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ABSTRACT At present, countless approaches to fault diagnosis in reciprocating machines have been
proposed, all considering that the available machinery dataset is in equal proportions for all conditions.
However, when the application is closer to reality, the problem of data imbalance is increasingly evident.
In this paper, we propose a method for the creation of diagnoses that consider an extreme imbalance
in the available data. Our approach first processes the vibration signals of the machine using a wavelet
packet transform-based feature-extraction stage. Then, improved generative models are obtained with a
dissimilarity-based model selection to artificially balance the dataset. Finally, a Random Forest classifier
is created to address the diagnostic task. This methodology provides a considerable improvement with 99%
of data imbalance over other approaches reported in the literature, showing performance similar to that
obtained with a balanced set of data.

INDEX TERMS Imbalanced data, GAN, model selection, random Forest, reciprocating machinery.

I. INTRODUCTION
Reciprocating machinery, specifically piston compressors,
are among the most used machines in industry [1]. The
main task of reciprocating machinery is the generation of
compressed air mainly used as a power source for pneu-
matic systems. However, the already low efficiency of the
machinery [2] can be compromised by the presence of
mechanical system failures. Additionally, these failures can
cause costly damage to the machinery [3], and even physical
injuries to humans in its environment [4].

To address this issue, multiple efforts have been employed
in the creation of fault diagnosis systems that use signals
measured in real time on machinery. For example, in [5], use
of Principal Component Analysis to build a compressor diag-
noser is proposed. In [6], a method based on decision trees
is presented for fault diagnosis. [7] addresses the problem of
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fissure detection in valves with time-frequency features and
logistic regressor classifiers. Expanding the panorama even
further to fault diagnosis in general, some works introduce
several approaches based on fuzzy logic [8], [9].

Owing to the large amount of data currently available,
intelligent algorithms,especially the methods based on deep-
learning, have been widely used in the field of intelligent
prediction [10] and [11]. For example, in [12], a DBN is used
in conjunction with Teager-Kaiser energies for the diagno-
sis of compressor failures. Although no more works have
been reported using deep learning in compressors, in [13]
an approach based on deep convolutional autoencoders is
presented for the estimation of failure severity in rotating
machinery, and [14] proposes the use of deep recurrent mod-
els for the task of gear fault diagnosis. Finally, [15] presents a
detailed review of works based on machine learning applied
to bearing fault diagnosis.

All the previous works have in common a deficiency; that
is, they do not consider the real conditions of acquisition
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of signals in industry. When a compressor has a damaged
element, it is usually replaced as soon as possible to avoid
further damage to the machine. This results in the number of
available signals of the different fault modes of the compres-
sor being much lower (2% or even less) compared to those
available for healthy conditions. Under this premise, the cre-
ation of a diagnostic model should be addressed as a problem
of imbalanced data, which, to the best of our knowledge, has
not been done before for reciprocating machinery. However,
some works have recently reported use of Generative Neural
Network (GAN) theory to address this problem for rotating
machinery. For example, [16] presents a method for the fault
diagnosis of bearings based on a GAN for the increase of
data represented in the Fourier spectrum (data are initially
balanced in their dataset, but the objective is to increase
their quantity to improve the performance of the classifier).
One study [17] addresses the fault detection task in electric
motors, in which a Deep Convolutional GAN (DCGAN)
is used to increase the number of Intrinsic Mode Func-
tions corresponding to vibration signals in the minority fault
modes. In [18], the DCGANs are used to create wind turbine
fault data from the expert knowledge of the operators of its
SCADA system, and the final model only determines whether
or not there is a fault in the turbine. Other works include
[19] and [20].

The above-mentioned works do not address the problem
of extreme imbalance that can occur in multiple tasks of fault
diagnosis. At best, they only address 80% of the imbalance
problems with decreasing performance with extreme imbal-
ance. In addition, as mentioned before, there are no reported
works for reciprocating machinery that address the problem
of data imbalance. Therefore, in this work we propose a
novel method based on the selection of GAN models for
the fault diagnosis task in reciprocating compressors with
extreme data imbalance. Our main contributions are (i) a
method that combinesWavelet Packet Transform (WPT) with
GAN for the creation of Random Forest (RF) classifiers used
in the fault diagnosis on compressors with data imbalance
of 99%, and (ii) an unsupervised procedure based on sim-
ilarity of clusters for the selection of the best generative
model under conditions of extreme imbalance. To provide
robust results, our proposal is compared with seven differ-
ent methods addressing the same problem (including other
GAN-based approaches). Results show that our approach has
a near performance (0.986) that can be obtained with the
balanced data (0.99), and surpasses the rest of the compared
methods.

