymerization
process itself according to the technical requirements. On the one hand, the process
consists of a complete polymerization plant that produces acrylic fibers using acetone as
solvent. The existing documentation comprises the plant flowsheet (Figure 8) and the
process recipe, which are the current formalization of the plant process activities. Finally, a
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characterization of the organization is performed, and the results, presented in Tables 2–4,
summarize the features related to the general, tactic, and strategic levels of the organization
in which the polymerization plant is installed. Overall, previous information provides
clear boundaries of the process and includes all material and energy flows required to
perform a life cycle assessment. Therefore, the process considered is according to the
process definition model requirements.

Table 2. General features of the organization for system characterization.

General Feature Value

Production capacity Medium
Company size Medium
Supply chain type Good availability
Production type Multi-stage
Market competition type Low
Environmental regulations Defined
Demand levels High volume

Table 3. Tactic features of the organization for system characterization.

Tactic Features Value

Transport type Land
Supply chain objective Economic
Production policies Defined
Customer features -
Suppliers features -
Process flow type Forward
Material storage type Limited

Table 4. Strategic features of the organization for system characterization.

Strategic Features Value

Production processing Sequential
Technology Multitask
Material storage Limited
Material resource Not perishable
Processing resources Limited
Scheduling objective Timing
Scheduling mode On-line

L3. Process standardization: The standardization requires following the ANSI/ISA 88
standard. Thus, a semantic model is based on ANSI/ISA 88 standard, the so-called Batch
Process Ontology (BaPrOn). The use is related to the instantiation task, which allows a
faster and accurate manner to standardize the process. As a result, formulas of the master
process recipes were extracted, as shown in Tables 5 and 6. The production plant con-
siders four stages in batch production mode, eight recipe unit procedures, and six recipe
operations, as well as twenty-seven different resources (considering material and energy
flows). The master recipe’s instantiation results in a set of recipe unit procedures and recipe
operations, along with their formula and input, output, and other process parameters.
Thus, the environmental performance metrics parameters appear included. Overall, the
instantiation results in 934 instances concerning 295 classes, 257 object properties, and 33
data properties. The description logic expressivity of the ontology is SHIN(D), where S
refers to attributive language with complement of any concept allowed, not just atomic
concepts (ALC); H refers to role hierarchy (subproperties); I refers to inverse properties; N
refers to cardinality restrictions a special case of counting quantification; and (D) refers to
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the use of data-type properties, data values or data types. As an example of class instantia-
tion, the RawMaterial class has Input1_1 (Acrylonitrile), Input1_2 (MethylMethacrilate),
Input1_3 (VinilChloride), Input1_4 (Solvent-Acetone) as instances.

Table 5. The formula for the master recipe of acrylic fiber A production process 1/2.

Recipe ID Recipe Type Element ID Procedural Element Type Parameter ID Parameter Name

MR-01 Master RE-3 Unit procedure I15 Output3_2
MR-01 Master RE-14 Unit procedure I56 Output14_1
MR-01 Master RE-14 Unit procedure I57 Output14_2
MR-01 Master RE-2 Operation I61 CleaningWater_total
MR-01 Master RE-1 Unit procedure I62 CoolingWater_total
MR-01 Master RE-1 Unit procedure I63 Electricity_total
MR-01 Master RE-13 Unit procedure I50 Output13_1
MR-01 Master RE-1 Unit procedure I1 Input1_1
MR-01 Master RE-1 Unit procedure I2 Input1_2
MR-01 Master RE-1 Unit procedure I3 Input1_3
MR-01 Master RE-1 Unit procedure I4 Input1_4
MR-01 Master RE-1 Unit procedure I5 Input1_5
MR-01 Master RE-7 Unit procedure I26 Output7_2
MR-01 Master RE-3 Unit procedure I65 Steam_total

Table 6. The formula for the master recipe of acrylic fiber A production process 2/2.

Resource Type Subtype Resource Name Procedural Information Value Unit

Material By-product ByProduct1 Output Parameter 1750 kg
Material By-product ByProduct3 Output Parameter 1217 kg
Material By-product ByProduct4 Output Parameter 1734 kg
Material CleaningWaterT1 Process Parameter 240,000 kg
Energetic Cooling water CoolingWaterT1 Process Parameter 8,613,983 kg
Energetic Electricity ElectricityT1 Process Parameter 458,979 kWh
Material Final product FinalProduct1 Output Parameter 1000 kg
Material Raw material RawMaterial1 Input Parameter 100 kg
Material Raw material RawMaterial2 Input Parameter 50 kg
Material Raw material RawMaterial3 Input Parameter 25 kg
Material Raw material RawMaterial4 Input Parameter 0 kg
Material Raw material RawMaterial5 Input Parameter 0 kg
Material Residue Residue1 Output Parameter 1974 kg
Energetic Steam SteamP1 Process Parameter 441,323 kg

L4. Process optimization: This case study tackles the optimization of multistage batch
plants’ scheduling problem under sequence-dependent changeovers presented by Capon
et al. (2011, 2012). The problem can be defined as follows: given a set of process opera-
tions planning data, including (i) time horizon, (ii) set of product recipes, (iii) equipment
technologies for processing stages, (iv) product demands, (v) changeover methods, (vi) eco-
nomic data related to costs and prices, and (vii) environmental data related to raw material,
equipment, and product manufacturing environmental interventions; all of them provided
by the data model. Four objective functions are relevant for decision-making: productivity
(P), total environmental impact (TEI), makespan (M), and total profit (TP). The problem’s
modeling uses an immediate precedence mathematical formulation, managing the pos-
sible use of different product changeover cleaning methods; multiple alternative pieces
of equipment at each stage; limited storage policies; and product batching, allocation,
and timing constraints. Such problem representation is suitable for applying any of the
three different optimization strategies considered in this case study. Specifically, we will
solve the multi-objective problem using mathematical programming with a normalized
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constraint method (MP), a genetic algorithm (GA), and a hybrid optimization approach
(HA). Each solution method’s suitability depends on the combination of problem features
and objective function, and will be further explored in level 7 related to process intelligence.
At this level, the solution techniques are considered independently, and the knowledge
model supports the implementation of the optimization providing adequate data from the
data model.

L7. Process intelligence: This level comprises the development of intelligent agents
for the scheduling problem. Indeed, one can use different problem representations for
optimization purposes, and which is the most suitable depends on the issue features. That
is precisely the function provided by the process intelligence framework using agents.
The agents perform different functions and are integrated, allowing communication among
them. The agent’s functions include communication, search, classification, and solution.
A common vocabulary is necessary to achieve communication, and all the agents rely on
the ontologies described in the knowledge model.

The solution mechanism consists of the following steps: (i) problem definition,
(ii) modeling process for reaching a problem model, (iii) model analysis, (iv) model so-
lutions, and (v) problem implementation. Based on the answers in (iv), we can make
inferences and reach decisions about the problem (v). The assessment of decisions good-
ness feeds back to the intelligent system to enable learning.

Next, the communication agent prepares the classification agent for analyzing the
problem using a knowledge-driven classification procedure. Next, a solution strategy is
proposed based on a similitude measure resulting from the problem instance compared
with (i) existing problems tackled in the past and stored in the database and (ii) existing
problem approaches from the state-of-the-art. The problem instances solved in the original
papers are the basis for the database of this problem. A total of 415 problem solutions
are included with different problem descriptions and objective function values. As a
result of the similitude measure, a set of ranked solution approaches is proposed to the
decision-maker. Finally, a solution agent uses the solution algorithms to reach the optimal
solution for the problem instance. The solution agent also sends problem solutions to the
decision-maker and stores them in the future reasoning database.

The framework testing with new problem instances and results are shown in Table 7.
The first column describes the problem size (number of batches for each problem). The sec-
ond column specifies the objective function. The third column presents the solution
implementation method’s selection, while the fourth column includes the objective func-
tion’s Value. Finally, the fifth column stands for the distance to the best optimal solution
found. For small problem instances, the rigorous mathematical programming approach has
been selected, whereas problem instances with many variables are solved using a genetic
algorithm. Thus, the objective function also has an essential role in the selection of the
solution strategy. Indeed, for productivity maximization, the hybrid approach is selected.
In most cases, the solution proposed by the agent-based system is close to 5% to the optimal
solution. Overall, this framework stands for a systematic approach to scheduling model
selection and solution implementation, thus supporting the engineers’ high-level decision,
who do not need to have a thorough understanding of advanced optimization techniques.

Programming the different agents uses Jython because it combines Python as a pro-
gramming language and uses Java APIs for communicating with the ontological models.
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Table 7. Results for different problem instances from the agent-based framework at Polymer plant.

Number
Batches
(A/B/C)

Objective
Function Solution Approach

Solution
Value

Optimal So-
lution Value

4/4/4 Productivity Mathematical pro-
gramming

2170 2174

4/4/4 Environmental
impact

Mathematical pro-
gramming

48,200 48,200

4/4/4 Makespan Mathematical pro-
gramming

48,000 48,000

17/10/13 Productivity Hybrid approach 1301 1302
17/10/13 Environmental

impact
Mathematical pro-
grammin

218,814 217,236

17/10/13 Makespan Genetic algorithm 199,507 197,686
20/18/15 Productivity Hybrid approach 1354 1356

3.1.2. A Knowledge Model of the Polymer Plant

L1. Conceptual knowledge: A knowledge system harmonizes and manages sets of
valuable information, making them accessible for their use considering specific purposes.
In this case study, knowledge conceptualization uses the Enterprise Ontology Project
(EOP) [22]. EOP is an ontology containing three active ontologies: batch process ontology,
environmental ontology, and enterprise ontology.

First, batch process ontology (BaPrOn) tackles features such as physical, procedural,
recipe, and process models based on the ANSI/ISA 88 standard. It focuses on the pro-
duction operation management of batch processes. Next, environmental ontology (EVO)
considers life cycle assessment and environmental impact categories features, which al-
lows the trace and calculation of environmental impact produced by product or processes
activities. Finally, the enterprise ontology project (EOP) is based on the ANSI/ISA 95
standard. It considers the integration of enterprise activities, such as quality, maintenance,
and inventory management. Additionally, EOP also considers financial features to tackle
supply chain management activities.

Besides, the EOP model takes into account and models the following key knowledge:

• Production system characterization: comprising physical, procedural, and recipe (site
and general) models.

• Products contemplated: according to the processing order activity in the industry
recipes defining the production requirements and production path for the products in
the physical, process and recipe (master and control) models.

• Resource availability and plant status: provided by the process management and
production information management activities.

Finally, Figure 9 shows the first classes found in the taxonomy of the enterprise
ontology project.

L4. Procedural knowledge: Mathematical programming has been choose as strategy for
making optimization knowledge explicit and available. Thus, this case study makes use of
the mathematical modeling ontology (MMO) [23,24] and the operation research ontology
(ORO) [25].

On the one hand, MMO aims to represent knowledge of mathematical domain based
on mathematical structures comprising elements, terms, and operations. Thus, the math-
ematical term is the atomic part of a mathematical expression. Mathematical elements
and expressions are related through mathematical operations, which can be logic or alge-
braic types. An element or expression can define specific conceptual meanings, such as
processing time, the opening Value of the valve, the effort calculation equation, etc. In
the same manner, an element or expression has a behavior that is related to variables,
constants values, etc. Finally, MMO allows the definition of object-oriented mathematical
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modeling relating mathematical elements and expression with concepts from other seman-
tic representations. In this case study, MMO is integrated with EOP. That allows linking
mathematical models and equations with instances of the acrylic fiber process. Figure 10
shows the first classes found in the taxonomy of the mathematical modeling ontology.

On the other hand, ORO aims to capture the knowledge of operation research area that
is a branch of mathematics. This ontology structures mathematical expressions fed by MMO
in the form of mathematical programming. That allows a formal study and solution of
complex problems for decision-making activity. As a result, an enriched semantic structure
is obtaining. It considers the main parts of mathematical programming, such as the
objective function in the form of an equation, a set of constraints in the form of mathematical
equations. In the same manner, logic and algebraic operations are supported by MMO.
Figure 11 shows the first classes found in the taxonomy of the operation research ontology.

Figure 9. First taxonomical representation of the Enterprise Ontology Project classes.
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Figure 10. First taxonomical layer representation of the Mathematical Modeling Ontology classes.

L7. Metacognitive knowledge: This level aims to create an autonomous problem defini-
tion agent to construct a semantically enriched problem statement [26]. The agent works in
a semantic environment where machines can access explicit knowledge codified in Python
and Jython. The strategy comprises the following: (1) Semantic definition of the system. (2)
Recognition of current situation. (3) The setting of key process features and variables. (4)
The setting of confidential intervals for monitoring task. (5) Searching for relation to key
features. (6) Definition problem statement.

First, the system’s semantic definition refers to Tables 2–4 presented in Section 3.1.1.
Based on the system instantiation, the current process is introduced semantically, indicators,
related key features, and engineering metrics are set, such as resource availability, energy
consumption, demand un-accomplishment, and cleaning overtimes desired. Table 8 shows
a brief example of the resulting process of system setup for monitoring. This table performs
a SWOT analysis defining strengths (S), weaknesses (W), opportunities (O), or threats
(T). The following two rows show indicators and related features coming from classes
representing the process domain concepts. The next row shows the engineering metrics
associated with indicators. Finally, the last two rows refer to the upper and lower bounds
values defined for evaluating the current performance.

Table 8. The semantic search of key features and confidential intervals, where SWOT refers to a strength (S), weakness (W),
opportunity (O), or threat (T) and EOP refers to Enterprise Ontology Project.

SWOT Indicator Related Feature Metric UBV LBV

DataString EOP_Class EOP_Class EOP_DataProperty EOP_DataProperty EOP_DataProperty

W Time delivered hauler Tardiness finish orders u/month 15 45
W Demand unacomplishment Unfinished orders u/month 5 15

Next, the intelligent agent defines optimization goal statements (maximization or
minimization). Then, using previous decision variables definitions, the system is ready
for construct or semantic problem statement definition. Finally, the agent fills the problem
statement template automatically to present it in the form of natural language, as follows:

Empty template. “Taking into account -EOP classes found as key variables- variables,
and -EOP classes found as key parameters- parameters; -Goal statement- - EOP class defined as
decision variable- related to -EOP class defined as an indicator- indicator.”
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Filled template: “Taking into account Processing start time, Storage level variables,
and Maximum storage capacity, Batch processing time, Batch due date parameters; Minimize
Makespan related to Number of late jobs indicator.”

At this level, intelligent agents provide additional capabilities for reasoning us-
ing semantic technologies. The main task focuses on decision-support for industry 4.0
microenvironments.

Figure 11. First taxonomical layer representation of the Operations Research Ontology classes.

3.1.3. The Data Model of the Polymer Plant

L1. Data definition: The data definition is concerned with the data collection and data
system architecture. Accordingly, the transactional system needs to be verified. In this
case study, the information related to the recipe, namely, the energy and material flows,
is stored in aStructured Query Language (SQL) database. All flows are listed, identified,
and quantified in the database, and their sign (positive or negative) indicates whether they
enter or leave the process boundaries. The data relating to the material and energy flows
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stems from the factory floor, and only process engineers have access and permission to
modify the data.

L3. Data standardization: This level aims to standardize data properties. Data proper-
ties comprise data metrics, data language, and data structure. In general, properties are
related to specifications within the processing system. Many of the systems are ruled by
the technology implemented. In contrast, this methodology pursues defined, choose and
consensus data properties desired for the processing system. In this particular case study,
ANSI/ISA standards define those properties, standardizing the data through the instantia-
tion process. The data model provides specifications for developed interfaces, software
requirements. Table 9 presents properties, detail of Boolean, and Direction Type data from
EOP (based on ANSI/ISA standards).

Table 9. ANSI/ISA standard properties for enumeration members.

Enumeration Set Enumeration Value Enumeration String Description

Boolean
0 FALSE

Definition of a Boolean value.1 TRUE

Direction Type

0 Invalid Entry not valid
1 Internal Identifies how a parameter is handled. Internal = only avail-

able within the Recipe Element. Defined at creation or cre-
ated as an intermediate value.

2 Input The Recipe Element receives the Value from an external
source.

3 Output The Recipe Element creates the Value and makes it available
for external use.

4 Input/Output The Recipe Element and external element exchange the
Value, and may change its Value.

5–99 Reserved
100+ User defined

Next, Table 10 presents data details from the polymer process.

Table 10. Data properties from EOP within the Polymer process system.

Object/Data Property Range

hasParameterSource Resource
hasID_ParameterID ParameterID
parameter_type constant; variable
hasEquationAsReferenceValue MathematicalElement
value float
engineering_units string
description string
scaled float

L4. Data integration and feeding: This level performs the definition of data and data sets
required by the optimization software or other software. We consider software specialized
in mathematical programing and solving by optimization software, which contains strict
and non-strict approaches. Thus, Tables 11–13 show some structure data or data sets
required by the polymer process plant’s optimization activity. Besides, optimization
software can call for single data at any time.
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Table 11. Capacity data set of the Polymer plant, structuring two columns: Unit_ID and Data value.

ID_R1 4000
ID_P1 13,000
ID_C1 4000
ID_P2 5000
IN001B 5000
IN002A 5000
IN002B 11,000
ID-FP00A 36,000
ID_FP00B 36,000
ID_R001 36,000
ID_R002 36,000

Table 12. Subtasks time of product A of the Polymer plant, structuring seven columns: Task number,
Unit_ID, Preparation time, Load time, Operation time, Unload time, and Cleaning time.

1 ID_R1 0.20 0.00 2.00 0.30 0.25
2 ID_P1 0.20 0.00 0.30 0.75 0.25
3 ID_C1 0.50 0.30 2.50 0.00 0.75
4 ID_P2 0.20 0.00 0.75 0.00 0.25
5 IN001B 0.50 0.00 0.75 0.00 0.50
6 IN002A 0.20 0.00 0.75 0.75 0.25
7 IN002B 0.30 0.75 1.00 0.00 0.25
8 ID-FP00A 0.20 0.00 0.75 0.00 0.25
9 ID_FP00B 0.30 0.00 0.75 0.00 0.25
10 ID_R001 0.20 0.00 0.75 0.00 0.50
11 ID_R002 0.20 0.00 0.75 0.00 0.25

Table 13. Subtasks time of product B of the Polymer plant, structuring seven columns: Task number,
Unit_ID, Preparation time, Load time, Operation time, Unload time, and Cleaning time.

1 ID_R1 0.20 0.00 3.00 0.75 0.25
2 ID_P1 0.00 0.00 0.00 0.00 0.00
3 ID_C1 0.00 0.00 0.00 0.00 0.00
4 ID_P2 0.50 0.00 0.75 0.00 0.25
5 IN001B 0.20 0.00 0.75 0.00 0.50
6 IN002A 0.30 0.00 0.75 0.00 0.25
7 IN002B 0.20 0.75 0.74 0.74 0.25
8 ID-FP00A 0.20 0.00 0.74 0.00 0.25
9 ID_FP00B 0.50 0.00 0.74 0.00 0.25
10 ID_R001 0.20 0.00 0.74 0.00 0.50
11 ID_R002 0.20 0.00 0.74 0.00 0.25

L7. Data dynamics: This level aims to develop an algorithm based on Jython being
capable of structuring data. For this specific case study, the algorithm was under construc-
tion. The strategy focuses on queries and the structure of triples from the semantic models,
which can dynamically define data sets as shown in L4. Data structuring and feeding.
Finally, we want to point out that ontologies have a database structure but are semantically
enriched and supported by knowledge.

4. Discussion

This work introduces the wide intelligent management architecture and the applica-
tion to acrylic fiber production as a case study. As a result, the production process first
creates a process definition (system characterization and flowsheet of the plant), data defini-
tion (database based on the semantic model), and knowledge conceptualization (a semantic
model for representing concepts and data of the process and system). The standardization
of data and concepts has been done using the semantic model to represent the process
(ANSI/ISA standards). Thus, using the architecture for data structuring and feeding fa-
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cilitates the integration of the Life Cycle Assessment approach improvement. From this
point, the acrylic fiber production plant has the basis for developing process automation,
developing process digitalization, or developing intelligent agents for decision-making.
Figure 12 shows the process activities performed in the case study regarding process defini-
tion, standardization, optimization, and intelligence (yellow boxes and blue arrows path).
Moreover, the acrylic fiber company can perform process improvement, automation, or
digitalization based on the current plant status (green arrows pointing gray boxes). Finally,
using a comprehensive intelligent management architecture model can be adapted to any
company necessity by choosing how to evolve their processes.

Figure 12. Potential activities derived from the case study, where GMPs refers to Good Manufacturing Practices, SOPs
refers to Standard Operating Procedures, and GUI refers to Graphical User Interface.

5. Conclusions

This work presents a novel architecture for technology integration on process activities
and systematically manages processes and their related data using formal knowledge.
Knowledge models provide additional reasoning capabilities to support decision support
systems for the wide optimization and industry 4.0 approaches. The architecture comprises
and structures three critical systems: process system, knowledge system, and transactional
system. As a result, analytical tools belonging to process activities and transactional data
systems can be guided by a systematic development framework consolidated with formal
knowledge models. Thus, the model improves the interaction among process life cycles,
analytical models, transactional systems, and knowledge. A comprehensive intelligent
management architecture model can be seen as an ordered, adaptable, and configurable tool
for integrating technologies and processes maturity. A critical aspect of this method regards
formal knowledge models that become usable and reusable in technology integration and
maturity. Finally, this method is a new alternative supporting companies when they need
to decide ”what to do” by explaining to them ”why to do” and ”how to do it”, taking as
starting point their processes and characteristics.
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Abstract: Liquefied natural gas (LNG) is a clear and promising fossil fuel which emits less greenhouse
gas (GHG) and has almost no environmentally damaging sulfur dioxide compared with other fossil
fuels. An LNG import terminal is a facility that regasifies LNG into natural gas, which is supplied
to industrial and residential users. Modeling and optimization of the LNG terminals may reduce
energy consumption and GHG emission. A mixed-integer nonlinear programming model of the
LNG terminal is developed to minimize the energy consumption, where the numbers of boil-off gas
(BOG) compressors and low-pressure (LP) pumps are considered as integer variables. A case study
from an actual LNG terminal is carried out to verify the practicality of the proposed method. Results
show that the proposed approach can decrease the operating energy consumption from 9.15% to
26.1% for different seasons.

Keywords: LNG terminal; operational optimization; BOG compressor; MINLP

1. Introduction

In recent years, environmental protection and the reduction of carbon dioxide emis-
sions have become a hot spot worldwide [1,2]. Compared with other fossil fuels, natural
gas (NG) is considered a sustainable and potential source of energy in the future [3–5].
Considering that the volume of liquefied natural gas (LNG) is 600 times smaller than the
gaseous state of NG [6,7], LNG is considered as an economic transportation approach when
the gas transportation pipeline is longer than 1500 km [8–10].

The traditional LNG supply chain includes NG liquefaction plants, ship transportation,
and LNG import terminals [11,12]. Natural gas is first exploited and purified in liquefied
facilities and then cooled to −162 ◦C for transportation [13]. Then, LNG is transported to
the demand region by LNG carriers. Once the LNG ship arrived at the terminals, the LNG
is unloaded and kept in cryogenic storage tanks. LNG is regasified through evaporation,
and NG is provided to different users [14,15].

In the whole supply chain, the LNG terminal is an important part, which connects
LNG resources and end users. It is responsible for receiving LNG from vessels, storing
LNG in insulated tanks, vaporizing the liquid, and then delivering NG into the gas pipeline
network [16]. The storage capacity of LNG is primarily affected by seasonal variations of
requirements and the unloading cycles. LNG terminals are the regasification-to-end-user
section of the supply chain, and they can be operated for the whole year. LNG can be
transported further from the terminals to customers by the pipe network or by LNG trucks.

The cryogenic operations in an LNG import terminal consume considerable power
for driving devices, such as compressors and pumps [13,17]. Energy consumption in LNG
import terminals can be reduced in two ways. The first one refers to the LNG cold energy
recovery. In the past decades, the recovery of cold energy from the regasification process
has become a research hotspot. Around 830 kJ of cold energy is generally stored in per
kilogram LNG [18]. Thus, the larger the system, the more cold energy is wasted [19].
Researches introduced different LNG cold energy utilization systems and discussed other
potential directions beyond electric power generation [11,20,21].
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The second way refers to the modeling and optimization of the boil-off gas (BOG)
handling process. Due to the low bubble point of LNG, the BOG always arises at terminals
and can cause damages [22]. Specifically, the heat will leak to LNG through the tank and
the shell of the circling pipeline. Thus, the timely removal of the BOG is important to
ensure the safe operation of the storage tank under the absolute pressure. An excessive
amount of the BOG in a tank can result in safety issues, whereas a scant amount of the BOG
causes an unnecessary waste of energy [23]. Accordingly, these two issues are important to
address in the design and optimization of an LNG terminal.

BOG compressors are used to remove extra gas and ensure the safety of tanks. They
have intensive and high-energy properties. Thus, they are the first target for energy saving.
The minimization of the total compression energy is the general objective function of
the LNG terminals, although many mathematical models of the compressors have been
developed and applied in the simulation and optimization of LNG terminals [24–26].
Terminals normally used several multi-stage compressors in parallel to keep the BOG flow
rate in a specific range. Several investigators have studied BOG compressor systems. Shin
et al. proposed a mixed-integer linear programming (MILP) model for optimizing the BOG
compressors [27]. A simplified tank model was then proposed to predict the pressure when
failure occurred [28]. To improve the accuracy of the model, they lately used the rigorous
model developed by Aspen Dynamic simulation [29].

Some researchers focused on the issues of multi-stage compression, multi-stage con-
densation, and cooling before or after a compressor in an LNG terminal. For example,
Rao et al. used the Nonlinear Optimization by Mesh Adaptive Direct Search (NOMAD)
algorithm to prove that the two-stage recondensation is superior to other structures [30].
Tak et al. investigated the influences of multi-stage compression on single-mixed refrigerant
processes [31]. Yuan et al. analyzed the parameters in four types of BOG recondensation
systems. They compared the power consumptions between the integrated and the non-
integrated systems considering the conditions of different BOG components [18].

Various researches recover the LNG cold energy for utilization [11,12,19–21]. Many
studies investigate the design optimization of BOG handling process to improve the energy
efficiency while ensuring the system safety [32–35]. Studies on BOG compressor systems
have also been done [24–29]. However, there is only a little focused on the recirculation
operations. Park et al. determined the optimal recirculation flow rate to reduce operating
costs in LNG terminal [15]. Wu et al. built a dynamic simulation model to optimize the
recirculation and branch flow rate [34]. However, there is no literature that considers the
scheduling optimization of LP pumps related to the send-out and recirculation flow rate,
to the best of our knowledge. Additionally, a mixed-integer nonlinear programming model
was first employed to solve the scheduling optimization problem of an LNG terminal.
For estimating the generation rate of BOG, a nominal boil-off ratio of 0.05%-1% for the
LNG tank capacity per day is used [34,36]. Besides, an empirical equation corrected by the
data from the LNG storage tank manufacturers is proposed [28]. In this work, the HYSYS
dynamic model of the industrial LNG terminal was developed to generate the data of BOG
generation, and the regression model was obtained by the data. Therefore, the model is
more suitable for LNG terminal optimization than the methods in the literature.

In this work, a typical LNG terminal was studied, which consists of tanks, pumps,
recondensers, compressors, and vaporizers. The contributions of this work are given
as follows.

• An MINLP model is developed for the operational optimization of the LNG terminal.
• A regression model of BOG generation is proposed considering both model accuracy

and computational complexity.
• An industrial case study in an actual LNG terminal is employed to indicate the

effectiveness of the proposed method.
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2. Problem Statement

The schematic of an actual LNG terminal, which is composed of various devices, such
as pumps, tanks, a recondenser, and vaporizers, is illustrated in Figure 1. As shown in
Figure 1, the BOG produced in the LNG storage tanks is compressed into the recondenser
with compressors, and the LNG is pumped into the recondenser by in-tank LNG pumps.
When the BOG is completely condensed by the subcooled LNG in the recondenser, the BOG
and the subcooled LNG are mixed into one stream. Then, the HP LNG pumps send the
stream into an open rack vaporizer (ORV) or submerged vaporizer (SCV), which converts
LNG to NG for commercial and household users. In some cases, the NG demands are
low, and thus LNG cannot recondense all the BOG. Consequently, the HP compressors are
employed to send the BOG to the NG pipes. This BOG handling process is simple, but the
operating energy consumption is higher than the recondensation way [32].

Figure 1. Structure of the liquefied natural gas (LNG) terminal with decision variables.

This work aims to minimize the energy consumption by optimizing the recircula-
tion flow rate and scheduling the LP pumps and BOG compressors according to natural
gas demands.

As shown in Figure 1, Psteady is the steady pressure of the tank, and f0 is the flow rate
of the total BOG removed from the tank. f BOG

i and WBOG
i denote the BOG flow rate and

energy consumption of compressor i, respectively. f LP
j and WLP

j denote the LNG load and
energy consumption of the LP pump j, respectively. fcycle is the flow rate of recirculating
LNG. fout is the flow rate of the output NG.

The following assumptions are made to develop the operational optimization model
of the LNG terminal:

(1) The terminal has n BOG compressors, whose load is divided into l levels;
(2) the terminal has m fixed speed pumps, whose power consumption and flow rate load

are the same;
(3) the status of each pump or compressor is identical;
(4) the recondensation method is used to handle BOG.

The binary variables are introduced to indicate whether the compressors or pumps
are operated. Furthermore, many constraints are considered in the model.
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3. Model Formulation

3.1. Basic Component Models

The models of basic components such as the storage tank, BOG compressor, LP pump,
and circulating pipeline are developed as follows.

3.1.1. Tank Model

LNG storage tanks play a vital role in the terminal [37], which serve primarily as a
buffer to balance the LNG supplies from ships and NG demands from local users [38]. Given
the continuous heat leaking into the storage tanks, the BOG is produced inevitably [22,39].
Although the cryogenic tanks are heavily insulated from the sides and proof, external heat
leakage into the LNG is unavoidable [40].

In the research of design and optimization for LNG terminals, a normal parameter is
used for predicting boil-off rate generated by heat transfer from the surroundings to the
tank [41]. The quantity of BOG is normally expressed as the percentage of total volume of
LNG in the tank. The boil-off rate can be calculated by the following expression:

f = Bs
VLρL

24
, (1)

where Bs is the boil-off rate on specification ranging from 0.05%–0.1% per day [36]; VL is
the volume of LNG in tank, and ρL is the density of LNG.

In addition, a corrected empirical equation is widely used in recent years [28]:

f =
CRBsρLVL

K1K2K3
, (2)

where the coefficient CR is the rollover effected by the flow rate of circulating LNG, and
its value is usually set as 1.2. K1, K2, and K3 are the correction factors for the offset of the
tank pressure (P) from the LNG vapor pressure (Pv), LNG temperature (TL), and ambient
temperature (Ta), respectively.

In this work, the HYSYS dynamic model of the LNG tank was used to generate the
data of BOG generation rate varying with the operations. For convenience, the simulation
data were used to regress the parameters of Equation (3), by which the total BOG generation
can be calculated.

f = β1(P − Pv) + β2TL + β3Ta + β4, (3)

where P − Pv, TL, and Ta are the differences between the pressure of the gas phase in
the tank and the vapor pressure of the LNG, the temperature of LNG, and the ambient
temperature, respectively. β1, β2, and β3 are the correction factors for P − Pv, TL, and Ta,
respectively. β4 is the boil-off rate of BOG on specific conditions. The parameters can be
derived from the simulation data by multi-linear regression.

3.1.2. Compressor Model

The BOG compressors are used to remove excess BOG, which may damage the
infrastructure and operations of the tanks. In most LNG terminals, the optimization of
compressors is the primary goal for reducing the consumption of energy, as they are highly
energy intensive [26]. Industrial compressors have several types, such as reciprocating,
rotary, axial, and centrifugal. In this study, the two-stage reciprocating compressors are
used, and the total power consumption can be calculated as follows:

WBOG = ∑n
i=1 WBOG

i , (4)

where WBOG
i is the power consumption of compressor i and defined as WBOG

i = ∑l
z=0 cztz

i .
The superscript z is the load level number of compressors, and cz is the power consumption
of level z. tz

i is the fraction of the operation period for compressor i to run at level z.

148



Processes 2021, 9, 599

3.1.3. Pump Model

In the LNG terminal, LP pumps are used to transfer the LNG of tanks to a recondenser
for cooling BOG and carry out the cold LNG to the recirculation pipeline. Therefore, the
power consumption of the LP pumps is related to the send-out and recirculation flow rate.
In this study, the total energy consumption (WLP) can be calculated as follows:

WLP = ∑m
j=1 WLP

j , j = 1, · · · , m, (5)

where j is the index of pumps, and WLP
j is the power consumption of the LP pump j.

3.1.4. Recirculation Pipeline Model

A stream of recirculating LNG is used to keep the unloading arms in a low temperature
to prevent the flow rate of the produced BOG from increasing rapidly, which may damage
the devices and disturb the normal operations [22]. The heat (Q) transfers from the air to
the recirculation pipeline, whose relationship with mass flow rate of recirculation pipeline
is shown as follows:

Q = fcyclecpΔT, (6)

where fcycle is the mass flow rate of recycling LNG, cp is the specific heat capacity, and
ΔT = To − Tin is the temperature difference between inlet and outlet of recirculation
pipeline. Q can also be calculated as follows:

Q = KAΔTm, (7)

ΔTm =
(To − Ta)− (Tin − Ta)

ln To−Ta
Tin−Ta

, (8)

According to Equations (6)–(8), To can be calculated as follows:

To = Ta − Ta − Tin

e
KA

f cyclecp

, (9)

where K is the total transfer coefficient; A is the heat transfer area; To is the outlet tempera-
ture, and Tin is the inlet temperature of LNG. ΔTm is log mean temperature difference.

The power consumption of LP pumps can be reduced by low fcycle. However, low
fcycle also leads to an increase of power consumption of BOG compressors simultaneously.
Therefore, fcycle must be optimized.

3.2. Operational Optimization Model of the LNG Terminal
3.2.1. Objective Function

This work aims to obtain the optimal operation condition by minimizing the total
energy consumption of the BOG compressors and LP pumps. Based on the developed
basic component models, the objective function is defined as follows:

min Energy Consumption = ∑n
i=1 WBOG

i + ∑m
j=1 WLP

j + σ ∑n
i=1 ∑l

z=0 uz
i , (10)

where the item ∑n
i=1 WBOG

i and ∑m
j=1 WLP

j are the electricity consumptions of compressors
and LP pumps, respectively. The third one is the penalty item for the complicated opera-
tions of compressors, where σ is a small positive penalty coefficient. uz

i is the binary integer
variable that indicates whether the operation mode of compressor i at level z is used. For
example, using a small number of compressors is better than using several compressors.
The index i and j represent the compressor and pump number, respectively, and z is the
compressor load level.
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3.2.2. Compressor Constraint

In order to remove the generated BOG in time, the mass flow balance for compressor i
can be expressed as follows:

∑n
i=1 f BOG

i = f0, (11)

f z = δz f BOG
max , z = 0, · · · , l, (12)

f BOG
i = ∑l

z=0 θz
i f z, i = 1, · · · , n, (13)

where δz is the load fraction at level z; f BOG
max is the mass flow rate of the compressor in the

load fraction of 100%. f z is the mass flow rate of level z. The operation time constraint is
given as follows:

xi = ∑l
z=0 θz

i , i = 1, · · · , n, (14)

uz
i ≥ θz

i , i = 1, · · · , n, z = 0, · · · , l, (15)

where xi is a binary integer variable indicating whether compressor i is to be used; θz
i is the

fraction of the operation period for compressor i to run at level z; uz
i indicates whether the

operation mode of compressor i at level z is used. The following constraint is used to avoid
multiple equivalent solutions for compressors:

f BOG
i ≥ f BOG

i+1 , i = 1, · · · , n. (16)

3.2.3. Pump Constraint

The total load stream supply for pumps must satisfy the stream demand of customers
(fout) when considering the mass flow of BOG and circular LNG, which can be expressed
as follows:

fLNG = fout − f0 + fcycle, (17)

∑m
j=1 yj f LP

j ≥ fLNG, (18)

where yj is a binary variable that denotes whether pump j is running or not; f LP
j is the

load of pump j, and the index j is the pump number. fLNG is the minimum flow rate for
LP pumps.

The following constraint is used to avoid multiple equivalent solutions for pumps:

f LP
j ≥ f LP

j+1, j = 1, · · · , m. (19)

3.2.4. Recirculation Pipeline Constraint

The temperature difference (ΔT) between the inlet and outlet of recirculation pipeline
is primarily influenced by the ambient temperature and flow rate of recirculating LNG.
When the ambient temperature is fixed, the ΔT is decided by the flow rate of recirculating
LNG. When the flow rate increases, the ΔT will decrease accordingly, otherwise, ΔT will
increase. The temperature difference constraints of the recirculation pipeline are expressed
as follows:

ΔTmin ≤ ΔT ≤ ΔTmax, (20)

where ΔTmin and ΔTmax are the lower and upper bounds of ΔT [42].
The operational optimization model for the LNG terminal (LNGT-OOM) is an MINLP

model, which is formally cast as follows:

min
f cycle , xi ,uz

i , θz
i , yi

Energy Consumption de f ined in (10)

s.t. Compressors constraints (11)− (16)
Pumps constraints (17)− (19)

Recirculation pipeline constraint (20)

. (LNGT − OOM)
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3.3. Modeling the Backup Compressors

The backup compressor must always be kept in hot standby mode to start from
standby mode immediately under some sudden failures. The hot standby mode of BOG
compressors also consumes energy. This operation condition is discussed in this study.
Starting up a backup compressor unnecessarily is a waste of energy.

Since the load of compressors is greatly influenced by the vaporized gas of tanks,
an appropriate equation of state is necessary for the sufficiently accurate description of
the BOG. Considering that BOG is primarily composed of methane and nitrogen, the
Soave–Redlich–Kwong (SRK) equation is used to describe the gas phase in the tank, which
is calculated as follows [43,44]:

P =
RT

Vm − b
− a(T)

Vm(Vm − b)
, (21)

Vm =
V
N

, (22)

b = ψb
RTc

Pc
, (23)

a(T) = ψa
(RTc)

2

PcαT
, (24)

α(T) =
[
1 + ke

(
1 − T0.5

re

)]2
, (25)

ke = ψk1 + ψk2we − ψk3w2
e , (26)

where P is the system pressure, and R is the ideal gas constant. T is the system temperature,
and Vm is the molar volume. V is the system volume, and N is the moles of the system. a and
b are the correction factor for intermolecular attraction and volume repulsion, respectively.
we is the acentric factor, and the subscripts e, c, and r represent the components, critical
properties, and contrast nature, respectively. α and ke are used to make a key function of
temperature and improve the accuracy of the equation [45]. Considering that the value of P
changes a little with variables except for N, it can be assumed as a function of N. Among the
variables, γk1 = 0.48; ψa = 0.42747; ψb = 0.08664; ψk1 = 0.48; ψk2 = 1.574, and ψk3 = 0.176.

The accumulation of molar flow rate (dN/dt) can be calculated as follows:

dN
dt

=
f − f0

M
, (27)

where f is the mass flow rate of BOG generation caused by heat leak from tanks; f0 is
the total mass load of BOG compressors; M is the molecular weight of BOG, and t is the
operation time.

The operation time when moles change can be estimated as follows:

Δt =
Δn(
dN
dt

) , (28)

where the symbol Δ represents the differences.
If the pressure of the tank can still be kept below the flare pressure during the startup

time while an operating compressor fails, then the backup compressor can be shut down
during the normal operation.

4. Case Study

4.1. Case Description

A case study on energy optimization of an actual LNG terminal in China is presented
to demonstrate the effectiveness of the proposed approach. The parameters of the original
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condition are shown in Figure 2, and the variables and related process parameters are listed
in Table 1. Table 2 shows the regression parameters for calculating the BOG generation
rate f. Figure 3 shows the comparison between the simulated and predicted values. The
average of the simulated value is 2.39 t/h, that is 0.09% for Bs (Equation (1)).

Figure 2. Structure of the original condition.

Table 1. Environmental variables and related process parameters of optimization.

Parameters Values Units

Tank number 4 /
Tank volume 16,000 m3

Tank liquid level 85 %
LNG temperature −159.8 ◦C

Length of the LNG unloading pipeline 2909 m
Diameter of the LNG unloading pipeline 1.487 m
Length of the LNG cooling cycle pipeline 2942 m

Diameter of the LNG cooling cycle pipeline 0.574 m
Total heat transfer coefficient of the pipeline 0.38476 W/(m2·K)

Average ambient temperature 5 ◦C
Send-out flow rate 1209 t/h

Table 2. Regression parameters for calculating f.

Parameters Values

β1 −0.12161
β2 −2.1252
β3 0.053183
β4 −332.666
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Figure 3. Comparison between simulated and predicted values.

4.2. Parameters of the Proposed Models

The tanks are equipped with a cold insulation layer to ensure that the tank’s daily
maximum evaporation rate does not exceed 0.1%. The flare pressure of the storage tank
is 25 kPaG. Table 3 shows the compositions of lean and rich LNG. Table 4 lists the basic
thermodynamic parameters of each component in NG. Table 5 shows the binary interaction
parameters of the SRK equation of state.

Table 3. Compositions of different types of LNG.

Lean LNG Rich LNG

Mass% Mole% Mass% Mole%

Methane 99.84 99.91 72.33 84.23
Ethane 0.04 0.02 20.65 12.83

Propane 0 0 6.33 2.68
i-Butane 0 0 0.31 0.1
n-Butane 0 0 0.28 0.09
Nitrogen 0.012 0.07 0.1 0.07

Total 100 100 100 100

Table 4. Basic thermodynamic parameters of the NG components. SRK: Soave–Redlich–Kwong.

Component
Chemical
Formula

Molecular
Weight

SRK
Acentric

Critical
Temperature

(◦C)

Critical
Pressure

(kPa)

Methane CH4 16.043 0.00740 −82.45 4641
Ethane C2H6 30.07 0.09830 32.28 4884

Propane C3H8 44.097 0.15320 96.75 4257
i-Butane C4H10 58.123 0.18250 134.9 3648
n-Butane C4H10 58.123 0.20080 152 3797
Nitrogen N2 28.013 0.03580 −147.0 3394

Table 5. Binary interaction parameters of the SRK equation of state.

Methane Ethane Propane i-Butane n-Butane Nitrogen

Methane / 0.00224 0.00683 0.01311 0.0123 0.03120
Ethane 0.00224 / 0.00126 0.00457 0.00410 0.03190

Propane 0.00683 0.00126 / 0.00104 0.00082 0.08860
i-Butane 0.01311 0.00457 0.00104 / 0.00001 0.13150
n-Butane 0.01230 0.00410 0.00082 0.00001 / 0.05970
Nitrogen 0.0312 0.03190 0.08860 0.13150 0.05970 /
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As shown in Figure 2, the LNG terminal has three BOG compressors and ten LP
pumps operating in the process, whose stream flow rates and power consumption are
provided in Table 6. The operating characteristics of compressors are presented in Table 7.

Table 6. Original operation condition of the LNG terminal.

Variables Original Value Energy Consumption (kw)

Boil-off gas (BOG) compressors

x1 1 875.9
x2 1 875.9
x3 1 875.9
u3

1 1 /
u3

2 1 /
u3

3 1 /
BOG load (t/h) f0 19 /

LP pumps

y1 1 210
y2 1 210
y3 1 210
y4 1 210
y5 1 210
y6 1 210
y7 1 210
y8 1 210
y9 1 210
y10 1 210
y11 0 0
y12 0 0
y13 0 0
y14 0 0

Recirculation flow rate (t/h) fcycle 120 /
Steady pressure (kPa) Psteady 113.925 /

Objective function Energy Consumption / 4727.7

Table 7. Operating characteristic of BOG compressors.

Property Unit Variable Value

Road Levels / z 0 1 2 3 4

Mass load t/h fz 0 2.11 4.22 6.33 8.44
Load fraction % δ 0 25 50 75 100

Power consumptions kw Wc 448.3 586.2 793.1 875.9 1000
Startup time min Δts 30

5. Results and Discussion

The flowchart of the proposed optimization modeling framework is illustrated in
Figure 4. It was programmed and performed in MATLAB R2019a on a computer with
an Intel I Core (TM) i9-9900 CPU @ 3.10 GHz and 32 GB RAM. The deterministic model
(LNGT-OOM) was programmed in GAMS 24.1.2 and solved by the Discrete and Continuous
Optimizers (DICOPT 24.1.2).

In the proposed operational optimization framework, the steady-state pressure is
first presented to determine whether the results are optimal or not. Meanwhile, the SRK
equation of state is selected for the physical property calculation. First, MATLAB provides
the initial variables based on the actual operating condition and minimum compressor
load. Additionally, then the variables are input to GAMS to obtain the optimal recirculation
flow rate and number of LP pumps in operation by solving the model (LNGT-OOM). The
obtained operation strategy will be sent back to MATLAB and steady-state pressure of the
tank can be calculated. If the steady-state pressure is higher than the flare pressure, the
compressor load must be increased, and then a new steady-state pressure is calculated.
After the termination condition is achieved, whether a standby compressor needs to be
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turned on or not must be decided. Finally, the total power consumption of the LP pumps
and BOG compressors is obtained.

 

Figure 4. Schematic diagram of the proposed optimization framework.

The problem sizes and the computation time of the proposed MINLP model for the
LNG terminal are shown in Table 8.

Table 8. Problem sizes and computation time.

Value

Number of continuous variables 57
Number of binary variables 32

Constraints 34
Number of iterations 19
Computation time (s) 0.017

The optimized results are shown in Figure 5 and Table 9. As shown in Table 9, the
total energy consumption is 2680 kw, and the steady pressure of the tank is 124.49 kPa.
Two BOG compressors and two LP pumps are turned off from running. Therefore, the
recirculation flow rate of LNG is increased to 122.58 t/h, and the energy consumption is
reduced by 43.31%.
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Figure 5. Optimized system configuration determined by the model (operational optimization model for the LNG terminal
(LNGT-OOM)).

Table 9. Optimized results and energy consumption of the model (LNGT-OOM).

Variables Optimized Value Energy Consumption (kw)

BOG compressors

x1 1 1000
x2 0 0
x3 0 0
u4

1 1 /
uz

2 0 /
uz

3 0 /
BOG load (t/h) f 0 8.44 /

LP pumps

y1 1 210
y2 1 210
y3 1 210
y4 1 210
y5 1 210
y6 1 210
y7 1 210
y8 1 210
y9 0 0
y10 0 0
y11 0 0
y12 0 0
y13 0 0
y14 0 0

Recirculation flow rate (t/h) fcycle 122.58 /
Steady pressure (kPa) Psteady 124.49 /

Objective function Energy Consumption / 2680

An operating compressor can possibly fail, therefore, the mass flow rate of BOG
generation is more than the output flow rate, which leads to the accumulation of BOG and
the increased pressure of the tank. The time consumed for changing from steady pressure
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to flare pressure (Δtf) is 5.68 min, which can be calculated by Equation (28). It is smaller
than the startup time. Therefore, a backup compressor must be turned on all the time.

The optimal operation condition is shown in Figure 6, and the energy consumption
comparisons between the original and optimized operation conditions are presented in
Table 10. The energy consumption is reduced by 33.83% compared with the original
condition. The energy saving results from the reduction in the number of LP pumps and
the increase of the tank pressure. Moreover, the safety of the LNG tanks is ensured by the
operation strategy of the backup compressors.

Figure 6. Optimized operation condition of the proposed method.

Table 10. Energy consumption comparisons.

Original Condition Optimized Condition

Compressor loads (t/h) 6.33, 6.33, 6.33 8.44, 0, 0
Target pressure (kPa) 113.93 124.49
Circulation flow (t/h) 120 122.58

Pump number 10 8
Power consumption (kw) 4727.70 3128.30

Energy save (%) / 33.83

Furthermore, the NG demands of the end users and the ambient temperature vary
all the time. Two typical scenarios in different months are implemented to indicate the
effectiveness of the proposed method. The comparisons among ambient temperatures, user
demands, decision variables, and optimization results for the two scenarios are summarized
in Table 11. For the given LNG terminal, the average ambient temperature is 30 ◦C, and
the NG demand is 555.56 t/h from April to October. Energy consumption is reduced by
9.15%. The average ambient temperature is 5 ◦C, and the NG demand is 1388.89 t/h from
November to March. For this scenario, 26.1% energy saving is achieved. The optimal
operating variables obtained vary due to different ambient temperatures and flow rates of
send-out NG.
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Table 11. Comparisons of data of the operating variables and results.

April to October November to March

Original Optimized Original Optimized

Average ambient temperature (◦C) 30 30 5 5
Send-out flow rate (t/h) 555.56 555.56 1388.89 1388.89
Compressor loads (t/h) 19 14.77 19 8.44

Need a standby compressor or not No Yes No Yes
Target pressure (kPa) 113.93 122.98 113.93 124.49
Circulation flow (t/h) 120 139.21 120 122.58

Pump number 4 4 9 9
Power consumption (kw) 3467.7 3150.4 4517.7 3338.3

Energy save (%) 9.15 26.1

6. Conclusions

This work proposed an operational optimization model of the LNG terminal to mini-
mize the energy consumption of BOG compressors and LP pumps. An MINLP model was
formulated, which determined whether the pumps were running or on standby, and the
number of compressor level was selected as a binary variable. Operating strategies for
varied flow rates of the send-out rate and the ambient temperature can be proposed using
the model. An actual case study on the LNG terminal was presented to indicate the effec-
tiveness of the proposed approach. The minimum energy consumption was determined by
using the optimization model, and the corresponding decision variables were obtained.

One BOG compressor and two pumps can be turned off after optimization. The energy
consumption can be reduced from 4727.70 kw to 3128.30 kw and 33.83% energy saving was
obtained for the given operating condition. Furthermore, the scenarios of different months
were analyzed. From April to October, when the compressor load changed from 19 t/h to
14.77 t/h and the recirculation flow rate increased from 120 t/h to 139.21 t/h, the energy
consumption can be reduced by 9.15%. From November to March, the optimal operating
pressure rose to 124.49 kPa due to the decrease of ambient temperatures. The optimized
compressor load and recirculation flow rate were 8.44 t/h and 122.58 t/h, respectively.
Compared with the previous period, 26.1% of energy can be saved after optimization.
About 16.21% of energy consumption can be saved annually.

The proposed optimization method would significantly contribute to the existing LNG
terminals. However, the research was on the condition that the LNG was not unloading and
the LNG terminal used a recondenser instead of HP compressors to handle BOG. The other
working condition will also be studied in the future. Besides, average temperatures of the
months were used in this work, which is not very realistic since the ambient temperature
changes all the time.
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Acronyms

The following acronyms are used in this manuscript:
BOG Boil-off gas
GHG Greenhouse gas
HP High-pressure
LNG Liquefied natural gas
LNGT-OOM Operational optimization model for the LNG terminal
LP Low-pressure
MILP Mixed-integer linear programming
MINLP Mixed-integer nonlinear programming
NG Natural gas
NOMAD Nonlinear Optimization by Mesh Adaptive Direct Search
SRK Soave–Redlich–Kwong
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Abstract: Reductionism and splitting application domain into disciplines and identify the smallest
required model-granules, termed ”basic entity” combined with systematic construction of the be-
haviour equations for the basic entities, yields a systematic approach to process modelling. We do not
aim toward a single modelling domain, but we enable to address specific application domains and
object inheritance. We start with reductionism and demonstrate how the basic entities are depending
on the targeted application domain. We use directed graphs to capture process models, and we
introduce a new concept, which we call ”tokens” that enables us to extend the context beyond
physical systems. The network representation is hierarchical so as to capture complex systems. The
interacting basic entities are defined in the leave nodes of the hierarchy, making the overall model
the interacting networks in the leave nodes. Multi-disciplinary and multi-scale models result in a
network of networks. We identify two distinct network communication ports, namely ports that
exchange tokens and ports that transfer information of tokens in accumulators. An ontology captures
the structural elements and the applicable rules and defines the syntax to establish the behaviour
equations. Linking the behaviours to the basic entities defines the alphabet of a graphical language.
We use this graphical language to represent processes, which has proven to be efficient and valuable.
A set of three examples demonstrates the power of the graphical language. The Process Modelling
framework (ProMo) implements the ontology-centred approach to process modelling and uses the
graphical language to construct process models.

Keywords: model-based; computational engineering; process simulation; digital twin

1. Introduction

The title refers to modelling, implying the generation of what is often referred to as a
digital twin, namely, a digital reproduction of a process’ behaviour. The term “model” is
used in very different contexts and, correspondingly, has many facets. However, people
always model processes for a specific purpose, and most often, the main objective is
to generate a simulation with given inputs and a specified process characteristic. Many
applications use simulation as an inner loop, with the outer loop defining the main objective,
such as optimisation. For example, process design seeks optimal process parameters
and optimising control finds an input that optimises an objective. From this perspective,
modelling naturally sits at the very front end of the overall process, associated with solving
a simulation-related problem, which makes modelling a core activity; therefore, errors
in the model are the most costly ones. Thus, it is a natural request to have a systematic
approach to modelling that is safe in terms of generating structurally sound models.

We claim that chemical engineering lacks such a systematic model-building process.
The closest we have is flowsheeting software which uses customised unit-operation build-
ing blocks as its base entities. Readers interested in the historical aspects are referred
to [1]. These traditional modelling environments suffer from a couple of problems, which
provides the motivation for seeking an alternative, new approach. Let us give a couple of
observation-based reasons.
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1.1. Why We Need a Systematic Modelling Approach

Incompleteness: Published models tend to be incomplete, in the sense that, usually,
the authors do not provide all relevant information leading to the given input/output
behaviour. As an example, the publication [2] describes a non-trivial decanting two-liquid-
phase reactor. On page two is a simple figure that shows the process schematically. On
page three, one finds the mathematical model, which consists of eleven equations. It is
left to the knowledgable reader to interpret these equations and determine which one
describes which element in the process. If the exercise is used to analyse these equations,
close to one hundred equations are obtained, which explain the nature of the description
and assumptions in detail. The number of equations is somewhat puzzling, considering
the low structural complexity, and a strong indication that the modeller hid many details
or is not aware of them. The model is not particularly complex. It describes the reactor’s
contents as two lumped systems, each with component balances for five species, an energy
balance for the two lumps together and a description of the reactor’s holdup.

Flowsheeting-balance closure: Above, we mentioned flowsheeting. The typical sup-
plier provides libraries, often designed for particular users, and thus subdiscipline-specific
process units or component models. A model builder or composer then utilises the library to
construct process models. Next, a solver kernel is attached, providing the implementation
of the appropriate solution methods. Examples are gPROMS®, ASPEN® and UNISYM®.
Within parts of the user community, it seems to be well known that these simulators do not
guarantee the conserved quantities’ closure, which represents a fundamental problem for
most applications.

Documentation: Process-unit-oriented libraries document the unit’s behaviour on the
unit level. The details of the models are, therefore, mostly hidden. There is little detail on
the actual implementation, as it is considered unnecessary information for the typical user.
This information is seen as only relevant for the expert implementing the software module.
The result of this is that the individual models are black boxes that provide input/output
behaviour. Consequently, the software users must work on the corresponding level of
insight; they do not have access to the lower modelling level, through either the code or
the documentation.

1.2. An Alternative

The author’s process modelling project ProMo takes an alternative route. While we
also build the models using a set of building blocks, our basic model entities are below
the unit-operation level. They are in the context of the model application on the smallest
granularity level; we call them ”basic entities”. It is essential to acknowledge that these
entity blocks are basic on a particular granularity level, with the granularity level depending
on the intended application.

While macroscopic physics was the starting point, the concept has been expanded
to other disciplines, including control and lower-scale physics, like molecular dynamics.
The project constructs its building blocks only from the fundamental concepts defining
discipline-basic entities. These entities form the foundation for the discipline-mechanistic
construction of the models. The underlying philosophy is therefore reductionism. Since
they are deductive, mechanistic models cannot necessarily adequately capture real-world
behaviours; a practical modelling system must allow for both glass-box (white-box) models
and holistic surrogates (black-box models).

State-space representation: The approach is state-space based. For macroscopic
physical systems, the conserved quantities serve as the state. Consequently, any numerical
method, primarily integration, closes the respective balance to the defined accuracy. We
can thus always guarantee the closure of the fundamental quantities once the algorithm
has converged.

Implementation: The definition space, namely, the part associated with defining
the basic building blocks, is ontology-driven. Using ontologies at the front end of the
definition process imposes a structure onto the process and yields overall consistency. On
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a more technical level, the equations are in the ”pure” form, meaning neither the user
nor the software performs any transformations or substitutions. Each equation appears
only once in the code, in contrast to unit-operation-based modelling, where each module
typically represents the complete model for the mimicked unit. All model-related code
is centralised and appears only once. Any composite model uses indexing to refer to the
block representations, which renders modelling a bookkeeping problem.

Project Process Modelling ProMo’s main objective: The project, which we named
ProMo, aims to construct an environment that steers the modelling process as tightly
as possible, without imposing constraints, which we achieve by using an ontology. The
domain-specific ontology defines the structure of the information underlying the models
which will be constructed in the domain captured by the ontology. The construction of the
ontology is thus essential for the project’s software. The following section is devoted to
defining the elements of the ontology.

This paper: The goal of the paper is to define the basis for the graphical representation
of process models. In the first step, we discuss the reductionism-based approach, seeking
a minimal set of entities that enable us to construct the models for a class of modelling
domains. Next, we discuss an abstraction that allows us to extend the modelling beyond
physical systems. An ontology tailored to specific application domains provides the fun-
damental structures for the behaviour description and represents the construction codes
for complex models. Defining the entity behaviour in terms of mathematical equations,
namely as input/output functions, and linking them to the graphical objects sets the stage
for the graphical representation. The latter forms the basis of a graphical language, which
we demonstrate the use of in a set of applications. The visual language is handy when
discussing a paper-and-pencil model design, and it is also directly used in the ProMo
model design tool.

We will leave out two main parts from ProMo. The first is the definition of the
behaviour equations, which we will have to present on another occasion. The core is the
definition of a formal language and the ability to compile it into different target codes [3].
The second is the generation of the actual simulation code, which is similarly technical in
terms of computer science issues, including the realisation of the automatic generation of
application interfaces and the semantic network for interoperability. Both sections are full
of technical details, which are not relevant to the current exposition.

2. Reductionism

The objective is to generate a mathematical representation of the modelled system,
confining the description to a mathematical input/output representation. This behaviour
description will be the result of a network of interacting basic entities. For these reasons,
we apply reductionism to identify the smallest underlying relevant entities in the context
of an intended application. Applying reductionism in model construction places the base
entities’ definition, the base building blocks, into the centre of development.

From the perspective of mathematics, describing the dynamic results in time-dependent
differential equations for time-discrete systems uses time-difference equations, and for
event-discrete systems, automata are used, and thus state-discrete difference equations.
All the models must satisfy a fundamental condition: Independent of their nature, all
equations must represent realisable systems, which, for physics, translates to causal or
nonanticipative systems.

2.1. Continuous Macroscopic Physical Systems

Reductionism, when applied to continuous macroscopic systems, recursively splits
the physical system into smaller volumes. The dividing process stops once one reaches
a “suitable” granularity. The resulting base entities are three-dimensional dynamical
systems that live in four-dimensional spacetime. Partial differential equations describe
their behaviour and the applicable fundamental conservation principles. They describe the
evolution of the state of the modelled smallest volume; the identified entity, namely, the
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state change is the consequence of the interaction with the environment. As a mechanism
to establish the conservation and balance equations, one “walks” the surface of the volume
and accounts for all interactions, and thus the conserved quantity crossing the boundary,
which gives rise to the term “control volume”. Overall, an accounting operation, that is
based on the system and the conserved quantity. The assembly of extensive quantities
then represents the fundamental state of the volume. The network of elementary control
volumes, the base entities, and their interactions across common boundaries describe the
behaviour of a modelled fundamental entity.

2.2. Particulate Physical Systems

In many cases, the modelling is not focused on a complexity described by a hierarchy
of systems, but complexity arises from having many objects on the same level of granular-
ity. Examples include molecular dynamics or large quantities of particles or models that
approximate continuous systems with many particles, such as smoothed-particle hydrody-
namics [4] or the like. One of the main problems with these systems is the formulation of
boundary conditions and the forces acting between them. The fundamental entity in such
systems is the particle.

Dynamic state equations describe the behaviour of the particles. With the particles’
capacities, this results in ordinary differential equations, with population balances being
a typical representation. As each particle has a state, the size of the equation set is an
apparent computational problem.

2.3. Control Systems

Control is an enabling technology. It allows for steering and maintaining the state of
the process. Processes must be driven; there must be driving forces acting on the process to
keep it from its natural steady state. Thus, processes must be embedded in an environment
that is not in equilibrium with the process. The parts that make up the environment are
also not in equilibrium with each other, thereby enabling the process to “run” like a water
wheel between an elevated water reservoir, ejecting it to the lower-level reservoir. This
Carnot-kind of viewpoint is very generic.

The manipulation of the flows between the different constituent parts of the system
makes it possible to move the process into any place in the attainable region defined by the
environment (Refers to controllability.). Thus, the state of the environment determines the
attainable region, and it is the main controls that act on the flows between the environment
and the system that control the overall state of the process.

A control system implements the externally provided objectives in terms of target
values for states or state-dependent quantities. Analysing the ideal controller, namely,
requesting that the process instantaneously follows the given setpoint, shows that the
controller would have to invert the plant. Since the plant exhibits capacity behaviour, the
inversion is not causal, and therefore not feasible. Consequently, all controllers implement
an approximate inverse plant, and their states mirror the plant’s states.

The nature of the equations depends on the nature of the controlled system. In the case
of a sampled system, time-discrete difference equations are used, while for event-observed
systems, an automaton is used, and thus also a difference equation. Continuous control
implies analogue controllers, which are physical systems and may also be modelled in the
physical domain.

2.4. Other Relevant Subjects

The simulation of technical and natural systems is often augmented with analytical
tools. For technical systems, these may be techno-economical or ecological analytical tools,
such as Life-Cycle Analysis or financial return. Statistical tools also belong to this class
of extension.
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3. Networks & Tokens

Overall, reductionism describes the modelled physical system as a network of in-
teracting capacities that partially project onto the control, and all other relevant subjects
or disciplines.

If we attach the term ”discipline” to physics and control, it is natural to subdivide
each discipline into more specific ”subdisciplines”. For physics, this leads to a ”tree” of
disciplines, which captures continuous, macroscopic, particulate, small-scale, atomic, etc.
For control, the control pyramid is used, with the event-discrete layers on top, planning,
scheduling, optimisation and sampled systems below, as well as model-predictive control,
optimising control, unit-level control and low-level control.

The subdivision into disciplines and subdisciplines for physics is somewhat involved.
Carrying out subdivision on a global level leads to a very complex and large framework.
The members of the European Material Modelling Council are working on such a global
classification, called the European Materials Modelling Ontology (EMMO) (For information,
see https://emmc.info/emmo-info/, accessed on 27 March 2021 and for the ontology
https://github.com/emmo-repo/EMMO, accessed on 27 March 2021). ProMo enables the
definition of subtrees of the EMMO discipline classification, aiming at the construction of
smaller EMMO-related ontologies, which are more focused on specific application domains.
Also, ProMo aims to handle large-scale models and is not limited to materials, although it
has a substantial section that is associated with materials.

3.1. Higher-Level Abstraction
3.1.1. Tokens

The multidisciplinary nature of the problem requires higher-level abstraction. The
network is the first element which we lift by adding the concept ”tokens”. The domain-
specific ”tokens” are the items living in the specific ”networks”. The ”networks”, have
directed graphs as node capacities for the ”tokens”, whilst the edges are transporting
”tokens”. The ”tokens” within a capacity, a graph’s node, define the state of the node.

For physical systems, we use the conserved quantities as ”tokens”, primarily mass,
energy and momenta, but also items that make up a population. In control, the token
is a signal, and a monetary measure in economic systems. Thus, the abstraction of a
(sub)-discipline is a network of capacities for tokens communicating tokens.

3.1.2. Intra-Faces and Inter-Faces

The definition of networks and tokens provides the basis for the definition of the
two types of interaction: ”Intraface” is a communication path for tokens, while ”interface”
communicates state-dependent information.

The ”intraface” thus couples similar networks, where similar implies that the two cou-
pled ”networks” contain the same ”tokens”. An ”intraface” thus communicates ”tokens”.
In contrast, if one couples two networks that are not similar, but have different ”tokens”,
the link will transfer information, usually state-related information. To give an example,
in the first case, one may transfer mass from a liquid to a gas phase. Mass is transferred
through an ”intraface”. In contrast, for the second case, state information is passed to the
controller through an ”interface”. The generated value for a manipulated variable in the
physical system is the information given back to the physical system.

3.1.3. Nodes & Arcs

”Networks” are directed graphs. The ”nodes” or vertices represent the capacities for
the tokens, and the ”arcs” or edges represent the flow of tokens. The directed arcs define a
reference coordinate for each flow of tokens. Tokens of the same type may be grouped and
transported by one arc.

Figure 1 shows all elements that make up the graph of graphs in a minimal exam-
ple. The physical part of the plant, labelled with ”plant”, shows two networks, a liquid
phase and a gas phase. Those two communicate with each other mass through a common
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”intraface”. The liquid phase seeks material information from the material model, provid-
ing state information, typically species, pressure, temperature, and asking for a physical
property, like density. Both channels operate through an ”interface”. The liquid phase also
provides state information to a control network, again through ”interfaces”.

Figure 1. Network of networks representation of multi-disciplinary model graphs.
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On the smallest scale, the ”nodes” also represent basic entities, which result from
applying reductionism.

3.2. Formal Definitions—A Summary

The discussion in this section yields the definition of a couple of items:
Network: “directed graph” representing the structured modelled system on a given granular-

ity level.
Token: “item” living in the “network”.
Node: is a component of the “network”, which exhibits the ability to store “tokens”.
Arc: is the component of the “network” representing the transfer of “tokens” between “nodes”.
Basic or fundamental entity: is the smallest building block required to establish models in a

given domain – the smallest basic item in a hierarchical granular system (European Com-
mittee for Committee for Standardisation CEN defines the term entity in the Workshop
agreement MODA [5]). In other words, a basic entity is context-dependent and defined
as the smallest granule that describes the group of composite systems. It is the application
of the resulting model that determines the granule resolution.

Intraface: communicates bidirectionaly tokens between nodes of two intra-related networks.
Interface: communicates unidirectionally state-related information from a node of one network to

a node in the inter-related network.

4. Basic Entities

“Entities” are discipline and application-specific, but also have some common proper-
ties, namely, the dependency on the free variables’ time and the three spatial variables, and
thus the four-dimensional spacetime.

4.1. Time Aspects

Any model of a dynamic system embraces three time scales: (i) “constant”—the parts
that are not changing with time, (ii) “dynamic”—those parts that exhibit dynamic capacity
behaviour, and (iii) “event-dynamic”—those parts that change instantaneously.

4.2. Spatial Aspects

For “physical entities”, objects live in the four-dimensional spacetime. Continuous
domains may then be categorised into classes.
Lumped systems: are finite-dimensional volumes where the relevant intensive properties are not

a function of the spatial coordinates, thus a spatial domain in which the relevant intensive
properties are uniform in terms of the spatial distribution.

In contrast:
Distributed systems: are finite-dimensional volumes where the relevant intensive properties are

a function of the spatial coordinates, thus a spatial domain in which the relevant intensive
properties are not uniform in terms of the spatial distribution.

Both “lumped systems” and “distributed systems” are basic building blocks (entities)
when modelling macroscopic systems.

4.3. Deterministic, Stochastic & Ergodic

“Entities” may exhibit deterministic or stochastic behaviour. Given a deterministic
input and a fixed entity, then the output is also deterministic. If any either the input or the
entity’s properties are stochastic, then the output will also be stochastic.

“Egodicity” is when the time average is identical to the state average of identical pro-
cesses at one point in time, or in other terms: “all accessible microstates are “equiprobable”
over a long period of “time” (Source wikipedia).
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4.4. Continuous Physical Systems

The nature of “basic entities” is described above. The objective is to generate equations
for numerical computations. Therefore, we need to define the input/output behaviour as a
set of mathematical equations.

We create the equations on the background of system theory [6], leaning towards
Willhelm’s behaviour theory [7]. A state-space view serves the purpose of analysing and
controlling the structure. The “state” takes a centre position. The definition of the term
“state” is hard to trace, but one can find an early version in Caratheodory [8]: “... ein
“Zustand” des Systems S, und wir wollen für die Zahlen xi selbst den Namen “Zustand-
skoordinaten” einführen.” We shall have a look at the two essential domains, namely,
continuous systems and control.

4.4.1. Thermodynamic Systems

The domain of macroscopic, thermodynamic systems builds on the concepts of con-
served mass, energy and momentum, while Newton’s laws govern mechanical systems.
Focusing on thermodynamic systems, one would typically also allow for the conversion of
chemical or biological species, which, building on atomic mass conservation, gives rise to
species balances.

Balances and conservations follow the same principle: one defines them by walking
the system’s boundary, accounting for all the quantities crossing the surface. The change
occurring inside the system is then equated with the transfer, and, in the case of species
conversion, it is augmented with the species’ transposition, yielding a “species balance”.
Expressing these concepts verbally: “accumulation = net flow across the surface + net
consumption”. Conservation principles do not include the last term; it only appears as a
consequence of allowing for conversion and inducing the atomic mass conservation, all of
which turn into a “balance”.

4.4.2. Mechanical Systems

Mechanical systems are handled in much the same way, except that one balances
momenta, and the energy analysis focuses mainly on kinetic and potential contributions.
However, fields other than gravitational are also considered depending on the application.

4.5. Particulate Physical Systems

In many cases, reductionism yields particles as the smallest entities required to capture
the system behaviour. Molecular dynamics is one example, and fluid models building on
particles is another. It is particles that characterise these systems, and momentum balances
with forces, representing the momentum flow, form the core of the description.

4.6. A First Classification of Variables

The generic conservation/balancing operation enables us to define a first set of variable
classes, namely, the classes “state”, “transport”, “conversion”. The “accumlation” term is
represented by the spacetime derivative of the state variables.

If one draws up the scheme defining the model, one quickly recognises that one
part is missing. For these reasons, the missing piece is often called ”closure”, which, by
their nature, are state variable transformations. Looking at a diagrammatic representation,
Figure 2 shows the mathematical representation of a generic deterministic physical system,
with x being the ”state” of the system in the form of a block diagram also showing the
connections for a control system. The scheme has four external connections: the initial
conditions x(0), the boundary conditions y

b
and the two connections to the control system,

namely, the manipulated variables u, the measurement y.
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Figure 2. A generic dynamic physical system.

The dark-yellow box on the left indicates the balances and conservations. If the state is
limited to the conserved quantities, then the yellow box is the conservation, and otherwise
there is a balance. The green box on the top represents the transport laws for the extensive
quantities, and the lower green box the reactions or transposition. Both are a function of a
class of variables, which we call “secondary states”. Typical members are the quantities
driving the transport of extensive quantities, namely temperature, pressure and chemical
potential, while concentration defines the probability function in reaction kinetics. It is
the red box that closes the gap between the state and the secondary state. The red box’s
main components are thermodynamic models relating the extensive state to the intensive
properties and geometrical relations that link geometrical variables to volume. The main
physical–mathematical underlying frameworks are Hamiltonian systems for mechanical
and contact geometry for the thermodynamic parts. Both define a configuration space.
While classical mechanics is well established, contact geometry does not enjoy similar
popularity. The energy formulation reads

U
(

S, V, n,
∂ U
∂ S

,
∂ U
∂ V

,
∂ U
∂ n

)
(1)

with the last three elements being the temperature T, the negative pressure p and the
chemical potential μ. The thermodynamic configuration space is the assembly, including
U, S, V, n, ∂ U

∂ S , ∂ U
∂ V , ∂ U

∂ n . An early introduction can be found in [9], followed by [10–12],
which provides an extensive exposition of the subject.

Processes are controlled. A single-layer control scheme may be of the form shown in
Figure 3. Some of the variable classes are different from the ones in the physical system.
There is still the state and the differential state. One now has to classify outputs and inputs,
setpoints and control error. Figure 3 also shows the interfaces transferring state information
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in one direction, with control settings in the other direction, with the latter also being a
function of the controller state via the output function.

Figure 3. A generic control system.

The two examples demonstrate that the variable classes are domain-specific. While
one can streamline things to some extent by using a state-space approach, one needs to
adapt the variable classes to the disciplines to effectively support the process of defining
the variable and equation system.

5. ProMo Ontology

The previous sections provide the main elements used to define the structure of the
ProMo ontology. The top definition is the tree of disciplines. For each discipline, we must
define elements associated with the structural elements enabling efficient handling of the
building blocks and the elements that provide the framework for defining each building
block’s behavioural equations.