The rest of this paper is organized as follows. In Section II,
we detail the background of techniques used. The proposed
methodology is presented in Section III. In Section IV,
we introduce the experimental test bed, compare the applica-
tion of our proposal with other state-of-the-art methods, and
discuss the obtained results. Finally, in Section V, we present
conclusions and lines of future work that can take advantage
of this proposal.

II. BACKGROUND
A. WAVELET PACKAGE DECOMPOSITION
Wavelet analysis [21] is based on the decomposition of a sig-
nal into a set of components. Its main difference from Fourier
analysis is the use of basic functions, also known as mother
wavelets, which are finite-duration functions changing their
frequency (as in the classic Fourier analysis) as well as their
temporary position. In this way, the transform allows adjust-
ment of the resolution in both time and frequency, obtaining
a better resolution in time for high-frequency events and a
better resolution in frequency for low-frequency components.
Owing to the Heisenberg Uncertainty Principle [22], when
crossing a threshold an improvement in resolution over time
cannot be obtained without worsening the resolution in fre-
quency, and vice versa.

In this context, the Discrete Wavelet Transform (DWT)
used in a discrete signal v(t) is given by

c(j, k) =
∑
t∈Z

v(t)ψj,k (t), (1)

where ψj,k is an element of the family basis function ψ
given by

ψj,k (t) = 2−
j
2 · ψ(2−jt − k). (2)

The changes in time and frequency are implicitly coupled
in Eq. 1, i.e., the translation parameter, τ , and scale parameter,
s (reciprocal of frequency), can be computed as

τ = 2j (3)

s = 2jk. (4)

Multi-Resolution Analysis (MRA) [23] relates DWT with
the recursive application of filters to the signal, decreasing the
computational cost of the DWT application. The calculation
of the DWT based on the MRA establishes that a signal
can be decomposed in its components of high frequency, d
(details coefficients), and low frequency, a (approximation
coefficients), by applying filters with impulsive response h(t)
and g(t), respectively, followed by a sub-sampling operation
with factor 2. This is valid as long as the filters are related by
g(L−1−t) = (−1)t ·h(t), called quadrature mirror filters, for
a signal of duration L. The relationship can be formalized by

d(k) =
∑
t

v(t) · g(2k − t), (5)

a(k) =
∑
t

v(t) · h(2k − t). (6)

The Wavelet Packet Transform (WPT) [24] applies this
decomposition process recursively to a(·) and d(·), where
every successive application of Eqs. 5 and 6 builds a new
decomposition level. This procedure can continue until a(·)
and/or d(·) have only one element. However, in practice,
the level of decomposition is limited by some optimization
criterion or determined by the specific application.
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B. GENERATIVE ADVERSARIAL NETWORKS
Generative Adversarial Networks (GANs) [25] are composed
of two models, Generator (G) and Discriminator (D), both
competing among themselves. The G model receives z input
sampled from a known distribution Pz. The result of the
application of G to z is an example x ∼ Pg where x = G(z).
The D model can receive x ∼ Pr input, where Pr is the

data distribution, or x ∼ Pg input from theGmodel. The task
of D is to recognize whether it is x ∼ Pr or x ∼ Pg, i.e.,

D(x) =

{
1, if x ∼ Pr ,
0, if x ∼ Pg

(7)

The G model must be improved to fool D. The D
model improves avoidance of being fooled by G and,
at the same time, correctly detects the inputs from Pr .
Both improving criteria can be found by the application of
maximum-likelihood estimation to a m samples batch of Pr -
and Pg-based data entered to a θ -parameterized probabilistic
model PD defined by D model:

θ̂MLE = argmax
θ

m∑
i=1

logPD(yi|xi; θ ), (8)

where yi|xi is a known example in the data batch with yi =
1 if xi ∼ Pr , and yi = 0 otherwise. As D is a binary
classifier, PD follows a Bernoulli distribution, and Eq. 8 can
be reformulated as

θ̂ = argmax
θ

m∑
i=1

log([D(xi)]yi [1− D(xi)]1−yi ) (9)

= argmax
θ

m∑
i=1

log[D(xi)]yi +
m∑
i=1

log[1− D(xi)]1−yi (10)

= argmax
θ

m∑
i=1

yilogD(xi)+
m∑
i=1

(1− yi)log[1− D(xi)],

(11)

where D model is parameterized by θ . The left-hand term of
Eq. 11 refers to the ability of D to recognize xi ∼ Pr and the
other term its ability to reject G(zi) = xi ∼ Pg. Taking this
into account, Eq. 11 can be reformulated as the optimization
of the following two expectations:

θ̂ = argmax
θ

Ex∼Pr logD(x)+ Ez∼Pz log[1− D(G(z))], (12)

where the first summand improves the model’s ability to
detect real inputs and the second summand improves the
model’s ability to recognize inputs generated by G.
If G is parameterized by φ, the previous criterion must be

minimized to find the appropriated parameters that improve
this model. However, the first expectation is independent of
G and can be removed. Finally, the optimization criteria for
G can be formulated as

φ̂ = argmin
φ

Ez∼Pz log[1− D(G(z))], (13)

showing that the generator’s improvement does not disturb
the ability of the discriminator to recognize x ∼ Pr , but it is
related to the ability to detect x ∼ Pg.
Other improvements have been proposed to avoid

model-collapse issues in GAN training. One of the most
popular is the use ofWasserstein loss functions [26] for θ̂ and
φ̂ optimization. In this case, the discriminator is replaced by
the critic function f , which must have 1-Lipschitz continuity
property and be parameterized by θ . The optimization criteria
for f and G are then

θ̂ = argmax
θ

Ex∼Pr f (x)− Ez∼Pz f (G(z)), (14)

φ̂ = argmin
φ

−Ez∼Pz f (G(z)). (15)

C. RANDOM FOREST
Random Forest (RF) [27] is a machine-learning model that
has the advantages of classification and regression trees [28]
by grouping a large number of them. Each tree of the RF
model works independently of the others and, finally, some
technique of aggregation of results is applied to obtain a final
conclusion.
RF is an example of ensemble machine-learning theory.

In this theory, an ensemble model, h, is composed of K
submodels, hj, called weak learners:

h = {h1(x), h2(x), . . . , hj(x), . . . , hK (x)}. (16)

Weak learners give an independent response to a specific
instance that must be classified/regressed. This means that the
parameters associated with each learner also have indepen-
dence from the others. For example, if weak learners belong
to the same family of models, then we can write hj(x) =
h(x|θj), where θj represents the parameters associated with
the jth learner, i.e., architecture, input samples, input features,
etc.
The outputs of the weak learners are then combined in

some way and the aggregated result is given as the output
of the ensemble. For example, in a classification task when
using the majority voted aggregator the empirical probability
of a specific ci class is obtained from

P̂(ci|x) =
1
K

K∑
j=1

I (h(x|θj) = ci), (17)

where I (·) is the indicator function that returns 1 if its argu-
ment is true, and 0 otherwise. Finally, the class chosen as
result of h is the one with the highest empirical probability
distribution.

In RF, two techniques are commonly used to increase the
diversity of the generated weak learners:

• Bagging [29]: Denotes bootstrap [30] aggregating.
It consists of building themultiple different decision-tree
weak learners from the original training dataset by
repeatedly using multiple bootstrapped subsets of the
data.
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FIGURE 1. Overview of proposed approach.

• Random Feature Selection: From all the possible fea-
tures of the original training dataset, we randomly select
a subset of to build each weak learner.

These techniques, in addition to enriching the model
with different learners, also decrease its computational
complexity.

III. GAN-BASED DATA BALANCE FOR FAULT DIAGNOSIS
In this section we present a novel GAN-based approach for
solving the problem of highly imbalanced datasets commonly
obtained in real-world fault diagnosis applications of recip-
rocating machinery. The samples are composed of features
extracted from the approximations and details coefficients of
the WPT. Then, the GAN models assess the data distribution
for every minority faulty mode to synthetically increase its
size. As is well known, the optimization process of GAN
models suffers from two main issues: (i) instability due to
competition between generator and discriminator models,
and (ii) a subjective criterion in the evaluation. To deal
with these problems, in this work we introduce an online
unsupervised model-selection stage in the training process of
the GAN based on a statistical similarity index between the
cluster of real samples and the cluster of generated samples.
Finally, a RF classifier is built from the balanced dataset
and applied to diagnose the fault. Figure 1 summarizes this
proposal.