We do not aim at generating a global ontology for all processes. Even if this was a
feasible undertaking, the argument here is the improved targeting of groups of modellers
(see also the discussion in Section 3), at least not in the first instance. Another argument
is flexibility. An ontology is a living structure and will change with time, continuously
aligning with new requirements. It is for these reasons that ProMo has its own ontology
structure and a corresponding editor.

The organisation of the disciplines follows a couple of simple rules:

• Networks that house the same tokens are in an intra-relation;
• Networks that do not house the same tokens are in an inter-relation;
• Each discipline has its own branch;
• Disciplines may have subdisciplines.

The sample ontology Figure 4 shows the discipline tree of an ontology designed
for modelling a large group of macroscopic processes. The green disciplines are in an
inter-relation, while the blue ones are in an intra-relation. On the top level, the ontology
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includes a physical and a control branch. We have the generic macroscopic systems, the
material descriptions, and an example of a mixing domain devoted to empirical mixing
models on the physical level.

physical control

root

macroscopic materialDB mixing

fluid solid

liquid gas

Figure 4. A sample discipline tree. It is designed to capture a very wide range of processing plant
models. The green nodes are in an inter-relation, and thus transfer tokens, while the blue ones are in
an intra-relation, and thus transfer state information.

Each node has two branches of definitions: the branch associated with defining
the process models’ structure and the branch with the definition of the variable classes.
Figure 5 shows the definition of the root of the discipline tree.

The overall system is defined as dynamic with basic entities belonging to all three time-
scale domains. For the representation of the network structures, we declare the variable
class “network” and “projection”. Both are associated with the “graph”, the network.
For the system theoretical definitions of the model equations, one defines the variable
classes “frame” for the free variables, “state” and “constant”. The two additional classes
are currently explicitly defined, namely, classes associated with the spaces generated by
differentiating the states and frame variables. These definitions are required because of the
design choice of uniquely identifying the dimensions of all mathematical objects. The issue
of indexing has been introduced and discussed in [1].

Moving down the discipline tree, one can extend and augment the definitions.
Figure 6 shows the example of the node labelled with “physical”. Thid is the parent
to the nodes “macroscopic”, “materialDB” and “mixing”. It augments variable classes with
“secondary state” and “effort”. The former appears in the generic representation of the
dynamic physical system, Figure 2, while the term “effort” is a class that captures the effort
variables [13], also called the conjugates to the thermodynamic potentials or generalised
forces. In the context of contact geometry Equation (1), the temperature, the pressure and
the chemical potential are three elements of the odd configuration space [9,10].

The structure includes the extension of the nodes, which applies to all nodes in the
tree. It captures the time-scale property of capacitive elements and details it with the
distribution effect.
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behaviour

arc

graph

node

root

structure

network

projection

frame

state

constant

*diffState

*diffFrame

arc

node

token

constant

dynamic

event

Figure 5. The root node in the discipline tree. It has two branches: the structure branch is
used to define the ontology items used for designing the items associated with capturing the
model as a directed graph; the behaviour branch serves the purpose of defining the variable
classes used to capture the mathematical description of the entity behaviour models.
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behaviour

arc

graph

node

physical

structure

network

projection

frame

state

constant

*diffState

*diffFrame

secondaryState

effort

arc

node

token

energy

mass

conduction

work

lumped

lumped

convection

diffusion

lumped

lumped

constant

dynamic

event

infinity

lumped

lumped

energy

mass species

Figure 6. The physical node in the discipline tree. Both branches are expanded with additional items. In the structure
branch, the basic entities are populated with tokens and specified with the modelled distribution effects.
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6. Entity Behaviour

6.1. Equations

The ontology intrinsically defines the basic entities in the discipline-specific frame.
For physical systems, this is the frame spacetime, while for control, the frame is usually
limited to time.

ProMo’s equation editor can enter and edit the mathematical behaviour description.
As mentioned above, we start with a set of ”port” variables: the constants, the frame
variables, and the variables defining the configuration spaces’ base. We define a small,
tailored language to enter the equations, namely, a variable defined by an expression. The
description of the language and the mechanisms associated with implementing the details
is beyond this paper and will have to be reported separately. Further information can be
found in [3]. Thus, in very brief terms: The equation editor implements a parser and a
template machine. The parser generates an abstract syntax tree, and the template machine
uses the abstract syntax tree and generates different compiled versions of the equations,
including LaTex rendering of online documentation. The main features of the parser are
that it implements the index (For the discussion on the indexing, we refer to [1]) and
rigorous unit handling.

The variable/expression bipartite multi-graph: We construct the equation system
starting with the ”port” variables: frame, constants and the state variables. For physical
systems, the base state variables are the ones defining the configuration spaces. The
state variables appear in the block diagrams Figures 2 and 3 after the integral. We then
follow the paths in the respective block diagram. For physical systems, shown in Figure 2,
the next step is to define the equations representing the red box, labelled with ” state
variable transformations”, whereby each equation can only be a function of already defined
variables. For the control system, these are the nonlinear dynamic function and the
nonlinear static output function.

We allow for the definition of more than one equation for the same variable. This
approach allows us to implement the basic thermodynamic variables, for example, temper-
ature as a partial derivative of internal energy with respect to entropy. Variables with an
implicit model equation must first be defined with an explicit model equation. Only then
can the implicit model be added. This enables the proper handling of indexing and unit
handling. Further details can be found in [3].

6.2. Graphical

The ontology defines the base entities, and the equations describe the behaviour of
these entities. For the physical systems, we have combinations of the time-scale behaviour,
the distribution effects and the present tokens. By linking the mathematical behaviour
description to graphical symbols, we generate a visual modelling language, to which the
remaining paper shall be devoted. The graphical language uses a small number of visual
symbols. For each discipline, a few capacity components and a few transport components
remain to be defined. Appendix A shows a table of symbols for macroscopic physical
systems and control.

The structure of the model, in terms of its composition of basic building blocks, is the
main model-design issue, and not the equations. We can define the basic blocks’ behaviour,
except for the specific material models, which have to be injected at the initialisation
stage. A very elegant solution has been suggested and realised by Bjørn-Tore Løvfall’s PhD
documented in his thesis [14]. He constructs one of the energy functions, usually Helmholtz,
from two state equations, which serve as models of the specific material’s behaviour.
Legendre transformation provides the additional energy funtions. The properties then are
defined by derivatives of the surface with respect to state-dependent variables. Automatic
differentiation makes the sytem tick.

174



Processes 2021, 9, 592

The graphical language is an excellent model design tool. We not only teach it in our
modelling course, we also use it extensively in projects to discuss the model structure. We
shall now discuss a few examples.

7. Graphical Model-Design—Three Examples

This section discusses three examples demonstrating the power of the graphical model
design and their use in ProMo’s model composer. An explanation for graphical symbols is
in Appendix A.

7.1. Stirred Jacketed Tank

First, we look at a standard piece of equipment, the stirred tank reactor. Figure 7
shows a possible configuration.

feed

breathing pipe

overflow

jacket out

jacket in

Figure 7. The configuration of a jacket tank with an inflow, an overflow and a breathing pipe for
pressure compensation.

The tank is connected to one liquid feed, has an overflow, and is ”breathing” to the
outside. The jacket controls the temperature of the contents. Figure 8 shows a relatively
detailed model for energy flows but a relatively simple model for the reaction fluid.

Figure 8. A relatively complex model without condensation on the lid.

The overflow is of interest: an imaginary controller switches the overflow on when
the level in the tank has reached the maximum. In the following examples, we use this
approach of ”control” to handle events that change the configuration of the model. The
controller shown in Figure 8 is not real, but implements the event of reaching the fluid
level in the tank when the overflow begins to become active. The graphical language also
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enables model reduction or model simplification. Different applications require different
details, and rougher or finer granularity. We can apply a series of assumptions:

• The shell is well insulated from the room and heat loss through the outer shell
is insignificant;

• The fluid jet is very fast;
• The lid is well insulated from the lower part of the tank;
• The lid, gas and fluid are at about the same temperature as the room. The heat loss

through the lid is insignificant;
• The inner wall conducts very well;
• The material exchange of the gas phase with the room is insignificant;
• The fluid jet is event-dynamic.

Figure 9. A simplified tank model. No heat loss through the outer shell, lid and gas phase; “breathing”
is neglected, jet is event-dynamic.

This helps us to achieve a significant simplification, shown in Figure 9.
One can simplify the model further by assuming:

• The outer shell has a negligible capacity;
• The contents is ideally mixed—thus, mixing is very fast, resulting in uniform conditions;
• The fluid flow in the jacket is extremely fast—yielding uniform temperature in the jacket.

This yields a much more simple model, as shown in (Figure 10).

Figure 10. An even more simplified tank model. The outer wall is neglected and jacket, and the
contents are lumped.

7.2. Melting Process

This second example focuses on ”model control”. It shows the melting of a solid as
shown in Figure 11. The process itself is rather straightforward: a solid is exposed to a heat
source and heated up. Once the melting temperature at the hot surface has been reached, a
liquid phase is generated. The model switches to describe two phases, assuming that the
solid has no direct contact with the hot surface, and a liquid film is in between the solid
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and the surface. The liquid’s thermal distribution effect can be quite complex, and is not
shown at this level of description.

Figure 11. A generic melting process demonstrating how the model switching is included in the model, leading to a
surprisingly complicated overall model.

The topology indicates a connection to molecular modelling, which, as shown, implies
close coupling, thus running the molecular modelling task at every point in time. Molecular
codes are notoriously computationally intensive and slow. There is at least one unique
method, COSMO [15], which works for some configurations well and is fast. Close coupling
is not an option for the codes that minimise a vast number of molecules’ overall energy. In
these cases, the approach used replaces the molecular modelling module with a surrogate
model that spans the variable space sufficiently and is of a simple structure. The molecular
modelling task is replaced by an input/output function with the property function in a
subspace of the fundamental variables, such as p, T, n.

7.3. Moving Boundary Problem

Many processes are characterised by one part of the material growing at the cost of
another. We take the example of a corrosion process: an iron-rod-reinforced concrete pillar
in water. The problem is well known and of broad interest. Water, carbon dioxide, chlorine
anions and oxygen mainly diffuse into the concrete and cause the iron to oxidise, resulting
in a loss of strength over time. Since it is not the reaction that is of interest, Figure 12 shows
a model representing the process with a simplistic abstract reaction. The main issue, in this
case, is to demonstrate the approach used to model moving boundaries.
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Figure 12. Rusting iron in concrete is an example of a moving boundary problem. The top row shows the species present
in the respective capacities, while, in the lower row, the transfer constraints for the intrafaces and the reactions in the
point capacity are shown.

The reaction is placed into an infinitely small reaction front, represented by an infinitely
small volume where the reaction occurs, and the point capacity is combined with restrictive
intrafaces to the left and right. The rust is transported to the left, while iron comes from the
right. The species water, active component and rust do not transfer into the iron ¬[W, A, R],
and iron is not transferred to the rust ¬[I]. Rust and concrete are not transferred between
the rust and the concrete domain, and concrete is not transferred into the water.

The Figures 13 and 14 show two pictures taken from ProMo’s model composer.
Figure 13 shows the top layer, while Figure 14 shows the model of the pillar with the
iron embedded in concrete and the reaction front receiving iron from the iron bar, convert-
ing it into rust, which is transported to the rust node, representing the rust capacity.

The ProMo software uses simple graphical objects limited to ellipses and rectangles
for visual representation. Decorators are used to indicate the membership to networks—
liquid and solid in the example—in the form of circles. The membership to specialised
networks, like concrete, rust or iron, is indicated by coloured circles. ProMo provides an
editor that allows the user to design the graphical object. Arcs are directional, with
the tail as a small circle and the head a larger and darker circle. Intrafaces are the
black squares.

Figure 13. Rusting iron in concrete, a view of the ProMo’s graphical modeller showing the top of the hierarchy with the
pillar in the seawater. The seawater is modelled as a reservoir system (large mauve circle) with two circular indicators
attached, as seawater is a liquid. The black dot indicates mass, and the ”W” and “A” stand for the species water and
active component.
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7.4. Other Applications

The reader may be interested to learn that we used this graphical approach for very
many different processes. In process modelling lectures, we discuss tanks, mixing models,
heat exchangers, distillation, chicken coop and greenhouses and wood drying and fruit
transport, life-support systems, fermentation processes, biological cells, water treatment
plants, solar reactor, mammal blood flow, moving bed reactor, decaffeination plant, a
methanol plant, laboratory equipment like Soxhlet, mokka maker, crystaliser, bubble
column, etc.

We used the same approach in European projects, including the modelling of polyure-
thane foams, production of high-precision ceramic products, biorefining processes, wastew-
ater cleaning plants, transport of fruit and vegetables, life-support systems for space
travelling, membrane processes, catalytic bed reactors, coating processes, etc.

Figure 14. Rusting iron in concrete, a view of the ProMo’s graphical modeller showing the pillar model. The concrete and
rust are modelled as distributed systems (ellipses). The reaction front is modelled as an infinitely small lumped system
(black dot), decorated with the large red dot indicating the reaction front and the green dot indicating the solid. The iron is
modelled as a lumped system. “R”, “I” stand for the species rust and iron. The left strip elements show the parents, while
the ones on the right are the siblings in the hierarchy.

8. Conclusions

Motivated by reductionism, models are seen as directed ”networks”, where abstract
”tokens” live in nodes and move about through arcs. The concept of ”tokens” allows us to
apply the network concept to different disciplines, thereby enabling the multi-disciplinary
and multi-scale model building process. The nodes are then capacities for the tokens, and
the arcs’ transport tokens.

For physics, the tokens are first the conserved quantities that form the basis of the
Hamiltonian’s and the contact geometry’s configuration space. Since we also model reactive
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systems, the tokens are extended to refining mass with species, consequently augmenting
the representation with balances. This approach thus captures the physical system on all
levels, including electronic and atomic, and particulate and macroscopic systems. For some
particulate processes, the behaviour description is augmented with population balances.
For financial systems, the tokens are monetary values. The node represents an account,
with the monetary value being the state, and interest plays the role of a production term
similar to the role that reactions take in component mass balances.

Reductionism is applied recursively, resulting in a hierarchical representation of the
modelled process. The subdivision is continued until a basic level is reached, where ”basic”
implies that it can be considered a basic building block. The definition of ”basic” is the
smallest granules in the decomposition process, such that the resulting model serves the
intended purpose.

ProMo implements an ontology, which captures the knowledge of a user-defined
application domain, which, in turn, reflects the hierarchy of disciplines considered for
the application domain. For each discipline, the ontology defines the infrastructure for
the definition of the model structure and the behaviour description, with the latter being
a multi-bipartite graph of variables and their defining relations. This bipartite graph
captures the behaviour of each basic building block for all involved disciplines. The
variable/expression set is lower triangular in the sense that one begins by defining the
state that reflects the relevant tokens in a node. We allow for multiple definitions of the
variables, thereby supporting the use of principle definition equations as well as more
practical versions, which ultimately enables the substitution of a complex with a simple
model, also termed the ”surrogate”.

The ProMo suite resolves a number of issues in process modelling:
Incompleteness and consistancy: The systematic approach of constructing the vari-

able/expression system guarantees the completeness of the model equations. The funda-
mental base used to describe the entity’s behaviour models is tiny, namely, the thermody-
namic and mechanical system’s configuration space. Physical units and dimensionality is
defined only for the fundamental quantities. They automatically propagate when defining
new variables.

Code generation: is automated and does not require manual intervention. The entity
behaviour code is centralised and not distributed over unit models, as this is commonly
the case in chemical engineering software.

Documentation: The expressions defining a variable are compiled as part of the
definition process. Consequently, the documentation is complete and available during
definition time.

Closure: Defining the fundamental behaviour equations as the conservation equations
has two main advantages: (i) the equations are not substituted, and (ii) the closure of the
balances can be guaranteed for the defined accuracy.

The graphical model-design language: enables us to capture the structure of the
modelled process and generate alternatives quickly. The simplicity makes it an efficient
discussion tool for exploring functionality, required detail, involved disciplines, and com-
plexity to generate alternatives.
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Appendix A. Graphical Symbols

The number of graphical items required to discuss controlled, physical processes
is small. The following set was sufficient in the cases where we applied the method to
applications including basic units: tanks, mixing models, heat exchangers, distillation,
chicken coop and greenhouses and wood drying and fruit transport, life-support systems,
fermentation processes, biological cells, water treatment plants, solar reactor, mammal
blood flow, moving bed reactor, decaffeination plant, methanol plant, laboratory equip-
ment like Soxhlet, mokka maker, crystaliser, bubble column, polyurethane foam, pressure
distributions in plants, molecular modelling of polymer/ceramic powder mix, melting
processes, and more.

Figure A1. A starter set of graphical symbol defining the graphical modelling language.
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Abstract: An inventory management problem is addressed for a make-to-order supply chain that
has inventory holding and/or manufacturing locations at each node. The lead times between
nodes and production capacity limits are heterogeneous across the network. This study focuses
on a single product, a multi-period centralized system in which a retailer is subject to an uncertain
stationary consumer demand at each time period. Two sales scenarios are considered for any
unfulfilled demand: backlogging or lost sales. The daily inventory replenishment requests from
immediate suppliers throughout the network are modeled and optimized using three different
approaches: (1) deterministic linear programming, (2) multi-stage stochastic linear programming,
and (3) reinforcement learning. The performance of the three methods is compared and contrasted
in terms of profit (reward), service level, and inventory profiles throughout the supply chain. The
proposed optimization strategies are tested in a stochastic simulation environment that was built
upon the open-source OR-Gym Python package. The results indicate that, of the three approaches,
stochastic modeling yields the largest increase in profit, whereas reinforcement learning creates more
balanced inventory policies that would potentially respond well to network disruptions. Furthermore,
deterministic models perform well in determining dynamic reorder policies that are comparable to
reinforcement learning in terms of their profitability.

Keywords: inventory management; supply chain; multi-echelon; stochastic programming; reinforce-
ment learning

1. Introduction

Modern supply chains are complex systems that interconnect the globe. Efficient
supply chains are able to control costs and ensure delivery to customers with minimal
delays and interruptions. Inventory management is a key component in achieving these
goals. Higher inventory levels allow for suppliers to maintain better customer service
levels, but they come at a higher cost, which often gets passed on to their customers and,
ultimately, to the end consumers. This is particularly the case for perishable items that
have a limited shelf life and can go to waste if the inventory exceeds demand. Thus,
every participant in the supply chain has an incentive to find the appropriate balance in
inventory levels to maximize profitability and maintain market competitiveness. Efficient
supply chains are able to coordinate material flows amongst its different stages to avoid the
“bullwhip effect”, whereby over corrections can lead to a cascading rise or fall in inventory,
having a detrimental impact on the supply chain costs and performance [1].

Extensive literature exists in supply chain and inventory management. Relevant
review papers in the area of inventory optimization include those of Eruguz et al. [2] and
Simchi-Levi and Zhao [3]. The inventory management problem (IMP) that is presented in
this work is built upon the problem structure presented in Glasserman and Tayur [4], which
presents a single-product, multi-period, serial capacitated supply chain with production and
inventory holding locations at each echelon. In their work, Glasserman and Tayur [4] use
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infinitesimal perturbation analysis (IPA) in order to determine optimal base stock levels in
an order-up-to policy by optimizing over a sample path of the system.

Other approaches for solving the IMP have been reported in the literature. Chu et al. [5]
use agent-based simulation-optimization on a multi-echelon system with an (r, Q) inven-
tory policy. Expectations are determined via Monte Carlo simulation. Improvements are
only accepted after passing a hypothesis test to mitigate the effect of noise on the improve-
ment. Two-stage stochastic programming (2SSP) is used to optimize small supply chains
in the works by Dillon et al. [6], Fattahi et al. [7], and Pauls-Worm et al. [8]. The studied
supply chains are either single or two-echelon chains with centralized or decentralized
configurations, a single perishable or unperishable product, and (r, S) or (s, S) policies.
Zahiri et al. [9] present a multi-stage stochastic program (MSSP) for a four-level blood
supply network with uncertain donation and demand. The model is reformulated and
solved while using a hybrid multi-objective meta-heuristic. Bertsimas and Thiele [10] apply
robust optimization to both uncapacitated and capacitated IMP. However, production
capacity is not explicitly included. Their models are solved with linear programming (LP)
or mixed-integer linear programming (MILP), depending on the usage of fixed costs. The
reader is referred to Govindan and Cheng [11] for a review of robust optimization and
stochastic programming approaches to supply chain planning.

Additionally, there have been a number of efforts to optimize multi-echelon supply
chain problems via dynamic programming (DP). A neuro-dynamic programming approach
was developed by Roy et al. [12] in order to solve a two-stage inventory optimization
problem under demand uncertainty to reduce costs by 10% over the benchmarked heuris-
tics. Kleywegt et al. [13] formulate a vendor managed inventory routing problem as a
Markov Decision Process (MDP) and develop an approximate dynamic programming
(ADP) method to solve it. Topaloglu and Kunnumkal [14] develop a Lagrangian relaxation-
based ADP to a single-product, multi-site system to manage inventory for the network
that outperforms a linear programming method used in the benchmark. Kunnumkal and
Topaloglu [15] use ADP to develop stochastic approximation methods to compute optimal
base-stock levels across three varieties of inventory management problems: a multi-period
news vendor problem with backlogs and lost sales, and an inventory purchasing prob-
lem with uncertain pricing. Cimen and Kirkbride [16] apply ADP to a multi-factory and
multi-product inventory management problem with process flexibility. They find that, in
most scenarios, the ADP approach finds a policy within 1% of the optimal DP solution in
approximately 25% of the time. Additional resources on supply chain management with
DP and ADP is provided by Sarimveis et al. [17].

Reinforcement learning has also been applied to IMPs in recent years. Mortazavi et al. [18]
use Q-learning for a four-echelon IMP with a 12 week cycle and non-stationary demand.
Oroojlooyjadid et al. [19] train a Deep Q-Network in order to play the Beer Game—a classic
example of a multi-echelon IMP—and achieve near optimal results. Kara and Dogan [20]
use Q-learning and SARSA to learn stock-based replenishment policies for an IMP with
perishable goods. Sultana et al. [21] use a hierarchical RL model to learn re-order policies
for a two-level multi-product IMP with a warehouse and three retailers.

We extend the problem in Glasserman and Tayur [4] to general supply networks
with tree topologies. Our focus is not on finding optimal parameters for static inventory
policies, but rather to determine and compare different dynamic policy approaches to the
IMP. We build on the previous works in the literature by exploring the IMP while using
different approaches and discuss their relative merits and drawbacks. The approaches
studied include

1. A deterministic linear programming model (DLP) that uses either the rolling horizon
or shrinking horizon technique in order to determine optimal re-order quantities for
each time period at each node in the supply network. Customer demand is modeled
at its expectation value throughout the rolling/shrinking horizon time window.
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2. A multi-stage stochastic program (MSSP) with a simplified scenario tree, as described
in Section 2.7. Shrinking and rolling horizon for the MSSP model are both imple-
mented to decide the reorder quantity at each time period.

3. A reinforcement learning model (RL) that makes re-order decisions based on the
current state of the entire network.

We build off of the work of Hubbs et al. [22] by extending the IMPs presented therein
in order to address multi-echelon problems with multiple suppliers at each echelon, and
contribute new environments to the open-source OR-Gym project (See https://www.github.
com/hubbs5/or-gym). The intial version of the IMP in the OR-Gym project was limited to
serial multi-echelon systems and it did not include multi-stage stochastic programming
models for reorder policy optimization. The library was thus generalized in order to
simulate and optimize supply networks with tree topologies under uncertain demand,
while using the dynamic reorder policies mentioned above.

2. Materials and Methods

2.1. Problem Statement

In this work, we focus on the multi-echelon, multi-period, single-product, and single-
market inventory management problem (IMP) in a make-to-order supply network with
uncertain stationary demand. The base case supply network has a tree topology with four
echelons, as shown in Figure 1. The different sets that are used for the nodes in the base
case network are designated in the figure’s legend (raw material, Jraw; main, J; retail, Jretail ;
distributor, Jdist; producer, Jprod; and, market nodes, Jmarket).

Sets

   Jraw

   J

   Jretail 

   Jdist

   Jprod 

   Jmarket

Figure 1. Supply Chain Network Schematic.

2.2. Sequence of Events

The sequence of events in each period of the IMP simulation environment occurs,
as follows,

1. Main network nodes (retailer, distributors, and producers) place replenishment orders
to their respective suppliers. Replenishment orders are filled according to available
production capacity and available feedstock inventory at the respective suppliers.
The supply network is assumed to be centralized, such that replenishment orders
never exceed what can be provided by the suppliers to each node.

2. The main network nodes receive incoming feedstock inventory replenishment ship-
ments that have made it down the product pipeline (after the associated lead times
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have transpired). The lead times between stages include both production times and
transportation times.

3. Single-product customer demand occurs at the retail node and it is filled according to
the available inventory at that stage.

4. One of the following occurs at the retailer node,

(a) Unfulfilled sales are backlogged at a penalty. Backlogged sales take priority in
the following period.

(b) Unfulfilled sales are lost and a goodwill loss penalty is levied.

5. Surplus inventory is held at each node at a holding cost. Inventory holding capacity
limits are not included in the present formulation, but they can be easily added to
the model, if needed. The IMP that is presented here is capacitated in the sense that
manufacturing at production nodes is limited by both the production capacity and the
availability of feedstock inventory at each node. Because the supply network operates
as a make-to-order system, only feedstock inventories are held at the nodes. All of the
product inventory is immediately shipped to the downstream nodes upon request,
becoming feedstock inventory to those nodes (or simply inventory if the downstream
node is a distributor/retailer). A holding (e.g., transportation) cost is also placed on
any pipeline inventory (in-transit inventory).

6. Any inventory remaining at the end of the last period (period 30 in the base case) is
lost, which means that it has no salvage value.

2.3. Key Variables

Table 1 describes the main variables used in the IMP model. All of the key variables
are continuous and non-negative.

Table 1. Main variables in the inventory management problem (IMP) Model.

Variable Description

at,j,k The reorder quantity requested to supplier node j by node k at the beginning of period t
(the amount of material sent from node j to node k)

Sd
t,j,k The amount retailer j sells to market k in period t − 1. Note: Retail sales are indexed at the

next period since these occur after demand in the current period is realized.
So

t,j The on-hand inventory at node j just prior to when the demand is realized in period t.
Sp

t,j,k The in-transit (pipeline) inventory between node j and node k just prior to when the demand
is realized in period t.

ut,j,k The unfulfilled demand at retailer j associated with market k in period t − 1. Note: indexing is
also shifted since any unfulfilled demand occurs after the uncertain demand is realized.

Rt,j The profit (reward) in node j for period t.

2.4. Objective Function

The objective of the IMP optimization is to maximize the time-averaged expected profit
of the supply network (R, Equation (1)). The uncertain parameter vector that is associated
with the demand in period t is given by ξt . A specific realization of the uncertain parameter
is denoted with ξt. The sequence of uncertain parameters from period t through t′ is
represented with ξ[t,t′], with ξ[t,t] being a specific realization of that sequence (note: ξ[1,1]
refers to stage 1, which is deterministic). The present formulation assumes a single retailer–
market link with a single demand in each period. The profit in each period is the sum of
the profits in the main network nodes (R1 = ∑j∈J R1,j and Rt = ∑j∈J Rt,j(ξt) ∀t ∈ T). The
main network nodes include the production/manufacturing, distribution, and retail nodes.

max R =
1
|T| ·

(
R1 +Eξ[2,|T|] |ξ[1,1]

[max R2(ξ2) + ... +Eξ[|T|,|T|] |ξ[1,|T|−1]
[max R|T|(ξ|T|)]]

)
(1)

2.5. IMP Model

The dynamics of the IMP under demand uncertainty are modeled as a Linear Pro-
gramming (LP) problem using the linear algebraic constraints that are given below.
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2.5.1. Network Profit

The profit in period t at node j (Rt,j, Equations (2a) and (2b)) is obtained by subtracting
procurement costs (PCt,j, Equations (4a) and (4b)), operating costs (OCt,j, Equations (5a)
and (5b)), unfulfilled demand penalties (UPt,j, Equation (6)), and inventory holding costs
(HCt,j, Equations (7a) and (7b)) from the sales revenue (SRt,j, and Equations (3a) and
(3c)). The operating costs refer to production costs and, hence, do not apply to distribution
nodes, as no manufacturing occurs at these nodes. There is also no unfulfilled demand at
non-retail nodes, as all inter-network requests must be feasible.

In the equations shown below, the parameters pj,k, bj,k, and gk,j refer to the material
unit price, the unfulfilled unit demand penalty, and the unit material pipeline holding cost
(transportation cost) for the link going from node j to node k, respectively. oj, νj, and hj
refer to the unit operating cost, production yield (0 to 1 range), and on-hand inventory
holding cost at node j, respectively. The sets Jin

j and Jout
j are the sets of predecessors and

successors to node j, respectively.

R1,j = SR1,j − PC1,j − OC1,j − UP1,j − HC1,j ∀j ∈ J (2a)

Rt,j(ξt) = SRt,j(ξt)− PCt,j(ξt)− OCt,j(ξt)− UPt,j(ξt)− HCt,j(ξt) ∀t ∈ {2, ..., |T|}, j ∈ J (2b)

SR1,j = ∑
k∈Jout

i

pj,k · a1,j,k ∀j ∈ Jprod ∪ Jdist (3a)

SRt,j(ξt) = ∑
k∈Jout

i

pj,k · at,j,k(ξt) ∀t ∈ {2, ..., |T|}, j ∈ Jprod ∪ Jdist (3b)

SRt,j(ξt) = ∑
k∈Jout

i

pj,k · Sd
t,j,k(ξt) ∀t ∈ {2, ..., |T|}, j ∈ Jretail (3c)

PC1,j = ∑
k∈Jin

i

pk,j · a1,k,j ∀j ∈ J (4a)

PCt,j(ξt) = ∑
k∈Jin

i

pk,j · at,k,j(ξt) ∀t ∈ {2, ..., |T|}, j ∈ J (4b)

OC1,j =
oj

νj
· ∑

k∈Jout
j

a1,j,k ∀j ∈ Jprod (5a)

OCt,j(ξt) =
oj

νj
· ∑

k∈Jout
i

at,j,k(ξt) ∀t ∈ {2, ..., |T|}, j ∈ Jprod (5b)

UPt,j(ξt) = ∑
k∈Jout

j

bj,k · ut,j,k(ξt) ∀t ∈ {2, ..., |T|}, j ∈ Jretail (6)

HC1,j = hj · So
1,j + ∑

k∈Jin
j

gk,j · Sp
1,k,j ∀j ∈ J (7a)

HCt,j(ξt) = hj · So
t,j(ξt) + ∑

k∈Jin
j

gk,j · Sp
t,k,j(ξt) ∀t ∈ {2, ..., |T|}, j ∈ J (7b)

2.5.2. Inventory Balances

The on-hand inventory at each node is updated while using material balances that
account for incoming and outgoing material, as shown in Equations (8a)–(9c). The inventory
levels at each node are updated by adding any incoming inventory and subtracting any
outgoing inventory to the previously recorded inventory levels at the respective nodes. The
parameter So

0,j is the initial inventory at node j. The variable a′t,k,j is the pipeline inventory
that arrives at node j from node k in period t (Equation (10)). Outgoing inventory is the
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inventory that is transferred to downstream nodes, at,j,k, or sold to the market at the retailer
node, Sd

t,j,k. At production nodes, the sales quantities are adjusted for production yields
(νj). For distribution nodes, νj is set to 1.

So
1,j = So

0,j + ∑
k∈Jin

j

a′1,k,j −
1
νj

· ∑
k∈Jout

j

a1,j,k ∀j ∈ Jprod ∪ Jdist (8a)

So
2,j(ξ2) = So

1,j + ∑
k∈Jin

j

a′2,k,j −
1
νj

· ∑
k∈Jout

j

a2,j,k(ξ2) ∀j ∈ Jprod ∪ Jdist (8b)

So
t,j(ξt) = So

t−1,j(ξt−1) + ∑k∈Jin
j

a′t,k,j − 1
νj
· ∑k∈Jout

j
at,j,k(ξt) t ∈ {3, ..., |T|}∀j ∈ Jprod ∪ Jdist (8c)

So
1,j = So

0,j + ∑
k∈Jin

j

a′1,k,j ∀j ∈ Jretail (9a)

So
2,j(ξ2) = So

1,j + ∑
k∈Jin

j

a′2,k,j − ∑
k∈Jout

j

Sd
2,j,k(ξ2) ∀j ∈ Jretail (9b)

So
t,j(ξt) = So

t−1,j(ξt−1) + ∑
k∈Jin

j

a′t,k,j − ∑
k∈Jout

j

Sd
t,j,k(ξt) ∀t ∈ {3, ..., |T|}, j ∈ Jretail (9c)

a′t,k,j =

⎧⎪⎨
⎪⎩

0, if t − Lk,j < 1
a1,k,j, if t − Lk,j = 1
at−Lk,j ,k,j(ξt−Lk,j), if t − Lk,j > 1

∀t ∈ T, j ∈ Jretail , k ∈ Jin
j (10)

Equations (11a)–(11c) provide the pipeline inventory balances at each arc. Once again,
inventories are updated by deducting delivered inventory downstream and adding new
inventory requests to the previously recorded pipeline inventory levels. It is assumed that,
at t = 0, there is no inventory in the pipeline.

Sp
1,k,j = −a′1,k,j + a1,k,j ∀j ∈ J, k ∈ Jin

j (11a)

Sp
2,k,j(ξ2) = Sp

1,k,j − a′2,k,j + a2,k,j(ξ2) ∀j ∈ J, k ∈ Jin
j (11b)

Sp
t,k,j(ξt) = Sp

t−1,k,j(ξt−1)− a′t,k,j + at,k,j(ξt) ∀t ∈ {3, ..., |T|}, j ∈ J, k ∈ Jin
j (11c)

2.5.3. Inventory Requests

Upper bounds on the replenishment orders are set, depending on the type of node. For
the production nodes, downstream replenishment requests are limited by the production
capacity, cj, as given in Equations (12a) and (12b). The requests are also limited by the
available feedstock inventory at the production nodes that is transformed into products
with a yield of νj, as stated in Equations (13a) and (13b). Because distribution-only nodes
do not have manufacturing areas, the upper bounds on any downstream replenishment
requests are set by the available inventory at the distribution nodes, which is equivalent to
setting νj to 1 in Equations (13a) and (13b). These sets of constraints ensure that the reorder
quantities are always feasible, which means that the quantities requested are quantities
that can be sold and shipped in the current period.

∑
k∈Jout

j

a1,j,k ≤ cj ∀j ∈ Jprod (12a)

∑
k∈Jout

j

at,j,k(ξt) ≤ cj ∀t ∈ {2, ..., |T|}, j ∈ Jprod (12b)
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∑
k∈Jout

j

a1,j,k ≤ So
1,j · νj ∀j ∈ Jprod ∪ Jdist (13a)

∑
k∈Jout

j

at,j,k(ξt) ≤ So
t,j(ξt) · νj ∀t ∈ {2, ..., |T|}, j ∈ Jprod ∪ Jdist (13b)

2.5.4. Market Sales

The retailer node sells up to its available on-hand inventory in each period when the
demand is realized, as given in Equations (14a) and (14b). This includes the start-of-period
inventory plus any reorder quantities that arrive at the beginning of the period (before
the markets open). Sales at the retailer nodes do not exceed the market demand, dt,j,k(ξt),
as shown in Equation (15a). If backlogging is allowed, then any previous backlogged
orders are added to the market demand, as shown in Equation (15b). If unfulfilled orders
are counted as lost sales, then u is removed from Equation (15b).

∑
k∈Jout

j

Sd
2,j,k(ξ2) ≤ So

1,j ∀j ∈ Jretail (14a)

∑
k∈Jout

j

Sd
t,j,k(ξt) ≤ So

t−1,j(ξt−1) ∀t ∈ {3, ..., |T|}, j ∈ Jretail (14b)

Sd
2,j,k(ξ2) ≤ d2,j,k(ξ2) ∀j ∈ Jretail , k ∈ Jout

j (15a)

Sd
t,j,k(ξt) ≤ dt,j,k(ξt) + ut−1,j,k(ξt−1) ∀t ∈ {3, ..., |T|}, j ∈ Jretail , k ∈ Jout

j (15b)

Unfulfilled demand at the retailer is the difference between the market demand and
the actual retail sale in the current period (Equations (16a) and (16b). If the network
operates under the lost sales mode, then the u term in the right-hand side of Equation (16b)
is removed.

u2,j,k(ξ2) = d2,j,k(ξ2)− Sd
2,j,k(ξ2) ∀j ∈ Jretail , k ∈ Jmarket

j (16a)

ut,j,k(ξt) = dt,j,k(ξt) + ut−1,j,k(ξt−1)− Sd
t,j,k(ξt) ∀t ∈ {3, ..., |T|}, j ∈ Jretail , k ∈ Jmarket

j
(16b)

2.5.5. Variable Domains

R1,j ∈ R
1 ∀j ∈ J (17a)

Rt,j(ξt) ∈ R ∀t ∈ {2, ..., |T|}, j ∈ J (17b)

So
1,j ≥ 0 ∀j ∈ J (18a)

So
t,j(ξt) ≥ 0 ∀t ∈ {2, ..., |T|}, j ∈ J (18b)

a1,k,j, Sp
1,k,j ≥ 0 ∀j ∈ J, k ∈ Jin

j (19a)

at,k,j(ξt), Sp
t,k,j(ξt) ≥ 0 ∀t ∈ {2, ..., |T|}, j ∈ J, k ∈ Jin

j (19b)

Sd
t,j,k(ξt), ut,j,k(ξt) ≥ 0 ∀t ∈ {2, ..., |T|}, j ∈ Jretail , k ∈ Jout

j (20)

2.6. Scenario Tree for Multistage Stochastic Programming

Equations (1)–(20) describe a multistage stochastic inventory management problem.
In principle, continuous or discrete probability distributions can be used to model the uncertain
demands in the stochastic process (ξ1, ξ2, . . . , ξt, . . . , ξ|T|). However, in most applications, a
scenario-based approach is assumed for ease of computation, i.e., there are a finite number
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of realizations of the uncertain parameter. For illustration purposes, Figure 2 shows a
scenario tree that corresponds to a three-stage stochastic programming problem. At stage
one, the decision-maker does not know the realizations of the uncertain parameters in
the future time periods. At stage two, there are two different realizations of the uncertain
parameters. The decision-maker can take different actions, depending on the realization
of the uncertainty at stage two. For each realization at stage two, there are two different
realizations at stage three. Therefore, the scenario tree that is presented in Figure 2 has four
scenarios in total.

It is easy to observe that the number of scenarios grows exponentially with respect
to the number of stages. For example, in the IMP, if we consider three realizations of
the demand per stage, the total number of scenarios will be 329 for a 30 period problem.
Moreover, a Poisson distribution is assumed for the distribution of the demand. In principle,
there is an infinite number of realizations per stage. We introduce an approximation of the
multistage stochastic programming problem in the next subsection in order to reduce the
computational complexity.

Figure 2. The scenario tree for a three-stage stochastic program with two realizations per stage.

2.7. Approximation for the Multistage Scenario Tree

In order to make the multistage stochastic IMP tractable, we make the following
two simplifications.

First, the Poisson(λ) distribution (as shown in Equation (21)) is approximated by a
discrete distribution with three realizations.

p(x = k) =
λke−λ

k!
(21)

Note that the mean and variance of Poisson (λ) are both λ. The values of the three real-
izations are chosen to be λ − �√λ�, λ, λ + �√λ�. The probabilities of the three realizations
are chosen, such that the Wasserstein-1 distance to the original Poisson(λ) is minimized.
In other words, for all k = 1, 2, . . . , ∞, the probability of x = k in Poisson (λ) is assigned
to the realization of the new distribution that is closest to k. The probabilities for this new
distribution are given in Equations (22a)–(22c).

p(x = λ − �
√

λ�) =
λ−�

√
λ

2 �
∑
k=1

λke−λ

k!
(22a)

p(x = λ) =
λ+�

√
λ

2 �−1

∑
k=λ−�

√
λ

2 �+1

λke−λ

k!
(22b)

p(x = λ + �
√

λ�) =
+∞

∑
k=λ+�

√
λ

2 �

λke−λ

k!
(22c)

This scenario generation approach, where the values of the realizations are fixed and
the probabilities of each realization are chosen to minimize the Wasserstein-1 distance
between the probability distribution of the scenario tree from the “true distribution”, has
been reported in [23].
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Second, even with three realizations per stage, the number of scenarios for T = 30
becomes 329. Because the decisions in the later periods have a smaller impact on the
decisions here-and-now, we only consider three realizations per stage until stage 6. After
stage 6, the demands are assumed to be deterministic and they take the mean value λ.

With these two simplifications, Figure 3 shows the scenario tree for the approximate
multistage stochastic IMP. The size of the scenario tree grows exponentially until stage 6
and it only grows linearly after stage 6. In total, 35 = 243 scenarios are considered. With
slight abuse of notation, we still denote the problem that is shown in Figure 3 as MSSP.

Figure 3. An approximation of the multistage stochastic program.

2.8. Perfect Information and Deterministic Model

We benchmark the MSSP model with a perfection information model and a determinis-
tic model. In the perfect information model, it is assumed that the demand realizations from
t = 1 to t = T are known beforehand. Equation (1) reduces to Equation (23) in a perfect
information model, where we assume that we know the realization of (ξ2, . . . , ξt, . . . , ξ|T|)
and optimize over this given realization.

max R(ξ) = max
1
|T| ·

⎛
⎝R1 + ∑

t∈{2,...,|T|}
Rt(ξt)

⎞
⎠ (23)

In the deterministic model (DLP), we optimize over the expected value of ξt, which is
denoted as ξ̄t. This means that the demand is assumed to be λ (the mean of the Poisson
distribution) for all periods.

2.9. Reinforcement Learning Model

Reinforcement learning (RL) is a machine learning method whereby an agent learns to
maximize a reward via interactions with an environment. The feedback the agent receives
from the reward allows it to learn a policy, which is a function that directs the agent at each
step throughout the environment. Because of the data-intensive and interactive nature
of RL, agents are typically trained by interacting with Monte Carlo simulations to make
decisions at each time step.

To this end, we formulate the IMP as a Markov Decision Process (MDP)—a stochastic,
sequential decision making problem. At each time period t, the agent observes the current
state of the system (St), and then selects an action (at) that is passed to the system. The
simulation then advances to the next state (St+1) based on the realization of the random
variables and the selected action, and it returns the associated reward (Rt), which is simply
the profit function that is given in Equation (2a) summed over all nodes j (Rt = ∑j∈J Rt,j).

The state consists of a vector with entries for the current demand at the retail node,
the inventory levels at each node in the network, and the inventory in the pipeline along
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every edge in the network. In terms of the model notation from the previous subsection,
St = {dt,j,k, So

t,j, Sp
t,k′ ,j|j ∈ J, k ∈ Jout

j , k′ ∈ Jin
j }. The action at each period is a vector with all

of the reorder quantities in the network (at = {at,k,j|j ∈ J, k ∈ Jin
j }).

In this work, we rely on the Proximal Policy Optimization (PPO), as described in
Schulman et al. [24]. This has become a popular algorithm in the RL community, because it
frequently exhibits stable learning characteristics. PPO is an actor-critic method that uses
two neural networks that interact with one another. The actor is parameterized by θπ and
it learns the policy, while the critic is parameterized by θv and it learns the value function.
The policy the actor learns is probabalistic in nature and yields a probability distribution
over actions during each forward pass. For our IMP, the action space consists of re-order
values for each node in the network. These are discrete values that range from 0 to the
maximum order quantity at each individual node. If the actor chooses an action that is
greater than the quantity that can be supplied – for example, if the maximum re-order
quantity is 100, but only 90 units are available – then the minimum of these two values will
be supplied.

The critic learns the value function, which allows it to estimate the sum of the dis-
counted, future rewards available at each state. The difference between the actual rewards
and the estimated rewards supplied by the critic is known as the temporal difference er-
ror (TD-error, or δT). This difference is summed and discounted in order to provide the
advantage estimation of the state, Âk, as given in Equation (24),

Âk =
t

∑
T=1

γt−T+1δT (24)

where γ is the discount factor used to prioritize current rewards over future rewards. This
value is then used in the loss function, L(θ), whereby the paramaters of the networks
are updated while using stochastic gradient descent to minimize the loss function. PPO
has shown to be effective in numerous domains, exhibiting stable learning features, as
discussed in Schulman et al. [24]. PPO achieves this by penalizing large policy updates
by optimizing a conservative loss function given by Equation (25), where rk(θ) is the
probability ratio between the new policy πk(θ) and the previous policy, πk−1(θ). Here,
we use k to denote each policy iteration, since the parameters have been initialized. The
clip function reduces the incentive for moving rk(θ) outside the interval [1 − ε, 1 + ε]. The
hyperparameter ε limits the update of the policy, such that the probability of outputs does not
change more than ±ε at each update. For more detail, see the work by Schulman et al. [24].

L(θ) = min
(
rk(θ)Âk, clip

(
rk(θ), 1 − ε, 1 + ε

)
Âk
)

(25)

In the present work, we rely on the implementation of the PPO algorithm found in
the Ray package [25]. A two-layer, 256-node feed-forward network is trained with over
70,000 episodes—simulated 30-day periods, whereby the agent learns to maximize the
expected reward by interacting with the environment. Given that this is a model-free
approach, the agent must learn through this trial-and-error approach. The initial policy
consists of randomly initialized weights and biases, so the output actions are on par with
random decisions. After each episode, the results are collected and the weights and biases
are updated in order to minimize the loss function according to the PPO algorithm, as
discussed in Section 2.9. As one would expect, this initial policy performs poorly, with the
agent losing roughly $300 per episode. However, as shown in the training curve presented
in Figure 4, the agent is able to improve on the policy with additional experience and learn
a very effective policy to control the inventory across the network.
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Figure 4. Training curve for the reinforcement learning (RL) model.

2.10. Case Study

A 30-period system is used for the case study in order to represent one month’s worth
of inventory management in a supply network. A time step of one day is used, such that
demand is received on a daily basis. Figure 5 depicts the network structure of the base case
system used. Major parameters and their values are included in the figure. Parameters that
are next to nodes are specific to the node (initial state or on-hand inventory, S0; unit holding
costs, h; unit operating costs, o; production yield ν; and, production capacity, c), whereas
those next to links are specific to that link (unit sales price, p; unfulfilled unit demand
penalty, b; market demand distribution, d; unit pipeline holding costs, g; and, lead times, L).
Node and link subscripts in the schematic are dropped for clarity. In order to compare the
performance of the three modeling approaches (DLP, MSSP, and RL), 100 unique sample
paths were generated. Each sample path consists of 30 demand realizations, one for each
period in the simulation horizon, sampled from a Poisson distribution with a mean of 20.

The execution of the 100 simulations follows the sequence of events for each time
period that is described in Section 2.2. At the beginning of each period and prior to Step 1
in the event sequence, each optimization model is called to obtain the reorder quantities for
each node in that period. The models have no knowledge of the demand realizations that
will occur in the current and future periods, but they can rely on the variables/states from
previous periods. The reorder quantities for the current period obtained by the models are
then passed as the actions in Step 1 of the sequence of events. Subsequently, the subsequent
events for that period unfold, with the demand realization for that given period being
taken from the respective sample path that is assigned to that simulation instance. The
process is repeated for the next period, re-solving the models at the beginning of each time
period, until the 30 periods are complete.

The three modeling approaches are benchmarked against a perfect information model
(also referred to as the Oracle). 10-period windows are used for the rolling horizon (RH)
modes in the DLP and MSSP models. However, towards the end of the simulation, the RH
becomes a shrinking horizon (SH), since the window does not roll past period 30.
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Figure 5. Supply Chain Network Schematic with Network Parameters used in the Case Study.

3. Results

The DLP and MSSP models were solved while using Gurobi (version 9.1). The DLP
models are quite small, with the largest one being the DLP-SH solved at t = 1 in the
simulations (1231 constraints and 1291 variables). The DLP-RH with a 10-period window
size has 411 constraints and 431 variables. The shrinking and rolling horizon DLP models
both have CPU solve times that are below 0.3 s on average. The largest MSSP model solved is
the MSSP-SH solved at t = 1 (263,958 constraints and 299,941 variables), which has an average
CPU solve time of 119 s. The MSSP-RH with a 10-period window size has 64,698 constraints
and 71,521 variables. The average CPU time to solve the MSSP-RH model is 12 s.

Table 2 summarizes the performance results from each solution method. Figure 6
shows the total inventory profiles at each node for the lost sales case. The total inventory
includes both on-hand inventory and pipeline inventory incoming from a node’s suppliers.
Similar results (not shown) were observed for the backlogging case. Figures 7 and 8 show
sample network flow plots for the RL and MSSP-RH models, respectively. The cumulative
network flow plots for both DLP instances and MSSP-SH are not shown as they are similar
to that of MSSP-RH. The edge thickness is proportional to the average total amount of
material requested through that link. These network flows indicate the suppliers that are
prioritized by the different model policies. Figure 9 shows the average unfulfilled market
demand at the retailer node (lost sales), which gives an indication of the service levels of
the supply network. A similar result is obtained for the backlogging case.

Table 2. Total reward comparison for the various models used to solve the IMP. Performance Ratio
is defined as the ratio of the final cumulative profit of the perfect information model to that of
the model used. DLP = Deterministic linear program; MSSP = Multi-stage stochastic program;
RL = Reinforcement Learning; RH = rolling horizon; SH = shrinking horizon; Oracle = perfect
information LP.

DLP-RH DLP-SH MSSP-RH MSSP-SH RL Oracle

Backlog
Mean Profit 791.6 825.3 802.7 847.7 737.2 861.3

Standard Deviation 52.5 37.0 56.3 49.4 24.8 56.4
Performance Ratio 1.09 1.04 1.07 1.02 1.17 1.00

Lost Sales
Mean Profit 735.8 786.9 790.6 830.6 757.8 854.9

Standard Deviation 31.2 30.8 47.8 37.7 33.1 49.9
Performance Ratio 1.16 1.09 1.08 1.03 1.13 1.00
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Figure 6. Average total inventory at each main network node (lost sales mode). Shaded areas denote ±1 standard deviation
of the mean value.

Figure 7. Average network flow with the RL policy (lost sales mode). Total flow is proportional to
the edge thickness.
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Figure 8. Average network flow with the MSSP-RH policy (lost sales mode). Total flow is proportional
to the edge thickness.

Figure 9. Average unfulfilled demands at the retailer node (lost sales mode).

4. Discussion

The results shown in Table 2 indicate that the rolling horizon DLP model outperforms
the RL model when backlog is included, but it is outperformed by the latter when unful-
filled demands become lost sales. When backlogging is allowed, unfulfilled demand can
be satisfied at a later period with a penalty, which reduces the need for high service levels.
However, the service levels become more important in the lost sales case, where, not only
is a goodwill penalty assessed, but potential profit from the sales is lost. Because the RL
does a better job at maintaining on-hand inventories it displays the higher service levels
shown in Figure 9 and superior performance in the lost sales case. It should be noted that
the differences between the two approaches are rather small (7% and 3%, respectively),
and within 15% of the perfect information model.

As expected, the shrinking horizon DLP exhibits superior performance relative to its
rolling horizon counterpart, because it looks further ahead in time during the optimization.
In the rolling horizon approach, the short-sighted model tends to drop inventory levels
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at the top tier suppliers (nodes 4–6) sooner in an attempt to reduce the inventory holding
costs towards the end of the optimization window. However, since the simulation horizon
extends beyond the 10-period optimization window, that inventory ends up accumulating
in the medium tier suppliers (nodes 2–3), driving up holding costs overall. From a service
level standpoint, the shrinking horizon DLP maintains higher inventory levels at the retailer
than its rolling horizon counterpart, allowing it to achieve higher service levels (see Figure 9).
However, it is interesting to note that the opposite is observed in the MSSP model, which,
despite having a higher profit, has lower service levels in the shrinking horizon case (higher
unfulfilled demand). The greater profit is a result of the shrinking horizon reducing holding
costs by 13% overall, which has a greater impact on profit than the unfulfilled demand
penalties. Just at the retailer node, the holding cost to demand penalty ratio is 3:1, which
incentivizes the model to sacrifice some demand satisfaction to reduce the holding costs.
Overall, the MSSP model yields superior performance in all cases, coming in within 8% and
3% of the best possible outcome (Oracle), on average, for the rolling horizon and shrinking
horizon modes, respectively.

From an operational standpoint, the Oracle and shrinking horizon models prioritize
inventory flow to the retailer via nodes 5 and 2, which have a lower holding cost than
the alternatives as shown in the timing of inventory transfers in Figure 6 and the flow
patterns in Figure 8. The transportation cost for this path is 0.015, with a lead time of
14 days, whereas the other paths have transportation costs in the range 0.017–0.021, with
lead times in the 13–16 day range. Once inventory at node 5 is depleted, the other top
level suppliers (nodes 4 and 6) begin to send inventory downstream. On the other hand,
the rolling horizon models send inventory from all of the top level suppliers from the
start due to the myopic effects of the reduced optimization window. In general terms, the
inventory profiles that are shown in Figure 6 for the rolling horizon models are similar to
their shrinking horizon counterparts, except that the inventory changes are shifted to earlier
times. All of the mathematical programming models also take advantage of the fact that
the pipeline inventory costs are lower than holding costs at the supplier nodes. Therefore,
they trigger sending more inventory to node 3 from nodes 4 and 6 than is needed so as
to reduce costs. This additional inventory ends up accumulating in node 3 for the most
part, as it is cheaper to source the retailer from node 2 than node 3. Although the DLP and
MSSP models exhibit similar inventory profiles, the superiority of the MSSP model arises
from the fact that, unlike the DLP model, it accounts for uncertainty in the demand, which
enables it to target superior service levels and reduce holding costs.

In contrast to the mathematical programming models, the RL model avoids drastic
changes in the inventory positions, maintaining levels throughout the simulation. This
is supported not only by the inventory levels in Figure 6, but also by the flow pattern
shown in Figure 7, which indicate that, contrary to the mathematical programming models,
the RL model distributes requests more evenly amongst the suppliers of each node. This
conservative approach explains why the profits obtained with the RL model are lower
than those that were obtained by most of mathematical programming models. In practice,
the policy from the RL model is preferred as it reduces shocks to the inventory levels.
Furthermore, the RL policy manages the supply network with potentially greater resiliency
to disruptions as a result of the balanced load distribution within the network. Unlike
the other models that have virtually no flow between the raw material nodes to the
top tier suppliers and rely solely on the initial inventory at these nodes, the RL model
gradually replenishes inventories at the top tier nodes in order to avoid their depletion.
This conservative behavior of the RL is observed as a result of the PPO algorithm used,
which penalizes large policy changes.

A drawback from the current implementation of the supply network is that all of the
models exhibit end-of-simulation effects, in which the inventory drops to zero or near zero
at the end of the simulation to avoid excess holding costs. In a real application, this could
be avoided by imposing penalties on the models in order to avoid depleting inventories
near the end of the simulation, adding terminal inventory constraints (Lima et al. [26]), or
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running the models for longer simulation horizons, since most of the applications extend
beyond 30 periods. The latter option would not be viable for the stochastic programming
models as it would affect their tractability. Despite these limitations, the three approaches
show promise in obtaining dynamic reorder policies that improve the supply network
performance to within 3% to 15% of perfect information dynamic policies, which do not
exist in practice.

5. Conclusions

The present work extends to the open-source package OR-Gym for general single-
product, multi-period make-to-order supply networks with production and inventory
holding sites throughout the network. The work introduces additional tools for solving
inventory management problems within the OR-Gym framework (e.g. multi-stage stochas-
tic programming and rolling horizon implementations for deterministic and stochastic
models). The inventory management policies that are obtained via deterministic linear
programming, stochastic linear programming, and reinforcement learning are compared
and contrasted in the context of a four echelon supply network with uncertain stationary
demand. The results show that the stochastic model yields superior results in terms of
supply network profitability. However, the reinforcement learning model manages the
network in a way that is potentially more resilient to network disruptions, showing promise
in using AI for supply chain applications. Although deterministic linear models ignore the
stochastic nature of the supply network, they rapidly solve in fractions of a second, while
providing solutions that are comparable to the profitability of the reinforcement learning
policies. Extensions to this work may include studying the effects of non-stationary de-
mand on the models used and mitigating the end-of-simulation effects that have been
discussed previously.
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Abstract: The modern industry, production, and manufacturing core is developing based on smart
manufacturing (SM) systems and digitalization. Smart manufacturing’s practical and meaningful
design follows data, information, and operational technology through the blockchain, edge computing,
and machine learning to develop and facilitate the smart manufacturing system. This process’s
proposed smart manufacturing system considers the integration of blockchain, edge computing,
and machine learning approaches. Edge computing makes the computational workload balanced
and similarly provides a timely response for the devices. Blockchain technology utilizes the data
transmission and the manufacturing system’s transactions, and the machine learning approach
provides advanced data analysis for a huge manufacturing dataset. Regarding smart manufacturing
systems’ computational environments, the model solves the problems using a swarm intelligence-
based approach. The experimental results present the edge computing mechanism and similarly
improve the processing time of a large number of tasks in the manufacturing system.

Keywords: smart manufacturing; edge computing; machine learning; blockchain; Industrial Internet
of Things

1. Introduction

The progress of industrialization has been changed and transformed from automation
to digitalization. Similarly, Industry 4.0 in Germany faces the same problems that originated
in different countries, such as the Internet industry in the United States made by China,
Japan Industry 4.1, and South Korea manufacturing Industry Innovation 3.0. The connection
of entities is based on two main features. Digitalization and identification are important
features for entity connection. From another perspective, the Internet of Things (IoT)
is determined for managing the identification problems, which mostly happen in the
Industrial Internet of Things (IIoT). The cyber-physical system is defined to solve the
entities’ connection problems.

In a recent development, smart manufacturing was named a core of modern production
in the manufacturing industry’s digitalization. Similarly, it is the smart factory’s
foundation [1]. The smart manufacturing process uses information technology (IT) to
connect the facilities and terminal devices that are digitalized [2]. The interactions between
the devices produce massive amounts of data, which causes multiple requirements for the
processing of data, e.g., unstructured, able to handle massive amounts, and less time delay.
Big data techniques, cloud computing techniques, and artificial intelligence techniques are
presented to simplify data processing, which is part of data technology (DT). Furthermore,
operational technology (OT) achievement is based on the combination of detailed control
machines and data computation, e.g., a distributed control system, programmable logic
controller, data acquisition, and supervisory control. Cloud manufacturing services are
applied for further processes of the inner performance of smart manufacturing. This section
presents a brief explanation of smart manufacturing and related techniques. There are
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three main topics discussed in this section—edge computing; blockchain; IoT, Industrial
Internet of Things (IIoT), Industry 4.0, and cyber-physical systems (CPS).

1.1. Edge Computing

In recent years, many researchers have focused on the edge computing issue regarding
intelligent manufacturing. To address some of the low latency and limited resources
of this system, Yin et al. [3] proposed a novel visualization service for task scheduling
based on fog computing and explored a new approach to the task scheduling algorithm
based on a container role. The proposed system is able to reduce the delay rate of
the tasks and improve the concurrent tasks on fog nodes. Lei et al. [4] presented the
architecture of adaptive transmission containing edge computing and software-defined
network (SDN) to solve the problem of data exchanging in IIoT and intelligent devices.
Suganuma et al. [5] proposed the Flexible and Advanced Internet of Things (FLEC) to
overcome the integration of traditional Internet of Things and edge computing problem
that focuses on user positioning adapting to the environment. Lin et al. [6] presented the
swarm optimization algorithm connected with a genetic algorithm to overcome the load
balancing problem in traditional data placement based on optimizing the transfer time.
To achieve detailed control of smart manufacturing systems, communication latency and a
reliable environment are required. The multi-access edge computing (MEC) provides all
the mentioned requirements. Similarly, cloud computing’s capabilities and information
technology provide environmental services on the edge network, despite the access
technology [7]. Chen et al. [8] proposed a multi-micro-controller structure, which is
the gateway for the Industrial Internet and combines the array-based programmable
gateway of hardware with multiple scalable micro-controllers. Li et al. [9] proposed
adaptive transmission architecture based on the centralized global support for am IIoT
edge computing network. Another approach presented by Yu et al. [10] is the survey
of edge computing performance on IoT applications—smart cities, smart farms, smart
transportation, etc. Porambage et al. [11] showed an MEC overview for IoT applications
realization and synergy.

1.2. Blockchain

Blockchain technology is one of the famous areas for trust and safety, which can apply
in any related topics to keep the information and data private. Similarly, it is a novel
technology for decentralized and distributed computing architecture that keeps the dataset
with encrypted blocks in a chain [12–14]. Digital information related to transactions, date
and time, amount, etc., which are elaborated in the transaction process, is all stored in blocks.
The saved data are available within the distributed network, containing nodes’ participants
to validate the transaction. All nodes throughout blockchain are linked with each other
and support the crypto and transaction codes. Another important feature in blockchain
technology is the mathematical algorithms, which are very strong in this network. It
provides block validation to minor nodes without any effect on data through the blockchain
network, which is why blockchain is secure and transparent [15–23]. There are many of
research requirements for addressing the security problems and recommendation systems
based on blockchain and knowledge discovery technology [24–29]. This process needs to
carry out the integration of blockchain and IoT. Similarly, the security issues which are
mentioned by many authors specify the blockchain as a good solution. In [30], blockchain’s
key features are defined as trust, security, programmability, etc. A blockchain can be
one of three different types—a public blockchain, a private blockchain, or a consortium
blockchain. The public blockchain is famous for digital currencies. The main objective
of a consortium blockchain is to combine the stakeholder and service trading entities.
Li et al. [31] presented the energy trading system based on a consortium blockchain.
Min [32] proposed to leverage blockchain methods to enhance supply chain flexibility
in risky situations. In a business trading system, blockchain technology can be assumed
for IoT applications for implementing private blockchains. In [33], an IoT-oriented data
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exchange system was designed based on the Hyperledger Fabric to overcome the automatic
maintenance of a distributed management system problem.

1.3. Internet of Things, Industrial Internet of Things, Industry 4.0, and Cyber-Physical Systems

The growth of the IoT system provides substantial support for the digitalization
environment. Furthermore, the IoT applications cover different perspectives—smart
farms, smart cities, traffic monitoring, etc. Similarly, the machine-to-machine (M2M)
techniques are also covered by IoT systems, which is a way forward of digitalizing the
manufacturing system [34]. The abstraction of Industry 4.0 becomes apparent when
IIoT meets the cyber-physical system (CPS), which is the best solution for improving
the efficiency of productivity in smart manufacturing. Yang et al. [35] presents the
IoT applications and issues in the smart manufacturing system. The conclusion of the
proposed work shows that IoT visualized the interconnection of the physical world and
cyberspace. On the other hand, in [36], a cyber-physical production system (CPPS) was
proposed to authorize the dataset efficiency transferring based on the intelligent network
and trustworthy communication technology. The Industrial Internet Consortium (IIC)
is one of the most famous techniques launched in US top five companies—GE, AT&T,
Cisco, Intel, and IBM. This technique mainly points to the standardization of network
innovations, applications, and constructions; data circulation growth; and industrial
digital transformation. The IIoT sub-concept was first launched in Germany by the
name of Industry 4.0 and globally partial CPS facts based on artificial intelligence in
smart manufacturing. In short, CPS shows the relationships between information and
the physical world, relying on the interconnection of things. The IoT technology selects
the interconnections between physical address objects to check if they are related to the
industry or not. Table 1 shows the studies related to smart manufacturing systems. Ten
studies are compared based on the industry sector, internal equipment, external equipment,
and concept of creation.

Table 1. A taxonomy of smart manufacturing applications.

# Authors Industry Sectors
Internal

Equipment
External

Equipment

Creation Concept
(Design, Production,

Test, Service)

1 Chen et al. (2018) [37] Automotive industry No No Yes

2 Zhou et al. (2017) [38] Energy industry No No Yes

3 Dutta et al. (2018) [39] Transportation equipment
manufacturing Yes No No

4 Weissenblock et al. (2014) [40] Chemical fibers
manufacturing No No Yes

5 Chen et al. (2017) [41] Food processing industry No No Yes

6 Amirkhanove et al. (2014) [42] Ordinary machinery
industry No No Yes

7 Zhou et al. (2011) [43] Iron and steel industry Yes No No

8 Wu et al. (2018) [44] Chemical industry No No Yes

9 Coffey et al. (2013) [45] Specialized equipment
manufacturing No No Yes

10 Millette et al. (2016) [46] Electronic equipment
manufacturing No Yes No

Table 2 presents the recent challenges on the integration of blockchain and IoT
technology in the smart manufacturing industry. The comparison shows the techniques
applied in this research, the main contributions of the presented methods, the usage of
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blockchain and IoT, the challenges of the proposed systems, and the limitations of the
research.

Table 2. Challenges of blockchain and IoT integrated methods.

# Authors
Applied

Technique
Contribution Blockchain

Internet of
Things

Challenges Limitations

1 Asutosh et al. [47]

Decentralized
and

cryptographical
platform

Avoiding the central
authority usage in
decentralized and

cryptographical platform
for verification and

connection

Yes Yes No
There is no

improvement on data
confidentiality

2 Marco et al. [48]

The technology
of full-stack

and view-point
of system level

Choosing 6G technology
based on view-point of

system-level in
communication models

No No Yes
No verification for

security
enhancement

3 Emanuel et al. [49] Transaction
Model

Improving the IoT
privacy based on

blockchain operations
Yes Yes No No reduction on

computational cost

4 Chao et al. [50] Structure of
Blockchain

Identifying the process
between IoT and

Blockchain
Yes Yes No No changes in level

of security

5 Bong et al. [51] IoT devices
security modul

Limit hacking based on
usage of blockchain Yes Yes Yes

Verification didn’t
improve the security

level

6 Yueyue et al. [52]
Secure and
intelligent

architecture

Applying deep
reinforcement learning to
increase the effectiveness
of system based on secure

and intelligent
architecture

Yes No Yes No improvement on
privacy level

7
Maroufi

Mohammad
et al. [53]

IoT and
Blockchain

Managing short comings
and limitations based on

high-level solution
technology

Yes Yes Yes

Exact issue not
designed with the

proposed
architecture

8 Alfonso et al. [54]
Integration of

IoT and
Blockchain

Testing the related
researches to IoT and

Blockchain
Yes Yes Yes

The level of
complexity didn’t

minimized

9 Lei et al. [55]
Blockchain and
IoT integrated

method

Integrated method secure
the sensing data. Yes Yes Yes

No reduction on
overheard

communication

10 Ishan et al. [56] Centralized
architecture

Reducing the over-head
computational based on
centralized architecture

Yes Yes Yes

Reduction of
computational

over-head has no
effect on energy

consumption
changes

The development of smart manufacturing underpins integrating information
technology, data technology, and operational systems. The ever-increasing facilities and
devices are leading to data processing and application challenges in existing technology.
To reduce this issue’s effectiveness, multi-access edge computing was extracted from cloud
technology as a solution for the mentioned problems and for its ability to simplify the
data processing in the Industrial Internet of Things and industrial cloud computing [57].
Another issue in the smart manufacturing system is the transmission of data and business
transactions. Blockchain technology is a suitable answer to overcome this issue, which
stabilizes data transmission and business transactions by using the distributed control
mechanism [58]. Smart manufacturing systems’ immense data processing causes the issues
mentioned in [59,60]—high dimensionality, feature space, etc. Deep learning allows the
data processing to automatically go through complex feature abstraction using multiple
layers, and similarly provides advanced data analysis for smart manufacturing. The
challenges mentioned above are being analyzed using state-of-the-art machine learning
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techniques and smart manufacturing applications. Figure 1 shows the data-driven role
in the smart manufacturing system. The data-driven process is divided into three main
layers named data-driven, manufacturing system, and benefits. The data-driven layer
contains machine learning, deep learning, artificial intelligence, the Internet of Things, big
data, and cloud computing techniques. After data-driven, the manufacturing system layer
contains three main steps, named technology in manufacturing, network, and advanced
analysis. This step’s important information includes the design, process, equipment,
records, customers, suppliers, parts, and workforce information. The last layer of the
data-driven system has the manufacturing system’s benefits: quality, energy, cycle time,
etc.

Data Driven Manufacturing System Benefits 

Technology of 
manufacturing Network

Quality Raw material 
Machine 
learning

Deep 
learning

Artificial 
intelligence 

Internet of 
things

Big data

Cloud 
computing

Advance 
Analysis
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Figure 1. Smart manufacturing’s data-driven roles.

The main contributions of this paper are:

• Investigating the multi-access edge computing potential problems, blockchain, and
machine learning in the smart manufacturing system.

• The proposed approach’s conceptual scenario is the integration of multi-access edge
computing, blockchain, and machine learning.

• The multi-access edge computing changed the smart manufacturing architecture from
centralized management to decentralized style.

• Addressing the terminal device’s task assignment issue.
• Representing the allocation issue between the edge servers.
• Providing an optimization process by applying the swarm intelligence to the presented

smart manufacturing system.
• The main objectives of applying machine learning in this system are reducing the

manufacturing environment’s predicted values and improving the productivity rate.
• Securing the information of stored data in blocks based on blockchain technology.
• Improving the productivity and cost reduction using blockchain technology.

The rest of this paper is divided up as follows: Section 2 presents the proposed
integrated model’s conceptual scenario in smart manufacturing. Section 3 presents the
final result and validation of the system’s performance, and we conclude this paper in the
conclusion section.

2. System Architecture of the Proposed Smart Manufacturing Environment

The integration of edge computing, blockchain, and machine learning can simplify
data processing and transactions in s smart manufacturing system. The following steps
present the details of the proposed method in a smart manufacturing system.
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2.1. Prototype System Based on Edge Computing

The edge computing system’s main concept is to apply the computing technique as
close to a data source as possible. Figure 2 presents the edge computing architecture in
the smart manufacturing system. The local infrastructure is used to process the data in
an edge-computing system, and it takes the cloud server to the hardware. There are three
main layers in the edge computing system named the physical layer, network layer, and
application layer. The physical layer consists of sensors, robots, actuators, etc., organizing
the physical layer’s main components. The second layer contains the various edge servers,
which process the terminal devices for the third layer’s input. Unlike a cloud server, an
edge server provides a computational service limited to capacity and resources. The root of
enterprise-level applications is IIoT cloud server data processing, all done in the application
layer. Enterprise information systems (EIS), supply chain managements (SCM), and smart
contracts (SC) are some application layer examples. Applying edge computing in smart
manufacturing is far greater than cloud server supplementary resources. Edge computing’s
prosperity is highly based on virtualization technologies. Virtualization technology contains
virtual machines and containers. The main differences between them are the implementation
and level of isolation; in the virtual machine, the implementation needs hardware visualiza-
tion. In the virtual container, the performance is based on light-weight visualization.
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Figure 2. Overview of edge computing architecture.

2.2. Service Validation Based on Blockchain

The blockchain technology in smart manufacturing consists of two main contributions.
The first one is IIoT, and edge computing servers’ smart manufacturing changes from cloud-
centered to the distributed system architecture. In this process, the blockchain system is
applied to strengthen data integrity and decrease data transmission risk to authorize the
validation key and identification in a distributed manner. To avoid operation defectiveness,
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the data transactions should be time-stamped through the hash code and refrain from
positioning the fake data in the linked chain. The second one is the consensus mechanism,
which is used to decide whether adding a validated block into blockchain is possible or not.
Smart manufacturing digitalization recommends manufacturing virtualization, leading the
cloud manufacturing service from another point of view.

Figure 3 presents the manufacturing system based on two main fields, contents and
metadata: identify the unique service and give a detailed description of the process. The
service block was created based on the manufacturing system abstraction, and similarly
broadcasting the distributed manufacturing in-network service to further validate network
entities. The service transaction block creation is based on purchasing and querying the
manufacturing service. The transaction block is in the same manufacturing system network,
and validates based on the other peer-to-peer entities. Similarly, the transaction block adds
to the blockchain transaction system too. In contrast, blockchain’s transaction process
organizes the smart contract between the business partners, facilitates the inner protocols,
and verifies a contract’s performance.
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Figure 3. Overview of a blockchain service.

2.3. Machine Learning-Based Smart Manufacturing

Based on the recent new technologies—big data, IoT, etc.—smart facilities are positively
developing intelligence manufacturing to impact the cross-organization in smart
manufacturing systems. The manufacturing system is experiencing an unexampled data
extension based on the data collection from sensors in various formats, structures, and
semantics. Data collection is based on the multiple manufacturing systems, e.g., lines of
product, manufacturing equipment, processes, etc. Hug data in the manufacturing system
need data modeling and analysis to handle the high-volume dataset growth and support
the real-time data-processing. Machine learning techniques contain some advantages
for improving smart manufacturing: cost reduction, security, fault reduction, increasing
production, operator safety, etc. These advantages include a great and strong bond for
the operating procedure. Furthermore, the system’s fault detection is one of the decisive
components for predictive preservation, and it is essential in the case of industry. Figure 4
presents the overall architecture of smart manufacturing based on the integration of edge
computing, blockchain, and machine learning. Each of these methods is well-known, but
the integration between them has a huge effect on the manufacturing industry regarding
safety, cost reduction, increasing production, etc. The edge computing section is based on
the physical, network, and application layers. The physical layer provides the smart sensors
connected to the IoT platform for real-time data collection and monitoring. Similarly, in
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this layer, the ability to check the condition of machines is also available. The network
layer updates the information and tracks the dataset over time. The application layer
corresponds and reviews the data quality, and finally measures and reports the monitoring
results. The edge computing process’s final report moves to a blockchain service for
securing the collected information in blocks. This information is in terms of assets, design,
and block security. The process moves to the machine learning section to control the
quality of the service and fault rate prediction. In this section, there is a various level of
data analysis. This process contains predictive analysis, diagnostic analysis, descriptive
analysis, and prescriptive analysis. The main goal of descriptive analysis is to give the
product manufacturing process and operation information, capturing the environmental
conditions and parameters. If the product’s performance decreases, the diagnosis analysis
examines the issue and presents the reason for the problem. The predictive analysis
operates the statistical models and predicts the possible future equipment and products
based on a historical dataset. The final analysis is the prescriptive analysis, which further
recommends actions and measures the identification to improve the rates of outcomes,
solve the problems, and present each final decision outcome. Based on the advanced
machine learning analysis, the smart facilities are highly optimized. This process’s benefits
are reducing the costs of operation, meeting changing consumer demands, improving
productivity, and reducing downtime.

Equations (1) and (2) present the evaluation of cost reduction in manufacturing
industry based on machine learning prediction process. In the first step is a derivation
function applied to decrease the error of cost function. The cost function is evaluated below:

B =
1
m

m

∑
n=0

(gn − (xhn + d))2 (1)

where gn is the predicted value and xhn is the actual value of the cost prediction process.
α

αx represent the partial derivative values. d and e are representing the intercept, and x
represents the slope of the evaluation.

α

αx
=

2
M

M

∑
n=1

−hn(gn − (xhn) + e) (2)

The predictive accuracy evaluation is based on two main metrics: mean absolute
prediction error (MAPE) and normalized root mean square error (NRMSE). Equations (3)
and (4) present the MAPE and NRMSE evaluations.

MAPE =
1
m

m

∑
n=1

| gn − ĝn

gn
| (3)

NRMSE =
1
m

√
m

∑
n=0

(
gn − ĝn

gn
)2 (4)

The MAPE evaluates the prediction’s total error compared with initial values, and
NRMSE evaluates the normalized squared errors.
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Figure 4. Smart manufacturing overall architecture based on an integrated system.

2.4. Fault Assessment Diagnostic Analysis

Generally, the manufacturing system faces failures based on abnormal and degradation
operations. The failing causes high costs, disqualifies the product, and causes lower
productivity. Based on the implementation of a smart manufacturing system, it is necessary
for smart factories to monitor the condition of machines, identify the primary defects,
recognize the root causes of failures, and finally combine the information for manufacturing
system production [61]. Based on the data collected from sensors, there are many machine
learning algorithms to investigate the fault diagnosis and classification [62]. The convolu-
tional neural network (CNN) combines feature learning and identification into one model
and has been applied in many sectors— wind generator [63], rotor [64], bearing [65–68], etc.

3. Results

In this section, a brief explanation of the results is provided. Section 3.1 presents the
process of data collection and dataset information. Section 3.2 presents the performance
evaluation of the proposed system. Section 3.3 presents smart manufacturing challenges
and opportunities.
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3.1. Implementation Environment

The implementation of the proposed system structure and environment is presented
in this section. Table 3 summarizes the purposed system experimental setup. All the
experiments were done on an Intel(R) Core(TM) i7-8700 @3.20 GHz processor with 32 GB
memory. Moreover, the docker environment was processed in the 18.06.1-ce version,
and the container configuration in the virtual machine was processed based on the
docker composer 1.13.0 version. The Hyperledger Fabric framework project is from the
Linux Foundation.

Table 3. Development environment of the proposed system.

Component Description

IDE Composer-Playground
Memory 32 GB
CPU Intel(R) Core(TM) i7-8700 @3.20 GHz
Python 3.6.2
Operating System Ubuntu Linux 18.04.1 LTS
Docker Engine Version 18.06.1-ce
Docker Composer Version 1.13.0
Hyperledger Fabric V1.2
CLI Tool Composer REST Server
Node V8.11.4

Figure 5 shows the operation of the transaction process function. For improving the
assets and participants, create, delete, update, and other functions were defined in the
blockchain network. The functions of the transaction processor were implemented in
JavaScript and defined as a smart contract. The specified ShareRecord function is used to
update the manufacturing records based on the events and registry.

Figure 5. Transaction processor function in a manufacturing blockchain platform in the proposed manufacturing system.

To control the domain model elements, the access control language (ACL) is needed.
ACL provides the ability to define rules to specify the roles and users, which are authorized
to make changes in the business network domain. Figure 6 shows the ACL rules defined in
this network that give participants access to make changes in the network.
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Figure 6. Access control definition in the proposed manufacturing system.

3.2. Dataset Management

The smart manufacturing system’s data increase in volume based on the traditional
algorithms’ ability, mostly when the user wants to extract useful information from the
collected dataset. High sample volume in a large dataset, when the records are not similar,
needs the consolidation and isolation algorithms for implementation and knowledge
utilization. In this research, the data were collected from various sources related to IoT;
the production equipment was collected from various sensors to monitor the product
in real-time—e.g., the built-in sensors measured, monitored, and reported the status of
manufacturing equipment and product based on the temperature, humidity, pressure, etc.
Figure 7 shows the data-driven process in smart manufacturing.
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Figure 7. Data-driven process.
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Table 4 presents the configuration of IoT devices and sensors for real-time data
collection. During the smart manufacturing (SM) cycle, the IoT devices are located in
the main areas of manufacturing resources at various levels, e.g., machines, factories, etc.
The radio-frequency identification (RFID) tags are mainly configured enough in practical
documents to report important machines’ quality, design, and production procedures in
the manufacturing process.

Table 4. IoT device configuration information for data usage in smart manufacturing.

IoT Devices Type of Device Monitoring Resources Purpose

Smart Sensors Temperature SM machine Temperature data monitoring
Smart Sensors Humidity SM machine Humidity data monitoring
Smart Sensors Pressure SM machine Pressure data monitoring

RFID Tags Ultra high frequency Drawing, model, material Trace and monitor real-time data
RFID Tags Ultra high frequency Operate, product, etc Trace and monitor real-time data

RFID Reader Ultra high frequency Material, maintenance Identify and track components

3.3. Optimization

Smart manufacturing based on the edge computing system has high scalability and
huge IIoT devices, which is suitable based on the expansion potentiality. Data analysis and
transmission are considered computational tasks. They are supposed to allocate data on
an edge server or cloud to recognize the suitable task assignment for reducing the process
time of the incoming task. There are X defined device terminals, Y edge nodes, and one
industrial server for the cloud to design this issue in smart manufacturing. Within the
manufacturing process, the requests from terminal devices are managed by a cloud or
edge server. The process timing for the tasks in edge server requires two main components
called computation time θ

y
i,c and data transmission time θ

y
i,d; see Equation (5).

β
y
i = θ

y
i,c + θ

y
i,d (5)

The task computation time in an edge server is evaluated based on Equation (6).

θ
y
i,c = Li/Σni

max
n=1 ay

i,n (6)

y is defined as the edge server, i represents the task computation time, and ay
i,n represents

the edge server’s computational resources through the n period of maintaining tasks. L is
defined as the length of the tasks. The task processing time in a cloud server is evaluated
as it was presented in Equation (7):

βt
i = θt

i,c + θ
y
i,d + θ

y,t
i,d (7)

The computation time in the cloud is defined as θt
i,c. Data transmission between the

edge and device is defined as θ
y
i,d. The transmission time from the edge server to cloud

is defined as θ
y,t
i,d . The task assignment’s presented issue is the deployment of a parallel

mechanism and heterogeneous units’ processing in the computational task assignment
issue. Accordingly, the swarm intelligence approach is applied in this process.

Swarm Intelligence

Generally, the swarm intelligence (SI) approach is a famous process among artificial
intelligence algorithms. Two main strategies follow based on this algorithm named
approximate and non-deterministic to consider and utilize the searching spaces to find
the near-optimal solutions [69]. SI contains various approaches; among them, the artificial
bee colony (ABC) algorithm demonstrates SI’s classic features. The importance and
required process for intelligence performance, self-organization, collective behavior, and
decentralization of SI are sufficient [70]. Moreover, the mentioned three features contain
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the simple mechanism control, which is tuned with only two parameters. The bee colony’s
size determines whether the solution can be dropped or whether there is no need to drop
it. Figure 8 shows the process of solving the computational task problem based on the
artificial bee colony workflow.

Set the ABC colony 
algorithm parameters

Edge server, Cloud 
server, Task

Search the iterations

Find proper references
Interact chosen reference
Update the new solution

If update times >= 
predetermined 

criterion 

Employ bee phase

Reinitialized solution 

start

End

If probability >= 
random number 

Yes

Yes

No

No

Figure 8. Artificial bee colony workflow.

3.4. Performance Evaluation

The test models are generated based on the following patterns. The task length follows
a uniform distribution in the range of [1, 10] million specifications. The data volume is
defined as 100 KB to 10 MB. The time delay is 100 milliseconds to 10 s. The average
processing performance based on the edge server is defined as 10 million instructions
per second (MIPS). The cloud volume is 1000 MIPS. Edge server and device connections
work through wireless communication. The edge server and cloud connections go through
broadband. Tasks are specified to the evident edge server, which forwards the information
to the cloud. This causes the edge server to be limited to processing enough resources for
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the under-processed task during the delay time. Figures 9 and 10 present the analysis of
parameters for abandonment and solution number (SN) criteria of α for incoming tasks
(200).

Figure 9. Performance evaluation of various solution number (SN) settings.

Figure 10. Performance evaluation of various α settings.

To show edge computing’s effectiveness in the system of smart manufacturing,
Figure 11 shows a various number of incomes based on three main frameworks, i.e., cloud,
edge, and mixed-mode. The meanings of these three scenarios show the computational
task between them. As shown in Figure 11, the mixed-mode shows the combined outperfor-
mance of edge and cloud. Similarly, it is increasing the number of tasks along with the
cloud mode’s average processing time. When the tasks are less than the cloud server’s
capacity, there is a decrease at a certain level; on the other hand, if the number of functions
increases, then the edge server does not modify the processing time appropriately.
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Figure 11. Performance evaluation of various scenarios.

Figures 12 and 13 present the machine learning techniques applied in this process:
k-means clustering algorithm (IKCD), k-means clustered deployment (KCD), and random
deployment (RD). Figure 12 shows each algorithm’s delay rate in different edge computing
nodes (ECNs). When the number of nodes increases in the edge computing system, the
amount of equipment production also reduces due to the network’s delay reduction. Based
on the presented results, the network delay in the IKCD process is the shortest one, and
RD is the worst among the compared methods. Based on the ECNs in the system, when
there are between 1 and 3, the IKCD method is better than KCD, and when the number of
ECNs is more than three, based on the network latency, the differences between IKCD and
KCD decrease.

Figure 13 presents the system cost deployment differences for the ECNs. We can see the
ECNs incurred greater costs based on the system node increases. Based on the deployment
of ECNs for the higher costs, the costs for all three methods increased. Comparing the three
methods, IKCD had the highest and most outstanding performance. The RD method’s
deployment used a number of ECNs randomly and did not deploy any node in the
production node. This process caused the node to be chosen without consideration and
constraints. The deployed nodes recorded in the KCD process are based on the Euclidean
distance between the devices, which is not sensible and causes the network delay and
access time communication for data processing in real-time requirements.
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Figure 12. Changes of network nodes based on edge computing.

Figure 13. Cost dependency deployment on edge computing nodes.

Figure 14 presents the relationship between system cost and edge computing nodes
based on the compared methods.
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Figure 14. Total cost of IKCD and edge computing node relationship.

The results show the advantages of the IKCD method, and similarly, show the
reduction of network delay based on the ECNs and increasing the computing cost of
ECNs. The sum of the process decreases at the start and then increases.

3.5. Challenges and Opportunities of the Smart Manufacturing System

Data management, performance evaluation, and standardization of edge computing
in the IIoT system are briefly explained in the above sections. Analyzing the proposed
system based on the integrated methods reveals great opportunities and challenges for edge
networks, data processing, security, etc., in IIoT technology related to edge computing. The
below information explains several challenges and opportunities for smart
manufacturing systems.

• Data offloading and load balancing: The IIoT system having various devices, which
are important in data offloading among the large servers and devices. The IIoT
system, based on edge computing, reflecting on data processing, increases this
process’s difficulty.

• Edge intelligence: In a recent IIoT system designed based on edge computing, the
devices could only accomplish the light-weight tasks. To make the system intelligent,
edge intelligence (EI) must be applied to the process.

• Data sharing security: One of the IIoT system’s advantages is the huge amount of data
in real-time devices, websites, etc., which is efficient to improve industrial production.

4. Conclusions and Future Research

Smart manufacturing is a favorable movement for the evolution of the manufacturing
industry and production in a new industry. The manufacturing system’s implementation
causes the support of data technology, information technology, and operational technology,
surrounded by the development of integrated edge computing, blockchain, and machine
learning based on the Industrial Internet for operational processes in the manufacturing
environment. This paper’s proposed system was designed based on integrating edge
computing, blockchain technology, and machine learning to support the manufacturing
system’s design. The assignment problem of the system was formulated based on the
optimization model. Unlike other research in edge computing and IIoT, the presented
method’s stresses illuminate the integration method’s importance in future developments.
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The future research plan is to improve the manufacturing system more and analyze it in
more detail. The blockchain system’s applications can be quantified and further analyzed.
Other technologies can be incorporated to enhance the development of the manufacturing
system. The experiments and results can be analyzed with an on-site dataset to identify the
possible impact factors and regulate the proposed model’s configured parameters.
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Abstract: Increasing regulatory demands are forcing the pharmaceutical industry to invest its avail-
able resources carefully. This is especially challenging for small- and middle-sized companies.
Computer simulation software like FlexSim allows one to explore variations in production processes
without the need to interrupt the running process. Here, we applied a discrete-event simulation
to two approved film-coated tablet production processes. The simulations were performed with
FlexSim (FlexSim Deutschland—Ingenieurbüro für Simulationsdienstleistung Ralf Gruber, Kirch-
lengern, Germany). Process visualization was done using Cmap Tools (Florida Institute for Human
and Machine Cognition, Pensacola, FL, USA), and statistical analysis used MiniTab® (Minitab GmbH,
Munich, Germany). The most critical elements identified during model building were the model
logic, operating schedule, and processing times. These factors were graphically and statistically
verified. To optimize the utilization of employees, three different shift systems were simulated,
thereby revealing the advantages of two-shift and one-and-a-half-shift systems compared to a one-
shift system. Without the need to interrupt any currently running production processes, we found
that changing the shift system could save 50–53% of the campaign duration and 9–14% of the labor
costs. In summary, we demonstrated that FlexSim, which is mainly used in logistics, can also be
advantageously implemented for modeling and optimizing pharmaceutical production processes.

Keywords: 3D simulation modeling and analysis; model implementation; bottleneck analysis;
production costs; resource conservation

1. Introduction

The pharmaceutical industry is known to be prosperous but inflexible. Regulatory
authorities expect increasing standards for medicinal products, e.g., during clinical trials
or production [1–3], which makes the industry less prosperous and even more inflexible.
Multinational pharmaceutical companies react with various strategies, such as outsourcing
or mergers and acquisitions [4], while small- and middle-sized companies need to com-
pensate for their losses differently. For both, the strategy of addressing production costs is
promising because of this strategy’s generally low equipment utilization [5] and because
of production’s high costs (production makes up to 30% of the overall costs) [6]. Instead
of real-world experiments and tests, computer simulations enable one to test different
scenarios without any interruptions or threats to daily business.

The chosen processes for this case study involve the production of two film-coated
tablets for the treatment of tuberculosis. As of 2020, about one-quarter of the world’s
population is infected with latent tuberculosis. Ending this epidemic by 2030 is one of
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the health targets of the United Nations Sustainable Development Goals, so the incidence
of the disease is decreasing by 2% each year. This disease is mainly caused by acid-fast
rod-like Mycobacterium tuberculosis. Most patients suffer from a curable lung infection
that is treated with a combination of different agents [7]. According to the World Health
Organization, isoniazid, rifampicin, pyrazinamide, and ethambutol are the most essential
first-line anti-tuberculosis drugs [8]. The main active pharmaceutical ingredients of the two
investigated products are isoniazid and ethambutol; thus, the products are abbreviated as
PINA and PEMB.

Background information about simulations can be found in Banks (2005), who defined
them as the “imitation of the operation of a real-world process or system over time” [9],
while a model can be described as a “representation of a [ . . . ] process intended to enhance
our ability to understand, predict, or control its behavior” [10]. The link between both is
that “the exercise or use of a model to produce a result” is a simulation [11]. Simulating
different scenarios, thereby changing the parameters in a model and running it, enables one
to test and evaluate the effects of certain parameters. Hence, diverse fields of application are
possible in a pharmaceutical context. These applications could support decision making for
pipeline management [12–14] and optimize supply chain management [15–17]. Simulations
of production processes are also of interest. They can be divided into simulations of single
process steps, such as computational fluid dynamics for mixing steps [18], and simulations
of multiple production steps [19] or even of entire continuous production processes [20].
The models of Sundaramoorthy et al. [16] and Matsunami et al. [21] were used to investigate
a mixture of the abovementioned factors. Their prospective models targeted the planning
of production capacities when a product is still in its developmental stage. Matsunami
et al. compared a batch with continuous production considering various uncertainties,
prices, and market demands for one product. Sundaramoorthy et al., however, address the
production capacities of multiple products. Habibifar et al. recently published a study on
the optimization of an existing production line, including a sensitivity analysis, the design
of multiple scenarios, and a data envelopment analysis. Other comparable work was also
examined intensively—11 references from 2007–2019 were investigated and compared [5].
The applied techniques (simulations, mathematical modeling, and statistical techniques)
differed, as did the focuses of the studies. Some papers concentrated on the optimization
of specific process steps [22], while others pursued a more holistic approach [23]. The high
variability in this small population demonstrates that there are many different approaches
and even more available software solutions for optimizing pharmaceutical production.
One described attempt involved a discrete-event simulation, in which the variables of a
model changed due to defined events. Recent work on discrete-event simulation addressed
room occupancies in a hospital [24], a flow shop [25], and manufacturing scheduling [26].

In contrast to the above-mentioned studies (i.e., prospective simulations for future
medicinal products), this study addressed two already existing production processes. The
motivation of this work was to optimize the validated and approved production processes
of PINA and PEMB via discrete-event simulations without the need to interrupt or interfere
with the continuing production processes themselves. Initially, it was investigated whether
it is possible to establish a discrete-event simulation approach with limited resources and
simulation knowhow. Meanwhile, the three most critical steps in model building (imple-
menting model logic, operating schedule, and processing times) were determined, verified,
and partly validated. Based on the generated as-is models of the PINA and PEMB production
processes, bottlenecks in the production process were identified and different production
scenarios designed to find the optimal one under existing conditions. The optimizations
focused on process efficiency, not pharmaceutical or validation questions. The market
authorization of these products limited the possible changes to only organizational ones.
Therefore, the shift systems of the created as-is models for PINA and PEMB were changed
from the existing one-shift system to a one-and-a-half shift system and a two-shift system
to optimize employee utilization. The campaign duration, labor costs, and used resources
were calculated to generate comparable outcomes.
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2. Materials and Methods

For discrete event simulation of these pharmaceutical production processes, the soft-
ware package FlexSim was chosen since it is easy to use and already widely implemented in
various industrial sectors for logistics or production, as well as in national institutions. To
the best of our knowledge, this is the first time that FlexSim has been used to optimize phar-
maceutical bulk production in its entirety. This report suggests a possible implementation
path for a batch production. It starts in a semi-automated facility to obtain data, continues
with the creation of a representing simulation model and ends with a case study optimizing
the capacity utilization of the investigated batch production. Where the available FlexSim
software was not sufficient, additional software, such as Cmap Tools (Florida Institute for
Human and Machine Cognition, Pensacola, FL, USA), Microsoft® Excel (Microsoft, Seattle,
WA, USA) and Minitab® (Minitab GmbH, Munich, Germany), was used.

Since our literature research yielded few standards for creating a discrete-event simu-
lation in the context of pharmaceutical processes, an intuitive attempt was pursued and
implemented. At the beginning, basic decisions about the model were made for model
description. Afterwards, information about the investigated production processes was
collected. All information was clustered into numerical and logical information. The
numerical information covers the collection of historical processing times, their analysis
as well as the selection of the most representative distribution for each process step. The
logical information was used for model building. The most meaningful information sources
were historical batch data, official validation and qualification data of the process owner,
instruction manuals, on site observations, and work experiences. The gathered process
information was firstly depicted in a flow chart and afterwards transferred to a simulation
model. These elements of the methodological approach were addressed separately, but
simultaneously. Together, they resulted in an as-is model of the production process, which
was later verified and partly validated. It furthermore served as a process analysis and
optimizing tool. This methodological approach is depicted in Figure 1.

Figure 1. Methodological approach of this case study: Seven steps (blue boxes) were implemented from
model description until its application as optimizing tool. The according sub-steps are listed underneath
and include further information, such as applied software and cross references to other figures and tables.
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2.1. Employed Software

Different software was used during this case study on a Windows (Microsoft, Seattle,
WA, USA)-based laptop equipped with 12.0 GB RAM and a 64-bit processor. Initially,
the historical processing times and their deviations, as well as the new data for model
verification and application, were collected in Microsoft® Excel. Moreover, the basic
questions were analyzed statistically, such as the calculations of standard deviations and
the minimum and maximum values.

An extensive flow chart was created in Cmap Tools, which is freely available from the
Florida Institute for Human and Machine Cognition (Pensacola, FL, USA), to understand
and take stock of the entire process. This program is ideal for creating flow charts or
visualizing logical relations and features easy drag and drop handling. The knowledge
gained from the program facilitates the steps for later model building in FlexSim [27].

Further statistical analyses were performed using Minitab® (Minitab GmbH, Munich,
Germany, version 18.0), a commercial statistics package that is widely used in Lean Six
Sigma projects [28]. Some basic Lean Six Sigma approaches were integrated into the
data handling of this case study. Data analysis, such as hypothesis tests, and graphical
evaluations, such as boxplots or individual moving range charts, can be easily performed
in Minitab®.

Discrete-event simulations were conducted in FlexSim (FlexSim Deutschland—Ingeni
eurbüro für Simulationsdienstleistung Ralf Gruber, Kirchlengern, Germany), a commer-
cially available 3D simulation software designed for modeling production and logistic
processes. FlexSim provides discrete-event simulations that are object-oriented, which
means to implement all components as objects, to assign specific attributes and methods
to them for their characterization as well as for manipulating the overall system. In ad-
dition to a graphical 3D click-and-drag simulation environment, programming in C++
is offered. The user can choose between different views and methods for representing
data [9]. The applied, non-configured student version is FlexSim 19.0.0. Here, dynamic
process flows can be captured on a functional level, plainly visualized, and extensively
analyzed. This program gives decision makers the opportunity to forecast the outcomes of
possible changes in their processes, such as changes in product flow, resource utilization
(staff, money, and machinery), or plant design.

The production processes were captured by implementing and connecting all single
components of the system by their procedural functions and attributes. Additional critical
parameters (set-up times, staff) and logic (priorities, random events) made the models
as close to reality as possible. The 3D visualization of the process provided an intuitive
understanding of the current state of the system and future possibilities. The results of
the simulations were analyzed via performance and output statistics. Capacity utilization,
transport time, and state statistics are examples of the metrics of interest.

2.2. Production Processes

Two approved coated tablet production processes were selected for this case study
because they were similar but different in their ingredients and product properties, such
as tablet size. Their obviously different punches require different processes and cleaning
times, but their other equipment and operations are similar. Since both processes are
comparable, comparable results were expected. Comparable results would enable the
transfer of optimizations to other processes and thereby increase the impact of this study.
The processes consisted of 47 sub-steps that were merged to the following 13 super-
ordered steps:

• Setting up the scales
• Weighing the granule and granulation liquid
• Dissolution of the solid components to finish the granulation liquid
• Compulsory mixing
• Fluid bed granulation
• In-process controls
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• Sieving
• Tumble blending
• Compaction
• Weighing the coating
• Dissolution of the solid components to finish the coating
• Coating
• Bulk packaging

Most machines (in FlexSim referred to as “processors”) are about 25 years old and
largely still operated manually. The two products, PINA and PEMB, are produced batch-
wise in variable campaign sizes from three to 18 batches. The simulations were chosen
to represent the average campaign sizes to identify bottlenecks and increase productiv-
ity. Therefore, simulations for PINA covered four batches and those for PEMB covered
ten batches.

Since the intention of this work was to describe standard production campaigns of
these products, deviations as machine breakdowns, personnel shortages, and other human
failures were excluded. During data preparation, we assessed whether the observed
deviations influenced any of the historical processing times. In addition, outlier tests were
performed to exclude deviating historical batch data, so the resulting data pool solely
represented standard processing times. Further excluded data are product-dependent
cleaning times as well as times for setting up. The cleaning and set-up efforts before a
product campaign vary widely, since the production of analogous products containing the
same APIs at different doses lowers the necessary effort dramatically. Thus, this study only
includes product-independent daily routine cleaning times, as well as the daily times for
setting up the machines.

2.3. Statistical Data Processing

The processing times are the most important since the campaign duration endpoint
in this study influences a second endpoint: the labor costs. Therefore, the collection and
handling of processing times are of great importance. We distinguished between the
initial historical batch data and the FlexSim-generated verification data. The collection of
historical batch data strongly depends on the production equipment. While data is easily
available in automated production lines, most semiautomated production plants do not
have automated tracking and data generation. For these two production processes, no
digitally workable data were available. Hence, the processing times of each process step
were collected manually and batch-wise before they were transferred into digital files. The
overall statistical data process is depicted in Figure 2.

During data preparation, we investigated in Minitab® whether the data were under
statistical control with individual moving range charts (I-MR chart). Even though I-MR
charts are, strictly speaking, only to be used for normally distributed data, they nevertheless
indicate shifts, trends, and process variations. Therefore, the first impressions of the process
stability were obtained. Secondly, we tested if the data were normally distributed using
probability plots for further data handling. Additional statistical tests for the outliers, data
pooling possibilities, and visualization were also performed in Minitab®.

FlexSim contains a tool named ExpertFit, which helps to find the best fit distribution
based on raw data. FlexSim distinguishes two main types of probability distributions:
discrete and continuous distributions. Continuous distributions are subdivided into non-
negative, unbounded, and bounded distributions. Historical batch data were entered as raw
data in ExpertFit during model building. The results were extracted, and the suitability of all
distributions were evaluated. Afterwards, several graphical comparisons between different
distributions were performed to select the best-fitting distribution. The last step in ExpertFit
was to transfer the selected distribution and its parameters into the according process step
in the FlexSim model. If none of the available distributions provided a satisfying evaluation,
the usage of an empirical table was recommended and implemented. The results of this
analysis can be found in the Supplementary Materials (Table S1). Interestingly, even though
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some data were earlier shown to be normally distributed, ExpertFit never evaluated a
normal distribution as the best choice.

Figure 2. Chronological workflow of statistical data processing: Minitab® was used during data preparation and model
verification to analyze the historical batch data and to later compare it to the FlexSim-generated data. The ExpertFit
tool of FlexSim performed the automated fitting of the historical batch data to over 20 distributions to identify the best
representation for each process step during model building.

During model verification, the FlexSim-generated data were compared to the historical
batch data. Since the probability tests during data preparation proved that most processing
times were not normally distributed, Mann–Whitney tests were performed in Minitab®.

Choosing the best way of model validation was challenging. Initially, a face validity
was made. The head of production investigated the models, their behavior, and logics. For
a historical data validation, the data pool of historical processing times was statistically too
small. Therefore, an additional, predictive validation was attempted. Therefore, FlexSim-
generated data were compared to processing times of new campaigns.

3. Results

3.1. Model Development: Design and Building

Model design started with the creation of a detailed flow chart in Cmap tools, resulting
in a conceptual model. The flow chart includes all production steps and sub-steps, the
operators, the average historical processing times, and the relevant machines. Connections
and cross references in the overall process become evident here. Information on merging
multiple process steps, the elimination or integration of process steps, and the required
model logic was collected. The correctness of the flow chart was approved by the process
owner—the head of production. Altogether, this step of model design ensured deep
process knowledge and identified all the dependencies and necessary components for the
subsequent FlexSim models. Since the manufacturing process is confidential, this process
flow chart cannot be shown. However, the complexity of such production processes makes
it highly recommendable to start with such depiction and its approval by the head of
production.

After the basic information was determined, model building in FlexSim began (Figure 3)
following the common guiding idea to include only crucial attributes in the model and to
keep the model as simple as possible [29]. Additionally, in the models, we assumed that no
machine breakdowns or other major deviations would occur.
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Figure 3. Steps for building a process model using FlexSim: In the first third, simple facts established
the foundation of the model. After inserting the model logic, the working schedule and the processing
times became more complex and included the most critical attributes of the model to be verified
(colored blue).

Initially, the floor plan (step 1) and the machines (step 2) were transferred out of official
documents into FlexSim (Figure 4). The machines are represented as so-called processors.
There are three processor types: one to process the item, one to combine multiple items,
and one to separate an item into multiple items.

Figure 4. Simplified floor plan in FlexSim: The production area is depicted, including processors (blue boxes: number
represent the chronological order of the process steps) and further details (grey boxes). Brown bars represent areas that are
not used for the production of the investigated products.

The employees (step 3) are called operators. The headcount in the model, symbolized
with the four males on the left, corresponds to the headcount of the original process.

Inserting the model logic (step 4) is one of the most complex parts in building the
simulation model. Its basis is the batch documentation, which gives the order of the process
steps. Some steps can be connected easily. More complex sequences occur when certain
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events condition other steps, e.g., the weighing of a new batch cannot start until certain
steps of the previous batch are finished, even if the scales and operators are not occupied.
Such conditions are considered in the model by triggers like opening and closing the
processor ports, sending messages, or placing certain information on the items. It must be
determined which and how many operators fulfill a process step.

Next, the operating schedule (step 5) and the times off are entered. Working hours
are from 7:00 a.m. to 3:45 p.m., with a breakfast break from 9:15 to 9:30 a.m. and a lunch
break from 12:15 to 12:45 a.m. For some processors, it must be guaranteed that the entire
process can be finished at once. Therefore, the operating schedules of the processors must
be considered as well.

Processing times (step 6) are then established as described in the statistical data
processing. If a pairwise comparison revealed no statistical significance (Mann–Whitney
test), the times for the different process steps of the two products, PINA and PEMB, were
pooled (see Table S1 in Supplementary Materials: Weighing granulation liquid on the table
and on the floor scale, dissolution of granulation liquid, mixing in a tumble blender, and
weighing the coating on the table and on a floor scale).

Some working steps and times are not explicitly part of the batch documentation,
which only provides the daily routine. These times are instead based on employees’
experiences and were also implemented in the model. As these times do not vary depending
on the product, the implemented times were identical in all models (Table S2 in the
Supplementary Material).

Not all process steps have the same importance. Some process steps can be stopped,
while others cannot. Only some of the process steps require the attendance of an operator
for the entire processing time. Therefore, the priorities (step 7) have to be defined.

Additionally, the scope (step 8) of the production must be implemented. The prevalent
conditions are the campaign production with a certain number of batches. FlexSim also
offers the implementation of actual dates.

In this case study, the most important model parameters to verify were the processing
times, model logic, and operating schedules. Model verification is unique and strongly
depends on the model itself. Thus, finished components are rarely available. Sometimes,
additional checkpoints and workarounds, such as labeling the so-called flow items with
informational stickers, had to be implemented. FlexSim offers different statistical analysis
modules that must be transformed to enable the verification of these parameters. Some of
these analysis modules can be added via drag-and-drop and do not need further changes.
To track the processed flow items and operators, each must be individually in C++. The
implementation of these elements for model verification is the last step of model building.

Testing of the models (step 9) can now be performed in single runs that are started and
stopped manually. Alternatively, it is possible to use the FlexSim module Experimenter.
Experimenter offers the opportunity to predefine the amount of replications (runs), the
statistics for evaluation, and the variables to compare, as well as subsequently perform the
necessary replications.

3.2. Model Verification

The blue colored boxes (steps 4–6) in Figure 3 highlight the most important parameters
to verify, including simple but productive model logic, an accurate operating schedule
for operators and processors, and the correct processing times for each process step. To
establish a sound foundation for the FlexSim-generated data, the Experimenter module
was used. The amount of model replications was determined as identical to the amount
of historical batch data (PINA: 25 runs; PEMB: 45 runs). While using the Experimenter,
FlexSim accesses the deposited statistical distribution of each process step and thereby
generates different processing times for each run. Afterwards, an interactive report and a
performance measure report can be exported. This interactive report includes data on the
model logic in item-trace Gantt charts and all data on the working schedules in state charts.
These charts are produced replication-wise. The performance measure report includes a
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statistical summary, a replication plot, a frequency histogram, and the single values of all
replications for each process step.

3.2.1. Model Logic

Verification of the model logic is complex to integrate. The goal of this step is to prove
that all process steps run in the correct order and that the conditions and dependencies
between different process steps are correctly implemented.

Therefore, all items run through the model are tagged, and triggers are programmed
for all processors to leave information on these tags. This type of information is best
captured using item-trace Gantt charts. Figure 5 shows a schematic item-trace Gantt chart
for one batch. One batch consists of six items, with two each for the granule, the granulation
liquid, and the coating. The items are pictured as one bar. Each process step is represented
as one colored square of the bar. Following from top to bottom and left to right, the process
order and dependencies of the different process steps become evident. As an example,
the processing step for coating (light blue squares) is provided. This process requires the
previously formed tablets (green square) and the newly dissolved coating (light yellow
squares). Coating then combines these two items on one bar for the coated tablets, which
are packed in the subsequent step (light pink). Hence, the process order and processor type
of the coater, a combiner, are verified. During model building, a trigger was set to withhold
weighing the coating until compaction is almost finished to prevent long holding times
for the liquid parts of the coating. This chart verifies the implementation of this trigger
since weighing (purple) starts shortly before the end of compaction (green). Overall, the
item-trace Gantt charts were able to verify the overall model logic. Additionally, the overall
processing time became evident, which is important for the subsequent comparison of
different optimization scenarios.

Figure 5. Example of the FlexSim-generated item-trace Gantt chart for model verification: This chart represents the
production of one batch including the most important process steps. The granule, granulation liquid, and coating are
necessary to produce film-coated tablets. Floor and table scales are used for each of these components, as different mass
ranges are weighted. One bar symbolizes one of these components depending on the initially used scale. Hence, one batch
consists of six bars. The different colored subdivisions of the bars show the finished process steps of each component. This
type of item-trace Gantt chart allows to (i) control the correct logical order of the process steps; (ii) check if the dependencies
are correct (e.g., the weighing of coating can only start shortly before the end of the compaction to avoid long holding times);
and (iii) determine the total campaign duration.
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3.2.2. Operating Schedules

The operating schedules are pictured in the state charts for the operators and pro-
cessors. Each operator and each processor is represented by one bar, which is divided
into several states, including utilize, idle, or scheduled down. The x-coordinate shows the
duration in days.

Figure 6 shows a schematic state operator chart (top) and a schematic processor
chart (bottom). These charts enable the modeler to verify break times (duration and fixed
moments). Moreover, the capacity utilization of each operator and processor becomes
evident in this chart. The process steps are arranged in chronological order. This way,
one can follow a batch by starting with the utilized part of the first process step and
continue watching it work downstream through the processors. The purple parts indicate
processing times at which the process becomes stuck because of too few operators, while
the light-yellow sections indicate blocked processors. FlexSim can export processing times
and states in a table form. This way, export for further data analysis is easy to handle. An
evaluation of the state charts verified the break times and process order.

Figure 6. Example of the FlexSim-generated state operator chart (top) and state processor chart (bottom): The production
of two work days is depicted, including the most important states for the six operators and the most important states for
the last process steps. Each operator is symbolized by one bar. The different-colored subdivisions of the bars represent
the operators’ states over time. The processors are also represented by bars divided into different-colored states. The
major outcomes of both charts include verification of break, lunch, and after-work hours, as well as capacity utilization
(idle/utilize). This enables one to i) test the model (chronological order) and to identify bottlenecks (capacity utilization of
operators and processors).
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3.2.3. Processing Times

The last parameter to verify is the processing time. For this purpose, the performance
measure report was used. Single FlexSim-generated values were transferred into Minitab®

where these values were compared to the processing times of the historical batch data.
Mann–Whitney tests with a confidence interval of 0.95 were performed, as most data
are not normally distributed. None of the generated processing times were significantly
different to the historical processing times (Table 1).

Table 1. Statistical analysis: Results of the probability plots of each process step and of the Mann–
Whitney tests comparing historical batch data to the FlexSim-generated data for the products PINA

and PEMB. There was no significant difference (p < 0.05) between the historical batch and FlexSim-
generated data.

Process Step
Normally Distributed? p-Value

PINA PEMB PINA PEMB

Dissolution of granulation liquid Yes No 0.760 0.243

Compulsory mixer Yes No 0.594 0.479

Fluid Bed Granulation No No 0.993 0.127

IPC Moisture Analysis No No 0.806 0.527

Sieving No Yes 0.767 0.602

Tumble blender No No 0.319 0.110

Compaction Yes No 0.331 0.107

Dissolution of coating Yes No 0.399 0.561

Coating Yes Yes 0.679 0.246

Packaging No Yes 0.886 0.086

3.3. Model Validation

To prove the reproducibility of the simulation models, a model validation was con-
ducted. There are different options to validate computer models. Initially, it was chosen to
prove the correctness and reasonability of our models by face validity. Also, a predictive
validation was added for which future production campaigns of PINA and PEMB were
picked and specifications about the process flow, processing times, and campaign durations
were defined. The campaigns, covering four batches for PINA and ten for PEMB, were
run under normal conditions. Non-standard conditions, changes, and deviations were
additionally monitored and documented. Afterwards, the relevant data was collected from
batch documentation, transferred into Minitab®, and compared to FlexSim-generated data.
Analyzing the new data showed a valid process flow. The other parameters, the processing
times and the campaign duration, however did not meet the specifications caused by severe
deviations during both campaigns. Due to confidential issues, detailed explanations are
limited. Some of the deviations, such as machine breakdowns, were intentionally excluded
during model description and therefore not considered in the FlexSim-generated data.
Another very influential deviation was personnel shortage; for none of the production
days, the full head count was available. On top, urgent, non-campaign work cut the already
minimized work capacities. Besides these issues, the predictive model validation gathered
additional important information for the process owner and validated the model logic. The
fact that not meeting the specifications was at least partly caused by a lack of the necessary
personnel which, however, at least indirectly validates the models.

3.4. Model Application: Optimization and Evaluation of Fictive Shift Systems

After the successful verification and partly validation of the as-is model, realistic and
meaningful changes in the real production processes were discussed with the head of
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production. As Figure 6 (bottom) illustrates, processors have long idle times with little
utilization. This raised the question whether the system could run more profitably under
different shift systems. Profitability was investigated as the total duration for one campaign
and the labor costs. Labor costs included not only the salaries of the employees but also
the costs for the machine’s run times.

3.4.1. Establishment of Models with Different Shift Systems

The shift systems of interest were one-shift (OS), one-and-a-half-shift (OHS), and
two-shift (TS). The related operating schedules can be found in Table 2.

Table 2. Operating schedules: Operating schedules of the optimization scenarios classified into the
shift models of one-shift (OS), one-and-a-half-shift (OHS), and two-shift (TS) systems. The working
hours for the one-shift system were adjusted according to an in-company agreement. * Different
weekly hours for some operators in the past.

One-Shift * One-and-a-Half-Shifts Two-Shifts

Operating
schedule

07:00
a.m.–03:15/03:45 p.m.

06:00 a.m.–02:15 p.m.
09:15 a.m.–05:30 p.m.

06:00 a.m.–02:15 p.m.
02:00 p.m.–10:15 p.m.

The different parameters between the different scenarios were operating schedule,
product type, and the number of operators. These variations were implemented manually
without any optimization algorithm. In addition to simply changing the schedules and
headcounts, other aspects must be considered. The campaign duration strongly depends
on the weighing operations of the different batches. Therefore, it is important to identify
the best times after the start of the campaign for each batch. This is done by supervising
and evaluating the interactive report of the Experimenter module. The shift system and
number of operators for the OS system of PINA influence these times. The impact of this
parameter on the overall campaign duration is visualized in Figure 7. The campaign of
PINA includes four batches (left side), and the campaign of PEMB includes ten batches (right
side). The last batch of PINA can be weighted in after 8 h under a TS system compared to
48 h using an OS system. For PEMB, the time could be reduced from 9 d to only 3 d after
campaign start. Hence, a significant reduction in campaign duration was already expected
when building the optimization scenarios.

Figure 7. Summary of the optimal starts for weighing the granules of all batches after campaign start for PINA (left side) and
PEMB (right side): The cylinders represent batches, the numbers indicate the batch number in the campaign. Therefore, the
campaign of PINA includes four numbered cylinders and the one of PEMB includes ten cylinders. The start depends on the
applied shift system and (only for the one-shift system of PINA) also on the number of operators. This indicates that the processors
limit the weighing strategies for all other cases. The start times have a significant influence on the overall campaign time.
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3.4.2. Results of the Shift Systems

The implemented shift systems were evaluated by the number of successful replica-
tions, the utilization degree of the operators, and the campaign duration. A well-established
model with suitable logic and processing times can complete the replication. Therefore, the
presence of several successful replications indicates a harmonious model that can be used
to evaluate model optimization. The predefined number of replications aligns with the
replications used during model verification and thus to the number of available historical
batch documents. As already mentioned, the schematic operator state charts (Figure 6,
top) visualize the utilization degree of the operators. The mean campaign duration and
headcounts were used as the basis for the labor cost calculations.

Originally, the overall headcount of the case study was always four operators. Hence,
in the first step, the optimization scenarios for both products with OS, OHS, and TS systems
were built. The four operators worked simultaneously in the OS system and at staggered
intervals for the OHS and TS systems. For some combinations, some replications did not
finish (Table 3). It was also impossible to build a running TS model with four operators
for PEMB, since only two operators were available for monitoring up to four simultaneous
running processors. Obviously, such real-life limits of this process were also reflected by
the computational models. The operator and processor state charts also indicated that too
many processors needed an operator at the same time. As a result, alternative models
were built featuring an increased headcount of six, with three operators always working
simultaneously. A summary of the results for PINA and PEMB can be found in Table 3.

Table 3. Results of the different shift models for PINA and PEMB: Generally, the campaigns of PINA consisted of four batches, and the
campaigns for PEMB consisted of ten batches, yielding the resulting model scope. The number of successful replications indicates
whether the model is stable. The arrows symbolize the utilization degree of the operators (↓ = some idleness, ↓↓ = much idleness, ↓↓↓
= operator is barely working, and ↑↑↑ = work overload, � =appropriate work load). Additional metrics of interest are the campaign
duration, including the standard error of the mean, and labor costs. The best scenarios are highlighted with grey boxes.

One-Shift (OS) One-and-a-Half-Shift (OHS) Two-Shift (TS)

PINA

Operators total 4 6 4 6 4 6
Replications 30/30 30/30 30/30 30/30 28/30 30/30

Operator Utilization � Op5 + Op6 ↓↓ � Op6 ↓↓ ↑↑↑ �

Duration mean [d] 3.2 ± 0.00 3.2 ± 0.00 2.4 ± 0.02 2.3 ± 0.00 2.3 ± 0.02 1.6 ± 0.02
Labor costs [€] 7488 8928 7128 7866 8798 6840

PEMB

Operators total 4 6 4 6 4 6
Replications 41/45 41/45 45/45 44/45 –/45 42/45

Operator
Utilization �

Op4 − Op6
↓↓ � Op1 − Op6 ↓ ↑↑↑ �

Duration mean [d] 9.4 ± 0.01 9.4 ± 0.01 7.2 ± 0.01 6.1 ± 0.02 – 4.4 ± 0.01
Labor costs [€] 21,996 26,226 21,384 20,862 – 18,810

The production processes of PINA and PEMB are comparable; however, the number of
batches per campaign for PEMB is 2.5 times larger than that for PINA. This makes the PEMB
models both more susceptible and more relevant for choosing the optimal shift system.

The combination of six operators working in a TS yielded the lowest duration (PINA:
−50%; PEMB: −53%) and the lowest labor costs (PINA: −9%; PEMB: −14%) for both
products compared to the initial scenario. This is not initially surprising, as both duration
and headcount seem to correlate, as duration is one parameter of labor cost calculations. As
shown in Table 3, the durations of OHS with four and six operators differs slightly for PINA
due to its different capacity utilizations. There was also no difference in the duration of the
TS with four operators. Ultimately, having six operators in a TS decreased the duration
by about 30% compared to having four operators in a TS or six operators in an OHS. This
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decreased labor costs by 4% (OHS, four operators) and 13% (OHS, six operators) for the TS
with the six operators. This noteworthy difference in labor costs highlighted PINA in the
OHS as the second-best option for PINA.

For PEMB, the TS with six operators was found to be 28% faster and 10% cheaper
than the second-best option. This OHS used six operators, as it was significantly different
(15%) to the OHS with four operators in the campaign duration. This extra production day
produced only minimally higher labor costs (2%).

As previously mentioned, the obtained results indicate that production with six
operators in a TS is superior to all types of production with four operators for both
products. Here, only four operators were fully qualified. Therefore, the best option under a
headcount of four is of great importance. For PINA and PEMB, OHS is the best option due
to its faster production (PINA: 25%; PEMB: 23%) and lower labor costs (PINA: 5%; PEMB: 3%)
compared to the prevailing OS system. The head of production confirmed the superiority
of OHS compared to OS post-hoc based on his own experiences.

4. Discussion

Computer simulations enable testing and evaluating different production scenarios
by changing relevant parameters in the according model and running it. In this way,
the best possible scenarios were found in this case study. The prevailing conditions of a
small headcount and limited resources led to a user-friendly, practice-oriented simulation
approach for optimizing two approved pharmaceutical production processes. The majority
of computer simulation studies in pharmaceutical supply chain and manufacturing, as
reported in the introduction [5,16,19,24] concerned with planning or conducting the com-
plex issue of a whole production process, were performed by experts in modelling and
process design. In contrast, this study was conducted by non-computer experts, but experts
in pharmaceutical technology and production. We have deliberately modeled an already
established process to show that there is still a lot of untapped optimization potential. Our
determined potential savings of 50% campaign duration, and of up to 14% labor costs,
highlight the significance of this approach. Other less complex optimization attempts,
as published by Bähner et al., who evaluated the machine utilization, benefit from the
fact, that the time-consuming modeling is not required [30]. However, only the processor
utilization is mapped and the operator utilization is disregarded. With modeling, especially
having a small amount of historical data, one has a problem with a formal proof of validity,
but on the other hand, after implementation, one has more application possibilities. With
the still feasible efforts, our simulations intend to close the gap of published industrial
case studies.

4.1. Case Study Limitations

While a case study allows to obtain detailed and usually well-protected information
on specific production processes, it is also limited to it. The deliberate exclusion of extraor-
dinary events, such as breakdowns or process times with deviations, in the very beginning,
defined the simulations to represent standard processes without any incidence. Also, data
collection and analysis highlighted two challenges in this case study. Time recording was
performed manually minute-wise. This was disadvantageous for short processing times.
Setting up of scales takes 8 min on average, which is only 3% of the compaction time. How-
ever, the time resolution for both process steps is the same. Additionally, each process step
was started, and sometimes stopped, manually. Therefore, the processing times strongly
depend on the availability of an operator. This produces high relative standard deviations
for short processing times (PINA: 5–115%; PEMB: 6–75%), although the production process
is still within the necessary specifications. As an example, the process step of compulsory
mixing takes 11–20 min in the historical batch documentation for PINA. This time must be
split into the actual mixing time (10 min, fix) and the manual setting up/starting/stopping
time (1–10 min, operator dependent). Here, a waiting time of 10 min has a stronger impact
on the relative standard deviation than the same waiting time has on a compaction process
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with a mean duration of 269 min. The impact of these limitations on the significance of this
case study are, despite everything, acceptable. Even though FlexSim offers the integration
of breakdowns, a substantiated analysis of past quality issues would have been necessary
and was beyond the scope of this work. Nevertheless, relevant assumptions can be made.
The investigated solid production processes have a linear structure. A total breakdown of
one processor stops the production of all subsequent batches. Moreover, the start of some
batches will additionally be delayed since intermediate products have limited shelf lives in
the validated processes. Such factors prolong the campaign duration but do not influence
the processing times of single process steps. The effects of the unprecise time recording
and low time resolution on the overall model are also not critical, as short processing times
have only a small impact on the duration of the entire campaign. The dependency on
available operators also has small impact on the campaign duration, but great impact on
the model logic. This factum is negligible since all employees are well trained to prioritize
between different steps and since those priorities are implemented in the models as well.

4.2. Case Study Outcomes

In addition to the main aim of this paper (the optimization of existing processes by
discrete-event simulations), the implementation of this intuitive process can be evaluated.
Initially, the steps of data collection up to model verification were very time-intensive
but gave precious insight into the production processes. The as-is states of the actual
production processes were scrutinized more intensively than those during daily routines.
The obtained results challenged the workflow and the dependencies between different
working steps. During data analysis, process steps with significant economic potential were
identified; thus, analyses were performed, and possible improvements were developed.
Even without actually running any discrete-event simulations, significant knowledge was
gained. Therefore, it can be assumed that process owners already profit from such case
studies regardless of the simulation outcomes.

Knowledge of the relevant processes and regulations (e.g., GMP, quality management,
galenics, and marketing authorization) is important for successful model development in
a pharmaceutical production setting. Model implementation is manageable and worth
the effort, as the present case study demonstrates. Most elements of model building are
performed using simple drag and drop options, apart from the implementation of complex
logic. Creating possibilities to track processing times and process flow requires more
complex logic and, therefore, requires low-level programming. It is, however, possible
to overcome these obstacles, especially after gaining some experience. Consequently, the
necessary efforts during model building and verification strongly decrease for any other
comparable production process. The next step of model validation is already described as
being a crucial point for model-based debottlenecking approaches. Irregular or unsteady
production steps are known to complicate or even preclude a successful model valida-
tion [30]. Unfortunately, unfavorable circumstances also led to a failed predictive model
validation. It is therefore of great importance to choose the best validation strategy. The
efforts for a historical data validation or a predictive validation are easily manageable, since
the data handling identical to the one during model verification. Establishing optimization
scenarios, is less time-intensive and challenging, even though the optimization module
in FlexSim is not part of the applied student version. This means that all optimization
scenarios had to be developed and implemented from scratch. While the results are clear
on the superiority of six compared to four operators, more factors need to be considered.
The examined work only covers bulk production, which is only one part of the entire
production process and strongly depends on other departments, such as warehousing and
quality control. Whenever warehousing and quality control work in an OS system, suffi-
cient cooperation with the bulk production working in the OS or OHS system is granted.
Modifications and adjustments must only be made when a TS system is established. The
establishment of a TS system in bulk production can also produce a more rigid structure,
decrease spontaneity, and increase the headcount. The necessary financial and work inputs
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needed to qualify two more operators for the production of about 20 products must also be
taken into consideration. The impact of these disadvantages could be tested with the pilot
run of a TS system. It could also be further explored whether an increased headcount in
other departments should be mandatory, and whether the pressure on the involved staff
is bearable.

Besides analysis of the effects of different shift systems, further simulations could
examine more extensive questions, such as a change of the process layout. The simulated
processes are based on a long-established production site. Hence, the layout and conse-
quently the equipment localization depend on the floor plan and the structural conditions,
such as media supply systems and electrical equipment. As shown in Figure 4, the current
floor plan does not allow a lean production flow; an according spaghetti diagram would
reveal inefficient transportation and employee movements. A re-layout including a rebuild-
ing of the manufacturing premises of the site would enable an efficient and continuous
workflow with significantly reduced non-value-added time (NVA), such as work in process
inventory (WIP) or repeating pathways. Simulations could test the benefits of a re-layout
and thereby also substantiate such far-reaching considerations.

5. Conclusions

Due to stiff regulations and a large operational complexity in multi-product, batch-
operated sites, pharmaceutical companies sometimes operate in suboptimal conditions.
Optimizing such pharmaceutical production processes via computer simulations not only
appears to be practical but is also highly recommendable, even for relatively small com-
panies. This paper demonstrates that discrete-event simulations of pharmaceutical pro-
ductions (i) are feasible with FlexSim, (ii) can be conducted by non-computer experts,
and iii) may significantly improve the production performance. Modeling of the entire
production process does mean some effort at first. However, by considering the entire
process, this model can be applied with more flexibility compared to other bottleneck
identification methods focusing only on the technical equipment. In this case study, the
entire process simulation was conducted by one person and it was possible to reduce
the campaign duration by 50% for both products. If more resources were available, the
benefits would likely improve and be determined more quickly. From a user perspective,
more easily applicable tools and possibilities to effortlessly standardize modeling are de-
sirable, especially for data acquisition and model verification. However, this process is
only compelling for software developers if the demand is high enough. A widespread use
of discrete-event simulations in pharmaceutical companies may, therefore, potentiate the
present possibilities of such simulations.
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independent.
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Abstract: The paper aims to study the surface quality dependency on selected parameters of cuts
made in Hardox™ by abrasive water jet (AWJ). The regression process was applied on measured
data and the equations were prepared for both the Ra and Rz roughness parameters. One set of
regression equations was prepared for the relationship of Ra and Rz on cutting parameters—pumping
pressure, traverse speed, and abrasive mass flow rate. The second set of regression equations describes
relationships between the declination angle in kerf as the independent variable and either the Ra or
the Rz parameters as dependent variables. The models can be used to predict cutting variables to
predict the surface quality parameters.

Keywords: abrasive water jet; cutting; surface quality; quality prediction

1. Introduction

Cutting of materials by abrasive water jets has been studied for several decades. The pioneer
scientists dealing with this topic were Hashish [1,2] and Zeng and Kim [3,4]. Later, some further
investigations occurred aimed at the machining process, e.g., by Kovacevic and Yong [5,6]. The current
state of research of abrasive water jet technology shows that one of the important problems is the
quantification and modeling of the influence of technological parameters on surface quality parameters,
particularly on wear-resistant steels. Evaluation of cutting quantity and quality was continuously
studied by various groups [7–10]. Sutowska et al. [11] studied the influence of cutting parameters
on the kerf quality in detail. Some of the recent experiments were performed on HardoxTM 400, 450,
and 500 steel plates by Filip, Vasiloni, and Mihail [12,13].

Evaluation of the cutting quality is related to the quality of the cut walls. The typical characteristics
of the walls are roughness and waviness. The most common characteristics used for the evaluation of
the surface roughness were measured and analyzed. These characteristics are Ra, the mean arithmetic
deviation of the profile, and Rz, the height of the profile unevenness. These two quantities can be
measured by contact profilometers or by non-contact profilometers [14–16]. Nevertheless, the values
depend not only on cut material or depth in the kerf but also on abrasive material quality and grain
size [17]. Former research works aimed at the problem of abrasive material changes in the mixing
process show, however, that the problem is not easy to solve [18,19] because not only the average mean
size ao plays the decisive role in changes to new one an but also the amount and type of the original
damage of abrasive grains. The influence of the abrasive material and its granularity is constant for one
selected material sort. This is the most common case in all commercial firms. Therefore, the influence
of abrasive material can be considered as disturbance quantity identical in all experiments. The surface
waviness has much higher values than roughness, generally in the order of millimeters. The quality of
this part of the cut walls is incredibly low, therefore, beyond the interest of this paper.

Processes 2020, 8, 1652; doi:10.3390/pr8121652 www.mdpi.com/journal/processes
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The Hlaváč group has presented another approach to the determination of the cutting wall quality
than the use of the Ra and Rz values, proposing a direct relationship between the declination angle
(measured between the tangent to the striation curve in the definite depth h and the impinging jet axis)
and respective cutting wall quality. The angle is calculated either for a certain depth in material or
some assigned traverse speed from the presented model [17]. Nevertheless, angle values are incredibly
low in quality cutting, and thus even relatively small imperfections in measurements bring quite large
uncertainty in quality results. Therefore, this method is better for evaluating the part of the cut walls
with predominant waviness.

Although there is a constantly growing set of developed solutions to the problem, including
methodologies and evaluations of experiments valid for specific measurement conditions, the current
solutions still do not cover several variations. The microscopic models describing the mechanism of
material cutting were prepared [18] as well as the macroscopic model of cutting front behavior [19,20].
An interesting multi-parametric phenomenological description of the cutting process has also been
presented by the Ostrava group [21–23]. The group of TU Kosice researchers entered this research area
as a part of systematic studies of the operational states of manufacturing processes using progressive
technologies [14,15,24] and influence of the process parameters on the surface quality [25,26] a few
years ago.

The recent research is focused on complementing existing models and preparing some new ones
that would be simple enough to be applicable in industrial conditions to help predict and control the
production quality. The most important results are presented in this paper. They can be used for the
preparation of the regression models describing surface quality relationship to the cutting factors,
water pressure, traverse speed, and abrasive mass flow rate.

2. Experimental Section

2.1. Characteristics of the Samples

All samples were cut from HardoxTM 500 abrasion resistant plates with a nominal hardness of
500 HBW developed for applications with high demands on abrasion resistance. Material properties
were obtained by a combination of quenching and tempering performed by manufacturer SSAB
Oxelösund AB, Sweden. Sheet thicknesses of 6, 10, 15, and 40 mm were used for the individual sets of
experiments with the following characteristics [27]:

Hardness (Brinell hardness, HBW according to EN ISO 6506-1, on a milled surface 0.5–2 mm below
plate surface per heat and 40 tons): 486 (6 mm)–497 (40 mm).

Impact Properties (longitudinal Charpy-V; typical impact energy for 20 mm plate thickness at
temperature −40 ◦C): 30 J.

The chemical composition of the material is presented in Table 1.

Table 1. Chemical composition of the HardoxTM 500 plate samples [27].

Plate
Thickness

mm

C Max
%

Si Max
%

Mn Max
%

P Max
%

S Max
%

Cr Max
%

Ni Max
%

Mo Max
%

B Max
%

4-13 0.27 0.70 1.60 0.025 0.010 1.00 0.25 0.25 0.004
(13)-32 0.29 0.70 1.60 0.025 0.010 1.00 0.50 0.30 0.004
(32)-40 0.29 0.70 1.60 0.025 0.010 1.00 1.00 0.60 0.004

To study the dependencies of parameters, a 3-level full 3-factor experiment was designed with a
total number of combinations of technological parameter values of 27 (Table 2). These combinations
were applied to 4 different sample thicknesses (6, 10, 15, and 40 mm). It follows that 9 samples with
3 cut surfaces were cut from each sheet thickness. Therefore, the shape with the plan view of an
equilateral triangle was chosen as the most suitable sample shape. Transverse speeds v was used for
sample thicknesses of 10 and 15 mm; v+ are increased speeds for 6 mm samples because the speeds v for
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6 mm sheet metal would leave minimal roughness and at the same time almost identically rough-cut
surfaces. Traverse speeds v− were used for 40 mm sheet metal, as v would not be enough to cut the
plate, so decreased speeds were chosen.

Table 2. Combinations of technological parameter values for sets of experiments.

Combination of
Technological Values

Parameters (Cutting No.)
Technological Parameter

ma p v v+ v−

1 170 300 40 60 10
2 170 300 60 90 15
3 170 300 80 120 20
4 170 340 40 60 10
5 170 340 60 90 15
6 170 340 80 120 20
7 170 380 40 60 10
8 170 380 60 90 15
9 170 380 80 120 20
10 220 300 40 60 10
11 220 300 60 90 15
12 220 300 80 120 20
13 220 340 40 60 10
14 220 340 60 90 15
15 220 340 80 120 20
16 220 380 40 60 10
17 220 380 60 90 15
18 220 380 80 120 20
19 270 300 40 60 10
20 270 300 60 90 15
21 270 300 80 120 20
22 270 340 40 60 10
23 270 340 60 90 15
24 270 340 80 120 20
25 270 380 40 60 10
26 270 380 60 90 15
27 270 380 80 120 20

2.2. Characteristics of the AWJ System and Procedure

The experiments were performed on the AWJ system comprising technological (cutting) head
PaserIIITM, X-Y table WJ1020-1Z-EKO with X-Y Computer Numerical Controlled (CNC) system and
pump Flow HSQ 5X (see Figure 1) with combination of the following parameters:

Water orifice diameter do 0.25 mm
Stand-off distance L 2 mm
Focusing tube diameter da 1.02 mm
Focusing tube length la 76 mm
Abrasive material average grain size ao 0.275 mm (MESH 80)
Abrasive material type Australian garnet
Angle of impact θ 0 rad
Water jet pressure p 300, 340, 380 MPa
Abrasive mass flow rates ma 170, 220, 270 g/min
Experimental traverse speeds v 40, 60 80 mm/min for each thickness 6, 10 15 mm

10, 15, 20 mm/min for thickness 40 mm
60, 90, 120 mm/min for thickness 6 mm
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Figure 1. Experimental AWJ system (on the left) and pump Flow HSQ 5X (on the right).

These combinations represent 135 single cuts. Therefore, 45 triangle-shaped samples were cut,
each side being cut with a different traverse speed v (Figure 2). All samples’ cut surfaces were
chemically treated with a passivation bath immediately after the end of the experiments—a solution
of 5 g of sodium nitrite per 1 liter of water. The samples were immersed for 2–3 s in a solution at a
temperature of about 60 ± 5 ◦C. Immediately after application of the solution, drying with hot air and
storage in a dry environment followed. Surfaces treated in this way will resist corrosion for sufficient
time to perform measurements.

 

Figure 2. The cutting program’s screen and detail of the HardoxTM steel plates cutting (on the top);
below samples prepared from (thicknesses from left to right 6, 6, 10, 15 and 40 mm).
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The samples with thickness 6 mm were cut two times, ones with the same traverse speed as
thicknesses 10 and 15 mm, ones with higher traverse speeds. Thickness 40 mm was not possible to cut
using the same traverse speeds as other thicknesses. Therefore, the lower ones were utilized.

2.3. Roughness Measurement of Cut Surfaces

The roughness parameters Ra and Rz were measured in the middle height of the sample, i.e.,
at half the cut material’s thickness. The roughness parameters Ra4 and Rz4 were measured on the cut
surfaces of samples of all examined thicknesses (6, 10, 15, 40 mm and 6 mm+) at a distance of 4 mm
from the upper cutting edge (from the surface of the sheet where the jet enters the material) using the
Mitutoyo Surftest SJ-301 roughness tester. Repeated control measurements were performed for the
reliability of all measured sets of values. The control measurements’ total errors for the roughness Ra,
Rz, Ra4, and Rz4 are in the range <3.06; 5.09> percent.

The Dixon test of extreme values is applied to selected sets of measured values in which some
values differ significantly from the other values of the set. Based on the comparison of the calculated
value and the tabular critical value of the test criterion, it can be stated with 95% probability that Rz
and Ra’s assessed values are not extreme values and can therefore remain in the sets of measured
values for evaluation.

Results of Ra and Rz measurements performed on the middle line of the thickness of samples cut
from 6, 10, and 15 mm thick plates using the identical jet parameters mentioned above are summarized
in Table 3. The additional results were measured on samples prepared from a 40 mm thick plate
applying lower traverse speeds. They are presented in Table 4.

Table 3. Values of roughness Ra and Rz measured on cut surfaces of samples.

Sample
Number

Cut Surface
Number

ma
g/min

P MPa
v

mm/min
6 mm

Ra μm
6 mm

Rz μm
10 mm
Ra μm

10 mm
Rz μm

15 mm
Ra μm

15 mm
Rz μm

I
1 170 300 40 3.17 21.88 4.44 23.82 4.92 26.76
2 170 300 60 3.52 22.02 4.36 24.58 6.12 32.26
3 170 300 80 3.69 22.11 4.98 29.25 7.93 35.97

II
4 170 340 40 3.06 21.73 3.87 23.41 4.62 26.32
5 170 340 60 3.42 21.90 4.44 23.66 5.96 29.49
6 170 340 80 3.63 22.02 4.72 24.77 7.11 35.25

III
7 170 380 40 3.04 21.59 3.76 22.80 4.23 24.45
8 170 380 60 3.18 21.61 3.67 22.87 5.74 28.42
9 170 380 80 3.56 21.91 4.26 23.78 6.86 34.65

IV
10 220 300 40 2.98 21.45 3.68 22.50 4.18 23.14
11 220 300 60 3.05 21.50 3.58 23.12 5.36 28.21
12 220 300 80 3.52 21.77 4.40 24.15 6.24 34.49

V
13 220 340 40 2.87 21.05 3.32 21.18 3.84 22.24
14 220 340 60 3.02 21.41 3.47 21.51 5.08 26.73
15 220 340 80 3.28 21.52 3.33 22.00 6.02 33.20

VI
16 220 380 40 2.73 19.39 3.07 20.00 3.22 20.48
17 220 380 60 2.99 21.12 3.33 20.70 3.78 21.30
18 220 380 80 3.26 21.08 3.30 21.58 5.62 31.66

VII
19 270 300 40 2.71 18.39 3.05 19.37 3.11 19.48
20 270 300 60 2.92 21.02 3.40 20.30 3.56 20.25
21 270 300 80 3.20 20.90 3.28 20.82 5.49 30.80

VIII
22 270 340 40 2.42 17.45 2.79 18.54 2.95 19.02
23 270 340 60 2.78 19.87 3.14 19.75 3.27 19.68
24 270 340 80 3.08 20.22 3.25 20.01 5.40 28.00

IX
25 270 380 40 2.27 17.20 2.75 17.81 3.10 18.27
26 270 380 60 2.44 19.11 2.89 19.05 3.08 19.33
27 270 380 80 2.80 19.35 3.22 19.62 3.76 24.01
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Table 4. Measured values of declination angle θ and roughness characteristics Ra and Rz on the cut
walls at samples with a thickness of 40 mm.

Sample
Number

Surface
Number

ma
g/min

p
MPa

v
mm/min

θ
deg

Ra
μm

Rz
μm

I
1 170 300 10 17.7 3.65 20.84
2 170 300 15 24.7 4.09 21.90
3 170 300 20 30.1 6.95 24.96

II
4 170 340 10 15.0 2.90 19.79
5 170 340 15 18.2 3.92 21.00
6 170 340 20 26.1 5.87 23.64

III
7 170 380 10 14.5 2.83 19.11
8 170 380 15 17.1 3.66 20.81
9 170 380 20 21.2 4.10 22.90

IV
10 220 300 10 14.3 2.75 18.67
11 220 300 15 16.9 3.46 20.56
12 220 300 20 20.5 4.07 21.10

V
13 220 340 10 13.9 2.71 17.14
14 220 340 15 15.8 3.22 20.60
15 220 340 20 19.8 3.65 20.93

VI
16 220 380 10 13.5 2.60 16.83
17 220 380 15 15.4 3.02 19.66
18 220 380 20 18.8 3.46 20.69

VII
19 270 300 10 13.0 2.44 16.52
20 270 300 15 14.1 3.01 19.30
21 270 300 20 18.3 3.33 20.10

VIII
22 270 340 10 11.5 2.28 16.25
23 270 340 15 12.7 2.93 18.29
24 270 340 20 16.8 3.21 19.77

IX
25 270 380 10 9.6 2.27 16.02
26 270 380 15 10.5 2.67 16.77
27 270 380 20 14.6 2.96 18.40

Results measured on samples 6 mm thick, cut at higher traverse speeds than samples presented in
Table 3, were used to broaden the confidence interval of a regression derivation of the relationships
useful for analyses, simulations, and control of the surface quality.

Results of surface roughness characteristics Ra and Rz presented in Table 3 indicate supposed
relationships—increasing quality for lower traverse speeds, higher pressures in pump, and higher
abrasive mass flow rates. Similar conclusions can be drawn from the results presented in Table 4.
Nevertheless, the relationship between roughness and declination angle values can be derived from
values in Table 4. Subsequently, the results can be compared with the model presented by Hlaváč [17].

Summarizing all combinations of factors, it is possible to obtain functions describing
speed-dependent roughness for each doublet ma and p. However, it is necessary to measure the values
in a certain selected identical depth on the cut wall for all samples (to compare the values). The depth
equal to 4 mm was selected for presentation in this paper (values are marked Ra4 and Rz4). The typical
series of roughness values for all used traverse speeds is presented in Table 5. The selected abrasive
mass flow rate is typical for applied nozzle diameter, focusing tube characteristics, abrasive material
type, grain size, and pump pressure. Traverse speeds were completed from all experimental sets.
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Table 5. Typical series of roughness values Ra4, Rz4 (abrasive mass flow rate 220 g/min and pressure
380 MPa are typical technological parameters used for cutting).

v mm/min ma g/min p MPa Ra4 μm Rz4 μm

10 220 380 2.16 16.90
15 220 380 2.44 18.09
20 220 380 2.71 19.53
40 220 380 2.89 20.11
60 220 380 2.98 20.75
80 220 380 3.32 21.58
90 220 380 3.70 23.45
120 220 380 3.85 23.22

The graph of relation between traverse speed and surface roughness parameters is presented in
Figure 3 (for values presented in Table 5).

Figure 3. Roughness dependence on traverse speed with linear regression (graph).

The summary regression models for factors x1 (ma), x2 (p) and x3 (v) can be written as

Ra = 7.905− 0.012x1 − 0.007x2 + 0.011x3 (1)

Rz = 39.103− 0.049x1 − 0.027x2 + 0.046x3 (2)

Values calculated from these models were compared with further experimental results, and the
comparison is presented in Table 6. The modeled surface roughness values for the respective
combinations of technological parameter values were subsequently experimentally verified. The result
of the verification confirmed the correctness of the verified mathematical models and the subsequently
performed calculation. The deviation between the values of Ra, Rz obtained from the simulation,
and the values from the subsequent verification experiment ranges from −5.4 to +5.6% for Ra and in
the range of −4.9 to +0.3% for Rz. From that, it is evident that the model is simple but works effectively.
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Table 6. Comparison of calculated and measured roughness values Ra and Rz.

Technological Parameters Quality Parameters Deviation of Calculated
Value Regarding the
Experimental Value

Abrasive Mass
Flow Rate

Pump
Pressure

Traverse
Speed

Values Calculated
from Model

Measured
Experimental Values

ma (x1)
g/min

p (x2)
MPa

v (x3)
mm/min

Ra (y)
μm

Rz (y)
μm

Ra
μm

Rz
μm

for Ra
%

for Rz
%

160 270 35 4.48 25.58 4.70 26.91 −4.7 −4.9
180 285 38 4.17 24.34 4.41 25.22 −5.4 −3.5
190 310 45 3.95 23.49 3.84 24.04 2.9 −2.3
190 310 45 3.82 22.99 3.95 22.90 −3.3 0.3
200 320 50 3.70 22.53 3.90 22.85 −5.1 −1.4
210 330 57 3.41 21.37 3.48 22.27 −2.0 −4.0
230 350 65 3.13 20.26 3.11 20.95 0.6 −3.3
250 360 68 3.04 19.92 2.88 20.08 5.6 −0.8
260 370 77 2.75 18.76 2.81 19.55 −2.1 −4.0

2.4. Measurements of the Angle of Declination of the Jet

The declination angle θ of the abrasive water jet for 40 mm thick samples was measured at
5 locations on each cut surface on series of successive measurements distinct approximately 5 mm
from the previous measurement in the cutting direction according to Figure 4. The resulting values of
the jet deflection on the cut surfaces were obtained by the arithmetic mean of the measured repeated
values on the individual cut surfaces (θ1–θ5).

 

 

Figure 4. Locations of zones for measuring roughness parameters Ra, Rz, and Ra4, Rz4 (upper left);
measurement of roughness Ra, Rz, and Ra4, Rz4 on cut surfaces of samples (upper right);
declination angle on the cut surface (bottom).