A. SIGNAL ACQUISITION AND PRE-PROCESSING
Suppose that a vibration signals set obtained under K dif-
ferent healthy states of the machinery is available, and let
{P1, . . . ,PK } be the family of sets of different machinery
states, where P1 contains samples under the normal condition
(where all components are healthy) and Pi contains samples
with the same faulty state (for i = 2, . . . ,K ).
Usually, P1 is the larger set due to the ease of capturing

signals under this condition, and we will assume that the
relative sizes of the other sets with respect to P1 are very
small (|Pi| ≤ c · |P1|, i = 2, . . . ,K with c << 1) to test
our methodology in a case of real imbalance (for example,
in Section IV we present cases in which c = 0.01).
Let s(t)t∈[0,T ) be a discrete vibration signal (a time-series),

as shown in Fig. 2. Each element in s(t) is temporally depen-
dent on its predecessors, and consequently their elements
are highly correlated, but not suitable as inputs for shallow
machine-learning models like RF.

FIGURE 2. Example of vibration signal from reciprocating machinery.

To deal with this issue, we propose the use of WPT as
decomposition method for enhanced information of raw sig-
nal. This approach has been previously successfully tested
in other fault diagnosis studies [31]. First, the decomposition
of the vibration signal is carried out through the recursive
application of wavelet quadrature filters. This procedure con-
tinues until a L layer of decomposition is reached, creating
the so-called decomposition tree, where a 2L approxima-
tion and detailed coefficients signals are obtained. Finally,
the coefficients signal energy is computed for each node in
the last layer, obtaining a features vector of 2L components.
An example of this procedure is presented in Fig 3.

For every vibration signal s, we denote xs as the feature
vector extracted by the application of the previous procedure.
Then, for every i ∈ {1, . . . ,K } we denote

Xi = {xs : s ∈ Pi}. (18)

B. GAN MODEL SELECTION
As studied in [32], the training process of GANmodels suffer
from instability and a collapse mode. The last issue can
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FIGURE 3. Wavelet packet decomposition tree-based feature extraction
for vibration signals.

be addressed by Wasserstein GAN models as presented in
this work. However, the instability of the training process
continues to be an open issue for this type of model. Com-
pounding this is the model’s inability to objectively evaluate
the performance of the generator in tasks other than image
generation. As will be seen in Section IV, the scope of the
Nash equilibrium is not an indicator of good performance.
Owing to these problems, the generator model can decrease
its performance in the task after a few iterations without it
being noticed by the training algorithm.

To address the aforementioned issue, we propose introduc-
ing an unsupervised mechanism of model selection within
the common GAN training algorithm. The proposal is guided
by the dissimilarity of the clusters formed by two data
batches, one of real data, Br , and the other of generated
data, Bg.
As a first approximation, in this work we use the next basic

definition, but it would be interesting to analyze how other
measures affect the performance of the methodology:

diss(Br ,Bg) = ||Cr − Cg||2 + ||Sr − Sg||2, (19)

where Cr (respectively, Cg) is the centroid of the real (respec-
tively, generated) data cluster, and Sr (respectively, Sg) is
the real (respectively, generated) data sparsity (specifically,
standard deviation).

We follow a greedy mechanism. In each training iteration,
the selectionmechanism verifies whether there is an improve-
ment in the generator model with respect to the dissimilarity
measure. A lower measure indicates a better model, as shown
in Fig 4. In this case, the model is stored, replacing the previ-
ous one best model. This process continues for a number of
predetermined iterations, and it is repeated for each minority
fault state. Algorithm 1 summarizes this procedure. As a
result of its application, K − 1 generative models have been
saved for their use at the next stage.

FIGURE 4. Examples of dissimilarity indexes between real and generated
clusters. (a) Clusters with dissimilarity of 11.31. (b) Clusters with
dissimilarity of 0.707.

Algorithm 1 GAN Models Building and Selection
Data: {P1, . . . ,PK }
Result: Best GAN models collection for wavelet-based

examples generation
1 foreach i = 2 . . .K do
2 f , Gi (θ , φ): parameterized models;
3 Init θ and φ;
4 best = ∞;
5 foreach iteration in training do
6 Br = Random batch from Xi;
7 Bg = Random batch from Gi;
8 Train θ through Br and Bg (Eq. 14);
9 Br = Random batch from Xi;
10 Bg = Random batch from Gi;
11 Train φ through Br and Bg (Eq. 15);
12 B′g = Random batch from Gi;
13 Compute d = diss(Br ,B′g) (Eq. 19);
14 if d < best then
15 Store Gi as generator for Pi;
16 best = d ;

Selected architecture for the generator and the discrim-
inator are both the multilayer perceptron neural network,
because of the power of this architecture to naturally represent
time-independent characteristics (generator) as well as its
ability to classify them (discriminator/critic) (see Figure 5).

C. IMPROVED DIAGNOSER BUILDING AND TESTING
After obtaining the collection of generative models from the
previous algorithm, we use them to generate new synthetic
samples and complete several fault state datasets, i.e., for
every 2 ≤ i ≤ K , we use the Gi model to generate as
many synthetic states as we need to obtain a new dataset X ′i
verifying Xi ⊆ X ′i and |X

′
i | = |X1|. In this way, the new global

dataset X ′ = {X1,X ′2, . . . ,X
′
K } is balanced.

Finally, an RF classification model is built with the bal-
anced X ′ training set. As we demonstrate in the next section,
this classifier performs better than the one that can be built
with the imbalanced dataset. The procedure for creating the
weak learners follows the standard procedure.
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FIGURE 5. Architecture of GAN models.

Once the classifier has been obtained, the instances of
the test set can be evaluated, and, additionally, new time
series can be classified online if they first go through the
feature-extraction phase and then entered into the classifier.
Note that in this stage the generator models are not required,
as they were used only to balance the training set.

IV. EXPERIMENTS
A. TEST BED AND SIGNALS DATASET
The experiments were performed in the reciprocating
machinery test bed shown in Fig. 6 and implemented in the
laboratory of GIDTEC Research Group of the Universidad
PolitÃľcnica Salesiana (Cuenca, Ecuador). Its main part is the
EBG250 two-stage reciprocating compressor 5HP. A three-
phase motor is coupled to a belt-driven transmission system
to provide force to the compression camera. The motor rota-
tion speed is 57.7Hz, which results in a crankshaft rotation
frequency of 12.8Hz.

The measurement of the vibration signal was per-
formed with a 100mV/g sensitivity IMI SENSORS
603C01 accelerometer sensor. It was vertically located
over the compression camera. Then, the analog signal was
transferred by shielded cable to a National Instrument
NI9234 data-acquisition card, where the analog-to-digital
conversion is performed at a sampling rate of 50 kS/s. This
card was mounted on a NI9188 chassis of the same brand
for the purpose of transferring the data to a management and
storage system programmed in a computer.

The vibration signals were acquired under healthy condi-
tions and four different failure conditions in the compressor

FIGURE 6. Test bed of two-stage reciprocating compressor.

TABLE 1. Distribution of signals for fault configurations.

valve subsystems that were identified as the most critical. The
failure modes selected were valve seat wear 1.44mm, valve
plate corrosion with diameter of 2.5mm, valve crack with
diameter of 1.6mm and spring break, as shown in Fig. 7.
For each condition, 100 and 50 vibration signals of 10s

duration were acquired at a pressure between 2.9−3.0 bar for
the train and test stages, respectively. Then, from each signal,
sub-signals with a random starting point and of 1s duration
were extracted. For the extremely imbalanced case, only one
of the former signals was used for the fault modes. Table 1
summarizes the fault configuration and the number of signals
obtained for each dataset (as it can be seen, the set of signals
in fault condition represents only 1% of the set of signals
in normal condition for the training stage). However, the set
used for the model test is balanced to obtain a fair evaluation.

B. COMPARATIVE METHODS
In the following, the feature extraction of signals through
WPT is configured with Daubechies 7 and Symlet 3 wavelets
as the best wavelet families for fault diagnosis according
to [33], at six levels of decomposition, obtaining 64 energy
values in the last level per wavelet. The resulting vectors are
concatenated, obtaining 128 features.

To make the comparisons, we first used the RF model cre-
ated with the balanced dataset (RF-B), i.e., 24,510 examples
for each fault condition, and the RF model created with the
unbalanced data set (RF-I). In this sense, RF-B and RF-I are
the baseline models for comparisons, respectively our upper
bound and lower bound of accuracy.