A Vogel-Germany Universal Winkelmesser device with measuring range distribution 4 × 90◦
and scale resolution 5′ was used to measure jet declination on cut surfaces of 40 mm thick samples.
Presented results also make it possible to prepare the regression equations describing the relations
between declination angle value and roughness parameters. The equations obtained from regression
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by the processing of all measured values for both the Ra and Rz characteristics of roughness for factor
x4 (θ) are as follows

Ra = 0.2195x4 − 0.2239 (3)

Rz = 0.4442x4 + 12.25 (4)

The obtained model reveals linear behavior within the tested range, as shown in Figure 5. Testing of
this model accuracy on other materials is just in the stage of preparation for future work.

Figure 5. Roughness dependence on traverse speed with linear regression (typical graph).

3. Discussion

The experimental investigation of cuts made in very hard and wear-resistant steel concludes
that relationships between the declination angle and roughness parameters are linear. The studied
problem is close to the tailback and the taper investigations performed in the past by Hashish [16] or
Ma and Deam [28]. Precise experiments studying surface quality on the selected process parameters of
the Hardox steel plates cutting were revealing the traverse speed as the most important parameter
influencing the accuracy of AWJ cutting were performed previously [11–13].

Calculation of the tilting of the cutting head for compensation of the declination angle effect
on cut walls, presented, e.g., by a group of Ostrava researchers [17,29,30], should help to improve
the cutting process and to minimize the typical defects caused by the abrasive water jet declination
when the cut starts, ends, changes direction in the corners and in the curved parts of trajectories.
Because according to the up-to-date results, no simple and direct relationship has been proved between
common material properties and cutting quality for all types of cut material, the presented relations
seem to be quite important. Their further investigation and confirmation for a broad spectrum of
materials are necessary.

Models proposed in the present article may be evaluated from some points of view as simple;
lacking physical linking of the parameters; but still in accordance with the main features of the more
complex Hlaváč model and with the experimental findings of other teams studying the quality of this
type of cut materials and confirmed by experiments reported in Table 6. Thus, it may complement the
variety of the materials and range of studied parameters and widen existing models for application in
particular conditions.
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The relations for these quantities should be the aim of further research because the miniaturization
of abrasive water jets needs a strong and stable description to predict and control the production
quality. Therefore, studying the surface topography on the cut walls is still important. Experimental
and theoretical studies of the interaction problems are important for lifting the abrasive water jet tool
to a higher level of operational excellence.

4. Conclusions

The presented research was aimed at the dependence of selected technological parameters of the
AWJ system on selected parameters of the quality of the cut surface. The multiple linear regression
function describing the cut wall roughness as a function of the mentioned selected cutting variables
has been determined for both Ra and Rz.

The main results can be summarized as follows:
With increasing material thickness from 6 to 10 and 15 mm, the roughness in its central part

increases by more than 18% at Ra and 5.5% at Rz for 6 and 10 mm thicknesses and by one third for Ra
and 21% for Rz for 10 and 15 mm thicknesses.

The values of technological parameters ma = 170 g/min, p = 300 MPa, v = 80 mm/min represent the
combination with which the highest roughness values while the values of technological parameters
ma = 270 g/min, p = 380 MPa, v = 40 mm/min represent the combination with which the smallest
roughness values were achieved. By increasing ma from 170 to 270 g/min at p = 340 MPa, it is possible
to twice the speed v with an unchanged roughness value Ra of the cut surface.

The largest influence of the monitored technological parameters on the roughness (Ra, Rz) was
found for the abrasive mass flow, a smaller influence was revealed for the cutting speed v.

Derived regression models (Equations (1) and (2)) show linear relationships have been determined
between studied independent variables of the cutting process (traverse speed, liquid pressure,
and abrasive mass flow rate) and roughness characteristics. Simultaneously, the linear relationships
(Equations (3) and (4)) have also been found between declination angle values and roughness parameters
Ra and Rz.

The models can be used both for a prediction of cutting variables and for a calculation of the
cutting characteristics, such as traverse speeds, abrasive flow rates, and other influencing cutting
walls quality. The achieved results are utilizable for improvement of the control software of the CNC
machines used for water jet and abrasive water jet cutting and complement the existing solutions in
the scientific field and can be used to reduce operating costs and increase the economic efficiency of
production systems with AWJ technology.

The authors plan to include non-contact measurements on the samples cut using the AWJ systems,
more complex roughness and waviness parameter analysis, and texture modeling of measured surfaces
using their merging for future work.
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Nomenclature

θ angle between impinging jet axis and tangent to the striation curve in the selected depth h . . . [◦]
an average mean size of abrasive particles formed in the mixing process . . . [m]
ao average mean size of abrasive particles entering the mixing process . . . [m]
do water nozzle diameter . . . [mm]
da focusing tube diameter . . . [mm]
H material thickness . . . [mm]
la focusing tube length . . . [mm]
L stand-off distance . . . [mm]
p water jet pressure . . . [MPa]
ma abrasive mass flow rate . . . [g/min]
v traverse speed . . . [mm/min]
Ra arithmetic average roughness . . . [μm]
Rz maximum peak to valley height of the profile . . . [μm]
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Abstract: The article presents the problems connected with the performance evaluation of a flexible
production system in the context of designing and integrating production and logistics subsystems.
The goal of the performed analysis was to determine the parameters that have the most significant
influence on the productivity of the whole system. The possibilities of using automated machine
tools, automatic transport vehicles, as well as automated storage systems were pointed out. Moreover,
the exemplary models are described, and the framework of simulation research related to the
conceptual design of new production systems are indicated. In order to evaluate the system’s
productivity, the use of Overall Equipment Efficiency (OEE) metrics was proposed, which is typically
used for stationary resources such as machines. This paper aims to prove the hypothesis that the
OEE metric can also be used for transport facilities such as Automated Guided Vehicles (AGVs).
The developed models include the parameters regarding availability and failure of AGVs as well
as production efficiency and quality, which allows the more accurate mapping of manufacturing
processes. As the result, the Overall Factory Efficiency (OFE) and Overall Transport Efficiency (OTE)
metrics were obtained. The obtained outcomes can be directly related to similar production systems
that belong to World Class Manufacturing (WCM) or World Class Logistics (WCL), leading to the
in-depth planning of such systems and their further improvement in the context of the Industry 4.0.

Keywords: AGV—Automated Guided Vehicles; DES—Discrete Event Simulation; FMS—Flexible
Manufacturing Systems; Industry 4.0; OEE—Overall Equipment Efficiency; WCLcWorld Class Logistic

1. Introduction

One of the key factors, which determine the level of competitiveness of manufacturing plants, is the
ability to achieve flexible production and delivery of goods in accordance with customer requirements.
Therefore, logistics and Supply Chain Management play an important role in market competition [1].
Logistic operations are carried out in two areas, internal and external to the organization. Therefore,
the term “Intra-logistics” describes the organisation and realisation of internal material flow and
logistic technologies as well as the goods transhipment in the industry, using technical components,
partial and full systems and services [2].

In connection with the flexible production, there are also increased requirements regarding the
flexibility and reliability of internal transport systems, associated with the production of short series
of various products and thus requiring more transport operations [3]. In response to these needs,
the Automated Guided Vehicles (AGVs) are used a lot more widely, which enables full automation
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of transport operations and can handle various transport routes using only computer navigation
systems [4–6].

In order to evaluate the system’s productivity, the use of Overall Equipment Efficiency (OEE)
metrics has been proposed that is usually used for stationary resources, like machines. The aim of the
paper was to prove the hypothesis that the OEE metric can also be used for transport facilities such as
AGVs, and there is a dependence between machine and transport effectiveness.

To investigate the influence of the intra-logistic system over the performance of the manufacturing
system we have developed a conceptual model of Flexible Manufacturing System (FMS) with
an automated transport system with AGVs. The model of the FMS was built with the use of
FlexSim software and the OEE metric was used for system integration and description of the
availability, reliability and performance parameters for machines and vehicles. Then the Discrete
Event Simulation (DES) method was used for performing the series of experiments and an analysis of
results is presented in form of Overall Factory Efficiency (OFE) and Overall Transport Efficiency (OTE).
Our previous works [7–9] show that the computer simulation of the detailed model of the production
line with machines, operators and robots with reliability parameters allows better representation
and understanding of a real production process which is important for early design and enables
front-end planning.

The AGV parameters play an important role for FMS performance; therefore, literature review
about FMS, AGV and logistics issues, are presented in the next section. The subsequent sections of the
paper include description of the problem, modelling and simulation experiments, results analysis and
discussion and final conclusions.

2. State-of-the-Art

Many researchers in logistics have examined the influence of high-performance logistics practices
on organizational performance [1,10,11]. In an attempt to drive performance improvements, managers
often struggle with multiple, seemingly conflicting, objectives [1]. Logistics management is faced with
a tough choice: either strive for efficiency; or strive for effectiveness. Some recent logistics research has
suggested that these two performance objectives are mutually exclusive [12]. Performance measures are
essential for effective management of any organization. Performance measurement provides a needed
assessment of service and cost aspects of logistics execution in the supply chain. Specifically, there is
little guidance regarding where a specific measure should be used and, more pointedly, where the use
of the measure would be less appropriate.

Fugate et al. [13], have presented the model of logistics performance with the concept of
simultaneous pursuit of efficiency, effectiveness and differentiation. However, most companies’
priorities change over time due to market and competitive dynamics. In light of this business reality,
enterprises and managers must be able to identify and select new or different measures consistent with
evolving organizational priorities [14].

Muthiah and Huang [15] reviewed and categorized various productivity improvement methods
and productivity metrics. For example, Overall Equipment Efficiency (OEE is an established technique
in World Class Manufacturing (WCM). It is used as a key performance indicator (KPI) in conjunction
with lean manufacturing efforts to provide a quantifiable measurement of success. There are a few
examples of the performance evaluation of manufacturing systems with the use of the OEE metric,
including [16,17], but without considering the efficiency of the transport subsystem.

Muñoz-Villamizar et al. [18], have used OEE to evaluate the effectiveness of urban freight
transportation systems and a framework for Overall Transport Efficiency (OTE) based on OEE factors
was proposed by Dalmolen et al. [19]. McCalion [20] ask the question: is OEE relevant to logistics
management and Automated Guided Vehicle (AGV) operations?

Hayes [21] suggests that the OEE can be used for eliminating the ripple effect caused by stopped
vehicles and along with Six Sigma [22] can be used as a measure for World Class Logistic (WCL).
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Comparing WCL with WCM, they have a lot in common. The common area is related to
intra-logistic in manufacturing systems. Intra-logistic performance has a great influence over the
manufacturing performance, because of inter-operational breaks which have a great impact on materials
flow in flexible manufacturing system [23].

The literature review only shows a few publications on the design methodology of AGV systems
and most of the them use simple KPIs as metrics [24–29]. At the time of preparing this paper,
no publication was found concerning the detailed assessment of the impact of the AGVs system on the
manufacturing process effectiveness that includes the OEE metric. Therefore, the studies have been
undertaken in order to elaborate this problem in terms of transport and production effectiveness and
to strengthen the logistics potential of the organization.

2.1. Issues Related to FMS and AGV

The flexible manufacturing system (FMS) is a fully automated production system that interconnects
machines and workstations with the logistics equipment, where the entire manufacturing process
is coordinated by the digital control systems such as Computer Numerical Control (CNC) or
Programmable Logic Controller (PLC). Such flexible, automated manufacturing systems are intended
for tasks of large typological diversity, high complexity, ensuring on-time delivery and minimal
manufacturing costs, while production is unpredictable, being organized in small batches, with frequent
changes [30].

The FMS has been studied over the last couple of decades and the researchers have found
a variety of problems, which can be distributed in three major categories: workshop design,
transportation network design and scheduling problems [31,32]. Different methods were used
to solve them, including mathematical (linear, constraints, stochastic) programming, combinatorial
optimization, Petri nets and scenario analysis, but computer simulation, especially Discrete Event
Simulation (DES), is the most universal and widely used one [33], e.g., for the design of manufacturing
systems [27], efficiency [9] and stability analysis [34] of production systems and the design of warehouse
transportation systems with Automated Guided Vehicles (AGVs) [35–37].

The AGVs are classified as service robots for professional purposes in manufacturing environments
and broad review of AGV is presented in [6,28].

Modern AGV vehicles are characterized by precision of operation, speed of movement and high
reliability. They can have various equipment to perform numerous transport tasks, such as transporting
pallets and containers, pulling trailers with cargo, lifting with a forklift or manipulating details using
an integrated robot arm. Examples of AGV carriages are shown in Figure 1.

   

(a) (b) (c) 

Figure 1. Examples of Automated Guided Vehicles (AGVs), (a) pulling trailers with cargo,
(b) transporting pallets, (c) lifting loads with a forklift [38].

In comparison to the other solutions of transport systems, AGV vehicles show many advantages
including [5,6]:

• they do not require an operator’s service, which allows reducing the labour costs,
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• increased work efficiency—it can work 24 h a day,
• high positioning precision—less material losses during transport,
• high security—the replacement of the operator reduces the number of accidents at work,

safety systems reduce the risk of collision,
• flexibility of use—the ability to program the route according to the requirements of the process,

easy route change and system expansion.

Typical features of AGV are related to the following parameters, as [5]:

• weight and size,
• load capacity (from a few kgs to several tons),
• driving speed 1–2 m/s,
• drive power,
• navigation method, positioning accuracy,
• time of loading and unloading,
• battery capacity,
• working time, battery charging time.

AGV uses electric drive and efficient batteries, however, it requires periodic recharging.
Depending on the battery capacity and load, a typical work cycle includes 8–16 h of work and
4–8 h of battery charging, which takes place completely automatically. Some solutions for recharging
the battery during short interruptions in the work of AGV (Opportunity Battery Charging) can be
found. There are also solutions based on manual or automatic replacement of a depleted battery
with a new fully charged battery (Battery Swap). This action takes about 10 min and allows to take
full advantage of AGV’s working time but requires a more advanced service system and additional
battery packs.

The design of a transport system based on AGVs requires an advanced navigation system
and appropriate delineation of transport routes and reloading points. Based on the technique,
various navigation systems are used, such as [37]:

• photo-optical—with a passive lead line,
• inductive—with an active lead line,
• without a lead line—autonomous navigation with different location methods: incremental,

infrared, ultrasonic, laser, gyroscopic, satellite (GPS).

Various methods can be used to design AGV systems, including mathematical programming
methods, heuristic methods, Petri nets and computer simulations. These methods are used in order
to improve the transport network in terms of criteria, for minimizing the length of transport routes,
maximizing the production flow, scheduling transport tasks, number and location of transhipment
points, parking zones and others [28,39].

Transport routes can be one- or two-way. Due to the reduction of the risk of collision, one-way
roads in the form of closed loops, which enable cyclical transport operations, are the most commonly
used [22]. In this case, it is easier to develop traffic control algorithms than in the case of two-way
traffic, which requires additional passing and parking zones. Therefore, during the design of the
AGV system, the most frequently used zones are defined including specific segments of the route
(Segmented Flow Configuration) and individual transport loops (Single Loops) in a given segment.
The advantages of such a solution are related to [40]:

• All AGV vehicles move in the same direction, which practically excludes collisions,
• system control is simplified due to the lack of alternative routes.

In turn, some drawbacks are connected with [35]:
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• Small fault tolerance, in the event of failure of one vehicle, the others usually cannot pass it by,
• if the vehicle passes the given transfer point, it cannot turn back, but it must cross the entire loop

once again to reach it again,
• vehicles hold each other, which may lead to blockages of the system (deadlock).

When designing the AGV transport system, the most important problem is determining the
number of vehicles needed to achieve the required production volume or the minimum number of
vehicles required to obtain the optimal production volume [36,40].

There are a lot of situations in which the AGV system may stall because of a deadlock. A variety
of deadlock-detecting algorithms are available in literature [41], but these methods work mainly
for manufacturing system where the network layout is simple and uses only a small number of
AGVs. The paper [42] discusses the development of an efficient strategy for predicting and avoiding
the deadlocks in a large scale AGV systems. The integration of the scheduling of production and
transport tasks tends to also be problematic because of computational complexity [43,44]. In initial
papers, the transportation times between machines have not been considered. Their authors claimed
that because transportation times are very small in comparison with the processing times, they are
negligible [45]. On the other hand, in recent decades, the more researchers have been attracted by some
issues that the transportation times were considerable and ignoring them can have impacts on the
solution of scheduling problems.

2.2. Evaluation of FMS and AGV

The performance of the AGV logistics system can have a great influence over the performance of
the whole FMS system; therefore, a performance evaluation should be conducted. The key performance
indicators (KPI) of the production system include [16,46]:

• Production throughput,
• time of the production process (Manufacturing Lead Time),
• average waiting time for transport,
• length of queues in storage buffers,
• work in progress (WIP),
• downtime of workstations,
• delayed execution of production orders,
• OEE—Overall Equipment Effectiveness,
• OTE—Overall Throughput Effectiveness.

Work efficiency and the use of the means of production can be expressed by using the OEE metric
that depends on three factors: availability, performance and quality [16].

OEE = (Availability) × (Performance) × (Quality) (1)

Availability is the ratio of the time spent on the realization of a task to the scheduled time.
Availability is reduced by disruptions at work and machine failures.

Availability =
available work time− failure time

scheduled time
(2)

Machinery failures may cause severe disturbances in production processes and the loss of
availability. Inherent availability can be calculated with Formula (3).

Availability =
MTBF

MTBF + MTTR
(3)

where:

255



Processes 2020, 8, 1648

• MTBF—Mean Time Between Failures,
• MTTR—Mean Time To Repair.

The OEE metric was developed for single component maintenance. In the case of complex systems
including serial or parallel subsystems the availability is changed. For the series system to be available,
each subsystem should be available. For the parallel system to be available, whichever subsystem
should be available.

Performance is the ratio of the time to complete a task under ideal conditions compared to the
realization in real conditions; or the ratio of the products obtained in reality, to the number of possible
products to obtain under ideal conditions. Performance is reduced (loss of working speed) by the
occurrence of any disturbances, e.g., human errors.

Performance =
ideal cycle time
real cycle time

=
real number of products

ideal number of products
(4)

Quality is expressed by the ratio of the number of good products and the total number of products.

Quality =
number of good quality products

total number of products
(5)

To compare the influence of the AGV logistic system over the manufacturing system, we will
consider different OEE factors. However, according to the lean manufacturing paradigm, the flow
of production through bottlenecks is the most important, therefore some equipment should be fully
utilized whilst other equipment does not require full utilization. The literature review [16,46] indicates
that OEE metrics are lacking at complex manufacturing systems and the factory level. In order
to address this gap, an overall throughput effectiveness metric can be used [47]. It measures the
factory-level performance and can also be used for performing factory-level diagnostics such as
bottleneck detection and identifying hidden capacity. It also accounts for subsystems processing
multiple products. Any factory layout can be modelled using a combination of the predefined
subsystems (serial, parallel), which allows a determination of the Overall Factory Effectiveness (OFE).
Note that the OEE equation can be further simplified as [46,47]:

OEE =
Actual throughput (units) from equipment in total time

Theoretical throughput (units) from equipment in total time
(6)

By extending this definition to the factory level, we have Overall Factory Effectiveness (OFE):

OFE =
Actual throughput (units) from factory in total time

Theoretical throughput (units) from factory in total time
(7)

Similarly, the Overall Transport Effectiveness (OTE) can be defined:

OTE =
Actual throughput (units) from vehicle in total time

Theoretical throughput (units) from vehicle in total time
(8)

3. Description of the Problem—Materials and Methods

Let us consider a production system with eight automated machine tools, such as a CNC machining
centre, which performs a two-stage process of machining a family of typical machine parts, like sleeves
or discs of different sizes.

The machines are arranged as shown in Figure 2, which allows the series-parallel flow
of production.
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Figure 2. The schema of Flexible Manufacturing System (FMS) with AGV transport.

The system also includes an Automatic Washing Station and Inspection Station as well as a Storage
System with an automatic rack stacker. Randomly generated various production orders are delivered
to the system, differing in the duration of the operation (from 2.5 to 15.2 min). As a means of product
transportation devices, several AGV vehicles are used, which will move along the planned transport
routes. We assume that the manufacturing process meets the lean manufacturing, i.e., the flow of
a single product and minimal buffers capacity to limit production in progress.

When designing a production system, we strive to achieve maximum production efficiency
and, in particular, maximum utilization of machines and devices constituting bottlenecks in the
manufacturing process. Other machines and devices will usually be used to a lesser extent, but they
are necessary for the production process. By introducing changes to the model, we can analyse
the formation of bottlenecks in the production system and their impact on the production volume.
This allows, i.e., to determine the required storage capacity and capacity of the transport system.
Particularly, the most interested issue is the impact of the number of AGV transport resources on the
production efficiency of the entire system. For this purpose, a simulation model was developed in the
FlexSim 2018 environment, shown in Figure 3.

 

Figure 3. Simulation model of the FMS with AGV transport.
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Initially, the reference system consisted only of machines, without taking transport into account.
It represents the manufacturing system in ideal conditions. At the next step, transport-related
constraints were added to the model. The layout takes into account the dimensions of individual model
objects and the distance between them. According to the recommendations given in the literature,
the model uses unidirectional transport routes forming three main loops. Several control points have
been introduced to designate places of loading and unloading as well as parking spaces. For the most
used intersections, control zones were used to reduce the risk of collisions and blockages.

Typical parameters of AGV were assumed, including the speed of 2 m/s and a loading/unloading
time of 30 s. A FIFO (First In First Out) control strategy was applied. In addition, the warehouse
system was expanded by adding components such as the high storage warehouse with an automated
storage retrieval system (ASRS).

4. Results of the Simulation Experiments

The developed model was used to conduct a series of simulation experiments. In subsequent
experiments, the number of AGV vehicles from 0 to 8 was changed. The simulation time of 24 h
was assumed as the time of automatic maintenance of the entire system. A random generation of
production orders was assumed according to the exponential distribution with the expected value of
100 s. As a result of a lack of data and the need for simplification, the retooling of the system, charging
of AGV batteries and the failure of machines and vehicles was omitted. As part of each experiment,
30 simulation runs were carried out. The results are presented in Table 1 and Figure 4, respectively.
Due to the stochastic parameters of the model, the production value Pavg obtained in the experiment is
a random variable with a distribution close to normal.

Figure 4. The relationship between average production Pavg and the number of AGV used for 24 h
of simulation.

The first row in the Table 1, where the number of AGV amount is 0, represents the reference system
consisting only of machines and not taking transport into account (transport time equal to zero).

Figure 4 presents the relationship between average production Pavg and the number of AGVs
used for transport in the form of a box-and-whisker plot.

The box represents a 95% confidence interval, which means the average production volume is
within this range with a probability of 95%, whilst, whiskers represent the maximum and minimum
value of production obtained in a given experiment (there is a small spread of results, therefore some
of the boxes in the chart are very small).

In the Figure 4, it can be seen that initially the increase of the AGV number results in a rapid
increase of obtained production volume. On the other hand, increasing the AGVs number above
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5 units results in a slight increase in production, as more vehicles are used to a lesser extent. A similar
phenomenon is described in the literature [36] as the effect of the mutual blocking of AGVs.

Table 1. The results of simulation experiments (Average production completed Pavg, in [pieces] for
24 h of work, 30 simulation runs in each experiment, 95% confidence level).

Number of AGVs
NAGV

Minimum
Production

Pmin

[Pieces]

Lower Limit
of 95%

Confidence
Interval
[Pieces]

Average
production

Pavg

[Pieces]

Upper Limit
of 95%

Confidence
Interval
[Pieces]

Maximum
Production

Pmax

[Pieces]

Standard Deviation
Σ

0 548 559.0 561 563 573 6.3
1 182 183.66 184.7 184.87 187 1.62
2 333 335.97 336.7 337.43 341 1.95
3 408 412.1 413.4 414.7 422 3.6
4 419 428.6 430.3 432 438 4.5
5 434 439.8 441.5 443.3 450 4.7
6 435 443.0 444.7 446.4 453 4.6
7 432 443.8 445.6 447.4 456 4.9
8 436 443.6 445.7 447.8 458 5.6

To eliminate them, it would be necessary to use multi-lane transport routes or passages.
The excessive increase in the number of AGVs is in turn associated with high costs and brings
little effects and a relatively small increase in production efficiency [34] with a drop in the effectiveness
of AGV being used.

The comparison with the results obtained in the ideal conditions (AGV = 0, Pavg = 561 pc.) shows
a great difference with the other results. For example, for 5 AGVs system, there was a Pavg = 441.5 pc.,
average machine utilization of about 70% and average AGVs utilization of about 50% (from the range
of 28–71% for AGV1 and AGV5). The increase of the AGV number caused very little increase in
machine utilization and a considerable decrease in the utilization of the additional AGVs.

That problem requires a more detailed investigation, but the traditional metrics for measuring
productivity as throughput or utilization rate are not very helpful for identifying the problems and
underlying improvements needed to increase productivity. In this situation, a more rigorously defined
productivity metric is needed [44]. Therefore, in this case, OEE metrics can be used, which take
into account equipment availability, breakdowns, performance (reduced speed, idling) and quality
(good and bad quality products).

Second Experiment

A more detailed model of the FMS system was developed taking into account the quality,
availability and reliability of AGVs and battery charging.

AGVs have very advanced design and are considered very reliable, but there are certainly few
publications about AGV reliability, compared to publications about machine reliability including [48,49].
With the use of fault tree analysis, a reliability block diagram and a hazard decision tree of AGV
components, reliability evaluation of the failure rate λ [1/h] was estimated to be 0.003 [48] and 0.0014 [49].
That can also be described with the Mean Time Between Failures (MTBF) as reciprocal of the failure
rate λ. Basing on the λ values, we have the range of MTBF = 300 ÷ 700 h and we have assumed
an average of MTBFagv = 500 h for modelling the reliability of AGV. We have also assumed Mean Time
To Repair (MTTRagv) = 8 h. The reliability of CNC machine tools was omitted because its reliability
should be much better than that of AGVs, and we will concentrate on the failure effect of the AGVs.
The machines are working parallelly; therefore, the effect of machine failures would be very small.
On the other hand, another random factor could hinder the analysis of results.

The AGV can work 24 h per day but sometimes battery loading is required. We have assumed
a working schedule for 6 AGVs with a 4 h pause for battery loading. It means that AGVs charge the
batteries alternately, and in each moment 5 AGVs are working and one is charging the battery. In the
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case of malfunction, the AGV is automatically moving to the parking place for maintenance or should
be manually removed to prevent blockage.

The scenario includes continuous work of the FMS for 3 shifts per day and 5 days per
week. As a result of the long-time effect of AGVs failures, long-time simulations were performed,
including work for 24, 120, 500 and 1500 h. The experiment’s results without and with reliability
parameters of AGVs are presented in Tables 2 and 3, respectively. (The raw data are included in the
Supplementary Materials).

Table 2. The results of simulation experiments (Average production completed Pavg, in [pieces]
for 6 AGVs with battery charging, without failures, 30 simulation runs in each experiment,
95% confidence level).

Time
[Hours]

Minimum
Production

Pmin

[pc.]

Lower Limit
of 95%

Confidence
Interval

[pc.]

Average
Production

Pavg

[pc.]

Upper Limit
of 95%

Confidence
Interval

[pc.]

Maximum
Production

Pmax

[pc.]

Standard
Deviation

σ

Average
Throughput
[pc./Hour]

24 593 611 614.2 617.5 634 8.7 25.59
120 3094 3131.8 3139.9 3148.1 3188 21.8 26.17
500 13,061 13,116.7 13,128.3 13,139.9 13,188 31.1 26.26
1500 39,288 39,387 39,406 39,425 39,534 51 26.27

Table 3. The results of simulation experiments (Average production completed Pavg, in [pieces] for
6 AGVs with battery charging, with AGVs failures, MTBF = 500 h, MTTR = 8 h, 30 simulation runs in
each experiment, 95% confidence level).

Time
[Hours]

Minimum
Production

Pmin

[pc.]

Lower Limit
of 95%

Confidence
Interval

[pc.]

Average
Production

Pavg
[pc.]

Upper Limit
of 95%

Confidence
Interval

[pc.]

Maximum
Production

Pmax

[pc.]

Standard
Deviation

σ

Average
Throughput
[pc./Hour]

24 549 607.3 613.2 618.3 634 14.8 25.55
120 2810 3091 3116 3141 3174 68 25.97
500 12,327 12,965 13,030 13,094 13,162 173 26.06
1500 38,402 39,044 39,151 39,258 39,463 287 26.10

An analysis of the previous model showed that blockage of the machines sometimes occurs;
therefore, small loading/unloading buffers with a capacity of one piece were added to machines in
order to improve the production flow. Quality parameters were defined as 99.9% of good products
according to the OEE quality factor.

Comparing the results from Tables 2 and 3, a small but significant effect of AGVs failures on
production can be seen (a decrease of about 0.7%). For a more detailed analysis, the OFE metrics
can be used. Since the model was built based on the OEE components and contains parameters of
availability, performance and quality, the production value from the simulation Pavg can be directly
used to calculate the OFE indicator [25,41].

OFE =
Pavg

Plimit
(9)

The value Plimit represents the theoretically available maximal production in ideal conditions.
For the average machining time of tm = 530 s, the limit is equal to 6.79 pc./hour for one machine and
652 pc./24 h for the whole machining system (Plimit = 27.17 pc./hour).

The juxtaposition of the OFE indexes is included in Table 4.
The differences between OFE2 and OFE3 are related to the warmup of the system in a short time

and to the effect of AGV failures in a long time. This result is consistent with assumed reliability
parameters and inherent availability (Equation (3)) of AGV and parallel system. As there is a small
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probability of simultaneous failure of all AGVs, the effect is connected with the loss of performance
including loss of speed during loading/unloading, waiting for transport and blocking.

Table 4. The Overall Factory Effectiveness (OFE) metrics for model of 6 AGVs without failures OFE2

and with failures OFE3 and OFE1 from the previous experiment.

Time
[Hours]

Plimit Pavg1 OFE1 Pavg2 OFE2 Pavg3 OFE3

24 652 444.7 0.68206 614.2 0.94203 613.2 0.94049
120 3260 2252.3 0.69089 3139.9 0.96316 3116 0.95583
500 13,583.33 9407.6 0.69258 13,128.3 0.96650 13,030 0.95926

1500 40,750 28,230.7 0.69278 39,406 0.96702 39,151 0.96076

5. Discussion

The question is—which KPI should be used for an evaluation of the whole manufacturing system
and the transport subsystem?

The key factor is the production flow through the machines, as there is the bottleneck, which is
related with the utilization of the machines and transport vehicles.

The relationship between average utilization of machines and AGVs and the number of AGVs
used for 24 h of simulation is shown in the Figure 5. With the increasing number of AGVs, the utilization
of machines is increasing, and at the same time the utilization of vehicles is decreasing. These two
performance goals are mutually exclusive. The maximum average machine utilization was about 95%
compared to about 53% for 6 AGVs (from the range 46–62%).

 

Figure 5. The relationship between average utilization of machines and AGVs and the number of AGV
used for 24 h of simulation.

We propose an analysis of the effectiveness of the transport system by the Overall Transport
Effectiveness (OTE) metric that can be determined on the basis of the number of transport operations
carried out and the theoretical planned limit of transport operations per vehicle. There are 4 transport
operations for each product in the production flow, therefore, the production of Plimit = 652 products
requires AGVlimit = 2608 transport operations. One AGV can make about 782 transport operations
during 24 h. As the AGVs are working parallelly, then theoretically the 3.3 AGVs should be enough,
but if there are more vehicles the blocking can occur more frequently. Therefore, the overall transport
effectiveness per vehicle was also calculated and is presented in the Table 5.
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Table 5. OTE—Overall Transport Effectiveness and OFE—Overall Factory Effectiveness (24 h of
simulation, 30 simulation runs in each experiment, without failures and battery charging).

Nr of AGVs
Nagv

Plimit

[Pc.]

AGVlimit

(4 × Plimit/Nagv)
[Pc.]

Pavg

[pc.]

Finished
Transport Operation

[pc.]

Average Transport
Oper./AGV

[pc.]
OTE OFE

1 652 2608 186.7 781.9 781.9 0.29981 0.28635
2 652 1304 347.23 1428.2 714.1 0.54762 0.53256
3 652 869.3 516.7 2107.5 702.5 0.80812 0.79249
4 652 652.0 606.0 2461.4 615.4 0.94379 0.92945
5 652 521.6 614.0 2493.0 498.6 0.95590 0.94172
6 652 434.7 615.0 2497.0 416.2 0.95737 0.94325
7 652 372.6 614.0 2494.4 356.3 0.95637 0.94172
8 652 326.0 611.7 2484.5 310.6 0.95265 0.93819

There is a close relationship between the number of achieved products and the number of required
transport operations. However, there is a small difference in the values of OFE and OTE, because of
work in progress and related transport operations. The value of OTE is depended on the number of
AGVs. The maximal value of OTE = 95.737% (±0.25%) was achieved for 6 AGVs. In the case of battery
charging, the value of OTE = 95.621% was achieved. The failures have decreased the value by about
0.27% to OTE = 95.353%.

However, for longer simulation time, the system is more stable and a maximal value of
OFE = 96.076% and OTE = 96.194% was achieved for the longest simulation time of 1500 h.

It should be noted that there can be different versions of the OTE metric due to the scope of the
data taken into account. The main difference in this version is that only planned transport operations
are taken into consideration (not all possible working time as in utilization rate).

According to principles of lean manufacturing, an unnecessary movement of people, information
or materials wastes time and increases costs. Any unnecessary transport of raw materials in the plant
is a waste, and thus should be reduced.

Any non-critical resource such as AGV should be “utilized”, such that the bottleneck is never
starved for work and all work that is processed by the bottleneck is of high quality. Otherwise,
additional activation of these resources just generates excess work-in-process and additional costs.
This condition will be met if the OTE is greater than or equal to OEE (OFE).

OTE ≥ OEE (OFE) (10)

Therefore, the hypothesis that there is dependence between plant effectiveness and transport
effectiveness, which can be expressed by the use of the OEE metric, has been proven.

In the case of other logistics systems (e.g., transport of multiple products, different routes with
returns), the difference in value between OFE and OTE may be greater. These problems and industrial
implementation of the proposed methodology in the context of the digital twin for Industry 4.0, will be
taken into account in further research.

6. Conclusions

Due to the complexity of AGV systems, they cause many decision problems, which are difficult
to solve. The paper has presented an example of the Flexible Manufacturing System solution with
the AGV transport system and discusses some issues related to the design and simulation of such
systems. The stage of initial system design optimization is very important, and computer simulation
enables the relatively easy elaboration and testing of various variants of manufacturing and logistics
systems. On the other hand, excessive simplifications may be applied at the modelling stage, which will
make the simulation not reflect the production system properly. It should be noted that detailed
modelling is very labour intensive and requires the involvement of experienced specialists. Therefore,
choosing what parameters are used in the modelling process and which metric is used to evaluate the
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model is very important. In order to make the simulation more accurate and to evaluate the system’s
productivity, the use of Overall Equipment Effectiveness (OEE) metrics was proposed.

The results obtained from the presented simulations show that the OEE metrics can be used for the
modelling and productivity evaluation of manufacturing and logistics systems, with the generalization
of Overall Factory Effectiveness (OFE) and Overall Transport Effectiveness (OTE). The use of OEE
factors also allows to compare the results obtained from different manufacturing systems. In the real
world, most of manufacturing companies have OEE scores closer to 60%, but there are many of them
with OEE scores lower than 45%, and a small number of world-class companies that have the OEE
value higher than 85% [50]. According to that, the results of simulation can be also used to analyse
the costs involved in the implementation of a given project and at the stage of in-depth design of the
production system.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/8/12/1648/s1.
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Abstract: Heat exchanger networks subject to fouling are an important example of dynamic systems
where performance deteriorates over time. To mitigate fouling and recover performance, cleanings
of the exchangers are scheduled and control actions applied. Because of inaccuracy in the models,
as well as uncertainty and variability in the operations, both schedule and controls often have
to be revised to improve operations or just to ensure feasibility. A closed-loop nonlinear model
predictive control (NMPC) approach had been previously developed to simultaneously optimize the
cleaning schedule and the flow distribution for refinery preheat trains under fouling, considering
their variability. However, the closed-loop scheduling stability of the scheme has not been analyzed.
For practical closed-loop (online) scheduling applications, a balance is usually desired between
reactivity (ensuring a rapid response to changes in conditions) and stability (avoiding too many large
or frequent schedule changes). In this paper, metrics to quantify closed-loop scheduling stability
(e.g., changes in task allocation or starting time) are developed and then included in the online
optimization procedure. Three alternative formulations to directly include stability considerations
in the closed-loop optimization are proposed and applied to two case studies, an illustrative one
and an industrial one based on a refinery preheat train. Results demonstrate the applicability of
the stability metrics developed and the ability of the closed-loop optimization to exploit trade-offs
between stability and performance. For the heat exchanger networks under fouling considered, it is
shown that the approach proposed can improve closed-loop schedule stability without significantly
compromising the operating cost. The approach presented offers the blueprint for a more general
application to closed-loop, model-based optimization of scheduling and control in other processes.

Keywords: closed-loop scheduling; scheduling stability; optimal control and scheduling; fouling;
heat exchanger networks

1. Introduction

In batch plants, continuous plants, and general manufacturing plants with multiple processing
units, multiple products or time-decaying performance, scheduling of production and maintenance is
essential to ensure a feasible and economically profitable operation. The aim of scheduling is to define
the production sequence, order, allocation, and timing for execution of all production and maintenance
tasks. For example, a closed-loop nonlinear model predictive control (NMPC) approach has been
developed to simultaneously optimize the cleaning schedule and the flow distribution for refinery
preheat trains under fouling [1]. Production scheduling and maintenance scheduling belong to the
same kind of problem (i.e., they follow the same principles, assumptions, and modeling approaches)
and, in some instances, have been integrated [2–4]. One of the main assumptions used to address
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these problems is a perfect knowledge of the current and future operating conditions, which includes
demand, unit performance, availability, and cost of resources.

However, all processes are by nature dynamic and subject to uncertainty and disturbances.
For example, in batch processing, unplanned events such as unit breakdown, new orders, changes in
order quantity, performance decay of the unit, and variation in costs and prices affect the performance
(technical and economic) and even feasibility of a schedule previously determined [5]. Therefore,
a re-evaluation of the scheduling decision is necessary and advantageous. Traditionally, two alternatives
schemes have been defined: (i) rescheduling, where the main objective is to recover feasibility of the
operation after a (significantly large) disturbance is observed, and (ii) online scheduling, where the
schedule is updated at regular intervals [6,7]. Rescheduling can be done via a full re-evaluation of the
scheduling problem, via partial modification of the previous scheduling decisions, or by postponing
the execution of some actions [8]. Typically, this is done over the same time horizon as the original
schedule and with no new decision variables. Most of the approaches for rescheduling are based on
heuristics and aim to do minimal, yet significant, modifications to recover feasibility [5]. Some others
are based on mathematical programming and solve a nonlinear programming (NLP), mixed integer
linear programming (MILP) or mixed integer nonlinear programming (MINLP) problem representing
a partial scheduling problem (i.e., with a subset of the decisions fixed based on the solution of
the initial schedule) [5,9]. In the above classification, online scheduling uses all available decision
variables, and aims to maximize the performance of the system at every evaluation so that it does not
just reject disturbances, but also generates improvements when the system dynamics allow so [10].
This alternative relies on the solution of optimization problems in a feedback loop using a receding
horizon approach (i.e., the time horizon of each schedule evaluation rolls forward and includes new
future decisions). The update interval may be fixed and constant, or conditional to the detection of
disturbances to the system.

Online scheduling, also referred to as closed-loop scheduling, aims to automate a production
and/or maintenance schedule of a plant despite disturbances and variability. However, it has been
noted that such a rolling update of the schedule can produce instability in the operation [10,11].
Schedule instability, also called schedule nervousness, may be loosely defined as changes in scheduling
decisions between consecutive updates which are undesired (the opposite defines schedule stability).
Such changes often have important consequences for the operation. For example, some tasks may not
be included in the scheduling model (or not included in sufficient detail) and a change in schedule
requires revising them as well. Some tasks may require manual intervention and some resources
may require a long procurement time. If scheduling decisions change too frequently or too suddenly,
there may not be sufficient time to implement those tasks or procure those resources. In addition,
from the operator perspective, too many and sudden schedule changes may be perceived as “erroneous”
and “nonintuitive”, leading the operator to manually overwrite some decisions. This in turn will most
likely generate delays in execution, introduce further disturbances to the operation that have to be
corrected later on, and negatively affect performance [5,8].

In principle, increasing schedule stability within the closed loop would often facilitate the
implementation of scheduling decisions, avoid other disturbances occurring in the long term,
and improve the closed-loop performance. This will, however, reduce the ability of the system
to react to disturbances. Ensuring a rapid schedule response to changes in conditions and schedule
stability are, therefore, both desired objectives.

Refining operations are an example of highly dynamic processes with a high energy demand
and environmental impact, which are also subject to many uncertainties and variability. They can
benefit from an online optimization of their operation to reduce energy consumption, operating
cost, and carbon emissions. A key section of a refinery is the preheat train, a large heat exchanger
network that recovers around 70% of the energy in the products of the main distillation column [12].
An efficient operation of this section ensures satisfying the production targets, while reducing energy
consumption. However, it is subject to a wide range of disturbances such as changes in flow rates,

268



Processes 2020, 8, 1623

operating temperature, and crude blends processed (which occur on the timescale of hours or days),
as well as to efficiency losses, among which the most important is fouling. To maintain an efficient
operation of the preheat train in the presence of such disturbances and process variability, the flow
distribution through the network and the cleaning schedule of the units have to be optimized.

Usually, the cleaning scheduling and the flow distribution problems of preheat trains have
been considered independently, ignoring the inherent variability of the process, and solved using
heuristics [13–15]. This leads to suboptimal operations because key elements of the problem are
ignored, or to infeasible operations because operating limits (e.g., the firing limit of the furnace, the limit
capacity of the pumps) are reached, causing a need for emergency cleaning actions or a reduction
in production rates. It has been shown that, for these type of processes, integrating flow control in
the network and scheduling of exchanger cleaning is advantageous because of the strong synergies
between them [16,17]. Optimizing these two elements in a closed loop is, therefore, important to reject
disturbances and improve performance. A closed-loop nonlinear model predictive control (NMPC)
approach that does this has been developed [1]. However, to achieve a successful implementation of an
online cleaning scheduling and flow control of preheat trains, issues related to schedule stability have to
be addressed first. Schedule stability is of particular importance in this application because (i) the time
scale involved spans from weeks to years, which requires the integration of short-term and long-term
decisions, and (ii) the nature of the scheduling decisions (i.e., cleaning of units) requires planning ahead
of the specialized resources necessary (e.g., crews, cleaning equipment, cranes, usually contracted
out with long notices). Refinery operators, therefore, invariably demand some stability in the future
scheduling decisions. Schedule stability, disturbance rejection, and performance optimality are all
desired objectives for the problem at hand.

Several approaches have been proposed to balance this trade-off between schedule stability
and closed-loop schedule performance in various applications related to batch or manufacturing
processes. However, to our knowledge, they have not been proposed related to maintenance or cleaning
scheduling. Dynamic effects and variability have been considered by using heuristic algorithms to
modify the starting time of the task online [18], by solving an MILP problem that swaps the order
or allocation of the task to minimize wait time [19], and by using constraint programming to repair
the schedule [20]. All of these methods relay an incumbent schedule as a reference and ignore the
effects on economic performance. Other rescheduling approaches penalize in an objective function
the changes with respect to the incumbent schedule and may include penalties for reallocation of
tasks [21], penalties for changes in the starting time of tasks [22], or a more detailed discrimination of
all rescheduling costs (i.e., starting time deviation cost, unit reallocation cost, resequencing cost) as
penalties in the objective function [8]. As noted, most of these approaches are designed to be used
reactively to recover feasibility when large disturbances are observed and not online for closed-loop
optimization of a schedule. An early system for online scheduling (SuperBatch) dealt with highly
complex processing configurations (plant, recipes, orders, etc.) in batch manufacturing. Schedules
were updated every minute, adjusting for external and process variations on a rapid basis, using an
unpublished heuristic method evolved from [18]. The system was successfully applied industrially to
scheduling and design of very complex, large-scale food productions [23,24] (Figure 1).

In online or closed-loop scheduling, variability is considered explicitly on a rolling horizon. In this
case, the objective function or the constraints of the scheduling problem can be modified to additionally
include closed-loop schedule stability requirements. For instance, this may be done by retaining some
allocations from previous evaluations and promoting early task allocations as a penalty in the objective
function [25]. Another formulation minimizes the earliness/tardiness in the execution of the tasks and
the cost of flexible tasks [26]. More recently, a state-space representation of the scheduling problem
was proposed according to the nonlinear model predictive control (NMPC) paradigm, where the
scheduling problem is solved online and automatically includes the effect of disturbances [10,11,27].
The objective is economically driven but does not consider schedule stability.
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Figure 1. Top left: 14 day schedule of beer production (140 process units, 26 recipe families). Top right:
5 day production schedule of chilled desserts for northern Europe (35 product families, daily changes)
as of 4:00 a.m. on a Saturday morning. Bottom: Online rescheduling every minute; the red vertical line
separates the historical schedule (as actually happened) from the predicted one (adapted from [23]).

The previous survey indicated that schedule stability for online scheduling is still an open issue,
and there is no single, general approach that optimizes the trade-off between closed-loop performance
and schedule stability. First, stability is not well defined and quantified, and there are different metrics
for various rescheduling actions. Second, most of the rescheduling formulations have focused on just
restoring feasibility while ignoring optimality and opportunities arising from the process dynamics
and disturbances. Third, only certain sources of schedule instability have been considered, with no
clear definition or guidelines for setting the penalty factors. Fourth, most methods so far do not include
the possibility of optimizing continuous control decisions at the same time as discrete scheduling
decisions. These methodological limitations result in practical barriers to the online optimization
of flow distribution and cleaning scheduling in refinery preheat trains, as well as of other dynamic
process systems with analogous features.

The aims of this paper are (i) to present a method for the online optimization of operational
schedules and continuous controls under high input and disturbance variability, while considering
schedule stability explicitly in the closed loop, and (ii) to demonstrate its application and benefits for
the online cleaning scheduling and flow distribution control of refinery preheat trains. The remainder
of the paper is structured as follows: Section 2 briefly presents the modeling framework used to
describe the dynamics of preheat trains under fouling and for online integration and optimization of
the flow distribution and cleaning scheduling considering disturbances. In Section 3, some metrics to
quantify schedule instability are presented and discussed. Section 4 introduces three alternative ways
to include schedule stability objectives within the closed-loop optimization formulation. Section 5

270



Processes 2020, 8, 1623

introduces a small case study that is used to demonstrate the use of the instability metrics, and it
compares the performance (in terms of stability and total cost) of the various formulations aimed at
increasing schedule stability. Section 6 demonstrates the application of the framework to a realistic
industrial case study, using historical refinery data and the actual variability observed in the operation
of the preheat train. Lastly, the conclusions of the work are drawn in Section 7.

2. Closed-Loop Optimal Cleaning Scheduling and Control of Preheat Trains

The online optimization approach of the cleaning schedule and dynamic flow distribution of
preheat trains under fouling is based on an advanced nonlinear model predictive control (NMPC)
strategy, presented in detail in a previous study by the authors [1]. It defines two feedback control
loops, one for the fast dynamics of the process associated with flow distribution (of the order of
hours) and another for the slow dynamics associated with fouling and cleaning (of the order of weeks
and months). Figure 2 shows a simplified block diagram of the control loops, their components,
and interactions. In this figure, the plant block corresponds to the actual system or a representation of
it, the control layer refers to the advanced control and state estimator that defines the control elements
of the system for rejection of fast disturbances (its inputs are the set schedule, the current state of the
system, and disturbances, and the outputs are the control actions), and the scheduling layer refers to
the algorithm defining the online scheduling strategy and its corresponding state estimator (its inputs
are the current state of the system and a forecast of the disturbances, and the output is the schedule
for the current time). Each control loop has two components: a moving horizon estimator (MHE) to
update the model parameters and predict the current state of the system on the basis of the latest
plant data and a nonlinear model predictive controller (NMPC) to optimize the future operation
of the network. These two elements solve optimization problems using a realistically accurate and
representative mechanistic, dynamic model of the plant. In particular, the model describes heat transfer,
deposition rates, temperature changes, and hydraulic performance of the heat exchangers, as well as
their interactions within the network that constitutes the preheat train. A brief, general description of
the modeling components is given next, whereas a more detailed presentation of the model formulation
and assumptions can be found in [16].

 

Figure 2. Simplified representation of the online, integrated optimal cleaning scheduling and control of
preheat trains subject to fouling and disturbances.

The preheat train model is based on a directed multigraph representation of the heat exchanger
network, where each graph corresponds to a stream (e.g., crude oil, naphtha, residue) and the nodes
are exchangers, furnace, sources, sinks, mixers, and splitters. At each node, mass and energy balances
must be satisfied to ensure network connectivity. The operation of the heat exchangers, all assumed to
be of shell and tube type, is represented using an axially lumped, but radially distributed model based
on the P-NTU concept [28,29], an explicit description of the heat transfer and temperature profiles in the
radial direction through different domains (shell, deposit layers, tube wall, tube), as well as hydraulic
relations for the tube side pressure drop. The semiempirical reaction fouling model of Ebert–Panchal,
Equation (1) [28], is used to characterize the evolution over time of the thermal resistance of the deposit
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in a unit. This affects the thermal performance of the unit and is related to the deposit thickness,
Equation (2), affecting its hydraulic performance (all variables are defined in the Nomenclature).
Experimental or plant data are required to estimate the parameters of the fouling model (α,γ, E f ). It has
been demonstrated that this model adequately captures the main effect of the operating variables of
the exchangers (e.g., surface temperature, velocity, shear stress) on the fouling rate [30]. In addition to
these modeling components, operational limits such as the maximum duty of the furnace, the pressure
drop limits in the network, bounds of flow split fractions to parallel branches, and pressure drop
equalization constraints over parallel branches are included in the form of inequalities in the problem
formulation. The resulting large set of nonlinear equality and inequality constraints is a sufficiently
accurate [31] yet compact dynamic model of each exchanger and the network.

dR fi

dt
= αiRe−0.66

i Pr−0.33
i exp

(
− E f ,i

RT f .i

)
− γiτi, ∀i ∈ HEX. (1)

δi =
Din,i

2

[
1− exp

(
− λdR f ,i

Din,i/2

)]
, ∀i ∈ HEX. (2)

This dynamic model for preheat trains under fouling is used in the MHE and NMPC problems in
both the scheduling and the control layers (labeled with subscript s and c, respectively) for parameter
estimation, as well as to simultaneously optimize the flow distribution in the network and the cleaning
schedule. It has been demonstrated, using actual refinery data, that this model has good predictive
capabilities over a wide range of operating conditions and long operating times, with an average
absolute prediction error in each exchanger of 0.9 ◦C for the tube-side exit temperature, 1.3 ◦C for the
shell-side exit temperature, and 0.05 bar for the tube-side pressure drop [1].

Table 1 summarizes the main components, assumptions, and considerations of each feedback
loop and their elements. In each layer, the MHE and NMPC formulations use the dynamic model
described above to represent the operation of the preheat train and the effects of fouling. In the NMPC
formulation of the scheduling layer, which includes binary decision variables, additional inequality
constraints are included to represent the changes in operating modes of the exchangers (i.e., “operating”
or “being cleaned”) and any conditions optionally imposed on the cleaning sequence (e.g., units to be
simultaneously cleaned, periods of no cleanings, exclusive cleanings).
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The control layer deals with the fast dynamics, and its main objective is to reject disturbances
and minimize operating cost by manipulating flow split profiles, knowing the short-term cleaning
schedule to be executed. The objective of the MHEC is to determine the model parameters that best
explain the observations (i.e., temperature and pressure measurements from the plant) over a past
estimation horizon, as represented in Equation (3). The adjustable parameters are the deposition and
removal constants in the Ebert–Panchal model and the surface roughness, for each of the exchangers
in the preheat train. The resulting formulation is an NLP problem. Once the MHEC problem is
solved, the parameters thus obtained are used in the NMPCC problem (also formulated as an NLP) to
determine the optimal flow distribution over a future prediction horizon that minimizes the operating
cost, Equation (4). The latter includes the cost of the fuel consumed in the furnace and associated carbon
emissions. The prediction time horizon is discretized using a discrete representation. Although the
optimal solution covers a long horizon, only the first action is implemented in the plant; the remainder
are discarded, and the problem is solved again in the next sampling interval, in the usual MPC scheme.
The sampling (update) intervals are much shorter than the control prediction horizon. In this control
layer, a forecast is required of the disturbances (changes in input variables) over the future prediction
horizon. Here, each input variable (flowrate, temperature, and pressure of input streams) is forecast
to remain constant at its last measured value for the entire horizon. As control updates are frequent,
this is deemed to be adequate.

min
αi,γi,εi

∑
n∈PEHc

∑
i∈HEX

ωTt

(
Tti,n − ˆTti,n

)2
+ωTs

(
Tsi,n − ˆTsi,n

)2
+ωP

(
ΔPi,n − ˆΔPi,n

)2
. (3)

min
ma,t

∫ FPHc

0

(
P f Q f (t) + PcmcQ f (t)

)
dt. (4)

The scheduling layer deals with the slow dynamics of the process over long periods of operation.
It integrates scheduling and control decisions to minimize the operating cost and to define the future
cleaning actions. The MHES problem is similar to that of the control layer, and they share the same
objective. However, the past estimation horizon of the scheduling layer is longer than in the control
layer because more data is necessary to capture the slow dynamics of the system. On the other
hand, the NMPCS problem is significantly different from that of the control layer. First, the future
prediction horizon FPHS is much longer, as it must be able to schedule cleaning actions and quantify
their effects and benefits. Second, the objective function includes both operating cost and cleaning
cost, Equation (5). Third, the prediction time horizon is here discretized using a continuous rather
than a discrete representation, to reduce the number of binary variables of the scheduling problem.
Each period of variable length is further discretized using orthogonal collocation on finite elements in
order to accurately integrate the differential equations in the model. Fourth, in this scheduling layer,
a forecast is also required of the disturbances over the future prediction horizon. Here, each input stream
variable (flowrate, temperature, and pressure) is forecast to remain constant for the entire horizon,
but fixed at the value of its moving average over the past month, to account for recent variability.
Alternative forecasting estimates (e.g., reflecting predicted trends or known planned changes) could be
used. Lastly, the optimization problem involves binary decision variables associated with the operating
mode of the units at every time point, resulting in an MINLP instead of an NLP formulation. This is a
challenging optimization problem because of the large number of binary variables, few constraints on
the cleaning sequence, nonlinearities, nonconvexities, and the degeneracy of the objective function
(i.e., multiple solutions may have similar values). To solve the MINLP problem that integrates cleaning
scheduling and flow control, a reformulation using complementarity constraints is implemented,
which allows finding local optimal solutions online in reasonable computational times [32].

min
yi,t,ts,ma,t

∫ FPHs

0

(
P f Q f (t) + PcmcQ f (t)

)
dt +

∑
n∈FPHs

∑
i∈HEX

Pclyi,n. (5)
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The scheduling layer is not updated as frequently as the control layer because of the different
time scales involved. However, the two layers interact strongly so as to ensure that scheduling and
control decisions are properly integrated and their synergies exploited. The optimal scheduling actions
determined at the scheduling layer until the next schedule update are executed in the plant. They are
also sent to the control layer, which determines the best flow distribution according to those cleanings
and the disturbances observed. Other schedule decisions in the schedule prediction horizon beyond
this first interval are discarded.

For the purpose of this paper, the actual plant is simulated using the same predictive model as
used in the NMPC/MEH loops. However, its parameters are modified in order to create a controlled
degree of (parametric) model mismatch. The plant parameters are unknown to the feedback loops.

3. Closed-Loop Schedule Stability Metrics

Closed-loop schedule instability must be quantified to determine efficient strategies to reduce it,
but no single metric is adequate. In production scheduling, it has been quantified as the difference in the
overall quantity of a given product produced at a given time between two consecutive evaluations of
the schedule [33]. Other attempts have quantified the changes in starting time of the same task between
two consecutive solutions [34] or the changes in task allocations among the units [34,35]. Reference [30]
considered batch plants; thus, their criterion is not immediately applicable to the problem of interest
here, which is a type of maintenance scheduling for a continuous process. An analogous concept will
be developed later which is applicable to continuous processes. On the other hand, the differences
in the starting time of tasks (the cleanings) and in the task allocations (which exchanger is cleaned
and number of cleanings per exchanger) will be used to quantify schedule instability, according to
the notation in Figure 3.The figure shows the cleaning schedules for a five exchanger network at two
consecutive evaluations (at the top, schedule k − 1 evaluated at time tk−1; at the bottom schedule
k, evaluated at time tk) and a representation of the main schedule differences, including changes in
task allocations (which units are cleaned) and the starting time of the tasks (when cleanings start).
The schedule instability is defined taking into account those actions within the overlapping interval,
OI, in the future prediction horizons of the two consecutive schedules. With constant schedule update
interval and length of the scheduling prediction horizon, FPHs, the duration of this overlapping
interval is also constant and simply equal to their difference, FPHs − (tk − tk−1). With variable intervals,
the same definitions are indexed according to the schedule evaluation index, k, i.e., the overlapping
interval at evaluation k, OIk, has duration FPHs,k − (tk − tk−1).

Four metrics of schedule instability are defined next on the basis of these definitions: (1) task
time instability, (2) task allocation instability, (3) overall instability, and (4) overall weighted instability.
They are defined for consecutive schedule evaluations assuming a continuous time representation,
although they also apply with a discrete time representation. Instability metrics are generated every
time a schedule is updated, and, in an online application, their time evolution can be tracked on a
rolling horizon at each update.

The metrics defined here can provide useful insights into schedule stability regardless of how
the schedule is defined. The only condition for their application is the existence of two consecutive
evaluations or predictions of the schedule with a common period. The definition of these metrics is
based on the changes occurring within a common period shared by the schedule evaluations. Hence,
these metrics can be calculated for two consecutive instances even in cases where their control horizons,
scheduling horizons, or update frequencies are different.
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Figure 3. Representation of sources of scheduling instability and the elements used to quantify it.

The following definitions, sets, and indices are used to define the instability metrics for the online
scheduling problem:

• Units = {1, 2, . . . , NU}. Set of units.
• Tasks = {1, 2, . . . , NTS}. Set of tasks that can be allocated to the units.
• T = {1, 2, . . . , nT}. Set representing time in the FPH.
• SE = {1, 2, . . . , nSCH}. Set of schedules evaluated over time.
• yI,i, j,t,k ∈ {0, 1} ∀i ∈ Units, j ∈ Tasks, t ∈ T, k ∈ SE. Binary variable indicating the allocation of a task

j to a unit i starting at a time t in schedule k.
• t′k∀k ∈ SE. Time when schedule k is evaluated.

• T∗S,k = t′k − t′k−1∀k ∈ SE\{1}. Time interval between two consecutive schedule evaluations.

• τ′i, j,k =
{
t′k + t

∣∣∣∣yI,i, j,t,k = 1∧ 0 ≤ t ≤ FPHk−1 − T∗S,k∀t ∈ T
}
∀i ∈ Units, j ∈ Tasks, k ∈ SE\{1}. Set of the

starting times of all tasks j allocated to unit i in schedule k and within the time interval OIk.

• τ0
i, j,k =

{
t′k−1 + t

∣∣∣∣yI,i, j,t,k−1 = 1∧ T∗S,k ≤ t ≤ FPHk−1∀t ∈ T
}
∀i ∈ Units, j ∈ Tasks, k ∈ SE\{1}. Set of the

starting times of all tasks j allocated to unit i in a schedule evaluation k− 1 and within the operating
interval OIk OT − FPHk.

• τ∗i, j,k = argmin
{∣∣∣∣τ′i, j,k

∣∣∣∣, ∣∣∣∣τ0
i, j,k

∣∣∣∣}∀i ∈ Units, j ∈ Tasks, k ∈ SE\{1}. Set assigned to τ′i, j,k or τ0
i, j,k based on

which one has the minimum number of elements.
• τ∗Ci, j,k =

{
τ′i, j,k, τ0

i, j,k

}
− τ∗i, j,k∀i ∈ Units, j ∈ Tasks, k ∈ SE\{1}. Set defined as the complement of τ∗i, j,k.

Although, in this paper, fixed update intervals are used, the formulation is suitable for both fixed
and variable update intervals.
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For the application at hand, i.e., cleaning scheduling of preheat trains under fouling, it is assumed
that only one type of cleaning is available (i.e., mechanical cleaning) so that the set Tasks has a single
element, i.e., Tasks ={1}. Moreover, the set Units is the set of heat exchanges in the network, and the
variable yI defined here has the same role as variable y in the problem formulation detailed in [16],
which is associated with the cleaning state of the units over time (i.e., 1 for being cleaned, 0 for operating).
In this formulation, it is possible to assign multiple mechanical cleanings (i.e., multiple instance of the
same type of task) to a unit, at different times.

As the (in)stability of a schedule is a relative concept (i.e., it only applies with reference to a previous
one), all metrics apply from the second evaluation only (k ≥ 2) and are undefined (and arbitrarily set
to 0) for k = 1.

3.1. Task Timing Instability

A Task timing instability of schedule k, Its,k, is defined as the difference in the starting times of
all tasks j in units i which are common to schedules k and k − 1 over the overlapping interval, OIk.
Its mathematical representation is presented in Equation (6). Note that this includes only tasks j that
are defined in both schedules k and k− 1. If multiple executions of task j are included over OIk in both
schedules, the difference in their starting times is only relevant for the minimum number of instances of
task j predicted in either one. In addition, if in schedule k, or k− 1, there are no predicted executions of
task j in unit i, there is no contribution of this task-unit pair to the overall task timing instability metric.

Its,k =
1

FPHk

∑
i∈Units

∑
j∈Tasks

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∑

t∈τ∗i, j,k
min

{
(t− t̂)2,∀t̂ ∈ τ∗Ci, j,k

}⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
1/2

, ∀k ∈ SE\{1}. (6)

This instability metric is divided by the future prediction horizon of the scheduling problem at
update k, FPHk, to transform it into a dimensionless quantity. The task timing instability takes a value
of zero when there is no difference in the predicted starting time of all the common tasks allocated to
all the units in two consecutive schedule evaluations, or when no task of the same type is allocated to
the same unit in two consecutive schedules (i.e., all the tasks allocated to a unit disappeared from the
schedule or were reallocated to another unit). The task timing instability increases when the difference
in the starting times of a task allocated to a unit in two successive schedules is large.

3.2. Task Allocation Instability

A Task allocation instability of schedule k, IT,k, is defined as the change in the total number
of executions of tasks j allocated to unit i in schedule k during the OIk, with respect to the total
number of executions of the same task in the same unit in the previous schedule, k − 1. This is
expressed mathematically in Equation (7). This expression assumes that all tasks have the same relative
importance for the stability and only considers their total number of executions. In the cleaning
scheduling application considered, this refers to the change in the total number of cleanings of each
exchanger within OIk, regardless of their starting time.

IT,k =
1∑

i∈Units
∑

j∈Tasks Nmax
i, j

∑
i∈Units

∑
j∈Tasks

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑

t∈T|t≤FPHk−1−T∗S,k

(
yI,i, j,t,k − yI,i, j,t+T∗S,k ,k−1

)2⎤⎥⎥⎥⎥⎥⎥⎥⎦, ∀k ∈ SE\{1}. (7)

This definition of instability is standardized by dividing it by the sum of the maximum number
of executions of task j that are allowed in unit i, Nmax

i, j .This is a parameter of the scheduling problem,
and is specified by the analyst. For example, in the cleaning scheduling problem of preheat trains
under fouling, it is the maximum number of cleanings per exchanger that can be executed in the future
prediction horizon, which is usually a constraint imposed by the operators.
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The task allocation instability becomes zero when there are no changes in the number of tasks of a
given type scheduled in each unit regardless of their starting time or when there are no tasks of a given
type scheduled in the future prediction horizon. This instability metric increases when one or more
instances of a task are added to or deleted from one or multiple units in the current schedule with
respect to the previous one.

3.3. Overall Schedule Instability

A metric of Overall schedule instability of schedule k, should consider all the changes from the
previous schedule k − 1, such as changes in the starting time of the tasks, changes in task allocation,
addition of new tasks, and disappearance of previous tasks. To compute it, the overlapping interval
OIk is discretized using a time step that is lower than or equal to the shortest duration of any of the
tasks present in either schedule. In the case of preheat trains, the sampling time of the process is used,
which is 1 day, as plant measurements are available as daily averages. With this time discretization,
a schedule matrix is defined representing a schedule, with NU rows, one per each unit, and ND columns,
each representing a snapshot of the tasks scheduled at each time step during the OIk. Each element
of the schedule matrix is referred to as x(i,j,k) where i is an index for the units (rows), j is an index
for the time instances in the discretized OIk (columns), and k is the schedule index. The entries in the
matrix are either 0, representing no task allocated, or 1, representing a task allocation. This definition
assumes that there is a single task type to be scheduled, as applicable to the single type of cleaning in
the scheduling of preheat trains discussed in this paper. However, it can be easily extended to a more
general formulation with multiple tasks, by associating different integer values to each task type or
different instability metrics for each task.

Figure 4 illustrates such a schedule matrix encoding for a simple example for schedule k − 1
evaluated at time tk−1 (top schedule in Figure 4) and schedule k, evaluated at time tk (bottom schedule
in Figure 4). The corresponding schedule matrices (on the right in Figure 4) have the same dimensions
because OIk, the sampling time, and the number of units do not change between evaluations. With this
encoding, it is possible to rapidly calculate the difference between two successive schedules on the
basis of the differences in individual elements of the corresponding schedule matrices.

 
Figure 4. Schedule matrix representation of a schedule for a simple example with a unique task and
the overlapping interval discretized in 8 intervals. (a) Schedule k− 1 updated at time tk−1; (b) schedule
k updated at time tk.

278



Processes 2020, 8, 1623

The Overall schedule instability of schedule k, Iov,k, is defined in Equation (8), where the quadratic
difference between two consecutive schedule matrices, k and k− 1, is calculated element by element,
and all the differences are added up. This instability metric is standardized by dividing it by the size of
the schedule matrix (NUND). All schedule changes are assumed to have the same effect on the overall
schedule instability metric. They affect it by the same magnitude and do not differentiate between
schedule differences due to changes in the starting time of the tasks, time delays, or changes in task
allocations. Because this metric is standardized, it is bound between zero and one and increases with
the number of differences between consecutive schedule evaluations.

Iov,k =
1

NUND

ND∑
j=1

NU∑
i=1

(
xi, j,k − xi, j,k−1

)2
, ∀k ∈ SE\{1}. (8)

In the example presented in Figure 4, there are five changes in the schedule matrices between
schedules k and k − 1 (see columns 2, 4, 6, and 7 of the matrices in the figure). Then, applying
Equation (8), the overall schedule instability of schedule k is 0.125.

3.4. Time-Weighted Overall Schedule Instability

The above Overall schedule instability definition ignores when the difference in the schedules
occurs. For example, the values of the overall schedule instability for two different schedules can be
the same when changes in the schedule are observed at the beginning of the FPHS, which has large
implications on the operation because those are the actions to be executed in the current time step,
or at the end of the FPHS, when they may not be very important and are subject to future changes.
The metric described below addresses the case when changes in the schedule closer to the current
execution time are undesirable.

A Time-weighted overall schedule instability metric of schedule k, Iovw,k, is defined in Equation (9),
where weights are used to represent the relative importance of each difference in the schedules with
respect to time. This expression uses the same definitions of overall schedule instability, Equation (8),
which are based on a matrix representation of the schedule over OIk. Here, the weights are selected to
decrease linearly from one at the beginning of the overlapping interval OIk, to zero at is end, according
to Equation (10). In terms of the ND discretizations used in the schedule matrix, we have wj = 1 for
j = 0 and wj = 0 for j = ND. The differences in the schedules closer to the current time are, thus, given
a higher relative importance than those that occurring later in the prediction horizon.

Iovw,k =
1

NU
∑ND

j=1

(
wj
) ND∑

j=1

NU∑
i=1

wj
(
xi, j,k − xi, j,k−1

)2
, ∀k ∈ SE\{1}. (9)

wj = 1− j− 1
ND − 1

, ∀ j ∈ {1, 2, . . . , ND}. (10)

Using weights to characterize the relative importance changes in the schedule with respect to
time was proposed to calculate schedule instability on the basis of the production quantity of different
products [33,36], but not for differences in task allocation and timing. Those studies used an exponential
decay function to define the weights as a function of time. This could also be used here without adding
complexity to the problem. The only difference is that the exponential decay function requires the
analysts to set a parameter for the rate of decay, which can be translated as a preference to ignore or
not schedule modifications occurring at a future time.

The time-weighted overall schedule instability metric explicitly accounts for the effects of time to
indicate that large variability close to the current time is undesirable, whereas that occurring later can
be tolerable. However, it does not distinguish whether the source of variability is due to changes in the
task allocation or starting time of the task.
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Applying the metric defined in Equation (9), the time-weighted overall schedule instability of
schedule k in Figure 4 is 0.136, which is higher than its overall schedule instability, 0.125. This happens
because most of the differences between the two consecutive schedules occurs close to the current time,
tk, which is reflected in a larger number of differences between the schedule matrices in columns with
low indices (columns 2 and 4 of the matrices in Figure 4). This example shows that the time-weighted
metric gives more importance to changes in the schedule that occur closer to the current time and that
may require an immediate action.

4. Including Stability Considerations in the Online Optimization Problem

There are various alternatives to improve the closed-loop stability of online scheduling, but their
actual benefits are not clear, nor is their effect on the overall economics of the process. Three alternatives
based on MPC theory and their practical implementation are evaluated here. They are (1) introducing
a terminal cost penalty with respect to a steady state in the objective function, (2) freezing or fixing a
subset of the scheduling decisions in the FPHS in consecutive schedules, and (3) penalizing changes in
scheduling decisions between consecutive evaluations. These alternatives are described next in the
context of online cleaning scheduling of preheat trains under fouling.

4.1. Terminal Cost Penalty

In MPC for continuous systems, the closed-loop stability properties have been widely studied
from practical and theoretical perspectives (as noted below, the stability definition for continuous
control is different from the schedule stability used in this paper). One alternative to ensure closed-loop
stability with a finite prediction horizon is to include a “terminal cost” in the objective function of the
optimization problem solved at every sampling time [37] in the form of Equation (11). This represents
a general objective function, Jk, where x are continuous variables, y are integer variables, and u are
manipulated variables, which are minimized in an MPC scheme at each sampling time. The function
V is the “running cost”, which, in tracking problems, is defined as the quadratic difference between the
states and their reference point. The function l is the “terminal cost”, and it is only a function of the
variables at the end of the prediction horizon, tFPHS (for example, the cost of missing a final target).
The parameter ρl represents a penalty on the terminal cost and indicates its relative importance with
respect to the running cost.

minJk = ρll
(
x
(
tFPHS

)
, y
(
tFPHS

))
+

∫ FPHS

0
V(x(t), y(t), u(t))dt, ∀k ∈ SE\{1}. (11)

In our case, the overall integral of the running cost, V, in Equation (11) is just the total operating
cost of the preheat train (i.e., the objective function of the online scheduling problem, defined in
Equation (5). There are, however, important differences between the general MPC formulation and that
for closed-loop scheduling that hinder the applicability of adding a “terminal cost” to improve stability.
First, the assumptions to guarantee stability in MPC state that the objective function must decrease
with the number instances evaluated; however, in the case of closed-loop scheduling, the objective is
economic, and this assumption may be violated. Second, the scheduling stability problem is nonconvex
and nonlinear; thus, global optimality cannot be guaranteed. Third, the maintenance/cleaning
scheduling problem considered does not have an obvious stable reference point to use in a tracking
function. The clean state of the network (ideal) is not achievable without infinite cleanings. A possible
reference for the problem on hand is proposed below. Fourth, the scheduling problem includes discrete
variables over a long time scale instead of continuous variables over short time scales. Lastly, stability
for MPC is defined according to whether the system remains in the same operating point (outputs of
the plant) regardless of small disturbances [37], while, for closed-loop scheduling, stability is defined
as a function of the intensity of the changes in scheduling variables (inputs to the plant) between
consecutive solutions.
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Here, according to the rationale to avoid leaving the network unnecessarily clean at the end of the
scheduling horizon, the reference point for use in the terminal cost is defined as the operation where
each exchanger has reached its asymptotic or maximum fouling level or an operational constraint has
been reached. This limit operation is determined by performing a simulation of the system, assuming
average operating conditions and no mitigation actions. Alternatively, a stable reference operating
point could be defined on the basis of engineering judgement (i.e., a realistic, possible operating state
expected or observed in the past). Other scheduling problems may have cyclic solutions that can be
used as references for stability [38]. The terminal cost for the online optimization of flow distribution
and cleaning schedule is defined in Equation (12), as the sum for all streams in the network of the
quadratic difference between the stream temperature predicted at the end of the FPHS, Ta,t=FPHS , and
the corresponding one in the limit operation, T∞a . The set Arcs in Equation (12) is the set of all arcs
(streams) in the network.

l = ρy

∑
a∈Arcs

(
Ta,t=FPHS − T∞a

)2
(12)

4.2. Freezing Decisions

Fixing or freezing some of the scheduling decisions within the prediction horizon, i.e., retaining
those of a previous schedule, explicitly reduces scheduling instability [39,40]. Every time a scheduling
problem is solved, a fraction of the decisions from the previous schedule evaluation are frozen,
and the remainder are considered free. The fixed actions are defined as equality constraints in the
next scheduling optimization problem. The time intervals for online scheduling and the nature of
the decisions at each evaluation are schematically shown in Figure 5 for three successive updates.
The actions executed between sampling times are a mix of those frozen from the previous solution and
those obtained at the current evaluation. The length of the frozen interval and the scheduling decisions
included, such as task allocated and starting time of the tasks, give a trade-off between stability and
closed-loop performance.

 
Figure 5. Schematic representation of freezing some scheduling decisions for improving closed-loop
schedule instability.

In the online cleaning scheduling and flow distribution problem of preheat trains, there are two
kind of decisions that can be kept constant between consecutive schedule updates: the assignment
of cleanings to periods and units and the starting time of the cleaning actions. Equality constraints
are introduced to fix the selected cleaning actions in the current schedule to the values calculated in
the previous one. Equation (13) shows this constraint for the binary decisions, where the asterisk
denotes the optimal value in the previous schedule. These equality constraints assign the cleanings
to the units and periods; however, because the periods have variable length (with a continuous time
representation), the starting time of the cleanings is not fixed. To allow more flexibility, inequality
constraints are introduced to restrict the variability of the cleaning starting time with respect to that
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of the previous optimal schedule. This is shown in Equation (14) which can be transformed into an
equality constraint if necessary.

yi,t(n),k = y∗i,T∗sch+t(n),k−1, ∀i ∈ HEX, n ∈ {1, . . . , Nz}, k ∈ SE\{1}. (13)

− ΔTcl ≤ τcl
i,t(n),k − τcl∗

i,T∗sch+t(n),k−1 ≤ ΔTcl , ∀ i ∈ HEX, n ∈ {1, . . . , Nz}, k ∈ SE\{1}. (14)

4.3. Penalizing Variability

Penalizing the change in scheduling decisions between two consecutive evaluations is another
alternative to improve closed-loop schedule stability. Instead of using constraints to reduce the
variability between consecutive schedule evaluations, the variability is penalized in the objective
function. The changes between two schedules are only penalized within their overlapping horizon
OIk, as detailed in Figure 3.

The schedule variability penalty is divided into two independent terms: one for the changes in the
allocation of tasks, Equation (15), which is related to the task allocation instability metric, and another
for the changes in the starting time of the tasks, Equation (16), which is related to the task timing
instability metric. Each of these expressions has a penalty parameter ρ that characterizes its importance
relative to the other and to the economic objective function of the scheduling problem. The final overall
objective function for each schedule update, Equation (17), shows the compromise between stability
and process economics. As noted, the integral of the running cost, V, is the total operating cost of the
preheat train, which is the objective function defined in Equation (5).

ly,k = ρy

∑
i∈Units

∑
j∈Tasks

∑
t∈T|t≤FPHk−1−T∗S,k

(
yI,i, j,t,k − y∗I,i, j,t+T∗sch,k−1

)2
, ∀k ∈ SE\{1}. (15)

lτ,k = ρτ
∑

i∈Units

∑
j∈Tasks

∑
t∈T|t≤FPHk−1−T∗S,k

[
tyI,i, j,t,k −

(
t + T∗sch

)
y∗I,i, j,t+T∗sch,k−1

]2
, ∀k ∈ SE\{1}. (16)

minJk = ly,k + lτ,k +
∫ FPHS

0
V(x(t), y(t), u(t))dt, ∀k ∈ SE\{1}. (17)

5. Comparing Alternatives and Metrics to Improve Closed-Loop Schedule Stability

This section evaluates all the instability mitigation approaches presented in Section 4 that utilse
the metrics in Section 3 for a simple, yet realistic, case study.

5.1. Case Study 1—Illustrative Example

The preheat train considered here consist of four heat exchangers, three of which are located on
parallel branches. This case study was adapted from [41,42], where all the details of the equipment,
costs, and operation can be found, although the most important ones, including the fouling model and
cost parameters, are summarized in Tables A1 and A3 (Appendix A). Figure 6 shows the structure
of the network, which is commonly found in refining operations with more units in the branches.
All exchangers are shell and tube and exhibit significant levels of fouling.

For this case study, a nominal operation was assumed (i.e., with constant inlet streams flow rates
and temperatures) with no model–plant mismatch; thus, the predictive models used in the feedback
loops perfectly represent the plant. These assumptions lead to a simpler problem than a real application
of the online approach, while they allow isolating the analysis of the stability of the online scheduling
from other aspects. This case also demonstrates that there can be schedule instability even under these
ideal conditions.
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Figure 6. Preheat train structure of the simple case study.

5.2. Results and Discussion

The online optimal control and cleaning scheduling problem was solved with the following
settings: for the control layer, a control horizon FPHC of 10 days and update intervals of one day; for the
scheduling layer, a scheduling horizon FPHS of 120 days, update intervals of 15 days, and 15 periods
of variable length in the scheduling horizon. The MHE problems were not solved in the feedback loops
because there is no plant–model mismatch. These settings of the closed-loop scheme led to 25 solutions
of the optimal cleaning scheduling problem over 1 year of operation. The schedules obtained were
used to calculate the schedule instability metrics for 24 consecutive solutions after the first one.

The closed-loop optimization was first performed with the usual economic objective function
without including stability (base case). An example of changes in schedule between successive updates
is shown in Figure 7 with reference to the predicted fouling state (in terms of fouling resistance) of
exchanger HEX2B. At the update on day 91, no cleanings of HEX2B were scheduled over the predicted
horizon (red line in Figure 7, top). At the day 106 update, a cleaning was introduced, scheduled for
day 120 (red line in Figure 7, bottom). Due to intervening variations in the plant, the cleaning was
eventually shifted and executed on day 170 (black line in Figure 7).

 

Figure 7. Case study 1, base case—predicted (red) fouling resistance in HEX2B at 91 and 106 days. Black
lines show the fouling resistance observed in the final record. Vertical lines correspond to cleanings,
and their shifts in time are sources of instability.
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Figure 8 presents the cleaning schedule predicted (red) at six successive sampling times each over
two time windows, together with the schedules eventually executed over the entire horizon (black).
Figure 9 shows the schedule instability metrics calculated at every cleaning schedule update. In all
updates, there are some changes in the optimal cleaning schedule with respect to the previous one,
and this is reflected in the evolution of the instability metrics. The peaks of task timing instability
occur when a cleaning was postponed, and the task allocation instability changes when cleanings
are included or removed from the predicted schedule. The overall instability and the time weighted
overall instability are good single indicators of instability as their behavior aligned with that of the
other metrics.

  
(a) (b) 

Figure 8. Case study 1, base case—evolution of the cleaning schedule as predicted (red) and executed
(black) at various sampling times (marked in the upper right corner): (a) from 65 to 136 days; (b) from
181 to 256 days.

The variation in scheduling instability metrics observed in Figure 9 can be explained by the
evolution of the cleaning schedule. For instance, the maximum value of task timing instability is
observed between 90 and 120 days of the operation because the starting time of the cleanings predicted
for HEX2A and HEX2B change significantly, and even their precedence order is reversed. As another
example, between the schedule evaluations at 65 days and 76 days, there is one additional cleaning
introduced, causing an increase in the task allocation instability. The final example relates to the
overall instability and the time-weighted overall instability metrics. Consider the consecutive schedule
solutions at 211 and 226 days, when two new cleanings are predicted and the starting time of the
HEX2A cleaning are shifted closer to the current time. The weighted overall instability metric is higher
than the overall instability because all the changes occur closer to the execution time.
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Figure 9. Case study 1, base case—evolution of closed-loop scheduling instability metrics.

Next, the three alternatives proposed in Section 4 to improve closed-loop scheduling stability
were implemented, with the parameters varied as follows:

• In the terminal cost penalty (Equation (12)), ρl was varied between 1 × 10−1 and 1 × 10−9 on a
logarithmic scale.

• In the freezing horizon alternative (Equation (14)), the number of periods in which decisions
are kept constant, Nz, was varied between 2 and 10, and the maximum allowed variation in the
cleaning starting time, ΔTcl, was varied between 1 day and 100 days.

• In the variability penalty alternative (Equations (15)–(17)), the penalty parameter of the cleaning
allocation variability, ρy, was evaluated between 1 × 10−3 and 1 × 102, while the penalty
parameter of the cleaning starting time variability, ρτ, was varied between 1 × 10−4 and 1 × 100.
The different ranges were due to the differences in the order of magnitude of the metrics.

Figure 10 shows the closed-loop economic performance and stability metrics obtained when
using the terminal cost alternative to reduce instability, for various values of the penalty parameters.
The bars in Figure 10b represent the standard deviation of each metric. Increasing the terminal cost
penalty improves the schedule stability but increases the operating cost. At the upper value of the
terminal cost penalty, ρl = 1 × 10−1, the closed-loop solution has no cleanings scheduled over the
entire horizon. This is the most stable solution, but also the most costly. Low penalties reduce the
total operating cost as they allow more variability and a higher reactivity in the scheduling actions.
For terminal cost penalties lower than 1 × 10−7, the total operating cost and the average of most
instability metrics do not change significantly, but the task timing instability changes. When large
variability in the scheduling decisions is allowed (low penalties), the effect of changes in the starting
time of the cleanings dominates over that of the assignment of cleanings to units. The results show
that proposed metrics may be used as good indicators of the overall closed-loop schedule stability.

Figure 11 illustrates the effect of freezing some scheduling decisions beyond the scheduling
sampling time. It shows the total cost and the average of the overall weighted schedule instability
as a function of the number of periods frozen and the maximum change allowed in the starting time
of cleanings (for clarity, only the average value is shown without indicating its variability). Only the
overall weighted instability is used from now on as it is the most comprehensive and illustrative
metric among those proposed. The total operating cost increases with the number of periods frozen,
while the schedule instability decreases, although no clear trend is observed, as the nonlinearities,
nonconvexities, and combinatorial nature of the problem potentially lead to local optimal solutions.
A higher number of periods frozen results in fewer degrees of freedom in the scheduling problem,
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limiting the opportunity to react optimally. When the range of changes in the cleaning starting time
is also restricted, it is observed that, for low values of this bound, the closed-loop schedule is more
stable than for high values, and its total operating cost is higher. For a cleaning starting time variability
bound greater than 10 days, there is no significant change in the schedule stability, but the operating
cost varies. In these scenarios, the total number of cleanings and their allocations have a higher impact
on the process economics than their starting time.

 
 

(a) (b) 

Figure 10. Case study 1—effect of the terminal cost penalty (ρl) on the closed-loop performance:
(a) process economics, as total cost (left axis) and cleaning cost (right axis); (b) average schedule
instability metrics and their standard deviation.

  
(a) (b) 

Figure 11. Case study 1—effect of the number of frozen periods (Nz) and the maximum allowed
variation in the cleaning starting time (ΔTcl ) on the closed-loop performance: (a) total operating cost;
(b) average schedule overall weighted instability.

For the variability penalty alternative, which penalizes changes between consecutive schedules,
Figure 12 presents the effect of its parameters on the closed-loop performance and schedule stability.
Although no clear trend is observed, the total operating cost increases when the penalties on the
variability are higher, while the schedule instability decreases. For values of ρτ lower than 1 × 10−3

the schedule instability values did not change, but the operating cost could still vary, indicating that
the effect of cleaning starting times is not as significant as the cleaning allocation. Furthermore, the two
penalties in this alternative are correlated, and there are different combinations leading to similar
closed-loop performance of the overall system.
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All the alternatives presented to improve closed-loop schedule stability were effective in doing so.
In all scenarios considered, improving schedule stability came at the expense of the total operating
cost, demonstrating a trade-off between how fast the system reacts to disturbance and the long-term
predictability of the schedule. A data envelope analysis (DEA) [43,44] was used to evaluate this
trade-off for all the scenarios simultaneously considered in all the alternatives. Each point in the
DEA represents a solution of the closed-loop optimal scheduling problem, using any alternative to
improve stability and the specifications of its parameters. Hence, there are 71 points in total—one
base case, 10 for the terminal cost alternative, 30 for the freezing decisions alterative, and 30 for the
penalizing schedule variability alternative. The total operating cost and the average overall weighted
instability of each schedule were considered as “inputs” to the standard representation of the DEA,
while there were no “outputs”, and an “efficiency” was calculated for each point by solving a linear
programming problem.

  
(a) (b) 

Figure 12. Case study 1—effect of the penalty on task variability (ρy) and the penalty on cleaning
starting time (ρτ) on the closed-loop performance: (a) total operating cost; (b) average overall
weighted instability.

The results of the DEA are presented in Figure 13, where the points are classified according
to the closed-loop alternative used to improve stability, and the efficiency frontier was constructed
from the DEA. The points that lay on the frontier have a 100% efficiency (i.e., represent the best
combination of the inputs, and no other data point available can be as good or better) and all other
points underperform with respect to those. All the points for the terminal cost alternative lay inside the
frontier; thus, they are not as efficient as those defined by the other alternatives or even as the base case,
which did not consider stability in the online schedule optimization. This underperformance of the
terminal cost alternative is because the reference point used to ensure closed-loop stability, although
stable, correspond to the worst conditions to operate the preheat train. The freezing decisions and
variability penalty alternatives both improved the closed-loop schedule stability but compromised
the operational cost. For these data points, two clusters are observed: one for the freezing decisions
alternative that, on average, reduces the schedule instability without a large cost penalty and another
for the variability penalty alternative that, on average, achieves a larger improvement in stability
but with a larger increase in operating cost. Some of the data points of the two clusters overlap,
representing intermediate solutions.
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Figure 13. Case study 1—data envelope analysis (DEA) for all the closed-loop solutions of the
scheduling and control problem.

For this case study, the DEA suggests that the variability penalty method is the better approach
to reduce schedule instability, while still achieving a good economic performance. The terminal cost
alternative proved to be the least efficient, whereas freezing decisions in successive schedules increased
stability, but could be too restrictive in the presence of disturbances, such that not all the economic
benefits of implementing an online fouling mitigation strategy were achieved.

6. Closed-Loop Schedule Stability of an Industrial Preheat Train

This section analyzes the closed-loop performance and stability of the online optimal cleaning
scheduling and control of an industrial preheat train under dynamic and variable operation.

6.1. Case Study 2—Definition

This case study involves a network with five heat exchangers, four of which are double shells
(modeled as nine exchangers overall) in the hot end of a real refinery preheat train (Figure 14). It was
based on the network and operating conditions presented in [45,46]. There is one control degree of
freedom, as the flow split of crude oil through the parallel branches is not constrained but bound
between 20% and 80%. Plant measurements of flow rates and streams temperature were available as
daily averages over 1240 days. Figure 15 shows the flowrates and temperatures of the five inlet streams
to the network (crude oil and five recycle streams) which were used to characterize the variability of the
inlet streams. The design specifications of the heat exchangers are presented in Table A2 (Appendix A),
together with fouling and aging parameters, while cost parameters used are presented in Table A3
(Appendix A). A dynamic model of this preheat train was validated against the plant data in [1] with
excellent results and was used here as the “plant” model.

A controlled degree of model plant mismatch was introduced by modifying the fouling deposition
constants of each exchanger in the plant model at every sampling time. This aimed to mimic the effect
of processing different crudes or crude blends, as they have different fouling propensity. The deposition
constants in the plant simulation changed over time, but their actual value was unknown to all
predictive models used in the online optimization approach. The variability of the deposition constants
in each exchanger was modeled as a pseudo random process around their average values, estimated
using the actual measurements (i.e., outlet temperature of the tube side and shell side of each exchanger).
Because all exchangers process the same crude at a given time, their deposition constants are not
independent, and their correlation was captured when defining their variability. The average deposition
constant and its variability were different for each exchanger in the network. The box plots in Figure 16
show their median and ranges for all exchangers.
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Figure 14. Industrial case study 2—preheat train structure.

(a) (b) 

Figure 15. Industrial case study 2—actual measurements of the inlet stream flow rates (a) and temperature (b).

 
Figure 16. Industrial case study 2—box plot representing the variability in the deposition constant for
each exchanger in the preheat train.

A closed-loop simultaneous optimization of the flow distribution and cleaning schedule was
carried out over 1240 days, starting with all exchangers in a clean state. The economic performance
optimization case, ignoring schedule stability (base case), was detailed in [1]. For this case, Figure 17
presents the cleaning schedule and a key temperature (the crude oil temperature at the entrance of the
furnace, CIT), as predicted and executed at three successive sampling times.
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(a) (b) 

Figure 17. Industrial case study 2—base case online optimization (no instability reduction). (a) Cleaning
schedule as predicted in three successive updates (red), and executed (black); (b) crude oil temperature
at the exit of the last exchanger/inlet to furnace (CIT) as estimated (blue), predicted (red), and eventually
observed (black), in three successive updates.

6.2. Results and Discussion

The online optimal cleaning scheduling and flow control problem was solved using the following
settings: for the feedback loops, a predictive control horizon FPHC of 10 days, an update frequency of
1 day, and a PEHC of 20 days for the control layer; for the scheduling layer, a PEHS of 120 days, an update
frequency of 90 days, and FPHS of 180 days. The variability penalty alternative to penalize changes
between consecutive schedules, described in Section 4.3, was used. The two penalty parameters
on task allocation, ρy, and on task timing, ρτ, were varied, defining different settings for the online
optimization. Results are compared against the base case, which did not consider instability, in terms
of schedule stability and total operating cost.

The closed-loop performance with the variability penalty formulation is presented in Figure 18
as the schedules and profiles of a key temperature (the crude oil temperature at the entrance of the
furnace, CIT) at three successive schedule updates.

 
 

(a) (b) 

Figure 18. Industrial case study 2—online optimization: variability penalty with ρτ = 1 × 10−3 and
ρy = 1 × 10−1. (a) Cleaning schedule as predicted in three successive updates (red) and executed
(black); (b) crude oil temperature at the exit of the last exchanger/inlet to furnace (CIT) as estimated
(blue), predicted (red), and eventually observed (black), in three successive updates.

Figure 19a–c show the energy cost (a), the cleaning cost (b), and the total operating cost (c).
The closed-loop average overall time-weighted instability is presented in Figure 19d (without the
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variability bars in the metric for clarity). The scenarios with a task allocation penalty, ρy, of 1 × 10−1

have consistently a larger operating cost, up to 1.0 million USD, than the base case. This cost increase
is due to larger energy cost and fewer cleanings during the overall online operation. However,
these scenarios exhibit the lowest schedule instability. Fewer cleanings are predicted at every schedule
update because adding new cleanings to or removing some from a previous schedule are heavily
penalized. The predicted cleaning schedules, therefore, have minimal changes between updates.
This also inhibits the ability of the scheduling feedback loop to react to disturbances and introduce
operational changes to mitigate fouling and minimize the cost of the operation.

With values of the task allocation penalty parameter ρy < 1 × 10−1, the closed-loop performance is
not very different from the base case, and it could even improve it, reducing the total operating cost by
0.37 million USD in one case. In addition, the corresponding schedules have a lower instability than the
base case, meaning that they improved both the closed-loop performance and the closed-loop stability
at the same time. All scenarios with ρy < 1 × 10−1 have lower cost than the base case, but larger
closed-loop instability than those with ρy = 1 × 10−1. This observed simultaneous improvement in
the two metrics of closed-loop performance contradicts the expectations. A possible explanation is
that this case reflects a specific realization of the uncertainty, disturbances, variability in the operation,
and forecasting scenarios adopted. The input flow rates and stream temperature in the plant were assumed
to change constantly, while the predictive model of the scheduling layer uses at each evaluation only a
constant forecast for each input, defined as a time-moving average of recent past values.

  
(a) (b) 

.   
(c) (d) 

Figure 19. Industrial case study 2—closed-loop performance for different penalty parameters of schedule
variability: (a) energy cost; (b) cleaning cost; (c) total cost; (d) average overall time-weighted instability.
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The effect of the penalty parameter on the task timing instability is not as significant as that of
the penalty parameter on the task allocation instability. The operating cost increases only slightly
when the task timing penalty increases from 1 × 10−5 to 1 × 10−1, but this difference is no more
than 0.37 million USD for ρy < 1 × 10−1, while, for ρy = 1 × 10−1, the operating cost ranged from
38.4 million to 39.2 million USD, depending on the task timing penalty, ρτ. For the overall closed-loop
performance, the starting time of the cleanings is not as important as the allocation of cleanings to
heat exchangers. Under variable and uncertain operating conditions, modifying the starting time of
an already scheduled cleaning task for a given unit did not have a big potential to reduce the energy
cost, but could improve schedule stability. A reduction in schedule instability was observed between
ρτ = 1 × 10−5 and ρτ = 1 × 10−4, whereas the changes in instability were minimal when ρτ increases
further. The lowest penalty, ρτ, allowed the largest variability in the cleaning starting times between
consecutive schedules. For larger values of ρτ the changes in the predicted cleaning time were minimal,
and most of the schedule instability came from changes in the allocation of cleanings to the heat
exchanger as new cleanings were predicted.

Figure 20 compares the cleaning schedule obtained (as executed by the end of the 1240 day
operation) for three scenarios: (i) the base case without stability consideration, (ii) a variability
penalty case that achieved better closed-loop stability while increasing the operating cost
(ρy = 1 × 10−1,ρτ = 1 × 10−3), and (iii) a variability penalty case that improved both the closed-loop
stability and the operating cost with respect to the base case (ρy = 1 × 10−2 , ρτ = 1 × 10−3). The total
number of cleanings, indicated for the exchanger in the columns on the right of Figure 20, changes
significantly between the scenarios. The second scenario, with ρy = 1 × 10−1, resulted in fewer
cleanings and longer times between cleanings of the same exchangers, while the other two scenarios
had similar cleaning schedules. Although the final closed-loop schedules of the base case (i) and
scenario (iii) are similar, their generation in a receding horizon and their performance were different.
In the base case (i), the calculated instability value, 0.075, results mainly from adding to a predicted
schedule new cleanings that have to be immediately executed. This is not practical from a planning
perspective, if the response to cleaning decisions and supply of resources needed for their execution
is not immediate. In scenario (iii), such actions are penalized, thus occur less often, and most of the
schedule variability can be attributed to the changes in the starting time of the predicted cleanings.
A Pareto plot of all solutions explored is given in Figure 21.

Figure 20. Industrial case study 2—final cleaning schedules as executed online for the base case
(no schedule instability mitigation) and two schedule instability mitigation (variability penalty with
penalty parameters ρy = 1 × 10−1and ρy = 1 × 10−2). The columns on the right give the total number
of cleanings of each exchanger in each case.
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Figure 21. Industrial case study 2—Pareto plot of schedule stability vs. performance, for various
penalty parameters (with the value of ρτ indicated in parenthesis).

In general, the penalization of schedule changes achieves more stable schedules, but reduces the
ability of the system to react to changes. Due to the high variability and uncertainty of the operation
(and possibly the existence of multiple local optima to the nonconvex MINLP scheduling problem),
the trade-off between stability and performance is less clear.

7. Conclusions and Perspectives

The closed-loop schedule stability problem was addressed in this work with an application to the
online cleaning scheduling and control of refinery preheat trains under fouling. The various metrics
developed to quantify schedule instability for online scheduling account for distinct aspects, such as
changes in task allocation, task sequence, starting time of the task, and the earlier or later occurrence
of such changes in the future scheduling horizon. The results show that the metrics are useful to
characterize the stability of successive schedules, as well as to identify sources of instability and ways
to mitigate it. Further stability metric variations could be easily developed (for example, ways of
assigning weights to distinct contributions to a schedule change) on the basis of the methods proposed.

It was demonstrated that such stability considerations can be practically and, in a rather general
way, introduced in a closed-loop NMPC formulation of the optimal scheduling and control problem,
and solved online over a moving horizon, in terms of penalties in an economic objective or via
additional constraints. The result is a formulation which enables to specify both schedule stability and
performance requirements, explore the balance between schedule reactivity and disturbance rejections,
and establish the optimal trade-off between schedule stability and economic benefits.

The above methods were demonstrated for the online cleaning scheduling and flow control of
refinery preheat trains, a challenging application with significant economic, safety, and environmental
impact. An illustrative, small but realistic case study was followed by a demanding industrial case
study. Results show that, of the three alternatives evaluated, the terminal cost penalty proved to be
inefficient in this case. The other two (fixing some decision in the prediction horizon, and penalizing
schedule changes between consecutive evaluations) showed improvements in the closed-loop schedule
stability, against various degrees of economic penalties. The results highlight the importance of
including stability considerations in an economically oriented online scheduling problem, as a way to
obtain feasible solutions for operators over long operating horizons without sacrificing the benefits of
a reactive system to reject disturbances or take advantage of them.

Nevertheless, there are still open questions related to the definition of the penalties or bounds in
the schedule instability mitigation strategies, as well as the definition of acceptable ranges of schedule
stability or instability. Extensions of this work include dealing with multiple task types (as already

293



Processes 2020, 8, 1623

outlined in the paper) and, for longer-term development, the use of global solution methods and
formally incorporating uncertainty in models and solutions.

Application of the metrics developed in this manuscript is not restricted to the specific closed-loop
NMPC scheduling implementation detailed here. They are useful to assess schedule stability in
general regardless of how schedules are calculated, only relying on the existence of two consecutive
evaluations or predictions of the schedule with a common period. The two consecutive instances
may have different control horizons, scheduling horizons, or update frequency. Lastly, although this
work dealt with a specific application (the optimization of refinery heat exchanger networks subject
to fouling), the formulations and solution approach demonstrated here should be applicable with
small modifications to other cases where closed-loop scheduling and control of dynamic systems is
important, such as batch and semi-continuous processes.
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Nomenclature

Subscripts Description

c Related to the control layer in the online optimization approach
d Deposit layer
ov Overall schedule instability
ovw Overall weighted schedule instability
s Related to the scheduling layer in the online optimization approach
ts Task timing instability
T Task allocation instability
Symbol Units Description

Din mm Tube inner diameter
E f J/mol Activation energy of fouling reaction
I - Schedule instability
l - Terminal cost in the objective function of MPC
mc ton CO2/MWh Carbon emission factor (0.015)
ND - Discrete points (columns) in a schedule representation
NU - Units (rows) in a schedule representation
P Pa Pressure
Pc $/ton Co2 Carbon price (30 USD/ton)
Pcl $ Cleaning cost per unit
P f $/MW Energy price (25 USD/MW)
Pr - Prandtl number
Q f MW Furnace duty
R J/molK Universal gas constant
Re - Reynolds number
R f m2K/W Thermal resistance of the deposit—fouling resistance
t days Time
T f K Film temperature
Ts K Shell temperature
Tt K Tube side temperature
V - Running cost in the MPC objective function
w - Decreasing sequence of weights for Iovw calculation
x - Single entry of a schedule matrix
y - Binary variable for cleanings (1, cleaning, 0 operating)
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α m2K/J Deposition constant
γ m2K/JPa Removal constant
δ mm Deposit thickness
ΔTcl days Bounds on the changes of cleaning times
λ W/mK Thermal conductivity
ρ - Penalty in objective functions
τ Pa Shear stress
τcl days Starting time of a cleaning action
T∗sch day Update interval of scheduling feedback loop
ω - Weights in the MHE objective function
HEN - Heat exchanger network
HEX - Set of heat exchangers
FPH days Future prediction horizon
NLP - Nonlinear programming
NMPC - Nonlinear model predictive control
MHE - Moving horizon estimator
MPC - Model predictive control
OT − FPH days Overlapping time in the future prediction horizon
PEH days Past estimation horizon

Appendix A

The model parameters and specifications for the simple case study are presented in Table A1,
while those for the industrial case study are presented in Table A2. Other costs and furnace efficiency
are given in Table A3.

Table A1. Exchanger, fouling model, and cleaning specifications for the simple case study.

HEX1 HEX2A HEX2B HEX2C

Shell diameter (mm) 1295 1400 1400 1400
Tube inner diameter (mm) 19.86 19.86 19.86 19.86
Tube outer diameter (mm) 25.40 25.40 25.40 25.40

Tube length (m) 6100 5800 5800 6100
Number of tubes 800 600 600 600
Number of passes 2 2 2 4

Baffle cut (%) 25 25 25 25
Tube layout (◦) 45 45 45 45

Number of baffles 8 6 6 7
Surface roughness 0.046 0.046 0.046 0.046

Deposition constant (m2 K/J) 0.0075 0.0085 0.0085 0.0065
Removal constant (m4 K/NJ) 4.5 × 10−12 4.0 × 10−12 4.0 × 10−12 4.5 × 10−12

Fouling activation energy (J/mol) 35,000 33,000 33,000 38,000
Ageing frequency factor (1/day) 0.00 0.00 0.00 0.00
Ageing activation energy (J/mol) 50,000 50,000 50,000 50,000

Cleaning time (days) 10 10 10 10
Cleaning cost (USD) 30,000 30,000 30,000 30,000
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Table A3. Costs and furnace specifications.

Fuel cost (USD/MWh) 27
Production cost (USD/kg) 0.23

Carbon cost (USD/t) 30
Carbon emission factor (t CO2/MWh) 0.015

Furnace efficiency (%) 90
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Abstract: The management of the man–machine interaction is essential to achieve a competitive
advantage among production firms and is more highlighted in the processing of agricultural products.
The agricultural industry is underdeveloped and requires a transformation in technology. Advances in
processing agricultural products (agri-product) are essential to achieve a smart production rate with
good quality and to control waste. This research deals with modelling of a controllable production
rate by a combination of the workforce and machines to minimize the total cost of production.
The optimization of the carbon emission variable and management of the imperfection in processing
makes the model eco-efficient. The perishability factor in the model is ignored due to the selection of
a single sugar processing firm in the supply chain with a single vendor for the pragmatic application
of the proposed research. A non-linear production model is developed to provide an economic
benefit to the firms in terms of the minimum total cost with variable cycle time, workforce, machines,
and plant production rate. A numerical experiment is performed by utilizing the data set of the
agri-processing firm. A derivative free approach, i.e., algebraic approach, is utilized to find the best
solution. The sensitivity analysis is performed to support the managers for the development of
agricultural product supply chain management (Agri-SCM).

Keywords: agri-supply chain management; variable production rate; optimal resources; imperfect
production; eco-efficient production

1. Introduction

Owing to the escalating awareness of resource depletion, climate change, and increasing population,
firms in the agriculture domain need to redesign their current supply chain models by taking economic
and environmental impacts into account [1]. The life cycle of products held in inventory and processing
produce a major concern of perishability among agri-products throughout the supply chain. Therefore,
replenishment strategies, product supply, and processing indicators are crucial to consider in the
research models. The global market for perishable goods, such as refrigerated products and prepared
meals, is growing due to changing lifestyles and overall decreasing tariffs. Owing to their common
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fragility and limited lifetime, handling those goods is far more complex and includes much higher
risks compared to non-perishable products [2]. However, this work deals with the sugar processing
from sugarcane as a raw material in local industry with outsourcing operation as a non-perishable
product because of the long life of raw sugarcane. Also, the supply chain considers a small portion of
the whole network, i.e., a single sugar processing firm with a single outsourcing vendor.

It is evident that the incidence of the uncertain factors is unforeseeable, which may induce a number
of decision-making mistakes through the application of a traditional supply chain, thus incurring a high
cost and unclean production environment [3]. Moreover, variable demand alters the former assumptions
in which demand follows a discrete known distribution for different agri-products [4]. To cover up
the deficit caused by the positive and negative surges in agri-product demand, an intelligent variable
production model should be integrated within the supply chain. Moreover, controllable production
will result in cleaner production as it will optimize the resources without losses and wastes. Because it
is estimated that, by 2050, the overall production of food should increase by approx. 70% in order to
feed the increasing global population [5]. Hence, the best utilization of resources in a supply chain is a
key factor for cleaner agri-production.

Production technology has played a vital role in the upgradation agriculture supply chain and
has been a limelight for governments and agri-business sectors. In the basic production model,
the assumption of constant production rate was observed predominantly. Later on, the variable
machine production rate was also included by considering optimal production costs in manufacturing
systems. Although variable production rate remained the point of interest for researchers many
years ago through its effects on machine tool cost with increasing production rate [6,7]. However,
Moutaz Khouja (1995) [8] was among the pioneers to extend the basic production model and consider
production rate as a decision variable for the volume flexibility of production. The model suggested
the volume-flexibility of manufacturing systems for larger sized lots with a lesser production rate.
Moreover, an increased production rate decreases the repeatability [9] of a robot and affects the quality,
as discussed by [10].

This research contributes to transforming the idea of an intelligent, green supply chain production
into a mathematical model. The aim of the model is to represent tangible analysis of human-machine
interaction and imperfect production system in order to optimize use of resources and minimize
wastes. The inclusion of carbon emission cost as an eco-efficient attribute along with the variable
production rate, satisfying agribusiness firms’ demand, is also a limelight of this work, which is hardly
observed in previous literature. Further, the impact of this work is extended to quantify production
loss due to improper human-machine correspondence. The investigation provides a plan of action
for agri-product manufacturing managers to invest in favor of optimized production with effective
resource utilization, which ultimately leads to less rejection in a production environment.

The article is structured in a well possible way i.e., background and challenges to the agricultural
supply chain management (agri-SCM) are discussed in this section. In Section 2, the literature is well
represented from author contributions, which are presented in consideration of the research gap.
Section 3 covers the detailed mathematical formulation of controllable production rate, labor-machine
interaction, inventory management, and eco-friendly agri-SCM. The solution method, i.e., algebraic
approach application, is also given in Section 3. Afterwards, Section 4 deals with the numerical
experiment, which consists of the required data for performing the experiment using the proposed
SCM model. The numerical results are also explained and illustrated significantly in Section 4 along
the sensitivity analysis of the SCM model to mathematically check the significant cost parameters with
respect to the total cost are also performed. In Section 5, conclusion of the research study is discussed.

2. Research Reviews

In a cleaner production environment, prime attention is given to the reduction of production and
associated costs. Fluctuation in agri-products’ raw materials, fuel prices and falling sale rates drive
the agribusiness firms to incorporate technologies and processes which controls expenses. In order
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to fulfill the requirements of the future generations, the agri-product supply chain should eliminate
existing wastefulness and lay emphasis over green defective free production. Such resource waste
elimination requires decision assisted tools that covers intrinsic characteristics of an agri-based product.
Furthermore, a green agri-product supply chain needs more than only economic validation objective
(profit), thus, it should be also able to handle eco-efficient objective. Hence, the decision assisted tool
requires the evaluation of both the economic and environmental aspects simultaneously. For this
purpose, mathematical optimization is fairly viable to discover best values from the domain and set a
better trade-off for managerial insights [11], and for establishing eco-efficient results-based system [12].
The detailed author contributions are given in Table 1.

In the agricultural supply chain, most of the work is found in the logistic of food supply [13],
food safety [14], and imperfect information system. As there is a desirable need to encounter the
requirements of lean manufacturing, supervision of scraps and reworks due to the significant concerns
for production systems [15–17]. In this aspect, Agri-SCM should be integrated with imperfect and green
production. From the perspective of solution methodology, Minjung Kwak (2015) [18] recommended a
mixed-integer linear-programming (MILP) model that optimizes the re-manufacturing plan in order
to validate both the environmental and economic benefits of products. Some researchers have taken
carbon footprint into account for development of cleaner production SCM models. For instance,
Xiao et al. (2016) [19] optimized SCM cost via minimizing carbon footprint of both the retailers
and manufacturers. In this domain, Chia-Chin Wu and Ni-Bin Chang (2004) [20] presented a grey
theory model for uncertain conditions which reflects environmental impact by taking the production
planning tax into account. Wang et al. (2011) [21] established a bi-objective model that evaluates the
associated costs with environmental plans along a green SCM. Additionally, [22] suggested an electricity
monitoring-system that considers a multi-objective linear-programming model taking carbon footprint
into account by electricity usage as a supply of energy. As referred earlier, (Banasik (2019) [1]) that
work included model development of an uncertain eco-efficient supply chain, however, their model
lacks integration of imperfect production.

The effect of the workers’ cost on production and inventory is a significant aspect to cleaner
production and can be analyzed in numerous models. Most of the researchers, i.e., [23–25] studied
an imperfect production environment to assist the managers in dealing with poor quality products.
Though, very few studies have analyzed the cause to reduce an imperfect production in the setup.
A number of factors that affect the production flow and cause imperfection include reworks, rejections,
and scraps etc. The management and planning of imperfect production in the model provide a cleaner
production int the system and wastes are managed with modeling of the imperfect production [26].
In another study, Sarkar et al. (2018) [27] developed a global sustainable supply chain model with
constant production rate having short-term production period in which synchronize mechanism is used
to set the cycle time for each production stage. Tiwari et al. (2018) [28] presented a green production
quantity model with random imperfect quality products, service level constraints, and failure in
reworking. These are depending on the combined efficiency of the machines and workers. Further,
the role of controllable production is effective in dealing with imperfect production.

Moutaz Khouja and Abraham Mehrez (1994) [29] proved the deterioration in quality of product with
increase in production rates in an economic production inventory model. He reassessed Rosenblatt [30]
work with an assumption of quality function. In another study, Khouja et al. [31] further extended his
earlier model by assuming that the production rate had a probability to shift production system from
in control to the out-of-control state. Later on, Somkiat Eiamkanchanalai and Avijit Banerjee (1999) [32]
advanced the work and established model that determines both the optimal production cycle length
and variable production rate for a single item. Giri et al. (2005) [33] introduced a flexible production
rate EPQ model that addressed the issue of higher stress level of the human-machine interaction with
the increase of production rate. In this EPQ model, the unit production cost was stated as a function
of the production rate, under general failure and overhaul time. Moreover, [34] presented an EPQ
model where the production cycle consisted of multiple runs at various production rates. The author
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revealed that the production rates should take values between demand rate and production rate that
reduces the production cost. Later on, Shib Sankar Sana (2010) [35] studied unit production cost as a
function of product reliability and variable production rate in imperfect production system. Giri et al.’s
(2005) [33] model was later extended with stochastic demand by [36], sampling in inspection by [37],
and stochastic repair time by [38]. Also, Zanoni (2014) [39] examined the case of energy consumption
in two stage production system where production depends on the variable production rate.

304



Processes 2020, 8, 1505

T
a

b
le

1
.

A
ut

ho
r

C
on

tr
ib

ut
io

n.

A
u

th
o

r(
s)

T
w

o
-

E
ch

e
lo

n
S

C
M

Im
p

e
rf

e
ct

io
n

P
ro

d
u

ct
io

n
R

a
te

R
e

so
u

rc
e

s
O

p
ti

m
iz

a
ti

o
n

E
co

-
E
ffi

ci
e

n
t

A
g

ri
-

S
C

M
M

e
th

o
d

o
lo

g
y

S
cr

a
p

R
e

w
o

rk
C

o
n

st
a

n
t

V
a

ri
a

b
le

W
o

rk
fo

rc
e

M
a

ch
in

e
s

C
o

m
b

in
e

d

Ba
ns

ik
et

al
.[

1]
√

√
√

√
Bi

-s
ta

ge
st

oc
ha

st
ic

pr
og

ra
m

m
in

g

Ya
sm

in
e

et
al

.[
13

]
√

√
√

A
na

ly
ti

ca
lm

et
ho

d

Fr
an

ce
sc

o
Z

ec
ca

[1
4]

√
√

A
na

ly
ti

ca
lm

et
ho

d

Pa
bl

o
Bi

sw
as

[1
5]

√
√

√
√

A
na

ly
ti

ca
l

op
ti

m
iz

at
io

n

Ta
yy

ab
[1

6]
√

√
√

A
na

ly
ti

ca
l

op
ti

m
iz

at
io

n

W
an

g
et

al
.[

21
]

√
√

√
N

or
m

al
iz

ed
co

ns
tr

ai
nt

m
et

ho
d

S
Sa

rk
ar

[2
6]

√
√

√
√

A
lg

eb
ra

ic
A

pp
ro

ac
h

M
ou

ta
z

K
ho

uj
a

[2
9]

√
√

A
na

ly
ti

ca
lm

et
ho

d

M
ar

ti
n

Li
nd

e-
R

ah
r

[4
0]

√
√

G
am

e
th

eo
ry

Sa
rk

ar
[4

1]
√

√
A

na
ly

ti
ca

lm
et

ho
d

Sh
ib

Sa
nk

ar
Sa

na
[4

2]
√

√
√

√
√

A
na

ly
ti

ca
lm

et
ho

d

Sa
rk

ar
[4

3]
√

√
√

√
√

A
lg

eb
ra

ic
ap

pr
oa

ch

X
ue

li
M

a
et

al
.[

44
]

√
√

√
A

lg
eb

ra
ic

A
pp

ro
ac

h

Pr
op

os
ed

re
se

ar
ch

√
√

√
√

√
√

√
√

√
√

A
lg

eb
ra

ic
ap

pr
oa

ch
(S

Q
P)

305



Processes 2020, 8, 1505

Production inventory outsourcing policy was studied by [45] for a firm with Markovian in-house
production capacity that faced independent stochastic demand operating with outsourcing operation.
Also, Pablo Biswas and Bhaba R Sarker (2008) [15] proposed a manufacturing process whereby
finished goods are produced along with a proportion of undesirable defective products and scrap.
As the system is not always perfect, some scrap is produced during the manufacturing and/or rework
processes. According to Wang et al. (2013) [46], when the outsourcing quantity and wholesale price
are decision variables, the competitive contract manufacturer sets a wholesale price sufficiently low
to allow both parties to coexist in the market, and the original equipment manufacturer outsources
its entire production to contract manufacturer. Bettayeb et al. (2014) [47] presented a risk-based
approach for quality control of complex discrete manufacturing processes to prevent massive scraps.
The advancement targeted from this work is the proposal of a model, aiming at the quality control
allocation of the products and an understandable algorithm to prevent the production of excessive
amount of scrap.

This research deals with the agri-product supply chain management (Agri-SCM). Abundant work
on variable production models on realistic case scenarios exists. Particularly, most of the research on
eco-efficient (reducing carbon emission) supply chain assumes deterministic demands and constant
production rate, and hardly flexible productivity is taken into account. Further, technology development
urges for intelligent models in which man-machine interactions are optimized in order to attain minimal
wastes. Such intelligent models can hardly be seen in the literature. Additionally, to assert an efficient
green production through the supply chain, imperfect production plays a vital role to cut down the
cost and reduce the consumption of extra resources. Moving forward, it is worth mentioning that no
traces related to agri-products supply chain with intelligent eco-efficient model is found. This work
contributes to the latest literature by: (1) providing a centralized, two-echelon supply chain model with
variable production rates, (2) presenting an intelligent model in which human–machine interactions
are optimized, (3) carbon emission cost and imperfect production are integrated with the proposed
model to assure a cleaner production environment, and (4) Agri-SCM with deteriorated products
is introduced.

3. Method and Materials

3.1. Research Modeling

This human–machine interface is more significant in the supply chain management of agricultural
products. The research contributes to transform the theoretical idea into a mathematical model with an
aim to represent the tangible analysis of the imperfect production system in supply chain management.
The model is based on Agri-SCM for deteriorated agri-product by considering controllable production
rate from the interaction of the human and workers. The flow diagram of the Agri-SCM is illustrated
in Figure 1. This research deals with the two-echelon Agri-SCM and covers the agri-food processing
firm, where the vendor is involved into few operations because of capacity limitation. The first stage
includes the basic food operations, second stage is dedicated to the vendor operations, and the third
stage is the finishing stage. The raw material in manufacturing firms is first processed through the basic
cleaning operations. Then, the semi-finished parts are outsourced to the vendor firm. The inspection
operations are carried out by the vendor, where the parts are sorted as good and defective. In order to
compensate for the rejection to meet the required demand, the same quantity of rejections is ordered to
manufacture from the first stage of the processing firm. The good agri-products are further delivered
to the final stage for further processing and packaging.
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Figure 1. The inventory diagram of the agricultural supply chain management (Agri-SCM).

3.1.1. Assumptions

The following assumptions were used for the proposed model.

1. The mathematical model is based on multiple types of agri-product. The constant and variable
production rate with given demand is considered in respectively to avoid shortages [17].

2. The unit production cost is taken as [see for reference: [8] f (p) = C +
g
p + bP. Here, C is the unit

cost of raw material, g represents the per unit cost component that is reduced as the production
rate increases, and bP is the unit cost component that increases in the production rate (e.g., tools
costs) [48,49].

3. The agri-product processing firm outsources few operations due to limited resources.
The imperfect products are produced, for which reworking is done and inspection cost is
incurred. The rejected products are disposed and recycled.

4. The model is applicable for non-perishable crop because it considers only a sugar processing firm
with outsourcing operation.

5. The processing firm consisting the combination of labor and equipment/machines to process
the agri-product.

6. Management of imperfection and carbon emission is considered to make the Agri-SCM a cleaner
and eco-effective model.

3.1.2. Notation

The decision variables and the parameters used in the proposed mathematical modeling are
denoted by the notations enlisted comprehensively in Appendix A.

3.2. Model Formulation

The inventory diagram of the imperfect agri-food processing firm with vendor/supplier is shown
as in Figure 1, where the cycle time of production is given on the x-axis and inventory is given on the
y-axis. The upper portion is showing the inventory of the agri-product processing firm, while the lower
portion is associated with the vendor inventory. The objective of the research is to minimize the total cost
of Agri-SCM, and the formulation of the cycle time of the processing firm is prerequisite to calculate the
total cost (TC). Cycle time is taken as a decision variable in the production model, which is dependent
upon the production rates of processing firm. The production rate of the processing firm, i.e., Pja and
Pjc for first and final stage is relying on the production rate of the machines (ε ja and ε jc). In order to
meet the customer demand and no shortages in the processing firm, the production rates are considered
as a variable (i.e., ε∗ja and ε∗jc) to take an advantage of flexible production, where, ε∗ja ∈ [ε∗ja−min, ε∗ja−max]

307



Processes 2020, 8, 1505

and ε∗ja ∈ [ε∗jc−min, ε∗jc−max]. The total cost of production is the sum of Agri-processing firm and vendor
cost as given in Equation (1) and their formulations are further represented as following.

Total cost of production = Agri-processing cost + Vendor cost (1)

3.2.1. Agri-Processing Cost

The total cost associated with the manufacturer include the cost related to the first stage and
final stage of the processing firm, where the basic cost includes setup, production, labor, holding,
carbon emission, and stress, as expressed in Equation (2).

Total cost of agri-processing = Setup cost + processing cost + Labor cost
+ Holding cost + Carbon emissions cost

(2)

The breakup of the agri-processing cost is necessary to understand each cost clearly. That is the
reason all the costs are described mathematically and theoretically in Equations (3)–(10) as follows.

3.2.2. Setup Cost

The incurred cost is subject to the initial cost required to operate the production setup. Generally,
it may contain setup cost, substitution, and tool setting cost. Further, this is fixed nature cost,
independent of quantities, though time dependent. The expression is given in Equation (3).

SC =

J∑
j=1

Aj (3)

3.2.3. Production Cost

Explicitly, cost incurred in the processing, which is largely dependent on quantity and variable in
nature. The cost is accumulation of all costs utilized on resources that are required to manufacture
a product. It contains the processing and machining cost, utilities needed for machines, and labor
cost. Further, it is linked with the manufacturing processes of initial stage manufacturing. and are the
production rates of the initial stage processing plant and machines respectively. Lastly, the production
cost is the summation of all the costs linked with the raw materials, production, and tool-die cost [50].
The expression is given as in Equation (4).

MC =

J∑
j=1

(Crm + TDmajPja +
gmaj

Pja
)Pjat1 j + (TDmcjPjc +

gmcj

Pjc
)Qjc (4)

3.2.4. Holding Cost

Holding cost is the basic cost need to understand the basic production model, which is variable
and dependent upon the variable inventory at any instant of time. This is the carrying cost of holding
inventory. Holding cost depends on production of semi-finished and finished goods used as stock.
It is incurred on production and crashing quantities in the proposed model and includes costs such as
wedges, warehouse rent, and insurance. It also depends on the holding time of the product in inventory.
The holding cost will be applied on the inventory supported by manufacturing firm, outsourcing
operations. The average inventory is calculated as the ratio of the sum of inventories in the form of area
under the curve to the cycle time of the production, which is expressed as in Equation (7). The cycle
time and inventory levels of the processing firm are calculated by a step-by-step procedure gives in
Appendix B.

TotalInventory = Area123 + Area10,11,12 + Area11,12,13 (5)
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=
Q2

j

2Pja
+

(Qj − u)2

2Pjc
(1− Dj

Pjc
) +

(Qj + u)2

2Dj
(1− Dj

Pjc
)

2

(6)

HCmj =

J∑
j=1

hmj[
Q2

j

2Pja
+

(Qj − u)2

2Pjc
(1− Dj

Pjc
) +

(Qj + u)2

2Dj
(1− Dj

Pjc
)

2

]. (7)

3.2.5. Carbon Emission Costs

The model optimized the carbon emission cost as a function of production rate to develop an
eco-friendly and eco-effective agri-product SCM. The carbon emission in the agri-processing firm
depends upon the source of energy consumed by the equipment/machines. The cost of carbon is
incurred by the state government to support the global warming issue. The cost of carbon emission is
generated during the life cycle production, which is given as in Equation (9), where A is the emissions
function parameter (ton.year/unit), B is the emissions function parameter (ton year/unit), and C is the
emissions function parameter (ton/unit) [51].

Carbon emission cost(CECj) = Costo f carbonemissioninmanu f acturing(CEM) (8)

=

J∑
j=1

γ2[(AP2
ja − BPja + C)Pjat1 j + (AP2

jc − BPjc + C)Qjc] (9)

3.2.6. Labor Cost

The cost is associated with the utilization of the workforce in the agri-SCM. The wages paid to
the workers on the basis of the level of the skilled. Here, the cost is incurred to reflect the importance
of the unskilled workers to understand the importance of the human factor in the processing firm.
The labor cost is calculated on the basis of the machines required in the agri-product processing firm,
which is expressed in Equation (10).

Laborcost(LC) =
J∑

j=1

LjWj (10)

The number of machines required and the amount of labor required in the processing firm are
given in Equations (11) and (13), where laj, and lcj are the labor rate or the number of labors working
on each machine.

Kj = Kja + Kjc (11)

Numbero f labors = Laborrate×Numbero f machines× Productiontime (12)

Lj =
laj

ρ
Kja +

lc j

ρ
Kjc (13)

3.2.7. Stress and Workers’ Efficiency

The efficiency of the processing firm depends upon the efficiency of the workers to fulfill the
customer demand before deadline. The labor-machine coordination in the processing firm is very
important for effective and efficient processing firm. The relationship between the average worker’s
stress and efficiency is expressed as given in Equation (15), where m is scale factor, ρ0 is the workers’
efficiency affected by stress, and ρ1 is the efficiency due to the effect of another factor. Therefore,
the total efficiency of the worker will be ρ [52,53].

ρ0 = e−s/m, (14)
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ρ = ρ1ρ0. (15)

3.2.8. Stress Level and Defective Rate

The relationship is developed between the defective rate and averages stress among worker,
where the defective rate is considered as a function of stress having a significant impact on the
processing firm. The increasing rate of average stress among workers increases the defective rate.
That is the reason, the expression for defective is the sum of initial and variable defective rate as
expressed in the Equation (16), where variable defective rate is a function of stress among workers,
α0 is the initial defective rate, τ and, ε are the scaling factors, and s is average stress among worker [53].
The analysis of workers’ stress on the production system has already been analysed by the research
work of Omair et al. [53]. Therefore, the formulation has been incorporated in this study. However,
the analysis of workplace stress on the production system is not highlighted.

α j = α0 + τ(s)
ε. (16)

Now, the mathematical form of the total cost of the agri-processing firm is expressed as in
Equation (17).

TCaj =
J∑

j=1
[Aj + (Crm + TDmajPja +

gmaj

Pja
)Pjat1 j + (TDmcjPjc +

gmcj

Pjc
)Qjc + LjWj

+hmj[
Q2

j

2Pja
+

(Qj − u)2

2Pjc
(1− Dj

Pjc
) +

(Qj + u)2

2Dj
(1− Dj

Pjc
)

2

]

+γ2[(AP2
ja − BPja + C)Pjat1 j + (AP2

jc − BPjc + C)Qjc] + sSCj].

(17)

The costs related to the manufacturer in the first and final stages of production are calculated,
and the costs associated with the vendor are given in the next section.

3.3. Vendor Cost

The semi-finished agri-products are delivered to the vendor for processing few operations. The cost
of vendor is the sum of the costs associated with the production, holding, inspection, and recycling of
the processes is given in Equation (18). These costs are expressed in the Equations (19)–(24).

Vendor cost = Production cost + Holding cost + Inspection cost + Reworking cost
+ Scrap recycle cost + Buffer cost

(18)

3.3.1. Production Cost of Outsourcing

The expression for production cost is utilized from the research work done by [50] except the cost
of raw material, because of receiving the semi-finished products from the manufacturer. The expression
is given in Equation (19).

MCO =

J∑
j=1

[(TDojPjb(1− α j) +
goj

Pjb(1− α j)
)Pjb(1− α j)t2 j]. (19)

3.3.2. Holding Cost of Vendor

The holding cost of outsourcing operations is obtained by the sum of inventories calculated from
Appendix B. The expression for calculating the total cost of production is expressed in Equation (22).

Total Inventory = Area456 + Area5678 + Area689 (20)
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=
Q2

j (1− α j)

2Pjb
+
α j(1− α j)Q2

j

Pjb
+
α2

j Q
2
j (1− α jβ j)

2Pjb
, (21)

HC =

J∑
j=1

[hoj[
Q2

j (1− α j)

2Pjb
+
α j(1− α j)Q2

j

Pjb
+
α2

j Q
2
j (1− α jβ j)

2Pjb
]]. (22)

3.3.3. Inspection Cost

Inspection of the agri-product is carried out by the vendor, where the products are checked
according to the quality control dimensions. The parts are categorized into good and rejected. The total
inspection cost of the production is the sum of the fixed and variable inspection cost in the processing,
as expressed in Equation (23).

ICj =

J∑
j=1

[θ j +ψ jaPjat1 j +ψ jbPjbt2 j] (23)

3.3.4. Recycling Cost/Disposal Cost

Recycling cost is considered in the agri-processing firm. It is not concerned with the recycling
of the agri-product after deteriorated but it is the cost incurred on rejected/defective or imperfect
agri-product. The customer/user is not the part of the proposed agricultural supply chain management
(Agri-SCM) that is the reason, the perishability factor is not considered. Here, recycling cost is the
cost incurred on disposing the imperfect/defective not due to deterioration or perishability factor.
These products are bio-waste and further utilized into other byproducts, i.e., fertilizers, bio-fuel, feeds,
etc., in the processing expressed as in the equation given below.

RCj = γ1Pjbt2 jα jβ j

The mathematical expression to sum all the costs equations is represented as given in Equation (24).

TCvj =
J∑

j=1
[(TDojPjb(1− α j) +

goj

Pjb(1−α j)
)Pjb(1− α j)t2 j +

Q2
j (1−α j)

2Pjb
+
α j(1−α j)Q2

j
Pjb

+
α2

j Q2
j (1−α jβ j)

2Pjb
+ θ j +ψ jaPjat1 j +ψ jbPjbt2 j + γ1Pjbt2 jα jβ j]

(24)

The production system of agri-product processing firm is analyzed by the formulation of
mathematical model. The mathematically model is based on the cycle time of production. The objective
of the proposed model is to minimize the total cost (TCsj) of processing firm. The total cost per cycle is
given in Equation (26).

Totalcost = Agri− processingcost + MR(Vendorcost) (25)

TCj =
J∑

j=1

1
Tj

[Aj + (Crm + TDmajPja +
gmaj

Pja
)Pjat1 j + (TDmcjPjc +

gmcj

Pjc
)Qjc + LjWj

+hmj[
Q2

j

2Pja
+

(DjTj)
2

2Pjc
(1− Dj

Pjc
) +

(Qj + u)2

2Dj
(1− Dj

Pjc
)

2

] + γ2[(AP2
ja − BPja + C)Pjat1 j

+(AP2
jc − BPjc + C)Qjc] + s.SCj + MR[(TDojPjb(1− α j) +

goj

Pjb(1− α j)
)Pjb(1− α j)t2 j

+
Q2

j (1− α j)

2Pjb
+
α j(1− α j)Q2

j

Pjb
+
α2

j Q
2
j (1− α jβ j)

2Pjb
+ θ j +ψ jaPjat1 j +ψ jbPjbt2 j

+Rjα jQj(1− α jβ j) + γ1Pjbt2 jα jβ j]]

(26)
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where,
Lj = Lja + Ljc

Qj =
TjDj(Ω)

1− α2
jβ j

t1 j =
TjDj

Kjaε ja(1− α2
jβ j)

t2 j =
TjDj

Pjb(1− α2
jβ j)

t4 j =
TjDj

Kjcε jc

t5 j = (
TjDj

1− α2
jβ j
− u)(

Kjcε jc −Dj

DjKjcε jc
)

The SCM mathematical model is non-linear by minimizing total cost of SCM, where the decision
variables are (Tj, Lja, Ljc, Kja, Kjc, Pja, and Pjc).

3.4. Solution Algorithm

The variability in the proposed Agri-SCM model make the model non-linear in nature. The decision
variables considered are relying on the decisions of the production planning. Analytically, the proposed
model is optimized with the help of improved methodology called algebraic function, which is based
on quadratic equation. There are four decision variables, i.e., cycle time (Tj), machines (Kja, Kjc),
production rate (εja, εjc), and labors (Lja, Ljc) to optimize the non-linear imperfect production model.
The algebraic method consists of a positive expression type, and can be rewritten as:

f (x) = a1x + a2/x + a3 =
a1

x
(x2 + a2/a1 − 2x

√
a2/a1 + 2x

√
a2/a1) + a3 (27)

f (x) =
a1

x
(x2 + a2/a1 − 2x

√
a2/a1) + 2a1

√
a2/a1 + a3 (28)

f (x) =
a1

x
(x− √

a2/a1)
2
+ 2
√

a2a1 + a3 (29)

Since the quadratic expression is non-negative and a1 is positive, it is always minimized for
x =

√
a2/a1, which reaches the minimum at f (x) = 2

√
a2/a1 + a3.

In the first step of solution algorithm, by using algebraic function methodology, the form of
decision variable Tj can be written as given in Equation (30).

TCsj(Tj, Kja, Kjc, Lja, Ljc, ε ja, ε jc) =
1
Tj

[Aj + (Crm + TDmajPja +
gmaj

Pja
)Pjat1 j

+(TDmcjPjc +
gmcj

Pjc
)Qjc + LjWj + hmj[

Q2
j

2Pja
+

(DjTj)
2

2Pjc
(1− Dj

Pjc
) +

(Qj + u)2

2Dj
(1− Dj

Pjc
)

2

]

+γ2[(AP2
ja − BPja + C)Pjat1 j + (AP2

jc − BPjc + C)Qjc] + s.SCj + MR[(TDojPjb(1− α j)

+
goj

Pjb(1− α j)
)Pjb(1− α j)t2 j +

Q2
j (1− α j)

2Pjb
+
α j(1− α j)Q2

j

Pjb
+
α2

j Q
2
j (1− α jβ j)

2Pjb
+ θ j

+ψ jaPjat1 j +ψ jbPjbt2 j + Rjα jQj(1− α jβ j) + γ1Pjbt2 jα jβ j]]

(30)

The Equation (30) can be written as in Equation (31)
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=
1
Tj

[Aj + s.SCj + θ j + MR× TDojPjb(1− α j)] + Tj[hmj[
D2

j

2Pja(1− α jβ j)
2

+
1

2Pjc
(

Dj

1− α2
jβ j
− α jβ jDj

1− α2
jβ j

)
2

(1− Dj

Pjc
) + (

Dj

1− α2
jβ j
− α jβ jDj

1− α2
jβ j

)
2

(1− Dj

Pjc
)

2

]

+MR[(
Dj

1− α2
jβ j

)2
1− α j

2Pjb
+
α j(1− α j)

Pjb
(

Dj

1− α2
jβ j

)
2

+
α2

j (1− α jβ j)

2Pjb
(

Dj

1− α2
jβ j

)
2

]]

(31)

Our assumptions are given as in Equations (32) and (33).

A1 =

J∑
j=1

[Aj + s.SCj + θ j + MR× TDojPjb(1− α j)] (32)

A2 =
J∑

j=1
[hmj[

D2
j

2Pja(1− α jβ j)
2 +

1
2Pjc

(
Dj

1− α2
jβ j
− α jβ jDj

1− α2
jβ j

)
2

(1− Dj

Pjc
) + (

Dj

1− α2
jβ j
− α jβ jDj

1− α2
jβ j

)
2

(1− Dj

Pjc
)

2

] + MR[(
Dj

1− α2
jβ j

)2
1− α j

2Pjb
+
α j(1− α j)

Pjb
(

Dj

1− α2
jβ j

)
2

+
α2

j (1− α jβ j)

2Pjb
(

Dj

1− α2
jβ j

)
2

]],

(33)

In the algebraic function approach, the constant term becomes neglected and equal to zero.
Therefore, the cost function can be given as in Equation (34).

TCsj(T∗j , Kja, Kjc, Lja, Ljc, ε ja, ε jc) =
A1

Tj
+ A2Tj (34)

= (

√
A1

Tj
)2 + (

√
A2Tj)

2
, (35)

= (

√
A1

Tj
−
√

A2Tj)
2 +

√
2A1A2. (36)

By the algebraic approach, in Equation (36), having the square term as a maximum value,
the square will be zero, i.e.,

(

√
A1

Tj
−
√

A2Tj)

2

= 0, (37)

√
A1

Tj
−
√

A2Tj = 0, (38)

√
A1

Tj
=

√
A2Tj, (39)

T∗j =
√

A1

A2
(40)

By putting the value of in Equation (34). The Equation (41) is obtained as.

TCsj(T∗j , Kja, Kjc, Lja, Ljc, ε ja, ε jc) =

J∑
j=1

A1

T∗j
+ A2T∗j . (41)
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In the second step, the production rate of each machine in the first stage (ε ja) and final stage (ε jc)
of the production system are also calculated by using algebraic approach. First of all, to find optimal
(ε jc), the TCsj can be converted into the form given as in the following equation:

TCsj(T∗j , Kja, Kjc, Lja, Ljc, ε ja, ε jc) = ε jc[TDmcjKjcDj − BKjcγ2Dj]

+
1
ε jc

[
gmcjDj

Kjc
+

lc jDjWj

ρ
+

hmj(Qj − u)2

2KjcT∗j
− (Qj + u)2hmj

KjcT∗j
]

+[−hmj

T∗j

⎧⎪⎪⎨⎪⎪⎩ (Qj − u)2

2Kjc

Dj

(ε jc)
2 +

(Qj + u)2

2Dj

Dj

ρKjcε jc

⎫⎪⎪⎬⎪⎪⎭+ γ2T∗jDTA(Kjcε jc)
2]

+[γ2Djε ja +
(Qj + u)2

2DjT∗j
hmj +

lajDjWj

ρε ja(1− α2
jβ j)

]

(42)

R1 = ε jc[TDmcjKjcDj − BKjcγ2Dj] (43)

R2 =
1
ε jc

[
gmcjDj

Kjc
+

lc jDjWj

ρ
+

hmj(Qj − u)2

2KjcT∗j
− (Qj + u)2hmj

KjcT∗j
] (44)

R3 = [−hmj

T∗j

⎧⎪⎪⎨⎪⎪⎩ (Qj − u)2

2Kjc

Dj

(ε jc)
2 +

(Qj + u)2

2Dj

Dj

ρKjcε jc

⎫⎪⎪⎬⎪⎪⎭+ γ2T∗jDjA(Kjcε jc)
2] (45)

R4 = [γ2Djε ja +
(Qj + u)2

2DjT∗j
hmj +

lajDjWj

ρε ja(1− α2
jβ j)

] (46)

TCsj(T∗j , Kja, Kjc, Lja, Ljc, ε ja, ε jc) = R1ε jc +
R2

ε jc
+ R3 + R4 (47)

R3 consists of squared ε jc and also in the denominator, whereas R4 is constant term. Therefore,
both are neglected and considered as zero.

TCsj(T∗j , Kja, Kjc, Lja, Ljc, ε ja, ε jc) = (
√

R1ε jc)
2 + (

√
R2

ε jc
)

2

(48)

= (
√

R1ε jc −
√

R2

ε jc
)2 + 2

√
R1R2ε jc (49)

By the algebraic approach, Equation (49), having the square term as a maximum value, the squared
expression will be zero, i.e.,

(
√

R1ε jc −
√

R2

ε jc
) = 0 (50)

ε∗jc =
√

R2

R1
(51)

In step 2, the optimal ε ja is obtained by using algebraic approach, i.e., the TCsj can be given as in
Equation (52).

TCsj(T∗j , Kja, Kjc, Lja, Ljc, ε ja, ε∗jc) = ε ja[TDmajKjaDj − γ2DjBKjahmj]

+
1
ε ja

[
gmajDj

Kja
+

lajDjWj

ρ(1− (α j)
2β j)

+
hmj(Qj)

2

2T∗jKja
]

+[
lc jDjWj

ρε∗jc
+ γ2hmjA(Kjaε ja)

2Dj + γ2ε∗jcDjhmj]

(52)
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where we can assume that
R5 = ε ja[TDmajKjaDj − γ2DjBKjahmj] (53)

R6 =
1
ε ja

[
gmajDj

Kja
+

lajDjWj

ρ(1− (α j)
2β j)

+
hmj(Qj)

2

2T∗jKja
] (54)

R7 = [
lc jDjWj

ρε∗jc
+ γ2hmjA(Kjaε ja)

2Dj + γ2ε
∗
jcDjhmj] (55)

Therefore, Equation (56) can be written as

TCsj(T∗j , Kja, Kjc, Lja, Ljc, ε ja, ε∗jc) = R5ε ja +
R6

ε ja
+ R7 (56)

= (
√

R5ε ja)
2 + (

√
R6

ε ja
)

2

+ R7 (57)

where R7 is squared ε ja, which can be neglected and considered as zero.

TCsj(T∗j , Kja, Kjc, Lja, Ljc, ε ja, ε∗jc) = (
√

R5ε ja −
√

R6

ε ja
)2 + 2

√
R5R6 (58)

= (
√

R5ε ja −
√

R6

ε ja
) + 2

√
R5R6 (59)

The square term has a maximum value, if the squared expression will be zero, i.e.,

ε∗ja =
√

R6

R5
(60)

In the third step, the other decision variables of the production system i.e., Kjc, Lja, and Ljc,
which are discrete and can be calculated indirectly. Therefore, the total cost from Equation (30) will be
given as in Equation (61):

TCsj(T∗j , Kja∗, Kjc∗, Lja∗, Ljc∗, ε∗ja, ε∗jc) =
1
T∗j

[Aj + (Crm + TDmaj(K∗jaε
∗
ja)

+
gmaj

(K∗jaε
∗
ja)

)(K∗jaε
∗
ja)(

T∗jDj

K∗jaε
∗
ja(1− α2

jβ j)
) + (TDmcj(K∗jcε

∗
jc) +

gmcj

(K∗jcε
∗
jc)

)(K∗jcε
∗
jc)(

T∗jDj

K∗jcε
∗
jc
) + L∗jWj

+hmj[

(
T∗jDj

1−α2
j β j

)
2

(2K∗jaε
∗
ja)

+
(DjT∗j)

2

(2K∗jcε
∗
jc)

(1− Dj

(K∗jcε
∗
jc)

) +
(DjT∗j)

2

2Dj
(1− Dj

(K∗jcε
∗
jc)

)
2

]

+γ2[(A(K∗jaε
∗
ja)

2 − B(K∗jaε
∗
ja) + C)(K∗jaε

∗
ja)(

T∗jDj

K∗jaε
∗
ja(1− α2

jβ j)
) + (A(K∗jcε

∗
jc)

2 − B(K∗jcε
∗
jc)

+C)(K∗jcε
∗
jc)(

T∗jDj

K∗jcε
∗
jc
)] + s.SCj + MR[(TDojPjb(1− α j) +

goj

Pjb(1− α j)
)Pjb(1− α j)(

T∗jDj

Pjb(1− α2
jβ j)

)

+

(
T∗jDj

1−α2
j β j

)
2
(1− α j)

2Pjb
+

α j(1− α j)(
T∗jDj

1−α2
j β j

)2

Pjb
+

α2
j (

T∗jDj

1−α2
j β j

)
2
(1− α jβ j)

2Pjb
+ θ j

+ψ ja(K∗jaε
∗
ja)(

T∗jDj

K∗jaε
∗
ja(1− α2

jβ j)
) +ψ jbPjb(

T∗jDj

Pjb(1− α2
jβ j)

) + Rjα j(
T∗jDj

1− α2
jβ j

)(1− α jβ j)

+γ1Pjb(
T∗jDj

Pjb(1− α2
jβ j)

)α jβ j]]

(61)
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where,
Lj = L∗ja + L∗jc, (62)

L∗ja =
lajK∗j
ρ

, (63)

3.5. Numerical Experiment

The pragmatic application of the proposed Agri-SCM n model is performed by considering a
sugar processing firm with vendor. The local industry is processing sugarcane as a raw material and
converting it into sugar. There are various categories of the sugar obtained from the raw material
depending on the quality and grades. In our case, we considered three grades of sugar, i.e., A, B,
and C, respectively. The constraints of budget and resources compelled the sugar processing firm to
outsource few processes of the sugar to vendors for a successful supply chain management. To avoid
shortages, the managers are required to keep the production rate as a controllable to fix as per demand.
The production rate of the sugar processing firm is linked with the integrated production rate of man
and machine. The vendor operations are influencing the production rate of the system, which is kept
constant. Therefore, it is limited to set the production rate of the operations before delivering the
products to the vendor, and this should be greater than the rate of outsourcing operation. Furthermore,
the rate of production operations performed after the outsourcing operation must be greater than the
outsourcing rate. The numerical experiment of the research study is based on argir-SCM including
sugar processing firm and vendor. The data utilized to perform the experiment is taken from the
local industry of sugar processing SCM. The processing-based data for each agri-product are given in
Table 2, which consists of tool-die, production, holding, and production rate, which is taken from the
research work of [50]. On the basis of the capacity of the machines inside processing firm, the variable
production rate, [εaj−min, εaj−max] is considered as [(120, 130, 140), (150, 160, 170)] for the machine to
process each agri-product at the first stage where [εcj−min, εcj−max] is considered as [(110, 115, 125),
(130, 140, 150)] to process each sugar grade processing in finishing stage of the processing.

Table 2. Agri-processing firm data for processing various sugar grades from sugarcane.

Product Type
Tool-Die Cost

1st Stage
($/Machine)

Tool-Die Cost
Finishing

($/Machine)

Fixed
Production
Cost ($/ton)

Fixed
Production
Cost ($/ton)

Holding
($/ton/Year)

Sugar (A) 0.012 0.09 650 550 1.1
Sugar (B) 0.012 0.085 660 560 1.21
Sugar (C) 0.013 0.095 665 560 1.25

Product Type Setup ($/Year)
Raw Material
Cost ($/ton)

Production
Rate

(tons/Machine)

Labor
($/Labor-Year)

Demand
(tons/Year)

Sugar (A) 8 20 150 1000 900
Sugar (B) 8.8 23 160 1000 800
Sugar (C) 9.3 25 170 1000 800

All the data related to the imperfect production are given in Table 3, which cover inspection and
recycling. Since the imperfect production is the part of normal production, this model considered
few vendor operations. The inspection station is located after outsourcing to check the quality of
each agri-product, and sorted the checked parts into good and rejected parts. The inspection cost is
categorized as fixed including initial investment and variable cost depending upon the production
quantity. The recycling cost includes the operations to recycle the rejected agri-products into other
useful product. These costs have a significant impact on the total cost of processing.
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Table 3. Vendor data to process various grades of sugar.