Following [34], the first methods addressing the problem
of imbalance applied to our case study are oversampling and
undersampling by random replication of examples. In the
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FIGURE 7. Healthy condition and fault modes in components. (a) Healthy
condition of valve components. (b) Valve seat wear. (c) Valve plate
corrosion. (d) Valve plate crack. (e) Spring break.

first method, a duplication of randomly selected elements
is made in the undersampled failure sets until reaching the
balance in the entire dataset. In the second method, we fol-
low the inverse process, and examples of the majority set
are randomly selected to be eliminated until the balance is
reached. With the new training sets, new RF models are
created, obtaining RF-O (for the oversampling method) and
RF-U (for the undersampling method).

The next balancing methods to be compared are
SMOTE [35] (Synthetic Minority Over-sampling Technique)
and its evolution, ADASYN [36] (Adaptive Synthetic sam-
pling). SMOTE creates vectors between each example of the
minority datasets and its k-nearest neighbors (in the same
dataset). Then, each vector is multiplied by a random constant
between 0 and 1, and the resulting point is the new example
added to the dataset. This process is repeated until the balance
of the minority fault modes is reached. The improvement
introduced by ADASYN to SMOTE lies in adding noise to
the new examples to avoid linear correlation with the parent
instances. Both are oversampling methods. As before, after
balancing the training dataset, new RF classifiers are built,
RF-S for SMOTE and RF-A for ADASYN.

Finally, we create three more classifiers to evaluate the
incidence of GAN model selection:
• RF-BGAN1: trained from 24,510 examples syntheti-
cally generated for each minority failure mode, i.e., the
entire dataset is synthetic (pure synthetic with best
model selection).

FIGURE 8. Average accuracy for unnormalized and normalized data input
for each classifier. (a) Average accuracy for unnormalized input.
(b) Average accuracy for normalized input.

• RF-BGAN2: trained from 24,265 examples syntheti-
cally generated for each minority failure mode, com-
bined with the 245 original examples of the former
dataset (mixed synthetic/original with best model
selection).

• RF-GAN: trained with 24,526 examples from the result-
ing GAN at last iteration (step 8000) as presented
in [19], combined with the 245 original examples of the
former dataset (mixed synthetic/original with no model
selection).

In all three models the neural network on the generator model
has a linear output layer to generate features in an extended
range surpassing the [−1, 1] values. In addition, the critic
model has the linear output layer as required by the Wasser-
stein loss. For RF-BGAN1 and RF-BGAN2, the best gener-
ator/critic hyper-parameters for multilayer perceptrons, such
as number of layers, number of units, batch size, and z length
vector, are obtained through the application of grid-search
methodology [37]. An Adam optimization algorithm [38] is
applied to optimize the weights sets of all neural networks,
and learning rates are fixed to 1.0 × 10−4 and 1.0 × 10−5
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TABLE 2. Precision of classifiers for each machinery condition. Average over 20 repetitions together with confidence interval is presented.

TABLE 3. Recall of classifiers for each machinery condition. Average over 20 repetitions together with confidence interval is presented.

for generator and critic, respectively. The number of training
iterations is fixed at 8000 steps.

Additionally, the normalization incidence (mean 0, stan-
dard deviation 1) of income data based on wavelet features
is evaluated for all previously described methods, includ-
ing our proposal. In this sense, for every method we build
two classifiers, one with no normalized data (for example,
RF-B) and a similar one that uses normalized data (for exam-
ple, RF-BN).

Since the execution of the previous methods depends on
randomness, to avoid bias of the results 20 models are cre-
ated under the same configuration for each method. The
hyper-parameters of these models, such as number of trees
and number of random selected features, are optimized by
exhaustive search. The percentage of bagging is maintained
at 70%, and the stop criterion for tree building is maxi-
mum depth. Hence, each classifier is evaluated with the bal-
anced test set, and the results are averaged to obtain a final
conclusion.

C. COMPARATIVE RESULTS
Figure 8 compares the methods for the imbalance of data
proposed in the literature together with our method: Fig. 8 (a)
shows the results for models using the unnormalized inputs,
and Fig. 8 (b) those for models using the normalized inputs.

Results of Fig. 8 (a) show that RF-BGAN1 (0.985) and RF-
BGAN2 (0.986) are the models closest to the upper bound,
with only a difference of 0.005 and 0.004, respectively. How-
ever, the minimum difference (approximately 0.001) between

the accuracy of the two models is evidence that all the dis-
criminant information existing in the data of the minority
failures is contained in the data generated by the GAN. There-
fore, the improvement in accuracy achieved with the union of
the real and generated data is negligible.