Product Type Tool-Die Cost ($/Machine) Fixed Production Cost ($/tons) Holding ($/tons/Year)

Sugar (A) 0.011 670 1.12
Sugar (B) 0.012 670 1.23
Sugar (C) 0.013 675 1.28

Product Type Fixed Inspection ($/Year) Variable Inspection ($/Unit) Disposal ($/Unit/Year)

Sugar (A) 5 0.12 0.83
Sugar (B) 5.5 0.22 0.83
Sugar (C) 6 0.28 0.83

4. Results

4.1. Numerical Results

The objective is to make the production plane, where the number of workstations, workers,
and production time cycle are required. The production rate of the system is depending upon
the production rate of machines, which is kept in such a way that there are no shortages in the
system. The systems of equations generated from the proposed model consisting non-linear equations.
There are numerous techniques used to find the optimal solution of non-linear models e.g., interior
point optimization (IPO), particle swarm optimization (PSO), pattern search (PS), genetic algorithm
(GA), min-max optimization (MMO) etc. Analytically, the methodology is proceeded to search the
optimal and global solutions. The proposed model is solved with global optimal result and solution
as given in Table 4. The total minimum cost of production is obtained as $478,491, which is optimal
and better as compared to PSO, PS, and GA as evidence. The possible optimal production plan for
the manufacturing of parts A, B, and C as a solution consider the production cycle time in days
(5.4, 5.76, 5.76), machine (9, 8, 7) at the first stage, and (7, 6, 6) at the final stage of sugar processing,
respectively. The number of labors as an indirect decision variable are calculated as (32, 29, 25) and
(17, 15, 15) for first and final stage of production.

A special case is considered to solve the proposed research model by taking constant production
rate of the sugar processing firm. This analysis is important to understand the importance of the
controllable production rate by comparing the results. The main objective is to minimize the total
cost of production. The proposed research model is solved by using the solution algorithm developed
by considering constant production rates of the machines located at first stage and final stage of the
production system, i.e., ε ja = (140, 150, 160) and ε jc = (120, 130, 140). The comparative results on the
basis of the TCsj is represented in Table 5 and Figure 2 to show the evaluation of the controllable
production rate. It is found that the total cost of production in case of variable production rate is
optimal as compared to the special case by taking constant production rate. The total cost of processing
is minimum in case of variable production rate i.e., $478,491 as compared to special case. In addition,
the machines required for the production of products at constant production rate required more
machines to fulfill the demand. This result provides an important justification for the transformation
of the proposed model into a traditional system, considering a constant production rate for the
production system.

Theoretically, the study is a proactive approach for the decision-makers to take advantage of the
controllable production rate to avoid excess production of agri-product against fluctuating demand
with the minimum optimal cost of Agri-SCM. The solution of the research is provided by incorporating
a controllable production rate for flexible manufacturing, inventory level control, optimal carbon
emission, and best resource utilization to cope with the fluctuating demand. The research is effective for
agricultural businesses to understand the role of controllable production rate for cleaner production.
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Table 4. The optimal result of the production model with solution for the processing of sugar.

Decision
Variable

Algebraic Approach
(Constant

Production Rate)

Algebraic Approach
(Variable

Production Rate)

Particle
Swarm

Pattern
Search

Genetic
Algorithm

T1(year) 0.015 0.015 0.016 0.016 0.0163
T2(year) 0.016 0.016 0.016 0.04 0.0080
T3(year) 0.017 0.016 0.016 0.016 0.0166

Kja1(machines) 10 9 9 9 9
Kja2(machines) 8 8 8 8 8
Kja3(machines) 8 7 7 7 7
Kjc1(machines) 8 7 7 7 7
Kjc2(machines) 7 6 6 6 74
Kjc3(machines) 6 6 6 6 6

TCjs($) 513,890 478,491 479,045.1 479,500.2 607,138.3

Table 5. Sensitivity analysis of the SCM with respect to key parameters.

Parameters
Original

Value
% Change
in Value

New
Value

% Effect on
TCjs

Tdmj 0.01

−50 0.005 −14.11
−25 0.01 −7.16
+25 0.01 7.16
+50 0.02 14.52

gj 610

−50 305.00 −0.71
−25 457.50 −0.4057
+25 762.50 0.40
+50 915.00 0.71

Wj 1000

−50 500.00 −21.2
−25 750.00 −10.6
+25 1250.00 10.68
+50 1500.00 21.2

Cjs 50

−50 25.00 −3.14
−25 37.50 −1.46
+25 62.50 1.312
+50 75.00 2.513

Crm 19.5

−50 9.75 −9.67
−25 14.63 −4.83
+25 24.38 4.83
+50 29.25 9.67

Hj 0.5

−50 0.25 −3.8
−25 0.38 −1.92
+25 0.63 1.7
+50 0.75 3.9

Aj 11

−50 5.50 −0.5
−25 8.25 −0.265
+25 13.75 0.27
+50 16.50 0.52

Oj 1.2

−50 0.60 −4.9
−25 0.90 −2.84
+25 1.50 1.663
+50 1.80 4.19

4.2. Sensitivity Analysis

The sensitivity analysis of the proposed model is necessary to check the limitation and variation
of the system by changing the important factors and parameters. The objective of the proposed model
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as total cost of agri-processing over short run along is showing a good variation depending upon
the change in labor cost, reworking cost, carbon cost, and inspection cost. A sensitivity analysis is
necessary to show the effects of varying data on the final objective of the model, i.e., the total profit.
Different experiments are also required to test the proposed production model in different situations.
There are eight parameters considered as performance indicators for the sensitivity of the proposed
model, and the results of the analysis for the SQP technique are given as in Table 5 and also presented
graphically in Figure 2.

The sensitivity provides a detailed analysis of the largest effects of the parameters (changes of
−50%, −25%, +25% and 50%) on the objective function. This analysis is conducted as follows.

1. By changing the tool-die cost Tdmj from −50% to +50%, the results exhibit a direct relation,
showing respective increases of +14.11% and −14.52% in the total cost of production system.
The original value is at equilibrium, showing symmetric positive and negative effects on the
total cost.

2. Similarly, a direct relation is found the production cost (gj), but the difference is that it had a
smaller impact of ±0.71% on the total profit.

3. From the sensitivity analysis, a large impact of almost ±21% on the total cost is observed by the
variation of labor cost at ±50%.

4. The impact of the manufacturer’s raw material cost is also significant on total cost of production
i.e., ±10 at extreme values.

5. The setup cost Aj of the manufacturer shows only small effects of −0.05% to +0.50% on the cost
by changing the rate from −50% to +50%, respectively.

6. The outsourcing cost is found to have a less impact as compared to the production costs resulting
in −4.9% and +4.9% at the extreme points.

7. The holding costs is carrying a nominal impact on TCjs, i.e., −3.8% and 3.9% at extreme values.
These parameters lie within range of the equilibrium position and are observed to be directly
proportional to the objective.

Figure 2. The sensitivity of total cost of Agri-SCM with respect to the cost parameters.
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5. Conclusions

Agri-production is intrinsically connected with several uncertain sources, mainly the demand patterns
and production yields. From the viewpoint of sugar-cane supply chain planning, few contributions
take on tactical and strategic decisions. This paper proposes an optimization model for sugarcane
supply chain planning, integrating several agricultural decisions from a strategic-tactical planning
perspective. Uncertainties implicate surges in demand which need to be tackled by a variable production
supply chain. Indeed, technology development has enforced the agri-business stakeholders to rethink
strategies and adopt a better, eco-friendly production environment with optimized costs. Despite high
tech procedures, intelligent systems are an hour of need, and this work has proposed an efficient
human-machine interactive model embedded, thus going a step ahead for greener production. Further,
scrap and reworked products are also dealt with in the model. The right decision at the right time
will lead the agricultural industry towards intelligent and smart systems. The study is a form of
strategic management approach for the traders, logistics, retailers, manufacturers in agri-SCM to
manage resources and to control carbon emissions for cleaner production.

In this work, a non-derivative technique is designed to integrate an algebraic approach in the
agri-product based supply chain to optimize the resources and coup with variable demands through a
controllable production rate. The analysis is providing a platform for manufacturing managers to invest
in favor of advanced technology in agri-SCM, which ultimately leads to a less rejection production
environment for clean manufacturing. The solution methodology of the proposed model included
manufacturing limitations in the integration of the objective formulations with the developed system.
Results findings and sensitivity analysis. The focus of these analyses is to evaluate sensitivity for an
optimal solution to the value of uncertain parameters, providing confidence in the solution of the
model. Managerial insights are largely beneficial to agri-SCM for the agri-food processing industry
and to the people with cleaner production and carbon emission prioritized policies.

The research work can be extended into a three-echelon agri-SCM model by considering the
farming industry and agri-retailer. The uncertain factors in the form of costs, prices, inflation, and time
value can be dealt with using the fuzzy set theorems. The deterministic model can be converted into
probabilistic or stochastic theorems for the implication of real scenarios. Overall, the agri-product
supply chain needs be developed globally to make food more secure and accessible.
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Appendix A. Model Notation

The list of notation for agri-processing firm and vendor are given in the form of indices, decision
variables, manufacturer, and vendor parameters.

Indices

J the index used to indicate number of agri-product, j = 1, 2, ...n
a to indicate the parameters for first stage of agri-processing firm
b used with the parameters of vendor
c to represent the second stage of agri-processing firm
m used for agri-processing firm
o used for vendor
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Decision Variables

Tj cycle time to process jth agri-product (units)
Lja labors utilized at 1st stage to process j th agri-product (workers)
Ljc labors utilized to process jth agri-product at 1st during final stage (workers)
Kja number of machine units utilized at 1st stage to process jth agri-product (workstations)
Kjc number of machine units utilized to process jth agri-product during finishing stage (workstations)
Pja plant production rate of jth product at 1st stage (units/year)
Pjc plant production rate of jth agri-product by the 2nd stage of agri-processing firm (units/year)

Agri-Processing Parameters

Crm raw material cost of jth agri-product ($/unit)
TDmj manufacturer total tool-die cost of jth agri-product ($/unit)
TDmaj tool-die cost of jth agri-product in 1st stage of manufacturer ($/unit)
TDmcj tool-die cost of jth agri-product in final stage($/unit)
gj total indirect production cost of jth agri-product ($/unit)
gmaj indirect cost of jth agri-product in first stage of manufacturer($/unit)
gmcj indirect production cost of jth agri-product in final stage of manufacturer($/unit)
Dj (Ω) variable demand depending emergency level due to pandemic ($/unit)
Qj production quantity (units)
lja average labor utilized per machine in first stage of manufacturer(labor/machine)
ljc average labor utilized per machine in final stage of manufacturer(labor/machine)
Wj average wedge of labor to process jth agri-product ($/labor)
Aj setup cost for jth agri-product ($/year)
hmj manufacturer holding cost of each agri-product per cycle ($/unit/year)
Gj reworking cost of jth agri-product ($/unit)
εja production rate of each machine unit to process jth agri-product at 1st stage(units/machine)
εjc production rate of each machine unit at final stage to process jth product (units/machine)
TCaj total cost of processing agri-product ($/cycle)

Vendor Parameters

TDoj vendor tool-die cost of jth agri-product during ($/unit)
goj indirect part production cost of jth agri-product with vendor($/unit)
θj fixed inspection cost of agri-product jth ($/year)
αj proportion of rejection produced in defective jth agri-product (%)
βj defective rate for jth product (%)
ψj variable inspection cost of product jth ($/unit)
γ1 recycling cost ($/unit)
ρ efficiency of the labor (%)
Pjb production rate of jth agri-product processed by the vendor (units/year)
TCvj total cost of vendor ($/cycle)
MR marginal rate of vendor ($/cycle)
TCj total cost of agri-product supply chain management ($/cycle)

Appendix B. Production Cycle Time and Inventory Level Calculations

Appendix B.1. Cycle Time Calculation

The objective of the research is to minimize the total cost of production, and the formulation of
the cycle time of the production system is prerequisite to calculate the total cost (TC). Cycle time is
taken as a decision variable in the production model, which is dependent upon the production rates
of manufacturing system. The production rate of the manufacturing firm and vendor are relying on
the production rate of the machines (capital units). In order to meet the customer demand and no
shortages in the production system, the production rates of the manufacturing system is different
in the manufacturing before outsourcing, during outsourcing and after outsourcing operations are
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denoted as Pja, Pjb, and Pjc respectively. The total production cycle time of the item is the sum of the
time utilized in production, outsourcing, reworking and delivery as expressed as in Equation (A1).

Tj = t1 j + t2 j + t3 j + t4 j + t5 j (A1)

where, the individual time fractions of the total cycle time are mathematically formulated as given
from Equations (A2) to (A6).

t1 j =
Qj

Pja
(A2)

t2 j =
Qj

Pjb
(A3)

t3 j =
Qjα j

Pjb
(A4)

t4 j =
Qj

Pjc
(A5)

t5 j =
Imax( jc)

Dj
(A6)

To find the value of Imax( jc) from the inventory diagram, the formula of slope in the Area10,11,12

can be expressed as in Equation (A7).

tanθ4 = Pjc −Dj ⇒
Imax( jc)

t4 j
(A7)

Imax( jc) = (Pjc −Dj)
Qj

Pjc
= Qj(1−

Dj

Pjc
) (A8)

By putting the value of Imax( jc), the simplified form of Equation (A6) can be expressed as in
Equation (A10).

t5 j =
Qj(1− Dj

Pjc
)

Dj
(A9)

t5 j = Qj(
1

Dj
− 1

Pjc
) (A10)

After calculating all the time fractions (t1 j to t5 j) for the production of automobile parts,
the mathematical form of the total cycle time can be given as in Equation (A11).

Tj =
Qj

Pja
+

Qj

Pjb
+

Qjα j

Pjb
+

Qj

Pjc
+ Qj(

1
Dj
− 1

Pjc
) (A11)

Appendix B.2. Average Inventory Costs

The inventory is obtained by calculating the area under the curve of the production,
storage, and buffer quantity in complete manufacturing process. As followed the inventory
diagram given as in Figure 2, the inventories can be divided into the areas i.e., Area123, Area456,
Area5678, Area10,11,12, and Area11,12,13. These areas are formulated separately from Equation (A12) to
Equation (A26) respectively.

Area123 =
1
2

t1 jImax( ja) (A12)

tanθ1 =
Imax( ja)

t1 j
Pja × t1 j = Imax( ja)Imax( ja) = Qj (A13)
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By putting Imax( ja), Equation (A12) can be written as in Equation (A14).

Area123 =
Q2

j

2Pja
(A14)

Similarly, the area of triangle 456 can be given as in Equation (A15)

Area456 =
1
2

Imax( jbb)t2 j (A15)

The maximum inventory of the vendor Imax( jbb) is calculated by the slope formula of Area456

(Equation (A16)), which is then simplified to express in the form of Equation (A17)

tanθ2 =
Imax( jbb)

t2 j
(A16)

Pjb(1− α j) ×
Qj

Pjb
= Imax( jbb)Imax( jbb) = Qj(1− α j) (A17)

After substituting, the Area456 can be written as in Equation (A18)

Area456 =
1
2

Qj(1− α j)
Qj

Pjb
Area456 =

Q2
j (1− α j)

2Pjb
(A18)

The simplified form of area under the curve of the rectangular region 5678 is formulated and
expressed as in Equation (A19)

Area5678 = Imax( jbb)t3 j= Qj(1− α j)
Qjα j

Pjb
=
α j(1− α j)Q2

j

Pjb
(A19)

The triangular area of the inventory storage Area689 by reworking operations during outsourcing
operation is expressed as in Equation (A20).

Area689 =
1
2

Imax( jba)t3 j (A20)

where, to find the maximum inventory Imax( jba) of the reworking operation in the production system,
the slope formula is given as in Equation (A21),

tanθ3 =
Imax( jba)

t3 j
Pjb(1− α jβ j)

Qjα j

Pjb
= Imax( jba)Imax( jba) = α jQj(1− α jβ j) (A21)

By substitution, Equation (A20) can be written in the form of Equation (A22).

Area689 =
1
2

Qjα j

Pjb
α jQj(1− α jβ j)=

α2
j Q

2
j (1− α jβ j)

2Pjb
(A22)

Likewise, the Area10,11,12 and Area11,12,13 can be formulated and expressed in simplified form as in
Equations (A25) and (A26) respectively, where the maximum inventory is Imax( jc).

Area10,11,12 =
1
2

Imax( jc)t4 j (A23)

tanθ4 = Pjc −Dj ⇒
Imax( jc)

t4 j
Imax( jc) = (Pjc −Dj)

Qj

Pjc
(A24)
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Area10,11,12 =
1
2

Qj(1−
Dj

Pjc
)

Qj

Pjc
(A25)

Area11,12,13 =
1
2

Imax( jc)t5 j=
1
2

I2
max( jc)

Dj
=

Q2
j

2Dj
(1− Dj

Pjc
)

2

(A26)
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Abstract: Correct planning is crucial for efficient production and best quality of products.
The planning processes are commonly supported with computer solutions; however manual
interactions are commonly needed, as sometimes the problems do not fit the general-purpose planning
systems. The manual planning approach is time consuming and prone to errors. Solutions to
automatize structured problems are needed. In this paper, we deal with material requirements
planning for a specific problem, where a group of work orders for one product must be produced
from the same batch of material. The presented problem is motivated by the steel-processing industry,
where raw materials defined in a purchase order must be cut in order to satisfy the needs of the
planned work order while also minimizing waste (leftover) and tardiness, if applicable. The specific
requirements of the problem (i.e., restrictions of which work orders can be produced from a particular
group of raw materials) does not fit the regular planning system used by the production company,
therefore a case-specific solution was developed that can be generalized also to other similar cases.
To solve this problem, we propose using the generalized bin-packing problem formulation which is
described as an integer programming problem. An extension of the bin-packing problem formulation
was developed based on: (i) variable bin sizes, (ii) consideration of time constraints and (iii) grouping
of items/bins. The method presented in the article can be applied for small- to medium-sized
problems as first verified by several examples of increasing complexity and later by an industrial
case study.

Keywords: mixed-integer linear programming; bin-packing problem; material requirements planning

1. Introduction

Presently, production and logistics processes are commonly supported with production planning
and control systems. These are used to support a range of operational activities from production
planning to the detailed scheduling and execution of every operation [1–3]. However, it frequently
happens that the implemented systems do not adequately cover the problem in a holistic manner.
Classical hierarchical organization of the business and production management [4] limits more
detailed and tight coupling across the production levels. In practice, different activities of production
are supported with separate information systems. Limited data and functional integration among
them and additional specifics of the production processes require development and integration of
tailor-made solutions.

A holistic view of the production problems become even more important when the environmental
footprint of the production is in question. Plant-wide production supervision through data integration
and analytics lead to processes that are more effective and consequently the resource demand is reduced.
This can even be scaled up by data-sharing and active collaboration with the supply chain, in order to
reduce erroneous delivery and consequent undesirable events at the manufacturer’s premises such as
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stoppage of assembly line [5]. On the other hand, evolution from linear business models to circular
economy principles will impose novel problems and dilemmas, such as, for example, strategic planning
on supply chain level [6] or remanufacturing pricing strategies [7]. All this requires manufacturers to
efficiently schedule, manage and optimize resource consumption of their production processes.

The main motivation of the presented work is the problem faced by the steel-processing
manufacturer, where specific requirements for the material requirements planning (MRP) could
not be implemented by standard solutions, since the purchasing and planning activities are not
supported with the same information system. Consequently, manual interactions are needed which
are problematic due to the occurrence of human errors, which are inevitable in the case of more
complex situations. In addition, in this way it is almost impossible to produce optimal solutions even
for simple problems.

The problem and its specifications originate from steel-processing production, where many
products with complex MRP structures are being produced. In principle, raw materials must be cut to
satisfy the needs for the input material (intermediates) as defined with MRP. The main requirement
of the addressed problem is to plan and optimize material requirements while ensuring that a
group of work orders for one final product must be produced from the same batch of raw material.
Additionally, it is desirable to limit the tardiness and to reduce the material leftover (small material
leftovers lead to a scrap). A custom solution is needed that allows for holistic considerations of
purchase and work orders. In practice, optimization systems that holistically address the problem
and integrate planning and scheduling are needed, where more adopted solutions are based on
mathematical models (e.g., [8]).

The addressed problem of material planning and optimization can be translated into a general
bin-packing optimization problem, which has been studied since the early 1970s [9,10]. In the
bin-packing problem (BPP), we have m items and n identical bins. The goal is to assign each item to one
bin so that the total size of the items in each bin does not exceed the capacity of the bin and the number
of bins used is minimized. Different variants of the problem continue to attract researchers’ attention.

The bin-packing problem can be described as an integer optimization problem. Solving the
problem is NP-hard and is usually done with custom heuristics. A detailed review of mathematical
models and exact algorithms for bin-packing and cutting stock problems are given in [11].
Coffman et al. [12] present an overview of BPP approximation algorithms. However, advances
in computer technology and available solver capabilities enables us to solve mid-sized practical
problems [13].

The classical problem has been extended to various forms to mitigate many practical application
problems. For a general survey see Wäscher et al. [14]. In manufacturing industries, such as in cutting
steel, paper or textiles, a cutting stock problem formulation is used. Here, stock material must be
cut into shorter lengths to meet demand while minimizing waste. The problems have an identical
structure in common [14]. In this context, Carvalho [15] reviewed several linear programming (LP)
formulations for the one-dimensional cutting stock and bin-packing problems.

A natural generalization of the classical bin-packing problem is to consider the problem with two
or more dimensions. Lodi et al. [16] discussed mathematical models and survey classical approximation
algorithms, heuristic and metaheuristic methods, and exact enumerative approaches for 2-D problems.
Epstein et al. [17] studied the oriented multi-dimensional dynamic bin-packing problem for two, three,
and multiple dimensions. A more general and realistic model considers bins of differing capacities [18].
Bin-packing problem and its variations are still widely studied [19,20]. Recently, Jansen and Kraft [21]
presented a review of a variable bin-sized bin-packing problem and an improved approximation
scheme to solve the problem.

A bin-packing formulation is also often used to formally represent problems where time must
be considered to be well (e.g., scheduling). A simple case is where a task’s durations are represented
by items and a job’s due dates with bin sizes. Advanced solutions use the due date as an additional
constraint factor. Another solution is to soften the due date constraint, which can be violated but
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penalized proportionally with the delay. In this context, Reinertsen and Vossen [22] have proposed
optimization models and solution procedures that solve the cutting stock problem when orders
have due dates. The objective in their model is to minimize scrap and tardiness. Recently, Arbib
and Marinelli [23] considered a problem, where each item representing a job must be assigned to a
minimum number of bins (resources). Additionally, each item is due by a particular date, so minimal
tardiness is also being optimized.

The problem we are targeting arises from the steel-processing production process, where specific
constraints must be considered. In this kind of industry even small improvements in the production
operation can result in large monetary savings [24]. In our case raw materials are ordered and
delivered in batches. Depending on the raw material delivery time, there are some minor variations
in the visual properties of the raw material. This may result in a final product that is produced of
materials with different properties causing unwanted, additional, repair costs. Therefore, a solution
is needed that supports the production planner with decisions on how to cut the available raw
materials and how to plan new purchase orders in order to obtain production material as to realize
work orders, i.e., final products. The plan must consider various constraints such as the quantity,
due dates, single material batch constraints, etc. To support the production planner in dealing with
this problem, various generalizations of the classical BPP formulation are proposed. The problem
can be designated as an one-dimensional multiple bin-size bin-packing problem (MBSBPP) using
the topology of Wäscher et al. [14]. A simple bin-packing problem (BPP) formulation using variable
bin sizes and strict time constraints is used when the raw material is available on time. For the case
when some of the purchase orders are late, we propose using an upgraded Reinertsen’s optimization
model [22]. Soft constraints are introduced into the linear integer problem as proposed in a work of
Srikumar [25]. Main contribution of the article is the formulation of specific optimization problem for
the problem where group of work orders for one product have to be produced from the same batch of
raw material as one batch of raw material consists of several material stocks, which have in common
several immeasurable characteristics. Moreover, the problem had to consider the availability of the
materials, order deadlines and must minimize the scrap. This is done through introduction of a custom
formulation of the bin-packaging problem with constraints that groups the items and bins in a way
that assures a consistent final product, while respecting other constraints as well.

In the next section, the general problem formulation is developed step-by-step. Whole or part of
the formulation can be used depending on the problem at hand. A model description of the classical
bin-packing problem is extended with variable bin sizes, due date constraints, and grouping of bins
and items. In Section 3, two case studies are presented that illustrate the practical implementation of
the proposed method. Finally, developed methodology and results are discussed in Section 4.

2. Materials and Methods

The problem of material requirements planning can be formalized as a bin-packing problem,
which can be solved using a mixed-integer linear program (MILP). In this section, we describe how a
basic BPP can be extended to include constraints such as variable bin and item sizes, time limitations,
and the fact that only a group of bins can be used to produce one group of items.

2.1. Mathematical Notations

For a consistent discussion, we first define symbolic notation that is consistently used across
different mathematical models:

• yj—decision variable for bin i (1 used, 0 not used)
• xij—decision variable—item j assignment to bin i (1 assigned, 0 not assigned)
• gij—soft constraint criteria—tardiness of bin i depending on item j
• I—set of m items (input material defined with work orders)
• B—set of n bins (raw material defined with purchase orders)
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• | FI |—number of item groups
• | FB |—number of bin groups
• FI—set of | FI | items
• FB—set of | FB | bins
• si—item (input material) size
• cj—bin (raw material) size
• di—item due date
• aj—bin delivery time
• wi—optimization weighting parameters
• FI

k —k-th item group
• FB

l —l-th bin group
• | FI

k |—number of items in k-th item group
• | FB

l |—number of bins in l-th bin group

2.2. Problem Description

In the classical BPP, we are dealing with a set I of m items, each with its size si that has to be
assigned to a set B of n identical bins with capacity c. The number of used bins must be minimized,
where the sum of item sizes in one bin does not exceed the bin capacity. The problem can be described
as an integer optimization problem, as shown in Equation (1).

z1 : min
n

∑
j=1

yj

s.t.
m

∑
i=1

si · xij ≤ c · yj, j = 1 . . . n

m

∑
i=1

xij = 1, j = 1 . . . n

yj ∈ {0, 1}
xij ∈ {0, 1},

(1)

where yj and xij are binary decision variables

yj =

{
1 if bin j is used

0 otherwise,

xij =

{
1 if item i is assigned to bin j

0 otherwise.

Decision variable xij can be represented as a matrix, depicted in Figure 1.
The first constraint from Equation (1) guarantees that the sum of item sizes assigned to bin Bj

does not exceed its capacity, c. The second constraint assures that one item is assigned only to one bin.
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Figure 1. Decision variable xij in basic BPP.

2.3. Variable Bin Sizes

There are situations where bin sizes are not identical. Variable bin sizes are denoted as cj in our
work. A set of items can be assigned to bin Bj if the total volume of these items does not exceed the
capacity of a bin cj. For this reason, the first constraint in Equation (1) should be rewritten as given in
Equation (2).

m

∑
i=1

si · xij ≤ cj · yj, j = 1 . . . n (2)

The best way to use a bin is to fill it fully, i.e., there is no leftover space. In case of unique bin
capacities, the criterion described in Equation (1) minimizes the number of used bins together with
the non-assigned capacity of used bin(s)—leftovers. However, this is usually not the case when we
have bins of different capacities. In that case, the optimization criteria must be defined as given with
Equation (3), where the sum of leftovers of all used bins is being minimized.

z2 : min
n

∑
j=1

(cj · yj −
m

∑
i=1

si · xij) (3)

2.4. Time Extension

To take into account the time limitations, the problem needs to be additionally extended.
The optimization problem needs to consider the situations where bin Bj has to be available before the
due date of an item Ii, which is to be scheduled in Bj. The item Ii is therefore defined with a tuple
of two elements (si, di), where di is its due date. Similarly, bin Bj is defined as (cj, aj), where aj is its
delivery time. We suggest two solutions: (i) considering hard (strict) time constraints, where Bj must
be available before the due date of Ii (di � aj) and (ii) considering soft time constraints, where delivery
dates are allowed to exceed due dates, but this is penalized within the objective function.

The solution where due date violations are not allowed is achieved with the addition of the
following constraint to our optimization problem:

aj · xij ≤ di i = 1 . . . m, j = 1 . . . n. (4)

In practice, the due date constraint violation is commonly allowed, but penalized. In this case,
we must consider a slightly different problem formulation. The due date constraint must be considered

331



Processes 2020, 8, 1246

to be a soft constraint. For this reason, we need to first introduce additional tardiness criteria (gij),
which is used to soften the constraint from Equation (4):

gij =

{
aj − di aj > di,

0 otherwise
. (5)

If the hard constraint is violated, gij evaluates the time for which bin Bj is late for item Ii.
When there is no delivery time violation, gij should be 0. Using this, we can extend our criterion
function, where we allow that bin Bj can be late. In this way, tardiness is being minimized in addition
to leftovers.

z3 :min w1 ·
n

∑
j=1

(cj · yj −
m

∑
i=1

si · xij)+

+ w2 ·
n

∑
j=1

m

∑
i=1

gij · xij

(6)

As we are dealing here with a multi-objective problem, the weighting of parameters w1 and w2 is
introduced, which is used to adjust the importance of leftovers and tardiness criteria. Parameter settings
are application-dependent.

2.5. Grouping of Items/Bins

Furthermore, we are targeting the problem of when a group of items can be assigned to only one
single group of bins. This implies additional constraints to our optimization problem.

We assume that we have a set FI of |FI | item groups and set FB of |FB| bin groups. Item Ii is
therefore extended to triple (si, di, FI

k ), where FI
k ∈ FI denotes the group to which item Ii belongs

and bin Bj is defined with (cj, aj, FB
l ), where FB

l ∈ FB denotes the bin group to which bin Bj belongs.
The k-th item group consists of |FI

k | items and l-th bin group consists of |FB
l | bins.

Figure 2 illustrates the example where we have three item groups and two bin groups. Items from
one group must be assigned to the bins that are grouped within one bin group. One solution to the
problem from the observed example is illustrated in Figure 3. Here items from FI

1 and FI
2 are assigned

to the bins from bin group FB
1 , and items from FI

3 to a bin from bin group FB
2 . White rectangles indicate

the leftovers.

Figure 2. Item and bin groups.
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Figure 3. Item and bin groups. Acceptable solution: FI
1 , FI

2 ∈ FB
1 and FI

3 ∈ FB
2 .

Without loss of the generality, we can assume that the decision variable xij is organized in a matrix,
where items and bins from the same group are given next to each other, as illustrated in Figure 4.
Sub-matrices, marked in the figure, indicate all possible group assignments, i.e., combinations of item
and bin groups. The items that form k-th item group can be assigned to any of the bins from l-th bin
group only if the sum of xij is equal to the size of item group FI

k . Here i designates all items from k-th
item group and j all bins from l-th bin group. This can be formally represented by adding the equality
constraints (Equation (7)) to our optimization problem from Equation (1).

Figure 4. Decision variable xij - item and bin groups.

iF,k+|FI
k |−1

∑
i=iF,k

jF,l+|FB
l |−1

∑
j=jF,l

xij = |FI
k | · ζl,k, (7)
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where k = 1. . . |FI | and l = 1. . . |FB|.
Here iF,k determines the sequence number of the first item in the k-th group of items and is

evaluated as:

iF,k =

⎧⎪⎪⎨
⎪⎪⎩

1 if k = 1

1 +
FI

k −1

∑
p=1

|FI
p| if k = 2,. . . |FI |

. (8)

jF,l is the sequence number of the first bin in the l-th group of bins, evaluated as:

jF,l =

⎧⎪⎪⎨
⎪⎪⎩

1 if l = 1

1 +
FB

l −1

∑
q=1

|FB
q | if l = 2,. . . |FB|

. (9)

Indicator ζl,k gives information if the combination of bin and item group is used, i.e., it takes a
value of 0 or 1. It is defined as a sum of values from submatrix xij, where the submatrix is defined for
all bins from l-th group and only the first item from k-th group. The indicator is implemented as given
with Equation (10).

ζl,k =
jF,l+|FB

l |−1

∑
j=jF,l

xiF,k j (10)

As equality constraints reduce the solution space, the consideration of item and bin grouping
constraints actually reduces the complexity of the problem.

3. Results

In this section, the presented BPP problem formulation will be demonstrated in several case
studies of material requirements planning with data sets acquired from an industrial environment.
All experimental data are available at [26]. The problem concerns raw materials which must be cut to
satisfy the needs of work orders for input material. More specifically, raw materials must be available
in desired quantities by a specific time, while the input (intermediate) material for one product has to
be acquired from the same raw material batch. Purchase orders and work orders are not linked in the
current configuration, and material requirements planning is done manually.

Raw materials are provided as defined by purchase orders. In the presented BPP formulation,
purchase orders are described with bins, where cj determine the package size of raw material and aj
the time when it will be available. aj is not necessarily the same for all raw materials of a particular
purchase order. Every purchase order also has a label FB

l , which designates a group of raw materials
with the same properties. Work orders determine which materials (intermediates) are needed to
produce one final product. Every intermediate is presented with an item in our problem formulation,
where si specifies how much of a material is needed and di the work order’s due date. As raw materials
can slightly deviate in some parameters, we must deal with additional constraints. We must ensure
that a group of intermediates used to make one final product are produced from the same raw material.
Label FI

k is used to determine items that belong to one work order, i.e., one final product.
In this way, the problem of material requirements planning can be translated into a generalized

bin-packing problem. Depending on the situation encountered by the operator, different criterion
with different constraints can be applied. We have analyzed two general situations that can occur in
practical implementations. If the time constraints are feasible (Equation (4)), then we should apply the
optimization problem presented with Equation (3), where the leftover is being minimizing. If this is
not possible, softer constraints have to be chosen (Equation (5)), in which we optimize the problem
from Equation (6). In this case, we are solving a multi-criterion problem, where leftover and tardiness
are being minimized.
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3.1. Implementation

The presented case studies were formally described with a mathematical description as defined in
Section 2 and implemented with the linear programming modelling environment PuLP [27]. PuLP is
an open source high-level modelling library that allows mathematical programs to be described in the
Python computer programming language. PuLP provides an interface to many mixed-integer linear
programming solvers such as CPLEX, Gurobi, CBC, GLPK. Gurobi solver [28] was used in our case.
The solver can offer more algorithms to solve continuous or mixed-integer models. As we are dealing
with an integer linear programming problem, we used the dual simplex method.

The problem was solved using a PC with 3.4 GHz and 8 GB RAM.

3.2. Elementary Case Studies

Let us first overview the simplified example introduced in Section 2.5 that illustrates the realistic
environment. We must make three products from five available raw materials, which are supplied
with two purchase orders. In the generalized BPP formulation, this means that we have two bin groups
with five bins:

• FB
1 ∈ {B1, B2, B3},

• FB
2 ∈ {B4, B5}.

Every product is composed of more intermediates. In the generalized BPP formulation,
the products are represented with item groups and intermediates with items:

• FI
1 ∈ {I1, I2, I3}

• FI
2 ∈ {I4, I5}

• FI
3 ∈ {I6, I7, I8}.

Details about available purchase (bins) and work (items) orders are summarized in Tables 1 and 2,
respectively. We assume here that the processing time needed to cut the raw material is taken into
account within aj.

Table 1. Purchase orders—Bins.

Bin cj aj FB

B1 100 10 1

B2 60 10 1

B3 20 20 1

B4 60 50 2

B5 70 50 2

Table 2. Work orders—Items.

Item si di FI

I1 20 10 1

I2 23 20 1

I3 20 40 1

I4 45 10 2

I5 38 20 2

I6 9 50 3

I7 35 55 3

I8 8 55 3
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The problem was formulated as an integer optimization problem as described in Section 2 and
can be solved without delays, as a solution exists that provides intermediate materials before the time
is due. Therefore, we are minimizing the leftover only (Equation (3)). The solver finds an optimal
solution, which is graphically presented in Figure 5. The figure shows which intermediates (items)
are allocated to a specific purchase order (bin). Next to the bin/item label, time information aj/di
are given in round parentheses. Bins that belongs to one bin group are framed together. Items from
one group are designated with the same color and we can see that the items from item groups FI

1
and FI

2 are assigned to bins from group FB
1 , while items from FI

3 are assigned to bin B4 from FB
2 . Here

white rectangles represent the leftovers. Bins B1, B2 and B4 still have 12, 2 and 8 units of unused space,
i.e., the cumulative leftover is z2 = 22, while bins B3 and B5 are not used in a resulting plan.

F1

B

F2

B

I3 (40)

I1 (10)

I4 (10)

I5 (20)

I8(55)

I2 (20)

I7 (55)I6(50)

(10)

(10)

(50)

(50)

Figure 5. Solution to a simple problem.

In practice, it often happens that one or more raw material deliveries are delayed, or the product
would need to be finished earlier. That type of situation could be illustrated when considering
a problem where raw material modelled with bin B2 is late for 30 time units (a2 = 40; all other
conditions remain the same). In this case, we cannot achieve a feasible solution using Equation (3).
Therefore, an optimization function where delays are allowed but penalized must be used. The multiple
criterion function with soft constraints is used to optimize leftover and due date violation (Equation (6)).
As for the given problem where tardiness and leftover are equally important, we set the weighting
factors as w1 = 1 and w2 = 1. Figure 6 shows the resulting schedule where three raw materials (bins)
are used and each of them produces some leftover (B1 = 12, B2 = 2 and B4 = 8). We can see that item
I5 is planned to be made of bin B2, which is late for 20 time units (see red designation in Figure 6).
The resulting objective function is z3 = 42. Cumulative leftover is the same as in the previous example;
however items I1 and I3 are scheduled vice versa in order to minimize total tardiness.

F1

B

F2

B

(10)

(40)

(50)

(50)

(20)

Figure 6. Solution to a simple problem where B2 is late.
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To ensure that the optimization problem works well for large size instances the mathematical
formulation of the problem was validated on larger use case problems. Synthetical datasets of four
different complexities were generated (UC1–UC4), where in each use cases all the bins are available
before item’s due date and for each use case at least one optimal solution, where no leftover is produced.
Items and bins for each use case were generated based on optimal solution, where approximately 3/4

bin groups were used, where in each bin group one bin is left empty. The complexities of the use cases
are as follows:

• UC1: 36 items (9 item groups) with 14 bins (5 bin groups). Optimal solution uses 7 bins.
Also, the calculated solution uses 7 bins and no leftover is produced.

• UC2: 78 items (9 item groups) with 28 bins (7 bin groups). Optimal solution uses 17 bins.
The calculated solution achieved in 44 min uses 16 bins with leftover of 2 units.

• UC3: 125 items (20 item groups) with 52 bins (9 bin groups). Optimal solution uses 29 bins.
The calculated solution achieved in 6 h uses 30 bins with leftover of 5 units.

• UC4: 284 items (42 item groups) with 83 bins (16 bin groups). Optimal solution uses 57 bins.
The calculated solution achieved in 7 h uses 55 bins with leftover of 60 units.

Figure 7 illustrates how the optimizer converges to optimal solution. For ease of comparison,
the leftover is given in percentage of total items capacity. We can see that we achieve solutions with
less than 5% of leftovers in a few seconds even for more complex problems that are present in the
considered industrial environment. Such a result is incomparably better than can be achieved with the
current planning practice. Let us add that such a plan is flawless (no mistakes and no overlapping
activities), with fewer leftover and can be continuously upgraded in case of unexpected changes
(e.g., new orders).
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Figure 7. Validation on synthetical datasets (UC1–UC4).

3.3. Case Study of a Steel-Processing Production Process

The method is demonstrated on a data set from a real case study and illustrates a common
situation in the observed production company. Typically, the production planner must deal with up to
150 intermediates that have to be produced from up to 50 raw materials. In this study, a problem where
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150 intermediates (defined with 12 work orders, i.e., item groups) have to be produced from 100 raw
materials grouped in 7 bin groups is used to validate our modelling and problem solving capabilities.

The problem was modelled and solved with the same procedure as described in the simple case
study (criterion function from Equation (3)). As the problem is NP-hard, it is not possible to achieve
the optimal solution in a short time. In our case, it took 593 s to achieve a close to optimal solution.
The graph on the left of Figure 8 illustrates how the optimizer converges to an optimal solution. We do
not achieve a better solution even if the optimization is run for a much longer time (24 h). The final
solution produces 4923 of leftover when 22 bins are used. The solution and resulting plan are presented
in Figure 9.
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Figure 8. Convergence of criterion functions for the case study with no delays (left) and with
delays (right).

We also analyzed a problem in which two purchase orders are late. In this case, we need to use
the criterion function with soft constraints (Equation (6)) to optimize leftover and due date delays
simultaneously. The following weighting factor values are considered in this experiment: w1 = 1
and w2 = 1/36. With the given settings, we get a solution (z3 = 24, 777.45) in which 25 bins are used
and the cumulative leftover is 4238. In the resulting solution, more items are late. Their cumulative
tardiness is 665,012 s, i.e., approximately 7.5 days. In this case, the optimization process took more
time (26,518 s). The graph on the right in Figure 8 illustrates how the solution converges in this case.
However, a close to optimal solution can be achieved in approx. 100 s.

In the case that minimization of the leftover is more important, we would choose other weighting
factors (w1 = 1 and w2 = 1). In this case, 26 bins are used with a higher leftover of 11,200, but with a
lower total tardiness (551,237 s), which means more than one day shorter than in the previous case.
In this case, optimization took approximately 157 s.

Figure 10 illustrates the lateness of the work orders for all three studied cases, i.e., positive and
negative difference between the completion time and the due date. We can see that none of the
work orders are late in the case when purchase orders are available on time (upper data). In the case
when two purchase orders are late, we can see that this will cause some work orders to also be late.
However, there will be less delays in the case when the tardiness weighting factor is set to w2 = 1.
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Figure 10. Lateness of input materials.

4. Discussion

General-purpose IT solutions can solve several problems at hand. But often, production specifics
require development of special tailor-made solutions. In this paper, we considered a problem from
manufacturing in which stock material must be cut to provide a reliable material requirements plan.
This plan must satisfy the needs of capacity and must be available by the work order’s due date.
Besides this, the plan must also consider the fact that a group of work orders must be produced from
the same batch of raw material. In this way, the manufacturer can systematically compensate for
some undesirable variations in raw material quality. In the current day to day practice, the plan is
managed manually, and it is very difficult to maintain the plan up-to-date, even in smaller dimensions.
The decisions of the operator are time consuming and prone to errors. This results in situations in
which the operator must constantly make plan corrections.

In this paper, we propose using an extended bin-packing problem formulation to systematically
solve the material planning. A basic BPP formulation is extended to include constraints such as
variable bin and item sizes, time limitations, and the fact that only a group of bins can be used to
produce one group of items.

The suggested solution offers a tool for supporting the production planner with his/her decisions.
With it, he/she can determine how to efficiently cut the raw material to satisfy the planned work
orders. Depending on the situation, the planner can choose between various model formulations.
He/she can optimize the leftover, tardiness, or both.

We demonstrated that the proposed solution can solve a problem of realistic dimensions
quickly enough to be used in an industrial application. However, in real applications, case-specific
requirements would first need to be analyzed to most appropriately set the importance of leftovers
and/or tardiness. In this way, the time for producing a feasible material requirements plan is
reduced. The operator is relieved and can be focused on other tasks. Also, the need for corrections is
decisively reduced. To summarize, variations in raw material quality no longer cause a problem when
implementing our solution. We propose to use a rigorous and accessible MILP solution approach,
i.e., Gurobi optimization solver, which satisfies the requirements of the problem considered in this
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paper. To extend the use of the proposed method to more complex problems approximation algorithms
should be applied (e.g., [3,12,21]).

To summarize, variations in raw material properties no longer cause a problem when
implementing our solution, since end products are made from the same material and, consequently,
the products’ quality is improved. Moreover, raw material batches are used more rationally, which leads
to decrease the needed of storage place and unused batch leftovers.
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Abstract: This paper presents the process for creating an integrated design and manufacturing
environment supporting 3D printing as part of the structure of Industry 4.0. This process is based on a
developed framework for the design of modern automated and computerized infrastructure. The task
of the described system is to combine all the steps included in the operating range of incremental
systems based on an IT platform by integrating data from individual areas, such as IT systems
supporting remote 3D printing. The proposed framework for incremental processes is a universal
solution that can be defined in detail by a single organizational unit running 3D printing, as well as
by a cluster of entities related to 3D printing. In the initial phase, the framework design includes a set
of guidelines for IT (Information Technology) systems that facilitate the construction of individual
elements and the creation of communication interfaces. In subsequent stages, the framework may
already implement elements of the access and communication program interface, as well as guidelines
for the industrial components to be included. The proposed framework for additive technologies
is based on modern IT tools that enable the creation of geographically and functionally possible
prototyping systems that can be integrated into the structure of Industry 4.0. To create optimal
processes and economic systems, the principles of the construction and integration of individual
services and equipment were developed. This new comprehensive approach is proposed in the
present paper as a coherent framework. Moreover, the proposed solution has great potential for
use in the design and production processes of various industries, such as chemicals, materials
and construction.

Keywords: manufacturing process; additive manufacturing; IoT; computer systems and networks;
3D printing

1. Introduction

Incremental production is now widely used in production [1,2], scientific [3,4], didactic [5,6] and
medical [7] environments. The present examples relate to the use of 3D printing both in SMEs and in
large enterprises. Of course, the methods and technologies used in these separate environments may
differ, but they share common goals, such as increasing the efficiency, competitiveness and flexibility
in the design and production of various components. The above-mentioned papers also refer to

Processes 2020, 8, 1019; doi:10.3390/pr8091019 www.mdpi.com/journal/processes
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the possibility of combining additive and sub-additive technologies within common business and
production processes. Additive technologies are fundamentally different from those of traditional
production. Since these technologies constitute a relatively new approach, on the one hand, they require
considerable research (e.g., in the field of materials, technological processes, etc.); on the other hand,
their features and properties enable their use by scientists to develop new innovative components
and products, including for medicine. This applies to both organ models and dedicated replicas.
The didactics area mentioned previously holds great promise for the use of additive technologies
through the possibility of integrating knowledge for creative and demanding projects. At present,
3D printing technologies are an indispensable element of many design and manufacturing processes
in modern industry, including Industry 4.0. The world of manufacturing, which focuses on the
conceptual, design, test and laboratory environments, as well as the production of all components,
has undergone sudden and dynamic changes. In the current era of globalization, individual stages
and their individual components can be implemented in geographically remote locations. The same
applies to human resources, such as a team of specialists carrying out specific research, development
work, or learning the basics of rapid prototyping. A person’s location (i.e., their place of work, study
or life) is playing an increasingly less important role in his or her professional work or participation in
courses. From this point of view, the concept of remote work seems to be crucial [8–11]. The work
in [8] deals with issues related to the efficiency of remote work, which is particularly important in the
current pandemic situation, and is related to the dissemination of this form of work within industry.
The results described in [9] indicate that remote work is positively perceived by employees in the
context of productivity and job satisfaction. The work in [10] compares the use of communication
channels in remote work and in work based around a central office. At the same time, the authors
indicate the threats that companies whose employees work remotely have to face. The authors in [11]
propose a new approach for improvement in the area of designing remote work systems to improve
their efficiency. Thus, employers and employees are ready for remote work and are aware of the risks
associated with it. Companies can, therefore, benefit from the expertise of workers without requiring
them to be physically present in a given geographical location. This mechanism can shorten the time
needed for designing and implementing new products on the market and reduce the logistics costs
related to a company’s operation. Taking into consideration the achievements of modern technology
in the field of IT tools, devices and means of communication, the remote implementation of research is
at our fingertips. Of course, this approach has its own advantages and disadvantages.

The challenges posed by the modern labor market, IT technologies and industrial conditions
have forced the introduction of a new approach for the prototyping process. Presently, this process is
increasingly implemented in remote rapid prototyping laboratories with distributed structures using
asynchronous work models with batch processing elements. Two trends are visible in this area:

• The establishment of teaching laboratories to which students or employees can obtain remote
access [12]. In this case, the functionality of such laboratories is aimed at the implementation
of readily available (often closed) test scenarios. Often, remote laboratories are built around
issues that are relatively easy to implement, e.g., programming, the operation of electronic circuits,
and access to CAD (Computer Aided Design) software.

• The second trend is related to the construction of remote research and production laboratories [13].
The analysis of available solutions clearly shows that such solutions are designed for specific
applications, built each time from scratch while considering only the needs of a specific customer.
Of course, the solutions proposed in these scenarios are optimally suited to specific needs, but
the costs of producing and modifying such solutions are disproportionately high. It is often
assumed that the construction of this class of solutions will utilize dedicated and expensive
elements of IT architecture that will overcome problems with distance and transmission delays.
An example of such a solution is the Tactile Internet (TI) network [14–16]. Often, laboratories of
this type are considered in terms of their teleoperative applications and are used, for example,
to conduct remote surgical procedures or remotely control machines. TI class systems are based on
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communication systems characterized by ultra-low latency, strong reliability, and high availability.
However, such an approach is characterized by very high construction and operating costs. Often
the costs of such a solution exceed the costs related to the physical relocation of employees to
carry out project work.

The classic approach to the design and construction of remote testing and manufacturing
laboratories does not fit the modern approach to project creation and management. The designed
nature of tasks, their geographic dispersion, and the multidisciplinarity of created projects and
prototypes enforce flexibility at every stage of prototyping. For the implementation of specific projects,
a team is formed and the necessary resources are obtained. This approach fits the agile project
management methodologies used in Industry 4.0, but primarily agrees with the trends defined by
Industry 5.0 [17], which will increase the quality and efficiency of production thanks to artificial
intelligence. However, this development is associated with a high security risk. Therefore, as part of
Industry 5.0, it will be necessary to closely integrate people and machines in some decision-making
areas. Differences in the approaches to prototyping are presented in Figure 1.

 
(a) 

 
(b) 

Figure 1. Types of prototyping system architecture: (a) Centralized infrastructure with remote access;
(b) Distributed project-oriented prototyping infrastructure with remote access.

Both architectures shown in Figure 1 may be applicable. In both cases, the following problems
can be identified in their implementation: difficulties with the standardization of solutions in the area
of IT systems, different approaches to security policies, and different approaches to resource sharing.
To further develop Remote Distributed Rapid Prototyping (RDRP) [18] or Remote Rapid Prototyping
(RRP), it is necessary to propose a functional, uniform and layered reference model. It is particularly
important that RDRP or RRP systems at this stage be perceived as IT systems that must be constructed
and designed. Thus, we propose a new design pattern, hereafter referred to as the framework.

The idea of remotely manufacturing components based on 3D printing is not a new concept.
An approach based on the Tele-Manufacturing Facility (TMF) concept [19] was proposed at the
beginning of the 21st century. This approach enabled semi-automated remote design and 3D printing.
Its basic assumption was to avoid errors by verifying and correcting STL (Stereolithography) files
and then printing ready elements. A similar approach already applied on a global scale is the
implementation of 3D printing services available for Windows 10 operating systems [20]. Thanks to
these services, even a complete amateur can become a designer of components that will later be printed
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on a local 3D printer (using LAN or WiFi links), or by ordering a print service from a remote location.
In the first case, this service constitutes an improvement, but is limited from the perspective of the
system’s scalability, as well as its lack of integration with other elements of the 3D printing process,
e.g., a knowledge base or a system supporting the decision-making process of rapid prototyping. On
the other hand, the approach in the second case is focused on the individual recipient and cannot be
used today to provide professional or industrial solutions for distributed infrastructure. Combinations
of both concepts include internet services such as i-materialise [21], 3D Hubs [22] and Igus [23], which
enable one to design and print 3D elements. Some of these services also include CNC (Computerized
Numerical Control) machining and access to ready-made models. However, even these solutions
provide only a limited range of services and also provide a closed environment without the possibility
of integration with other distributed design and manufacturing resources. In this area, IT solutions
supporting design processes could also be more widely considered. These issues have been described in
various publications, which discuss, e.g., issues related to the combination of design processes, analyses
using CAx (various Computer Aided systems) systems and elements of information algorithms used
in incremental manufacturing processes [24], and topological design and spatial analysis in the PLM
(Product Lifecycle Management) area with selected applications of incremental generation systems [25].
Several existing systems also support decision making in the process of rapid prototyping. Initially,
these systems only included databases designed to facilitate the selection of an appropriate solution
based on a catalog of available products [19]. In the next period, knowledge databases appeared along
with advanced mechanisms for choosing the right technology, e.g., 3D printing for current customer
needs [26]. However, all the solutions presented above do not introduce a comprehensive approach
for the entire rapid prototyping process, taking into account both the design and manufacturing
phases and combining ICT (Information and Communication Technologies), analytical, application,
and control and measurement infrastructure with distributed software and hardware environments
belonging to different entities. Notably, the problem of combining and standardizing the tools available
on the market for the rapid prototyping (RP) process was already identified in 2002 [19]. To date,
research results and IT tools have been made available to enable the creation of geographically and
functionally extensive prototyping systems.

To create systems that are optimal from a process and economic perspective, it is necessary to
develop specific principles for the construction and integration of individual services and equipment.
A new comprehensive approach for this process is proposed in the present paper as a coherent
framework. In the literature, one can find examples of methods and other frameworks that are used in
distributed manufacturing environments. However, these systems represent only a limited response
to the aforementioned issue in the field of operational management, or refer to the implementation
of a selected technology or tools supporting selected areas related to design and manufacturing.
The framework proposed in [27] only handles the desire to increase operational efficiency in an
organization. For the framework described in [28], the authors proposed a solution that aims to
increase the efficiency of designing and reconfiguring multi-level and multi-dimensional manufacturing
systems. The framework proposed in this paper cannot be compared to the Cloud-based manufacturing
(CBM) architecture [29], which facilitates decentralization, thereby increasing the use of design and
manufacturing resources and reducing costs. The CMB model is an extension of web-based [30] and
agent-based [31,32] models. The former is based only on the classic client–server communication
used on the internet, while the latter allows for more effective integration of independent resources in
the form of agents. All three models can enable the remote design or manufacturing of components.
However, they do not constitute a coherent environment that enables the integration of various design
and manufacturing elements that were initially independent from each other. Moreover, the framework
proposed in this paper can be implemented using cloud solutions. Nevertheless, this framework is not
identical and depends on a solution to cloud computing.

Generally, the need to integrate production resources can be understood in terms of the ubiquitous
manufacturing paradigm described in [33,34]. The assumptions of these models are based on the use
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of highly unified communication interfaces and rigid process rules, which must all be implemented at
the same time so that a given entity can integrate with the production elements belonging to other
entities. The use of this class of systems is possible for integrated producer groups, such as production
consortia planning to create distributed production lines. The direct and widespread use of the above
models in production environments is difficult and sometimes even impossible due to the high costs of
their implementation. In contrast to these models, the present framework allows for the evolutionary
implementation of successive levels of integration, while maintaining a high level of universalism and
openness to the proprietary solutions of companies seeking integration with other entities.

This paper consists of several sections. The second section includes a description of the framework
for the design of modern automated and computerized infrastructure. This section presents the main
concept and the cross-layer structure of the layers. In section three, the level of IT maturity of the
implemented framework is presented, as these levels facilitate the planning and implementation of
the framework in terms of its organization and technology. The versatility of this concept allows
its use in both homogeneous and heterogeneous environments in terms of ownership and location.
Section 4 covers the system architecture of the proposed framework along with the functionality of the
individual modules, while Section 5 illustrates the possibility of adopting the proposed architecture in a
remote rapid prototyping environment. Section 6 presents an example of the actual implementation of
the framework proposed by the authors in cooperation with industry. Section 7 compares the proposed
approach with the classic approaches in terms of the actual production costs using three selected Fused
Deposition Modeling (FDM) technologies. At the end, the results of the work are summarized, along
with the plans for future work and the development of the proposed approach.

2. Proposed Framework

The large variety of technologies, application solutions, communication standards and architectures
requires the development of an efficient structure that facilitates their management. The proposed
structure divides the entire design area into layers, each of which is responsible for a different
functional range (Figure 2), while not introducing technological limitations. Previous models focused
on individual elements of the design and manufacturing process [27–30,33,34]. Some of them [33,34]
covered only the integration of the communication layer on the basis of selected mechanisms, standards
and data transmission protocols. Others [27] analyzed and implemented effective process management
in the actual analysis/business layer. Other solutions involve architecture models related to the physical
structure of the production system [28]. However, a separate group of models consists of solutions
related to processing mechanisms that are actually located in the service layer [29,30]. However,
the proposed approach can consider several solutions while arranging their functional scope and
implementing cross-layer mechanisms [35–37]. Our experiences related to the construction of RP
systems have shown that the process of building a laboratory for RDRP can be understood as building
a specific IT system in which selected elements will be implemented using the batch processing
paradigm. Such an approach entails the possibility of using a project approach based on the use
of a framework that reduces the costs of system implementation and promotes the solution [18].
The proposed framework (Figure 2) has the characteristics of a universal solution, i.e., it can be defined
in detail by both a single organization as well as by a cluster of organizations. In the initial phase, the
framework project provides a set of guidelines for information systems that facilitate the construction
of individual elements and the creation of communication interfaces. In the next stages, the framework
may have already implemented elements of the software access and communication interface, as well
as guidelines for the attached industrial elements.

The layers have been designed in such a way as to combine elements and actions similar to
each other.

Hardware layer (w1): This layer includes the physical elements that make up the chain necessary
for designing, modeling, manufacturing and control in the rapid prototyping process. Therefore,
within this layer, one can distinguish the different production devices, specialized computing units,
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high resolution digital cameras and data storage necessary to collect the data used at particular stages
of the prototyping process.

 

Figure 2. Proposed cross-layer framework.

Communication layer (w2): This layer is responsible for providing a high-throughput
communication environment that enables effective data exchange between all elements and persons
involved in the rapid prototyping process. Thus, within this layer, the elements of the network
infrastructure are separated, including the mechanisms for remote access.

Service layer (w3): This layer includes all activities and corresponding tools (primarily IT) used in
most of the stages of rapid prototyping. On the one hand, these tools create a specific digital–virtual
environment that enables the optimal use of available hardware platforms; on the other hand, these tools
guarantee interoperability, group work, the ability to separate, and the integration of individual works.

Analysis layer (w4): This layer is the most important from the perspective of Industry 4.0 and
the optimization of the rapid layer prototyping process. It mainly supports the functioning of the
service layer, although it works with the hardware layer, as well as the communication layer (this will
be described later in the paper as the cross-layer). This layer implements highly specialized tools
based on artificial intelligence or knowledge, as well as systems supporting decisions based on fuzzy
models. The proper use of this layer may increase the effectiveness of the manufacturing process,
e.g., providing better management and selection of filament, better management of access to particular
resources (manufacturing equipment, design applications and component modeling), and increase the
quality of manufactured components.

The proposed framework has not only a sequential character (i.e., data from one layer are not
only forwarded to the next one) but also a cross-layer feature. This property allows the exchange
of information between layers (cross-interactions) that are not directly related to each other, so as to
increase the efficiency of the entire infrastructure. Below are examples of cross-layer functioning in
relation to the proposed framework:

• Communication of the analysis layer with the hardware layer (with the participation of the
communication layer) but omitting the service layer. The communication layer has a dual nature:
it can be perceived as a passive computer network or as an active element shaping the RDRP
system architecture. Whenever this layer is not explicitly mentioned, it should be treated as a
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functionally passive communication element. The direct cross-interaction of the analysis layer
with the hardware layer is obvious. The hardware layer provides computing resources directly
for programs at the analysis layer. Elements of manufacturing programs (e.g., for numerical
machine tools) can be directly tested on machine controllers and images from cameras can be
transferred directly to image recognition systems placed in the analysis layer. It thus becomes
possible to carry out remote research, such as remote analysis of the distribution of machine
operators’ focus areas, while working to optimize manufacturing procedures. Examples of such
research carried out to increase the efficiency and safety of aircraft pilots are described in [38].
However, similar studies could be carried out for operators of production machines, especially in
an Industry 4.0 environment. Examples of interactions can be multiplied. An important feature
of using cross-interactions is the possibility of partially implementing the framework in a given
organization, or the possibility of system interactions within frameworks implemented in different
clusters or organizations.

• Communication of the analysis layer with the communication layer. This approach enables
the collection of data based on physical and logical communication in the environment of
programmable computer networks (e.g., Software-Defined Networking SDN) [18,39,40] based
on the data collected and the system’s knowledge of the communication environment, as well
as the algorithms created for the optimal selection of parameters and communication paths.
The system combines (automatically or with the administrator) the transmission environment
with performance and logistics aspects.

• Service layer communication with the hardware layer. In Internet of Things (IoT) devices,
application modules collect and process telemetric data locally, e.g., the temperature, pressure,
tool wear, etc. An example of such a service is hardware and manufacturing process diagnostics.
The interactions of these layers are natural in the final stage of each iteration of the RDRP process
during the production of the prototype.

3. Levels of IT Framework Maturity

The adopted model has a wider application than just the rapid prototyping process, as it is
part of the whole idea of Industry 4.0. A separate issue is how to implement the framework in a
given institution, cluster or company. The initial results of the research on and implementation of the
test framework in real systems clearly show that full implementation of the entire model (even for
newly-built systems) is difficult, and, in some cases, even impossible. This is mainly due to the time
constraints of the project and the lack of a sufficient number of qualified specialists on the border of IT
and industry. Therefore, the implementation of the proposed framework should adopt an evolutionary
character. Due to the dominant nature of IT issues related to the construction of this class system,
this criterion was selected for further analysis. To assess the level of implementation, the concept of the
level of IT maturity of the implemented framework was introduced.

Definition 1. The level of IT information maturity of the framework is described by the variable p = {p1,p2,
. . . ,pn}. We describe the level of implementation of particular system features c = {c1,c2, . . . ,cm} via the following
matrix D of size n × m:

dij =

{
0 if for a given level pi, cj feature does not have to be implemented
1 if for a given level pi, cj feature has to be implemented

This definition of levels of maturity allows a person to use his or her own set of key features for
the planned implementation. Let us consider an example whose system features are defined as follows
(Table 1):
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Table 1. Definition of the features of the example system.

Feature Description

c1 The system has precisely defined requirements for layers w1 to w2
c2 The system has precisely defined requirements for layers w3 to w4
c3 The system has implemented hardware services in the w3 layer
c4 The system has implemented hardware services in the w4 layer
c5 The system has implemented software services in the w2 layer
c6 The system has implemented adaptive control in the w3 layer
c7 The system has implemented remote access for layers w3 to w4
. . . . . .

cm
The system has implemented advanced management algorithms based
on artificial intelligence in layer w1

At the implementation stage, the system designers, in consultation with the business division,
industrial partners, employees of the prototyping laboratory and customers, define a matrix with levels
D according to Definition 1. For the example considered, this matrix can take the following form:

D =

c1 c2 c3 c4 c5 c6 . . . cm

p1 1 1 0 0 0 0 . . . 0
p2 1 1 1 1 0 0 . . . 0
p3 1 1 1 1 1 0 . . . 0
...

...
...

...
...

...
...

...
...

pn 1 1 1 1 1 1 . . . 1

During the development of information systems supporting prototyping, the proposed framework
can determine the features of the information system architecture required at each level of maturity.
This allows one to plan the development of the system, but also determines the possibility of its
integration with other systems. The levels of IT system maturity in relation to the development of a
given system are presented in Figure 3.

Figure 3. Levels of IT system implementation maturity.

Of course, the proposed framework gives one the opportunity to create custom levels of maturity
that correspond to the requirements of a given company, laboratory, or production cluster. To better
illustrate the assumptions of the model, we proposed a general set of levels of maturity as the starting
point for further work.

For the system characteristics given in Table 2, the IT maturity level matrix will be as follows:

D =

c1 c2 c3 c4 c5 c6 c7 c8

p1 1 1 0 0 0 0 0 0
p2 1 1 1 1 0 0 0 0
p3 1 1 1 1 1 0 0 0
p4 1 1 1 1 1 1 0 0
p5 1 1 1 1 1 1 1 1
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Table 2. Definition of the general features of the framework model.

Feature Description

c1 Analysis of the needs and capabilities of the company and technology
c2 The system has precisely defined requirements for layers w1 to w4
c3 Reconciliation of network communication standards for layer w4

c4
Definition of communication standards and protocols for w1 and w2 and remote
access technologies

c5 Deployment of services in layer w3

c6

Implementation of mechanisms and analytical tools in the w4 layer
(including specialized knowledge, search and data mapping algorithms, and artificial
intelligence, reporting systems)

c7 Full inter-layer integration, including the implementation of cross-layer mechanisms
c8 Transition from reactive to active management and a resource sharing model

From the perspective of the matrix analysis, we should determine the correlation properties of the
features that are appropriate for subsequent levels p1, p2, . . . , pn. It is natural to include the following
form, pi = pi−1 + cpi , where cpi is a set of features specific to a given level pi, where i = 1 . . . n. For
example, from Figure 3, p3 = p2 + {c6, c7, c8, c9}. However, one should consider a case where the level
does not contain all the features of level pi−1. In other words, if level pi contains a set of features
pi−1 =

{
cpi−1

1 , cpi−1
2 , . . . cpi−1

u

}
, is it possible that the following situation may occur:

pi = pi−1 + cpi −
{
cpi−1

1 , cpi−1
2

}
(1)

Admitting this situation will lead to the creation of a matrix with the following form:

D =

c1 c2 c3 c4 c5 c6 . . . cm

p1 1 1 0 0 0 0 . . . 0
p2 1 1 1 1 0 0 . . . 0
p3 0 0 1 1 1 0 . . . 0
...

...
...

...
...

...
...

...
...

pn 1 1 0 1 0 1 . . . 1

With this approach, further levels of maturity will become less dependent on each other. Such
a situation may apply to the implementation of some IT systems supporting the process of rapid
prototyping and Industry 4.0. For example, consider a situation where one of the requirements of
level pi−1 is that an administrator allocates resources for given prototyping clusters (let us mark this
attribute as ci). Let us assume that one of the features of level pi is the introduction of automatic
resource management systems using the SDN architecture. In this case, feature ci is unnecessary for
level pi. For the example given, it is appropriate to use the inclusion described by Expression (1).

If the prototyping system or production system is built by one organization, ensuring the
compliance of individual elements within one framework using a given matrix D is a relatively simple
task. However, if we consider the architecture presented in Figure 1b, then it is necessary to ensure the
compatibility of the maturity level in individual organizations for a given project being carried out.

4. System Architecture

Considering the needs of the rapid prototyping laboratory, the following functional modules were
defined to form an integrated system supporting the RP process:

3D design support module: A set of CAD tools limited to licenses and the performance of hardware
infrastructure. To increase the flexibility of resource management, it is possible to use virtualization
techniques and collective licenses.

351



Processes 2020, 8, 1019

Filament selection module: This module is based on the programmed mechanisms for selecting
the correct production components according to the needs defined for the final product. The system
includes a database of available filaments with certain technical parameters; a set of available 3D
printers with their technical parameters linked to a set of available filaments that can be used on
individual printers; a system for defining the technical parameters of the final element; and a previously
established mechanism for selecting a filament for specific production tasks.

Queue management module: An IT system that manages planned tasks in the area of available
resources (including filament for 3D printers). This system analyzes the available 3D printers on an
ongoing basis in terms of their load, informing the person making orders about the planned start and
end dates of the printout. This system considers the priorities of individual tasks. An extension of this
module can also manage access to other resources, including CAD modeling tools.

SDN network control module: This module can optimize the use of ICT infrastructure resources,
by implementing adaptive mechanisms for controlling access to network resources and flow control
through the dynamic creation and modification of communication paths with appropriate Quality of
Service (QoS) parameters. This issue is described in detail in [18].

Access and control module (including remote control): A module responsible for access control
to individual architectural resources of the rapid prototyping system. Two user groups can be
distinguished here: administrators and operating users who are assigned the appropriate pre-defined
access rights.

Print control and verification module: An IT system based on high resolution cameras. Data are
then passed to the control system, which is placed in the analysis layer. There, the image from the camera
is compared to the standard model, and then the level of the match is evaluated. When exceeding the
pre-set limit parameters, the system may report the need to stop the manufacturing process.

These individual modules apparently belong to single layers of the framework presented
earlier. However, in reality, these modules can (but do not have to) use the functionality of
all four layers (Figure 4). For example, the 3D design support module uses available hardware
resources (including computing power) and access to this module can be done remotely through
the communication infrastructure, thereby implementing the design and modeling service for the
end-products and, at the same time, working under the initial assumptions and knowledge (the example
model reference) from the analysis layer. Similar relations apply to the other modules.

 

Figure 4. System architecture in the context of the proposed framework.
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5. Adopted Architecture for the Remote Rapid Prototyping Environment

The implementation of many research, development and didactic works brings together a team of
specialists dispersed across various institutes, academic centers, startups, industrial laboratories, etc.
Modern broadband networks and available IT solutions allow one to create a “virtual laboratory”,
where scientists, engineers and students can carry out the entire rapid prototyping process from a place
far from the real laboratory. The architecture of such a virtual–remote rapid prototyping laboratory
(as part of the previously presented framework) is presented in Figure 5.

Figure 5. Architecture of a remote rapid prototyping laboratory.

The proposed solution is characterized by the following features:

• Scalability: Assumptions regarding the architecture of the remote laboratory system do not
introduce limitations in the number of users, 3D modeling platforms, available 3D printers,
type of filament used, etc. Consequently, the system can be freely extended with new
additional components.

• Availability: Modern requirements for manufacturing systems, such as in a laboratory, can be
available 24/7. Thanks to this, efficiency is significantly increased. This also represents a significant
improvement for people who work from different time zones. Access is possible using both
stationary and mobile devices.

• Flexibility: The topology in which solutions of this class are created can combine any elements
with each other. As an element of infrastructure, industrial resources, IT infrastructure and
human resources are considered. Available IT tools allow the creation of many research scenarios
without structural time or spatial constraints. The basic restrictions here are the cost of the task
and the time of its implementation. During the creation of several projects implemented by
industry partners in cooperation with the Rzeszów University of Technology, the key parameter
affecting the time of implementation for a given laboratory was shown to be the standardization
of communication interfaces and the use of generally known protocols and standards available
on the market. This approach significantly increases the flexibility of the planned environment,
and reduces the costs of its construction and operation.
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• Security: The system allows the application of modern methods for user verification and
access control to individual elements of the entire system. This applies to both remote and
local access. The main element is the RADIUS (Remote Authentication Dial In User Service)
authentication server.

• Universality: The adopted assumptions allow the interoperability of various solutions in the field
of printing methods, applied object modeling techniques, authentication mechanisms, IT resource
virtualization, etc.

• Openness: The system allows the use of open solutions, including OpenSource and production
solutions. This feature of the system was partially described in the previous section.

• Verification/inspection: The verification and inspection of each prototyping process are crucial
in order to verify the design prototype. In stages related to CAD design, object properties can
be verified by numerical simulations, expert systems, etc. At the production stage, verification
is carried out by a camera system and a machine operator whose working time can be shared
among many projects. Operator and industrial work can also be supported by a dedicated IT
system, e.g., related to anomaly detection or machining optimization.

6. Implementation of the Framework in a Real Environment

The framework proposed in this paper was used for the creation and operation of a rapid
prototyping environment designed at Rzeszow University of Technology. An example of such a
solution is the iS Rapid at InfoSoftware Polska Ltd., Rzeszów, Poland. This system includes all four
layers of the framework with the implementation of selected functionalities (Figure 6). The system was
implemented in the production process and offered remote access to the prototyping infrastructure.
The entire system was built from scratch according to previously developed assumptions. Four levels
of maturity were defined for the developed framework. At present, the system has reached the third
level of maturity. Works related to the achievement of the fourth level of maturity are currently being
finished. At the analysis layer, a knowledge base used by the engine to select the print parameters
was implemented. The selection and configuration of the manufacturing process carried out in the
analysis layer directly translates into the configuration of the virtual work environment created by the
service layer. Of course, the user/client authentication process itself and remote access to appropriate
resources must be carried out beforehand. Subsequently, the users have the ability to design their own
components, using the available design and modeling tools, and can also import a unique ready-made
object. All operations and processes are available through a so-called “thin client”, i.e., through a
web browser. The user has the impression that he or she performs all activities locally on his or her
computer/mobile device. One of the steps is the selection of the device and filament. This process is
based on the predefined parameters of the previously designed prototype. On this basis, the system
selects a set of recommended manufacturing devices and types of materials from which the given
component will be finally made. Until final approval of the printout, the user can still go back and
make any modifications. In one of the last steps, the user can determine the validity of his or her task,
i.e., his or her priorities. This information will be used as input for the mechanisms that reserve IT and
manufacturing resources.

Resources (CAD system, operating system, network resources, disk resources, etc.) are allocated
in a virtual environment at the time of a given user’s work and deleted after a session. The effects of
the work are saved in the indicated place by the user, and can be used to implement the next stages
of creating a prototype or develop another virtual work environment. The creation and the sharing
of resources are carried out in the environment via automatically generated network connections
implemented at the network layer (Figure 7). At the network layer, there is also a remote access
control system supported by NAC (Network Access Control) and Firewall systems, enabling access to
resources through a dedicated application.
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Figure 6. The architecture of the remote prototyping laboratory implemented at InfoSoftware Poland Ltd.

The connection system also provides access to hardware resources deployed in the hardware
layer. The entire production process is controlled by the original queuing system, which is responsible
for allocating resources from individual layers to specific users at a given time. The system is also
responsible for the tariffication and can estimate the costs of physical prototype production as early as
the stage of project creation.

At present, research work is in progress that will enable the transformation of the system from a
centralized architecture to a distributed architecture. Cooperation has already been established with
companies and external laboratories that offer other hardware components not available in the iS Rapid
system. In the next stage, these components will be made available as a part of the iS Rapid system.
The only condition for the implementation of such a structure is for the relevant partners to achieve the
second level of maturity of the present framework. This will entail modifications in the area of the
network and proper preparation of devices in the hardware layer.

 

Figure 7. Example elements of the IT and manufacturing infrastructure.
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7. Comparison between the Classic and Proposed Approaches

The introduction of a new approach, or rather a methodology, for rapid prototyping processes
requires a comparison with extant or “classic” solutions. From the perspective of modern manufacturing,
in addition to flexibility, reliability and availability, real production costs are also a very important
issue. For classic manufacturing, most design and manufacturing infrastructure must be available to a
given company or person. This approach involves the high purchasing costs of efficient workstations
necessary for the modern creation of 3D models, specialized software, a suitable machine park
(in the form of, e.g., 3D printers), having appropriate resources (e.g., various types of filaments),
and a team of specialists to guarantee the high level of performance of the required components.
For the purposes of this paper, we analyzed the infrastructures of three representative technologies,
FDM (Stratasys), PJM—Polyjet Modeling (Stratasys) and SLS—Selective Laser Sintering (Sintratec),
for which comparative analyses were also performed. As part of the study, the costs for achieving the
organization’s readiness to implement the rapid prototyping process using the classic AM process
were estimated using the resources at the Rzeszow University of Technology laboratory. A list of these
costs is presented in Table 3. These costs were selected based on a market analysis in Poland at the
beginning of 2019.

Analysis of the data from Table 3 allows us to estimate the costs of the so-called entry threshold:
the costs primarily for the purchasing of software and materials as well as one employee (monthly salary).
The employee is the operator of three 3D printers and software. For the rapid prototyping process
laboratory, these costs are estimated at EUR 188,600. The above table presents the annual costs resulting
from the depreciation of hardware and software, monthly costs and hourly averages, including costs
related to the space and utilities used. Hourly costs can also be related to the operation of individual
devices. The valuation of the implementation of a specific model must consider the specificity of
the incremental technology used, the time of production using this technology, and fixed costs. The
presented costs can be reduced by renting some of the elements on the market (including software),
but in such a model, the integration of the entire manufacturing process is done on the client side.

Table 3. Cost estimations of the basic elements needed for the rapid prototyping process.

Position
Purchase

Cost
Annual Costs
(Depreciation)

Monthly Costs
(Depreciation)

Total Cost for Working
Hours of Laboratory Work

Software 4000 800 67 1
Computer 2000 400 33 1

PJM 130,000 26,000 2170 20
SLS 26,000 5200 433 10

FDM 24,000 4800 400 9
Materials 1000 12,000 1000 2
Personal 1600 19,200 1600 10

SUM 188,600 68,400 5703 53

In this process, considering the heterogeneity in the ownership of solutions used in single RP
processes, there is a high probability that responsibility for prototyping failure will transfer between
entities. For example, Company A producing a physical element may explain its faulty performance as
a consequence of incorrectly selected parameters by the designer of company B, or improper processing
by company C. In the proposed framework, transfers between companies A, B and C are implemented
by strictly defined IT processes that ensure adequate quality, normalization, control compliance, and a
number of other relevant parameters for a given case.

Next, the costs for the prototyping and production of two different (overall and structural)
elements were analyzed: a rotor 200 m in diameter and 127 mm height (Figure 8a), as a thin-walled
element with a complex geometric structure, and a bracket (Figure 8b), as a small element 50 mm long,
25 mm wide and 13 mm high, designed as a solid prototype.
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(a) (b) 

Figure 8. 3D-STL models of the test elements: (a) rotor; (b) bracket.

In the cost assessment process, the printout of elements in three types of processes was analyzed:

1. Process 1 (M1): The company has its own infrastructure, production elements and qualified staff
involved in the production of components. In this process, the costs related to the purchase and
operation of equipment were also estimated. Estimating the manufacturing of an element in
this model is the most difficult because it is necessary to consider the purchase and operation
of equipment, and break down those values into the production costs of individual elements.
Moreover, having our own machine park allows for the production of one type of element
(with given parameters), and significantly reduces the prototyping process, which may require
the use of various types of machines.

2. Process 2 (M2): In this model, with the exception of the designer, all elements used in the
prototyping process are leased, including the CAD software. The entire operation is coordinated
by the client and supported by a prototyping engineer.

3. Process 3 (M3): All prototyping is done remotely (along with the selection of the print parameters)
using the system implemented by the company InfoSoftware using the proposed framework,
which automatically coordinated and merged the production stages.

Determining the costs for the model was carried out in the first stage based on the resources and
operating costs of the rapid prototyping laboratory of the Rzeszów University of Technology. A cost
analysis was carried out for the production of prototypes using three industrial technologies: PJM,
SLS and FDM. In addition, for process 1 and process 2, the costs were determined on the basis of
quotes, cost estimates, or actual project and manufacturing works. The assumptions and controls for
dimensional and shape accuracy were not considered because they are a separate issue. The list of
costs is presented in Figures 9–14. The cost of producing prototypes for a larger number of pieces was
also analyzed.

The results of the simulations carried out for the two different prototypes and three process
models, as well as three manufacturing technologies, show significant differences in all cases. The cost
of making a prototype of one rotor is the highest using the PJM method and process 1 (M1), which thus
involves the most expensive device, an important element of which is machine depreciation. In this
case, the price is constant regardless of the number of pieces produced. Using processes 2 (M2) and
3 (M3), the price decreases when the number of pieces is increased to 10, and then stabilizes. The
execution of the rotor model with FDM technology under process 1 also assumes a constant value.
However, the cost is noticeably lower than that when using processes 2 and 3, for which the costs
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are also decreased by increasing the number of ordered items (manufacturing 20 pieces stabilizes the
price). For SLS technology, the costs also stabilize around 20 pieces. The cost of making the rotor is
the lowest for processes 2 and 3. This may be due to the applied technology, SLS, for which support
structures are not required. For the prototype of the rotor with a complex spatial structure, the support
structures for PJM and FDM technologies entail a significant cost connected with the use of supporting
materials and the time necessary to develop supporting structures. For the majority of 3D printers
of a medium size, it is possible to make a rotor with these dimensions as one piece in the machine’s
working space. Hence, each rotor is made in a separate manufacturing process.

 

Figure 9. Dependence of the rotor production costs on the number of prototypes for PJM technology.

 

Figure 10. Dependence of the rotor production costs on the number of prototypes for FDM technology.

 

Figure 11. Dependence of the rotor production costs on the number of prototypes for SLS technology.
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Figure 12. Dependence of the costs of bracket production on the number of prototypes for
PJM technology.

Figure 13. Dependence of the costs of bracket production on the number of prototypes for
FDM technology.

Figure 14. Dependence of the bracket production costs on the number of prototypes for SLS technology.

The costs for bracket manufacturing are different because brackets are a compact element with
much smaller dimensions than a rotor. Due to the small size of a bracket, it is important to be able to
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make a few to a dozen pieces in one process. Thus, the most expensive context is the production of a
single piece, which is especially notable for processes 2 and 3, for which cost stabilization occurs at
20 pieces of ordered product. For the model of process 1, the cost of execution is the smallest, and the
course of the curve is gentle. For the prototype of the bracket, the highest cost was also observed for
PJM technology with process 3. However, the difference between the production costs for individual
technologies is not very significant in terms of the value itself, especially for over 20 pieces, compared
to the rotor production price.

Analysis of the obtained results shows that the model based on the proposed framework M3 is
extremely flexible, and is characterized by the low production costs of its prototype elements when the
number of manufactured elements is greater than 15, which confirms the legitimacy of this model’s
use in the production of around a dozen pieces. This model has also great advantages associated
with its ability to select print parameters individually for each sample in a given series. Process 1,
despite having the lowest production costs, is often characterized by the highest entry threshold cost
in each of the technologies studied, which is associated with the purchase of equipment and the need
to hire an employee to operate that equipment (Table 3). However, for a large manufacturing company
that intends to implement many prototypes incrementally for its own needs or for external orders,
the long-term use of M1 is profitable.

8. Conclusions

This paper proposes a novel approach for the integration of the distributed additive manufacturing
process enabling remote designing, the selection of appropriate manufacturing means, and the
implementation of a physical production process and control at all stages. This approach was
possible thanks to the development of an unprecedented framework, through which we were able to
integrate distributed and functionally different elements (IT and manufacturing), forming a coherent
design and manufacturing system. Importantly, this framework ensures not only an increase in
production efficiency but also shortens production time, reduces costs, and increases the flexibility of
and accessibility to the latest methods and design and manufacturing tools. In addition, we presented a
mechanism that facilitates the integration of independent manufacturing environments by considering
and implementing appropriate levels of maturity in the system. The validity of the presented solution
was also confirmed by its implementation in a real production environment, i.e., at Infosoftware
Poland. At present, work is in progress to integrate the rapid prototyping laboratory of the Rzeszów
University of Technology with the infrastructure of the company to expand the available functionality,
i.e., by providing a larger machine park, a wider range of design and modeling tools, and facilitating
the development of analytical tools supporting the decision-making process. The presented platform
can be widely used in the automotive and aerospace industries, and will facilitate cooperation between
industrial clusters and academic centers to a higher degree, as well as encourage cooperation between
small enterprises and startups. From the perspective of management, the technical implementation
of the presented framework allows one to adapt to the needs of globalization, and facilitates the
integration of distributed resources. Thus, this framework affects business, logistics and technological
processes. One of the implications of implementing such a framework is the need to develop or adapt
existing workflows to the new heterogeneous and distributed work environment. This is an interesting
issue and may constitute the background of a new article. Considering the technological aspects,
it remains a large challenge to achieve higher levels of maturity in a diverse ownership environment.
This process requires cooperation and adoption at the management levels regarding the common
assumptions behind the direction of development and implemented investments. In a homogeneous
ownership environment, the related processes and decisions are much simpler. One of the significant
limitations, that may affect the speed and scope of the integration of distributed heterogeneous design
and production environments, is the lack of protocols and standards enabling the use of plug-and-play
techniques known from ICT environments to enable the automated integration of physical devices with
design applications and the preparation of the final manufacturing process, as well as with job queuing
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and decision support systems. The current approach based on the individual integration of individual
infrastructure components requires a great deal of time and effort to achieve a higher level of maturity.
The potential development of technology in this area could contribute to the full use of cross-layer
optimization, as well as full automation of the attachment and disconnection of individual production
devices. Of course, manufacturers of production devices use selected communication standards
with their own dedicated applications, but there is currently no uniform mechanism comparable to
the automatic installation of drivers in computer devices. Development in this direction would not
only concern technological development, but would also influence the evolution of management
models. The proposed solution, especially in terms of achieving the highest level of IT maturity,
may enable the further evolution of productions methods toward Industry 5.0. Such progress will
entail the implementation of fully autonomous production areas, where, after ensuring integration
at the ICT level (i.e., IoT), it will be possible to implement a concept based on self-adaptive IoE
(Internet of Everything) systems. Under this approach, IT systems based on artificial intelligence,
machine learning, Big Data, and modern and safe communication systems will not only support
decision-making processes at various stages of design and manufacturing, but will gradually replace
them by creating Integrated Adaptive Generation Systems. In future works, we plan to develop
solutions supporting decision-making in the field of design and production based on the experience of
engineers, available technological databases and expert systems in the form of an iterative adaptive
decision support system improved via the loopback model for Cyber–Human systems. Such a system
would shorten the time needed for the design and production process, reduce the costs related to
corrections and waste, and thus increase the quality of the services provided.
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Abstract: The development and application of emerging technologies of Industry 4.0 enable the
realization of digital twins (DT), which facilitates the transformation of the manufacturing sector to a
more agile and intelligent one. DTs are virtual constructs of physical systems that mirror the behavior
and dynamics of such physical systems. A fully developed DT consists of physical components, virtual
components, and information communications between the two. Integrated DTs are being applied in
various processes and product industries. Although the pharmaceutical industry has evolved recently
to adopt Quality-by-Design (QbD) initiatives and is undergoing a paradigm shift of digitalization
to embrace Industry 4.0, there has not been a full DT application in pharmaceutical manufacturing.
Therefore, there is a critical need to examine the progress of the pharmaceutical industry towards
implementing DT solutions. The aim of this narrative literature review is to give an overview of
the current status of DT development and its application in pharmaceutical and biopharmaceutical
manufacturing. State-of-the-art Process Analytical Technology (PAT) developments, process modeling
approaches, and data integration studies are reviewed. Challenges and opportunities for future
research in this field are also discussed.

Keywords: digital twin; Industry 4.0; pharmaceutical manufacturing; biopharmaceutical
manufacturing; process modeling

1. Introduction

Competitive markets today demand the use of new digital technologies to promote innovation,
improve productivity, and increase profitability [1]. The growing interests in digital technologies and
the promotion of them in various aspects of economic activities [2] have led to a wave of applications
of the technologies in manufacturing sectors. Over the years, the advancements of digital technologies
have initiated different levels of changes in manufacturing sectors, including but not limited to the
replacement of paper processing with computers, the nurturing and promotion of Internet and digital
communication [1], the use of programmable logical controller (PLC) and information technology
(IT) for automated production [3], as well as the current movement towards a fully digitalized
manufacturing cycle [4]. The digitalization waves have enabled a broad range of applications from
upstream supply chain management, shop floor control and management, to post-manufacturing
product tracing and tracking.

Among the new digital advancements, the development of artificial intelligence (AI) [5], Internet
of Things (IoT) devices [3,5] and digital twins (DTs) have received attention from governments,
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agencies, academic institutions, and industries [6]. The idea of Industry 4.0 has been put forward by
the community of practice to achieve a higher level of automation for increased operational efficiency
and productivity. Smart technologies under the umbrella of Industry 4.0, such as the development of
the IoT, big data analytics (BDA), cyber-physical systems (CPS), and cloud computing (CC) are playing
critical roles in stimulating the transformation of current manufacturing to smart manufacturing [7–10].
With the development of these Industry 4.0 technologies to assist data flow, a number of manufacturing
activities such as remote sensing [11,12], real-time data acquisition and monitoring [13–15], process
visualization (data, augmented reality, and virtual reality) [16,17], and control of all devices across
a manufacturing network [18,19] is becoming more feasible. The implementation of Industry 4.0
standards by institutions and companies encourages them to implement a more robust, integrated data
framework to connect the physical components to the virtual environment [1], enabling a more accurate
representation of the physical parts in digitized space, leading to the realization and application of DTs.

The concept of creating a “twin” of a process or a product can be traced back to the late 1960s
when NASA ensembled two identical space vehicles for its Apollo project [20–22]. One of the two was
used as a “twin” to mirror all the parts and conditions of the one that was sent to the space. In this
case, the “twin” was used to simulate the real-time behavior of the counterpart.

The first definition of a “digital twin” appeared in 2002 by Michael Grieves in the context
of an industry presentation concerning product lifecycle management (PLM) at the University of
Michigan [23–25]. As described by Grieves, the DT is a digital informational construct of a physical
system, created as an entity on its own and linked with the physical system [24].

Since the first definition of DT, interpretations from different perspectives have been proposed, with
the most popular one given by Glaessegen and Stargel, noting that a DT is an integrated multiphysics,
multiscale, probabilistic simulation of a complex product and uses the best available data, sensors,
and models to mirror the life of its corresponding twin [26]. It is generally accepted that a complete DT
consists of a physical component, a virtual component, and automated data communications between
the physical and virtual components [2]. Ideally, the digital component should include all information
of the system that could be potentially obtained from its physical counterpart. This ideal representation
of the real physical system should be an ultimate goal of a DT, but for practical usage, simplified or
partial DTs are the dominant ones in industry currently, including the employment of a digital model
where the digital representation of a physical system exists without automated data communications
in both ways, and a digital shadow where model exists with one-way data transfer from physical to
virtual component [2].

Together with the US Food and Drug Administration (FDA)’s vision to develop a maximally
efficient, agile, flexible pharmaceutical manufacturing sector that reliably produces high quality
drugs without extensive regulatory oversight [27], the pharmaceutical industry is embracing the
general digitalization trend. Industries, with the help of academic institutions and regulatory agencies,
are starting to adopt Industry 4.0 and DT concepts and apply them to research and development,
supply chain management, as well as manufacturing practice [9,28–31]. The digitalization move that
combines Industry 4.0 with International Council for Harmonisation (ICH) guidelines to develop an
integrated manufacturing control strategy and operating model is referred to as the Pharma 4.0 [32].

However, according to the recent survey conducted by Reinhardt et al. [33], the preparedness of
the industry for this digitalization move is still unsatisfactory. It is noted that most pharmaceutical and
biopharmaceutical processes currently rely on quality control checks, laboratory testing, in-process
control checks, and standard batch records to assure product quality, whereas the process data and
models are of lower impact. Within pharmaceutical companies, there are gaps in knowledge and
familiarization with the new digitalization move, resulting in a roadblock in strategic and shop floor
implementation of such technologies.

With the rapid development of DT and its building blocks, state-of-the-art review studies
concerning pharmaceutical and biopharmaceutical manufacturing are limited. This paper aims to
provide a literature review and a discerning summary of the current status of DT development and
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its application in the pharmaceutical industry, focusing on small and large molecule drug product
manufacturing for the purpose of identifying current and future research directions in this area.
The remainder of the paper is structured as follows. A description of the general DT framework is
provided in Section 2, followed by a detailed review of DT in pharmaceutical and biopharmaceutical
manufacturing in Sections 3 and 4, respectively. More specifically, we intend to provide readers with
a summary of the critical components of an effective DT and the progress of implementing these
components in pharmaceutical and biopharmaceutical manufacturing. After discussing the current
status, we discuss the challenges associated with the development and application of DT in each
section, with conclusions at the end.

2. Digital Twin Framework

As mentioned in Section 1, a DT has a physical component, a virtual component, and automated
data communication in between, which is realized through an integrated data management system.
This synergy between the physical, virtual space, and the integrated data management platform is
demonstrated in Figure 1. The physical component consists of all manufacturing sources for data,
including different sensors and network equipment (e.g., routers, workstations) [34]. The virtual
component needs to be a comprehensive digital representation of the physical component in all
aspects [8]. The models are built on prior knowledge, historical data, and the data collected in real-time
from the physical components to improve its predictions continuously, thus capturing the fidelity of
the physical space. The data management platform includes databases, data transmission protocols,
operation data, and model data. The platform should also support data visualization tools in addition
to process prediction, dynamic data analysis, and optimization [34]. Sections 2.1–2.3 discuss each
component in more detail.

Figure 1. Physical component, virtual component, and data management platform of a general digital
twin (DT) framework.

2.1. Physical Component

Sourcing data from the physical process and component is one of the most essential elements in
the development of a DT. The critical process parameters (CPPs) for equipment can be obtained either
manually from the human–machine interface (HMI) generally provided by the equipment manufacturer
or automated using several machine–machine interfaces (MMI). There are several standard MMIs such
as Open Platform Communications (OPC), OPC Data Access (OPC DA), OPC Unified Architecture
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(OPC UA), and Modbus [35] for automating the data transfer between equipment software to a control
or historian software. OPC UA is considered to be the current standard as it has added features such
as multiple tags along with their properties [36]. Data can also be transmitted over the network using
message queue telemetry transport (MQTT), Hypertext Transfer Protocol (HTTP), Transmission Control
Protocol/Internet Protocol (TCP/IP), etc. The critical quality attributes (CQAs) for the product are
determined using soft sensors, and they usually employ network protocols for data transmission [37].
Soft sensors are a combination of hardware sensors with their propriety software-enabled models that
help obtain information about the process [38]. Soft sensors have been implemented in several process
industries for process monitoring and control. These sensors have been used to measure cake resistance
in freeze-drying applications [39], measuring temperature from pyrometers [40], estimating product
quality during crude distillation [41], and have also found several other industrial applications [42–45].
Continuous acquisition of large amounts of data requires a systematic framework such as a data
historian to store the historical data. Several studies have employed local data historians [46,47] to
create an information infrastructure enabling the synchronous collection of process and sensor data.
Zidek [48] demonstrated the Industry 4.0 concept for small–medium size enterprises (SMEs) where the
quality of the product was assessed by a DT, and the communication between the OPC server and PLC
system was achieved using OPC-UA. A combination of network and OPC communication protocols
was used by Kabugo [35] to develop the cloud-based analytics platform for a waste-to-energy plant.
Several other studies focusing on smart factories according to Industry 4.0 standard have utilized
similar communication protocols [49–51].

2.2. Virtual Component

The virtual component consists of a collection of models to simulate the physical process and to
analyze the current and future state of the system. With appropriate models, the virtual components
can be used to perform real-time process simulation and system analyses, including but not limited
to sensitivity studies that identify the set of most influential factors [52], design space studies that
yield feasible operating conditions [53], and system optimization [54]. Results from real-time process
simulation can be sent to the data management platform to visualize the process, and the results of
system analyses, together with the preprogrammed expert knowledge, can be used to deliver control
commands to the physical counterpart to ensure process and component conformity.

Different model types exist for use in DT, namely mechanistic models, data-driven models,
and hybrid models. Mechanistic models strongly rely on process knowledge and understanding, as the
development is based on fundamental principles and process mechanisms [55]. The resulting models
are highly generalizable with physically interpretable variables and parameters, with a relatively low
requirement from process data. Often, however, this comes with high development and computation
costs [54,56]. In contrast, data-driven models depend only on process data, and no prior knowledge is
needed [55]. The advantages include more straightforward implementation, relatively low development
and computational expenses, and convenient online usage and maintenance. However, the poor
interpretability, poor generalizability, and the need for large amounts of data present limitations of this
modeling method [55,57,58]. A hybrid modeling strategy is then introduced to balance the advantages
and disadvantages of the other two model types [57,59–61]. With different hybrid structures, the hybrid
modeling method offers improved predictability and flexibility in process modeling [58,61,62].

In addition to the development of models, the computational cost is also a main concern in
the virtual component of DT. Since a fully developed DT aims to represent the physical counterpart
and perform system analyses, it would require extensive computational power. For a large system,
local desktops and consumer-grade Central Processing Units (CPUs) cannot meet the demand.
Many computationally intensive models can run in parallel using high-performance computing (HPC)
to enhance the computational speed to achieve real-time or near-real-time simulations [63–65].

To develop models, perform simulations, and conduct system analyses for the virtual component
of the DT framework, appropriate modeling platforms are needed. Various commercial modeling
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platforms and software packages have been developed and have become available. Among all the
available ones, MATLAB and Simulink (MathWorks) [66], COMSOL Multiphysics (COMSOL) [67],
gPROMS FormulatedProducts (Process Systems Enterprise/Siemens) [68], aspenONE products
(AspenTech) [69], and STAR-CCM+ (Siemens) [70] are commonly seen in process industries.
These platforms offer a large collection of models and/or tools that enable users to create or incorporate
unit operations and flowsheet models based on the actual process. Some of these companies have
also been developing local and cloud platforms (e.g., gPROMS Digital Applications Platform [71]
from Process System Enterprise/Siemens, Siemens Mindsphere [72]) for hosting and computing
models, for integrating physical component, and for providing data management functions, providing
end-to-end DT solutions. Others have focused on improving compatibility with common data
management and Internet of Things (IoT) integration platforms, which are described next in Section 2.3.

2.3. Data Management

In addition to model management and simulation platforms, several commercial IoT Platforms
as a Service (PaaS), such as Predix (General Electric) [73], Mindsphere (Siemens) [72], SEEQ [74],
TrendMiner [75], TIBCO Cloud [76], etc. have been developed. These platforms offer a large collection
of tools that enable users to develop, visualize, analyze, and manage data on cloud servers. Some cloud
service companies, such as Amazon Web Services (AWS) [77], Microsoft Azure [78], Google Cloud [79],
IBM Watson [80], offer multipurpose platforms which are more versatile [81]. These platforms
also offer distributed computing, data analysis tools, interaction protocols, and data and device
management tools. Several of the interface protocols mentioned in Section 2.1 are also applicable to
data transfer in the cloud. These platforms also provide large data storage capacities at affordable prices.
Industrial grade IoT platforms are developed with a higher emphasis on secure device connectivity
and cyber-security [82].

Seamless data integration in most cases is mainly hindered by a large amount of heterogeneity
between manufacturers and services based on the software used and data formats supported [83].
Some cloud services provide their solutions as optional application program interfaces to integrate
with other software, but several are left out due to the large number of software present. Thus, there is
a need for a standard file format that needs to be employed to encourage cross-platform integration.
The World Wide Web Consortium (W3C) has proposed Extensible Markup Language (XML), Resource
Description Framework (RDF), among other markup languages to model information explicitly [84].
XML [85] provides the user with the freedom to define tags and data structures which are both readable
by machines and humans. This syntax is further developed to incorporate the graph structure of the
information within the RDF framework. The W3C also proposed Web Ontology Language (OWL) for
information modeling. OWL is a vocabulary extension of RDF and is currently in use with XML and
RDF. Unfortunately, these files become cumbersome when large databases need to be stored [86]; thus,
new standard language Structured Query Language (SQL) for relational databases was recommended
by the American National Standards Institute (ANSI) [87]. SQL databases are commonly found on
cloud servers; however, their difficulty in horizontal scalability has led to the development of Non-SQL
(NoSQL) databases, which are easily scalable vertically and horizontally [88] and can be hosted on
cloud servers. Cloud servers are not limited to storage, but they offer large and scalable compute
capabilities that can be leveraged for quick data analysis and simulations. A web service can also be
hosted on a cloud server to create an online dashboard to visualize both the real-time physical data
and the data from the simulation/data analysis.

2.4. Applications of Digital Twin

DT frameworks, as presented in Sections 2.1–2.3, are implemented across various industries [2,4,89]
for simulation, real-time monitoring, control, and optimization to handle “what-if” or risk-prone [89]
scenarios for improving process efficiency, safety analysis, maintenance, and decision-making [24].
This section provides a brief overview of such applications [4] within various industries such as
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aerospace, energy, manufacturing, automobile, chemical, healthcare, semiconductor, and city planning,
as shown in Table 1.

Table 1. Applications of digital twin in various industries.

Areas of
Application

Specific
Application

Purpose
Component of DT
Framework with

Software
References

Energy production

Steam turbines

Integrates historical data with
real-time process to forecast

process wear/tear and
suggest modifications

Virtual component
using Predix [4,90–92]

Wind farm
Integrates historical data to

enhance process efficiency and
predict maintenance strategies

Virtual component based
on General Electric (GE)

fleet using Predix
[92]

Smart product
manufacturing

Factory smart
floor map

Redesign manufacturing
platforms

Virtual replica of
manufacturing floor to

optimize location of
machinery and sensors

[2,18,93–96]

Digitization of
manufacturing of

packaging
machines

Redesigning product to improve
production efficiency and

digitize overall process design

Virtual model using
Siemens mechatronics

concept designer
[96,97]

Aviation industry

DT of
next-generation

aircrafts

Aircraft structural health
management and assessment of

potential damage analysis

Virtual replica of
airplanes using GE’s

Predix software platform
[98,99]

Airframe DT
simulator (ADT)

Training and
engineering solutions

Virtual simulator using
GE’s Predix software [100]

Aerospace industry DT of outer-space
vehicles

Replication of health
maintenance problems and

monitoring for safety
and reliability

Virtual replica of the
vehicle’s on-board
integrated system

[26,101]

Automotive
transportation

DT of cars

Prediction and assessment of
maintenance issues for

improvement of durability of
automobile parts

Virtual replica of
automobiles [102]

Automated
transport vehicles

Vehicle simulations for safe,
automated long-distance

transportations

Dassault systems using
digital control systems [102]

Healthcare
industry

Virtual replica of
patients

Surgical operation training and
health monitoring using sensors

Virtual component
developed using a

simulated environment
[4]

Living Heart
project

3D model of human heart for
analysis of blood circulation and
pharmacokinetic/pharmacodynamic

(PKPD) testing of medicines

Virtual model using
finite element-based

modeling environment
[4]

Infrastructure
planning City planning Construction of smart,

sustainable city infrastructure

Virtual digital replica
using information

communication
technology

[103]

A commercial application of fully integrated DT was first demonstrated by General Electric
(GE) at the Minds +Machines event in 2017 for the GE90 engine [104], with 300 engines integrated
together to supply historical and real-time process information for predicting process failure, mitigating
risks, and optimizing maintenance costs. Similar applications in the aviation industry include DT
of airplanes used for training simulations [100] and aircraft health management [98,99,105,106] for
damage assessment and rectification. The aerospace industry focuses on DT applications for the
development of next-generation outer-space vehicles, following a successful demonstration of Apollo 13
by NASA [26,101] rectifying maintenance problems. DT applications in the energy sector include GE’s
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wind farm [92] and steam turbines [4,90–92]. These DTs are capable of integrating historical data in
terms of process, fuel costs, electricity, process wear and tear, and weather forecasts to suggest possible
real-time modifications for reducing operating costs. Smart manufacturing is another sector benefitting
from DT applications through digitization of product manufacturing [96,97] and development of
digital shop floor (DTS) [2,18,93–96], incorporating real-time information of manufacturing plant,
state of production machinery, environmental conditions, and its effects on manufactured products.
DT applications in the area of automobile and transportation focus on automation of vehicles [107]
and long-distance transportations [102] along with analysis of maintenance [22] and risk-prone
issues [108]. The healthcare industry includes applications such as virtual replica of patients used
for surgical operation training [4], sensors for health monitoring [109], the study of health of a
country’s population [110], and the “The Living Heart” [111] project developed for the analysis of
blood circulations. Furthermore, city planning is another domain where virtual replica of cities,
known as “smart cities” [103] are used for urban city planning and optimal resource allocation [112].
Such efforts promote the construction of smart, sustainable cities [113] while providing a holistic view
of cross-vertical optimization of overall city infrastructure [114].

From the applications reviewed, it is clear that the concept of DT is rapidly being employed across
various domains, given its advantages. However, it is important to identify the challenges associated
with the development and application of integrated frameworks for the systematic utilization of DTs.

2.5. Challenges

Many research and review articles have discussed challenges in the implementation of DTs, and the
issues can be categorized as time-, safety-, and mission-critical [115–120]. In this section, issues that are
more relevant to the manufacturing sector and modeling community are presented, including data
communication, model development and maintenance, cyber-physical security, and real-time capability.

One of the challenges in achieving a DT framework is to establish a stable two-way connection
between the physical and virtual components to support real-time integration. Heterogeneity in
equipment manufacturers and their software [116] is a major hurdle that needs to be addressed
using a common interface or file format that could make interactions between several software easier.
Several prominent manufacturers are already making strides by supporting commonly used OPC
UA/DA interfaces. The creation of a database system that is not only vertically and horizontally
scalable but also structured would also be important in such a framework. Thus, migrating to a NoSQL
database would be recommended, but in this case, the manufacturing industry lags since several
software currently only save data in SQL databases. Additionally, the resolution of sensor data, latency
within the data communication channel, increased volume and variety of data, and the requirement of
fast storage and retrieval are all challenges within this context.

The development of virtual models is often costly and challenging due to the lack of a complete
understanding of the physical process [93]. This deficiency sometimes leads to inconsistences between
models and the physical system. These inconsistencies need to be appropriately identified and handled,
which can impose challenges to the modeling and operation teams. To resolve the issue, systematic
model development approaches, along with appropriate model maintenance strategies are needed.
Moreover, since the models need to perform simulation and system analyses in real-time, efficient and
accurate algorithms that can utilize available information in real-time and continuously are crucial,
presenting a challenge to both the modelers and allocation of computing resources.

In addition to the modeling aspects, cyber-physical security is another area of concern to ensure
the normal operation of physical and virtual components against malicious attacks [121]. In a fully
integrated DT, large data sets with important and potentially confidential information are exchanged,
which require secure communication and processing among all systems [122].
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3. Digital Twin in Pharmaceutical Manufacturing

In pharmaceutical manufacturing, the potential of using DTs to facilitate smart manufacturing
can be seen in different phases of process development and production. In the process design stage,
the use of a DT can significantly accelerate the selection process of a manufacturing route and its unit
operations as it is able to represent physical parts with various models. The understanding of process
variations can be obtained from DT simulations, which allows for the prediction of product quality,
productivity, and process attributes, reducing the time and costs for physical experiments [123]. In the
operation phase, real-time process performance can be monitored and visualized at any time, and the
DT can analyze the system in a continuous manner to provide control and optimization insights of
the process [123]. The DT can also be used as a training platform for operators and engineers, as the
real-time scenario simulation and on-the-job feedback can be realized through DT. With regards to
pre- and post-manufacturing tasks, the DT platform can assist with tasks including but not limited to
material tracking, serialization, and quality assurance.

Some key requirements for achieving smart manufacturing with DT include real-time system
monitoring and control using Process Analytical Technology (PAT), continuous data acquisition
from equipment, intermediate and final products, and a continuous global modeling and data
analysis platform [29]. The pharmaceutical industry has taken several steps towards this by using
techniques such as Quality-by-Design (QbD) [124], Continuous Manufacturing (CM) [124], flowsheet
modeling [125], and PAT implementations [126]. Some of the tools have been investigated extensively,
but the overall integration and development of DTs are still under infancy.

This section reviews the progress of current research and industry applications towards DTs in
pharmaceutical manufacturing from aspects of PAT sensing, model building, and data integration,
which corresponds to the physical component, virtual component, and data management parts in the
general DT framework. Challenges and opportunities are discussed at the end of this section.

3.1. PAT Methods

A key component in the development of a DT is data collection. In addition to readings from
equipment, (critical) quality attributes also need to be collected from physical plants in a timely
manner for use in the virtual component. The models and analyses are reliant on good data.
Several traditional technologies exist to determine CQAs such as sieve analysis and High-Performance
Liquid Chromatography (HPLC), but these cannot provide real-time data and are performed away from
the production line rather than in-line or at-line. Thus, PAT tools have been explored and developed to
address these issues [127].

PAT tools in the pharmaceutical industry have a wide range of applications, including measuring
particle size of crystals [128], blend uniformity [129], testing tablet content uniformity [130], etc.
Spectroscopy tools (Nuclear Magnetic Resonance (NMR), Ultraviolet (UV), Raman, near-infrared,
mid-infrared, online mass spectrometry) constitute one of the major techniques used to measure the
CQAs of pharmaceutical processes. Raman and Near-Infrared Spectroscopy (NIRS) are commonly
used in the industry. Raman Spectroscopy has been employed for the on-line monitoring of powder
blending processes [131]. Since acquisition times for Raman can be higher, NIRS is preferred for
real-time measurements. NIRS has been used for real-time monitoring of powder density [15] and
blend uniformity of processes [129]. NIRS has also been integrated with control platforms for process
monitoring and control [132]. Baranwal et al. [133] employed NIRS to replace HPLC methods to predict
API concentration in bi-layer tablets. PAT tools have also been used by the pharmaceutical industry to
determine the particle size distribution of the product [134]. Several available optical tools such as
Focused Beam Reflectance Measurement (FBRM) [135], a high-resolution camera system [136] have
also been employed in the industry for particle size analysis. Some studies have utilized a network of
PAT tools to achieve a monitoring system to help monitor and control a unit process [127,137].

The US FDA has also taken steps in promoting the use of PAT tools in pharmaceutical
manufacturing with the goal of ensuring final product quality [138]. The pharmaceutical industry
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has adopted PAT in various applications throughout the drug-substance manufacturing process [139].
Although this has certainly led to an increase in the usage of PAT tools, their applications still remain
focused on research and development rather than in full-scale manufacturing [126]. In the limited
number of cases where they were employed in manufacturing, they have been successful in reducing
manufacturing costs and improving the monitoring of product quality [140]. The development of
different PAT methods, with their compelling application as an integral part of a monitoring and
control strategy [141], has established a building block in gathering essential data from the physical
component, enabling the further development of process model and DT.

3.2. Process Modeling

DTs highly depend on the use of data and models, and in the pharmaceutical industry, there is a
growing interest in the development and application of methods and tools that facilitate that [142].
Different types of models have been developed for batch and continuous process simulations, material
property identification and prediction, system analyses, and advanced control. Papadakis et al. recently
proposed a framework for selecting efficient reaction pathways for pharmaceutical manufacturing [143],
which includes a series of modeling workflows for reaction pathway identification, reaction and
separation analysis, process simulation, evaluation, optimization, and operation [142]. The overall
framework would yield an optimized reaction process with identified design space and process
analytical technology information. The models developed under this framework can all be used as the
virtual component within a DT framework to provide further process understanding and control of
the manufacturing plant.

As mentioned in Section 2.2, the modeling approaches can be classified as mechanistic modeling,
data-driven modeling, and hybrid modeling. For mechanistic modeling approaches in pharmaceutical
manufacturing, the discrete-element method (DEM), finite-element method (FEM), and computational
fluid dynamics (CFD) are often used [144]. To simulate the particle-level or bulk behavior of the
material flow in different pharmaceutical unit operations, DEM is a powerful tool and has been applied
widely [145–147], though its high computational cost limits its practical use when running locally.
With HPC and cloud computing, it is possible to integrate DEM simulations with the overall process,
resulting in a near-real-time model. For model fluid flow in pharmaceutical processes, including API
drying and fluidized beds, CFD and FEM are popularly implemented [144]. These two methods are
also heavily utilized in biopharmaceutical manufacturing (see Section 4.2).

Data-driven modeling methods involve the collection and usage of a large amount of experimental
data to generate models, and the resulting models are based on the provided datasets only.
Commonly implemented approaches in pharmaceutical manufacturing include the artificial neural
network (ANN) [148,149], multivariate statistical analysis, Monte Carlo [150], etc. These methods are
less computationally intensive, but due to the lack of underlying physical understanding in the trained
models, the prediction outside of the space of the dataset is often unsatisfactory.

There is also a recent trend in developing various types of hybrid modeling techniques to model
complex pharmaceutical manufacturing processes, while lowering the demand of computational cost
and data availability. Population balance modeling (PBM), with a comparatively lower computational
cost, has been extensively used to model blending and granulation processes [64,151], and a
PBM–DEM hybrid model has also been used to improve model accuracy while maintaining reasonable
computational costs [152]. Other semi-empirical hybrid models, such as the ones that incorporate
material properties into process models [153], and to investigate the effect of material properties in
residence time distribution (RTD) and process parameters [146,154–157], have also been developed for
different powder processing unit operations [52,158]. These models, when incorporated with a full DT
framework, will facilitate the overall product and process design and development, accelerating the
drug-to-market timeline.

Table 2 provides a feature-based comparison of various models used in pharmaceutical manufacturing
applications. The characterization of computational complexity is based on the typical computational

373



Processes 2020, 8, 1088

cost for a single unit operation. The feature of real-time capability emphasizes the ability for a model to
produce simulation or prediction results in real-time and optimally, in-sync with the equipment. This
feature highly depends on computational complexity. Even though mathematical and semi-empirical
modeling approaches have this capability, they are mostly trained and implemented offline. Real-time
applications are rarely seen in the context of pharmaceutical manufacturing. For adaptive modeling
capability, the modeling approaches that are able to incorporate data are advantageous as new data can be
used to update the models. The online usage of these models in adaptive mode can hardly be found.

Table 2. Feature-based comparison of various models.

Features

Discrete-Element
Method (DEM)/
Computational
Fluid Dynamics

(CFD)/
Finite-Element
Method (FEM)

Population
Balance

Modeling
(PBM)

Mechanistic/
Mathematical

Semi-Empirical/
Hybrid

Data-Driven
Advanced

Process
Control

Computational
complexity High Medium Medium Low Low Low

Real-time
capability No No Yes Yes Yes Yes

Adaptive
modeling No No No Yes Yes Yes

In addition to developing models for single pharmaceutical unit operations, a flowsheet model
integrating the entire manufacturing process can be used to predict the process dynamics affected by
material properties and operating conditions of different unit operations. More importantly, systematic
process analysis of the flowsheet model, such as sensitivity analysis, design space identification,
and optimization, can all be performed with the flowsheet model. This provides insight into
the characteristics and bottlenecks of the process and thus facilitates the development of control
strategies [125]. Throughout the years of development, many researchers and pharmaceutical
companies have developed mature approaches in conducting these analyses offline during the process
design phase [52,56,125,159,160]. Flowsheet models are needed for the development of DTs. However,
flowsheet models are stand-alone, so they cannot automatically update adapting to the physical plant.
In current research, there is limited communication between the flowsheet model and the plant, which
is a challenge in the development of a DT.

3.3. Data Integration

The implementation of IoT devices in pharmaceutical manufacturing lines leads to the acquisition
of vast amounts of data. This collection of process data and CQAs needs to be transmitted to the
virtual component in real-time and in an efficient manner. In addition to these, several pharmaceutical
process models also require material properties for accurate prediction. Thus, a central database
location is required for access to all datasets for the virtual component [46]. All data transfer protocols
discussed in Section 2.3 are applicable here as well. In addition to these, the applications and databases
should also be compliant with 21 CFR Part 11 data integrity requirements in accordance with US FDA’s
guidance [161]. The database not only serves as a warehouse for real product data but can also be
used to store results from simulations performed in the virtual component and optimized process
parameters. It would also serve the purpose of relaying back these optimized process parameters to
the real product.

Several studies have attempted to achieve an integrated data framework in downstream
pharmaceutical manufacturing [46,84,132,162–165]. Some of these studies were focused on implementing
a control system for the direct compression line [132,157,165]. Cao et al. [46] presented an ISA-88 compliant
manufacturing execution system (MES) where the batch data were stored on a cloud database as well
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as on a local data historian. The communications between the equipment and the control platform
were performed in a similar manner for all the studies. The process control system (PCS) created a
database based on the input recipe, and the database was replicated directly into the local data historian.
The communication between the historian and PCS can be achieved using TCP/IP and OPC since each
software is hosted on different computer systems on the same network. The historian database can in
turn be duplicated onto the cloud using network protocols such as MQTT, HTTPS, etc. Some authors
have also presented ontologies for efficient data flow for laboratory experiments performed during
pharmaceutical manufacturing [166–168]. Cao et al. [46] also addressed the collection of laboratory data
in an ISA-88 applicable recipe-based electronic laboratory notebook—many of the presented studies
focused primarily on integrating one component of a completely integrated data management system.
Figure 2 illustrates a sample data integration framework, where data collected from the manufacturing
plant as well as laboratory experiments are uploaded to a cloud database using the mentioned protocols.
The data can then be used in the virtual component for simulations, and corrective actions can be sent
back to the control platform.

 
Figure 2. Framework for dataflow in a continuous direct compaction tablet line. The text over the
arrow indicates options for data transfer protocols.

3.4. Challenges and Opportunities

Integrating all building blocks mentioned in Sections 3.1–3.3, the authors are visioning a fully
integrated, model-centric DT framework for pharmaceutical manufacturing, as shown in Figure 3.
The physical plant continuously sends process data to the virtual end, establishing a data inflow
to achieve continuous process monitoring and data storage. Once the real-time data are received,
process visualization and evaluation can be performed in real-time using visualization tools and
process models. Automatic control based on evaluation results can then be executed to modify process
operations if it is needed. The overall data and information flow become a continuous, real-time,
integrated loop. Models can be updated based on plant measurements and changes by implementing
hybrid or adaptive modeling techniques, and real-time model evaluation results that support the
identification of critical process parameter boundaries, process optimizations, and material/process
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characterization can guide the operational updates of the plant. Our review has showcased that the
pharmaceutical industry is on the move towards adopting a full DT. Currently, continuous monitoring
of processes, storage of operation data, process visualization, and model-predictive control have been
implemented in pharmaceutical applications. Building blocks are in place for all three components,
but there still exist some key challenges and gaps.

Figure 3. Fully integrated DT framework for continuous pharmaceutical manufacturing.

In terms of process monitoring and the use of PAT, though the use of spectroscopy to estimate
product compositions has become a routine, the accuracy of measurements in low-dose drug products,
the consideration and handling of outside interferences, and the maintenance of calibration models
(i.e., the robustness of calibration) are all common problems. For low-dose drug measurements, though
there are new tools such as NIRS and in-line UV spectroscopy, the accuracy can be improved by
increasing sampling frequency and spectra analysis. The outside interference issue may be resolved
by implementing various iterative optimization technologies, as recent studies have demonstrated
the capability of such an approach [169,170]. With regard to the calibration model maintenance,
different offline, adaptive methodologies have been well presented by Kadlec et al. [171], but the online,
continuous update with streaming data may be an option moving forward.

At the virtual end, recent research and technology development have shaped the general framework
and applications. Libraries of models and system analysis tools exist to develop a fully connected
virtual model. However, as mentioned in Section 3.2, the computational cost for many complex and
integrated models is high, requiring the use of cloud and/or high-performance computing. The high
computational requirement also hinders the use of models in real-time, which is a key component of the
DT framework [4]. To resolve this issue, efficient computational algorithms and reduced order modeling
approaches need to be implemented, as well as the efficient distribution of computational resources.
Another relevant issue is that most models developed for the pharmaceutical industry are static,
meaning that they only reflect the system at the time that the models are developed. The models do
not update themselves as new data become available. Model maintenance is, therefore, required [172],
and the goal is that this can be performed automatically by the virtual component [171,173,174].
These model maintenance problems can also be viewed as issues caused by a number of drifts (i.e.,
concept drift, model drift, data drift, sensor drift). Methodologies in handling drifts have been
extensively studied in many electrical and computer engineering papers [175–178], but case studies in
pharmaceutical manufacturing have not yet been reported.
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One of the most prominent issues includes the information communication between the two
components. Table 3 illustrates a comparison between previous data integration frameworks that have
been developed for pharmaceutical manufacturing. The limitations of each of these studies highlight
the inability of current software tools and solutions to build a complete DT. Though the integration
capability has been improving, it is noted that most of the current applications in the pharmaceutical
industry only transfer data from the physical plant to the virtual component. The reverse is rarely seen.
To have a fully integrated and automated DT, the information flow from the virtual component to the
physical plant also needs to be established. The virtual plant should be able to change system settings
and control the physical plant to help achieve an optimized process within the design space.

Table 3. A comparison of data integration studies presented for pharmaceutical manufacturing.

Reference Integration Achieved Tools Used Limitation

Hailemariam et al. 2010
[166,167]

Presented a data collection
ontology to for laboratory data

Extensive Markup
Language (XML),

Resource Description
Framework (RDF),

A limited number of
software and processes

were connected to
the ontology

Singh et al. 2014
[132,165]

Physical plant level up to
control platform to implement

model predictive control
(MPC) using sensor data

MATLAB, Process Pulse,
DeltaV, SynTQ

Data integration was
only achieved till the

control platform

Cao et al. 2018 [46]

Presented a cloud-based data
collection strategy for
collecting data from a

continuous pharmaceutical
manufacturing pilot plant as
well as collecting data from

analytical equipment

XML, AWS,
DeltaV, OSI-PI

A complete integration
was presented for data
collection, but it lacked
its integration with any

software for live
data prediction

Barenji et al. 2019 [29]

Presented a cyber-physical
framework for Process

Analytical Technology (PAT)
tools for pharmaceutical

manufacturing

N/A

Data integration was
only performed for PAT

tools without any
integration of analytics

In addition, integrating data inside the physical manufacturing plant faces issues with homogeneity
of the data format used by manufacturers [116]. A full manufacturing cycle requires the collection
of online and offline data from different departments and software. Though an increasing number
of companies are adopting standard data formats and transfer protocols, the coordination among
all different data, software, and platforms is still a challenge. Currently, this coordination is more
of a business and engineering decision within the companies using these systems. Poor integration
and coordination often lead to the burden of using and maintaining multiple platforms and software.
Because of this, many companies now prefer to purchase equipment and systems from a sole vendor,
which is both a challenge and an opportunity for equipment and system providers.

The use of cloud databases and cloud-based data management systems, data availability, stability
of service, storage volume, and information security are all critical issues to be addressed [118]. As data
are stored on the cloud, these data should be available when needed, which demands a high stability
service and a rigorous business continuation plan. Many cloud platforms are using distributed
technologies and cloud backups to resolve this issue, but the validity and reliability of the solutions
need to be carefully studied before implementing them [179]. Moreover, with the implementation
of IoT devices and various types of sensors, the volume of data collected from the manufacturing
cycle can be extremely large. Even though many cloud platforms claim that they can coordinate the
demanded storage capacity, it would result in an increasing burden to the company if the storage
cost is high. With regard to information security, the issue is not new to the field of cloud storage,
but it is particularly relevant to the pharmaceutical industry since the majority of the information is
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highly confidential, and cases have shown that a vulnerable cyber system in pharmaceutical companies
can cost millions or even billions of dollars. This challenge gives rise to opportunities in research
and employment of cyber-physical security systems to ensure the safety and confidentiality of the
information being transferred. This field has been a hot topic, especially in electrical and computer
engineering disciplines. Methodologies used in securing smart grids, statistical-based authentication
systems, physical and virtual cyber barriers, etc. can be implemented in pharmaceutical manufacturing
to develop a secure DT.

Finally, regulatory perspective is an important consideration in developing and applying DT in
pharmaceutical manufacturing. The US FDA has developed modeling capability and has granted
funding to academic institutions to explore the appropriate application of process models and DTs
in the field. Various guidelines, reports, and presentations have all demonstrated that the regulatory
experience and exposure to the DT concept is currently evolving [27,180]. Though DT development is
not required for regulatory approval, its components can definitely offer pharmaceutical companies
and regulatory bodies more insight into the process and product.

4. Digital Twin in Biopharmaceutical Manufacturing

Biopharmaceutical manufacturing focuses on the production of large molecule-based products
in heterogeneous mixtures, which can be used to treat cancer, inflammatory, and microbiological
diseases [181,182]. To fulfill the FDA regulations and obtain safe products, biopharmaceutical operations
should be strictly controlled and operate under a sterilized process environment.

In recent years, there is an increasing demand for biologic-based drugs that drives the need for
manufacturing efficiency and effectiveness [183]. Thus, many companies are transitioning from batch
to continuous operation mode and employing smart manufacturing systems [182]. DT integrates the
physical plant, data collection, data analysis, and system control [4], which can assist biopharmaceutical
manufacturing in product development, process prediction, decision making, and risk analysis,
as shown in Figure 4. Monoclonal Antibody production is selected as an example to represent the
physical plant, which includes cell inoculation, seed cultivation, production bioreactor, recovery,
primary capture, virus inactivation, polishing, and final formulation. These operations produce and
purify protein products. Quality (majorly protein structure and composition) and impurities need to
be monitored and transported to a virtual plant for analysis and virtual plant updates. Virtual plant
includes plant simulation, analysis, and optimization, which guide the physical plant diagnosis and
update with the help of the process control system. Integrated mAb production flowsheet modeling,
bioreactor analysis and design space and biomass optimization are selected as examples shown in the
three sections in the figure. However, the capabilities of virtual plant are not limited to the examples
list above. To understand the progress of DT development in biopharmaceutical manufacturing, this
section reviews the process monitoring, modeling and data integration (virtual plant, physical plant
communication) in the existed industry and analyzed possibilities and gaps to achieve integrated
biopharma-DT manufacturing.
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Figure 4. Biopharma process, benefits, and DT connections.

4.1. PAT Methods

Biological products are highly sensitive to cell-line and operating conditions, while the fractions
and structures of the product molecules are closely related to drug efficacy [184]. Thus, having a
real-time process diagnostic and control system is essential to maintain consistent product quality.
However, process contamination needs to be strictly controlled in the biopharmaceutical manufacturing;
thus, the monitoring system should not be affected by fouling nor interfere with media to maintain
monitoring accuracy, sensitivity, stability, and reproducibility [185]. In general, among different unit
operations, process parameters and quality attributes need to be captured.

Biechele et al. [185] presented a review of sensing applied in bioprocess monitoring. In general,
process monitoring includes physical, chemical, and biological variables. In the gas phase, the commonly
used sensing system consists of semiconducting, electrochemical, and paramagnetic sensors, which
can be applied to oxygen and carbon dioxide measurements [185,186]. In the liquid phase, dissolved
oxygen, carbon dioxide, and pH values have been monitored by an in-line electrochemical sensor.
However, media composition, protein production, and qualities such as glycan fractions are mostly
measured by online or at-line HPLC or GC/MS [186,187]. The specific product quality monitoring
methods are reviewed by Guerra et al. [188] and Pais et al. [189].

Recently, spectroscopy methods have been developed for accurate and real-time monitoring
for both upstream and downstream operations. The industrial spectroscopy applications mainly
focus on cell growth monitoring and culture fluid components quantifications [190]. UV/Vis and
multiwavelength UV spectroscopy have been used for in-line real-time protein quantification [190].
NIR has been used for off-line raw material and final product testing [190]. Raman spectroscopy has
been used for viable cell density, metabolites, and antibody concentration measurements [191,192].
In addition, spectroscopy methods can also be used for process CQA monitoring, such as host cell
protein and protein post-translational modifications [187,193]. Research shows that in-line Raman
spectroscopy and Mid-IR have capabilities to monitor protein concentration, aggregation, host cell
proteins (HCPs), and charge variants [194,195]. The spectroscopy methods are usually supported with
chemometrics, which require data pretreatments such as background correction, spectral smoothing,
and multivariant analysis for quantitative and qualitative analysis of the attributes. Many different
applications of spectroscopic sensing are reviewed in the literature [187,188,190,193].
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4.2. Process Modeling

The application of DT in biopharmaceutical manufacturing requires a complete virtual description
of physical plant within a simulation platform [4]. This means that the simulation should capture the
important process dynamics in each unit operation within an integrated model. Previous reviews have
focused on the process modeling methods for both upstream and downstream operations [183,196–200].

For upstream bioreactor, extracellular fluid dynamics [201–203], system heterogeneities,
and intracellular biochemical pathways [204–215] can be captured. Process modeling supports early-stage
cell-line development, obtains optimal media formulations, and enables prediction of the overall bioreactor
performance, including cell activities, metabolites’ concentrations, productivity, and product quality under
different process parameters [216,217]. The influence from various parameters such as temperature, pH,
dissolved oxygen, feeding strategies, and amino acid concentrations can be captured and further used to
optimize process operations [218–222].

For downstream operation, modeling strategies have focused on selecting design parameters,
adjusting operating conditions, and buffer usage to achieve high protein productivity and purities
efficiently. The different operating conditions include (1) flowrate, buffer pH, or salt concentration
effects for chromatography operation [223–226]; (2) residence time, buffer concentration, and pH used
for virus inactivation; (3) feed protein concentration, flux, retentate pressure operated for filtration [227].
Thus, the product concentration and various types of impurities can be predicted for each unit operation.
The detailed modeling methods have been reviewed in the literature [228].

In recent years, biopharmaceutical companies are shifting from batch to continuous operations.
It remains an unanswered question if it is feasible to start up a new, fully continuous process plant
or replace specific unit operations with continuous units. Integrated process modeling provides a
virtual platform to test various operating strategies such as batch, continuous, and hybrid operating
modes [229]. These different operating modes can be compared based on life cycle analysis and
economic analysis for different target products under various operation scales [229–233].

For flowsheet modeling, there are two approaches available in the literature, which include
mechanistic and data-driven models. Due to the high computational cost, mechanistic modeling
mostly focuses on the integration of a limited number of units, such as the combination of multiple
chromatography operations [234]. Data-driven/empirical models are generally used to integrate all
the unit operations in a computationally efficient way. Mechanistic models for a single unit can be
integrated with other units that are built by the data-driven model to optimize a specific unit in the
integrated process [235]. Mass flow and RTD models [236] can be included in the model to examine
different scenarios of adding and replacing new unit operations and adjusting process parameters.
Coupling with the control system, flowsheet modeling will be able to achieve real-time decision making
and optimize the overall process operation automatically [237].

The data-driven models can be further integrated with Monte Carlo analysis or linear/nonlinear
programming for risk assessment and process scheduling. Zahel et al. [238] applied Monte Carlo
simulation in the end-to-end data-driven model, which can be used to estimated process capabilities
and provide risk-based decision making following a change in the manufacturing operations.

Table 4 shows examples of capabilities and methods for process modeling, that can be potentially
used in DT virtual plant model building. However, it needs to note that although process modeling
has capabilities to capture all the above operating conditions and critical quality attributes, none of the
modeling work incorporates all the process information within a single model. In recent years, hybrid
models (for example, ANN +mechanistic model) have become more prevalent in both upstream and
downstream model building because they improve the computational speed as well as the broad
applications and model robustness.
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Table 4. Capabilities and methods for process modeling in biopharmaceutical manufacturing. Note that
many studies have used these methods, and the studies cannot be listed one by one. The papers
selected in the table are used to represent the capabilities of the specific methods.

Categories Methods Platforms Comments

Upstream Process

Bioreactor fluid
dynamics, system

heterogeneity

CFD simulation [201]
CFD + PBM simulation [239]
CFD + kinetics model [202]

Ansys Fluent, COMSOL
Multiphysics

Support to understand operations
such as agitation, aeration,

nutrients feeding.
Guide process scale-up.

Computationally expensive.
Can reduce the computational
time by using a compartment
model, hard to be validated.

Cell growth, nutrients,
and metabolism.

Product quality (protein
glycosylation)

Kinetic model [204,240,241]
MATLAB, gPROMS,

Visual Basic for
Applications

Capture and predict the dynamic
profile of the cell culture.
Correlate critical process

parameters (CPPs) and critical
quality attributes (CQAs).

Require a large amount of data for
parameter estimations.

Stoichiometric methods [242] MATLAB, OptFlux etc.

Deal with a large amount of
mechanistic reaction,

genome-scale simulation. Need to
integrate with the kinetic model to

capture the dynamic profiles

Multivariate tools [243] MATLAB

Require a large amount of data.
Represent input–output

correlations. Do not capture the
mechanistic correlations.

Media formulation Multivariate analysis
MFA [211,222] MATLAB

Identify nutrient correlations,
improve productivity and

cell viability

Product impurities Regression model and
Multivariate analysis [244] MATLAB

Capture predict titer, aggregation,
low molecular weight

components, and glycan groups

Downstream Process

Bind-elute/flow-through
chromatography

Mechanistic: Plate model,
mass balance model, general

rate model with their
simplifications models

[245,246]

MATLAB, CADET,
ChromX

Capture moving and stationary
phases, obtain breakthrough

curves, gradient elution curves.
Predict the product concentration

and impurities (charge variant,
aggregates, host cell proteins)Transport dispersive

model—ANN model [225] MATLAB

Filtration/ultrafiltration

Mechanistic: Film theory,
Osmotic Pressure Model,

boundary layer, mass
transfer coefficient) [227]

Aspen Custom Modeler Capture volumetric flow, flux,
and pressure across the filtration

membrane. Can be used for
model predictive control.Hybrid model

(ANN-mechanistic film
theory) [247]

MATLAB

Downstream integration
(precipitation)

Empirical model
(quantitative

structure-activity
relationship) +Mechanistic

model [248]

NA

Physico-chemical process model
supported by design of

experiment (DoE). Capture CPP
and CQA

Downstream integration
and optimization

Mechanistic
model—Artificial Neural
Network-Optimization

algorithm [249]

MATLAB

Optimize overall process yield
and solvent use by adjusting
operation parameters such as
duration. However, only high

molecular weight contamination
was considered.
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Table 4. Cont.

Categories Methods Platforms Comments

Integrated Process

Residence time
distribution

Probability distribution
function for each unit

operation [236]
Python

Correlate input material operating
conditions, design parameters

with outlet profile.
Easy to update.

Activity tracking and
decision making

Discrete Event
Simulation [250] Extend Sim, Simul8

Discrete/dynamic system,
track activity, scheduling,
and resource utilization

Material tracking and
decision making

Mechanistic/Empirical
model [229,251]

SuperPro Designer,
Biosolve

Track material balance and
optimize cost-effectiveness.

Process debottlenecking,
capacity planning

Process risk assessment
Implement process model

with Monte Carlo
analysis [238]

MATLAB

Evaluate parameter sensitivity,
impurity purification, and product

quality. Hard to apply to
computationally expensive model

Overall process
optimization

Integrate flowsheet model
with optimization

solvers [252]

SuperPro
Designer-VB-Matlab

Optimize environment impact and
cost-effectiveness by adjusting

4 operating parameters

4.3. Data Integration

Data obtained in the biopharmaceutical monitoring system are usually heterogeneous in data
types and time scales. They can be collected from different sensors, production lines (laboratory or
manufacturing), and at different time intervals. With the development of real-time PAT sensors, a large
amount of data is obtained during biopharmaceutical manufacturing. Thus, data preprocessing
is essential to handle missing data, perform data visualization, and reduce dimension [253].
Casola et al. [254] presented data mining-based algorithms to stem, classify, filter, and cluster
historical real-time data in batch biopharmaceutical manufacturing. Lee et al. [255] applied data
fusion to combine multiple spectroscopic techniques and predict the composition of raw materials.
These preprocessing algorithms remove noise from the dataset and allow the data to be used in a
virtual component directly.

In DTs, virtual components and physical components should communicate frequently. Thus,
the virtual platforms need to have the flexibility to adjust their model-structure for different products and
operating conditions. Herold and King [256] presented an algorithm that used biological phenomena
to identify fed-batch bioreactor process model structure automatically. Luna and Martinez [257] used
experimental data to train the imperfect mathematical model and corrected model prediction errors.
Although there are no such applications for the integrated process, these works show the possibilities
to achieve physical and virtual component communication.

In biopharmaceutical manufacturing, the integrated database can guide process-wide automatic
monitoring and control [258]. Fahey et al. applied six sigma and CRISP-DM methods and integrated
data collection, data mining, and model predictions for upstream bioreactor operations. Although the
process optimization and control have not been considered in this work, it still shows the capabilities
to handle large amounts of data for predictive process modeling [259]. Feidl et al. [258] used a
supervisory control and data acquisition (SCADA) system to collect and store data from different unit
operations at each sample time and developed a monitoring and control system in MATLAB. The work
shows the integration of supervisory control with a data acquisition system in a fully end-to-end
biopharmaceutical plant. However, process modeling has not been considered during the process
operations, which cannot support process prediction and analysis.
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4.4. Challenges and Opportunities

In terms of process monitoring in the physical plant, the application of real-time CQA monitoring
methods has not been adapted to industrial applications. The use of NIR or Raman spectroscopy
shows potential in real-time multicomponent measurements, although most applications have not yet
been applied to industrial practice. To obtain accurate predicting/measurement results, raw material
calibration and chemometric methods need to be applied, which increases the complexity of the
application of spectroscopy. In addition, the data obtained from biopharmaceutical manufacturing are
high dimensional and heterogeneous, which require advanced data integration and synchronization.
An automated data aggregation, mining, storage, and visualization system is required to achieve DT
automation. The data storage system should have large enough capability, easy accessibility, and high
security as described in Section 3.4 to ensure manufacturing data security, patient data privacy, and the
communication between the physical and virtual plant successfully.

To build a simulation of the physical plant, although different modeling methods have been
developed for both upstream and downstream unit operations, there is no robust model that captures
CPPs and CQAs for all the unit operations in the integrated process. As listed in Table 4, upstream CFD,
stoichiometric and kinetic models can achieve the bioreactor modeling on different scales (from genome
scale to manufacturing scales); however, not all these methods can be implemented within a DT
framework because of the high computational cost. Similarly, downstream processes composed of
different unit operations that integrate and optimize all the mechanistic models altogether are not
realistic. Thus, these can explain the reason why the current integrated process models focus on
mass balance and activity plans based on empirical models or simulators. To deal with this problem,
one possible way is to apply pre-analysis to the system to reduce the dimension and parameters by
evaluating the CPPs and CQAs to ensure productivity and efficacy. Based on the analysis, the system
will select models and use the limited number of parameters to analyze or optimize the process. In this
case, all different modeling methods need to be built on the same platform or have good model–model
communications. An alternative way is to apply hybrid models to reduce the computational burden in
the integrated process. In addition, to capture the major unit operations, the auxiliary equipment such
as buffer preparation, Cleaning-In-Place (CIP), and Sterilization-In-Place (SIP) also need to be integrated
into the process modeling. These operations do affect decision-making, including manufacturing
scheduling and cost analysis. However, there is no such model that captures all the auxiliary equipment.
Moreover, in the risk analysis in biopharmaceutical manufacturing, process contamination will directly
cause batch failure. Lot to lot variations also exist in the bioreactor culture and purification process.
Developing a model-based control system that can diagnose the contamination and process variabilities
at an early stage is essential to improve the process efficiency. It is known that pharmaceutical
or biopharmaceutical industries follow more stringent regulatory pathways; thus, the progress of
accepting new technologies usually takes a longer time than other industries. It must be noticed that
current technologies such as AI DTs do not conform to the QbD regulatory guidelines. The good news
is that regulatory agencies are also seeking the adoption of innovative technologies. If DT can be
developed for process operations and control at the same time, this method might be promising to be
accepted by regulatory [260]. However, the DT approach is closely related to real-time optimization
and operation supports, which are based on already built manufacturing platforms. In this situation,
it might be hard to obtain regulatory approval [235].

The integration of virtual plant and physical plant in biopharmaceutical manufacturing is still
in its infancy. It is promising to show that the application of data–model–control integration can be
achieved for a single unit operation. Additionally, a data acquisition–control system can be achieved
for an integrated process. However, to accomplish the biopharmaceutical DT, the development of
real-time data acquisition, a dedicated data transferring system, an effective control and execution
technique, robust simulation methods, anomaly detection, prediction tools, and easy access to secure
the cloud server platform are still needed.
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5. Conclusions

DTs are a crucial development of the close integration of manufacturing information and physical
resources that raise much attention across industries. The critical parts of a fully developed DT include
the physical and virtual components, and the interlinked data communication channels. Following the
development of IoT technologies, there are many applications of DT in various industries, but the
progress is lagging for pharmaceutical and biopharmaceutical manufacturing. This review paper
summarizes the current state of DT in the two application scenarios, providing insights to stakeholders
and highlighting possible challenges and solutions of implementing a fully integrated DT.

In pharmaceutical manufacturing, building blocks of a DT, including PAT methods, data
management systems, unit operations, and flowsheet models, system analyses methods, and integration
approaches have all been developed in the last few years, but gaps in PAT accuracy, real-time model
computation, model maintenance capabilities, real-time data communication, as well as concerns in
data security and confidentiality, are preventing the full integration of all the components. To solve these
challenges, several insights are provided. The development of new tools such as NIRS and in-line UV
spectroscopy, iterative optimization technologies, and different offline adaptive methodologies can help
to resolve the existing issues in PAT methods. In order to reduce simulation time to achieve real-time
computation, efficient algorithms, and reduced order modeling approaches should be further studied
for process models. In terms of model maintenance, adaptive modeling methods with online streaming
data are to be investigated further. To have a fully integrated and automated DT, the information
flow from the virtual component to the physical plant also needs to be established. The virtual plant
should be able to change system settings and control the physical plant to help to achieve an optimized
process within the design space. Ideally, all these components should be placed under appropriate
physical and virtual security protocols.

In biopharmaceutical manufacturing, similar constituting components of DTs have been discussed,
as well as the implementation challenges in each block. In terms of process monitoring, the development
of NIR or Raman spectroscopy, material calibration, and chemometric methods can help to obtain an
accurate predicting/measurement result. Advanced data integration and synchronization technology
should be in place. For process simulation, there is no robust model that captures CPPs and CQAs for all
the unit operations in the integrated process due to the computational complexity. Pre-analysis to screen
the CPPs and CQAs is a promising approach to reduce the computational burden. Process models to
capture the auxiliary equipment and process contamination need to be further investigated. To achieve
a fully integrated DT, real-time data acquisition methods, data transferring systems, effective control
and execution techniques, robust simulation methods, and anomaly detection are still in need, with
other supporting functions.

It is noted that given the rapid development and publication rate in this area, and that this paper is
merely a narrative literature review, the authors are not able to list and review all studies in these areas
in detail. The papers selected and problems described in the manuscript are only a nonholistic subset
used to represent the capabilities and drawbacks of a method or technology. Since the manuscript
is organized using a conceptual and topical frame, the authors recommend interested readers to
go through cited references to explore additional details. In addition to the summarized research
opportunities, further research directions can include the development of a demonstrative case study
of DT in pharmaceutical and biopharmaceutical manufacturing and a systematic review of the field.
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Abstract: The rise of personalised and highly complex drug product profiles necessitates significant
advancements in pharmaceutical manufacturing and distribution. Efforts to develop more agile,
responsive, and reproducible manufacturing processes are being combined with the application of
digital tools for seamless communication between process units, plants, and distribution nodes. In
this paper, we discuss how novel therapeutics of high-specificity and sensitive nature are reshaping
well-established paradigms in the pharmaceutical industry. We present an overview of recent research
directions in pharmaceutical manufacturing and supply chain design and operations. We discuss
topical challenges and opportunities related to small molecules and biologics, dividing the latter into
patient- and non-specific. Lastly, we present the role of process systems engineering in generating
decision-making tools to assist manufacturing and distribution strategies in the pharmaceutical
sector and ultimately embrace the benefits of digitalised operations.

Keywords: pharmaceutical manufacturing; process systems engineering; Industry 4.0; digitalisation

1. Introduction

Complexity in pharmaceutical manufacturing and distribution is highly dependent
on the product nature. Therapeutic drugs can be classified into two broad categories: (a)
small molecules, (b) biologics. The former refers to chemically synthesised drugs, while
the latter refers to products that involve components extracted from or produced by a
living organism [1]. Biologics include monoclonal antibodies (mAbs), vaccines, blood
products, and advanced therapy medicinal products (ATMPs). Figure 1 illustrates the drug
categories considered here. Each of these products is characterised by key specifications
and/or formulation that dominate decisions related to its manufacturing and supply chain.
Small molecules are pharmaceuticals based on chemical components and characterised by
large scale manufacturing. On the other hand, manufacturing of biologics involves cell-
based production systems and complex downstream separation trains, largely performed
in batch/semi-batch mode [2,3]. This often presents challenges in the optimisation and
scale up of unit operations.

Enhanced clinical disease understanding has led the pharmaceutical industry to move
from one-size-fits-all approaches and develop targeted therapeutics such as ATMPs. Their
production process differs significantly from small molecules or mAbs as it involves a series
of product- and often patient-specific steps [4]. Their patient-specific nature may challenge
scale up and distribution and has led to a shift in the manufacturing and supply chain
status quo, highlighting the need for smaller, more agile, and often regional manufacturing
units that translate into distributed networks closer to the patient. In addition, such
products are coupled with stringent distribution timelines and tight storage constraints
that need to be satisfied. As a result, questions related to optimal number and location
of facilities arise, as well as how can one design a robust investment planning model.
Furthermore, network and task coordination become of primary importance as the supply
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chain becomes more complex. Once the network has been designed, manufacturers need
to ensure that distribution and storage conditions are met and maintained throughout the
product journey, in order to reduce losses due to product degradation that can lead to drug
shortages or reduced quality.

Figure 1. Schematic of simplified pharmaceutical product categories.

In this paper, we discuss how the nature of therapeutics may impact the design
of suitable manufacturing processes and supply chain networks. We have performed
a literature review and we summarise some of the latest initiatives taken to assist the
decision-making process in the pharmaceutical industry. We also discuss how process
systems engineering has been aiding innovation in this space. In the last part of this paper,
we present a perspective on current and future developments in this space.

2. Engineering Challenges and Opportunities in Pharmaceutical Manufacturing and
Supply Chain

Recently, the term Pharma 4.0 has been introduced, referring to the adaptation of
digital strategies and tools of Industry 4.0 principles, and their application to pharma-
ceutical manufacturing and supply chain practices [5,6]. In this context, digital tools and
orchestration platforms are being developed under Industry 4.0/5.0 principles [7]. The
term refers to manufacturing digitalisation and automation of processes, introducing au-
tonomous, computerised systems. It utilises different types of mathematical models (e.g.,
statistical, kinetic) and Internet of Things to facilitate and maintain internal communica-
tion within and across the factories. Application of Industry 4.0/5.0 principles aims to
facilitate: (a) data collection, analysis, and interpretation, (b) man-machine co-operation,
(c) online monitoring and control, and (d) intra- and inter-facility data sharing. In the
last few years, we have seen the emergence of cloud-based applications coming to assist
decision-making in the pharmaceutical industry. Several industrial players have embraced
Pharma 4.0 either through the development of digital platforms to be used by manufactur-
ers (e.g., Siemens) or by integrating digitalisation into their manufacturing processes (e.g.,
ChemeCon GmbH) [8].