The next-best model is RF-U, surpassing any more elab-
orate technique such as SMOTE (RF-S), ADASYN (RF-A),
and even GAN without model selection (RF-GAN), which
is in last place (worse than the lower bound obtained with
RF-I). This shows the robustness of RF with a limited number
of examples when providing the appropriate features. How-
ever, RF-O shows that data balancing by simply copying of
examples only worsens the final performance of the model.
Figure 8 (b) illustrates the same ranking in the performance
of methods, but all the methods behave worse than the cor-
responding unnormalized one. Thus, the typical rule of data
normalization is not applicable to this concrete case.

Poor RF-GAN performance can be explained by analyzing
the training curves of the model, as in Fig. 9, in which the
curves displayed belong to the GAN model for P3. We can
observe three interesting areas for optimization with mini-
mum values in the proposed dissimilarity index in Fig. 9 (a).
The first and second zones are between iterations [100, 500]
and [2700, 3000], respectively, and the third between itera-
tions [4000, 5000]. It is clear that the first and second zones
are unwanted local minimums. However, the third zone,
despite containing the best minimum (0.92 at iteration 4596),
is highly variable, showing a sharp landscape close to the opti-
mum in the parameter space of the generator. Thus, select-
ing the generator model in a uninformed way, only taking
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FIGURE 9. Training curves of GAN model for P3 samples generation.
(a) Dissimilarity index. (b) Generator loss. (c) Critic loss. (d) Generator
plus critic loss.

into account the number of iterations, produces sub-optimal
results. In addition, the curves of the loss function of the
generator, critic, and their sum (Fig. 9 (b), 9 (c), and 9 (d),

FIGURE 10. Average precision and recall for compared methods.
(a) Average precision. (b) Average recall.

respectively) indicate that they cannot be considered for the
selection of the best model because at its optimal values there
is no information to make a decision about the best generator.
This justifies the inclusion of the selection process based on
the dissimilarity measure.

For a more detailed comparison, Tables 2 and 3 show the
precision and recall results with their confidence intervals in
each fault mode. Table 2 shows that the decrease in accuracy
using RF-I, RF-O, RF-S, RF-A, and RF-GAN occurs mainly
in P1. Therefore, a large number of examples of fault modes
are confused by the classifier with the healthy condition,
which is not acceptable in an early detection task. This con-
fusion could be due to the fact that failure modes P2 to P4
are not severe and are considered initial stages of fault mode.
Table 3 illustrates that for the same models a good ability
to detect the healthy condition is obtained (the examples of
this condition are not confused with fault modes), but their
performance decreases radically when trying to detect fault
modes. Taking into account these two points, we can conclude
that the decrease in the recall for fault modes (Table 3) is
due to examples classified in P1 (Table 2), evidencing the
deficiency of the examples of the minority groups with which
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the classifiers were created. This fact is not visible for RF-U,
RF-BGAN1, and RF-BGAN2. In the first model, this is due
to the fact that no new examples are added, and in the other
two models it is due to the quality of the generated examples.
Finally, Fig. 10 illustrates the average precision and recall for
the compared approaches.

V. CONCLUSIONS
In this work, a new method of selecting GAN models for
the fault diagnosis of reciprocating machinery with highly
imbalanced data is proposed. After the signal-acquisition
stage, feature extraction using the WPD tree is presented.
Next, the creation of GANs with a novel approach to the
selection of generative models is introduced as the main
contribution. The generators obtained were used to increase
the size of the minority fault data and balance the dataset.
Then, an RF classifier was created to address the diagnostic
task and provide an objective evaluator.

The proposed approach has been evaluated in the diagnosis
of five different conditions in the valve sub-system of a recip-
rocating compressor, and exhaustively compared to several
other methods reported in the literature. The results obtained
allow us to make the following observations:

• Our proposal improves the classical approaches of
undersampling and oversampling, and produces diag-
nosers almost as powerful as those produced with the
balanced dataset.

• For the diagnosis task, the inclusion of model selection
in the creation of generators is mandatory for a substan-
tial improvement of the RF diagnoser by the sharpness of
the parameter space near the zone of the global optimum.
Reaching the last iteration does not guarantee the best
model.

• Normalization of the input dataset does not apply to
the problem addressed. This may be due to the intrinsic
properties of the resulting wavelet packet features, such
as the non-Gaussianity of the data.
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