2.1. Manufacturing

Pharmaceutical manufacturing is divided in two main parts: firstly, the pharma-
ceutical ingredient or drug (active pharmaceutical ingredient (API)/drug substance) is
being produced, while the second step is focused on making this product suitable for
administration to the patients (drug product). Common process steps usually involve
drug formulation-specific and therefore differ across drug types. Often, small molecule pri-
mary manufacturing involves chemical synthesis and purification steps, while secondary
manufacturing starts with the mixing of the API with excipients, followed by granulation,
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compression, coating, and packaging. On the other hand, biologics involve the production
of either the API or parts of the drug product by a living organism. For example, mAbs
are produced in mammalian cell culture systems using bioreactors, a process referred
to also as upstream (USP) [2]. Following USP, the product undergoes a series of separa-
tion/purification steps, including filtration and chromatography to ensure that impurities
are removed from the final formulation. Different to all other categories, ATMPs, such
as chimeric antigen receptor T (CAR-T) cells, often involve one or more patient-specific
steps [9]. Autologous CAR-T cells are a representative example as their manufacturing is
based on T cells that have been extracted from the patient’s blood stream [10,11].

Pharmaceutical manufacturers are focused on delivering efficacious and safe products
at quantities that meet the global demand. In addition, process and product standardisation
are primary goals to ensure batch-to-batch variability is minimised. In parallel, production
processes need to be economically viable, adding to the complexity of identifying the best
candidate design(s). These are often conflicting objectives (Table 1) that require systematic
procedures for the identification of the most suitable operating units and modes that will
meet product specifications, while yielding a profitable process. In an effort towards
process improvement and modernisation, the pharmaceutical industry has pioneered by
creating new and/or adapting existing innovations. Here, we present some of them and
discuss the challenges that remain open in each space.

Table 1. Summary of the key challenges and opportunities in pharmaceutical manufacturing and distribution. The tick sign
highlights the relevance of the identified issues and solutions to each drug product category.

Decisions Challenges and Issues
Small

Molecules
Conventional

Biologics
Personalised

Products
Solutions and Opportunities

Manufacturing

Product
Portfolio

Identification of product
profile � �

Understand QTTP;
Outsource manufacturing and

development to contractors

Long approval times � � �
Standardisation;

Single-use technology;
Multiproduct facilities

Batch solutions are
well-established � �

Incentivise investment in
continuous manufacturing

Batch-to-batch variability
and shortages �

Continuous manufacturing;
QbD

Identification of optimal
operating units and modes � � �

Process optimisation tools;
QbD

Process Design
and Operations

Measurements availability
and lack of process

understanding
� �

Develop online PAT tools;
Digital twins of process;

QbD

Long lead times for scale up � �
Scale up existing suites;

Scale out through new suites instalment;
Single use equipment

Patient-specific products
and process � Scale out and set up of parallel suitesCapacity

Planning

Uncertainty of long-term
demand � � �

Decision-making tools for
long-term investment strategies;

Multiproduct facilities;
Outsource production to CMOs and CDMOs
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Table 1. Cont.

Decisions Challenges and Issues
Small

Molecules
Conventional

Biologics
Personalised

Products
Solutions and Opportunities

Adaptability to short-term
demand fluctuations � � �

Real time demand forecasts;
Continuous manufacturing for flexible

campaigns;
Single use equipment to reduce

changeover times
Planning and scheduling

decision-making tools

Production
Planning and
Scheduling

Time constraint and
patient specificity �

COI and COC;
Monitor patient schedule;
Planning and scheduling

decision-making tools

Quality assurance tasks
lead times � � �

Continuous manufacturing;
QbD

Quality Control
Unavailability of

measurements � � � Digital twins for real-time monitoring

Distribution

Prevention of shortages � �
Real-time sharing of stock data,

inventory levels and forecasted demand

Monitor CQAs and CPPs � �
Track & Trace tools;

Outsource distribution to
contract logistics providers

Inventory
Planning

Time constraint and patient
specificity �

COI and COC;
Track & Trace tools

Compliance and
coordination of
stakeholders.

� � �
Track & Trace tools;

Data sharingNetwork
Structure Time constraint and

patient specificity �
Decentralised supply chain closer to

the patient

Monitor CQAs and CPPs � �
Track & Trace tools;

Outsource distribution to
contract logistics providers

Counterfeit drugs entering
supply chain � � Track & Trace tools

Transport
Modes and

Connections

Time constraint and patient
specificity � �

Track & Trace tools;
Outsource distribution to

contract logistics providers

2.1.1. Quality by Design

The emergence of biologically derived drugs has underlined the necessity for thorough
system understanding that includes detailed mapping of how process conditions may affect
product quality. Quality by design (QbD) was firstly discussed by Juran [12] in 1992 and
refers to the integration of quality into the process and product. In other words, all
design and operation decisions are taken aiming to meet a predefined product quality.
In the pharmaceutical industry, QbD has been increasingly endorsed by regulators and
adapted by manufacturers [13–16], while in recent years it has become an integral part
of approval submission dossiers. QbD suggests that firstly the quality target product
profile (QTTP) needs to be decided, followed by the identification of the critical quality
attributes (CQAs) [16,17]. CQAs are defined as product properties and/or characteristics
that need to be within certain limits. The process is then designed, aiming to meet the
pre-defined QTTP, while maintaining CQAs within the allowed threshold. This is achieved
by manipulating those process parameters that directly affect CQA performance, known as
critical process parameters (CPPs). QbD offers a systematic procedure for the development
of processes based on thorough system understanding and prior knowledge integrated
to the design and operation. Efforts have been made to integrate mathematical models
with QbD principles to explore CPP-CQA interplay. Such understanding enables the
determination of a set of feasible points within the space of the operating conditions that
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assure that the CQAs are within specifications, known also as “design space” (DS). This has
allowed manufactures to move away from uniquely optimal operating profiles and adopt a
more flexible strategy, whereby the manufacturing process is approved to operate within
the DS and allowing greater flexibility for post-approval improvements within the DS.

Despite the wide application of QbD in mAbs and lately in vaccines, when it comes to
ATMPs, QbD-driven processes remain an open challenge [18]. The often patient-/donor-
specific nature of the starting material renders systematic CQA identification impossible
to perform. In addition, the manufacturing performance of cell-based therapies is highly
dependent on the quality of the extracted cells, leading therefore to a highly variable
CPP-CQA interplay. As ATMP manufacturing matures and more understanding on the
optimal portfolio of conditions is gained, QbD principles can be adapted to incorporate
patient profile and incoming materials as key CPPs and map their impact on the process
and product performance.

2.1.2. Continuous Manufacturing

Process performance has been the driver for many of the latest advances in the phar-
maceutical industry, such as the one of continuous manufacturing (CM). CM offers the
possibility for robust processes that involve smaller equipment size. In addition, by running
longer and producing higher product yields, CM processes can lead to decreased batch-to-
batch variability and therefore minimise the risk of drug shortages due to unmet quality
specifications [19,20]. On the other hand, operating in continuous mode is translated
into a must-have requirement of rapid, online measurements and a high level of process
understanding to allow the operator to ensure that the product will meet specifications.
This is of utmost importance in CM as its plug-and-play profile means that an intermediate
intervention is not possible which translates into a significant financial and shortage risk
if the process deviates from the optimal significantly. CM is one of the most discussed
trends and innovations of the latest years in the pharmaceutical industry, endorsed by
regulators [21]. Promising eco-efficient processes of higher productivity, CM has been
successfully applied in many existing production processes leading to significant improve-
ments [19]. Small molecules have seen applications of CM early on with the initiatives from
Novartis-MIT on continuous crystallisation [22] and the GSK-Pfizer partnership for the
development of continuous processing technology for oral solid dosage (OSD) drugs [23].
Innovation has been demonstrated in the space of biologics as well with Genzyme and
Bayer as leading adapters of perfusion and other continuous manufacturing processes [24],
while Novasep, GE Healthcare, Knauer, and ChromaCon are some of the equipment man-
ufacturers offering small- and pilot-scale continuous chromatography systems. Warikoo
et al. [25] demonstrated one of the first fully continuous pilot-scale bioprocesses for the
production of a mAb and a recombinant human enzyme. They designed and used a system
composed by a 12 L perfusion bioreactor connected to 4-column periodic counter-current
chromatography and they successfully demonstrated the production and purification of
the desired products. Godawat et al. [26] showcased an end-to-end continuous bioprocess
using a perfusion bioreactor connected to an ATF cell retention device. The upstream
mixture was then processed by two 4-column PCC systems. Additionally, Karst et al. [27]
presented a lab-scale continuous mAb production process using a perfusion cell culture, a
surge tank, and a continuous capture process.

Despite the success of CM in small molecules, challenges still exist that prevent biolog-
ics from reaching a fully continuous process at scale. A significant percentage of this slower
adaptation can be attributed to system complexity. Relying on living organisms as pro-
duction systems, biologics are coupled with complex process dynamics that challenge the
identification and maintenance of the optimal operating profile. Although, CM promises
more stable processes and decreased batch-to-batch variability, it requires increased cer-
tainty that the optimal operating conditions will be maintained throughout the process.
This is to ensure that the desired product will meet specifications and reduce financial and
supply risks associated to out-of-spec batches. To enable the design of robust processes that
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are continuously monitored requires suitable analytics to be in place. Despite advances in
the field of continuous online measurements [28–32], process analytical technologies (PATs)
are yet to be further developed in order for uninterrupted CM to be realised. Focusing on
biologics and specifically mAbs, another limiting step that hinders end-to-end continuous
processing is upstream/downstream (USP/DSP) integration. Process intensification via
process integration in mAbs is a challenge, firstly as DSP units are not at the scale to handle
the volumes produces by the USP counterpart. A way to mitigate this would be scaling
up DSP equipment, risking increasing the already high DSP cost (80% of the end-to-end
process).

Aiming to tackle this, initiatives have been made towards the development of smaller
scale separation units, operating in continuous mode, increasing therefore their volume
processing capabilities [26,33,34]. Another alternative could be to scale out the DSP step,
offering also higher operating flexibility. Some of the remaining challenges are currently
being tackled through the development of computer-modelling platforms as discussed later
in the manuscript. Manufacturing challenges increase as products become more specialised.
For example, CAR-T cells (ATMPs) are manufactured using closed-box production platforms
that do not allow for task parallelisation or scale up [35,36]. This translates into integrated
lines of unit operations being occupied for the entire manufacturing (>10 days) duration
of a single therapy before they can become available to receive the next one. As ATMPs
gain momentum, manufacturers will be required to increase their capacity. Given that
volumetric scale up is not possible, other possibilities can be explored, such as scale-out,
referring to multiple suites running in parallel or a completely granular manufacturing
procedure where every step is performed in a separate unit, allowing therefore for sequen-
tial manufacturing with decreased waiting times. The latter model could greatly benefit
from process intensification initiatives as it resembles the well-known model of biologics.

2.2. Supply Chains

Supply chain design decisions, strategies, and operations are highly dependent on the
product that is delivered to the patient. With increasingly complex portfolios and stringent
regulations to deliver an effective and safe therapy to end-users, pharmaceutical supply
chains costs are on the rise. The nature of the product type, from the chemically-derived
small molecules to highly targeted biologics, such as mAbs and ATMPs, entails different
distribution and storage challenges [37]. Table 1 summarises the main challenges faced in
pharmaceutical supply chains and related innovations.

2.2.1. Demand Scales

The pharmaceutical industry is inherently global, and its supply chains comprise a
network of manufacturers (primary and secondary), which include in-house or external
contractors, packaging facilities, regional distribution centres (wholesalers), and final
healthcare providers, such as hospital and pharmacies. Off-the shelf products, prescription
drugs and vaccines can be produced on a large scale, with single manufactured batches
delivering numerous patient non-specific doses, following a one-size-fits-all distribution
approach. This strategy is preserved in the case of emerging specialty drug products as well.
Demands for these products, which are often biologics, including mAbs, can be predicted
to be smaller in scale as they provide treatment of rare and complex chronic diseases,
which only certain patient subgroups present. However, as the complexity of the treatment
increases, it becomes increasingly difficult to synthesise a product that is compatible with
the entire patient cohort. In the case of ATMPs, distribution has been envisioned through
two channels: allogeneic and autologous. Allogeneic therapies are manufactured in larger
batches from unrelated donor tissues [38]. Off-the-shelf production offered by the allogenic
route is presenting several donor-patient matching challenges which have slowed down
the success of these therapies in clinical trials. By contrast, autologous ATMPs have thus
far been more successful clinically [9] and have the potential to reconfigure standard
supply chain structures, as they represent a turning point in the feasibility of personalised
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medicines. Figure 2 illustrates the general supply chain structure for batch-produced drugs
and patient-specific therapeutics. In the instance of CAR-T cell therapies, a sample of cells
is extracted from the patient, shipped, modified, and administered to the patient, with a
minimised cycle time (17–19 days return time for leading commercial products) [39–42].
The supply chain for these therapies is closer to the customer and the need for a 1:1
business model emerges, where the product released by a single batch is patient-specific.
Opportunities of scale up are limited and decentralisation of manufacturing is a promising
approach [43]. Companies, expanding their primary and specialty drugs portfolios to
personalised therapeutics, are expected to deal with a spectrum of decoupled demands
simultaneously, which require extensive coordination of the stakeholders in the supply
chain [44].

Figure 2. Pharmaceutical supply chain for (a) batch-produced drugs and (b) patient-specific thera-
peutics.

2.2.2. New Players

The pharmaceutical ecosystem comprises large R&D multinationals, local companies,
generic manufactures, contract development, and manufacturing organizations (contract
manufacturing organisations, CMOs, and contract and development manufacturing organ-
isations, CDMOs) and biotechnology companies [45]. Large R&D multinationals are the
key players in the marketplace, with presence in branded products and manufacturing
sites across many locations. In recent years, their research focus has shifted to unmet needs
of smaller patient populations, such as prevention and cure of rare diseases [46]. The
increasing complexity of novel targeted therapeutics and lack of in-house manufacturing
expertise of large multinationals in these contexts have determined an increased in mergers
and acquisition (M&A) and outsourcing strategies through CMOs or CDMOs [46]. For
instance, CellforCure was acquired by Novartis, expanding the company’s manufacturing
capabilities in CAR-T cell therapies, Hitachi acquired Aptech to increase manufacturing
capabilities in Europe, Thermo Fisher acquire CMO Brammer Bio for $1.7 bn and GE
Healthcare was acquired by Danaher ($21.4 bn) [43]. CMOs and CDMOs are equivalently
attractive for biotechnology companies, which are often the main innovators in genetically
engineered therapeutics, but lack of manufacturing resources and liquidity for in-house
manufacturing. As the number of stakeholders involved in clinical and commercial supply
chains increases, end-to-end monitoring of CQAs becomes increasingly difficult [47]. Out-
sourcing distribution and handling to specialised contract logistic providers is an appealing
option to assure safe and secure delivery of complex biological drug products; however,
management and coordination between the multiple agents becomes the key challenge.
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2.2.3. Logistics Considerations

Manufacturers indicate on the product label the stability conditions for the product,
which must be maintained throughout the whole supply chain. Small molecule drug
products can typically be stored at 25 ◦C [43]. By contrast, the stability of bioproducts is
highly compromised by temperature excursions and shocks. For instance, blood products,
conventional vaccines (e.g., live-attenuated viruses) and monoclonal antibodies must be
transported and stored under refrigeration conditions of 2–9 ◦C [48]. If cold chain logistics
introduce additional costs in the supply chain, these are further exacerbated when handling
ATMPs. CAR-Ts can be stored and transported either fresh (−80 ◦C) or cryopreserved
(−180 ◦C), depending on the manufacturing practice, noting that they are also highly
sensitive to shear stress and vibrations, because of their cell-based nature [9]. This ensures
stability, maintains viability, and prevents genetic changes. Other genetically engineered
products, such as mRNA vaccines, must be stored and handled under similar conditions
(−70 ◦C) [49]. Monitoring the CQAs in relation to storage and transport environment
conditions and ensuring timely delivery of therapies becomes increasingly crucial as the
product structure and scope increases in complexity. Whether distribution is tackled in-
house or outsourced, transparency of manufacturing and logistics operations facilitates
quality assurance and effectiveness of the entire supply chain [47].

2.2.4. End-to-End Monitoring

CAR-Ts and personalised therapies offer a new perspective on the importance of track
and trace capabilities for supply chain management and real-time monitoring. In these
supply chains, chain of identity (COI) and tracking is crucial in order to ensure return
of the therapy to the right patient by the end of the product cycle [9]. In addition, chain
of custody (COC) principles must be applied with the aim of recording data related to
handling, collection, and performed actions on the sample, thus monitoring the patient-
specific product profile closely. It is worth noting that potential success of off-the-shelf
ATMPs will equally require donor information to be tracked throughout the supply chain
to ensure compatibility and aid effective donor-patient matching. Patients will also need to
be monitored for several years after receipt of therapy; this information should be used
to improve therapy design wherever possible. Initiatives to improve end-to-end visibility
of supply chains are emerging in the fields of conventional non-specific products as well,
such as Merck KGaA’s commitment to utilise data analytics to predict and prevent drug
shortages [50]. Companies are in fact becoming more aware of the improved supply-and-
demand forecasting that traceability offers, including its potential to prevent API stock-outs
and counterfeit drugs from entering the supply chain. As discussed above, drugs, including
targeted biologics and small molecules, can also greatly benefit from real-time monitoring
of CQAs, as the risk of failing to comply with labelled requirements can be reduced.

As highlighted by Papathanasiou [51], cloud-based platforms can facilitate communi-
cation and seamless connection between stakeholders. Maintaining and upgrading data
security will though become a constant requirement for reducing vulnerabilities to the
increasing sophistication of cyber-attacks. Particularly, secure safeguarded systems to
protect data will become central to foster patient trust for data sharing and conduct the
research needed to drive personalised medicine [52]. Alongside cloud-based solutions,
blockchain-based alternatives are being developed in recent years. In a nutshell, blockchain
is part of the broader category of distributed ledger technologies (DLTs) and it is based in
the participation of a network of devices, called nodes, that keep a copy of the database [53].
A distinct advantage of the blockchain is that it does not require a central trusted party to
verify the validity of the data but it relies on a consensus protocol which is publicly avail-
able and agreed upon by all the participants [54]. The information stored in the blockchain
is public, immutable, and tamper-proof, while the security of the sensible data is assured
by the utilization of strong state-of-the-art cryptographic algorithms. By adopting the
blockchain a unified distributed health records database that can be accessed by every
stakeholder along the supply chain, from the raw material providers to the final patient,
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with different levels of access to the information. For instance, information about the QC
and storage conditions of a therapy along the supply chain could be accessed by everyone
at any time by scanning a QR code attached to the therapy, while patient-specific data
would be cryptographically sealed for most of the stakeholders except the patient himself
and the hospital. An extensive review of blockchain solutions in the healthcare sector is
out of the scope of this work and can be found elsewhere [55]. Despite the great potential,
scalability of blockchain application remains an issue and is yet to be demonstrated. An in-
teresting use-case is the recent partnership between NHS England and Hedera Hashgraph,
a company providing blockchain-based solutions, in an attempt to use blockchain for
enabling cold chain monitoring of COVID-19 vaccines for a selected group of facilities [56].
Other examples of blockchain-based tools for real-time monitoring of storage conditions of
sensitive goods and traceability solutions are being developed by Modum.io [57] and is
under investigation in a leading Italian company of the ophthalmic sector [53].

2.2.5. Production Planning and Scheduling

Despite the exciting opportunities brought by digitalisation and advanced monitor-
ing, well-established technologies still present a large margin of improvement in terms
of adaptability of production levels to demand. One of the main bottlenecks of current
manufacturing and distribution networks, for both small molecules and conventional
biologics is the planning and scheduling of production in response to short-term demand
fluctuations [45]. Primary manufacturing sites usually comprise multipurpose batch equip-
ment setups to distribute the capital cost over a spectrum of products. In the instance of
biopharmaceutical manufacturing, such as manufacturing of mAbs, perfusion and fed-
batch modes are preferred modes of operation due to improved fermentation titres [58].
Significant losses in revenues can result from downtime due to changeovers and required
extensive cleaning tasks to prevent contamination. This pushes manufacturers to operate
the site in long product campaigns, which ensure profitable utilisation of the plant through-
out the time horizon [45,59]. Small molecule drug substances exiting the primary sites are
stored up to 1 year and can be further processed in secondary manufacturing sites upon
demand. Simpler tasks of fill and finish and packaging taking place in this secondary stage
allow more flexible scheduling of operations and supply products to distribution centres.

The intermediate storage installations between drug substance and drug product man-
ufacturing can act as a buffer to tackle variations in market dynamics: the customer-facing
end (hospitals and pharmacies) place orders on wholesalers, carry out an assessment on
inventory levels and if necessary, place orders upstream. In the event of an API shortage,
the lack of responsiveness of primary manufacturing long campaigns emerges, which can
then lead to drug product shortages and impact patients in need of the therapy. Stockpiling
has been a profitable option for well-established chemically synthesised drug products;
however, it is not always the best-suited solution for more complex and expensive biologics
with short shelf lives. The high value of these products constrains the size of product inven-
tory held as this might constitute tying up working capital [60]. Off-the-shelf production
has followed the above planning paradigm for years, but patient-specific therapies come
to reshape this approach. Scheduling production becomes patient scheduling, where each
batch contains solely a dose of therapy that is specific to the patient [9]. The business model
changes radically and adaptation to demand dynamics becomes increasingly important as
operations are now constrained by return times between collection of the sample at the
start of the supply chain, manufacturing, product release, and re-infusion.

2.2.6. Capacity and Investment Planning

Investment planning into expansions, establishment, and shutdown of facilities would
have to be carried out under high uncertainty of demand of pipeline products and drugs
under development. In order to avoid financial losses related to poor forecasting and
suboptimal utilisation of facilities, R&D companies are externalising development and
manufacturing of novel entries in their portfolio to contractors. The problem of capacity
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management is outsourced to the CMO, which is able to better balance utilisation by making
products for multiple innovators [43]. Stainless-steel plants are well-established production
facilities for conventional vaccines, mAbs, small molecule products and are suitable for
large scale production. The capital investment for these facilities can extend from $500 M
to $1 bn [61], highlighting the financial losses that can derive from underutilisation of
the facility. The process of setting up entirely new facilities can extend up to 5–10 years,
which once more hinders flexibility and responsiveness to varying therapeutic needs of
the population. It is often the case that capacity within the facility is expanded by either
setting up suites in parallel or scaling up existing ones with larger equipment [62].

Nevertheless, the operational burden of cleaning tasks, contamination concerns, and
the ever-present need of more flexible production as biopharmaceutical products become
more advanced and complex, is pushing many companies to utilise single-use production
technologies. This trend in manufacturing offers multiple advantages in terms of savings
in instalment, which fall in the range of $20–$100 M (2–20% of the capital investment), and
operational costs. Set up times for new facilities are shorter (1.5 years) and the advantage of
parallelising production with suites is preserved, in order to cope with short-term demand
changes. Interestingly, COVID-19 vaccine producers choose to rely on flexible single-
use systems as opposed to traditional commercial-large scale bioreactors and fermenters,
valuing the potential to install manufacturing capacity at a higher speed, which is crucial
during a global health crisis [63]. The advantage of single-use equipment is seen also in
the space of personalised medicines, where cross-contamination risk between products
can cause loss of patient specificity and have detrimental effects on the patient’s health.
Changeover time within each suite is decreased from 1 month to 0.5 days [61] as equipment
components no longer require, cleaning, but are rather disposed, substituted, with an
adaptable capacity to the incoming patient schedule. The environmental drawbacks
of utilising high purity water and heat to clean and sterilise stainless steel equipment
are removed. Disposal routes of single-use technologies is, however, still an issue to
be considered. Used components are typically bio-hazardous, which entails that waste
treatment tasks have to be carried out on-site prior to landfill disposal. Another option is to
send used components to geographically separate waste-to-energy facilities for incineration
and recovery of electricity. Latterly, initiatives, such as the Biopharma Recycling Program,
are investigating recycling strategies to further reduce the environmental footprint of
plastic single-use equipment and exploit the full benefits of flexible manufacturing [64].

3. Assisting Digitalisation in Pharmaceutical Industry via Process Systems
Engineering (PSE)

Process systems engineering (PSE) has been traditionally assisting decision making in
the pharmaceutical industry [46,65–68]. The adoption of digitalisation in pharmaceutical
manufacturing and the supply chain will be key for seamless data exchange across manu-
facturing facilities and supply chain networks, as it will allow connectivity of processes,
products, and people. As highlighted previously in this manuscript, there is a wide range of
opportunities to improve the strategies and operations of the entire pharmaceutical supply
chain in order to meet the evolving therapeutic needs of the population. In this space, the
concept of enterprise-wide optimisation [69,70] is at the core of a coordination between
R&D, supply of materials, manufacturing, and distribution of pharmaceutical products.
The main objectives of an enterprise-wide approach are to maximise profits, responsive-
ness to customer needs, resource utilisation and minimisation of costs, stock levels, and
environmental footprints. This is achieved while accounting for the complex interactions
between the many stakeholders of the supply chain. Instant flow of information and data
sharing can also be achieved via the adoption of transactional IT tools, such as track and
trace tools, cloud-based and blockchain platforms. Such tools can improve communica-
tion and operations across the supply chain, specifically in the evolving pharmaceutical
ecosystem that comprises multiple players. Nevertheless, these digital tools do not provide
comprehensive frameworks to support the decision-making process. Therefore, it is of
paramount importance to develop analytical IT tools to explore, analyse alternatives, and
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predict actions for the design, planning, and operation of each of the components of the
supply chain. The PSE community has largely focused on the development of sophisticated
optimisation and decision-support tools so as to yield optimum performance and ensure
customer satisfaction. Figure 3 presents a summary of key considerations and challenges
currently faced by the pharmaceutical industry, as well as some of the most remarkable
computational and other innovations that can assist the decision making.

Figure 3. Pharmaceutical manufacturing and supply chain ecosystem.

In the pharmaceutical sector, changes introduced to approved processes and/or prod-
ucts need to be registered re-approved by regulators. This poses an additional challenge to
the adaptation of new methods and technologies. Initiatives such as quality by design and
design space identification that allow thorough process and product understanding can
lead to more flexible processes and therefore faster approval procedures. In that respect,
computer-based modelling initiatives and tools demonstrate significant potential as they
offer lower-cost experimentation platforms and the ability to identify the optimal process
operating profiles offline. Such models and platforms, also known as digital twins, find
applications across a variety of activities in pharmaceutical manufacturing. Computer-
based modelling in product development and manufacturing has demonstrated significant
potential, offering low-cost experimentation platforms to assess CQA-CPP interplay un-
der a vast spectrum of conditions [71–73]. In a similar fashion, PSE researchers are also
looking to quantify parameter uncertainty and its impact on product and process perfor-
mance [74,75]. From an operational standpoint, many groups are developing using digital
twins for the design of optimal operating setups, optimisation profiles [76–79], and smart
controllers [80–82] that can operate bypassing measurement unavailability.

In the field of supply chain management, optimisation-based approaches have im-
proved strategies and operations of pharmaceutical and bio-pharmaceutical processes and
distribution in multiple ways. Computational tools have been developed to seek opti-
mal long-term strategic plans, considering the problem supply chain design and capacity
planning, as well mid- and short-term decisions, addressing the problem of production
planning and scheduling [69]. Supply chain design, capacity, and investment optimisation
models focus on the long-term decisions regarding the strategic locations of the plants,
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storage, and sourcing of raw materials, contracts with CMOs and CDMOs and logistics
providers as well as future investments in new capacity over the years [58,62,83–87]. Tools
to optimise production planning and scheduling offer great potential in assisting opera-
tional, day-to-day decision-making. Systematic approaches in production planning yield
estimates of production targets, inventory levels, and material flows across the supply chain
over a horizon of several months [59,60,88]. Scheduling tools, instead, provide detailed
sequencing of tasks and operations, fulfilling orders and meeting the production targets,
relying on a more granular description of the manufacturing and distribution processes
and accounting for resource constraints [89,90].

Integrating the different levels of decision-making across many time scales is an issue
of great interest in research [91,92], alongside coordination between multiple geographi-
cally distributed manufacturing and storage facilities comprising the supply chain. The
size of the optimisation problem becomes challenging to solve by commercially available
solvers and numerous approaches, including rolling horizon, spatial [88], and temporal de-
composition [88,89] schemes have been proposed in literature. Solving the above problems
under uncertainty remains an open challenge [93]. Uncertainty introduced by demand
fluctuations, on-going global competition and pending clinical trial results, challenges the
long-term strategic decision-making. Most of the frameworks proposed in literature use
stochastic programming and scenario-based approaches [85,86,94], often coupled with
decomposition strategies [95] to tackle computationally intractable formulations. Case
studies have mainly focused on manufacturing and distribution of chemically derived
drugs and conventional biologics. Therefore, the novelty of patient-specific products and
ATMPs is a fertile ground for PSE tools to support investment planning exercises and
establish supply chains that can cope with the predicted demand and success of these
products. Similarly, planning and scheduling tools can aid the decision-making and tackle
the operational challenges brought by patient specificity and time constraints of the therapy
cycle [96,97].

4. Conclusions and Outlook

In the latest years, pharmaceutical products have evolved towards disease- and
patient-specific therapeutics, involving meticulous manufacturing steps. In addition, cell-
based therapeutics and vaccines present high sensitivity to environmental and transport
conditions, complicating supply chain logistics. Increased drug specificity and demand
uncertainty are adding a further level of complexity when it comes to the design and oper-
ation of robust manufacturing processes and distribution networks. As discussed in this
paper, the pharmaceutical industry has taken significant steps towards the improvement of
existing and/or the development of novel processes that promise agile, responsive, and
reproducible manufacturing. Similarly, distribution networks in the pharmaceutical sector
are undergoing a paradigm shift, exploring the capabilities of decentralised models.

Such developments are accompanied by digital innovation in the pharmaceutical
industry that comes to enable seamless communication between process units, production
plants, and distribution nodes. As discussed earlier, process systems engineering has
been at the forefront of enabling digitalisation through the development of computer
modelling tools. The latter can assist with real-time monitoring of storage conditions that
are critical for sensitive pharmaceutical products with short shelf-life, thus increasing drug
safety. One of the main challenges hindering fast exploitation of Industry 4.0 principles in
pharmaceutical manufacturing is the change of mindset. Practitioners should embrace the
benefits arising from the realisation of Pharma 4.0 towards replacing paper-based systems
with cloud-based servers. This will allow significantly improved agility and productivity
in the operations of the pharmaceutical sector.
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Abstract: Continuous manufacturing of biologics (biopharmaceuticals) has been an area of
active research and development for many reasons, ranging from the demand for operational
streamlining to the requirement of achieving obvious economic benefits. At the same time,
biopharma strives to develop systems and concepts that can operate at similar scales for clinical
and commercial production—using flexible infrastructures, such as single-use flow paths and
small surge vessels. These developments should simplify technology transfer, reduce footprint and
capital investment, and will allow to react readily to changing market pressures while maintaining
quality attributes. Despite a number of clearly identified benefits compared to traditional batch
processes, continuous bioprocessing is still not widely adopted for commercial manufacturing.
This paper details how industry-specific technological, organizational, economic, and regulatory
barriers that exist in biopharmaceutical manufacturing are hindering the adoption of continuous
production processes. Based on this understanding, the roles of process systems engineering (PSE),
process analytical technologies, and process modeling and simulation are highlighted as key enabling
tools in overcoming these multi-faceted barriers in today’s manufacturing environment. Of course,
we do recognize that there is also a need for a clear set of regulations to guide a transition of biologics
manufacturing towards continuous processing. Furthermore, the role played by the emerging fields
of process integration and automation as well as digitalization is explored, as these are the tools of the
future to facilitate this transition from batch to continuous production. Finally, an outlook focusing
on technology, management, and regulatory aspects is presented to identify key concerted efforts
required to drive the broad adaptation of continuous manufacturing in biopharmaceutical processes.

Keywords: continuous manufacturing; bioprocessing; process systems engineering; single-use
technology

1. Introduction: Where Are We Now

There is a growing interest in continuous biologics manufacturing in the pharmaceutical
sector, encouraged by regulatory entities such as the Food and Drug Administration (FDA) and
the International Council for Harmonization (ICH) [1–4]. Continuous manufacturing (CM) constitutes
the critical aspect of process intensification which endeavors to reduce the time, cost, and complexities
of bioprocess development and manufacturing. Several potential benefits are to be expected from its
implementation, such as sustained and steady-state operation, the promise of more consistent product
quality and high productivity, reduced equipment size, and streamlined process flow, thus lowering
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operating and capital costs [5,6]. An overall increase in sustainability can, in principle, be achieved by
switching to continuous manufacturing, in line with the UN’s Sustainable Development Goals to adopt
better and more sustainable processes. However, despite the immense opportunities of continuous
over batch operation, technical and operational challenges need to be addressed and overcome for
integrated continuous bioprocessing to become a reality. Like any other disruptive “new” technology,
besides the scientific element, there are also business and human aspects involved in decision-making
that need attention. Of course, some changes are already happening, and people are currently working
to develop more of the continuous biomanufacturing technology. However, such development is
generally occurring at a much slower pace than expected. The main question to be answered is then
why adopting continuous biomanufacturing technology is, in general, extremely slow, despite the
obvious potential benefits that can be achieved by its implementation.

This manuscript aims to explore this unknown conundrum behind the slow adoption of continuous
processing in commercial biologics manufacturing despite known business benefits, innovations,
technical support, and regulatory push (Figure 1).

 
Figure 1. Key forces that must be taken into consideration when introducing process technologies to
biologics manufacturing.

1.1. Critical Views on Current Practices

On the one hand, the manufacturing of biologics is the epitome of the contemporary industry
with cutting-edge research and development, resulting in the steady discovery of novel molecules.
On the other hand, there are the manufacturing processes of these biologics, which are, even today,
to a large extent, based on inefficient batch production platforms. Since biotech production started
developing gradually, the first reactors were typically relatively small, inspired, e.g., by the dairy
industry. However, throughout the years, the need for reactor capacity and control has been growing
steadily, which has resulted in bioreactor vessels that are often up to several hundred cubic meters
in capacity. Operating these processes in a batch mode has its advantages. Namely, batch processes
require less precise and robust controls to make the desired product than continuous operation. At the
same time, the key disadvantages are the inherent inefficiencies of batch fermentation processes.
For example, several studies [7,8] have shown that continuous, or for that matter, even semi-continuous,
fermentation processes are more efficient than batch processes due to promoting gains both in
space-time yield and raw material usage.

To this end, both academia and industry have been deliberating the adoption of continuous
biologics manufacturing for over half a century. Challenges with regards to various aspects of
operation and control of the biologics process in a continuous mode were identified in this period.
A significant number of mechanistic insights translated into several technological advancements. On the
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other hand, regulatory agencies have also been evolving in support of continuous manufacturing
from the FDA guidance on process analytical technologies (PATs) in 2004 for the adoption of a
science- and risk-based approach allowing quality by design (QbD) [9] to the recent draft guidance
dedicated to continuous manufacturing [2,10]. Despite explicit knowledge, technological advancement,
and regulatory support, the implementation of continuous bioprocessing is and has been slow [11].
At best, few unit operations/steps in upstream and downstream have been implemented as continuous
processes by a minority of facilities. This, too, is limited to some large-scale biopharmaceutical products,
such as antibodies [12], insulin [13], Factor VIII, and coagulation factors [14], which essentially
require moderate processing conditions in perfusion systems and external alternating tangential flow
(ATF) filtration systems for cell retention [5,15]. Some bio-manufacturers, such as Genzyme, Bayer,
and Amgen, with considerable experience using perfusion and single-use systems for commercial
products manufacture are leaders in continuous bioprocessing implementation. Several others are still
evaluating the commercial feasibility of the technology. Commercial continuous downstream processing,
particularly chromatography operations, still remains rare. Optimistically, only one or a few out of the
multiple chromatographic steps in multi-step downstream processing having been implemented as
continuous operations. It is noteworthy that some processes claim to be “continuous” manufacturing
operations. Upon closer inspection, they are found to be parallelized upstream and downstream unit
operations that give only the “illusion” of being continuous operations. These processes are cyclical
operations with multiple batch units being sequentially scheduled to provide a consistent process flow.
In contrast, continuous bioprocessing is expected to contribute to process intensification by offering an
opportunity to simplify the processes and, thus, replace complex cyclical batch operations.

1.2. Academic Engagements Supporting the Advancement

The first challenges towards adopting continuous manufacturing in biologics were posed in terms
of knowledge gaps—pointing towards long-term stable and sterile cultivation of cells. While continuous
processing is beneficial for unstable products that cannot be left in the culture medium over the entire
cultivation period, it is not suitable for the vectors’ genetic stability and the producer cell lines.
Studies to understand cells’ microenvironment, functioning, and long-term genetic stability within the
cells were performed in great detail [16,17]. Similarly, several technological developments lowered
the risk of contamination during in situ product removal as in continuous bioprocessing [18,19].
Besides resolving the risks during continuous processing, increasing the historically low upstream
drug substance titer in batch biologics manufacturing (<1 g/L) has been an important underlying
driver for the exploration of continuous processing in biologics [20]. A solution came with perfusion
processes that kept cell counts constant while exchanging culture supernatants with fresh media at
regular intervals. However, this solution came with several process systems engineering challenges
such as (i) inhomogeneity in the continuous bioreactor vessel, including nutrient shortages or regions
of cell accumulation; (ii) maintenance of sterility in the long run; (iii) increase in process development
cost and time due to complex continuous culture systems in labs; and (iv) regulatory expectation
towards developing a complex control strategy addressing time invariance in a continuous run.

As mentioned, the presence of heterogeneities in the continuous bioreactor vessel continues
to be one of the main challenges in the manufacturing of biologics. However, not easy to tackle,
new technologies are being developed to investigate and improve this. For example, recently,
computational fluid dynamics (CFD) has been the focus of growing interest in the study of mixing,
mass transfer, and substrate gradients in (bio)reactors [21]. Furthermore, CFD, when coupled
with compartmental modeling, has been shown to be a powerful tool for process design and
optimization [22,23]. Another promising approach for the monitoring of real gradients inside the
bioreactor is, for example, the use of free-floating sensors [24]. Since in long perfusion processes,
membrane fouling and blocking were observed, newer technologies for external cell retention such
as ATF filtration were developed and widely adopted [15]. In an ATF system, a feed stream through
hollow fibers is regularly reversed to wash offmaterial that can clog the pores. Similarly, with respect
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to agility in process development and handling the complexity of continuous equipment, innovative
PAT techniques (Section 3.2) and process control strategies (including process modeling and advanced
process control approaches) (Section 3.3) and robotics and automation (Section 3.2) have been the key
focus in academic research bringing new solutions [25,26]. These innovations are expected to simplify
operation, improve process robustness, and reduce handling efforts significantly.

Furthermore, due to the inherent multi-step nature of the process, the implementation of continuous
operations is complicated in downstream processing. However, downstream processing of biologics
usually represents 50–80% of the manufacturing cost, making commercial batch manufacturing very
inefficient and expensive [26]. Thus, significant research efforts on the development of continuous
downstream processes were made in recent decades to offer improved use of the column capacity
and increased resolution efficiency. A better resin capacity use and column lifetime exploitation
are particularly essential when expensive protein and resins are involved in the protein capture
step of downstream processing. Most of the current studies on continuous downstream processing
have been carried out on monoclonal antibodies (mAbs) for two key reasons: first, mAbs comprise
the most significant segment of biopharmaceutical products under development and getting ready
for commercial manufacturing; second, the use of three chromatography steps—Protein A affinity,
cation-exchange (CEX), and anion-exchange (AEX)—already provides a standardized route for
achieving high purities and high recoveries, but it is in need of a fresh intensification focus.
Therefore, several methods and multi-column systems for continuous liquid chromatography have been
developed in recent years, several of which translated into commercially available solutions, such as
ÄKTA PCC (GE Healthcare), BioSC® (Novasep), BioSMB® (Pall Life Sciences), and Contichrom®

(ChromaCon® AG) [27]. Next to innovation in the established production route, innovative separation
technologies have been proposed using computational modeling and simulation. For example,
Castilho et al. [28] developed Protein A membrane adsorbers and utilized computational fluid
dynamics to design a rotating disk filter.

Besides individual research in academia and industry, several collaborative platforms also aim to
address these challenges. A non-exhaustive list of such collaborative platforms enabling development
and adoption of continuous manufacturing technologies in bioprocessing is given in Table 1. Some of
the key focus points for these groups include accelerating the biopharmaceutical innovation, developing
adaptive process control and advanced sensing for robust quality in biomanufacturing, demonstrating
the commercial feasibility of new technologies, and enabling the biopharmaceutical manufacturing
workforce for new and future manufacturing technologies. Such collaborations are playing an
increasingly important role in pushing the accepted state of the art on technology and its knowledge,
as well as helping in developing a well-educated workforce that can address the challenges related to
the introduction of novel production technology.

Table 1. Some of the collaborative platforms that enable the development and adoption of new
manufacturing technologies such as continuous bioprocessing.

Collaborative Platforms Kind/Lead Purpose

Biomanufacturing consortium
(BioMAN)

Industry–academia collaboration
lead by Massachusetts Institute of
Technology (MIT)

Several stakeholders work together to develop
new knowledge, science, technologies, and
strategies to improve biomanufacturing [29].

BioPhorum consortium Cross-industry collaboration

Connecting most big biopharmaceutical
manufacturers and suppliers collaboratively to
produce technical documents to explore, propose,
and define industry best practices on the topics
mentioned earlier [30].
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Table 1. Cont.

Collaborative Platforms Kind/Lead Purpose

National Institute for Innovation
in Manufacturing
Biopharmaceuticals (NIIMBL)

Public–private partnership,
manufacturing innovation
institutes funded through a
cooperative agreement with the
National Institute of Standards
and Technology (NIST)

To achieve a public–private partnership to enable
more efficient and rapid manufacturing
capabilities and biopharmaceutical
manufacturing workforce to accelerate
biopharmaceutical innovation.

BIOPRO cluster
Industry–academia collaboration
lead by Technical University of
Denmark (DTU)

Developing new ways of making bio-based
production more efficient and sustainable by
reducing the consumption of energy and raw
materials while improving yields [31].

2. What Is Creating This Disjoint

The initial implementation of continuous bioprocessing was slow due to technical challenges.
Similar to other technological advancements and new solutions development, it could be argued that
the benefits of continuous processing outweigh its challenges and constraints. Hence, even though
many biologics firms have been successfully operating continuous manufacturing plants for years, it is
esoteric that continuous bioprocessing has not implemented a typical technology lifecycle paradigm.
The negative assessment from within the industry, despite known business and quality benefits,
lies in many different dimensions of decision making for technology adoption (Figure 1). From a
practical point of view, a migration to continuous manufacturing, both during clinical trials and mass
manufacturing, requires approval at a senior executive level. However, with the need to maintain
quarterly and yearly performance figures, it means that a drive towards continuous manufacturing,
which requires a more long-term time horizon to be truly beneficial, becomes a tough sell. As expected,
business priorities and decision making are often driven by short-term goals, visible challenges,
and deeply entrenched mental models rooted in batch manufacturing technologies (Figure 2).

Figure 2. Lifecycle of a drug from discovery to mass market availability. Abbreviations: DSP (Downstream
processing), HPLC (High performance liquid chromatography), TFF (Tangential-flow filtration system),
USP (Upstream processing).
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In the following section, we look into various dimensions as the cause for the slow adoption of
industry’s continuous biologics manufacturing.

2.1. Are Costs or Regulators to Blame

It is often argued that the biopharmaceutical industry will eventually evolve towards continuous
processing, similar to the trends observed in other industrial sectors such as oil, food, and paper
manufacturing. That is, however, not really happening. Such arguments ignore the considerable
differences in the required processing capacity and product value in the manufacturing of biologics.
It is safe to say that a biologics plant that processes anywhere near the per-day processing capacity
of plants in the aforementioned industrial sectors will never be needed. Thus, a business case never
truly stands if driven by the need to be continuous on a capacity basis [5]. In general, much of the
cost advantage from continuous processing comes from intensifying the process, resulting in smaller
equipment footprints (compared with batch and fed-batch systems) and, consequently, lower capital
investments. Simultaneously, smaller facilities are more comfortable to expand or replicate as back-up
systems at multiple sites. Moreover, it is essential to realize that biopharmaceutical manufacturing is
currently challenged by questions that are very different from the questions faced by the biopharma
industry of the past, built on the heritage of blockbuster drugs, and faced during its development and
manufacturing. Under development, the current biopharma portfolio is a collection of smaller targeted
treatments, requiring a flexible and economical production option for these products instead of hitting
a capacity dead-end. Thus, it is crucial to make a correct comparison while building the business case
for the continuous manufacturing of biologics.

The early discourse presented regulatory aspects as the biggest hurdle on the road toward the
actual implementation of continuous bioprocessing. However, over the past few years, regulatory
agencies such as the FDA appeared to be a strong supporter of continuous bioprocessing as it reduces
manual interference with product streams and improves process control and quality. In this context,
the agency also recommends using QbD principles to establish sufficient process robustness [9].
However, it is still challenging to develop proper scale-down models, which are prerequisites for this
approach. While running experiments for this purpose, the prohibitively expensive experimental
campaigns associated with media costs alone restrict this [32]. Different strategies are being investigated
to avert these costs potentially (Figure 3). For example, Tajsoleiman et al. (2019) [22] explored the use
of compartmental modeling by the automatic conversion of fully developed CFD (bio)reactor models
into compartment models. This approach is highly efficient and can be used as a strategy to develop a
scale-down model of the process/equipment [33].

Figure 3. Scale-down modeling workflow supported by innovative solutions.

Furthermore, for the same purpose, the application of continuous hollow-fiber bioreactors and
miniaturized stirred bioreactors (MSBRs) (or small scale reactors in general) as well as microfluidics is
currently being explored [34]. While a hollow-fiber system can be as small as 2.5 mL, it is not easy to
measure process parameters. On the other side, although easier to measure parameters, the minimum
volume for commercially available MSBRs is finally scaling-down to actual low volumes, such as 15 mL
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and 250 mL volume Ambr® systems [35]. Similarly, a few commercial microfluidic perfusion systems
without active mixing are also currently available. Most of these systems struggle with challenges
such as the inability to incorporate control of pH and dissolved gases. Tajsoleiman et al. [33] reviewed
opportunities, critical parameters, and challenges of implementing MSBRs for scale-down purposes.

2.2. Realization of Flexible and Intensified Manufacturing

Success for a modern biopharma company strongly depends on operational flexibility to adjust
production capacity in response to rapidly changing demand forecast, unexpected failures in late-stage
clinical trials, or faster than expected clinical adoption. With smart batch definitions, scale-up could be
enabled simply by extending a perfusion process’ duration in continuous processing. Capacity use is
improved when only a small number of long-duration campaigns are performed, reducing the number
of required product change-overs [36]. Moreover, continuous bioprocessing plants are often made
specifically for a single process/product, with little or no intention of adapting the same equipment
for a different process. However, this translates into an inherently low facility flexibility level with
long continuous operation run times. It also limits the degree of flexibility a company has to switch
quickly between different products. Process intensification to achieve final titers similar to conventional
upstream processes in a shorter timeframe and a modular biomanufacturing platform have been
proposed as strategies to regain the degree of flexibility.

Early-stage process development and clinical manufacturing are often critical to getting a new
product into clinical trials. Clinical delays due to process development or manufacturing issues can
be very costly. Although many firms have successfully operated continuous perfusion for years,
it is generally not seen as a more reliable production method than (fed-)batch, especially at the early
stage. On the other hand, standard fed-batch culture services are offered by many biologics contract
manufacturers. Perfusion culture services are far less common and, even when found, are readily
available only with the particular cell retention method already in use by that vendor. The compatibility
of that method for a specific process may take time to resolve. Such early-stage challenges often impact
early decisions about the most appropriate way to use the available manufacturing technology to meet
the demand and timeline. Even at the commercial scale, two significant biopharmaceutical shortages
occurred due to commercial production problems using continuous perfusion systems. Therefore,
it is crucial to improve design, characterization, and protocol standardization methods to improve
continuous bioprocessing predictability and confidence.

2.3. The Dilemma of Technology Evolution—Continuous Stainless Steel vs. Single-Use

Continuous processing equipment manufacturers and users report that many of the problems long
associated with perfusion and continuous bioprocessing have been resolved in recent years by applying
innovative technologies, including new developments in single-use equipment. All the necessary
building blocks for a fully disposable continuous value stream exist—bioreactors, cell-retention
devices, prepacked columns, and filters. However, for very high cell densities aimed for titer increase,
disposable/single-use bioreactors are not recommended. At some point, in single-use bioreactors,
the dissolved oxygen (DO) level might become a limiting factor for high cell densities. In such cases,
continuous processing at a sufficient scale is not possible due to limits of oxygen transfer rates and
pressure limits of welded seams in the plastic bags. A high cell concentration also generates heat that is
difficult to transfer across insulating plastic layers.

While single-use or disposable systems provide much more flexibility, an inevitable concern
appears regarding these systems’ environmental sustainability. In a world where people are worried
about grocery bags and disposable cups, justifying an industry’s transition from multi-use stainless
steel to disposable plastic adds another dimension of concern. Although the waste output from
biomanufacturing is only a fraction, appropriate waste disposal procedures are crucial to adopting
these systems, especially towards scale-up uses. The process intensification supported by continuous
manufacturing can, in fact, help to reduce the footprint and improve sustainability. Thus, although the
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two technology trends look to be competing, they are mutually enabling the future of bioprocessing.
Table 2 compares the benefits and challenges of the two manufacturing platforms—continuous stainless
steel vs. single-use systems.

Table 2. Benefits and challenges that single-use systems can offer compared to stainless steel-based
manufacturing platforms.

Multi-Use Stainless Steel Systems Single-Use Systems

Benefits

• Well-known systems with standardization
• Less disposable waste
• Available in large capacities
• More advanced sampling and process control

• Capacity flexibility
• Can be easily scaled out
• Easy product/facility changeover
• Reduced cleaning validation
• Lower energy demand and water use
• Lower risk of contamination

Challenges

• Inflexible infrastructure
• Challenging in scale-up
• Higher maintenance requirements, utilities
• Cleaning validation required
• Higher risk of contamination
• Higher capital expenditure (CAPEX) required

to start

• Lack of mechanical strength, i.e.,
difficult scale-up

• Waste generation
• Risk of extractables and leachables
• Lack of standardization
• Requirement of sustainable supply

of consumables
• More dependence on automation and a very

skilled operator needed

2.4. Organisational Readiness

From a management perspective, it should be noted that multiple stakeholders are involved
in successfully implementing continuous biologics manufacturing—for both clinical trials and,
more importantly, consumers. One key stakeholder that is often overlooked is the plant operations
department. With the inherent variations present in raw materials and processes, an argument can
be made that plant operations would instead prefer to operate batch units (where these variations
can be more easily dealt with) instead of dealing with the precise operations required for continuous
manufacturing. Besides, operating a new type of process requires plant operations to develop
appropriate strategies and train operators to understand and respond to a new set of operational
challenges. Thus, onboarding plant operations at an early stage of process design and reducing their
burden of a late-stage switch from batch to continuous operations play a major role in gathering a
critical mass of support to implement continuous production technologies.

Considering an alternative perspective, it can be argued that for biologic firms focused on drug
discovery as the main form of innovation, the introduction of novel production methodologies can
be seen as a distraction. This is because the primary “value creation”, i.e., the economic benefit,
happens through drug discovery. From an organization’s point of view, the production process
is just the “vehicle” used to mass-produce these drugs. It may be argued in such a case that any
“economic benefit” that can be achieved by improved production is minor in comparison to drug
discovery, and the pursuit of such improvements can “jeopardize” the focus on more significant sources
of economic benefit. To this end, generic and control biologic manufacturers might have a greater
willingness to consider novel technologies such as continuous manufacturing processes, as their core
business model is founded on “cost-efficient production”.
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3. What Can Be Done to Improve the Situation

3.1. Need for More PSE Case Studies to Build Confidence

There have been significant knowledge-driven advancements in continuous bioprocessing
technologies. Perfusion processing is now significantly less complex, less prone to contamination,
and more readily scalable than previously. Similarly, multiple solutions for continuous downstream
processing have intensified the process to accommodate the increased titers and processing rate.
A cost-of-goods analysis on consumables has shown a 6–10-fold cost reduction from the conventional
batch to the intensified continuous process [8]. Thus, the negative assessments from within the industry
of continuous perfusion and downstream processing may, overall, reflect a lack of direct exposure or
experience with continuous technology combined with a relative lack of case studies documenting
success [11]. Case studies and reports of superior performance, when compared to existing batch
platforms, will further help the rapid adoption of continuous bioprocessing. Moreover, such case
studies can reflect business drivers’ alignment during research and development of a biologics drug
and its commercial manufacturing to create a supportive environment (Figure 4). The business drivers
during research and development are focused on maximizing knowledge acquisition with minimal
expenditure. As “kiss” or “kill” is an approach regarding either continuation or termination heavily
used in early stage of drug development, a knowledge spill-over across projects is a supporting driver.
In fact, nine times out of 10, candidate molecules that show promise at the early stage of development
fail at later trials. Therefore, while accuracy in such a decision is critical for ultimate success, a delay in
search of accuracy comes with a heavy cost due to the fact that there are many candidate molecules at
the early stage. At the later stages, the speed and flexibility in process technology for achieving capacity
for clinical supplies and later-stage market demand drive the development strategy. On the commercial
side, business drivers focus on maximizing supplies and savings while maintaining the promised
quality. This involves improving the process’ robustness by continued process validation programs,
continuous improvement projects for lean manufacturing, and efficient product facility change-overs.

 
Figure 4. Alignment between interlinked business drivers in industrial research and development
(R&D) unit and commercial manufacturing is key to success.

Furthermore, analyzing the inherently negative perception of new process technologies by plant
operations and management, in general, can be traced to the nature in which the performance of these
individuals is assessed. In particular, the primary objective of management and plant operations is to
achieve a high level of plant “uptime” while guaranteeing “on-specification” production, with minimal
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operator intervention. In other words, the obvious choice is, then, to operate technologies that are
robust and well understood by the operators. From a systems thinking standpoint, these two risk
factors can be categorized into (i) technology risk (the likelihood that a new technology fails); and (ii)
plant-wide operational risk (the reduction in operational flexibility due to the new technology).

Process systems engineering methods can be employed to systematically assess (and thus manage)
these two risks during technology development and implementation. One such method is the concept
of technology readiness level (TRL). The TRL was originally developed by National Aeronautics and
Space Administration (NASA) to assess space technology development but has now been adopted in
other areas, including bio-based production [37]. The TRL provides a systematic framework in which
technology readiness can be easily estimated based on literature and publicly available information.
This framework also provides a guide on how to factor in the TRL’s economic consequences of new
technology. While these frameworks are not explicitly developed to rate the technology development
in biologics production, they can be adopted to make informed decisions based on “facts and figures”
rather than on perception. Thus, the TRL allows technology developers to identify key areas of
improvements throughout the design process.

Similarly, the plant-wide operational risk introduced by new technology can be systematically
evaluated (and thus managed) based on a systematic assessment. For example, the framework
presented in [38], which was initially intended to rate process control configurations, can be adopted
to systematically assess the economic consequences of reducing operational flexibility due to the
implementation of new technologies. In this particular framework, the concepts of layer of protection
analysis (LOPA) and net present value (NPV) analysis are employed to quantify the consequences.
This type of analysis allows both the technology developer and plant operations to chart a minimal risk
path to implementation. This can include steps such as the development of validated plant-wide process
models or the use of modified benchmark simulations to demonstrate the plant-wide ramification that
a new process technology will bring. Moreover, the development of built-in redundancies, as well as
implementation strategies, minimize plant-wide ramifications.

3.2. PAT Solutions and Robotics for Better Control

From a pure process control point of view, both continuous and batch production processes
have unique characteristics that make their control difficult. One of the most important differences
between continuous bioprocessing and batch or even fed-batch operations is in their required level
of control sophistication [39]. For a fed-batch process, the objective of process control is mainly to
achieve a given feeding profile while ensuring that variables such as pH and temperature are kept in
check. The fact that the content within a vessel (e.g., fermentation) changes over time means that there
is a need to adjust the controls’ behavior to account for these variations. In academia, an extensive
body of work can be found on batch process optimization and control, including the use of machine
learning techniques, such as Kalman filters, neural networks [40], adaptive neuro-fuzzy inference
systems (ANFISs) [41], or evolutionary algorithms [42]. However, in practice, industrial batch and
fed-batch operations imply a minimum degree of automation and, in many instances, require operators
to carry out manual tasks (e.g., nutrient addition). For example, in fermentation operations, pH and
temperature controllers are present, while fed-batch operations may follow a pre-determined feeding
regime. In batch bioprocessing, this is an acceptable practice as operators can prolong or shorten the
fermentation processes to counter all other variations.

On the other hand, continuous bioprocesses have a simpler technical requirement as the objective
of the control structure is to maintain a set point where, in principle, the content within the vessel/unit
operation stays the same as raw materials are added continuously and products are removed
continuously. Nonetheless, in practice, the control of continuous processes is far more complex.
First of all, available measurement devices are unable to measure state variables of interest directly.
Thus, it requires inferences to be made to determine key variables (e.g., the concentration of product
in a continuous fermentation). In situations where key state variables can be measured, there is a
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limitation in the number of measurements that can be performed in a given time frame and in the
fact that significant time is needed to carry out the analysis. Furthermore, unlike batch processes,
where variables (e.g., pH and temperature) must be tightly controlled, in continuous manufacturing,
process variations must be detected by monitoring key state variables, and appropriate real-time
control action is to be taken to counteract these variations. While these objectives can be accomplished
from a base layer control structure, a hierarchical advanced regulatory control structure must be
ensured for the purpose of within-specification operations. To achieve this and, thus, introduce an
integrated process control approach, one of the strategies is to embed novel sensors to monitor the
critical control parameters of key processes in real-time.

As emphasized by the FDA [43], novel control and monitoring approaches are necessary to
improve and ensure product quality in continuous biologics manufacturing. These strategies, such as
PAT solutions [44] and the introduction of an industrial automation hierarchy, play a detrimental role
in adapting to future demands and are, thus, essential for the robust and dependable monitoring and
control of bioprocesses. However, depending on the TRL of advanced sampling methods, the time
needed for process monitoring and control might be reduced, which is highly desired.

Among other developments in terms of sensing tools, the development and application of smart
sensors seem to pave the way for the future, facilitating the adoption of continuous manufacturing
and promoting development towards the factory of the future (smart manufacturing, also known as
Industry 4.0). Free-floating wireless sensors, advanced image analysis, spectroscopic and soft sensors,
and the use of chemometrics are some examples of smart sensing technology. They facilitate collecting
more and improved data (information-rich), thus enhancing monitoring and control tasks. In particular,
these developments break away from the traditional pressure, flow, temperature, and pH sensors that
are usually available in a manufacturing process and rather focus on generating data related to the
state of development of a process. Free-floating wireless sensors are a quite novel and bold sensing
technology, based upon non-invasive instrumented particles [45], which can provide access to process
data in a harsh environment inside an agitated bioreactor [46]

Another recent development is the use of advanced image analysis for process monitoring.
For example, current studies have demonstrated that imaging and advanced image analysis,
coupled with chemometrics and state-of-the-art machine learning algorithms, are promising to
monitor fermentation [47].

On the other hand, spectroscopic sensors have been used and tested for a longer period. In theory,
they can detect several compounds simultaneously without time delay by processing the spectra
with chemometrics [48]. For example, new studies include developing infrared spectrometers [49]
and Raman spectroscopy [50], which are being modified to allow for application in the demanding
manufacturing environment.

Soft sensors are another sensing technology that has shown great promise for on-line monitoring.
They are an alternative to traditional approaches which allow for the monitoring of state variables that
affect the bioprocesses but cannot be sensed in real time otherwise [51–54]. As an advanced process
monitoring technology, they use algorithms to perform an on-line analysis to collect information
on unmeasured process state variables [44,55]. The interest in using these sensors has spiked in
recent years due to the growing computer capacity and the numerous advances in signal processing
(artificial intelligence and machine learning algorithms), which are, without a doubt, the great enablers
of their successful implementation. The opportunities they bring align with the PAT initiatives and, thus,
agree with the intended shift towards smart manufacturing and, consequently, the implementation of
continuous manufacturing [49].

The use of robotics is also regarded as a promising strategy to facilitate the transition to continuous
production lines. Great examples are the use of mechanical arms for the final production steps, such as
filling millions of vials per year in big pharmaceutical companies’ filling operations. Furthermore,
robots are also being used to transport samples across factories for analysis and gradually replace
repetitive manual tasks in the production line, tasks that were, until recently, mainly carried out by
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process operators. However, despite the enticing and demonstrated usefulness, we are still in the first
stages of adopting this technology.

3.3. Modeling and Simulation

The successful shift from batch to continuous operation calls for a systematic modeling and
simulation framework to explore, test, and evaluate a set of scenarios to narrow down the list of
process candidates. Testing different scenarios on a full scale, pilot, or even lab bench is extremely
resource-demanding, especially in the biopharma industry. For example, integrated continuous
API production is barely investigated due to challenges such as the lack of process understanding
and technology readiness [56]. Thus, it seems necessary and highly beneficial to apply modeling
and simulations tools to design, control, and optimize processes when testing continuous process
alternatives. These tools have been evaluated in the chemical and fine chemical industry and academia
for many years.

Furthermore, looking at the many inherent challenges, the development of reliable in silico
plant-wide simulation models that represent, as well as make possible, the potential continuous
production of biopharmaceuticals would tremendously empower and encourage this industry to
take the next steps. Plant-wide simulation models are a comprehensive modeling approach that
requires a plug-and-play type of model development [56]. There are different types of modeling
strategies currently available [23] which vary in their degree of accuracy, from first principles models to
data-driven and even hybrid modeling. To the interested readers, Gargalo et al. (2020) [23] presented
a detailed review of the different types of modeling approaches that are available, especially for
bioprocess modeling.

Besides process understanding, optimization, and control, modeling has a significant role in the
techno-economic and sustainability evaluation of emerging platforms. For example, in this regard,
several studies have compared the impact on the overall sustainability, economics, and environmental
aspects of switching from classic stainless steel batch options to single-use equipment in continuous
biomanufacturing [57–59].

3.4. The Clarity in Regulation for Continuous Biologics Manufacturing

Beside scientific, technical, and business drivers, the adoption of industrial-scale continuous
biologics manufacturing strongly demands clear scientific and regulatory considerations for their
development, implementation, operation, and lifecycle management. The scientific guidelines, both by
the FDA and ICH, ever since the publication of FDA’s PAT guidance in 2004, have been providing
principles and concepts which apply to continuous manufacturing. Specifically, building upon the
principles and concepts described in the already published ICH guidelines, this guideline offers
clarification on CM concepts, describes scientific approaches, and presents regulatory considerations
unique to CM of drug substances and drug products. However, the need for a more clearly identified
path was more recently identified by regulators. The FDA established an Emerging Technology
Program in 2014 that works collaboratively with companies to support the adoption of a continuous
manufacturing platform. In 2019, a draft guidance on Quality Considerations for Continuous
Manufacturing was presented to clarify the FDA’s current thinking regarding innovative CM approaches
and to resolve potential issues some companies have as they consider implementation. However,
the guidance only provides recommendations for small-molecule, oral, solid drug products linked
with (abbreviated-)new drug application (ANDA/NDA) and explicitly notes that the recommendations
do not apply to biological products submitted under a biologics license application (BLA). The ICH
is, at the same time, working on the Q13 guideline on continuous manufacturing in a broader sense.
This guideline will apply to CM of drug substances and drug products for both chemical entities
and therapeutic proteins. Moreover, this guideline will apply to CM processes for new products
(e.g., new drugs, generic drugs, and biosimilars) and the conversion of batch manufacturing to CM
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processes for existing products. While such regulatory efforts are very encouraging, it is also essential
to ensure that continuous manufacturing standards are harmonized.

4. Sustainability Considerations of Continuous Manufacturing of Biopharmaceuticals:
Process Integration and Automation

Currently, all companies are pursuing viable strategies to stand by green chemistry principles and
achieve overall sustainability. As early as 2007, the pharmaceutical roundtable founded by the American
Chemical Society Green Chemistry Institute (GCI) and global pharmaceutical companies recommended
continuous manufacturing as the number one key green research field to boost green and sustainable
production [60,61]. Continuous bioprocessing requires automation, instrumentation, and process
integration, for example, by using process intensification. Integrated analytics and automation
systems open the door for on-line detection and deviation handling to make corrections without
human intervention. However, a fully integrated system would require high analytical precision,
robust control, execution, and well-defined protocols to handle the potential deviations. The next
generation of automation for bioprocessing platforms should be capable of connecting upstream
and downstream, creating an integrated continuous biomanufacturing platform. Nonetheless, a clear
disadvantage is that the more we connect and automate, the lower the systems’ flexibility is. Thus,
supervisory automation with the flexibility to switch or bypass unit operations in a lab setting to
evaluate different and experimental bioprocessing approaches is desired [62]. In a Good Manufacturing
Practices (GMP) environment where such flexibility within an approved workflow is not needed,
such features can be controlled through an access control system, allowing operational flexibility in
new manufacturing facilities. Thus, automation, instrumentation, and process integration enable
more effective scale-up, better product quality, safety, and greater efficiency in terms of economy and
productivity. This leads to higher raw material utilization levels, waste minimization, energy efficiency,
and better facility utilization compared to a similar batch process.

Furthermore, it is important to note that continuous manufacturing processes are more suited for
implementing smart manufacturing concepts (Industry 4.0). These concepts also promise further gains
in process efficiency and sustainability. Batch processes, due to the dynamic nature, are more dependent
on human operators to carry out complex tasks and are limited in their capabilities to carry out timely
actions. In contrast, continuous bioprocessing, due to the steady-state nature, allows employing a
higher degree of process automation for streamlining operations by continuous monitoring of the state
of control and, thus, overall sustainability.

However, one should also acknowledge that continuous production in the biomanufacturing
industry usually comes with introducing single-use and/or disposable systems. Even though they
provide flexibility, an inevitable consequence is compromising the environmental sustainability of
such processes. In a world where we try to avoid single-use plastics, such as plastic bags and bottles,
justifying the transition from multi-use stainless steel to disposable systems is a real concern. Hence,
appropriate waste disposal procedures are vital in adopting these systems, especially towards scale-up
uses [63,64].

5. Digitalization

Biologics manufacturing, like many other manufacturing industries, is being influenced by the
Industry 4.0 push. However, from the numerous concepts currently explored under the digitalization
umbrella, which spans across multiple sectors, three key advances are likely to impact the biologics
industry and create further incentives to adopt continuous manufacturing. These are smart sensors,
Big Data, and Digital Twins.

5.1. From Smart Sensors to Big Data

Smart sensors, as discussed in Section 3.2, as part of the general digitalization drive, are indeed a
promising tool to obtain large and improved datasets that better reflect the state of development of a
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process. Leveraging these data is the other half of the digitalization movement. In this case, the objective
is to take the large amount of data collected and convert it into actionable information. Initially, the aim is
to monitor a process with the intention of later using this information to change/control the process [65].
In batch production, these concepts have already been employed to predict batch end-time from
seemingly information-poor variables, such as temperature and pH. Concepts such as predictive
maintenance also leverage data to predict and schedule maintenance operations [65].

5.2. Digital Twins

Like Big Data, Digital Twins form one of the key pillars in Industry 4.0 and the digitalization
drive [23,49]. While the Digital Twins concept is somewhat vaguely defined for bio-based manufacturing,
there are two types of digital twins that can aid future development. This first type of digital twins deals
with operational support and control. For example, the use of digital twins to forecast the evolution of
a fermentation process, such as in [66]. On the other hand, a digital twin can be a digital representation
of a future production process, where it acts as a validated test-bed which can be used to refine and
build confidence in a process design prior to construction.

All these developments directly impact further strengthening of the case of continuous production
and its business case. The development of novel sensors enables collecting datasets that are needed
for “real-time” tracking of key state variables in continuous production. Simultaneously, the big
data-based process monitoring and control methods are required to ensure that the data gathered can
be turned into actionable information for the process operators and/or perform closed-loop control
action. Digital twins, on the one hand, play a similar role in producing actionable information and
providing the ability to implement closed-loop controls.

A knock-on effect of the operation supports that these elements provide, together with the high
degree of process automation, is needed for continuous production processes. This brings the need for
reduced staff for given production output. In addition, the operators who are working on continuous
production processes would operate the process through more automated operations, avoiding manual
tasks as much as possible, which are the norm in batch production.

5.3. Application of Modeling in Regulatory Decision

A unique and challenging aspect of introducing changes to pharmaceutical processes’ design and
operation is the need for regulatory bodies to approve any specific changes. To this end, a concept
such as “Digital Twins”, which, in essence, opens up towards shifting validations and testing on
a process into an in-silico environment, needs to be accepted by the regulatory bodies. Quality by
design is one such framework. It has been adopted and endorsed by the FDA, which indicates their
willingness to acknowledge the need for more in-silico-based studies to improve the precision and
speed at which process designs can be created and tested. However, the question remains whether
multiple designs (process paths) can be validated by employing the digital twin concept. At the very
least, these digital twins can be applied for building a multivariate design space and scale-down
models for commercial-scale systems, reducing the economic burden on the R&D department without
compromising the quality.

5.4. Leveraging Process Data

With the development and pilot-scale operation of hundreds of process designs in a year and
dozens of commercial production processes, pharmaceutical companies can collect a large amount of
diverse process data from operations. With the recent advances made in data-driven analytics and
the availability of “big data”, pharmaceutical companies can leverage these data to identify common
failures and successes rapidly. In turn, these situations can be further analyzed by subject matter experts
to develop process insights for an improved design and operation of future production processes.
As such, data analytics will allow pharmaceutical companies to rapidly improve process designs
as opposed to the more subdued pace at which changes usually occur. It is noteworthy that data
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analytics acts as an enabler for experts to analyze hundreds, if not thousands, of datasets effectively,
thus facilitating the gathering of insights and pro-active planning of operational changes.

6. Hybrid Facilities: Acknowledging the Best of Both Worlds

Depending on the demand and manufacturing stage, it becomes easier or more challenging to
work with single-use/disposable systems or multi-use stainless steel systems. A hybrid facility that uses
disposables and reusable systems potentially combines both systems’ benefits and could be the path
forward depending on the required capacity. This has often come to mean single-use technologies in
seed-train development. However, for upstream production, the use of stainless steel-based perfusion
bioreactors is more common, and then again using single-use systems in downstream processing for
in-process holding and filtration units. Such flexibility will automatically enable the flexibility of
connected unit operations and, thus, continuous operations while keeping the risk of contamination to
a minimal level [36].

7. Summary and Outlook

Despite the benefits of continuous over batch bioprocessing, its adoption has lagged, with few
exceptions. However, the batch manufacturing paradigm’s dominance in the industry for reasons
such as “batch processing is familiar and works very well” cannot be sustained in the long term given
the new biomanufacturing challenges. The industry-held perception of complexity in continuous
bioprocessing is becoming obsolete, as more and more new technologies and solutions are continually
improving the situation. Several academic- and industry-led consortia are working to improve the
perception regarding continuous bioprocessing by bringing the questions to the correct stakeholders
who can address them. The training provided by these initiatives to the top management of the
companies is playing an essential role in changing the perception and, at the same time, also creating
new scientists and operators that can understand and respond to a new set of operational challenges.
However, wider adoption of continuous bioprocessing will only be possible if the gaps at the technical,
management, and regulatory levels are acknowledged. As discussed in this paper, concerted efforts
are being made to abridge them. These include:

Technical:

i. Improvement in automation to allow flexibility in the design and control of continuous processes;
ii. Adoption of a “digital twin” of processes to reduce the costs and risks linked with a decision

made based on a limited set of experimental results;
iii. Application of detailed modeling and expert systems to support the development and regulatory

requirements, such as scale-down modeling;
iv. Working on hybrid approaches such as single-use and multi-use to obtain best-of-all outcomes,

thus enabling continuous manufacturing;
v. Application of “big data” to support process development, control, and regulatory filing of

a project.

Management:

i. Training on realistic situations highlighting risks and benefits of continuous manufacturing
will allow removing the barrier caused by preexisting perceptions;

ii. Acquisition of trained staffwho can support the adoption of new technology;
iii. Identifying key stakeholders from across the organization and getting them involved in the

migration processes;
iv. Early alignment of R&D and commercial manufacturing business drivers to realize the extensive

benefits of continuous biologics manufacturing.
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Regulatory:

i. Clarity on the regulation of continuous vs. batch definitions under newer integrated and hybrid
biomanufacturing process designs will be very useful;

ii. Increase in acceptability of digital twins as evidence for regulatory clearance;
iii. A joint effort by regulatory agencies and industries to develop a possible roadmap for the

integrated continuous manufacturing will be highly beneficial for the biologics sector;
iv. Harmonization of continuous manufacturing standards and regulations.
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